]> gcc.gnu.org Git - gcc.git/blob - gcc/combine.c
*** empty log message ***
[gcc.git] / gcc / combine.c
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 /* This module is essentially the "combiner" phase of the U. of Arizona
22 Portable Optimizer, but redone to work on our list-structured
23 representation for RTL instead of their string representation.
24
25 The LOG_LINKS of each insn identify the most recent assignment
26 to each REG used in the insn. It is a list of previous insns,
27 each of which contains a SET for a REG that is used in this insn
28 and not used or set in between. LOG_LINKs never cross basic blocks.
29 They were set up by the preceding pass (lifetime analysis).
30
31 We try to combine each pair of insns joined by a logical link.
32 We also try to combine triples of insns A, B and C when
33 C has a link back to B and B has a link back to A.
34
35 LOG_LINKS does not have links for use of the CC0. They don't
36 need to, because the insn that sets the CC0 is always immediately
37 before the insn that tests it. So we always regard a branch
38 insn as having a logical link to the preceding insn. The same is true
39 for an insn explicitly using CC0.
40
41 We check (with use_crosses_set_p) to avoid combining in such a way
42 as to move a computation to a place where its value would be different.
43
44 Combination is done by mathematically substituting the previous
45 insn(s) values for the regs they set into the expressions in
46 the later insns that refer to these regs. If the result is a valid insn
47 for our target machine, according to the machine description,
48 we install it, delete the earlier insns, and update the data flow
49 information (LOG_LINKS and REG_NOTES) for what we did.
50
51 There are a few exceptions where the dataflow information created by
52 flow.c aren't completely updated:
53
54 - reg_live_length is not updated
55 - reg_n_refs is not adjusted in the rare case when a register is
56 no longer required in a computation
57 - there are extremely rare cases (see distribute_regnotes) when a
58 REG_DEAD note is lost
59 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
60 removed because there is no way to know which register it was
61 linking
62
63 To simplify substitution, we combine only when the earlier insn(s)
64 consist of only a single assignment. To simplify updating afterward,
65 we never combine when a subroutine call appears in the middle.
66
67 Since we do not represent assignments to CC0 explicitly except when that
68 is all an insn does, there is no LOG_LINKS entry in an insn that uses
69 the condition code for the insn that set the condition code.
70 Fortunately, these two insns must be consecutive.
71 Therefore, every JUMP_INSN is taken to have an implicit logical link
72 to the preceding insn. This is not quite right, since non-jumps can
73 also use the condition code; but in practice such insns would not
74 combine anyway. */
75
76 #include <stdio.h>
77
78 #include "config.h"
79 #include "gvarargs.h"
80 #include "rtl.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "expr.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "insn-flags.h"
87 #include "insn-codes.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91
92 /* It is not safe to use ordinary gen_lowpart in combine.
93 Use gen_lowpart_for_combine instead. See comments there. */
94 #define gen_lowpart dont_use_gen_lowpart_you_dummy
95
96 /* Number of attempts to combine instructions in this function. */
97
98 static int combine_attempts;
99
100 /* Number of attempts that got as far as substitution in this function. */
101
102 static int combine_merges;
103
104 /* Number of instructions combined with added SETs in this function. */
105
106 static int combine_extras;
107
108 /* Number of instructions combined in this function. */
109
110 static int combine_successes;
111
112 /* Totals over entire compilation. */
113
114 static int total_attempts, total_merges, total_extras, total_successes;
115 \f
116 /* Vector mapping INSN_UIDs to cuids.
117 The cuids are like uids but increase monotonically always.
118 Combine always uses cuids so that it can compare them.
119 But actually renumbering the uids, which we used to do,
120 proves to be a bad idea because it makes it hard to compare
121 the dumps produced by earlier passes with those from later passes. */
122
123 static int *uid_cuid;
124
125 /* Get the cuid of an insn. */
126
127 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
128
129 /* Maximum register number, which is the size of the tables below. */
130
131 static int combine_max_regno;
132
133 /* Record last point of death of (hard or pseudo) register n. */
134
135 static rtx *reg_last_death;
136
137 /* Record last point of modification of (hard or pseudo) register n. */
138
139 static rtx *reg_last_set;
140
141 /* Record the cuid of the last insn that invalidated memory
142 (anything that writes memory, and subroutine calls, but not pushes). */
143
144 static int mem_last_set;
145
146 /* Record the cuid of the last CALL_INSN
147 so we can tell whether a potential combination crosses any calls. */
148
149 static int last_call_cuid;
150
151 /* When `subst' is called, this is the insn that is being modified
152 (by combining in a previous insn). The PATTERN of this insn
153 is still the old pattern partially modified and it should not be
154 looked at, but this may be used to examine the successors of the insn
155 to judge whether a simplification is valid. */
156
157 static rtx subst_insn;
158
159 /* This is the lowest CUID that `subst' is currently dealing with.
160 get_last_value will not return a value if the register was set at or
161 after this CUID. If not for this mechanism, we could get confused if
162 I2 or I1 in try_combine were an insn that used the old value of a register
163 to obtain a new value. In that case, we might erroneously get the
164 new value of the register when we wanted the old one. */
165
166 static int subst_low_cuid;
167
168 /* This is the value of undobuf.num_undo when we started processing this
169 substitution. This will prevent gen_rtx_combine from re-used a piece
170 from the previous expression. Doing so can produce circular rtl
171 structures. */
172
173 static int previous_num_undos;
174 \f
175 /* The next group of arrays allows the recording of the last value assigned
176 to (hard or pseudo) register n. We use this information to see if a
177 operation being processed is redundant given a prior operation performed
178 on the register. For example, an `and' with a constant is redundant if
179 all the zero bits are already known to be turned off.
180
181 We use an approach similar to that used by cse, but change it in the
182 following ways:
183
184 (1) We do not want to reinitialize at each label.
185 (2) It is useful, but not critical, to know the actual value assigned
186 to a register. Often just its form is helpful.
187
188 Therefore, we maintain the following arrays:
189
190 reg_last_set_value the last value assigned
191 reg_last_set_label records the value of label_tick when the
192 register was assigned
193 reg_last_set_table_tick records the value of label_tick when a
194 value using the register is assigned
195 reg_last_set_invalid set to non-zero when it is not valid
196 to use the value of this register in some
197 register's value
198
199 To understand the usage of these tables, it is important to understand
200 the distinction between the value in reg_last_set_value being valid
201 and the register being validly contained in some other expression in the
202 table.
203
204 Entry I in reg_last_set_value is valid if it is non-zero, and either
205 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
206
207 Register I may validly appear in any expression returned for the value
208 of another register if reg_n_sets[i] is 1. It may also appear in the
209 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
210 reg_last_set_invalid[j] is zero.
211
212 If an expression is found in the table containing a register which may
213 not validly appear in an expression, the register is replaced by
214 something that won't match, (clobber (const_int 0)).
215
216 reg_last_set_invalid[i] is set non-zero when register I is being assigned
217 to and reg_last_set_table_tick[i] == label_tick. */
218
219 /* Record last value assigned to (hard or pseudo) register n. */
220
221 static rtx *reg_last_set_value;
222
223 /* Record the value of label_tick when the value for register n is placed in
224 reg_last_set_value[n]. */
225
226 static short *reg_last_set_label;
227
228 /* Record the value of label_tick when an expression involving register n
229 is placed in reg_last_set_value. */
230
231 static short *reg_last_set_table_tick;
232
233 /* Set non-zero if references to register n in expressions should not be
234 used. */
235
236 static char *reg_last_set_invalid;
237
238 /* Incremented for each label. */
239
240 static short label_tick;
241
242 /* Some registers that are set more than once and used in more than one
243 basic block are nevertheless always set in similar ways. For example,
244 a QImode register may be loaded from memory in two places on a machine
245 where byte loads zero extend.
246
247 We record in the following array what we know about the significant
248 bits of a register, specifically which bits are known to be zero.
249
250 If an entry is zero, it means that we don't know anything special. */
251
252 static int *reg_significant;
253
254 /* Mode used to compute significance in reg_significant. It is the largest
255 integer mode that can fit in HOST_BITS_PER_INT. */
256
257 static enum machine_mode significant_mode;
258
259 /* Nonzero when reg_significant can be safely used. It is zero while
260 computing reg_significant. This prevents propagating values based
261 on previously set values, which can be incorrect if a variable
262 is modified in a loop. */
263
264 static int significant_valid;
265 \f
266 /* Record one modification to rtl structure
267 to be undone by storing old_contents into *where.
268 is_int is 1 if the contents are an int. */
269
270 struct undo
271 {
272 rtx *where;
273 rtx old_contents;
274 int is_int;
275 };
276
277 struct undo_int
278 {
279 int *where;
280 int old_contents;
281 int is_int;
282 };
283
284 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
285 num_undo says how many are currently recorded.
286
287 storage is nonzero if we must undo the allocation of new storage.
288 The value of storage is what to pass to obfree.
289
290 other_insn is nonzero if we have modified some other insn in the process
291 of working on subst_insn. It must be verified too. */
292
293 #define MAX_UNDO 50
294
295 struct undobuf
296 {
297 int num_undo;
298 char *storage;
299 struct undo undo[MAX_UNDO];
300 rtx other_insn;
301 };
302
303 static struct undobuf undobuf;
304
305 /* Substitute NEWVAL, an rtx expression, into INTO, a place in a some
306 insn. The substitution can be undone by undo_all. If INTO is already
307 set to NEWVAL, do not record this change. */
308
309 #define SUBST(INTO, NEWVAL) \
310 do { if (undobuf.num_undo < MAX_UNDO) \
311 { \
312 undobuf.undo[undobuf.num_undo].where = &INTO; \
313 undobuf.undo[undobuf.num_undo].old_contents = INTO; \
314 undobuf.undo[undobuf.num_undo].is_int = 0; \
315 INTO = NEWVAL; \
316 if (undobuf.undo[undobuf.num_undo].old_contents != INTO) \
317 undobuf.num_undo++; \
318 } \
319 } while (0)
320
321 /* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
322 expression.
323 Note that substitution for the value of a CONST_INT is not safe. */
324
325 #define SUBST_INT(INTO, NEWVAL) \
326 do { if (undobuf.num_undo < MAX_UNDO) \
327 { \
328 struct undo_int *u \
329 = (struct undo_int *)&undobuf.undo[undobuf.num_undo]; \
330 u->where = (int *) &INTO; \
331 u->old_contents = INTO; \
332 u->is_int = 1; \
333 INTO = NEWVAL; \
334 if (u->old_contents != INTO) \
335 undobuf.num_undo++; \
336 } \
337 } while (0)
338
339 /* Number of times the pseudo being substituted for
340 was found and replaced. */
341
342 static int n_occurrences;
343
344 static void set_significant ();
345 static void move_deaths ();
346 rtx remove_death ();
347 static void record_value_for_reg ();
348 static void record_dead_and_set_regs ();
349 static int use_crosses_set_p ();
350 static rtx try_combine ();
351 static rtx *find_split_point ();
352 static rtx subst ();
353 static void undo_all ();
354 static int reg_dead_at_p ();
355 static rtx expand_compound_operation ();
356 static rtx expand_field_assignment ();
357 static rtx make_extraction ();
358 static int get_pos_from_mask ();
359 static rtx make_field_assignment ();
360 static rtx make_compound_operation ();
361 static rtx apply_distributive_law ();
362 static rtx simplify_and_const_int ();
363 static unsigned significant_bits ();
364 static int merge_outer_ops ();
365 static rtx simplify_shift_const ();
366 static int recog_for_combine ();
367 static rtx gen_lowpart_for_combine ();
368 static rtx gen_rtx_combine ();
369 static rtx gen_binary ();
370 static rtx gen_unary ();
371 static enum rtx_code simplify_comparison ();
372 static int reversible_comparison_p ();
373 static int get_last_value_validate ();
374 static rtx get_last_value ();
375 static void distribute_notes ();
376 static void distribute_links ();
377 \f
378 /* Main entry point for combiner. F is the first insn of the function.
379 NREGS is the first unused pseudo-reg number. */
380
381 void
382 combine_instructions (f, nregs)
383 rtx f;
384 int nregs;
385 {
386 register rtx insn, next, prev;
387 register int i;
388 register rtx links, nextlinks;
389
390 combine_attempts = 0;
391 combine_merges = 0;
392 combine_extras = 0;
393 combine_successes = 0;
394
395 combine_max_regno = nregs;
396
397 reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
398 reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
399 reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
400 reg_last_set_table_tick = (short *) alloca (nregs * sizeof (short));
401 reg_last_set_label = (short *) alloca (nregs * sizeof (short));
402 reg_last_set_invalid = (char *) alloca (nregs * sizeof (short));
403 reg_significant = (int *) alloca (nregs * sizeof (int));
404
405 bzero (reg_last_death, nregs * sizeof (rtx));
406 bzero (reg_last_set, nregs * sizeof (rtx));
407 bzero (reg_last_set_value, nregs * sizeof (rtx));
408 bzero (reg_last_set_table_tick, nregs * sizeof (short));
409 bzero (reg_last_set_invalid, nregs * sizeof (char));
410 bzero (reg_significant, nregs * sizeof (int));
411
412 init_recog_no_volatile ();
413
414 /* Compute maximum uid value so uid_cuid can be allocated. */
415
416 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
417 if (INSN_UID (insn) > i)
418 i = INSN_UID (insn);
419
420 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
421
422 significant_mode = mode_for_size (HOST_BITS_PER_INT, MODE_INT, 0);
423
424 /* Don't use reg_significant when computing it. This can cause problems
425 when, for example, we have j <<= 1 in a loop. */
426
427 significant_valid = 0;
428
429 /* Compute the mapping from uids to cuids.
430 Cuids are numbers assigned to insns, like uids,
431 except that cuids increase monotonically through the code.
432
433 Scan all SETs and see if we can deduce anything about what
434 bits are significant for some registers. */
435
436 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
437 {
438 INSN_CUID (insn) = ++i;
439 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
440 note_stores (PATTERN (insn), set_significant);
441 }
442
443 significant_valid = 1;
444
445 /* Now scan all the insns in forward order. */
446
447 label_tick = 1;
448 last_call_cuid = 0;
449 mem_last_set = 0;
450
451 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
452 {
453 next = 0;
454
455 if (GET_CODE (insn) == CODE_LABEL)
456 label_tick++;
457
458 else if (GET_CODE (insn) == INSN
459 || GET_CODE (insn) == CALL_INSN
460 || GET_CODE (insn) == JUMP_INSN)
461 {
462 /* Try this insn with each insn it links back to. */
463
464 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
465 if ((next = try_combine (insn, XEXP (links, 0), 0)) != 0)
466 goto retry;
467
468 /* Try each sequence of three linked insns ending with this one. */
469
470 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
471 for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
472 nextlinks = XEXP (nextlinks, 1))
473 if ((next = try_combine (insn, XEXP (links, 0),
474 XEXP (nextlinks, 0))) != 0)
475 goto retry;
476
477 #ifdef HAVE_cc0
478 /* Try to combine a jump insn that uses CC0
479 with a preceding insn that sets CC0, and maybe with its
480 logical predecessor as well.
481 This is how we make decrement-and-branch insns.
482 We need this special code because data flow connections
483 via CC0 do not get entered in LOG_LINKS. */
484
485 if (GET_CODE (insn) == JUMP_INSN
486 && (prev = prev_nonnote_insn (insn)) != 0
487 && GET_CODE (prev) == INSN
488 && sets_cc0_p (PATTERN (prev)))
489 {
490 if ((next = try_combine (insn, prev, 0)) != 0)
491 goto retry;
492
493 for (nextlinks = LOG_LINKS (prev); nextlinks;
494 nextlinks = XEXP (nextlinks, 1))
495 if ((next = try_combine (insn, prev,
496 XEXP (nextlinks, 0))) != 0)
497 goto retry;
498 }
499
500 /* Do the same for an insn that explicitly references CC0. */
501 if (GET_CODE (insn) == INSN
502 && (prev = prev_nonnote_insn (insn)) != 0
503 && GET_CODE (prev) == INSN
504 && sets_cc0_p (PATTERN (prev))
505 && GET_CODE (PATTERN (insn)) == SET
506 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
507 {
508 if ((next = try_combine (insn, prev, 0)) != 0)
509 goto retry;
510
511 for (nextlinks = LOG_LINKS (prev); nextlinks;
512 nextlinks = XEXP (nextlinks, 1))
513 if ((next = try_combine (insn, prev,
514 XEXP (nextlinks, 0))) != 0)
515 goto retry;
516 }
517
518 /* Finally, see if any of the insns that this insn links to
519 explicitly references CC0. If so, try this insn, that insn,
520 and its predecessor if it sets CC0. */
521 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
522 if (GET_CODE (XEXP (links, 0)) == INSN
523 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
524 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
525 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
526 && GET_CODE (prev) == INSN
527 && sets_cc0_p (PATTERN (prev))
528 && (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
529 goto retry;
530 #endif
531
532 /* Try combining an insn with two different insns whose results it
533 uses. */
534 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
535 for (nextlinks = XEXP (links, 1); nextlinks;
536 nextlinks = XEXP (nextlinks, 1))
537 if ((next = try_combine (insn, XEXP (links, 0),
538 XEXP (nextlinks, 0))) != 0)
539 goto retry;
540
541 if (GET_CODE (insn) != NOTE)
542 record_dead_and_set_regs (insn);
543
544 retry:
545 ;
546 }
547 }
548
549 total_attempts += combine_attempts;
550 total_merges += combine_merges;
551 total_extras += combine_extras;
552 total_successes += combine_successes;
553 }
554 \f
555 /* Called via note_stores. If X is a pseudo that is used in more than
556 one basic block, is narrower that HOST_BITS_PER_INT, and is being
557 set, record what bits are significant. If we are clobbering X,
558 ignore this "set" because the clobbered value won't be used.
559
560 If we are setting only a portion of X and we can't figure out what
561 portion, assume all bits will be used since we don't know what will
562 be happening. */
563
564 static void
565 set_significant (x, set)
566 rtx x;
567 rtx set;
568 {
569 if (GET_CODE (x) == REG
570 && REGNO (x) >= FIRST_PSEUDO_REGISTER
571 && reg_n_sets[REGNO (x)] > 1
572 && reg_basic_block[REGNO (x)] < 0
573 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_INT)
574 {
575 if (GET_CODE (set) == CLOBBER)
576 return;
577
578 /* If this is a complex assignment, see if we can convert it into a
579 simple assignment. */
580 set = expand_field_assignment (set);
581 if (SET_DEST (set) == x)
582 reg_significant[REGNO (x)]
583 |= significant_bits (SET_SRC (set), significant_mode);
584 else
585 reg_significant[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
586 }
587 }
588 \f
589 /* See if INSN can be combined into I3. PRED and SUCC are optionally
590 insns that were previously combined into I3 or that will be combined
591 into the merger of INSN and I3.
592
593 Return 0 if the combination is not allowed for any reason.
594
595 If the combination is allowed, *PDEST will be set to the single
596 destination of INSN and *PSRC to the single source, and this function
597 will return 1. */
598
599 static int
600 can_combine_p (insn, i3, pred, succ, pdest, psrc)
601 rtx insn;
602 rtx i3;
603 rtx pred, succ;
604 rtx *pdest, *psrc;
605 {
606 int i;
607 rtx set = 0, src, dest;
608 rtx p, link;
609 int all_adjacent = (succ ? (next_active_insn (insn) == succ
610 && next_active_insn (succ) == i3)
611 : next_active_insn (insn) == i3);
612
613 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
614 or a PARALLEL consisting of such a SET and CLOBBERs.
615
616 If INSN has CLOBBER parallel parts, ignore them for our processing.
617 By definition, these happen during the execution of the insn. When it
618 is merged with another insn, all bets are off. If they are, in fact,
619 needed and aren't also supplied in I3, they may be added by
620 recog_for_combine. Otherwise, it won't match.
621
622 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
623 note.
624
625 Get the source and destination of INSN. If more than one, can't
626 combine. */
627
628 if (GET_CODE (PATTERN (insn)) == SET)
629 set = PATTERN (insn);
630 else if (GET_CODE (PATTERN (insn)) == PARALLEL
631 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
632 {
633 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
634 {
635 rtx elt = XVECEXP (PATTERN (insn), 0, i);
636
637 switch (GET_CODE (elt))
638 {
639 /* We can ignore CLOBBERs. */
640 case CLOBBER:
641 break;
642
643 case SET:
644 /* Ignore SETs whose result isn't used but not those that
645 have side-effects. */
646 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
647 && ! side_effects_p (elt))
648 break;
649
650 /* If we have already found a SET, this is a second one and
651 so we cannot combine with this insn. */
652 if (set)
653 return 0;
654
655 set = elt;
656 break;
657
658 default:
659 /* Anything else means we can't combine. */
660 return 0;
661 }
662 }
663
664 if (set == 0
665 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
666 so don't do anything with it. */
667 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
668 return 0;
669 }
670 else
671 return 0;
672
673 if (set == 0)
674 return 0;
675
676 set = expand_field_assignment (set);
677 src = SET_SRC (set), dest = SET_DEST (set);
678
679 /* Don't eliminate a store in the stack pointer. */
680 if (dest == stack_pointer_rtx
681 /* Don't install a subreg involving two modes not tieable.
682 It can worsen register allocation, and can even make invalid reload
683 insns, since the reg inside may need to be copied from in the
684 outside mode, and that may be invalid if it is an fp reg copied in
685 integer mode. As a special exception, we can allow this if
686 I3 is simply copying DEST, a REG, to CC0. */
687 || (GET_CODE (src) == SUBREG
688 && ! MODES_TIEABLE_P (GET_MODE (src), GET_MODE (SUBREG_REG (src)))
689 #ifdef HAVE_cc0
690 && ! (GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
691 && SET_DEST (PATTERN (i3)) == cc0_rtx
692 && GET_CODE (dest) == REG && dest == SET_SRC (PATTERN (i3)))
693 #endif
694 )
695 /* If we couldn't eliminate a field assignment, we can't combine. */
696 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
697 /* Don't combine with an insn that sets a register to itself if it has
698 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
699 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, 0))
700 /* Can't merge a function call. */
701 || GET_CODE (src) == CALL
702 /* Don't substitute into an incremented register. */
703 || FIND_REG_INC_NOTE (i3, dest)
704 || (succ && FIND_REG_INC_NOTE (succ, dest))
705 /* Don't combine the end of a libcall into anything. */
706 || find_reg_note (insn, REG_RETVAL, 0)
707 /* Make sure that DEST is not used after SUCC but before I3. */
708 || (succ && ! all_adjacent
709 && reg_used_between_p (dest, succ, i3))
710 /* Make sure that the value that is to be substituted for the register
711 does not use any registers whose values alter in between. However,
712 If the insns are adjacent, a use can't cross a set even though we
713 think it might (this can happen for a sequence of insns each setting
714 the same destination; reg_last_set of that register might point to
715 a NOTE). Also, don't move a volatile asm across any other insns. */
716 || (! all_adjacent
717 && (use_crosses_set_p (src, INSN_CUID (insn))
718 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))))
719 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
720 better register allocation by not doing the combine. */
721 || find_reg_note (i3, REG_NO_CONFLICT, dest)
722 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
723 /* Don't combine across a CALL_INSN, because that would possibly
724 change whether the life span of some REGs crosses calls or not,
725 and it is a pain to update that information.
726 Exception: if source is a constant, moving it later can't hurt.
727 Accept that special case, because it helps -fforce-addr a lot. */
728 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
729 return 0;
730
731 /* DEST must either be a REG or CC0. */
732 if (GET_CODE (dest) == REG)
733 {
734 /* If register alignment is being enforced for multi-word items in all
735 cases except for parameters, it is possible to have a register copy
736 insn referencing a hard register that is not allowed to contain the
737 mode being copied and which would not be valid as an operand of most
738 insns. Eliminate this problem by not combining with such an insn.
739
740 Also, on some machines we don't want to extend the life of a hard
741 register. */
742
743 if (GET_CODE (src) == REG
744 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
745 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
746 #ifdef SMALL_REGISTER_CLASSES
747 /* Don't extend the life of a hard register. */
748 || REGNO (src) < FIRST_PSEUDO_REGISTER
749 #else
750 || (REGNO (src) < FIRST_PSEUDO_REGISTER
751 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))
752 #endif
753 ))
754 return 0;
755 }
756 else if (GET_CODE (dest) != CC0)
757 return 0;
758
759 /* Don't substitute for a register intended as a clobberable operand. */
760 if (GET_CODE (PATTERN (i3)) == PARALLEL)
761 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
762 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
763 && rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest))
764 return 0;
765
766 /* If INSN contains anything volatile, or is an `asm' (whether volatile
767 or not), reject, unless nothing volatile comes between it and I3,
768 with the exception of SUCC. */
769
770 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
771 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
772 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
773 && p != succ && volatile_refs_p (PATTERN (p)))
774 return 0;
775
776 /* If INSN or I2 contains an autoincrement or autodecrement,
777 make sure that register is not used between there and I3,
778 and not already used in I3 either.
779 Also insist that I3 not be a jump; if it were one
780 and the incremented register were spilled, we would lose. */
781
782 #ifdef AUTO_INC_DEC
783 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
784 if (REG_NOTE_KIND (link) == REG_INC
785 && (GET_CODE (i3) == JUMP_INSN
786 || reg_used_between_p (XEXP (link, 0), insn, i3)
787 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
788 return 0;
789 #endif
790
791 #ifdef HAVE_cc0
792 /* Don't combine an insn that follows a CC0-setting insn.
793 An insn that uses CC0 must not be separated from the one that sets it.
794 We do, however, allow I2 to follow a CC0-setting insn if that insn
795 is passed as I1; in that case it will be deleted also.
796 We also allow combining in this case if all the insns are adjacent
797 because that would leave the two CC0 insns adjacent as well.
798 It would be more logical to test whether CC0 occurs inside I1 or I2,
799 but that would be much slower, and this ought to be equivalent. */
800
801 p = prev_nonnote_insn (insn);
802 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
803 && ! all_adjacent)
804 return 0;
805 #endif
806
807 /* If we get here, we have passed all the tests and the combination is
808 to be allowed. */
809
810 *pdest = dest;
811 *psrc = src;
812
813 return 1;
814 }
815 \f
816 /* LOC is the location within I3 that contains its pattern or the component
817 of a PARALLEL of the pattern. We validate that it is valid for combining.
818
819 One problem is if I3 modifies its output, as opposed to replacing it
820 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
821 so would produce an insn that is not equivalent to the original insns.
822
823 Consider:
824
825 (set (reg:DI 101) (reg:DI 100))
826 (set (subreg:SI (reg:DI 101) 0) <foo>)
827
828 This is NOT equivalent to:
829
830 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
831 (set (reg:DI 101) (reg:DI 100))])
832
833 Not only does this modify 100 (in which case it might still be valid
834 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
835
836 We can also run into a problem if I2 sets a register that I1
837 uses and I1 gets directly substituted into I3 (not via I2). In that
838 case, we would be getting the wrong value of I2DEST into I3, so we
839 must reject the combination. This case occurs when I2 and I1 both
840 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
841 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
842 of a SET must prevent combination from occurring.
843
844 On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
845 if the destination of a SET is a hard register.
846
847 Before doing the above check, we first try to expand a field assignment
848 into a set of logical operations.
849
850 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
851 we place a register that is both set and used within I3. If more than one
852 such register is detected, we fail.
853
854 Return 1 if the combination is valid, zero otherwise. */
855
856 static int
857 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
858 rtx i3;
859 rtx *loc;
860 rtx i2dest;
861 rtx i1dest;
862 int i1_not_in_src;
863 rtx *pi3dest_killed;
864 {
865 rtx x = *loc;
866
867 if (GET_CODE (x) == SET)
868 {
869 rtx set = expand_field_assignment (x);
870 rtx dest = SET_DEST (set);
871 rtx src = SET_SRC (set);
872 rtx inner_dest = dest, inner_src = src;
873
874 SUBST (*loc, set);
875
876 while (GET_CODE (inner_dest) == STRICT_LOW_PART
877 || GET_CODE (inner_dest) == SUBREG
878 || GET_CODE (inner_dest) == ZERO_EXTRACT)
879 inner_dest = XEXP (inner_dest, 0);
880
881 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
882 was added. */
883 #if 0
884 while (GET_CODE (inner_src) == STRICT_LOW_PART
885 || GET_CODE (inner_src) == SUBREG
886 || GET_CODE (inner_src) == ZERO_EXTRACT)
887 inner_src = XEXP (inner_src, 0);
888
889 /* If it is better that two different modes keep two different pseudos,
890 avoid combining them. This avoids producing the following pattern
891 on a 386:
892 (set (subreg:SI (reg/v:QI 21) 0)
893 (lshiftrt:SI (reg/v:SI 20)
894 (const_int 24)))
895 If that were made, reload could not handle the pair of
896 reg 20/21, since it would try to get any GENERAL_REGS
897 but some of them don't handle QImode. */
898
899 if (rtx_equal_p (inner_src, i2dest)
900 && GET_CODE (inner_dest) == REG
901 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
902 return 0;
903 #endif
904
905 /* Check for the case where I3 modifies its output, as
906 discussed above. */
907 if ((inner_dest != dest
908 && (reg_overlap_mentioned_p (i2dest, inner_dest)
909 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
910 /* This is the same test done in can_combine_p except that we
911 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
912 CALL operation. */
913 || (GET_CODE (inner_dest) == REG
914 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
915 #ifdef SMALL_REGISTER_CLASSES
916 && GET_CODE (src) != CALL
917 #else
918 && ! HARD_REGNO_MODE_OK (REGNO (inner_dest),
919 GET_MODE (inner_dest))
920 #endif
921 )
922
923 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
924 return 0;
925
926 /* If DEST is used in I3, it is being killed in this insn,
927 so record that for later. */
928 if (pi3dest_killed && GET_CODE (dest) == REG
929 && reg_referenced_p (dest, PATTERN (i3)))
930 {
931 if (*pi3dest_killed)
932 return 0;
933
934 *pi3dest_killed = dest;
935 }
936 }
937
938 else if (GET_CODE (x) == PARALLEL)
939 {
940 int i;
941
942 for (i = 0; i < XVECLEN (x, 0); i++)
943 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
944 i1_not_in_src, pi3dest_killed))
945 return 0;
946 }
947
948 return 1;
949 }
950 \f
951 /* Try to combine the insns I1 and I2 into I3.
952 Here I1 and I2 appear earlier than I3.
953 I1 can be zero; then we combine just I2 into I3.
954
955 It we are combining three insns and the resulting insn is not recognized,
956 try splitting it into two insns. If that happens, I2 and I3 are retained
957 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
958 are pseudo-deleted.
959
960 If we created two insns, return I2; otherwise return I3.
961 Return 0 if the combination does not work. Then nothing is changed. */
962
963 static rtx
964 try_combine (i3, i2, i1)
965 register rtx i3, i2, i1;
966 {
967 /* New patterns for I3 and I3, respectively. */
968 rtx newpat, newi2pat = 0;
969 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
970 int added_sets_1, added_sets_2;
971 /* Total number of SETs to put into I3. */
972 int total_sets;
973 /* Nonzero is I2's body now appears in I3. */
974 int i2_is_used;
975 /* INSN_CODEs for new I3, new I2, and user of condition code. */
976 int insn_code_number, i2_code_number, other_code_number;
977 /* Contains I3 if the destination of I3 is used in its source, which means
978 that the old life of I3 is being killed. If that usage is placed into
979 I2 and not in I3, a REG_DEAD note must be made. */
980 rtx i3dest_killed = 0;
981 /* SET_DEST and SET_SRC of I2 and I1. */
982 rtx i2dest, i2src, i1dest = 0, i1src = 0;
983 /* PATTERN (I2), or a copy of it in certain cases. */
984 rtx i2pat;
985 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
986 int i2dest_in_i2src, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
987 int i1_feeds_i3 = 0;
988 /* Notes that must be added to REG_NOTES in I3 and I2. */
989 rtx new_i3_notes, new_i2_notes;
990
991 int maxreg;
992 rtx temp;
993 register rtx link;
994 int i;
995
996 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
997 This can occur when flow deletes an insn that it has merged into an
998 auto-increment address. We also can't do anything if I3 has a
999 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1000 libcall. */
1001
1002 if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
1003 || GET_RTX_CLASS (GET_CODE (i2)) != 'i'
1004 || (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
1005 || find_reg_note (i3, REG_LIBCALL, 0))
1006 return 0;
1007
1008 combine_attempts++;
1009
1010 undobuf.num_undo = previous_num_undos = 0;
1011 undobuf.other_insn = 0;
1012
1013 /* Save the current high-water-mark so we can free storage if we didn't
1014 accept this combination. */
1015 undobuf.storage = (char *) oballoc (0);
1016
1017 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1018 code below, set I1 to be the earlier of the two insns. */
1019 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1020 temp = i1, i1 = i2, i2 = temp;
1021
1022 /* First check for one important special-case that the code below will
1023 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1024 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1025 we may be able to replace that destination with the destination of I3.
1026 This occurs in the common code where we compute both a quotient and
1027 remainder into a structure, in which case we want to do the computation
1028 directly into the structure to avoid register-register copies.
1029
1030 We make very conservative checks below and only try to handle the
1031 most common cases of this. For example, we only handle the case
1032 where I2 and I3 are adjacent to avoid making difficult register
1033 usage tests. */
1034
1035 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1036 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1037 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1038 #ifdef SMALL_REGISTER_CLASSES
1039 && (GET_CODE (SET_DEST (PATTERN (i3))) != REG
1040 || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER)
1041 #endif
1042 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1043 && GET_CODE (PATTERN (i2)) == PARALLEL
1044 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1045 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1046 below would need to check what is inside (and reg_overlap_mentioned_p
1047 doesn't support those codes anyway). Don't allow those destinations;
1048 the resulting insn isn't likely to be recognized anyway. */
1049 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1050 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1051 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1052 SET_DEST (PATTERN (i3)))
1053 && next_real_insn (i2) == i3)
1054 {
1055 rtx p2 = PATTERN (i2);
1056
1057 /* Make sure that the destination of I3,
1058 which we are going to substitute into one output of I2,
1059 is not used within another output of I2. We must avoid making this:
1060 (parallel [(set (mem (reg 69)) ...)
1061 (set (reg 69) ...)])
1062 which is not well-defined as to order of actions.
1063 (Besides, reload can't handle output reloads for this.)
1064
1065 The problem can also happen if the dest of I3 is a memory ref,
1066 if another dest in I2 is an indirect memory ref. */
1067 for (i = 0; i < XVECLEN (p2, 0); i++)
1068 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
1069 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1070 SET_DEST (XVECEXP (p2, 0, i))))
1071 break;
1072
1073 if (i == XVECLEN (p2, 0))
1074 for (i = 0; i < XVECLEN (p2, 0); i++)
1075 if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1076 {
1077 combine_merges++;
1078
1079 subst_insn = i3;
1080 subst_low_cuid = INSN_CUID (i2);
1081
1082 added_sets_2 = 0;
1083 i2dest = SET_SRC (PATTERN (i3));
1084
1085 /* Replace the dest in I2 with our dest and make the resulting
1086 insn the new pattern for I3. Then skip to where we
1087 validate the pattern. Everything was set up above. */
1088 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1089 SET_DEST (PATTERN (i3)));
1090
1091 newpat = p2;
1092 goto validate_replacement;
1093 }
1094 }
1095
1096 #ifndef HAVE_cc0
1097 /* If we have no I1 and I2 looks like:
1098 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1099 (set Y OP)])
1100 make up a dummy I1 that is
1101 (set Y OP)
1102 and change I2 to be
1103 (set (reg:CC X) (compare:CC Y (const_int 0)))
1104
1105 (We can ignore any trailing CLOBBERs.)
1106
1107 This undoes a previous combination and allows us to match a branch-and-
1108 decrement insn. */
1109
1110 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1111 && XVECLEN (PATTERN (i2), 0) >= 2
1112 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1113 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1114 == MODE_CC)
1115 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1116 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1117 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1118 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1119 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1120 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1121 {
1122 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1123 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1124 break;
1125
1126 if (i == 1)
1127 {
1128 /* We make I1 with the same INSN_UID as I2. This gives it
1129 the same INSN_CUID for value tracking. Our fake I1 will
1130 never appear in the insn stream so giving it the same INSN_UID
1131 as I2 will not cause a problem. */
1132
1133 i1 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
1134 XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
1135
1136 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1137 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1138 SET_DEST (PATTERN (i1)));
1139 }
1140 }
1141 #endif
1142
1143 /* Verify that I2 and I1 are valid for combining. */
1144 if (! can_combine_p (i2, i3, i1, 0, &i2dest, &i2src)
1145 || (i1 && ! can_combine_p (i1, i3, 0, i2, &i1dest, &i1src)))
1146 {
1147 undo_all ();
1148 return 0;
1149 }
1150
1151 /* Record whether I2DEST is used in I2SRC and similarly for the other
1152 cases. Knowing this will help in register status updating below. */
1153 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1154 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1155 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1156
1157 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1158 in I2SRC. */
1159 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1160
1161 /* Ensure that I3's pattern can be the destination of combines. */
1162 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1163 i1 && i2dest_in_i1src && i1_feeds_i3,
1164 &i3dest_killed))
1165 {
1166 undo_all ();
1167 return 0;
1168 }
1169
1170 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1171 We used to do this EXCEPT in one case: I3 has a post-inc in an
1172 output operand. However, that exception can give rise to insns like
1173 mov r3,(r3)+
1174 which is a famous insn on the PDP-11 where the value of r3 used as the
1175 source was model-dependent. Avoid this sort of thing. */
1176
1177 #if 0
1178 if (!(GET_CODE (PATTERN (i3)) == SET
1179 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1180 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1181 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1182 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1183 /* It's not the exception. */
1184 #endif
1185 #ifdef AUTO_INC_DEC
1186 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1187 if (REG_NOTE_KIND (link) == REG_INC
1188 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1189 || (i1 != 0
1190 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1191 {
1192 undo_all ();
1193 return 0;
1194 }
1195 #endif
1196
1197 /* See if the SETs in I1 or I2 need to be kept around in the merged
1198 instruction: whenever the value set there is still needed past I3.
1199 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1200
1201 For the SET in I1, we have two cases: If I1 and I2 independently
1202 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1203 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1204 in I1 needs to be kept around unless I1DEST dies or is set in either
1205 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1206 I1DEST. If so, we know I1 feeds into I2. */
1207
1208 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1209
1210 added_sets_1
1211 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1212 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1213
1214 /* If the set in I2 needs to be kept around, we must make a copy of
1215 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1216 PATTERN (I2), we are only substituting for the original I1DEST, not into
1217 an already-substituted copy. This also prevents making self-referential
1218 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1219 I2DEST. */
1220
1221 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1222 ? gen_rtx (SET, VOIDmode, i2dest, i2src)
1223 : PATTERN (i2));
1224
1225 if (added_sets_2)
1226 i2pat = copy_rtx (i2pat);
1227
1228 combine_merges++;
1229
1230 /* Substitute in the latest insn for the regs set by the earlier ones. */
1231
1232 maxreg = max_reg_num ();
1233
1234 subst_insn = i3;
1235 subst_low_cuid = i1 ? INSN_CUID (i1) : INSN_CUID (i2);
1236
1237 /* It is possible that the source of I2 or I1 may be performing an
1238 unneeded operation, such as a ZERO_EXTEND of something that is known
1239 to have the high part zero. Handle that case by letting subst look at
1240 the innermost one of them.
1241
1242 Another way to do this would be to have a function that tries to
1243 simplify a single insn instead of merging two or more insns. We don't
1244 do this because of the potential of infinite loops and because
1245 of the potential extra memory required. However, doing it the way
1246 we are is a bit of a kludge and doesn't catch all cases.
1247
1248 But only do this if -fexpensive-optimizations since it slows things down
1249 and doesn't usually win. */
1250
1251 if (flag_expensive_optimizations)
1252 {
1253 /* Pass pc_rtx so no substitutions are done, just simplifications.
1254 The cases that we are interested in here do not involve the few
1255 cases were is_replaced is checked. */
1256 if (i1)
1257 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1258 else
1259 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1260
1261 previous_num_undos = undobuf.num_undo;
1262 }
1263
1264 #ifndef HAVE_cc0
1265 /* Many machines that don't use CC0 have insns that can both perform an
1266 arithmetic operation and set the condition code. These operations will
1267 be represented as a PARALLEL with the first element of the vector
1268 being a COMPARE of an arithmetic operation with the constant zero.
1269 The second element of the vector will set some pseudo to the result
1270 of the same arithmetic operation. If we simplify the COMPARE, we won't
1271 match such a pattern and so will generate an extra insn. Here we test
1272 for this case, where both the comparison and the operation result are
1273 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1274 I2SRC. Later we will make the PARALLEL that contains I2. */
1275
1276 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1277 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1278 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1279 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1280 {
1281 rtx *cc_use;
1282 enum machine_mode compare_mode;
1283
1284 newpat = PATTERN (i3);
1285 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1286
1287 i2_is_used = 1;
1288
1289 #ifdef EXTRA_CC_MODES
1290 /* See if a COMPARE with the operand we substituted in should be done
1291 with the mode that is currently being used. If not, do the same
1292 processing we do in `subst' for a SET; namely, if the destination
1293 is used only once, try to replace it with a register of the proper
1294 mode and also replace the COMPARE. */
1295 if (undobuf.other_insn == 0
1296 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1297 &undobuf.other_insn))
1298 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use), i2src))
1299 != GET_MODE (SET_DEST (newpat))))
1300 {
1301 int regno = REGNO (SET_DEST (newpat));
1302 rtx new_dest = gen_rtx (REG, compare_mode, regno);
1303
1304 if (regno < FIRST_PSEUDO_REGISTER
1305 || (reg_n_sets[regno] == 1 && ! added_sets_2
1306 && ! REG_USERVAR_P (SET_DEST (newpat))))
1307 {
1308 if (regno >= FIRST_PSEUDO_REGISTER)
1309 SUBST (regno_reg_rtx[regno], new_dest);
1310
1311 SUBST (SET_DEST (newpat), new_dest);
1312 SUBST (XEXP (*cc_use, 0), new_dest);
1313 SUBST (SET_SRC (newpat),
1314 gen_rtx_combine (COMPARE, compare_mode,
1315 i2src, const0_rtx));
1316 }
1317 else
1318 undobuf.other_insn = 0;
1319 }
1320 #endif
1321 }
1322 else
1323 #endif
1324 {
1325 n_occurrences = 0; /* `subst' counts here */
1326
1327 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1328 need to make a unique copy of I2SRC each time we substitute it
1329 to avoid self-referential rtl. */
1330
1331 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1332 ! i1_feeds_i3 && i1dest_in_i1src);
1333 previous_num_undos = undobuf.num_undo;
1334
1335 /* Record whether i2's body now appears within i3's body. */
1336 i2_is_used = n_occurrences;
1337 }
1338
1339 /* If we already got a failure, don't try to do more. Otherwise,
1340 try to substitute in I1 if we have it. */
1341
1342 if (i1 && GET_CODE (newpat) != CLOBBER)
1343 {
1344 /* Before we can do this substitution, we must redo the test done
1345 above (see detailed comments there) that ensures that I1DEST
1346 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1347
1348 if (! combinable_i3pat (0, &newpat, i1dest, 0, 0, 0))
1349 {
1350 undo_all ();
1351 return 0;
1352 }
1353
1354 n_occurrences = 0;
1355 newpat = subst (newpat, i1dest, i1src, 0, 0);
1356 previous_num_undos = undobuf.num_undo;
1357 }
1358
1359 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1360 to count all the ways that I2SRC and I1SRC can be used. */
1361 if ((FIND_REG_INC_NOTE (i2, 0) != 0
1362 && i2_is_used + added_sets_2 > 1)
1363 || (i1 != 0 && FIND_REG_INC_NOTE (i1, 0) != 0
1364 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1365 > 1))
1366 /* Fail if we tried to make a new register (we used to abort, but there's
1367 really no reason to). */
1368 || max_reg_num () != maxreg
1369 /* Fail if we couldn't do something and have a CLOBBER. */
1370 || GET_CODE (newpat) == CLOBBER)
1371 {
1372 undo_all ();
1373 return 0;
1374 }
1375
1376 /* If the actions of the earlier insns must be kept
1377 in addition to substituting them into the latest one,
1378 we must make a new PARALLEL for the latest insn
1379 to hold additional the SETs. */
1380
1381 if (added_sets_1 || added_sets_2)
1382 {
1383 combine_extras++;
1384
1385 if (GET_CODE (newpat) == PARALLEL)
1386 {
1387 rtvec old = XVEC (newpat, 0);
1388 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1389 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1390 bcopy (&old->elem[0], &XVECEXP (newpat, 0, 0),
1391 sizeof (old->elem[0]) * old->num_elem);
1392 }
1393 else
1394 {
1395 rtx old = newpat;
1396 total_sets = 1 + added_sets_1 + added_sets_2;
1397 newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
1398 XVECEXP (newpat, 0, 0) = old;
1399 }
1400
1401 if (added_sets_1)
1402 XVECEXP (newpat, 0, --total_sets)
1403 = (GET_CODE (PATTERN (i1)) == PARALLEL
1404 ? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
1405
1406 if (added_sets_2)
1407 {
1408 /* If there is no I1, use I2's body as is. We used to also not do
1409 the subst call below if I2 was substituted into I3,
1410 but that could lose a simplification. */
1411 if (i1 == 0)
1412 XVECEXP (newpat, 0, --total_sets) = i2pat;
1413 else
1414 /* See comment where i2pat is assigned. */
1415 XVECEXP (newpat, 0, --total_sets)
1416 = subst (i2pat, i1dest, i1src, 0, 0);
1417 }
1418 }
1419
1420 /* We come here when we are replacing a destination in I2 with the
1421 destination of I3. */
1422 validate_replacement:
1423
1424 /* Is the result of combination a valid instruction? */
1425 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1426
1427 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1428 the second SET's destination is a register that is unused. In that case,
1429 we just need the first SET. This can occur when simplifying a divmod
1430 insn. We *must* test for this case here because the code below that
1431 splits two independent SETs doesn't handle this case correctly when it
1432 updates the register status. Also check the case where the first
1433 SET's destination is unused. That would not cause incorrect code, but
1434 does cause an unneeded insn to remain. */
1435
1436 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1437 && XVECLEN (newpat, 0) == 2
1438 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1439 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1440 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
1441 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
1442 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
1443 && asm_noperands (newpat) < 0)
1444 {
1445 newpat = XVECEXP (newpat, 0, 0);
1446 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1447 }
1448
1449 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
1450 && XVECLEN (newpat, 0) == 2
1451 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1452 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1453 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
1454 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
1455 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
1456 && asm_noperands (newpat) < 0)
1457 {
1458 newpat = XVECEXP (newpat, 0, 1);
1459 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1460 }
1461
1462 /* If we were combining three insns and the result is a simple SET
1463 with no ASM_OPERANDS that wasn't recognized, try to split it into two
1464 insns. There are two ways to do this. It can be split using a
1465 machine-specific method (like when you have an addition of a large
1466 constant) or by combine in the function find_split_point. */
1467
1468 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
1469 && asm_noperands (newpat) < 0)
1470 {
1471 rtx m_split, *split;
1472
1473 /* See if the MD file can split NEWPAT. If it can't, see if letting it
1474 use I2DEST as a scratch register will help. */
1475
1476 m_split = split_insns (newpat, i3);
1477 if (m_split == 0)
1478 m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
1479 gen_rtvec (2, newpat,
1480 gen_rtx (CLOBBER, VOIDmode,
1481 i2dest))),
1482 i3);
1483
1484 if (m_split && GET_CODE (m_split) == SEQUENCE
1485 && XVECLEN (m_split, 0) == 2
1486 && (next_real_insn (i2) == i3
1487 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
1488 INSN_CUID (i2))))
1489 {
1490 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
1491 newpat = PATTERN (XVECEXP (m_split, 0, 1));
1492
1493 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1494 if (i2_code_number >= 0)
1495 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1496 }
1497
1498 /* If we can split it and use I2DEST, go ahead and see if that
1499 helps things be recognized. Verify that none of the registers
1500 are set between I2 and I3. */
1501 else if ((split = find_split_point (&newpat)) != 0
1502 #ifdef HAVE_cc0
1503 && GET_CODE (i2dest) == REG
1504 #endif
1505 /* We need I2DEST in the proper mode. If it is a hard register
1506 or the only use of a pseudo, we can change its mode. */
1507 && (GET_MODE (*split) == GET_MODE (i2dest)
1508 || GET_MODE (*split) == VOIDmode
1509 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
1510 || (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
1511 && ! REG_USERVAR_P (i2dest)))
1512 && (next_real_insn (i2) == i3
1513 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
1514 /* We can't overwrite I2DEST if its value is still used by
1515 NEWPAT. */
1516 && ! reg_referenced_p (i2dest, newpat))
1517 {
1518 rtx newdest = i2dest;
1519
1520 /* Get NEWDEST as a register in the proper mode. We have already
1521 validated that we can do this. */
1522 if (GET_MODE (i2dest) != GET_MODE (*split)
1523 && GET_MODE (*split) != VOIDmode)
1524 {
1525 newdest = gen_rtx (REG, GET_MODE (*split), REGNO (i2dest));
1526
1527 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
1528 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
1529 }
1530
1531 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
1532 an ASHIFT. This can occur if it was inside a PLUS and hence
1533 appeared to be a memory address. This is a kludge. */
1534 if (GET_CODE (*split) == MULT
1535 && GET_CODE (XEXP (*split, 1)) == CONST_INT
1536 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
1537 SUBST (*split, gen_rtx_combine (ASHIFT, GET_MODE (*split),
1538 XEXP (*split, 0),
1539 gen_rtx (CONST_INT, VOIDmode, i)));
1540
1541 #ifdef INSN_SCHEDULING
1542 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
1543 be written as a ZERO_EXTEND. */
1544 if (GET_CODE (*split) == SUBREG
1545 && GET_CODE (SUBREG_REG (*split)) == MEM)
1546 SUBST (*split, gen_rtx_combine (ZERO_EXTEND, GET_MODE (*split),
1547 XEXP (*split, 0)));
1548 #endif
1549
1550 newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
1551 SUBST (*split, newdest);
1552 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1553 if (i2_code_number >= 0)
1554 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1555 }
1556 }
1557
1558 /* Check for a case where we loaded from memory in a narrow mode and
1559 then sign extended it, but we need both registers. In that case,
1560 we have a PARALLEL with both loads from the same memory location.
1561 We can split this into a load from memory followed by a register-register
1562 copy. This saves at least one insn, more if register allocation can
1563 eliminate the copy. */
1564
1565 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1566 && GET_CODE (newpat) == PARALLEL
1567 && XVECLEN (newpat, 0) == 2
1568 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1569 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
1570 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1571 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1572 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
1573 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1574 INSN_CUID (i2))
1575 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1576 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1577 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1578 SET_SRC (XVECEXP (newpat, 0, 1)))
1579 && ! find_reg_note (i3, REG_UNUSED,
1580 SET_DEST (XVECEXP (newpat, 0, 0))))
1581 {
1582 newi2pat = XVECEXP (newpat, 0, 0);
1583 newpat = XVECEXP (newpat, 0, 1);
1584 SUBST (SET_SRC (newpat),
1585 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)),
1586 SET_DEST (newi2pat)));
1587 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1588 if (i2_code_number >= 0)
1589 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1590
1591 if (insn_code_number >= 0)
1592 {
1593 rtx insn;
1594 rtx link;
1595
1596 /* If we will be able to accept this, we have made a change to the
1597 destination of I3. This can invalidate a LOG_LINKS pointing
1598 to I3. No other part of combine.c makes such a transformation.
1599
1600 The new I3 will have a destination that was previously the
1601 destination of I1 or I2 and which was used in i2 or I3. Call
1602 distribute_links to make a LOG_LINK from the next use of
1603 that destination. */
1604
1605 PATTERN (i3) = newpat;
1606 distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, 0));
1607
1608 /* I3 now uses what used to be its destination and which is
1609 now I2's destination. That means we need a LOG_LINK from
1610 I3 to I2. But we used to have one, so we still will.
1611
1612 However, some later insn might be using I2's dest and have
1613 a LOG_LINK pointing at I3. We must remove this link.
1614 The simplest way to remove the link is to point it at I1,
1615 which we know will be a NOTE. */
1616
1617 for (insn = NEXT_INSN (i3);
1618 insn && GET_CODE (insn) != CODE_LABEL
1619 && GET_CODE (PREV_INSN (insn)) != JUMP_INSN;
1620 insn = NEXT_INSN (insn))
1621 {
1622 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1623 && reg_referenced_p (SET_DEST (newi2pat), PATTERN (insn)))
1624 {
1625 for (link = LOG_LINKS (insn); link;
1626 link = XEXP (link, 1))
1627 if (XEXP (link, 0) == i3)
1628 XEXP (link, 0) = i1;
1629
1630 break;
1631 }
1632 }
1633 }
1634 }
1635
1636 /* Similarly, check for a case where we have a PARALLEL of two independent
1637 SETs but we started with three insns. In this case, we can do the sets
1638 as two separate insns. This case occurs when some SET allows two
1639 other insns to combine, but the destination of that SET is still live. */
1640
1641 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
1642 && GET_CODE (newpat) == PARALLEL
1643 && XVECLEN (newpat, 0) == 2
1644 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
1645 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
1646 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
1647 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
1648 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
1649 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
1650 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
1651 INSN_CUID (i2))
1652 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
1653 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
1654 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
1655 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
1656 XVECEXP (newpat, 0, 0))
1657 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
1658 XVECEXP (newpat, 0, 1)))
1659 {
1660 newi2pat = XVECEXP (newpat, 0, 1);
1661 newpat = XVECEXP (newpat, 0, 0);
1662
1663 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
1664 if (i2_code_number >= 0)
1665 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
1666 }
1667
1668 /* If it still isn't recognized, fail and change things back the way they
1669 were. */
1670 if ((insn_code_number < 0
1671 /* Is the result a reasonable ASM_OPERANDS? */
1672 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
1673 {
1674 undo_all ();
1675 return 0;
1676 }
1677
1678 /* If we had to change another insn, make sure it is valid also. */
1679 if (undobuf.other_insn)
1680 {
1681 rtx other_notes = REG_NOTES (undobuf.other_insn);
1682 rtx other_pat = PATTERN (undobuf.other_insn);
1683 rtx new_other_notes;
1684 rtx note, next;
1685
1686 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
1687 &new_other_notes);
1688
1689 if (other_code_number < 0 && ! check_asm_operands (other_pat))
1690 {
1691 undo_all ();
1692 return 0;
1693 }
1694
1695 PATTERN (undobuf.other_insn) = other_pat;
1696
1697 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
1698 are still valid. Then add any non-duplicate notes added by
1699 recog_for_combine. */
1700 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
1701 {
1702 next = XEXP (note, 1);
1703
1704 if (REG_NOTE_KIND (note) == REG_UNUSED
1705 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
1706 remove_note (undobuf.other_insn, note);
1707 }
1708
1709 distribute_notes (new_other_notes, undobuf.other_insn,
1710 undobuf.other_insn, 0, 0, 0);
1711 }
1712
1713 /* We now know that we can do this combination. Merge the insns and
1714 update the status of registers and LOG_LINKS. */
1715
1716 {
1717 rtx i3notes, i2notes, i1notes = 0;
1718 rtx i3links, i2links, i1links = 0;
1719 rtx midnotes = 0;
1720 int all_adjacent = (next_real_insn (i2) == i3
1721 && (i1 == 0 || next_real_insn (i1) == i2));
1722 register int regno;
1723 /* Compute which registers we expect to eliminate. */
1724 rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
1725 ? 0 : i2dest);
1726 rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
1727
1728 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
1729 clear them. */
1730 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
1731 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
1732 if (i1)
1733 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
1734
1735 /* Ensure that we do not have something that should not be shared but
1736 occurs multiple times in the new insns. Check this by first
1737 resetting all the `used' flags and then copying anything is shared. */
1738
1739 reset_used_flags (i3notes);
1740 reset_used_flags (i2notes);
1741 reset_used_flags (i1notes);
1742 reset_used_flags (newpat);
1743 reset_used_flags (newi2pat);
1744 if (undobuf.other_insn)
1745 reset_used_flags (PATTERN (undobuf.other_insn));
1746
1747 i3notes = copy_rtx_if_shared (i3notes);
1748 i2notes = copy_rtx_if_shared (i2notes);
1749 i1notes = copy_rtx_if_shared (i1notes);
1750 newpat = copy_rtx_if_shared (newpat);
1751 newi2pat = copy_rtx_if_shared (newi2pat);
1752 if (undobuf.other_insn)
1753 reset_used_flags (PATTERN (undobuf.other_insn));
1754
1755 INSN_CODE (i3) = insn_code_number;
1756 PATTERN (i3) = newpat;
1757 if (undobuf.other_insn)
1758 INSN_CODE (undobuf.other_insn) = other_code_number;
1759
1760 /* We had one special case above where I2 had more than one set and
1761 we replaced a destination of one of those sets with the destination
1762 of I3. In that case, we have to update LOG_LINKS of insns later
1763 in this basic block. Note that this (expensive) case is rare. */
1764
1765 if (GET_CODE (PATTERN (i2)) == PARALLEL)
1766 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
1767 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
1768 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
1769 && ! find_reg_note (i2, REG_UNUSED,
1770 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
1771 {
1772 register rtx insn;
1773
1774 for (insn = NEXT_INSN (i2); insn; insn = NEXT_INSN (insn))
1775 {
1776 if (insn != i3 && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1777 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1778 if (XEXP (link, 0) == i2)
1779 XEXP (link, 0) = i3;
1780
1781 if (GET_CODE (insn) == CODE_LABEL
1782 || GET_CODE (insn) == JUMP_INSN)
1783 break;
1784 }
1785 }
1786
1787 LOG_LINKS (i3) = 0;
1788 REG_NOTES (i3) = 0;
1789 LOG_LINKS (i2) = 0;
1790 REG_NOTES (i2) = 0;
1791
1792 if (newi2pat)
1793 {
1794 INSN_CODE (i2) = i2_code_number;
1795 PATTERN (i2) = newi2pat;
1796 }
1797 else
1798 {
1799 PUT_CODE (i2, NOTE);
1800 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
1801 NOTE_SOURCE_FILE (i2) = 0;
1802 }
1803
1804 if (i1)
1805 {
1806 LOG_LINKS (i1) = 0;
1807 REG_NOTES (i1) = 0;
1808 PUT_CODE (i1, NOTE);
1809 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
1810 NOTE_SOURCE_FILE (i1) = 0;
1811 }
1812
1813 /* Get death notes for everything that is now used in either I3 or
1814 I2 and used to die in a previous insn. */
1815
1816 move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes);
1817 if (newi2pat)
1818 move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes);
1819
1820 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
1821 if (i3notes)
1822 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : 0, elim_i2, elim_i1);
1823 if (i2notes)
1824 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : 0, elim_i2, elim_i1);
1825 if (i1notes)
1826 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : 0, elim_i2, elim_i1);
1827 if (midnotes)
1828 distribute_notes (midnotes, 0, i3, newi2pat ? i2 : 0, elim_i2, elim_i1);
1829
1830 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
1831 know these are REG_UNUSED and want them to go to the desired insn,
1832 so we always pass it as i3. */
1833 if (newi2pat && new_i2_notes)
1834 distribute_notes (new_i2_notes, i2, i2, 0, 0, 0);
1835 if (new_i3_notes)
1836 distribute_notes (new_i3_notes, i3, i3, 0, 0, 0);
1837
1838 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
1839 put a REG_DEAD note for it somewhere. Similarly for I2 and I1. */
1840 if (i3dest_killed)
1841 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed, 0),
1842 0, i3, newi2pat ? i2 : 0, 0, 0);
1843 if (i2dest_in_i2src)
1844 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, 0),
1845 0, i3, newi2pat ? i2 : 0, 0, 0);
1846 if (i1dest_in_i1src)
1847 distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, 0),
1848 0, i3, newi2pat ? i2 : 0, 0, 0);
1849
1850 distribute_links (i3links);
1851 distribute_links (i2links);
1852 distribute_links (i1links);
1853
1854 if (GET_CODE (i2dest) == REG)
1855 {
1856 /* The insn that previously set this register doesn't exist, and
1857 this life of the register may not exist either. Show that
1858 we don't know its value any more. If we don't do this and
1859 I2 set the register to a value that depended on its old
1860 contents, we will get confused. If this insn is used, thing
1861 will be set correctly in combine_instructions. */
1862 record_value_for_reg (i2dest, 0, 0);
1863
1864 /* If the reg formerly set in I2 died only once and that was in I3,
1865 zero its use count so it won't make `reload' do any work. */
1866 if (! added_sets_2 && newi2pat == 0)
1867 {
1868 regno = REGNO (i2dest);
1869 reg_n_sets[regno]--;
1870 if (reg_n_sets[regno] == 0
1871 && ! (basic_block_live_at_start[0][regno / HOST_BITS_PER_INT]
1872 & (1 << (regno % HOST_BITS_PER_INT))))
1873 reg_n_refs[regno] = 0;
1874 }
1875 }
1876
1877 if (i1 && GET_CODE (i1dest) == REG)
1878 {
1879 record_value_for_reg (i1dest, 0, 0);
1880 regno = REGNO (i1dest);
1881 if (! added_sets_1)
1882 {
1883 reg_n_sets[regno]--;
1884 if (reg_n_sets[regno] == 0
1885 && ! (basic_block_live_at_start[0][regno / HOST_BITS_PER_INT]
1886 & (1 << (regno % HOST_BITS_PER_INT))))
1887 reg_n_refs[regno] = 0;
1888 }
1889 }
1890
1891 /* If I3 is now an unconditional jump, ensure that it has a
1892 BARRIER following it since it may have initially been a
1893 conditional jump. */
1894
1895 if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
1896 && GET_CODE (next_nonnote_insn (i3)) != BARRIER)
1897 emit_barrier_after (i3);
1898 }
1899
1900 combine_successes++;
1901
1902 return newi2pat ? i2 : i3;
1903 }
1904 \f
1905 /* Undo all the modifications recorded in undobuf. */
1906
1907 static void
1908 undo_all ()
1909 {
1910 register int i;
1911 if (undobuf.num_undo > MAX_UNDO)
1912 undobuf.num_undo = MAX_UNDO;
1913 for (i = undobuf.num_undo - 1; i >= 0; i--)
1914 *undobuf.undo[i].where = undobuf.undo[i].old_contents;
1915
1916 obfree (undobuf.storage);
1917 undobuf.num_undo = 0;
1918 }
1919 \f
1920 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
1921 where we have an arithmetic expression and return that point.
1922
1923 try_combine will call this function to see if an insn can be split into
1924 two insns. */
1925
1926 static rtx *
1927 find_split_point (loc)
1928 rtx *loc;
1929 {
1930 rtx x = *loc;
1931 enum rtx_code code = GET_CODE (x);
1932 rtx *split;
1933 int len = 0, pos, unsignedp;
1934 rtx inner;
1935
1936 /* First special-case some codes. */
1937 switch (code)
1938 {
1939 case SUBREG:
1940 #ifdef INSN_SCHEDULING
1941 /* If we are making a paradoxical SUBREG invalid, it becomes a split
1942 point. */
1943 if (GET_CODE (SUBREG_REG (x)) == MEM)
1944 return loc;
1945 #endif
1946 return find_split_point (&SUBREG_REG (x));
1947
1948 case MEM:
1949 #ifdef HAVE_lo_sum
1950 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
1951 using LO_SUM and HIGH. */
1952 if (GET_CODE (XEXP (x, 0)) == CONST
1953 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1954 {
1955 SUBST (XEXP (x, 0),
1956 gen_rtx_combine (LO_SUM, Pmode,
1957 gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
1958 XEXP (x, 0)));
1959 return &XEXP (XEXP (x, 0), 0);
1960 }
1961 #endif
1962
1963 /* If we have a PLUS whose second operand is a constant and the
1964 address is not valid, perhaps will can split it up using
1965 the machine-specific way to split large constants. We use
1966 the first psuedo-reg (one of the virtual regs) as a placeholder;
1967 it will not remain in the result. */
1968 if (GET_CODE (XEXP (x, 0)) == PLUS
1969 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
1970 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
1971 {
1972 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
1973 rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
1974 subst_insn);
1975
1976 /* This should have produced two insns, each of which sets our
1977 placeholder. If the source of the second is a valid address,
1978 we can make put both sources together and make a split point
1979 in the middle. */
1980
1981 if (seq && XVECLEN (seq, 0) == 2
1982 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
1983 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
1984 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
1985 && ! reg_mentioned_p (reg,
1986 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
1987 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
1988 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
1989 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
1990 && memory_address_p (GET_MODE (x),
1991 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
1992 {
1993 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
1994 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
1995
1996 /* Replace the placeholder in SRC2 with SRC1. If we can
1997 find where in SRC2 it was placed, that can become our
1998 split point and we can replace this address with SRC2.
1999 Just try two obvious places. */
2000
2001 src2 = replace_rtx (src2, reg, src1);
2002 split = 0;
2003 if (XEXP (src2, 0) == src1)
2004 split = &XEXP (src2, 0);
2005 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2006 && XEXP (XEXP (src2, 0), 0) == src1)
2007 split = &XEXP (XEXP (src2, 0), 0);
2008
2009 if (split)
2010 {
2011 SUBST (XEXP (x, 0), src2);
2012 return split;
2013 }
2014 }
2015 }
2016 break;
2017
2018 case SET:
2019 #ifdef HAVE_cc0
2020 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2021 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2022 we need to put the operand into a register. So split at that
2023 point. */
2024
2025 if (SET_DEST (x) == cc0_rtx
2026 && GET_CODE (SET_SRC (x)) != COMPARE
2027 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2028 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2029 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2030 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2031 return &SET_SRC (x);
2032 #endif
2033
2034 /* See if we can split SET_SRC as it stands. */
2035 split = find_split_point (&SET_SRC (x));
2036 if (split && split != &SET_SRC (x))
2037 return split;
2038
2039 /* See if this is a bitfield assignment with everything constant. If
2040 so, this is an IOR of an AND, so split it into that. */
2041 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2042 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2043 <= HOST_BITS_PER_INT)
2044 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2045 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2046 && GET_CODE (SET_SRC (x)) == CONST_INT
2047 && ((INTVAL (XEXP (SET_DEST (x), 1))
2048 + INTVAL (XEXP (SET_DEST (x), 2)))
2049 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2050 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2051 {
2052 int pos = INTVAL (XEXP (SET_DEST (x), 2));
2053 int len = INTVAL (XEXP (SET_DEST (x), 1));
2054 int src = INTVAL (SET_SRC (x));
2055 rtx dest = XEXP (SET_DEST (x), 0);
2056 enum machine_mode mode = GET_MODE (dest);
2057 unsigned int mask = (1 << len) - 1;
2058
2059 #if BITS_BIG_ENDIAN
2060 pos = GET_MODE_BITSIZE (mode) - len - pos;
2061 #endif
2062
2063 if (src == mask)
2064 SUBST (SET_SRC (x),
2065 gen_binary (IOR, mode, dest,
2066 gen_rtx (CONST_INT, VOIDmode, src << pos)));
2067 else
2068 SUBST (SET_SRC (x),
2069 gen_binary (IOR, mode,
2070 gen_binary (AND, mode, dest,
2071 gen_rtx (CONST_INT, VOIDmode,
2072 (~ (mask << pos)
2073 & GET_MODE_MASK (mode)))),
2074 gen_rtx (CONST_INT, VOIDmode, src << pos)));
2075
2076 SUBST (SET_DEST (x), dest);
2077
2078 split = find_split_point (&SET_SRC (x));
2079 if (split && split != &SET_SRC (x))
2080 return split;
2081 }
2082
2083 /* Otherwise, see if this is an operation that we can split into two.
2084 If so, try to split that. */
2085 code = GET_CODE (SET_SRC (x));
2086
2087 switch (code)
2088 {
2089 case SIGN_EXTEND:
2090 inner = XEXP (SET_SRC (x), 0);
2091 pos = 0;
2092 len = GET_MODE_BITSIZE (GET_MODE (inner));
2093 unsignedp = 0;
2094 break;
2095
2096 case SIGN_EXTRACT:
2097 case ZERO_EXTRACT:
2098 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2099 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
2100 {
2101 inner = XEXP (SET_SRC (x), 0);
2102 len = INTVAL (XEXP (SET_SRC (x), 1));
2103 pos = INTVAL (XEXP (SET_SRC (x), 2));
2104
2105 #if BITS_BIG_ENDIAN
2106 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
2107 #endif
2108 unsignedp = (code == ZERO_EXTRACT);
2109 }
2110 break;
2111 }
2112
2113 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
2114 {
2115 enum machine_mode mode = GET_MODE (SET_SRC (x));
2116
2117 if (unsignedp && len < HOST_BITS_PER_INT)
2118 {
2119 SUBST (SET_SRC (x),
2120 gen_rtx_combine
2121 (AND, mode,
2122 gen_rtx_combine (LSHIFTRT, mode,
2123 gen_lowpart_for_combine (mode, inner),
2124 gen_rtx (CONST_INT, VOIDmode, pos)),
2125 gen_rtx (CONST_INT, VOIDmode, (1 << len) - 1)));
2126
2127 split = find_split_point (&SET_SRC (x));
2128 if (split && split != &SET_SRC (x))
2129 return split;
2130 }
2131 else
2132 {
2133 SUBST (SET_SRC (x),
2134 gen_rtx_combine
2135 (ASHIFTRT, mode,
2136 gen_rtx_combine (ASHIFT, mode,
2137 gen_lowpart_for_combine (mode, inner),
2138 gen_rtx (CONST_INT, VOIDmode,
2139 (GET_MODE_BITSIZE (mode)
2140 - len - pos))),
2141 gen_rtx (CONST_INT, VOIDmode,
2142 GET_MODE_BITSIZE (mode) - len)));
2143
2144 split = find_split_point (&SET_SRC (x));
2145 if (split && split != &SET_SRC (x))
2146 return split;
2147 }
2148 }
2149
2150 /* See if this is a simple operation with a constant as the second
2151 operand. It might be that this constant is out of range and hence
2152 could be used as a split point. */
2153 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2154 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2155 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
2156 && CONSTANT_P (XEXP (SET_SRC (x), 1))
2157 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
2158 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
2159 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
2160 == 'o'))))
2161 return &XEXP (SET_SRC (x), 1);
2162
2163 /* Finally, see if this is a simple operation with its first operand
2164 not in a register. The operation might require this operand in a
2165 register, so return it as a split point. We can always do this
2166 because if the first operand were another operation, we would have
2167 already found it as a split point. */
2168 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
2169 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
2170 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
2171 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
2172 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
2173 return &XEXP (SET_SRC (x), 0);
2174
2175 return 0;
2176
2177 case AND:
2178 case IOR:
2179 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
2180 it is better to write this as (not (ior A B)) so we can split it.
2181 Similarly for IOR. */
2182 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
2183 {
2184 SUBST (*loc,
2185 gen_rtx_combine (NOT, GET_MODE (x),
2186 gen_rtx_combine (code == IOR ? AND : IOR,
2187 GET_MODE (x),
2188 XEXP (XEXP (x, 0), 0),
2189 XEXP (XEXP (x, 1), 0))));
2190 return find_split_point (loc);
2191 }
2192
2193 /* Many RISC machines have a large set of logical insns. If the
2194 second operand is a NOT, put it first so we will try to split the
2195 other operand first. */
2196 if (GET_CODE (XEXP (x, 1)) == NOT)
2197 {
2198 rtx tem = XEXP (x, 0);
2199 SUBST (XEXP (x, 0), XEXP (x, 1));
2200 SUBST (XEXP (x, 1), tem);
2201 }
2202 break;
2203 }
2204
2205 /* Otherwise, select our actions depending on our rtx class. */
2206 switch (GET_RTX_CLASS (code))
2207 {
2208 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
2209 case '3':
2210 split = find_split_point (&XEXP (x, 2));
2211 if (split)
2212 return split;
2213 /* ... fall through ... */
2214 case '2':
2215 case 'c':
2216 case '<':
2217 split = find_split_point (&XEXP (x, 1));
2218 if (split)
2219 return split;
2220 /* ... fall through ... */
2221 case '1':
2222 /* Some machines have (and (shift ...) ...) insns. If X is not
2223 an AND, but XEXP (X, 0) is, use it as our split point. */
2224 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
2225 return &XEXP (x, 0);
2226
2227 split = find_split_point (&XEXP (x, 0));
2228 if (split)
2229 return split;
2230 return loc;
2231 }
2232
2233 /* Otherwise, we don't have a split point. */
2234 return 0;
2235 }
2236 \f
2237 /* Throughout X, replace FROM with TO, and return the result.
2238 The result is TO if X is FROM;
2239 otherwise the result is X, but its contents may have been modified.
2240 If they were modified, a record was made in undobuf so that
2241 undo_all will (among other things) return X to its original state.
2242
2243 If the number of changes necessary is too much to record to undo,
2244 the excess changes are not made, so the result is invalid.
2245 The changes already made can still be undone.
2246 undobuf.num_undo is incremented for such changes, so by testing that
2247 the caller can tell whether the result is valid.
2248
2249 `n_occurrences' is incremented each time FROM is replaced.
2250
2251 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
2252
2253 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
2254 by copying if `n_occurrences' is non-zero. */
2255
2256 static rtx
2257 subst (x, from, to, in_dest, unique_copy)
2258 register rtx x, from, to;
2259 int in_dest;
2260 int unique_copy;
2261 {
2262 register char *fmt;
2263 register int len, i;
2264 register enum rtx_code code = GET_CODE (x), orig_code = code;
2265 rtx temp;
2266 enum machine_mode mode = GET_MODE (x);
2267 enum machine_mode op0_mode = VOIDmode;
2268 rtx other_insn;
2269 rtx *cc_use;
2270 int n_restarts = 0;
2271
2272 /* FAKE_EXTEND_SAFE_P (MODE, FROM) is 1 if (subreg:MODE FROM 0) is a safe
2273 replacement for (zero_extend:MODE FROM) or (sign_extend:MODE FROM).
2274 If it is 0, that cannot be done. We can now do this for any MEM
2275 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be reloaded.
2276 If not for that, MEM's would very rarely be safe. */
2277
2278 /* Reject MODEs bigger than a word, because we might not be able
2279 to reference a two-register group starting with an arbitrary register
2280 (and currently gen_lowpart might crash for a SUBREG). */
2281
2282 #define FAKE_EXTEND_SAFE_P(MODE, FROM) \
2283 (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
2284
2285 /* Two expressions are equal if they are identical copies of a shared
2286 RTX or if they are both registers with the same register number
2287 and mode. */
2288
2289 #define COMBINE_RTX_EQUAL_P(X,Y) \
2290 ((X) == (Y) \
2291 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
2292 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
2293
2294 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
2295 {
2296 n_occurrences++;
2297 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
2298 }
2299
2300 /* If X and FROM are the same register but different modes, they will
2301 not have been seen as equal above. However, flow.c will make a
2302 LOG_LINKS entry for that case. If we do nothing, we will try to
2303 rerecognize our original insn and, when it succeeds, we will
2304 delete the feeding insn, which is incorrect.
2305
2306 So force this insn not to match in this (rare) case. */
2307 if (! in_dest && code == REG && GET_CODE (from) == REG
2308 && REGNO (x) == REGNO (from))
2309 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
2310
2311 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
2312 of which may contain things that can be combined. */
2313 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
2314 return x;
2315
2316 /* It is possible to have a subexpression appear twice in the insn.
2317 Suppose that FROM is a register that appears within TO.
2318 Then, after that subexpression has been scanned once by `subst',
2319 the second time it is scanned, TO may be found. If we were
2320 to scan TO here, we would find FROM within it and create a
2321 self-referent rtl structure which is completely wrong. */
2322 if (COMBINE_RTX_EQUAL_P (x, to))
2323 return to;
2324
2325 len = GET_RTX_LENGTH (code);
2326 fmt = GET_RTX_FORMAT (code);
2327
2328 /* We don't need to process a SET_DEST that is a register, CC0, or PC, so
2329 set up to skip this common case. All other cases where we want to
2330 suppress replacing something inside a SET_SRC are handled via the
2331 IN_DEST operand. */
2332 if (code == SET
2333 && (GET_CODE (SET_DEST (x)) == REG
2334 || GET_CODE (SET_DEST (x)) == CC0
2335 || GET_CODE (SET_DEST (x)) == PC))
2336 fmt = "ie";
2337
2338 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
2339 if (fmt[0] == 'e')
2340 op0_mode = GET_MODE (XEXP (x, 0));
2341
2342 for (i = 0; i < len; i++)
2343 {
2344 if (fmt[i] == 'E')
2345 {
2346 register int j;
2347 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2348 {
2349 register rtx new;
2350 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
2351 {
2352 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2353 n_occurrences++;
2354 }
2355 else
2356 {
2357 new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
2358
2359 /* If this substitution failed, this whole thing fails. */
2360 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2361 return new;
2362 }
2363
2364 SUBST (XVECEXP (x, i, j), new);
2365 }
2366 }
2367 else if (fmt[i] == 'e')
2368 {
2369 register rtx new;
2370
2371 if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
2372 {
2373 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
2374 n_occurrences++;
2375 }
2376 else
2377 /* If we are in a SET_DEST, suppress most cases unless we
2378 have gone inside a MEM, in which case we want to
2379 simplify the address. We assume here that things that
2380 are actually part of the destination have their inner
2381 parts in the first expression. This is true for SUBREG,
2382 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
2383 things aside from REG and MEM that should appear in a
2384 SET_DEST. */
2385 new = subst (XEXP (x, i), from, to,
2386 (((in_dest
2387 && (code == SUBREG || code == STRICT_LOW_PART
2388 || code == ZERO_EXTRACT))
2389 || code == SET)
2390 && i == 0), unique_copy);
2391
2392 /* If we found that we will have to reject this combination,
2393 indicate that by returning the CLOBBER ourselves, rather than
2394 an expression containing it. This will speed things up as
2395 well as prevent accidents where two CLOBBERs are considered
2396 to be equal, thus producing an incorrect simplification. */
2397
2398 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
2399 return new;
2400
2401 SUBST (XEXP (x, i), new);
2402 }
2403 }
2404
2405 /* If this is a commutative operation, put a constant last and a complex
2406 expression first. We don't need to do this for comparisons here. */
2407 if (GET_RTX_CLASS (code) == 'c'
2408 && ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
2409 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
2410 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
2411 || (GET_CODE (XEXP (x, 0)) == SUBREG
2412 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
2413 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
2414 {
2415 temp = XEXP (x, 0);
2416 SUBST (XEXP (x, 0), XEXP (x, 1));
2417 SUBST (XEXP (x, 1), temp);
2418 }
2419
2420 /* Try to fold this expression in case we have constants that weren't
2421 present before. */
2422 temp = 0;
2423 switch (GET_RTX_CLASS (code))
2424 {
2425 case '1':
2426 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
2427 break;
2428 case '<':
2429 temp = simplify_relational_operation (code, op0_mode,
2430 XEXP (x, 0), XEXP (x, 1));
2431 break;
2432 case 'c':
2433 case '2':
2434 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
2435 break;
2436 case 'b':
2437 case '3':
2438 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
2439 XEXP (x, 1), XEXP (x, 2));
2440 break;
2441 }
2442
2443 if (temp)
2444 x = temp;
2445
2446 /* We come back to here if we have replaced the expression with one of
2447 a different code and it is likely that further simplification will be
2448 possible. */
2449
2450 restart:
2451
2452 /* If we have restarted more than 4 times, we are probably looping, so
2453 give up. */
2454 if (++n_restarts > 4)
2455 return x;
2456
2457 code = GET_CODE (x);
2458
2459 /* First see if we can apply the inverse distributive law. */
2460 if (code == PLUS || code == MINUS || code == IOR || code == XOR)
2461 {
2462 x = apply_distributive_law (x);
2463 code = GET_CODE (x);
2464 }
2465
2466 /* If CODE is an associative operation not otherwise handled, see if we
2467 can associate some operands. This can win if they are constants or
2468 if they are logically related (i.e. (a & b) & a. */
2469 if ((code == PLUS || code == MINUS
2470 || code == MULT || code == AND || code == IOR || code == XOR
2471 || code == DIV || code == UDIV
2472 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
2473 && GET_MODE_CLASS (mode) == MODE_INT)
2474 {
2475 if (GET_CODE (XEXP (x, 0)) == code)
2476 {
2477 rtx other = XEXP (XEXP (x, 0), 0);
2478 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
2479 rtx inner_op1 = XEXP (x, 1);
2480 rtx inner;
2481
2482 /* Make sure we pass the constant operand if any as the second
2483 one if this is a commutative operation. */
2484 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
2485 {
2486 rtx tem = inner_op0;
2487 inner_op0 = inner_op1;
2488 inner_op1 = tem;
2489 }
2490 inner = simplify_binary_operation (code == MINUS ? PLUS
2491 : code == DIV ? MULT
2492 : code == UDIV ? MULT
2493 : code,
2494 mode, inner_op0, inner_op1);
2495
2496 /* For commutative operations, try the other pair if that one
2497 didn't simplify. */
2498 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
2499 {
2500 other = XEXP (XEXP (x, 0), 1);
2501 inner = simplify_binary_operation (code, mode,
2502 XEXP (XEXP (x, 0), 0),
2503 XEXP (x, 1));
2504 }
2505
2506 if (inner)
2507 {
2508 x = gen_binary (code, mode, other, inner);
2509 goto restart;
2510
2511 }
2512 }
2513 }
2514
2515 /* A little bit of algebraic simplification here. */
2516 switch (code)
2517 {
2518 case MEM:
2519 /* Ensure that our address has any ASHIFTs converted to MULT in case
2520 address-recognizing predicates are called later. */
2521 temp = make_compound_operation (XEXP (x, 0), MEM);
2522 SUBST (XEXP (x, 0), temp);
2523 break;
2524
2525 case SUBREG:
2526 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
2527 is paradoxical. If we can't do that safely, then it becomes
2528 something nonsensical so that this combination won't take place. */
2529
2530 if (GET_CODE (SUBREG_REG (x)) == MEM
2531 && (GET_MODE_SIZE (mode)
2532 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2533 {
2534 rtx inner = SUBREG_REG (x);
2535 int endian_offset = 0;
2536 /* Don't change the mode of the MEM
2537 if that would change the meaning of the address. */
2538 if (MEM_VOLATILE_P (SUBREG_REG (x))
2539 || mode_dependent_address_p (XEXP (inner, 0)))
2540 return gen_rtx (CLOBBER, mode, const0_rtx);
2541
2542 #if BYTES_BIG_ENDIAN
2543 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2544 endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
2545 if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
2546 endian_offset -= UNITS_PER_WORD - GET_MODE_SIZE (GET_MODE (inner));
2547 #endif
2548 /* Note if the plus_constant doesn't make a valid address
2549 then this combination won't be accepted. */
2550 x = gen_rtx (MEM, mode,
2551 plus_constant (XEXP (inner, 0),
2552 (SUBREG_WORD (x) * UNITS_PER_WORD
2553 + endian_offset)));
2554 MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
2555 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
2556 MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
2557 return x;
2558 }
2559
2560 /* If we are in a SET_DEST, these other cases can't apply. */
2561 if (in_dest)
2562 return x;
2563
2564 /* Changing mode twice with SUBREG => just change it once,
2565 or not at all if changing back to starting mode. */
2566 if (GET_CODE (SUBREG_REG (x)) == SUBREG)
2567 {
2568 if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
2569 && SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
2570 return SUBREG_REG (SUBREG_REG (x));
2571
2572 SUBST_INT (SUBREG_WORD (x),
2573 SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
2574 SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
2575 }
2576
2577 /* SUBREG of a hard register => just change the register number
2578 and/or mode. If the hard register is not valid in that mode,
2579 suppress this combination. */
2580
2581 if (GET_CODE (SUBREG_REG (x)) == REG
2582 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
2583 {
2584 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
2585 mode))
2586 return gen_rtx (REG, mode,
2587 REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
2588 else
2589 return gen_rtx (CLOBBER, mode, const0_rtx);
2590 }
2591
2592 /* For a constant, try to pick up the part we want. Handle a full
2593 word and low-order part. Only do this if we are narrowing
2594 the constant; if it is being widened, we have no idea what
2595 the extra bits will have been set to. */
2596
2597 if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
2598 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
2599 && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
2600 && GET_MODE_CLASS (mode) == MODE_INT)
2601 {
2602 temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
2603 0, op0_mode);
2604 if (temp)
2605 return temp;
2606 }
2607
2608 if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
2609 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode))
2610 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
2611
2612 /* If we are narrowing the object, we need to see if we can simplify
2613 the expression for the object knowing that we only need the
2614 low-order bits. We do this by computing an AND of the object
2615 with only the bits we care about. That will produce any needed
2616 simplifications. If the resulting computation is just the
2617 AND with the significant bits, our operand is the first operand
2618 of the AND. Otherwise, it is the resulting expression. */
2619 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2620 && subreg_lowpart_p (x)
2621 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= HOST_BITS_PER_INT)
2622 {
2623 temp = simplify_and_const_int (0, GET_MODE (SUBREG_REG (x)),
2624 SUBREG_REG (x), GET_MODE_MASK (mode));
2625 if (GET_CODE (temp) == AND && GET_CODE (XEXP (temp, 1)) == CONST_INT
2626 && INTVAL (XEXP (temp, 1)) == GET_MODE_MASK (mode))
2627 temp = XEXP (temp, 0);
2628 return gen_lowpart_for_combine (mode, temp);
2629 }
2630
2631 break;
2632
2633 case NOT:
2634 /* (not (plus X -1)) can become (neg X). */
2635 if (GET_CODE (XEXP (x, 0)) == PLUS
2636 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
2637 {
2638 x = gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
2639 goto restart;
2640 }
2641
2642 /* Similarly, (not (neg X)) is (plus X -1). */
2643 if (GET_CODE (XEXP (x, 0)) == NEG)
2644 {
2645 x = gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
2646 goto restart;
2647 }
2648
2649 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
2650 other than 1, but that is not valid. We could do a similar
2651 simplification for (not (lshiftrt C X)) where C is just the sign bit,
2652 but this doesn't seem common enough to bother with. */
2653 if (GET_CODE (XEXP (x, 0)) == ASHIFT
2654 && XEXP (XEXP (x, 0), 0) == const1_rtx)
2655 {
2656 x = gen_rtx (ROTATE, mode, gen_unary (NOT, mode, const1_rtx),
2657 XEXP (XEXP (x, 0), 1));
2658 goto restart;
2659 }
2660
2661 if (GET_CODE (XEXP (x, 0)) == SUBREG
2662 && subreg_lowpart_p (XEXP (x, 0))
2663 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
2664 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
2665 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
2666 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
2667 {
2668 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
2669
2670 x = gen_rtx (ROTATE, inner_mode,
2671 gen_unary (NOT, inner_mode, const1_rtx),
2672 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
2673 x = gen_lowpart_for_combine (mode, x);
2674 goto restart;
2675 }
2676
2677 #if STORE_FLAG_VALUE == -1
2678 /* (not (comparison foo bar)) can be done by reversing the comparison
2679 code if valid. */
2680 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
2681 && reversible_comparison_p (XEXP (x, 0)))
2682 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
2683 mode, XEXP (XEXP (x, 0), 0),
2684 XEXP (XEXP (x, 0), 1));
2685 #endif
2686
2687 /* Apply De Morgan's laws to reduce number of patterns for machines
2688 with negating logical insns (and-not, nand, etc.). If result has
2689 only one NOT, put it first, since that is how the patterns are
2690 coded. */
2691
2692 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
2693 {
2694 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
2695
2696 if (GET_CODE (in1) == NOT)
2697 in1 = XEXP (in1, 0);
2698 else
2699 in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
2700
2701 if (GET_CODE (in2) == NOT)
2702 in2 = XEXP (in2, 0);
2703 else if (GET_CODE (in2) == CONST_INT
2704 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT)
2705 in2 = gen_rtx (CONST_INT, VOIDmode,
2706 GET_MODE_MASK (mode) & ~ INTVAL (in2));
2707 else
2708 in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
2709
2710 if (GET_CODE (in2) == NOT)
2711 {
2712 rtx tem = in2;
2713 in2 = in1; in1 = tem;
2714 }
2715
2716 x = gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
2717 mode, in1, in2);
2718 goto restart;
2719 }
2720 break;
2721
2722 case NEG:
2723 /* (neg (plus X 1)) can become (not X). */
2724 if (GET_CODE (XEXP (x, 0)) == PLUS
2725 && XEXP (XEXP (x, 0), 1) == const1_rtx)
2726 {
2727 x = gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
2728 goto restart;
2729 }
2730
2731 /* Similarly, (neg (not X)) is (plus X 1). */
2732 if (GET_CODE (XEXP (x, 0)) == NOT)
2733 {
2734 x = gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), const1_rtx);
2735 goto restart;
2736 }
2737
2738 /* (neg (abs X)) is X if X is a value known to be either -1 or 0. */
2739 if (GET_CODE (XEXP (x, 0)) == ABS
2740 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTRACT
2741 && XEXP (XEXP (XEXP (x, 0), 0), 1) == const1_rtx)
2742 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ASHIFTRT
2743 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
2744 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
2745 == GET_MODE_BITSIZE (mode) - 1))
2746 || ((temp = get_last_value (XEXP (XEXP (x, 0), 0))) != 0
2747 && ((GET_CODE (temp) == SIGN_EXTRACT
2748 && XEXP (temp, 1) == const1_rtx)
2749 || (GET_CODE (temp) == ASHIFTRT
2750 && GET_CODE (XEXP (temp, 1)) == CONST_INT
2751 && (INTVAL (XEXP (temp, 1))
2752 == GET_MODE_BITSIZE (mode) - 1))))))
2753 return XEXP (XEXP (x, 0), 0);
2754
2755 /* (neg (minus X Y)) can become (minus Y X). */
2756 if (GET_CODE (XEXP (x, 0)) == MINUS
2757 && (GET_MODE_CLASS (mode) != MODE_FLOAT
2758 /* x-y != -(y-x) with IEEE floating point. */
2759 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT))
2760 {
2761 x = gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
2762 XEXP (XEXP (x, 0), 0));
2763 goto restart;
2764 }
2765
2766 /* NEG commutes with ASHIFT since it is multiplication. Only do this
2767 if we can then eliminate the NEG (e.g.,
2768 if the operand is a constant). */
2769
2770 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
2771 {
2772 temp = simplify_unary_operation (NEG, mode,
2773 XEXP (XEXP (x, 0), 0), mode);
2774 if (temp)
2775 {
2776 SUBST (XEXP (XEXP (x, 0), 0), temp);
2777 return XEXP (x, 0);
2778 }
2779 }
2780
2781 temp = expand_compound_operation (XEXP (x, 0));
2782
2783 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
2784 replaced by (lshiftrt X C). This will convert
2785 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
2786
2787 if (GET_CODE (temp) == ASHIFTRT
2788 && GET_CODE (XEXP (temp, 1)) == CONST_INT
2789 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
2790 {
2791 x = simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
2792 INTVAL (XEXP (temp, 1)));
2793 goto restart;
2794 }
2795
2796 /* If X has only a single bit significant, say, bit I, convert
2797 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
2798 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
2799 (sign_extract X 1 Y). But only do this if TEMP isn't a register
2800 or a SUBREG of one since we'd be making the expression more
2801 complex if it was just a register. */
2802
2803 if (GET_CODE (temp) != REG
2804 && ! (GET_CODE (temp) == SUBREG
2805 && GET_CODE (SUBREG_REG (temp)) == REG)
2806 && (i = exact_log2 (significant_bits (temp, mode))) >= 0)
2807 {
2808 rtx temp1 = simplify_shift_const
2809 (0, ASHIFTRT, mode,
2810 simplify_shift_const (0, ASHIFT, mode, temp,
2811 GET_MODE_BITSIZE (mode) - 1 - i),
2812 GET_MODE_BITSIZE (mode) - 1 - i);
2813
2814 /* If all we did was surround TEMP with the two shifts, we
2815 haven't improved anything, so don't use it. Otherwise,
2816 we are better off with TEMP1. */
2817 if (GET_CODE (temp1) != ASHIFTRT
2818 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
2819 || XEXP (XEXP (temp1, 0), 0) != temp)
2820 {
2821 x = temp1;
2822 goto restart;
2823 }
2824 }
2825 break;
2826
2827 case FLOAT_TRUNCATE:
2828 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
2829 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
2830 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
2831 return XEXP (XEXP (x, 0), 0);
2832 break;
2833
2834 #ifdef HAVE_cc0
2835 case COMPARE:
2836 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
2837 using cc0, in which case we want to leave it as a COMPARE
2838 so we can distinguish it from a register-register-copy. */
2839 if (XEXP (x, 1) == const0_rtx)
2840 return XEXP (x, 0);
2841
2842 /* In IEEE floating point, x-0 is not the same as x. */
2843 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
2844 || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) == MODE_INT)
2845 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
2846 return XEXP (x, 0);
2847 break;
2848 #endif
2849
2850 case CONST:
2851 /* (const (const X)) can become (const X). Do it this way rather than
2852 returning the inner CONST since CONST can be shared with a
2853 REG_EQUAL note. */
2854 if (GET_CODE (XEXP (x, 0)) == CONST)
2855 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
2856 break;
2857
2858 #ifdef HAVE_lo_sum
2859 case LO_SUM:
2860 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
2861 can add in an offset. find_split_point will split this address up
2862 again if it doesn't match. */
2863 if (GET_CODE (XEXP (x, 0)) == HIGH
2864 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
2865 return XEXP (x, 1);
2866 break;
2867 #endif
2868
2869 case PLUS:
2870 /* If we have (plus (plus (A const) B)), associate it so that CONST is
2871 outermost. That's because that's the way indexed addresses are
2872 supposed to appear. This code used to check many more cases, but
2873 they are now checked elsewhere. */
2874 if (GET_CODE (XEXP (x, 0)) == PLUS
2875 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
2876 return gen_binary (PLUS, mode,
2877 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
2878 XEXP (x, 1)),
2879 XEXP (XEXP (x, 0), 1));
2880
2881 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
2882 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
2883 bit-field and can be replaced by either a sign_extend or a
2884 sign_extract. The `and' may be a zero_extend. */
2885 if (GET_CODE (XEXP (x, 0)) == XOR
2886 && GET_CODE (XEXP (x, 1)) == CONST_INT
2887 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2888 && INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
2889 && (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
2890 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
2891 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
2892 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
2893 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
2894 == (1 << (i + 1)) - 1))
2895 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
2896 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
2897 == i + 1))))
2898 {
2899 x = simplify_shift_const
2900 (0, ASHIFTRT, mode,
2901 simplify_shift_const (0, ASHIFT, mode,
2902 XEXP (XEXP (XEXP (x, 0), 0), 0),
2903 GET_MODE_BITSIZE (mode) - (i + 1)),
2904 GET_MODE_BITSIZE (mode) - (i + 1));
2905 goto restart;
2906 }
2907
2908 /* If only the low-order bit of X is significant, (plus x -1)
2909 can become (ashiftrt (ashift (xor x 1) C) C) where C is
2910 the bitsize of the mode - 1. This allows simplification of
2911 "a = (b & 8) == 0;" */
2912 if (XEXP (x, 1) == constm1_rtx
2913 && GET_CODE (XEXP (x, 0)) != REG
2914 && ! (GET_CODE (XEXP (x,0)) == SUBREG
2915 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
2916 && significant_bits (XEXP (x, 0), mode) == 1)
2917 {
2918 x = simplify_shift_const
2919 (0, ASHIFTRT, mode,
2920 simplify_shift_const (0, ASHIFT, mode,
2921 gen_rtx_combine (XOR, mode,
2922 XEXP (x, 0), const1_rtx),
2923 GET_MODE_BITSIZE (mode) - 1),
2924 GET_MODE_BITSIZE (mode) - 1);
2925 goto restart;
2926 }
2927 break;
2928
2929 case MINUS:
2930 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
2931 (and <foo> (const_int pow2-1)) */
2932 if (GET_CODE (XEXP (x, 1)) == AND
2933 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
2934 && exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
2935 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
2936 {
2937 x = simplify_and_const_int (0, mode, XEXP (x, 0),
2938 - INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
2939 goto restart;
2940 }
2941 break;
2942
2943 case MULT:
2944 /* If we have (mult (plus A B) C), apply the distributive law and then
2945 the inverse distributive law to see if things simplify. This
2946 occurs mostly in addresses, often when unrolling loops. */
2947
2948 if (GET_CODE (XEXP (x, 0)) == PLUS)
2949 {
2950 x = apply_distributive_law
2951 (gen_binary (PLUS, mode,
2952 gen_binary (MULT, mode,
2953 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
2954 gen_binary (MULT, mode,
2955 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
2956
2957 if (GET_CODE (x) != MULT)
2958 goto restart;
2959 }
2960
2961 /* If this is multiplication by a power of two and its first operand is
2962 a shift, treat the multiply as a shift to allow the shifts to
2963 possibly combine. */
2964 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2965 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
2966 && (GET_CODE (XEXP (x, 0)) == ASHIFT
2967 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
2968 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
2969 || GET_CODE (XEXP (x, 0)) == ROTATE
2970 || GET_CODE (XEXP (x, 0)) == ROTATERT))
2971 {
2972 x = simplify_shift_const (0, ASHIFT, mode, XEXP (x, 0), i);
2973 goto restart;
2974 }
2975
2976 /* Convert (mult (ashift (const_int 1) A) B) to (ashift B A). */
2977 if (GET_CODE (XEXP (x, 0)) == ASHIFT
2978 && XEXP (XEXP (x, 0), 0) == const1_rtx)
2979 return gen_rtx_combine (ASHIFT, mode, XEXP (x, 1),
2980 XEXP (XEXP (x, 0), 1));
2981 break;
2982
2983 case UDIV:
2984 /* If this is a divide by a power of two, treat it as a shift if
2985 its first operand is a shift. */
2986 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2987 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
2988 && (GET_CODE (XEXP (x, 0)) == ASHIFT
2989 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
2990 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
2991 || GET_CODE (XEXP (x, 0)) == ROTATE
2992 || GET_CODE (XEXP (x, 0)) == ROTATERT))
2993 {
2994 x = simplify_shift_const (0, LSHIFTRT, mode, XEXP (x, 0), i);
2995 goto restart;
2996 }
2997 break;
2998
2999 case EQ: case NE:
3000 case GT: case GTU: case GE: case GEU:
3001 case LT: case LTU: case LE: case LEU:
3002 /* If the first operand is a condition code, we can't do anything
3003 with it. */
3004 if (GET_CODE (XEXP (x, 0)) == COMPARE
3005 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
3006 #ifdef HAVE_cc0
3007 && XEXP (x, 0) != cc0_rtx
3008 #endif
3009 ))
3010 {
3011 rtx op0 = XEXP (x, 0);
3012 rtx op1 = XEXP (x, 1);
3013 enum rtx_code new_code;
3014
3015 if (GET_CODE (op0) == COMPARE)
3016 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
3017
3018 /* Simplify our comparison, if possible. */
3019 new_code = simplify_comparison (code, &op0, &op1);
3020
3021 #if STORE_FLAG_VALUE == 1
3022 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
3023 if only the low-order bit is significant in X (such as when
3024 X is a ZERO_EXTRACT of one bit. Similarly, we can convert
3025 EQ to (xor X 1). */
3026 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3027 && op1 == const0_rtx
3028 && significant_bits (op0, GET_MODE (op0)) == 1)
3029 return gen_lowpart_for_combine (mode, op0);
3030 else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
3031 && op1 == const0_rtx
3032 && significant_bits (op0, GET_MODE (op0)) == 1)
3033 return gen_rtx_combine (XOR, mode,
3034 gen_lowpart_for_combine (mode, op0),
3035 const1_rtx);
3036 #endif
3037
3038 #if STORE_FLAG_VALUE == -1
3039 /* If STORE_FLAG_VALUE is -1, we can convert (ne x 0)
3040 to (neg x) if only the low-order bit of X is significant.
3041 This converts (ne (zero_extract X 1 Y) 0) to
3042 (sign_extract X 1 Y). */
3043 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3044 && op1 == const0_rtx
3045 && significant_bits (op0, GET_MODE (op0)) == 1)
3046 {
3047 x = gen_rtx_combine (NEG, mode,
3048 gen_lowpart_for_combine (mode, op0));
3049 goto restart;
3050 }
3051 #endif
3052
3053 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
3054 one significant bit, we can convert (ne x 0) to (ashift x c)
3055 where C puts the bit in the sign bit. Remove any AND with
3056 STORE_FLAG_VALUE when we are done, since we are only going to
3057 test the sign bit. */
3058 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
3059 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
3060 && STORE_FLAG_VALUE == 1 << (GET_MODE_BITSIZE (mode) - 1)
3061 && op1 == const0_rtx
3062 && mode == GET_MODE (op0)
3063 && (i = exact_log2 (significant_bits (op0, GET_MODE (op0)))) >= 0)
3064 {
3065 x = simplify_shift_const (0, ASHIFT, mode, op0,
3066 GET_MODE_BITSIZE (mode) - 1 - i);
3067 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
3068 return XEXP (x, 0);
3069 else
3070 return x;
3071 }
3072
3073 /* If the code changed, return a whole new comparison. */
3074 if (new_code != code)
3075 return gen_rtx_combine (new_code, mode, op0, op1);
3076
3077 /* Otherwise, keep this operation, but maybe change its operands.
3078 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
3079 SUBST (XEXP (x, 0), op0);
3080 SUBST (XEXP (x, 1), op1);
3081 }
3082 break;
3083
3084 case IF_THEN_ELSE:
3085 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
3086 reversed, do so to avoid needing two sets of patterns for
3087 subtract-and-branch insns. */
3088 if (XEXP (x, 1) == pc_rtx
3089 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3090 && reversible_comparison_p (XEXP (x, 0)))
3091 {
3092 SUBST (XEXP (x, 0),
3093 gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3094 GET_MODE (XEXP (x, 0)),
3095 XEXP (XEXP (x, 0), 0),
3096 XEXP (XEXP (x, 0), 1)));
3097 SUBST (XEXP (x, 1), XEXP (x, 2));
3098 SUBST (XEXP (x, 2), pc_rtx);
3099 }
3100 break;
3101
3102 case ZERO_EXTRACT:
3103 case SIGN_EXTRACT:
3104 case ZERO_EXTEND:
3105 case SIGN_EXTEND:
3106 /* If we are processing SET_DEST, we are done. */
3107 if (in_dest)
3108 return x;
3109
3110 x = expand_compound_operation (x);
3111 if (GET_CODE (x) != code)
3112 goto restart;
3113 break;
3114
3115 case SET:
3116 /* (set (pc) (return)) gets written as (return). */
3117 if (GET_CODE (SET_DEST (x)) == PC && GET_CODE (SET_SRC (x)) == RETURN)
3118 return SET_SRC (x);
3119
3120 /* Convert this into a field assignment operation, if possible. */
3121 x = make_field_assignment (x);
3122
3123 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some
3124 operation, and X being a REG or (subreg (reg)), we may be able to
3125 convert this to (set (subreg:m2 x) (op)).
3126
3127 We can always do this if M1 is narrower than M2 because that
3128 means that we only care about the low bits of the result.
3129
3130 However, on most machines (those with BYTE_LOADS_ZERO_EXTEND
3131 not defined), we cannot perform a narrower operation that
3132 requested since the high-order bits will be undefined. On
3133 machine where BYTE_LOADS_ZERO_EXTEND are defined, however, this
3134 transformation is safe as long as M1 and M2 have the same number
3135 of words. */
3136
3137 if (GET_CODE (SET_SRC (x)) == SUBREG
3138 && subreg_lowpart_p (SET_SRC (x))
3139 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) != 'o'
3140 && (((GET_MODE_SIZE (GET_MODE (SET_SRC (x))) + (UNITS_PER_WORD - 1))
3141 / UNITS_PER_WORD)
3142 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x))))
3143 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
3144 #ifndef BYTE_LOADS_ZERO_EXTEND
3145 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
3146 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
3147 #endif
3148 && (GET_CODE (SET_DEST (x)) == REG
3149 || (GET_CODE (SET_DEST (x)) == SUBREG
3150 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG)))
3151 {
3152 /* Get the object that will be the SUBREG_REG of the
3153 SUBREG we are making. Note that SUBREG_WORD will always
3154 be zero because this will either be a paradoxical SUBREG
3155 or a SUBREG with the same number of words on the outside and
3156 inside. */
3157 rtx object = (GET_CODE (SET_DEST (x)) == REG ? SET_DEST (x)
3158 : SUBREG_REG (SET_DEST (x)));
3159
3160 SUBST (SET_DEST (x),
3161 gen_rtx (SUBREG, GET_MODE (SUBREG_REG (SET_SRC (x))),
3162 object, 0));
3163 SUBST (SET_SRC (x), SUBREG_REG (SET_SRC (x)));
3164 }
3165
3166 /* If we are setting CC0 or if the source is a COMPARE, look for the
3167 use of the comparison result and try to simplify it unless we already
3168 have used undobuf.other_insn. */
3169 if ((GET_CODE (SET_SRC (x)) == COMPARE
3170 #ifdef HAVE_cc0
3171 || SET_DEST (x) == cc0_rtx
3172 #endif
3173 )
3174 && (cc_use = find_single_use (SET_DEST (x), subst_insn,
3175 &other_insn)) != 0
3176 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
3177 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
3178 && XEXP (*cc_use, 0) == SET_DEST (x))
3179 {
3180 enum rtx_code old_code = GET_CODE (*cc_use);
3181 enum rtx_code new_code;
3182 rtx op0, op1;
3183 int other_changed = 0;
3184 enum machine_mode compare_mode = GET_MODE (SET_DEST (x));
3185
3186 if (GET_CODE (SET_SRC (x)) == COMPARE)
3187 op0 = XEXP (SET_SRC (x), 0), op1 = XEXP (SET_SRC (x), 1);
3188 else
3189 op0 = SET_SRC (x), op1 = const0_rtx;
3190
3191 /* Simplify our comparison, if possible. */
3192 new_code = simplify_comparison (old_code, &op0, &op1);
3193
3194 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
3195 /* If this machine has CC modes other than CCmode, check to see
3196 if we need to use a different CC mode here. */
3197 compare_mode = SELECT_CC_MODE (new_code, op0);
3198
3199 /* If the mode changed, we have to change SET_DEST, the mode
3200 in the compare, and the mode in the place SET_DEST is used.
3201 If SET_DEST is a hard register, just build new versions with
3202 the proper mode. If it is a pseudo, we lose unless it is only
3203 time we set the pseudo, in which case we can safely change
3204 its mode. */
3205 if (compare_mode != GET_MODE (SET_DEST (x)))
3206 {
3207 int regno = REGNO (SET_DEST (x));
3208 rtx new_dest = gen_rtx (REG, compare_mode, regno);
3209
3210 if (regno < FIRST_PSEUDO_REGISTER
3211 || (reg_n_sets[regno] == 1
3212 && ! REG_USERVAR_P (SET_DEST (x))))
3213 {
3214 if (regno >= FIRST_PSEUDO_REGISTER)
3215 SUBST (regno_reg_rtx[regno], new_dest);
3216
3217 SUBST (SET_DEST (x), new_dest);
3218 SUBST (XEXP (*cc_use, 0), new_dest);
3219 other_changed = 1;
3220 }
3221 }
3222 #endif
3223
3224 /* If the code changed, we have to build a new comparison
3225 in undobuf.other_insn. */
3226 if (new_code != old_code)
3227 {
3228 unsigned mask;
3229
3230 SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
3231 SET_DEST (x), const0_rtx));
3232
3233 /* If the only change we made was to change an EQ into an
3234 NE or vice versa, OP0 has only one significant bit,
3235 and OP1 is zero, check if changing the user of the condition
3236 code will produce a valid insn. If it won't, we can keep
3237 the original code in that insn by surrounding our operation
3238 with an XOR. */
3239
3240 if (((old_code == NE && new_code == EQ)
3241 || (old_code == EQ && new_code == NE))
3242 && ! other_changed && op1 == const0_rtx
3243 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
3244 && (exact_log2 (mask = significant_bits (op0,
3245 GET_MODE (op0)))
3246 >= 0))
3247 {
3248 rtx pat = PATTERN (other_insn), note = 0;
3249
3250 if ((recog_for_combine (&pat, undobuf.other_insn, &note) < 0
3251 && ! check_asm_operands (pat)))
3252 {
3253 PUT_CODE (*cc_use, old_code);
3254 other_insn = 0;
3255
3256 op0 = gen_binary (XOR, GET_MODE (op0), op0,
3257 gen_rtx (CONST_INT, VOIDmode, mask));
3258 }
3259 }
3260
3261 other_changed = 1;
3262 }
3263
3264 if (other_changed)
3265 undobuf.other_insn = other_insn;
3266
3267 #ifdef HAVE_cc0
3268 /* If we are now comparing against zero, change our source if
3269 needed. If we do not use cc0, we always have a COMPARE. */
3270 if (op1 == const0_rtx && SET_DEST (x) == cc0_rtx)
3271 SUBST (SET_SRC (x), op0);
3272 else
3273 #endif
3274
3275 /* Otherwise, if we didn't previously have a COMPARE in the
3276 correct mode, we need one. */
3277 if (GET_CODE (SET_SRC (x)) != COMPARE
3278 || GET_MODE (SET_SRC (x)) != compare_mode)
3279 SUBST (SET_SRC (x), gen_rtx_combine (COMPARE, compare_mode,
3280 op0, op1));
3281 else
3282 {
3283 /* Otherwise, update the COMPARE if needed. */
3284 SUBST (XEXP (SET_SRC (x), 0), op0);
3285 SUBST (XEXP (SET_SRC (x), 1), op1);
3286 }
3287 }
3288 else
3289 {
3290 /* Get SET_SRC in a form where we have placed back any
3291 compound expressions. Then do the checks below. */
3292 temp = make_compound_operation (SET_SRC (x), SET);
3293 SUBST (SET_SRC (x), temp);
3294 }
3295
3296 #ifdef BYTE_LOADS_ZERO_EXTEND
3297 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with
3298 M wider than N, this would require a paradoxical subreg.
3299 Replace the subreg with a zero_extend to avoid the reload that
3300 would otherwise be required. */
3301 if (GET_CODE (SET_SRC (x)) == SUBREG
3302 && subreg_lowpart_p (SET_SRC (x))
3303 && SUBREG_WORD (SET_SRC (x)) == 0
3304 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
3305 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
3306 && GET_CODE (SUBREG_REG (SET_SRC (x))) == MEM)
3307 SUBST (SET_SRC (x), gen_rtx_combine (ZERO_EXTEND,
3308 GET_MODE (SET_SRC (x)),
3309 XEXP (SET_SRC (x), 0)));
3310 #endif
3311
3312 break;
3313
3314 case AND:
3315 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3316 {
3317 x = simplify_and_const_int (x, mode, XEXP (x, 0),
3318 INTVAL (XEXP (x, 1)));
3319
3320 /* If we have (ior (and (X C1) C2)) and the next restart would be
3321 the last, simplify this by making C1 as small as possible
3322 and then exit. */
3323 if (n_restarts >= 3 && GET_CODE (x) == IOR
3324 && GET_CODE (XEXP (x, 0)) == AND
3325 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3326 && GET_CODE (XEXP (x, 1)) == CONST_INT)
3327 {
3328 temp = gen_binary (AND, mode, XEXP (XEXP (x, 0), 0),
3329 gen_rtx (CONST_INT, VOIDmode,
3330 (INTVAL (XEXP (XEXP (x, 0), 1))
3331 & ~ INTVAL (XEXP (x, 1)))));
3332 return gen_binary (IOR, mode, temp, XEXP (x, 1));
3333 }
3334
3335 if (GET_CODE (x) != AND)
3336 goto restart;
3337 }
3338
3339 /* Convert (A | B) & A to A. */
3340 if (GET_CODE (XEXP (x, 0)) == IOR
3341 && (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
3342 || rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
3343 && ! side_effects_p (XEXP (XEXP (x, 0), 0))
3344 && ! side_effects_p (XEXP (XEXP (x, 0), 1)))
3345 return XEXP (x, 1);
3346
3347 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
3348 insn (and may simplify more). */
3349 else if (GET_CODE (XEXP (x, 0)) == XOR
3350 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
3351 && ! side_effects_p (XEXP (x, 1)))
3352 {
3353 x = gen_binary (AND, mode,
3354 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
3355 XEXP (x, 1));
3356 goto restart;
3357 }
3358 else if (GET_CODE (XEXP (x, 0)) == XOR
3359 && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
3360 && ! side_effects_p (XEXP (x, 1)))
3361 {
3362 x = gen_binary (AND, mode,
3363 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
3364 XEXP (x, 1));
3365 goto restart;
3366 }
3367
3368 /* Similarly for (~ (A ^ B)) & A. */
3369 else if (GET_CODE (XEXP (x, 0)) == NOT
3370 && GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
3371 && rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 0), XEXP (x, 1))
3372 && ! side_effects_p (XEXP (x, 1)))
3373 {
3374 x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 1),
3375 XEXP (x, 1));
3376 goto restart;
3377 }
3378 else if (GET_CODE (XEXP (x, 0)) == NOT
3379 && GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
3380 && rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 1), XEXP (x, 1))
3381 && ! side_effects_p (XEXP (x, 1)))
3382 {
3383 x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 0),
3384 XEXP (x, 1));
3385 goto restart;
3386 }
3387
3388 /* In the follow group of tests (and those in case IOR below),
3389 we start with some combination of logical operations and apply
3390 the distributive law followed by the inverse distributive law.
3391 Most of the time, this results in no change. However, if some of
3392 the operands are the same or inverses of each other, simplifications
3393 will result.
3394
3395 For example, (and (ior A B) (not B)) can occur as the result of
3396 expanding a bit field assignment. When we apply the distributive
3397 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
3398 which then simplifies to (and (A (not B))). */
3399
3400 /* If we have (and (ior A B) C), apply the distributive law and then
3401 the inverse distributive law to see if things simplify. */
3402
3403 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == XOR)
3404 {
3405 x = apply_distributive_law
3406 (gen_binary (GET_CODE (XEXP (x, 0)), mode,
3407 gen_binary (AND, mode,
3408 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3409 gen_binary (AND, mode,
3410 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3411 if (GET_CODE (x) != AND)
3412 goto restart;
3413 }
3414
3415 if (GET_CODE (XEXP (x, 1)) == IOR || GET_CODE (XEXP (x, 1)) == XOR)
3416 {
3417 x = apply_distributive_law
3418 (gen_binary (GET_CODE (XEXP (x, 1)), mode,
3419 gen_binary (AND, mode,
3420 XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
3421 gen_binary (AND, mode,
3422 XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
3423 if (GET_CODE (x) != AND)
3424 goto restart;
3425 }
3426
3427 /* Similarly, taking advantage of the fact that
3428 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
3429
3430 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == XOR)
3431 {
3432 x = apply_distributive_law
3433 (gen_binary (XOR, mode,
3434 gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
3435 XEXP (XEXP (x, 1), 0)),
3436 gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
3437 XEXP (XEXP (x, 1), 1))));
3438 if (GET_CODE (x) != AND)
3439 goto restart;
3440 }
3441
3442 else if (GET_CODE (XEXP (x, 1)) == NOT && GET_CODE (XEXP (x, 0)) == XOR)
3443 {
3444 x = apply_distributive_law
3445 (gen_binary (XOR, mode,
3446 gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
3447 XEXP (XEXP (x, 0), 0)),
3448 gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
3449 XEXP (XEXP (x, 0), 1))));
3450 if (GET_CODE (x) != AND)
3451 goto restart;
3452 }
3453 break;
3454
3455 case IOR:
3456 /* Convert (A & B) | A to A. */
3457 if (GET_CODE (XEXP (x, 0)) == AND
3458 && (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
3459 || rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
3460 && ! side_effects_p (XEXP (XEXP (x, 0), 0))
3461 && ! side_effects_p (XEXP (XEXP (x, 0), 1)))
3462 return XEXP (x, 1);
3463
3464 /* If we have (ior (and A B) C), apply the distributive law and then
3465 the inverse distributive law to see if things simplify. */
3466
3467 if (GET_CODE (XEXP (x, 0)) == AND)
3468 {
3469 x = apply_distributive_law
3470 (gen_binary (AND, mode,
3471 gen_binary (IOR, mode,
3472 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
3473 gen_binary (IOR, mode,
3474 XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
3475
3476 if (GET_CODE (x) != IOR)
3477 goto restart;
3478 }
3479
3480 if (GET_CODE (XEXP (x, 1)) == AND)
3481 {
3482 x = apply_distributive_law
3483 (gen_binary (AND, mode,
3484 gen_binary (IOR, mode,
3485 XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
3486 gen_binary (IOR, mode,
3487 XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
3488
3489 if (GET_CODE (x) != IOR)
3490 goto restart;
3491 }
3492
3493 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
3494 mode size to (rotate A CX). */
3495
3496 if (((GET_CODE (XEXP (x, 0)) == ASHIFT
3497 && GET_CODE (XEXP (x, 1)) == LSHIFTRT)
3498 || (GET_CODE (XEXP (x, 1)) == ASHIFT
3499 && GET_CODE (XEXP (x, 0)) == LSHIFTRT))
3500 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (XEXP (x, 1), 0))
3501 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3502 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3503 && (INTVAL (XEXP (XEXP (x, 0), 1)) + INTVAL (XEXP (XEXP (x, 1), 1))
3504 == GET_MODE_BITSIZE (mode)))
3505 {
3506 rtx shift_count;
3507
3508 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3509 shift_count = XEXP (XEXP (x, 0), 1);
3510 else
3511 shift_count = XEXP (XEXP (x, 1), 1);
3512 x = gen_rtx (ROTATE, mode, XEXP (XEXP (x, 0), 0), shift_count);
3513 goto restart;
3514 }
3515 break;
3516
3517 case XOR:
3518 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
3519 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
3520 (NOT y). */
3521 {
3522 int num_negated = 0;
3523 rtx in1 = XEXP (x, 0), in2 = XEXP (x, 1);
3524
3525 if (GET_CODE (in1) == NOT)
3526 num_negated++, in1 = XEXP (in1, 0);
3527 if (GET_CODE (in2) == NOT)
3528 num_negated++, in2 = XEXP (in2, 0);
3529
3530 if (num_negated == 2)
3531 {
3532 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3533 SUBST (XEXP (x, 1), XEXP (XEXP (x, 1), 0));
3534 }
3535 else if (num_negated == 1)
3536 return gen_rtx_combine (NOT, mode,
3537 gen_rtx_combine (XOR, mode, in1, in2));
3538 }
3539
3540 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
3541 correspond to a machine insn or result in further simplifications
3542 if B is a constant. */
3543
3544 if (GET_CODE (XEXP (x, 0)) == AND
3545 && rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
3546 && ! side_effects_p (XEXP (x, 1)))
3547 {
3548 x = gen_binary (AND, mode,
3549 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
3550 XEXP (x, 1));
3551 goto restart;
3552 }
3553 else if (GET_CODE (XEXP (x, 0)) == AND
3554 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
3555 && ! side_effects_p (XEXP (x, 1)))
3556 {
3557 x = gen_binary (AND, mode,
3558 gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
3559 XEXP (x, 1));
3560 goto restart;
3561 }
3562
3563
3564 #if STORE_FLAG_VALUE == 1
3565 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
3566 comparison. */
3567 if (XEXP (x, 1) == const1_rtx
3568 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3569 && reversible_comparison_p (XEXP (x, 0)))
3570 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3571 mode, XEXP (XEXP (x, 0), 0),
3572 XEXP (XEXP (x, 0), 1));
3573 #endif
3574
3575 /* (xor (comparison foo bar) (const_int sign-bit))
3576 when STORE_FLAG_VALUE is the sign bit. */
3577 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
3578 && STORE_FLAG_VALUE == 1 << (GET_MODE_BITSIZE (mode) - 1)
3579 && XEXP (x, 1) == const_true_rtx
3580 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3581 && reversible_comparison_p (XEXP (x, 0)))
3582 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
3583 mode, XEXP (XEXP (x, 0), 0),
3584 XEXP (XEXP (x, 0), 1));
3585 break;
3586
3587 case ABS:
3588 /* (abs (neg <foo>)) -> (abs <foo>) */
3589 if (GET_CODE (XEXP (x, 0)) == NEG)
3590 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3591
3592 /* If operand is something known to be positive, ignore the ABS. */
3593 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
3594 || (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) <= HOST_BITS_PER_INT
3595 && ((significant_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
3596 & (1 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
3597 == 0)))
3598 return XEXP (x, 0);
3599
3600
3601 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
3602 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTRACT
3603 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3604 || (GET_CODE (XEXP (x, 0)) == ASHIFTRT
3605 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3606 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3607 || ((temp = get_last_value (XEXP (x, 0))) != 0
3608 && ((GET_CODE (temp) == SIGN_EXTRACT
3609 && XEXP (temp, 1) == const1_rtx)
3610 || (GET_CODE (temp) == ASHIFTRT
3611 && GET_CODE (XEXP (temp, 1)) == CONST_INT
3612 && (INTVAL (XEXP (temp, 1))
3613 == GET_MODE_BITSIZE (mode) - 1)))))
3614 {
3615 x = gen_rtx_combine (NEG, mode, XEXP (x, 0));
3616 goto restart;
3617 }
3618 break;
3619
3620 case FFS:
3621 /* (ffs (*_extend <X>)) = (ffs <X>) */
3622 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
3623 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
3624 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3625 break;
3626
3627 case FLOAT:
3628 /* (float (sign_extend <X>)) = (float <X>). */
3629 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
3630 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
3631 break;
3632
3633 case LSHIFT:
3634 case ASHIFT:
3635 case LSHIFTRT:
3636 case ASHIFTRT:
3637 case ROTATE:
3638 case ROTATERT:
3639 #ifdef SHIFT_COUNT_TRUNCATED
3640 /* (*shift <X> (sign_extend <Y>)) = (*shift <X> <Y>) (most machines).
3641 True for all kinds of shifts and also for zero_extend. */
3642 if ((GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
3643 || GET_CODE (XEXP (x, 1)) == ZERO_EXTEND)
3644 && FAKE_EXTEND_SAFE_P (mode, XEXP (XEXP (x, 1), 0)))
3645 SUBST (XEXP (x, 1),
3646 /* This is a perverse SUBREG, wider than its base. */
3647 gen_lowpart_for_combine (mode, XEXP (XEXP (x, 1), 0)));
3648
3649 /* tege: Change (bitshifts ... (and ... mask), c)
3650 to (bitshifts ... c) if mask just masks the bits the bitshift
3651 insns do automatically on this machine. */
3652 if (GET_CODE (XEXP (x, 1)) == AND
3653 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
3654 && (~ INTVAL (XEXP (XEXP (x, 1), 1)) & GET_MODE_MASK (mode)) == 0)
3655 SUBST (XEXP (x, 1), XEXP (XEXP (x, 1), 0));
3656 #endif
3657
3658 /* If this is a shift by a constant amount, simplify it. */
3659 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
3660 {
3661 x = simplify_shift_const (x, code, mode, XEXP (x, 0),
3662 INTVAL (XEXP (x, 1)));
3663 if (GET_CODE (x) != code)
3664 goto restart;
3665 }
3666 break;
3667 }
3668
3669 return x;
3670 }
3671 \f
3672 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
3673 operations" because they can be replaced with two more basic operations.
3674 ZERO_EXTEND is also considered "compound" because it can be replaced with
3675 an AND operation, which is simpler, though only one operation.
3676
3677 The function expand_compound_operation is called with an rtx expression
3678 and will convert it to the appropriate shifts and AND operations,
3679 simplifying at each stage.
3680
3681 The function make_compound_operation is called to convert an expression
3682 consisting of shifts and ANDs into the equivalent compound expression.
3683 It is the inverse of this function, loosely speaking. */
3684
3685 static rtx
3686 expand_compound_operation (x)
3687 rtx x;
3688 {
3689 int pos = 0, len;
3690 int unsignedp = 0;
3691 int modewidth;
3692 rtx tem;
3693
3694 switch (GET_CODE (x))
3695 {
3696 case ZERO_EXTEND:
3697 unsignedp = 1;
3698 case SIGN_EXTEND:
3699 /* We can't necessarily use a const_int for a multiword mode;
3700 it depends on implicitly extending the value.
3701 Since we don't know the right way to extend it,
3702 we can't tell whether the implicit way is right.
3703
3704 Even for a mode that is no wider than a const_int,
3705 we can't win, because we need to sign extend one of its bits through
3706 the rest of it, and we don't know which bit. */
3707 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3708 return x;
3709
3710 if (! FAKE_EXTEND_SAFE_P (GET_MODE (XEXP (x, 0)), XEXP (x, 0)))
3711 return x;
3712
3713 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
3714 /* If the inner object has VOIDmode (the only way this can happen
3715 is if it is a ASM_OPERANDS), we can't do anything since we don't
3716 know how much masking to do. */
3717 if (len == 0)
3718 return x;
3719
3720 break;
3721
3722 case ZERO_EXTRACT:
3723 unsignedp = 1;
3724 case SIGN_EXTRACT:
3725 /* If the operand is a CLOBBER, just return it. */
3726 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
3727 return XEXP (x, 0);
3728
3729 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3730 || GET_CODE (XEXP (x, 2)) != CONST_INT
3731 || GET_MODE (XEXP (x, 0)) == VOIDmode)
3732 return x;
3733
3734 len = INTVAL (XEXP (x, 1));
3735 pos = INTVAL (XEXP (x, 2));
3736
3737 /* If this goes outside the object being extracted, replace the object
3738 with a (use (mem ...)) construct that only combine understands
3739 and is used only for this purpose. */
3740 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
3741 SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
3742
3743 #if BITS_BIG_ENDIAN
3744 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
3745 #endif
3746 break;
3747
3748 default:
3749 return x;
3750 }
3751
3752 /* If we reach here, we want to return a pair of shifts. The inner
3753 shift is a left shift of BITSIZE - POS - LEN bits. The outer
3754 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
3755 logical depending on the value of UNSIGNEDP.
3756
3757 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
3758 converted into an AND of a shift.
3759
3760 We must check for the case where the left shift would have a negative
3761 count. This can happen in a case like (x >> 31) & 255 on machines
3762 that can't shift by a constant. On those machines, we would first
3763 combine the shift with the AND to produce a variable-position
3764 extraction. Then the constant of 31 would be substituted in to produce
3765 a such a position. */
3766
3767 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
3768 if (modewidth >= pos - len)
3769 tem = simplify_shift_const (0, unsignedp ? LSHIFTRT : ASHIFTRT,
3770 GET_MODE (x),
3771 simplify_shift_const (0, ASHIFT, GET_MODE (x),
3772 XEXP (x, 0),
3773 modewidth - pos - len),
3774 modewidth - len);
3775
3776 else if (unsignedp && len < HOST_BITS_PER_INT)
3777 tem = simplify_and_const_int (0, GET_MODE (x),
3778 simplify_shift_const (0, LSHIFTRT,
3779 GET_MODE (x),
3780 XEXP (x, 0), pos),
3781 (1 << len) - 1);
3782 else
3783 /* Any other cases we can't handle. */
3784 return x;
3785
3786
3787 /* If we couldn't do this for some reason, return the original
3788 expression. */
3789 if (GET_CODE (tem) == CLOBBER)
3790 return x;
3791
3792 return tem;
3793 }
3794 \f
3795 /* X is a SET which contains an assignment of one object into
3796 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
3797 or certain SUBREGS). If possible, convert it into a series of
3798 logical operations.
3799
3800 We half-heartedly support variable positions, but do not at all
3801 support variable lengths. */
3802
3803 static rtx
3804 expand_field_assignment (x)
3805 rtx x;
3806 {
3807 rtx inner;
3808 rtx pos; /* Always counts from low bit. */
3809 int len;
3810 rtx mask;
3811 enum machine_mode compute_mode;
3812
3813 /* Loop until we find something we can't simplify. */
3814 while (1)
3815 {
3816 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
3817 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
3818 {
3819 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
3820 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
3821 pos = const0_rtx;
3822 }
3823 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3824 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
3825 {
3826 inner = XEXP (SET_DEST (x), 0);
3827 len = INTVAL (XEXP (SET_DEST (x), 1));
3828 pos = XEXP (SET_DEST (x), 2);
3829
3830 /* If the position is constant and spans the width of INNER,
3831 surround INNER with a USE to indicate this. */
3832 if (GET_CODE (pos) == CONST_INT
3833 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
3834 inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
3835
3836 #if BITS_BIG_ENDIAN
3837 if (GET_CODE (pos) == CONST_INT)
3838 pos = gen_rtx (CONST_INT, VOIDmode,
3839 (GET_MODE_BITSIZE (GET_MODE (inner)) - len
3840 - INTVAL (pos)));
3841 else if (GET_CODE (pos) == MINUS
3842 && GET_CODE (XEXP (pos, 1)) == CONST_INT
3843 && (INTVAL (XEXP (pos, 1))
3844 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
3845 /* If position is ADJUST - X, new position is X. */
3846 pos = XEXP (pos, 0);
3847 else
3848 pos = gen_binary (MINUS, GET_MODE (pos),
3849 gen_rtx (CONST_INT, VOIDmode,
3850 (GET_MODE_BITSIZE (GET_MODE (inner))
3851 - len)), pos);
3852 #endif
3853 }
3854
3855 /* A SUBREG between two modes that occupy the same numbers of words
3856 can be done by moving the SUBREG to the source. */
3857 else if (GET_CODE (SET_DEST (x)) == SUBREG
3858 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
3859 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
3860 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
3861 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
3862 {
3863 x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
3864 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
3865 SET_SRC (x)));
3866 continue;
3867 }
3868 else
3869 break;
3870
3871 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
3872 inner = SUBREG_REG (inner);
3873
3874 compute_mode = GET_MODE (inner);
3875
3876 /* Compute a mask of LEN bits, if we can do this on the host machine. */
3877 if (len < HOST_BITS_PER_INT)
3878 mask = gen_rtx (CONST_INT, VOIDmode, (1 << len) - 1);
3879 else
3880 break;
3881
3882 /* Now compute the equivalent expression. Make a copy of INNER
3883 for the SET_DEST in case it is a MEM into which we will substitute;
3884 we don't want shared RTL in that case. */
3885 x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
3886 gen_binary (IOR, compute_mode,
3887 gen_binary (AND, compute_mode,
3888 gen_unary (NOT, compute_mode,
3889 gen_binary (ASHIFT,
3890 compute_mode,
3891 mask, pos)),
3892 inner),
3893 gen_binary (ASHIFT, compute_mode,
3894 gen_binary (AND, compute_mode,
3895 gen_lowpart_for_combine
3896 (compute_mode,
3897 SET_SRC (x)),
3898 mask),
3899 pos)));
3900 }
3901
3902 return x;
3903 }
3904 \f
3905 /* Return an RTX for a reference to LEN bits of INNER. POS is the starting
3906 bit position (counted from the LSB) if >= 0; otherwise POS_RTX represents
3907 the starting bit position.
3908
3909 INNER may be a USE. This will occur when we started with a bitfield
3910 that went outside the boundary of the object in memory, which is
3911 allowed on most machines. To isolate this case, we produce a USE
3912 whose mode is wide enough and surround the MEM with it. The only
3913 code that understands the USE is this routine. If it is not removed,
3914 it will cause the resulting insn not to match.
3915
3916 UNSIGNEDP is non-zero for an unsigned reference and zero for a
3917 signed reference.
3918
3919 IN_DEST is non-zero if this is a reference in the destination of a
3920 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
3921 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
3922 be used.
3923
3924 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
3925 ZERO_EXTRACT should be built even for bits starting at bit 0.
3926
3927 MODE is the desired mode of the result (if IN_DEST == 0). */
3928
3929 static rtx
3930 make_extraction (mode, inner, pos, pos_rtx, len,
3931 unsignedp, in_dest, in_compare)
3932 enum machine_mode mode;
3933 rtx inner;
3934 int pos;
3935 rtx pos_rtx;
3936 int len;
3937 int unsignedp;
3938 int in_dest, in_compare;
3939 {
3940 enum machine_mode is_mode = GET_MODE (inner);
3941 enum machine_mode inner_mode;
3942 enum machine_mode wanted_mem_mode = byte_mode;
3943 enum machine_mode pos_mode = word_mode;
3944 enum machine_mode extraction_mode = word_mode;
3945 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
3946 int spans_byte = 0;
3947 rtx new = 0;
3948
3949 /* Get some information about INNER and get the innermost object. */
3950 if (GET_CODE (inner) == USE)
3951 /* We don't need to adjust the position because we set up the USE
3952 to pretend that it was a full-word object. */
3953 spans_byte = 1, inner = XEXP (inner, 0);
3954 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
3955 inner = SUBREG_REG (inner);
3956
3957 inner_mode = GET_MODE (inner);
3958
3959 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
3960 pos = INTVAL (pos_rtx);
3961
3962 /* See if this can be done without an extraction. We never can if the
3963 width of the field is not the same as that of some integer mode. For
3964 registers, we can only avoid the extraction if the position is at the
3965 low-order bit and this is either not in the destination or we have the
3966 appropriate STRICT_LOW_PART operation available.
3967
3968 For MEM, we can avoid an extract if the field starts on an appropriate
3969 boundary and we can change the mode of the memory reference. However,
3970 we cannot directly access the MEM if we have a USE and the underlying
3971 MEM is not TMODE. This combination means that MEM was being used in a
3972 context where bits outside its mode were being referenced; that is only
3973 valid in bit-field insns. */
3974
3975 if (tmode != BLKmode
3976 && ! (spans_byte && inner_mode != tmode)
3977 && ((pos == 0 && GET_CODE (inner) == REG
3978 && (! in_dest
3979 || (movstrict_optab->handlers[(int) tmode].insn_code
3980 != CODE_FOR_nothing)))
3981 || (GET_CODE (inner) == MEM && pos >= 0
3982 && (pos
3983 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
3984 : BITS_PER_UNIT)) == 0
3985 /* We can't do this if we are widening INNER_MODE (it
3986 may not be aligned, for one thing). */
3987 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
3988 && (inner_mode == tmode
3989 || (! mode_dependent_address_p (XEXP (inner, 0))
3990 && ! MEM_VOLATILE_P (inner))))))
3991 {
3992 int offset = pos / BITS_PER_UNIT;
3993
3994 /* If INNER is a MEM, make a new MEM that encompasses just the desired
3995 field. If the original and current mode are the same, we need not
3996 adjust the offset. Otherwise, we do if bytes big endian.
3997
3998 If INNER is not a MEM, get a piece consisting of the just the field
3999 of interest (in this case INNER must be a REG and POS must be 0). */
4000
4001 if (GET_CODE (inner) == MEM)
4002 {
4003 #if BYTES_BIG_ENDIAN
4004 if (inner_mode != tmode)
4005 offset = (GET_MODE_SIZE (inner_mode)
4006 - GET_MODE_SIZE (tmode) - offset);
4007 #endif
4008
4009 new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
4010 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
4011 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
4012 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
4013 }
4014 else
4015 new = gen_lowpart_for_combine (tmode, inner);
4016
4017 /* If this extraction is going into the destination of a SET,
4018 make a STRICT_LOW_PART unless we made a MEM. */
4019
4020 if (in_dest)
4021 return (GET_CODE (new) == MEM ? new
4022 : gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new));
4023
4024 /* Otherwise, sign- or zero-extend unless we already are in the
4025 proper mode. */
4026
4027 return (mode == tmode ? new
4028 : gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
4029 mode, new));
4030 }
4031
4032 /* Unless this is in a COMPARE or we have a funny memory reference,
4033 don't do anything with field extracts starting at the low-order
4034 bit since they are simple AND operations. */
4035 if (pos == 0 && ! in_dest && ! in_compare && ! spans_byte)
4036 return 0;
4037
4038 /* Get the mode to use should INNER be a MEM, the mode for the position,
4039 and the mode for the result. */
4040 #ifdef HAVE_insv
4041 if (in_dest)
4042 {
4043 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
4044 pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
4045 extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
4046 }
4047 #endif
4048
4049 #ifdef HAVE_extzv
4050 if (! in_dest && unsignedp)
4051 {
4052 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
4053 pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
4054 extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
4055 }
4056 #endif
4057
4058 #ifdef HAVE_extv
4059 if (! in_dest && ! unsignedp)
4060 {
4061 wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
4062 pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
4063 extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
4064 }
4065 #endif
4066
4067 /* Never narrow an object, since that might not be safe. */
4068
4069 if (mode != VOIDmode
4070 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
4071 extraction_mode = mode;
4072
4073 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
4074 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
4075 pos_mode = GET_MODE (pos_rtx);
4076
4077 /* If this is not from memory or we have to change the mode of memory and
4078 cannot, the desired mode is EXTRACTION_MODE. */
4079 if (GET_CODE (inner) != MEM
4080 || (inner_mode != wanted_mem_mode
4081 && (mode_dependent_address_p (XEXP (inner, 0))
4082 || MEM_VOLATILE_P (inner))))
4083 wanted_mem_mode = extraction_mode;
4084
4085 #if BITS_BIG_ENDIAN
4086 /* If position is constant, compute new position. Otherwise, build
4087 subtraction. */
4088 if (pos >= 0)
4089 pos = (MAX (GET_MODE_BITSIZE (is_mode), GET_MODE_BITSIZE (wanted_mem_mode))
4090 - len - pos);
4091 else
4092 pos_rtx
4093 = gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
4094 gen_rtx (CONST_INT, VOIDmode,
4095 (MAX (GET_MODE_BITSIZE (is_mode),
4096 GET_MODE_BITSIZE (wanted_mem_mode))
4097 - len)), pos_rtx);
4098 #endif
4099
4100 /* If INNER has a wider mode, make it smaller. If this is a constant
4101 extract, try to adjust the byte to point to the byte containing
4102 the value. */
4103 if (wanted_mem_mode != VOIDmode
4104 && GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
4105 && ((GET_CODE (inner) == MEM
4106 && (inner_mode == wanted_mem_mode
4107 || (! mode_dependent_address_p (XEXP (inner, 0))
4108 && ! MEM_VOLATILE_P (inner))))))
4109 {
4110 int offset = 0;
4111
4112 /* The computations below will be correct if the machine is big
4113 endian in both bits and bytes or little endian in bits and bytes.
4114 If it is mixed, we must adjust. */
4115
4116 #if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
4117 if (! spans_byte && is_mode != wanted_mem_mode)
4118 offset = (GET_MODE_SIZE (is_mode)
4119 - GET_MODE_SIZE (wanted_mem_mode) - offset);
4120 #endif
4121
4122 /* If bytes are big endian and we had a paradoxical SUBREG, we must
4123 adjust OFFSET to compensate. */
4124 #if BYTES_BIG_ENDIAN
4125 if (! spans_byte
4126 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
4127 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
4128 #endif
4129
4130 /* If this is a constant position, we can move to the desired byte. */
4131 if (pos >= 0)
4132 {
4133 offset += pos / BITS_PER_UNIT;
4134 pos %= GET_MODE_BITSIZE (wanted_mem_mode);
4135 }
4136
4137 if (offset != 0 || inner_mode != wanted_mem_mode)
4138 {
4139 rtx newmem = gen_rtx (MEM, wanted_mem_mode,
4140 plus_constant (XEXP (inner, 0), offset));
4141 RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
4142 MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
4143 MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
4144 inner = newmem;
4145 }
4146 }
4147
4148 /* If INNER is not memory, we can always get it into the proper mode. */
4149 else if (GET_CODE (inner) != MEM)
4150 inner = gen_lowpart_for_combine (extraction_mode, inner);
4151
4152 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
4153 have to zero extend. Otherwise, we can just use a SUBREG. */
4154 if (pos < 0
4155 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
4156 pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
4157 else if (pos < 0
4158 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
4159 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
4160
4161 /* Make POS_RTX unless we already have it and it is correct. */
4162 if (pos_rtx == 0 || (pos >= 0 && INTVAL (pos_rtx) != pos))
4163 pos_rtx = gen_rtx (CONST_INT, VOIDmode, pos);
4164
4165 /* Make the required operation. See if we can use existing rtx. */
4166 new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
4167 extraction_mode, inner,
4168 gen_rtx (CONST_INT, VOIDmode, len), pos_rtx);
4169 if (! in_dest)
4170 new = gen_lowpart_for_combine (mode, new);
4171
4172 return new;
4173 }
4174 \f
4175 /* Look at the expression rooted at X. Look for expressions
4176 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
4177 Form these expressions.
4178
4179 Return the new rtx, usually just X.
4180
4181 Also, for machines like the Vax that don't have logical shift insns,
4182 try to convert logical to arithmetic shift operations in cases where
4183 they are equivalent. This undoes the canonicalizations to logical
4184 shifts done elsewhere.
4185
4186 We try, as much as possible, to re-use rtl expressions to save memory.
4187
4188 IN_CODE says what kind of expression we are processing. Normally, it is
4189 SET. In a memory address (inside a MEM or PLUS, the latter being a
4190 kludge), it is MEM. When processing the arguments of a comparison
4191 or a COMPARE against zero, it is COMPARE. */
4192
4193 static rtx
4194 make_compound_operation (x, in_code)
4195 rtx x;
4196 enum rtx_code in_code;
4197 {
4198 enum rtx_code code = GET_CODE (x);
4199 enum machine_mode mode = GET_MODE (x);
4200 int mode_width = GET_MODE_BITSIZE (mode);
4201 enum rtx_code next_code;
4202 int i;
4203 rtx new = 0;
4204 char *fmt;
4205
4206 /* Select the code to be used in recursive calls. Once we are inside an
4207 address, we stay there. If we have a comparison, set to COMPARE,
4208 but once inside, go back to our default of SET. */
4209
4210 next_code = (code == MEM || code == PLUS ? MEM
4211 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
4212 && XEXP (x, 1) == const0_rtx) ? COMPARE
4213 : in_code == COMPARE ? SET : in_code);
4214
4215 /* Process depending on the code of this operation. If NEW is set
4216 non-zero, it will be returned. */
4217
4218 switch (code)
4219 {
4220 case ASHIFT:
4221 case LSHIFT:
4222 /* Convert shifts by constants into multiplications if inside
4223 an address. */
4224 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
4225 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_INT
4226 && INTVAL (XEXP (x, 1)) >= 0)
4227 new = gen_rtx_combine (MULT, mode, XEXP (x, 0),
4228 gen_rtx (CONST_INT, VOIDmode,
4229 1 << INTVAL (XEXP (x, 1))));
4230 break;
4231
4232 case AND:
4233 /* If the second operand is not a constant, we can't do anything
4234 with it. */
4235 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
4236 break;
4237
4238 /* If the constant is a power of two minus one and the first operand
4239 is a logical right shift, make an extraction. */
4240 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4241 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
4242 new = make_extraction (mode, XEXP (XEXP (x, 0), 0), -1,
4243 XEXP (XEXP (x, 0), 1), i, 1,
4244 0, in_code == COMPARE);
4245
4246 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
4247 else if (GET_CODE (XEXP (x, 0)) == SUBREG
4248 && subreg_lowpart_p (XEXP (x, 0))
4249 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
4250 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
4251 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))),
4252 XEXP (SUBREG_REG (XEXP (x, 0)), 0), -1,
4253 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
4254 0, in_code == COMPARE);
4255
4256
4257 /* If we are have (and (rotate X C) M) and C is larger than the number
4258 of bits in M, this is an extraction. */
4259
4260 else if (GET_CODE (XEXP (x, 0)) == ROTATE
4261 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4262 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
4263 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
4264 new = make_extraction (mode, XEXP (XEXP (x, 0), 0),
4265 (GET_MODE_BITSIZE (mode)
4266 - INTVAL (XEXP (XEXP (x, 0), 1))),
4267 0, i, 1, 0, in_code == COMPARE);
4268
4269 /* On machines without logical shifts, if the operand of the AND is
4270 a logical shift and our mask turns off all the propagated sign
4271 bits, we can replace the logical shift with an arithmetic shift. */
4272 else if (
4273 #ifdef HAVE_ashrsi3
4274 HAVE_ashrsi3
4275 #else
4276 0
4277 #endif
4278 #ifdef HAVE_lshrsi3
4279 && ! HAVE_lshrsi3
4280 #else
4281 && 1
4282 #endif
4283 && GET_CODE (XEXP (x, 0)) == LSHIFTRT
4284 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4285 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
4286 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_INT
4287 && mode_width <= HOST_BITS_PER_INT)
4288 {
4289 unsigned mask = GET_MODE_MASK (mode);
4290
4291 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
4292 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
4293 SUBST (XEXP (x, 0),
4294 gen_rtx_combine (ASHIFTRT, mode, XEXP (XEXP (x, 0), 0),
4295 XEXP (XEXP (x, 0), 1)));
4296 }
4297
4298 /* If the constant is one less than a power of two, this might be
4299 representable by an extraction even if no shift is present.
4300 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
4301 we are in a COMPARE. */
4302 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
4303 new = make_extraction (mode, XEXP (x, 0), 0, 0, i, 1,
4304 0, in_code == COMPARE);
4305
4306 /* If we are in a comparison and this is an AND with a power of two,
4307 convert this into the appropriate bit extract. */
4308 else if (in_code == COMPARE
4309 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4310 new = make_extraction (mode, XEXP (x, 0), i, 0, 1, 1, 0, 1);
4311
4312 break;
4313
4314 case LSHIFTRT:
4315 /* If the sign bit is known to be zero, replace this with an
4316 arithmetic shift. */
4317 if (
4318 #ifdef HAVE_ashrsi3
4319 HAVE_ashrsi3
4320 #else
4321 0
4322 #endif
4323 #ifdef HAVE_lshrsi3
4324 && ! HAVE_lshrsi3
4325 #else
4326 && 1
4327 #endif
4328 && mode_width <= HOST_BITS_PER_INT
4329 && (significant_bits (XEXP (x, 0), mode)
4330 & (1 << (mode_width - 1))) == 0)
4331 {
4332 new = gen_rtx_combine (ASHIFTRT, mode, XEXP (x, 0), XEXP (x, 1));
4333 break;
4334 }
4335
4336 /* ... fall through ... */
4337
4338 case ASHIFTRT:
4339 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
4340 this is a SIGN_EXTRACT. */
4341 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4342 && GET_CODE (XEXP (x, 0)) == ASHIFT
4343 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4344 && INTVAL (XEXP (x, 1)) >= INTVAL (XEXP (XEXP (x, 0), 1)))
4345 new = make_extraction (mode, XEXP (XEXP (x, 0), 0),
4346 (INTVAL (XEXP (x, 1))
4347 - INTVAL (XEXP (XEXP (x, 0), 1))),
4348 0, mode_width - INTVAL (XEXP (x, 1)),
4349 code == LSHIFTRT, 0, in_code == COMPARE);
4350 break;
4351 }
4352
4353 if (new)
4354 {
4355 x = new;
4356 code = GET_CODE (x);
4357 }
4358
4359 /* Now recursively process each operand of this operation. */
4360 fmt = GET_RTX_FORMAT (code);
4361 for (i = 0; i < GET_RTX_LENGTH (code); i++)
4362 if (fmt[i] == 'e')
4363 {
4364 new = make_compound_operation (XEXP (x, i), next_code);
4365 SUBST (XEXP (x, i), new);
4366 }
4367
4368 return x;
4369 }
4370 \f
4371 /* Given M see if it is a value that would select a field of bits
4372 within an item, but not the entire word. Return -1 if not.
4373 Otherwise, return the starting position of the field, where 0 is the
4374 low-order bit.
4375
4376 *PLEN is set to the length of the field. */
4377
4378 static int
4379 get_pos_from_mask (m, plen)
4380 unsigned int m;
4381 int *plen;
4382 {
4383 /* Get the bit number of the first 1 bit from the right, -1 if none. */
4384 int pos = exact_log2 (m & - m);
4385
4386 if (pos < 0)
4387 return -1;
4388
4389 /* Now shift off the low-order zero bits and see if we have a power of
4390 two minus 1. */
4391 *plen = exact_log2 ((m >> pos) + 1);
4392
4393 if (*plen <= 0)
4394 return -1;
4395
4396 return pos;
4397 }
4398 \f
4399 /* Rewrite X so that it is an expression in MODE. We only care about the
4400 low-order BITS bits so we can ignore AND operations that just clear
4401 higher-order bits.
4402
4403 Also, if REG is non-zero and X is a register equal in value to REG,
4404 replace X with REG. */
4405
4406 static rtx
4407 force_to_mode (x, mode, bits, reg)
4408 rtx x;
4409 enum machine_mode mode;
4410 int bits;
4411 rtx reg;
4412 {
4413 enum rtx_code code = GET_CODE (x);
4414
4415 /* If X is narrower than MODE or if BITS is larger than the size of MODE,
4416 just get X in the proper mode. */
4417
4418 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
4419 || bits > GET_MODE_BITSIZE (mode))
4420 return gen_lowpart_for_combine (mode, x);
4421
4422 switch (code)
4423 {
4424 case SIGN_EXTEND:
4425 case ZERO_EXTEND:
4426 case ZERO_EXTRACT:
4427 case SIGN_EXTRACT:
4428 x = expand_compound_operation (x);
4429 if (GET_CODE (x) != code)
4430 return force_to_mode (x, mode, bits, reg);
4431 break;
4432
4433 case REG:
4434 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
4435 || rtx_equal_p (reg, get_last_value (x))))
4436 x = reg;
4437 break;
4438
4439 case CONST_INT:
4440 if (bits < HOST_BITS_PER_INT)
4441 x = gen_rtx (CONST_INT, VOIDmode, INTVAL (x) & ((1 << bits) - 1));
4442 return x;
4443
4444 case SUBREG:
4445 /* Ignore low-order SUBREGs. */
4446 if (subreg_lowpart_p (x))
4447 return force_to_mode (SUBREG_REG (x), mode, bits, reg);
4448 break;
4449
4450 case AND:
4451 /* If this is an AND with a constant. Otherwise, we fall through to
4452 do the general binary case. */
4453
4454 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4455 {
4456 int mask = INTVAL (XEXP (x, 1));
4457 int len = exact_log2 (mask + 1);
4458 rtx op = XEXP (x, 0);
4459
4460 /* If this is masking some low-order bits, we may be able to
4461 impose a stricter constraint on what bits of the operand are
4462 required. */
4463
4464 op = force_to_mode (op, mode, len > 0 ? MIN (len, bits) : bits,
4465 reg);
4466
4467 if (bits < HOST_BITS_PER_INT)
4468 mask &= (1 << bits) - 1;
4469
4470 x = simplify_and_const_int (x, mode, op, mask);
4471
4472 /* If X is still an AND, see if it is an AND with a mask that
4473 is just some low-order bits. If so, and it is BITS wide (it
4474 can't be wider), we don't need it. */
4475
4476 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
4477 && bits < HOST_BITS_PER_INT
4478 && INTVAL (XEXP (x, 1)) == (1 << bits) - 1)
4479 x = XEXP (x, 0);
4480 return x;
4481 }
4482
4483 /* ... fall through ... */
4484
4485 case PLUS:
4486 case MINUS:
4487 case MULT:
4488 case IOR:
4489 case XOR:
4490 /* For most binary operations, just propagate into the operation and
4491 change the mode. */
4492
4493 return gen_binary (code, mode,
4494 force_to_mode (XEXP (x, 0), mode, bits, reg),
4495 force_to_mode (XEXP (x, 1), mode, bits, reg));
4496
4497 case ASHIFT:
4498 case LSHIFT:
4499 /* For left shifts, do the same, but just for the first operand.
4500 If the shift count is a constant, we need even fewer bits of the
4501 first operand. */
4502
4503 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) < bits)
4504 bits -= INTVAL (XEXP (x, 1));
4505
4506 return gen_binary (code, mode,
4507 force_to_mode (XEXP (x, 0), mode, bits, reg),
4508 XEXP (x, 1));
4509
4510 case LSHIFTRT:
4511 /* Here we can only do something if the shift count is a constant and
4512 the count plus BITS is no larger than the width of MODE, we can do
4513 the shift in MODE. */
4514
4515 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4516 && INTVAL (XEXP (x, 1)) + bits <= GET_MODE_BITSIZE (mode))
4517 return gen_binary (LSHIFTRT, mode,
4518 force_to_mode (XEXP (x, 0), mode,
4519 bits + INTVAL (XEXP (x, 1)), reg),
4520 XEXP (x, 1));
4521 break;
4522
4523 case NEG:
4524 case NOT:
4525 /* Handle these similarly to the way we handle most binary operations. */
4526 return gen_unary (code, mode,
4527 force_to_mode (XEXP (x, 0), mode, bits, reg));
4528 }
4529
4530 /* Otherwise, just do the operation canonically. */
4531 return gen_lowpart_for_combine (mode, x);
4532 }
4533 \f
4534 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
4535 Return that assignment if so.
4536
4537 We only handle the most common cases. */
4538
4539 static rtx
4540 make_field_assignment (x)
4541 rtx x;
4542 {
4543 rtx dest = SET_DEST (x);
4544 rtx src = SET_SRC (x);
4545 rtx ourdest;
4546 rtx assign;
4547 int c1, pos, len;
4548 rtx other;
4549 enum machine_mode mode;
4550
4551 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
4552 a clear of a one-bit field. We will have changed it to
4553 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
4554 for a SUBREG. */
4555
4556 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
4557 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
4558 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
4559 && (rtx_equal_p (dest, XEXP (src, 1))
4560 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
4561 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
4562 {
4563 assign = make_extraction (VOIDmode, dest, -1, XEXP (XEXP (src, 0), 1),
4564 1, 1, 1, 0);
4565 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
4566 }
4567
4568 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
4569 && subreg_lowpart_p (XEXP (src, 0))
4570 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
4571 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
4572 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
4573 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
4574 && (rtx_equal_p (dest, XEXP (src, 1))
4575 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
4576 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
4577 {
4578 assign = make_extraction (VOIDmode, dest, -1,
4579 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
4580 1, 1, 1, 0);
4581 return gen_rtx (SET, VOIDmode, assign, const0_rtx);
4582 }
4583
4584 /* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
4585 one-bit field. */
4586 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
4587 && XEXP (XEXP (src, 0), 0) == const1_rtx
4588 && (rtx_equal_p (dest, XEXP (src, 1))
4589 || rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
4590 || rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
4591 {
4592 assign = make_extraction (VOIDmode, dest, -1, XEXP (XEXP (src, 0), 1),
4593 1, 1, 1, 0);
4594 return gen_rtx (SET, VOIDmode, assign, const1_rtx);
4595 }
4596
4597 /* The other case we handle is assignments into a constant-position
4598 field. They look like (ior (and DEST C1) OTHER). If C1 represents
4599 a mask that has all one bits except for a group of zero bits and
4600 OTHER is known to have zeros where C1 has ones, this is such an
4601 assignment. Compute the position and length from C1. Shift OTHER
4602 to the appropriate position, force it to the required mode, and
4603 make the extraction. Check for the AND in both operands. */
4604
4605 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
4606 && GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
4607 && (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest)
4608 || rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest))
4609 || rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest)))
4610 c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1);
4611 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND
4612 && GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT
4613 && (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest)
4614 || rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest))
4615 || rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)),
4616 dest)))
4617 c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0);
4618 else
4619 return x;
4620
4621 pos = get_pos_from_mask (~c1, &len);
4622 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
4623 || (c1 & significant_bits (other, GET_MODE (other))) != 0)
4624 return x;
4625
4626 assign = make_extraction (VOIDmode, dest, pos, 0, len, 1, 1, 0);
4627
4628 /* The mode to use for the source is the mode of the assignment, or of
4629 what is inside a possible STRICT_LOW_PART. */
4630 mode = (GET_CODE (assign) == STRICT_LOW_PART
4631 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
4632
4633 /* Shift OTHER right POS places and make it the source, restricting it
4634 to the proper length and mode. */
4635
4636 src = force_to_mode (simplify_shift_const (0, LSHIFTRT, GET_MODE (src),
4637 other, pos),
4638 mode, len, dest);
4639
4640 return gen_rtx_combine (SET, VOIDmode, assign, src);
4641 }
4642 \f
4643 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
4644 if so. */
4645
4646 static rtx
4647 apply_distributive_law (x)
4648 rtx x;
4649 {
4650 enum rtx_code code = GET_CODE (x);
4651 rtx lhs, rhs, other;
4652 rtx tem;
4653 enum rtx_code inner_code;
4654
4655 /* The outer operation can only be one of the following: */
4656 if (code != IOR && code != AND && code != XOR
4657 && code != PLUS && code != MINUS)
4658 return x;
4659
4660 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
4661
4662 /* If either operand is a primitive we can't do anything, so get out fast. */
4663 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
4664 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
4665 return x;
4666
4667 lhs = expand_compound_operation (lhs);
4668 rhs = expand_compound_operation (rhs);
4669 inner_code = GET_CODE (lhs);
4670 if (inner_code != GET_CODE (rhs))
4671 return x;
4672
4673 /* See if the inner and outer operations distribute. */
4674 switch (inner_code)
4675 {
4676 case LSHIFTRT:
4677 case ASHIFTRT:
4678 case AND:
4679 case IOR:
4680 /* These all distribute except over PLUS. */
4681 if (code == PLUS || code == MINUS)
4682 return x;
4683 break;
4684
4685 case MULT:
4686 if (code != PLUS && code != MINUS)
4687 return x;
4688 break;
4689
4690 case ASHIFT:
4691 case LSHIFT:
4692 /* These are also multiplies, so they distribute over everything. */
4693 break;
4694
4695 case SUBREG:
4696 /* Non-paradoxical SUBREGs distributes over all operations, provided
4697 the inner modes and word numbers are the same, this is an extraction
4698 of a low-order part, we don't convert an fp operation to int or
4699 vice versa, and we would not be converting a single-word
4700 operation into a multi-word operation. The latter test is not
4701 required, but it prevents generating unneeded multi-word operations.
4702 Some of the previous tests are redundant given the latter test, but
4703 are retained because they are required for correctness.
4704
4705 We produce the result slightly differently in this case. */
4706
4707 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
4708 || SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
4709 || ! subreg_lowpart_p (lhs)
4710 || (GET_MODE_CLASS (GET_MODE (lhs))
4711 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
4712 || (GET_MODE_SIZE (GET_MODE (lhs))
4713 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
4714 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
4715 return x;
4716
4717 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
4718 SUBREG_REG (lhs), SUBREG_REG (rhs));
4719 return gen_lowpart_for_combine (GET_MODE (x), tem);
4720
4721 default:
4722 return x;
4723 }
4724
4725 /* Set LHS and RHS to the inner operands (A and B in the example
4726 above) and set OTHER to the common operand (C in the example).
4727 These is only one way to do this unless the inner operation is
4728 commutative. */
4729 if (GET_RTX_CLASS (inner_code) == 'c'
4730 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
4731 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
4732 else if (GET_RTX_CLASS (inner_code) == 'c'
4733 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
4734 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
4735 else if (GET_RTX_CLASS (inner_code) == 'c'
4736 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
4737 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
4738 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
4739 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
4740 else
4741 return x;
4742
4743 /* Form the new inner operation, seeing if it simplifies first. */
4744 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
4745
4746 /* There is one exception to the general way of distributing:
4747 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
4748 if (code == XOR && inner_code == IOR)
4749 {
4750 inner_code = AND;
4751 other = gen_unary (NOT, GET_MODE (x), other);
4752 }
4753
4754 /* We may be able to continuing distributing the result, so call
4755 ourselves recursively on the inner operation before forming the
4756 outer operation, which we return. */
4757 return gen_binary (inner_code, GET_MODE (x),
4758 apply_distributive_law (tem), other);
4759 }
4760 \f
4761 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
4762 in MODE.
4763
4764 Return an equivalent form, if different from X. Otherwise, return X. If
4765 X is zero, we are to always construct the equivalent form. */
4766
4767 static rtx
4768 simplify_and_const_int (x, mode, varop, constop)
4769 rtx x;
4770 enum machine_mode mode;
4771 rtx varop;
4772 unsigned constop;
4773 {
4774 register enum machine_mode tmode;
4775 register rtx temp;
4776 unsigned significant;
4777
4778 /* There is a large class of optimizations based on the principle that
4779 some operations produce results where certain bits are known to be zero,
4780 and hence are not significant to the AND. For example, if we have just
4781 done a left shift of one bit, the low-order bit is known to be zero and
4782 hence an AND with a mask of ~1 would not do anything.
4783
4784 At the end of the following loop, we set:
4785
4786 VAROP to be the item to be AND'ed with;
4787 CONSTOP to the constant value to AND it with. */
4788
4789 while (1)
4790 {
4791 /* If we ever encounter a mode wider than the host machine's word
4792 size, we can't compute the masks accurately, so give up. */
4793 if (GET_MODE_BITSIZE (GET_MODE (varop)) > HOST_BITS_PER_INT)
4794 break;
4795
4796 /* Unless one of the cases below does a `continue',
4797 a `break' will be executed to exit the loop. */
4798
4799 switch (GET_CODE (varop))
4800 {
4801 case CLOBBER:
4802 /* If VAROP is a (clobber (const_int)), return it since we know
4803 we are generating something that won't match. */
4804 return varop;
4805
4806 #if ! BITS_BIG_ENDIAN
4807 case USE:
4808 /* VAROP is a (use (mem ..)) that was made from a bit-field
4809 extraction that spanned the boundary of the MEM. If we are
4810 now masking so it is within that boundary, we don't need the
4811 USE any more. */
4812 if ((constop & ~ GET_MODE_MASK (GET_MODE (XEXP (varop, 0)))) == 0)
4813 {
4814 varop = XEXP (varop, 0);
4815 continue;
4816 }
4817 break;
4818 #endif
4819
4820 case SUBREG:
4821 if (subreg_lowpart_p (varop)
4822 /* We can ignore the effect this SUBREG if it narrows the mode
4823 or, on machines where byte operations zero extend, if the
4824 constant masks to zero all the bits the mode doesn't have. */
4825 && ((GET_MODE_SIZE (GET_MODE (varop))
4826 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop))))
4827 #ifdef BYTE_LOADS_ZERO_EXTEND
4828 || (0 == (constop
4829 & GET_MODE_MASK (GET_MODE (varop))
4830 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (varop)))))
4831 #endif
4832 ))
4833 {
4834 varop = SUBREG_REG (varop);
4835 continue;
4836 }
4837 break;
4838
4839 case ZERO_EXTRACT:
4840 case SIGN_EXTRACT:
4841 case ZERO_EXTEND:
4842 case SIGN_EXTEND:
4843 /* Try to expand these into a series of shifts and then work
4844 with that result. If we can't, for example, if the extract
4845 isn't at a fixed position, give up. */
4846 temp = expand_compound_operation (varop);
4847 if (temp != varop)
4848 {
4849 varop = temp;
4850 continue;
4851 }
4852 break;
4853
4854 case AND:
4855 if (GET_CODE (XEXP (varop, 1)) == CONST_INT)
4856 {
4857 constop &= INTVAL (XEXP (varop, 1));
4858 varop = XEXP (varop, 0);
4859 continue;
4860 }
4861 break;
4862
4863 case IOR:
4864 case XOR:
4865 /* If VAROP is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
4866 LSHIFT so we end up with an (and (lshiftrt (ior ...) ...) ...)
4867 operation which may be a bitfield extraction. */
4868
4869 if (GET_CODE (XEXP (varop, 0)) == LSHIFTRT
4870 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
4871 && INTVAL (XEXP (XEXP (varop, 0), 1)) >= 0
4872 && INTVAL (XEXP (XEXP (varop, 0), 1)) < HOST_BITS_PER_INT
4873 && GET_CODE (XEXP (varop, 1)) == CONST_INT
4874 && (INTVAL (XEXP (varop, 1))
4875 & ~ significant_bits (XEXP (varop, 0),
4876 GET_MODE (varop)) == 0))
4877 {
4878 temp = gen_rtx (CONST_INT, VOIDmode,
4879 ((INTVAL (XEXP (varop, 1)) & constop)
4880 << INTVAL (XEXP (XEXP (varop, 0), 1))));
4881 temp = gen_binary (GET_CODE (varop), GET_MODE (varop),
4882 XEXP (XEXP (varop, 0), 0), temp);
4883 varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
4884 temp, XEXP (varop, 1));
4885 continue;
4886 }
4887
4888 /* Apply the AND to both branches of the IOR or XOR, then try to
4889 apply the distributive law. This may eliminate operations
4890 if either branch can be simplified because of the AND.
4891 It may also make some cases more complex, but those cases
4892 probably won't match a pattern either with or without this. */
4893 return
4894 gen_lowpart_for_combine
4895 (mode, apply_distributive_law
4896 (gen_rtx_combine
4897 (GET_CODE (varop), GET_MODE (varop),
4898 simplify_and_const_int (0, GET_MODE (varop),
4899 XEXP (varop, 0), constop),
4900 simplify_and_const_int (0, GET_MODE (varop),
4901 XEXP (varop, 1), constop))));
4902
4903 case NOT:
4904 /* (and (not FOO)) is (and (xor FOO CONST_OP)) so if FOO is an
4905 LSHIFTRT we can do the same as above. */
4906
4907 if (GET_CODE (XEXP (varop, 0)) == LSHIFTRT
4908 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
4909 && INTVAL (XEXP (XEXP (varop, 0), 1)) >= 0
4910 && INTVAL (XEXP (XEXP (varop, 0), 1)) < HOST_BITS_PER_INT)
4911 {
4912 temp = gen_rtx (CONST_INT, VOIDmode,
4913 constop << INTVAL (XEXP (XEXP (varop, 0), 1)));
4914 temp = gen_binary (XOR, GET_MODE (varop),
4915 XEXP (XEXP (varop, 0), 0), temp);
4916 varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
4917 temp, XEXP (XEXP (varop, 0), 1));
4918 continue;
4919 }
4920 break;
4921
4922 case ASHIFTRT:
4923 /* If we are just looking for the sign bit, we don't need this
4924 shift at all, even if it has a variable count. */
4925 if (constop == 1 << (GET_MODE_BITSIZE (GET_MODE (varop)) - 1))
4926 {
4927 varop = XEXP (varop, 0);
4928 continue;
4929 }
4930
4931 /* If this is a shift by a constant, get a mask that contains
4932 those bits that are not copies of the sign bit. We then have
4933 two cases: If CONSTOP only includes those bits, this can be
4934 a logical shift, which may allow simplifications. If CONSTOP
4935 is a single-bit field not within those bits, we are requesting
4936 a copy of the sign bit and hence can shift the sign bit to
4937 the appropriate location. */
4938 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
4939 && INTVAL (XEXP (varop, 1)) >= 0
4940 && INTVAL (XEXP (varop, 1)) < HOST_BITS_PER_INT)
4941 {
4942 int i = -1;
4943
4944 significant = GET_MODE_MASK (GET_MODE (varop));
4945 significant >>= INTVAL (XEXP (varop, 1));
4946
4947 if ((constop & ~significant) == 0
4948 || (i = exact_log2 (constop)) >= 0)
4949 {
4950 varop = simplify_shift_const
4951 (varop, LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
4952 i < 0 ? INTVAL (XEXP (varop, 1))
4953 : GET_MODE_BITSIZE (GET_MODE (varop)) - 1 - i);
4954 if (GET_CODE (varop) != ASHIFTRT)
4955 continue;
4956 }
4957 }
4958
4959 /* If our mask is 1, convert this to a LSHIFTRT. This can be done
4960 even if the shift count isn't a constant. */
4961 if (constop == 1)
4962 varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
4963 XEXP (varop, 0), XEXP (varop, 1));
4964 break;
4965
4966 case NE:
4967 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is
4968 included in STORE_FLAG_VALUE and FOO has no significant bits
4969 not in CONST. */
4970 if ((constop & ~ STORE_FLAG_VALUE) == 0
4971 && XEXP (varop, 0) == const0_rtx
4972 && (significant_bits (XEXP (varop, 0), mode) & ~ constop) == 0)
4973 {
4974 varop = XEXP (varop, 0);
4975 continue;
4976 }
4977 break;
4978
4979 case PLUS:
4980 /* In (and (plus FOO C1) M), if M is a mask that just turns off
4981 low-order bits (as in an alignment operation) and FOO is already
4982 aligned to that boundary, we can convert remove this AND
4983 and possibly the PLUS if it is now adding zero. */
4984 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
4985 && exact_log2 (-constop) >= 0
4986 && (significant_bits (XEXP (varop, 0), mode) & ~ constop) == 0)
4987 {
4988 varop = plus_constant (XEXP (varop, 0),
4989 INTVAL (XEXP (varop, 1)) & constop);
4990 constop = ~0;
4991 break;
4992 }
4993
4994 /* ... fall through ... */
4995
4996 case MINUS:
4997 /* In (and (plus (and FOO M1) BAR) M2), if M1 and M2 are one
4998 less than powers of two and M2 is narrower than M1, we can
4999 eliminate the inner AND. This occurs when incrementing
5000 bit fields. */
5001
5002 if (GET_CODE (XEXP (varop, 0)) == ZERO_EXTRACT
5003 || GET_CODE (XEXP (varop, 0)) == ZERO_EXTEND)
5004 SUBST (XEXP (varop, 0),
5005 expand_compound_operation (XEXP (varop, 0)));
5006
5007 if (GET_CODE (XEXP (varop, 0)) == AND
5008 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
5009 && exact_log2 (constop + 1) >= 0
5010 && exact_log2 (INTVAL (XEXP (XEXP (varop, 0), 1)) + 1) >= 0
5011 && (~ INTVAL (XEXP (XEXP (varop, 0), 1)) & constop) == 0)
5012 SUBST (XEXP (varop, 0), XEXP (XEXP (varop, 0), 0));
5013 break;
5014 }
5015
5016 break;
5017 }
5018
5019 /* If we have reached a constant, this whole thing is constant. */
5020 if (GET_CODE (varop) == CONST_INT)
5021 return gen_rtx (CONST_INT, VOIDmode, constop & INTVAL (varop));
5022
5023 /* See what bits are significant in VAROP. */
5024 significant = significant_bits (varop, mode);
5025
5026 /* Turn off all bits in the constant that are known to already be zero.
5027 Thus, if the AND isn't needed at all, we will have CONSTOP == SIGNIFICANT
5028 which is tested below. */
5029
5030 constop &= significant;
5031
5032 /* If we don't have any bits left, return zero. */
5033 if (constop == 0)
5034 return const0_rtx;
5035
5036 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
5037 if we already had one (just check for the simplest cases). */
5038 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
5039 && GET_MODE (XEXP (x, 0)) == mode
5040 && SUBREG_REG (XEXP (x, 0)) == varop)
5041 varop = XEXP (x, 0);
5042 else
5043 varop = gen_lowpart_for_combine (mode, varop);
5044
5045 /* If we can't make the SUBREG, try to return what we were given. */
5046 if (GET_CODE (varop) == CLOBBER)
5047 return x ? x : varop;
5048
5049 /* If we are only masking insignificant bits, return VAROP. */
5050 if (constop == significant)
5051 x = varop;
5052
5053 /* Otherwise, return an AND. See how much, if any, of X we can use. */
5054 else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
5055 x = gen_rtx_combine (AND, mode, varop,
5056 gen_rtx (CONST_INT, VOIDmode, constop));
5057
5058 else
5059 {
5060 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5061 || INTVAL (XEXP (x, 1)) != constop)
5062 SUBST (XEXP (x, 1), gen_rtx (CONST_INT, VOIDmode, constop));
5063
5064 SUBST (XEXP (x, 0), varop);
5065 }
5066
5067 return x;
5068 }
5069 \f
5070 /* Given an expression, X, compute which bits in X can be non-zero.
5071 We don't care about bits outside of those defined in MODE.
5072
5073 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
5074 a shift, AND, or zero_extract, we can do better. */
5075
5076 static unsigned
5077 significant_bits (x, mode)
5078 rtx x;
5079 enum machine_mode mode;
5080 {
5081 unsigned significant = GET_MODE_MASK (mode);
5082 unsigned inner_sig;
5083 enum rtx_code code;
5084 int mode_width = GET_MODE_BITSIZE (mode);
5085 rtx tem;
5086
5087 /* If X is wider than MODE, use its mode instead. */
5088 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
5089 {
5090 mode = GET_MODE (x);
5091 significant = GET_MODE_MASK (mode);
5092 mode_width = GET_MODE_BITSIZE (mode);
5093 }
5094
5095 if (mode_width > HOST_BITS_PER_INT)
5096 /* Our only callers in this case look for single bit values. So
5097 just return the mode mask. Those tests will then be false. */
5098 return significant;
5099
5100 code = GET_CODE (x);
5101 switch (code)
5102 {
5103 case REG:
5104 #ifdef STACK_BOUNDARY
5105 /* If this is the stack pointer, we may know something about its
5106 alignment. If PUSH_ROUNDING is defined, it is possible for the
5107 stack to be momentarily aligned only to that amount, so we pick
5108 the least alignment. */
5109
5110 if (x == stack_pointer_rtx)
5111 {
5112 int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
5113
5114 #ifdef PUSH_ROUNDING
5115 sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
5116 #endif
5117
5118 return significant & ~ (sp_alignment - 1);
5119 }
5120 #endif
5121
5122 /* If X is a register whose value we can find, use that value.
5123 Otherwise, use the previously-computed significant bits for this
5124 register. */
5125
5126 tem = get_last_value (x);
5127 if (tem)
5128 return significant_bits (tem, mode);
5129 else if (significant_valid && reg_significant[REGNO (x)])
5130 return reg_significant[REGNO (x)] & significant;
5131 else
5132 return significant;
5133
5134 case CONST_INT:
5135 return INTVAL (x);
5136
5137 #ifdef BYTE_LOADS_ZERO_EXTEND
5138 case MEM:
5139 /* In many, if not most, RISC machines, reading a byte from memory
5140 zeros the rest of the register. Noticing that fact saves a lot
5141 of extra zero-extends. */
5142 significant &= GET_MODE_MASK (GET_MODE (x));
5143 break;
5144 #endif
5145
5146 #if STORE_FLAG_VALUE == 1
5147 case EQ: case NE:
5148 case GT: case GTU:
5149 case LT: case LTU:
5150 case GE: case GEU:
5151 case LE: case LEU:
5152
5153 if (GET_MODE_CLASS (mode) == MODE_INT)
5154 significant = 1;
5155
5156 /* A comparison operation only sets the bits given by its mode. The
5157 rest are set undefined. */
5158 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
5159 significant |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
5160 break;
5161 #endif
5162
5163 #if STORE_FLAG_VALUE == -1
5164 case NEG:
5165 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
5166 || ((tem = get_last_value (XEXP (x, 0))) != 0
5167 && GET_RTX_CLASS (GET_CODE (tem)) == '<'))
5168 significant = 1;
5169
5170 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
5171 significant |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
5172 break;
5173 #endif
5174
5175 case TRUNCATE:
5176 significant &= (significant_bits (XEXP (x, 0), mode)
5177 & GET_MODE_MASK (mode));
5178 break;
5179
5180 case ZERO_EXTEND:
5181 significant &= significant_bits (XEXP (x, 0), mode);
5182 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
5183 significant &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
5184 break;
5185
5186 case SIGN_EXTEND:
5187 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
5188 Otherwise, show all the bits in the outer mode but not the inner
5189 may be non-zero. */
5190 inner_sig = significant_bits (XEXP (x, 0), mode);
5191 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
5192 {
5193 inner_sig &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
5194 if (inner_sig &
5195 (1 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
5196 inner_sig |= (GET_MODE_MASK (mode)
5197 & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
5198 }
5199
5200 significant &= inner_sig;
5201 break;
5202
5203 case AND:
5204 significant &= (significant_bits (XEXP (x, 0), mode)
5205 & significant_bits (XEXP (x, 1), mode));
5206 break;
5207
5208 case XOR:
5209 case IOR:
5210 significant &= (significant_bits (XEXP (x, 0), mode)
5211 | significant_bits (XEXP (x, 1), mode));
5212 break;
5213
5214 case PLUS: case MINUS:
5215 case MULT:
5216 case DIV: case UDIV:
5217 case MOD: case UMOD:
5218 /* We can apply the rules of arithmetic to compute the number of
5219 high- and low-order zero bits of these operations. We start by
5220 computing the width (position of the highest-order non-zero bit)
5221 and the number of low-order zero bits for each value. */
5222 {
5223 unsigned sig0 = significant_bits (XEXP (x, 0), mode);
5224 unsigned sig1 = significant_bits (XEXP (x, 1), mode);
5225 int width0 = floor_log2 (sig0) + 1;
5226 int width1 = floor_log2 (sig1) + 1;
5227 int low0 = floor_log2 (sig0 & -sig0);
5228 int low1 = floor_log2 (sig1 & -sig1);
5229 int op0_maybe_minusp = (sig0 & (1 << (mode_width - 1)));
5230 int op1_maybe_minusp = (sig1 & (1 << (mode_width - 1)));
5231 int result_width = mode_width;
5232 int result_low = 0;
5233
5234 switch (code)
5235 {
5236 case PLUS:
5237 result_width = MAX (width0, width1) + 1;
5238 result_low = MIN (low0, low1);
5239 break;
5240 case MINUS:
5241 result_low = MIN (low0, low1);
5242 break;
5243 case MULT:
5244 result_width = width0 + width1;
5245 result_low = low0 + low1;
5246 break;
5247 case DIV:
5248 if (! op0_maybe_minusp && ! op1_maybe_minusp)
5249 result_width = width0;
5250 break;
5251 case UDIV:
5252 result_width = width0;
5253 break;
5254 case MOD:
5255 if (! op0_maybe_minusp && ! op1_maybe_minusp)
5256 result_width = MIN (width0, width1);
5257 result_low = MIN (low0, low1);
5258 break;
5259 case UMOD:
5260 result_width = MIN (width0, width1);
5261 result_low = MIN (low0, low1);
5262 break;
5263 }
5264
5265 if (result_width < mode_width)
5266 significant &= (1 << result_width) - 1;
5267
5268 if (result_low > 0)
5269 significant &= ~ ((1 << result_low) - 1);
5270 }
5271 break;
5272
5273 case ZERO_EXTRACT:
5274 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5275 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_INT)
5276 significant &= (1 << INTVAL (XEXP (x, 1))) - 1;
5277 break;
5278
5279 case SUBREG:
5280 /* If the inner mode is a single word for both the host and target
5281 machines, we can compute this from which bits of the inner
5282 object are known significant. */
5283 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
5284 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= HOST_BITS_PER_INT)
5285 {
5286 significant &= significant_bits (SUBREG_REG (x), mode);
5287 #ifndef BYTE_LOADS_ZERO_EXTEND
5288 /* On many CISC machines, accessing an object in a wider mode
5289 causes the high-order bits to become undefined. So they are
5290 not known to be zero. */
5291 if (GET_MODE_SIZE (GET_MODE (x))
5292 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
5293 significant |= (GET_MODE_MASK (GET_MODE (x))
5294 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
5295 #endif
5296 }
5297 break;
5298
5299 case ASHIFTRT:
5300 case LSHIFTRT:
5301 case ASHIFT:
5302 case LSHIFT:
5303 case ROTATE:
5304 /* The significant bits are in two classes: any bits within MODE
5305 that aren't in GET_MODE (x) are always significant. The rest of the
5306 significant bits are those that are significant in the operand of
5307 the shift when shifted the appropriate number of bits. This
5308 shows that high-order bits are cleared by the right shift and
5309 low-order bits by left shifts. */
5310 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5311 && INTVAL (XEXP (x, 1)) >= 0
5312 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_INT)
5313 {
5314 enum machine_mode inner_mode = GET_MODE (x);
5315 int width = GET_MODE_BITSIZE (inner_mode);
5316 int count = INTVAL (XEXP (x, 1));
5317 unsigned mode_mask = GET_MODE_MASK (inner_mode);
5318 unsigned op_significant = significant_bits (XEXP (x, 0), mode);
5319 unsigned inner = op_significant & mode_mask;
5320 unsigned outer = 0;
5321
5322 if (mode_width > width)
5323 outer = (op_significant & significant & ~ mode_mask);
5324
5325 if (code == LSHIFTRT)
5326 inner >>= count;
5327 else if (code == ASHIFTRT)
5328 {
5329 inner >>= count;
5330
5331 /* If the sign bit was significant at before the shift, we
5332 need to mark all the places it could have been copied to
5333 by the shift significant. */
5334 if (inner & (1 << (width - 1 - count)))
5335 inner |= ((1 << count) - 1) << (width - count);
5336 }
5337 else if (code == LSHIFT || code == ASHIFT)
5338 inner <<= count;
5339 else
5340 inner = ((inner << (count % width)
5341 | (inner >> (width - (count % width)))) & mode_mask);
5342
5343 significant &= (outer | inner);
5344 }
5345 break;
5346
5347 case FFS:
5348 /* This is at most the number of bits in the mode. */
5349 significant = (1 << (floor_log2 (mode_width) + 1)) - 1;
5350 break;
5351 }
5352
5353 return significant;
5354 }
5355 \f
5356 /* This function is called from `simplify_shift_const' to merge two
5357 outer operations. Specifically, we have already found that we need
5358 to perform operation *POP0 with constant *PCONST0 at the outermost
5359 position. We would now like to also perform OP1 with constant CONST1
5360 (with *POP0 being done last).
5361
5362 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
5363 the resulting operation. *PCOMP_P is set to 1 if we would need to
5364 complement the innermost operand, otherwise it is unchanged.
5365
5366 MODE is the mode in which the operation will be done. No bits outside
5367 the width of this mode matter. It is assumed that the width of this mode
5368 is smaller than or equal to HOST_BITS_PER_INT.
5369
5370 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
5371 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
5372 result is simply *PCONST0.
5373
5374 If the resulting operation cannot be expressed as one operation, we
5375 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
5376
5377 static int
5378 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
5379 enum rtx_code *pop0;
5380 int *pconst0;
5381 enum rtx_code op1;
5382 int const1;
5383 enum machine_mode mode;
5384 int *pcomp_p;
5385 {
5386 enum rtx_code op0 = *pop0;
5387 int const0 = *pconst0;
5388
5389 const0 &= GET_MODE_MASK (mode);
5390 const1 &= GET_MODE_MASK (mode);
5391
5392 /* If OP0 is an AND, clear unimportant bits in CONST1. */
5393 if (op0 == AND)
5394 const1 &= const0;
5395
5396 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
5397 if OP0 is SET. */
5398
5399 if (op1 == NIL || op0 == SET)
5400 return 1;
5401
5402 else if (op0 == NIL)
5403 op0 = op1, const0 = const1;
5404
5405 else if (op0 == op1)
5406 {
5407 switch (op0)
5408 {
5409 case AND:
5410 const0 &= const1;
5411 break;
5412 case IOR:
5413 const0 |= const1;
5414 break;
5415 case XOR:
5416 const0 ^= const1;
5417 break;
5418 case PLUS:
5419 const0 += const1;
5420 break;
5421 case NEG:
5422 op0 = NIL;
5423 break;
5424 }
5425 }
5426
5427 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
5428 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
5429 return 0;
5430
5431 /* If the two constants aren't the same, we can't do anything. The
5432 remaining six cases can all be done. */
5433 else if (const0 != const1)
5434 return 0;
5435
5436 else
5437 switch (op0)
5438 {
5439 case IOR:
5440 if (op1 == AND)
5441 /* (a & b) | b == b */
5442 op0 = SET;
5443 else /* op1 == XOR */
5444 /* (a ^ b) | b == a | b */
5445 ;
5446 break;
5447
5448 case XOR:
5449 if (op1 == AND)
5450 /* (a & b) ^ b == (~a) & b */
5451 op0 = AND, *pcomp_p = 1;
5452 else /* op1 == IOR */
5453 /* (a | b) ^ b == a & ~b */
5454 op0 = AND, *pconst0 = ~ const0;
5455 break;
5456
5457 case AND:
5458 if (op1 == IOR)
5459 /* (a | b) & b == b */
5460 op0 = SET;
5461 else /* op1 == XOR */
5462 /* (a ^ b) & b) == (~a) & b */
5463 *pcomp_p = 1;
5464 break;
5465 }
5466
5467 /* Check for NO-OP cases. */
5468 const0 &= GET_MODE_MASK (mode);
5469 if (const0 == 0
5470 && (op0 == IOR || op0 == XOR || op0 == PLUS))
5471 op0 = NIL;
5472 else if (const0 == 0 && op0 == AND)
5473 op0 = SET;
5474 else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
5475 op0 = NIL;
5476
5477 *pop0 = op0;
5478 *pconst0 = const0;
5479
5480 return 1;
5481 }
5482 \f
5483 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
5484 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
5485 that we started with.
5486
5487 The shift is normally computed in the widest mode we find in VAROP, as
5488 long as it isn't a different number of words than RESULT_MODE. Exceptions
5489 are ASHIFTRT and ROTATE, which are always done in their original mode, */
5490
5491 static rtx
5492 simplify_shift_const (x, code, result_mode, varop, count)
5493 rtx x;
5494 enum rtx_code code;
5495 enum machine_mode result_mode;
5496 rtx varop;
5497 int count;
5498 {
5499 enum rtx_code orig_code = code;
5500 int orig_count = count;
5501 enum machine_mode mode = result_mode;
5502 enum machine_mode shift_mode, tmode;
5503 int mode_words
5504 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
5505 /* We form (outer_op (code varop count) (outer_const)). */
5506 enum rtx_code outer_op = NIL;
5507 int outer_const;
5508 rtx const_rtx;
5509 int complement_p = 0;
5510 rtx new;
5511
5512 /* If we were given an invalid count, don't do anything except exactly
5513 what was requested. */
5514
5515 if (count < 0 || count > GET_MODE_BITSIZE (mode))
5516 {
5517 if (x)
5518 return x;
5519
5520 return gen_rtx (code, mode, varop, gen_rtx (CONST_INT, VOIDmode, count));
5521 }
5522
5523 /* Unless one of the branches of the `if' in this loop does a `continue',
5524 we will `break' the loop after the `if'. */
5525
5526 while (count != 0)
5527 {
5528 /* If we have an operand of (clobber (const_int 0)), just return that
5529 value. */
5530 if (GET_CODE (varop) == CLOBBER)
5531 return varop;
5532
5533 /* If we discovered we had to complement VAROP, leave. Making a NOT
5534 here would cause an infinite loop. */
5535 if (complement_p)
5536 break;
5537
5538 /* Convert ROTATETRT to ROTATE. */
5539 if (code == ROTATERT)
5540 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
5541
5542 /* Canonicalize LSHIFT to ASHIFT. */
5543 if (code == LSHIFT)
5544 code = ASHIFT;
5545
5546 /* We need to determine what mode we will do the shift in. If the
5547 shift is a ASHIFTRT or ROTATE, we must always do it in the mode it
5548 was originally done in. Otherwise, we can do it in MODE, the widest
5549 mode encountered. */
5550 shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
5551
5552 /* Handle cases where the count is greater than the size of the mode
5553 minus 1. For ASHIFT, use the size minus one as the count (this can
5554 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
5555 take the count modulo the size. For other shifts, the result is
5556 zero.
5557
5558 Since these shifts are being produced by the compiler by combining
5559 multiple operations, each of which are defined, we know what the
5560 result is supposed to be. */
5561
5562 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
5563 {
5564 if (code == ASHIFTRT)
5565 count = GET_MODE_BITSIZE (shift_mode) - 1;
5566 else if (code == ROTATE || code == ROTATERT)
5567 count %= GET_MODE_BITSIZE (shift_mode);
5568 else
5569 {
5570 /* We can't simply return zero because there may be an
5571 outer op. */
5572 varop = const0_rtx;
5573 count = 0;
5574 break;
5575 }
5576 }
5577
5578 /* Negative counts are invalid and should not have been made (a
5579 programmer-specified negative count should have been handled
5580 above). */
5581 else if (count < 0)
5582 abort ();
5583
5584 /* We simplify the tests below and elsewhere by converting
5585 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
5586 `make_compound_operation' will convert it to a ASHIFTRT for
5587 those machines (such as Vax) that don't have a LSHIFTRT. */
5588 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_INT
5589 && code == ASHIFTRT
5590 && (significant_bits (varop, shift_mode)
5591 & (1 << (GET_MODE_BITSIZE (shift_mode) - 1))) == 0)
5592 code = LSHIFTRT;
5593
5594 switch (GET_CODE (varop))
5595 {
5596 case SIGN_EXTEND:
5597 case ZERO_EXTEND:
5598 case SIGN_EXTRACT:
5599 case ZERO_EXTRACT:
5600 new = expand_compound_operation (varop);
5601 if (new != varop)
5602 {
5603 varop = new;
5604 continue;
5605 }
5606 break;
5607
5608 case MEM:
5609 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
5610 minus the width of a smaller mode, we can do this with a
5611 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
5612 if ((code == ASHIFTRT || code == LSHIFTRT)
5613 && ! mode_dependent_address_p (XEXP (varop, 0))
5614 && ! MEM_VOLATILE_P (varop)
5615 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
5616 MODE_INT, 1)) != BLKmode)
5617 {
5618 #if BYTES_BIG_ENDIAN
5619 new = gen_rtx (MEM, tmode, XEXP (varop, 0));
5620 #else
5621 new = gen_rtx (MEM, tmode,
5622 plus_constant (XEXP (varop, 0),
5623 count / BITS_PER_UNIT));
5624 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
5625 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
5626 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
5627 #endif
5628 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
5629 : ZERO_EXTEND, mode, new);
5630 count = 0;
5631 continue;
5632 }
5633 break;
5634
5635 case USE:
5636 /* Similar to the case above, except that we can only do this if
5637 the resulting mode is the same as that of the underlying
5638 MEM and adjust the address depending on the *bits* endianness
5639 because of the way that bit-field extract insns are defined. */
5640 if ((code == ASHIFTRT || code == LSHIFTRT)
5641 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
5642 MODE_INT, 1)) != BLKmode
5643 && tmode == GET_MODE (XEXP (varop, 0)))
5644 {
5645 #if BITS_BIG_ENDIAN
5646 new = XEXP (varop, 0);
5647 #else
5648 new = copy_rtx (XEXP (varop, 0));
5649 SUBST (XEXP (new, 0),
5650 plus_constant (XEXP (new, 0),
5651 count / BITS_PER_UNIT));
5652 #endif
5653
5654 varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
5655 : ZERO_EXTEND, mode, new);
5656 count = 0;
5657 continue;
5658 }
5659 break;
5660
5661 case SUBREG:
5662 /* If VAROP is a SUBREG, strip it as long as the inner operand has
5663 the same number of words as what we've seen so far. Then store
5664 the widest mode in MODE. */
5665 if (SUBREG_WORD (varop) == 0
5666 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
5667 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5668 == mode_words))
5669 {
5670 varop = SUBREG_REG (varop);
5671 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
5672 mode = GET_MODE (varop);
5673 continue;
5674 }
5675 break;
5676
5677 case MULT:
5678 /* Some machines use MULT instead of ASHIFT because MULT
5679 is cheaper. But it is still better on those machines to
5680 merge two shifts into one. */
5681 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
5682 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
5683 {
5684 varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
5685 gen_rtx (CONST_INT, VOIDmode,
5686 exact_log2 (INTVAL (XEXP (varop, 1)))));
5687 continue;
5688 }
5689 break;
5690
5691 case UDIV:
5692 /* Similar, for when divides are cheaper. */
5693 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
5694 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
5695 {
5696 varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
5697 gen_rtx (CONST_INT, VOIDmode,
5698 exact_log2 (INTVAL (XEXP (varop, 1)))));
5699 continue;
5700 }
5701 break;
5702
5703 case ASHIFTRT:
5704 /* If we are extracting just the sign bit of an arithmetic right
5705 shift, that shift is not needed. */
5706 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
5707 {
5708 varop = XEXP (varop, 0);
5709 continue;
5710 }
5711
5712 /* ... fall through ... */
5713
5714 case LSHIFTRT:
5715 case ASHIFT:
5716 case LSHIFT:
5717 case ROTATE:
5718 /* Here we have two nested shifts. The result is usually the
5719 AND of a new shift with a mask. We compute the result below. */
5720 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
5721 && INTVAL (XEXP (varop, 1)) >= 0
5722 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
5723 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_INT
5724 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT)
5725 {
5726 enum rtx_code first_code = GET_CODE (varop);
5727 int first_count = INTVAL (XEXP (varop, 1));
5728 unsigned int mask;
5729 rtx mask_rtx;
5730 rtx inner;
5731
5732 if (first_code == LSHIFT)
5733 first_code = ASHIFT;
5734
5735 /* We have one common special case. We can't do any merging if
5736 the inner code is an ASHIFTRT of a smaller mode. However, if
5737 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
5738 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
5739 we can convert it to
5740 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
5741 This simplifies certain SIGN_EXTEND operations. */
5742 if (code == ASHIFT && first_code == ASHIFTRT
5743 && (GET_MODE_BITSIZE (result_mode)
5744 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
5745 {
5746 /* C3 has the low-order C1 bits zero. */
5747
5748 mask = GET_MODE_MASK (mode) & ~ ((1 << first_count) - 1);
5749
5750 varop = simplify_and_const_int (0, result_mode,
5751 XEXP (varop, 0), mask);
5752 varop = simplify_shift_const (0, ASHIFT, result_mode,
5753 varop, count);
5754 count = first_count;
5755 code = ASHIFTRT;
5756 continue;
5757 }
5758
5759 /* If this was (ashiftrt (ashift foo C1) C2) and we know
5760 something about FOO's previous value, we may be able to
5761 optimize this even though the code below can't handle this
5762 case.
5763
5764 If FOO has J high-order bits equal to the sign bit with
5765 J > C1, then we can convert this to either an ASHIFT or
5766 a ASHIFTRT depending on the two counts.
5767
5768 We cannot do this if VAROP's mode is not SHIFT_MODE. */
5769
5770 if (code == ASHIFTRT && first_code == ASHIFT
5771 && GET_MODE (varop) == shift_mode
5772 && (inner = get_last_value (XEXP (varop, 0))) != 0)
5773 {
5774 if ((GET_CODE (inner) == CONST_INT
5775 && (INTVAL (inner) >> (HOST_BITS_PER_INT - (first_count + 1)) == 0
5776 || (INTVAL (inner) >> (HOST_BITS_PER_INT - (first_count + 1)) == -1)))
5777 || (GET_CODE (inner) == SIGN_EXTEND
5778 && ((GET_MODE_BITSIZE (GET_MODE (inner))
5779 - GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner))))
5780 >= first_count))
5781 || (GET_CODE (inner) == ASHIFTRT
5782 && GET_CODE (XEXP (inner, 1)) == CONST_INT
5783 && INTVAL (XEXP (inner, 1)) >= first_count))
5784 {
5785 count -= first_count;
5786 if (count < 0)
5787 count = - count, code = ASHIFT;
5788 varop = XEXP (varop, 0);
5789 continue;
5790 }
5791 }
5792
5793 /* There are some cases we can't do. If CODE is ASHIFTRT,
5794 we can only do this if FIRST_CODE is also ASHIFTRT.
5795
5796 We can't do the case when CODE is ROTATE and FIRST_CODE is
5797 ASHIFTRT.
5798
5799 If the mode of this shift is not the mode of the outer shift,
5800 we can't do this if either shift is ASHIFTRT or ROTATE.
5801
5802 Finally, we can't do any of these if the mode is too wide
5803 unless the codes are the same.
5804
5805 Handle the case where the shift codes are the same
5806 first. */
5807
5808 if (code == first_code)
5809 {
5810 if (GET_MODE (varop) != result_mode
5811 && (code == ASHIFTRT || code == ROTATE))
5812 break;
5813
5814 count += first_count;
5815 varop = XEXP (varop, 0);
5816 continue;
5817 }
5818
5819 if (code == ASHIFTRT
5820 || (code == ROTATE && first_code == ASHIFTRT)
5821 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_INT
5822 || (GET_MODE (varop) != result_mode
5823 && (first_code == ASHIFTRT || first_code == ROTATE
5824 || code == ROTATE)))
5825 break;
5826
5827 /* To compute the mask to apply after the shift, shift the
5828 significant bits of the inner shift the same way the
5829 outer shift will. */
5830
5831 mask_rtx = gen_rtx (CONST_INT, VOIDmode,
5832 significant_bits (varop, GET_MODE (varop)));
5833
5834 mask_rtx
5835 = simplify_binary_operation (code, result_mode, mask_rtx,
5836 gen_rtx (CONST_INT, VOIDmode,
5837 count));
5838
5839 /* Give up if we can't compute an outer operation to use. */
5840 if (mask_rtx == 0
5841 || GET_CODE (mask_rtx) != CONST_INT
5842 || ! merge_outer_ops (&outer_op, &outer_const, AND,
5843 INTVAL (mask_rtx),
5844 result_mode, &complement_p))
5845 break;
5846
5847 /* If the shifts are in the same direction, we add the
5848 counts. Otherwise, we subtract them. */
5849 if ((code == ASHIFTRT || code == LSHIFTRT)
5850 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
5851 count += first_count;
5852 else
5853 count -= first_count;
5854
5855 /* If COUNT is positive, the new shift is usually CODE,
5856 except for the two exceptions below, in which case it is
5857 FIRST_CODE. If the count is negative, FIRST_CODE should
5858 always be used */
5859 if (count > 0
5860 && ((first_code == ROTATE && code == ASHIFT)
5861 || (first_code == ASHIFTRT && code == LSHIFTRT)))
5862 code = first_code;
5863 else if (count < 0)
5864 code = first_code, count = - count;
5865
5866 varop = XEXP (varop, 0);
5867 continue;
5868 }
5869
5870 /* If we have (A << B << C) for any shift, we can convert this to
5871 (A << C << B). This wins if A is a constant. Only try this if
5872 B is not a constant. */
5873
5874 else if (GET_CODE (varop) == code
5875 && GET_CODE (XEXP (varop, 1)) != CONST_INT
5876 && 0 != (new
5877 = simplify_binary_operation (code, mode,
5878 XEXP (varop, 0),
5879 gen_rtx (CONST_INT,
5880 VOIDmode,
5881 count))))
5882 {
5883 varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
5884 count = 0;
5885 continue;
5886 }
5887 break;
5888
5889 case NOT:
5890 /* Make this fit the case below. */
5891 varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
5892 gen_rtx (CONST_INT, VOIDmode,
5893 GET_MODE_MASK (mode)));
5894 continue;
5895
5896 case IOR:
5897 case AND:
5898 case XOR:
5899 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
5900 with C the size of VAROP - 1 and the shift is logical if
5901 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
5902 we have an (le X 0) operation. If we have an arithmetic shift
5903 and STORE_FLAG_VALUE is 1 or we have a logical shift with
5904 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
5905
5906 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
5907 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
5908 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5909 && (code == LSHIFTRT || code == ASHIFTRT)
5910 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
5911 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
5912 {
5913 count = 0;
5914 varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
5915 const0_rtx);
5916
5917 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
5918 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
5919
5920 continue;
5921 }
5922
5923 /* If we have (shift (logical)), move the logical to the outside
5924 to allow it to possibly combine with another logical and the
5925 shift to combine with another shift. This also canonicalizes to
5926 what a ZERO_EXTRACT looks like. Also, some machines have
5927 (and (shift)) insns. */
5928
5929 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
5930 && (new = simplify_binary_operation (code, result_mode,
5931 XEXP (varop, 1),
5932 gen_rtx (CONST_INT,
5933 VOIDmode,
5934 count))) != 0
5935 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
5936 INTVAL (new), result_mode, &complement_p))
5937 {
5938 varop = XEXP (varop, 0);
5939 continue;
5940 }
5941
5942 /* If we can't do that, try to simplify the shift in each arm of the
5943 logical expression, make a new logical expression, and apply
5944 the inverse distributive law. */
5945 {
5946 rtx lhs = simplify_shift_const (0, code, result_mode,
5947 XEXP (varop, 0), count);
5948 rtx rhs = simplify_shift_const (0, code, result_mode,
5949 XEXP (varop, 1), count);
5950
5951 varop = gen_binary (GET_CODE (varop), result_mode, lhs, rhs);
5952 varop = apply_distributive_law (varop);
5953
5954 count = 0;
5955 }
5956 break;
5957
5958 case EQ:
5959 /* convert (lshift (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
5960 says that the sign bit can be tested, FOO has mode MODE, C is
5961 GET_MODE_BITSIZE (MODE) - 1, and FOO has only the low-order bit
5962 significant. */
5963 if (code == LSHIFT
5964 && XEXP (varop, 1) == const0_rtx
5965 && GET_MODE (XEXP (varop, 0)) == result_mode
5966 && count == GET_MODE_BITSIZE (result_mode) - 1
5967 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_INT
5968 && ((STORE_FLAG_VALUE
5969 & (1 << (GET_MODE_BITSIZE (result_mode) - 1))))
5970 && significant_bits (XEXP (varop, 0), result_mode) == 1
5971 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
5972 result_mode, &complement_p))
5973 {
5974 varop = XEXP (varop, 0);
5975 count = 0;
5976 continue;
5977 }
5978 break;
5979
5980 case NEG:
5981 /* If we are doing an arithmetic right shift of something known
5982 to be -1 or 0, we don't need the shift. */
5983 if (code == ASHIFTRT
5984 && significant_bits (XEXP (varop, 0), result_mode) == 1)
5985 {
5986 count = 0;
5987 continue;
5988 }
5989
5990 /* NEG commutes with ASHIFT since it is multiplication. Move the
5991 NEG outside to allow shifts to combine. */
5992 if (code == ASHIFT
5993 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
5994 result_mode, &complement_p))
5995 {
5996 varop = XEXP (varop, 0);
5997 continue;
5998 }
5999 break;
6000
6001 case PLUS:
6002 /* Similar to case above. If X is 0 or 1 then X - 1 is -1 or 0. */
6003 if (XEXP (varop, 1) == constm1_rtx && code == ASHIFTRT
6004 && significant_bits (XEXP (varop, 0), result_mode) == 1)
6005 {
6006 count = 0;
6007 continue;
6008 }
6009
6010 /* If we have the same operands as above but we are shifting the
6011 sign bit into the low-order bit, we are exclusive-or'ing
6012 the operand of the PLUS with a one. */
6013 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
6014 && XEXP (varop, 1) == constm1_rtx
6015 && significant_bits (XEXP (varop, 0), result_mode) == 1
6016 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
6017 result_mode, &complement_p))
6018 {
6019 count = 0;
6020 varop = XEXP (varop, 0);
6021 continue;
6022 }
6023
6024 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
6025 significant in BAR are those being shifted out and those
6026 bits are known zero in FOO, we can replace the PLUS with FOO.
6027 Similarly in the other operand order. This code occurs when
6028 we are computing the size of a variable-size array. */
6029
6030 if ((code == ASHIFTRT || code == LSHIFTRT)
6031 && count < HOST_BITS_PER_INT
6032 && significant_bits (XEXP (varop, 1), result_mode) >> count == 0
6033 && (significant_bits (XEXP (varop, 1), result_mode)
6034 & significant_bits (XEXP (varop, 0), result_mode)) == 0)
6035 {
6036 varop = XEXP (varop, 0);
6037 continue;
6038 }
6039 else if ((code == ASHIFTRT || code == LSHIFTRT)
6040 && count < HOST_BITS_PER_INT
6041 && 0 == (significant_bits (XEXP (varop, 0), result_mode)
6042 >> count)
6043 && 0 == (significant_bits (XEXP (varop, 0), result_mode)
6044 & significant_bits (XEXP (varop, 1),
6045 result_mode)))
6046 {
6047 varop = XEXP (varop, 1);
6048 continue;
6049 }
6050
6051 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
6052 if (code == ASHIFT
6053 && GET_CODE (XEXP (varop, 1)) == CONST_INT
6054 && (new = simplify_binary_operation (ASHIFT, result_mode,
6055 XEXP (varop, 1),
6056 gen_rtx (CONST_INT,
6057 VOIDmode,
6058 count))) != 0
6059 && merge_outer_ops (&outer_op, &outer_const, PLUS,
6060 INTVAL (new), result_mode, &complement_p))
6061 {
6062 varop = XEXP (varop, 0);
6063 continue;
6064 }
6065 break;
6066
6067 case MINUS:
6068 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
6069 with C the size of VAROP - 1 and the shift is logical if
6070 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
6071 we have a (gt X 0) operation. If the shift is arithmetic with
6072 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
6073 we have a (neg (gt X 0)) operation. */
6074
6075 if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
6076 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
6077 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6078 && (code == LSHIFTRT || code == ASHIFTRT)
6079 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
6080 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
6081 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
6082 {
6083 count = 0;
6084 varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
6085 const0_rtx);
6086
6087 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
6088 varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
6089
6090 continue;
6091 }
6092 break;
6093 }
6094
6095 break;
6096 }
6097
6098 /* We need to determine what mode to do the shift in. If the shift is
6099 a ASHIFTRT or ROTATE, we must always do it in the mode it was originally
6100 done in. Otherwise, we can do it in MODE, the widest mode encountered.
6101 The code we care about is that of the shift that will actually be done,
6102 not the shift that was originally requested. */
6103 shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
6104
6105 /* We have now finished analyzing the shift. The result should be
6106 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
6107 OUTER_OP is non-NIL, it is an operation that needs to be applied
6108 to the result of the shift. OUTER_CONST is the relevant constant,
6109 but we must turn off all bits turned off in the shift.
6110
6111 If we were passed a value for X, see if we can use any pieces of
6112 it. If not, make new rtx. */
6113
6114 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
6115 && GET_CODE (XEXP (x, 1)) == CONST_INT
6116 && INTVAL (XEXP (x, 1)) == count)
6117 const_rtx = XEXP (x, 1);
6118 else
6119 const_rtx = gen_rtx (CONST_INT, VOIDmode, count);
6120
6121 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
6122 && GET_MODE (XEXP (x, 0)) == shift_mode
6123 && SUBREG_REG (XEXP (x, 0)) == varop)
6124 varop = XEXP (x, 0);
6125 else if (GET_MODE (varop) != shift_mode)
6126 varop = gen_lowpart_for_combine (shift_mode, varop);
6127
6128 /* If we can't make the SUBREG, try to return what we were given. */
6129 if (GET_CODE (varop) == CLOBBER)
6130 return x ? x : varop;
6131
6132 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
6133 if (new != 0)
6134 x = new;
6135 else
6136 {
6137 if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
6138 x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
6139
6140 SUBST (XEXP (x, 0), varop);
6141 SUBST (XEXP (x, 1), const_rtx);
6142 }
6143
6144 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
6145 turn off all the bits that the shift would have turned off. */
6146 if (orig_code == LSHIFTRT && result_mode != shift_mode)
6147 x = simplify_and_const_int (0, shift_mode, x,
6148 GET_MODE_MASK (result_mode) >> orig_count);
6149
6150 /* Do the remainder of the processing in RESULT_MODE. */
6151 x = gen_lowpart_for_combine (result_mode, x);
6152
6153 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
6154 operation. */
6155 if (complement_p)
6156 x = gen_unary (NOT, result_mode, x);
6157
6158 if (outer_op != NIL)
6159 {
6160 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_INT)
6161 outer_const &= GET_MODE_MASK (result_mode);
6162
6163 if (outer_op == AND)
6164 x = simplify_and_const_int (0, result_mode, x, outer_const);
6165 else if (outer_op == SET)
6166 /* This means that we have determined that the result is
6167 equivalent to a constant. This should be rare. */
6168 x = gen_rtx (CONST_INT, VOIDmode, outer_const);
6169 else if (GET_RTX_CLASS (outer_op) == '1')
6170 x = gen_unary (outer_op, result_mode, x);
6171 else
6172 x = gen_binary (outer_op, result_mode, x,
6173 gen_rtx (CONST_INT, VOIDmode, outer_const));
6174 }
6175
6176 return x;
6177 }
6178 \f
6179 /* Like recog, but we receive the address of a pointer to a new pattern.
6180 We try to match the rtx that the pointer points to.
6181 If that fails, we may try to modify or replace the pattern,
6182 storing the replacement into the same pointer object.
6183
6184 Modifications include deletion or addition of CLOBBERs.
6185
6186 PNOTES is a pointer to a location where any REG_UNUSED notes added for
6187 the CLOBBERs are placed.
6188
6189 The value is the final insn code from the pattern ultimately matched,
6190 or -1. */
6191
6192 static int
6193 recog_for_combine (pnewpat, insn, pnotes)
6194 rtx *pnewpat;
6195 rtx insn;
6196 rtx *pnotes;
6197 {
6198 register rtx pat = *pnewpat;
6199 int insn_code_number;
6200 int num_clobbers_to_add = 0;
6201 int i;
6202 rtx notes = 0;
6203
6204 /* Is the result of combination a valid instruction? */
6205 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
6206
6207 /* If it isn't, there is the possibility that we previously had an insn
6208 that clobbered some register as a side effect, but the combined
6209 insn doesn't need to do that. So try once more without the clobbers
6210 unless this represents an ASM insn. */
6211
6212 if (insn_code_number < 0 && ! check_asm_operands (pat)
6213 && GET_CODE (pat) == PARALLEL)
6214 {
6215 int pos;
6216
6217 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
6218 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
6219 {
6220 if (i != pos)
6221 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
6222 pos++;
6223 }
6224
6225 SUBST_INT (XVECLEN (pat, 0), pos);
6226
6227 if (pos == 1)
6228 pat = XVECEXP (pat, 0, 0);
6229
6230 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
6231 }
6232
6233 /* If we had any clobbers to add, make a new pattern than contains
6234 them. Then check to make sure that all of them are dead. */
6235 if (num_clobbers_to_add)
6236 {
6237 rtx newpat = gen_rtx (PARALLEL, VOIDmode,
6238 gen_rtvec (GET_CODE (pat) == PARALLEL
6239 ? XVECLEN (pat, 0) + num_clobbers_to_add
6240 : num_clobbers_to_add + 1));
6241
6242 if (GET_CODE (pat) == PARALLEL)
6243 for (i = 0; i < XVECLEN (pat, 0); i++)
6244 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
6245 else
6246 XVECEXP (newpat, 0, 0) = pat;
6247
6248 add_clobbers (newpat, insn_code_number);
6249
6250 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
6251 i < XVECLEN (newpat, 0); i++)
6252 {
6253 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
6254 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
6255 return -1;
6256 notes = gen_rtx (EXPR_LIST, REG_UNUSED,
6257 XEXP (XVECEXP (newpat, 0, i), 0), notes);
6258 }
6259 pat = newpat;
6260 }
6261
6262 *pnewpat = pat;
6263 *pnotes = notes;
6264
6265 return insn_code_number;
6266 }
6267 \f
6268 /* Like gen_lowpart but for use by combine. In combine it is not possible
6269 to create any new pseudoregs. However, it is safe to create
6270 invalid memory addresses, because combine will try to recognize
6271 them and all they will do is make the combine attempt fail.
6272
6273 If for some reason this cannot do its job, an rtx
6274 (clobber (const_int 0)) is returned.
6275 An insn containing that will not be recognized. */
6276
6277 #undef gen_lowpart
6278
6279 static rtx
6280 gen_lowpart_for_combine (mode, x)
6281 enum machine_mode mode;
6282 register rtx x;
6283 {
6284 rtx result;
6285
6286 if (GET_MODE (x) == mode)
6287 return x;
6288
6289 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
6290 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
6291
6292 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
6293 won't know what to do. So we will strip off the SUBREG here and
6294 process normally. */
6295 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6296 {
6297 x = SUBREG_REG (x);
6298 if (GET_MODE (x) == mode)
6299 return x;
6300 }
6301
6302 result = gen_lowpart_common (mode, x);
6303 if (result)
6304 return result;
6305
6306 if (GET_CODE (x) == MEM)
6307 {
6308 register int offset = 0;
6309 rtx new;
6310
6311 /* Refuse to work on a volatile memory ref or one with a mode-dependent
6312 address. */
6313 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
6314 return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
6315
6316 /* If we want to refer to something bigger than the original memref,
6317 generate a perverse subreg instead. That will force a reload
6318 of the original memref X. */
6319 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
6320 return gen_rtx (SUBREG, mode, x, 0);
6321
6322 #if WORDS_BIG_ENDIAN
6323 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
6324 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
6325 #endif
6326 #if BYTES_BIG_ENDIAN
6327 /* Adjust the address so that the address-after-the-data
6328 is unchanged. */
6329 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
6330 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
6331 #endif
6332 new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
6333 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
6334 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
6335 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
6336 return new;
6337 }
6338
6339 /* If X is a comparison operator, rewrite it in a new mode. This
6340 probably won't match, but may allow further simplifications. */
6341 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6342 return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
6343
6344 /* If we couldn't simplify X any other way, just enclose it in a
6345 SUBREG. Normally, this SUBREG won't match, but some patterns may
6346 include an explicit SUBREG or we may simplify it further in combine. */
6347 else
6348 {
6349 int word = 0;
6350
6351 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
6352 word = ((GET_MODE_SIZE (GET_MODE (x))
6353 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
6354 / UNITS_PER_WORD);
6355 return gen_rtx (SUBREG, mode, x, word);
6356 }
6357 }
6358 \f
6359 /* Make an rtx expression. This is a subset of gen_rtx and only supports
6360 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
6361
6362 If the identical expression was previously in the insn (in the undobuf),
6363 it will be returned. Only if it is not found will a new expression
6364 be made. */
6365
6366 /*VARARGS2*/
6367 static rtx
6368 gen_rtx_combine (va_alist)
6369 va_dcl
6370 {
6371 va_list p;
6372 enum rtx_code code;
6373 enum machine_mode mode;
6374 int n_args;
6375 rtx args[3];
6376 int i, j;
6377 char *fmt;
6378 rtx rt;
6379
6380 va_start (p);
6381 code = va_arg (p, enum rtx_code);
6382 mode = va_arg (p, enum machine_mode);
6383 n_args = GET_RTX_LENGTH (code);
6384 fmt = GET_RTX_FORMAT (code);
6385
6386 if (n_args == 0 || n_args > 3)
6387 abort ();
6388
6389 /* Get each arg and verify that it is supposed to be an expression. */
6390 for (j = 0; j < n_args; j++)
6391 {
6392 if (*fmt++ != 'e')
6393 abort ();
6394
6395 args[j] = va_arg (p, rtx);
6396 }
6397
6398 /* See if this is in undobuf. Be sure we don't use objects that came
6399 from another insn; this could produce circular rtl structures. */
6400
6401 for (i = previous_num_undos; i < undobuf.num_undo; i++)
6402 if (!undobuf.undo[i].is_int
6403 && GET_CODE (undobuf.undo[i].old_contents) == code
6404 && GET_MODE (undobuf.undo[i].old_contents) == mode)
6405 {
6406 for (j = 0; j < n_args; j++)
6407 if (XEXP (undobuf.undo[i].old_contents, j) != args[j])
6408 break;
6409
6410 if (j == n_args)
6411 return undobuf.undo[i].old_contents;
6412 }
6413
6414 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
6415 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
6416 rt = rtx_alloc (code);
6417 PUT_MODE (rt, mode);
6418 XEXP (rt, 0) = args[0];
6419 if (n_args > 1)
6420 {
6421 XEXP (rt, 1) = args[1];
6422 if (n_args > 2)
6423 XEXP (rt, 2) = args[2];
6424 }
6425 return rt;
6426 }
6427
6428 /* These routines make binary and unary operations by first seeing if they
6429 fold; if not, a new expression is allocated. */
6430
6431 static rtx
6432 gen_binary (code, mode, op0, op1)
6433 enum rtx_code code;
6434 enum machine_mode mode;
6435 rtx op0, op1;
6436 {
6437 rtx result;
6438
6439 if (GET_RTX_CLASS (code) == '<')
6440 {
6441 enum machine_mode op_mode = GET_MODE (op0);
6442 if (op_mode == VOIDmode)
6443 op_mode = GET_MODE (op1);
6444 result = simplify_relational_operation (code, op_mode, op0, op1);
6445 }
6446 else
6447 result = simplify_binary_operation (code, mode, op0, op1);
6448
6449 if (result)
6450 return result;
6451
6452 /* Put complex operands first and constants second. */
6453 if (GET_RTX_CLASS (code) == 'c'
6454 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
6455 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
6456 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
6457 || (GET_CODE (op0) == SUBREG
6458 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
6459 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
6460 return gen_rtx_combine (code, mode, op1, op0);
6461
6462 return gen_rtx_combine (code, mode, op0, op1);
6463 }
6464
6465 static rtx
6466 gen_unary (code, mode, op0)
6467 enum rtx_code code;
6468 enum machine_mode mode;
6469 rtx op0;
6470 {
6471 rtx result = simplify_unary_operation (code, mode, op0, mode);
6472
6473 if (result)
6474 return result;
6475
6476 return gen_rtx_combine (code, mode, op0);
6477 }
6478 \f
6479 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
6480 comparison code that will be tested.
6481
6482 The result is a possibly different comparison code to use. *POP0 and
6483 *POP1 may be updated.
6484
6485 It is possible that we might detect that a comparison is either always
6486 true or always false. However, we do not perform general constant
6487 folding in combine, so this knowledge isn't useful. Such tautologies
6488 should have been detected earlier. Hence we ignore all such cases. */
6489
6490 static enum rtx_code
6491 simplify_comparison (code, pop0, pop1)
6492 enum rtx_code code;
6493 rtx *pop0;
6494 rtx *pop1;
6495 {
6496 rtx op0 = *pop0;
6497 rtx op1 = *pop1;
6498 rtx tem, tem1;
6499 int i;
6500 enum machine_mode mode, tmode;
6501
6502 /* Try a few ways of applying the same transformation to both operands. */
6503 while (1)
6504 {
6505 /* If both operands are the same constant shift, see if we can ignore the
6506 shift. We can if the shift is a rotate or if the bits shifted out of
6507 this shift are not significant for either input and if the type of
6508 comparison is compatible with the shift. */
6509 if (GET_CODE (op0) == GET_CODE (op1)
6510 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
6511 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
6512 || ((GET_CODE (op0) == LSHIFTRT
6513 || GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
6514 && (code != GT && code != LT && code != GE && code != LE))
6515 || (GET_CODE (op0) == ASHIFTRT
6516 && (code != GTU && code != LTU
6517 && code != GEU && code != GEU)))
6518 && GET_CODE (XEXP (op0, 1)) == CONST_INT
6519 && INTVAL (XEXP (op0, 1)) >= 0
6520 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_INT
6521 && XEXP (op0, 1) == XEXP (op1, 1))
6522 {
6523 enum machine_mode mode = GET_MODE (op0);
6524 unsigned mask = GET_MODE_MASK (mode);
6525 int shift_count = INTVAL (XEXP (op0, 1));
6526
6527 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
6528 mask &= (mask >> shift_count) << shift_count;
6529 else if (GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
6530 mask = (mask & (mask << shift_count)) >> shift_count;
6531
6532 if ((significant_bits (XEXP (op0, 0), mode) & ~ mask) == 0
6533 && (significant_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
6534 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
6535 else
6536 break;
6537 }
6538
6539 /* If both operands are AND's of a paradoxical SUBREG by constant, the
6540 SUBREGs are of the same mode, and, in both cases, the AND would
6541 be redundant if the comparison was done in the narrower mode,
6542 do the comparison in the narrower mode (e.g., we are AND'ing with 1
6543 and the operand's significant bits are 0xffffff01; in that case if
6544 we only care about QImode, we don't need the AND). This case occurs
6545 if the output mode of an scc insn is not SImode and
6546 STORE_FLAG_VALUE == 1 (e.g., the 386). */
6547
6548 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
6549 && GET_CODE (XEXP (op0, 1)) == CONST_INT
6550 && GET_CODE (XEXP (op1, 1)) == CONST_INT
6551 && GET_CODE (XEXP (op0, 0)) == SUBREG
6552 && GET_CODE (XEXP (op1, 0)) == SUBREG
6553 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
6554 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
6555 && (GET_MODE (SUBREG_REG (XEXP (op0, 0)))
6556 == GET_MODE (SUBREG_REG (XEXP (op1, 0))))
6557 && (significant_bits (SUBREG_REG (XEXP (op0, 0)),
6558 GET_MODE (SUBREG_REG (XEXP (op0, 0))))
6559 & ~ INTVAL (XEXP (op0, 1))) == 0
6560 && (significant_bits (SUBREG_REG (XEXP (op1, 0)),
6561 GET_MODE (SUBREG_REG (XEXP (op1, 0))))
6562 & ~ INTVAL (XEXP (op1, 1))) == 0)
6563 {
6564 op0 = SUBREG_REG (XEXP (op0, 0));
6565 op1 = SUBREG_REG (XEXP (op1, 0));
6566
6567 /* the resulting comparison is always unsigned since we masked off
6568 the original sign bit. */
6569 code = unsigned_condition (code);
6570 }
6571 else
6572 break;
6573 }
6574
6575 /* If the first operand is a constant, swap the operands and adjust the
6576 comparison code appropriately. */
6577 if (CONSTANT_P (op0))
6578 {
6579 tem = op0, op0 = op1, op1 = tem;
6580 code = swap_condition (code);
6581 }
6582
6583 /* We now enter a loop during which we will try to simplify the comparison.
6584 For the most part, we only are concerned with comparisons with zero,
6585 but some things may really be comparisons with zero but not start
6586 out looking that way. */
6587
6588 while (GET_CODE (op1) == CONST_INT)
6589 {
6590 enum machine_mode mode = GET_MODE (op0);
6591 int mode_width = GET_MODE_BITSIZE (mode);
6592 unsigned mask = GET_MODE_MASK (mode);
6593 int equality_comparison_p;
6594 int sign_bit_comparison_p;
6595 int unsigned_comparison_p;
6596 int const_op;
6597
6598 /* We only want to handle integral modes. This catches VOIDmode,
6599 CCmode, and the floating-point modes. An exception is that we
6600 can handle VOIDmode if OP0 is a COMPARE or a comparison
6601 operation. */
6602
6603 if (GET_MODE_CLASS (mode) != MODE_INT
6604 && ! (mode == VOIDmode
6605 && (GET_CODE (op0) == COMPARE
6606 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
6607 break;
6608
6609 /* Get the constant we are comparing against and turn off all bits
6610 not on in our mode. */
6611 const_op = INTVAL (op1);
6612 if (mode_width <= HOST_BITS_PER_INT)
6613 const_op &= mask;
6614
6615 /* If we are comparing against a constant power of two and the value
6616 being compared has only that single significant bit (e.g., it was
6617 `and'ed with that bit), we can replace this with a comparison
6618 with zero. */
6619 if (const_op
6620 && (code == EQ || code == NE || code == GE || code == GEU
6621 || code == LT || code == LTU)
6622 && mode_width <= HOST_BITS_PER_INT
6623 && exact_log2 (const_op) >= 0
6624 && significant_bits (op0, mode) == const_op)
6625 {
6626 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
6627 op1 = const0_rtx, const_op = 0;
6628 }
6629
6630 /* Do some canonicalizations based on the comparison code. We prefer
6631 comparisons against zero and then prefer equality comparisons.
6632 If we can reduce the size of a constant, we will do that too. */
6633
6634 switch (code)
6635 {
6636 case LT:
6637 /* < C is equivalent to <= (C - 1) */
6638 if (const_op > 0)
6639 {
6640 const_op -= 1;
6641 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
6642 code = LE;
6643 /* ... fall through to LE case below. */
6644 }
6645 else
6646 break;
6647
6648 case LE:
6649 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
6650 if (const_op < 0)
6651 {
6652 const_op += 1;
6653 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
6654 code = LT;
6655 }
6656
6657 /* If we are doing a <= 0 comparison on a value known to have
6658 a zero sign bit, we can replace this with == 0. */
6659 else if (const_op == 0
6660 && mode_width <= HOST_BITS_PER_INT
6661 && (significant_bits (op0, mode)
6662 & (1 << (mode_width - 1))) == 0)
6663 code = EQ;
6664 break;
6665
6666 case GE:
6667 /* >= C is equivalent to > (C - 1). */
6668 if (const_op > 0)
6669 {
6670 const_op -= 1;
6671 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
6672 code = GT;
6673 /* ... fall through to GT below. */
6674 }
6675 else
6676 break;
6677
6678 case GT:
6679 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
6680 if (const_op < 0)
6681 {
6682 const_op += 1;
6683 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
6684 code = GE;
6685 }
6686
6687 /* If we are doing a > 0 comparison on a value known to have
6688 a zero sign bit, we can replace this with != 0. */
6689 else if (const_op == 0
6690 && mode_width <= HOST_BITS_PER_INT
6691 && (significant_bits (op0, mode)
6692 & (1 << (mode_width - 1))) == 0)
6693 code = NE;
6694 break;
6695
6696 case LTU:
6697 /* < C is equivalent to <= (C - 1). */
6698 if (const_op > 0)
6699 {
6700 const_op -= 1;
6701 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
6702 code = LEU;
6703 /* ... fall through ... */
6704 }
6705 else
6706 break;
6707
6708 case LEU:
6709 /* unsigned <= 0 is equivalent to == 0 */
6710 if (const_op == 0)
6711 code = EQ;
6712 break;
6713
6714 case GEU:
6715 /* >= C is equivalent to < (C - 1). */
6716 if (const_op > 1)
6717 {
6718 const_op -= 1;
6719 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
6720 code = GTU;
6721 /* ... fall through ... */
6722 }
6723 else
6724 break;
6725
6726 case GTU:
6727 /* unsigned > 0 is equivalent to != 0 */
6728 if (const_op == 0)
6729 code = NE;
6730 break;
6731 }
6732
6733 /* Compute some predicates to simplify code below. */
6734
6735 equality_comparison_p = (code == EQ || code == NE);
6736 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
6737 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
6738 || code == LEU);
6739
6740 /* Now try cases based on the opcode of OP0. If none of the cases
6741 does a "continue", we exit this loop immediately after the
6742 switch. */
6743
6744 switch (GET_CODE (op0))
6745 {
6746 case ZERO_EXTRACT:
6747 /* If we are extracting a single bit from a variable position in
6748 a constant that has only a single bit set and are comparing it
6749 with zero, we can convert this into an equality comparison
6750 between the position and the location of the single bit. We can't
6751 do this if bit endian and we don't have an extzv since we then
6752 can't know what mode to use for the endianness adjustment. */
6753
6754 #if ! BITS_BIG_ENDIAN || defined (HAVE_extzv)
6755 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
6756 && XEXP (op0, 1) == const1_rtx
6757 && equality_comparison_p && const_op == 0
6758 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
6759 {
6760 #if BITS_BIG_ENDIAN
6761 i = (GET_MODE_BITSIZE
6762 (insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
6763 #endif
6764
6765 op0 = XEXP (op0, 2);
6766 op1 = gen_rtx (CONST_INT, VOIDmode, i);
6767 const_op = i;
6768
6769 /* Result is nonzero iff shift count is equal to I. */
6770 code = reverse_condition (code);
6771 continue;
6772 }
6773 #endif
6774
6775 /* ... fall through ... */
6776
6777 case SIGN_EXTRACT:
6778 tem = expand_compound_operation (op0);
6779 if (tem != op0)
6780 {
6781 op0 = tem;
6782 continue;
6783 }
6784 break;
6785
6786 case NOT:
6787 /* If testing for equality, we can take the NOT of the constant. */
6788 if (equality_comparison_p
6789 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
6790 {
6791 op0 = XEXP (op0, 0);
6792 op1 = tem;
6793 continue;
6794 }
6795
6796 /* If just looking at the sign bit, reverse the sense of the
6797 comparison. */
6798 if (sign_bit_comparison_p)
6799 {
6800 op0 = XEXP (op0, 0);
6801 code = (code == GE ? LT : GE);
6802 continue;
6803 }
6804 break;
6805
6806 case NEG:
6807 /* If testing for equality, we can take the NEG of the constant. */
6808 if (equality_comparison_p
6809 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
6810 {
6811 op0 = XEXP (op0, 0);
6812 op1 = tem;
6813 continue;
6814 }
6815
6816 /* The remaining cases only apply to comparisons with zero. */
6817 if (const_op != 0)
6818 break;
6819
6820 /* When X is ABS or is known positive,
6821 (neg X) is < 0 if and only if X != 0. */
6822
6823 if (sign_bit_comparison_p
6824 && (GET_CODE (XEXP (op0, 0)) == ABS
6825 || (mode_width <= HOST_BITS_PER_INT
6826 && (significant_bits (XEXP (op0, 0), mode)
6827 & (1 << (mode_width - 1))) == 0)))
6828 {
6829 op0 = XEXP (op0, 0);
6830 code = (code == LT ? NE : EQ);
6831 continue;
6832 }
6833
6834 /* If we have NEG of something that is the result of a
6835 SIGN_EXTEND, SIGN_EXTRACT, or ASHIFTRT, we know that the
6836 two high-order bits must be the same and hence that
6837 "(-a) < 0" is equivalent to "a > 0". Otherwise, we can't
6838 do this. */
6839 if (GET_CODE (XEXP (op0, 0)) == SIGN_EXTEND
6840 || (GET_CODE (XEXP (op0, 0)) == SIGN_EXTRACT
6841 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
6842 && (INTVAL (XEXP (XEXP (op0, 0), 1))
6843 < GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (op0, 0), 0)))))
6844 || (GET_CODE (XEXP (op0, 0)) == ASHIFTRT
6845 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
6846 && XEXP (XEXP (op0, 0), 1) != const0_rtx)
6847 || ((tem = get_last_value (XEXP (op0, 0))) != 0
6848 && (GET_CODE (tem) == SIGN_EXTEND
6849 || (GET_CODE (tem) == SIGN_EXTRACT
6850 && GET_CODE (XEXP (tem, 1)) == CONST_INT
6851 && (INTVAL (XEXP (tem, 1))
6852 < GET_MODE_BITSIZE (GET_MODE (XEXP (tem, 0)))))
6853 || (GET_CODE (tem) == ASHIFTRT
6854 && GET_CODE (XEXP (tem, 1)) == CONST_INT
6855 && XEXP (tem, 1) != const0_rtx))))
6856 {
6857 op0 = XEXP (op0, 0);
6858 code = swap_condition (code);
6859 continue;
6860 }
6861 break;
6862
6863 case ROTATE:
6864 /* If we are testing equality and our count is a constant, we
6865 can perform the inverse operation on our RHS. */
6866 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
6867 && (tem = simplify_binary_operation (ROTATERT, mode,
6868 op1, XEXP (op0, 1))) != 0)
6869 {
6870 op0 = XEXP (op0, 0);
6871 op1 = tem;
6872 continue;
6873 }
6874
6875 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
6876 a particular bit. Convert it to an AND of a constant of that
6877 bit. This will be converted into a ZERO_EXTRACT. */
6878 if (const_op == 0 && sign_bit_comparison_p
6879 && GET_CODE (XEXP (op0, 1)) == CONST_INT
6880 && mode_width <= HOST_BITS_PER_INT)
6881 {
6882 op0 = simplify_and_const_int (0, mode, XEXP (op0, 0),
6883 1 << (mode_width - 1
6884 - INTVAL (XEXP (op0, 1))));
6885 code = (code == LT ? NE : EQ);
6886 continue;
6887 }
6888
6889 /* ... fall through ... */
6890
6891 case ABS:
6892 /* ABS is ignorable inside an equality comparison with zero. */
6893 if (const_op == 0 && equality_comparison_p)
6894 {
6895 op0 = XEXP (op0, 0);
6896 continue;
6897 }
6898 break;
6899
6900
6901 case SIGN_EXTEND:
6902 /* Can simplify (compare (zero/sign_extend FOO) CONST)
6903 to (compare FOO CONST) if CONST fits in FOO's mode and we
6904 are either testing inequality or have an unsigned comparison
6905 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
6906 if (! unsigned_comparison_p
6907 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
6908 <= HOST_BITS_PER_INT)
6909 && ((unsigned) const_op
6910 < (1 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1))))
6911 {
6912 op0 = XEXP (op0, 0);
6913 continue;
6914 }
6915 break;
6916
6917 case SUBREG:
6918 /* If the inner mode is smaller and we are extracting the low
6919 part, we can treat the SUBREG as if it were a ZERO_EXTEND. */
6920 if (! subreg_lowpart_p (op0)
6921 || GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) >= mode_width)
6922 break;
6923
6924 /* ... fall through ... */
6925
6926 case ZERO_EXTEND:
6927 if ((unsigned_comparison_p || equality_comparison_p)
6928 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
6929 <= HOST_BITS_PER_INT)
6930 && ((unsigned) const_op
6931 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
6932 {
6933 op0 = XEXP (op0, 0);
6934 continue;
6935 }
6936 break;
6937
6938 case PLUS:
6939 /* (eq (plus X C1) C2) -> (eq X (minus C2 C1)). We can only do
6940 this for equality comparisons due to pathological cases involving
6941 overflows. */
6942 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
6943 && (tem = simplify_binary_operation (MINUS, mode, op1,
6944 XEXP (op0, 1))) != 0)
6945 {
6946 op0 = XEXP (op0, 0);
6947 op1 = tem;
6948 continue;
6949 }
6950
6951 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
6952 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
6953 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
6954 {
6955 op0 = XEXP (XEXP (op0, 0), 0);
6956 code = (code == LT ? EQ : NE);
6957 continue;
6958 }
6959 break;
6960
6961 case MINUS:
6962 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
6963 of bits in X minus 1, is one iff X > 0. */
6964 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
6965 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
6966 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
6967 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
6968 {
6969 op0 = XEXP (op0, 1);
6970 code = (code == GE ? LE : GT);
6971 continue;
6972 }
6973 break;
6974
6975 case XOR:
6976 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
6977 if C is zero or B is a constant. */
6978 if (equality_comparison_p
6979 && 0 != (tem = simplify_binary_operation (XOR, mode,
6980 XEXP (op0, 1), op1)))
6981 {
6982 op0 = XEXP (op0, 0);
6983 op1 = tem;
6984 continue;
6985 }
6986 break;
6987
6988 case EQ: case NE:
6989 case LT: case LTU: case LE: case LEU:
6990 case GT: case GTU: case GE: case GEU:
6991 /* We can't do anything if OP0 is a condition code value, rather
6992 than an actual data value. */
6993 if (const_op != 0
6994 #ifdef HAVE_cc0
6995 || XEXP (op0, 0) == cc0_rtx
6996 #endif
6997 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
6998 break;
6999
7000 /* Get the two operands being compared. */
7001 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
7002 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
7003 else
7004 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
7005
7006 /* Check for the cases where we simply want the result of the
7007 earlier test or the opposite of that result. */
7008 if (code == NE
7009 || (code == EQ && reversible_comparison_p (op0))
7010 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
7011 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7012 && (STORE_FLAG_VALUE
7013 & (1 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1)))
7014 && (code == LT
7015 || (code == GE && reversible_comparison_p (op0)))))
7016 {
7017 code = (code == LT || code == NE
7018 ? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
7019 op0 = tem, op1 = tem1;
7020 continue;
7021 }
7022 break;
7023
7024 case IOR:
7025 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
7026 iff X <= 0. */
7027 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
7028 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
7029 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
7030 {
7031 op0 = XEXP (op0, 1);
7032 code = (code == GE ? GT : LE);
7033 continue;
7034 }
7035 break;
7036
7037 case AND:
7038 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
7039 will be converted to a ZERO_EXTRACT later. */
7040 if (const_op == 0 && equality_comparison_p
7041 && (GET_CODE (XEXP (op0, 0)) == ASHIFT
7042 || GET_CODE (XEXP (op0, 0)) == LSHIFT)
7043 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
7044 {
7045 op0 = simplify_and_const_int
7046 (op0, mode, gen_rtx_combine (LSHIFTRT, mode,
7047 XEXP (op0, 1),
7048 XEXP (XEXP (op0, 0), 1)),
7049 1);
7050 continue;
7051 }
7052
7053 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
7054 zero and X is a comparison and C1 and C2 describe only bits set
7055 in STORE_FLAG_VALUE, we can compare with X. */
7056 if (const_op == 0 && equality_comparison_p
7057 && mode_width <= HOST_BITS_PER_INT
7058 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7059 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
7060 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
7061 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
7062 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_INT)
7063 {
7064 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
7065 << INTVAL (XEXP (XEXP (op0, 0), 1)));
7066 if ((~ STORE_FLAG_VALUE & mask) == 0
7067 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
7068 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
7069 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
7070 {
7071 op0 = XEXP (XEXP (op0, 0), 0);
7072 continue;
7073 }
7074 }
7075
7076 /* If we are doing an equality comparison of an AND of a bit equal
7077 to the sign bit, replace this with a LT or GE comparison of
7078 the underlying value. */
7079 if (equality_comparison_p
7080 && const_op == 0
7081 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7082 && mode_width <= HOST_BITS_PER_INT
7083 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
7084 == 1 << (mode_width - 1)))
7085 {
7086 op0 = XEXP (op0, 0);
7087 code = (code == EQ ? GE : LT);
7088 continue;
7089 }
7090
7091 /* If this AND operation is really a ZERO_EXTEND from a narrower
7092 mode, the constant fits within that mode, and this is either an
7093 equality or unsigned comparison, try to do this comparison in
7094 the narrower mode. */
7095 if ((equality_comparison_p || unsigned_comparison_p)
7096 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7097 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
7098 & GET_MODE_MASK (mode))
7099 + 1)) >= 0
7100 && const_op >> i == 0
7101 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
7102 {
7103 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
7104 continue;
7105 }
7106 break;
7107
7108 case ASHIFT:
7109 case LSHIFT:
7110 /* If we have (compare (xshift FOO N) (const_int C)) and
7111 the high order N bits of FOO (N+1 if an inequality comparison)
7112 are not significant, we can do this by comparing FOO with C
7113 shifted right N bits so long as the low-order N bits of C are
7114 zero. */
7115 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
7116 && INTVAL (XEXP (op0, 1)) >= 0
7117 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
7118 < HOST_BITS_PER_INT)
7119 && (const_op & ~ ((1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
7120 && mode_width <= HOST_BITS_PER_INT
7121 && (significant_bits (XEXP (op0, 0), mode)
7122 & ~ (mask >> (INTVAL (XEXP (op0, 1))
7123 + ! equality_comparison_p))) == 0)
7124 {
7125 const_op >>= INTVAL (XEXP (op0, 1));
7126 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
7127 op0 = XEXP (op0, 0);
7128 continue;
7129 }
7130
7131 /* If we are doing a sign bit comparison, it means we are testing
7132 a particular bit. Convert it to the appropriate AND. */
7133 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
7134 && mode_width <= HOST_BITS_PER_INT)
7135 {
7136 op0 = simplify_and_const_int (0, mode, XEXP (op0, 0),
7137 1 << ( mode_width - 1
7138 - INTVAL (XEXP (op0, 1))));
7139 code = (code == LT ? NE : EQ);
7140 continue;
7141 }
7142
7143 /* If this an equality comparison with zero and we are shifting
7144 the low bit to the sign bit, we can convert this to an AND of the
7145 low-order bit. */
7146 if (const_op == 0 && equality_comparison_p
7147 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7148 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
7149 {
7150 op0 = simplify_and_const_int (0, mode, XEXP (op0, 0), 1);
7151 continue;
7152 }
7153 break;
7154
7155 case ASHIFTRT:
7156 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
7157 do the comparison in a narrower mode. */
7158 if (! unsigned_comparison_p
7159 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7160 && GET_CODE (XEXP (op0, 0)) == ASHIFT
7161 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
7162 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
7163 MODE_INT, 1)) != VOIDmode
7164 && ((unsigned) const_op <= GET_MODE_MASK (tmode)
7165 || (unsigned) - const_op <= GET_MODE_MASK (tmode)))
7166 {
7167 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
7168 continue;
7169 }
7170
7171 /* ... fall through ... */
7172 case LSHIFTRT:
7173 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
7174 the low order N bits of FOO are not significant, we can do this
7175 by comparing FOO with C shifted left N bits so long as no
7176 overflow occurs. */
7177 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
7178 && INTVAL (XEXP (op0, 1)) >= 0
7179 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_INT
7180 && mode_width <= HOST_BITS_PER_INT
7181 && (significant_bits (XEXP (op0, 0), mode)
7182 & ((1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
7183 && (const_op == 0
7184 || (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
7185 < mode_width)))
7186 {
7187 const_op <<= INTVAL (XEXP (op0, 1));
7188 op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
7189 op0 = XEXP (op0, 0);
7190 continue;
7191 }
7192
7193 /* If we are using this shift to extract just the sign bit, we
7194 can replace this with an LT or GE comparison. */
7195 if (const_op == 0
7196 && (equality_comparison_p || sign_bit_comparison_p)
7197 && GET_CODE (XEXP (op0, 1)) == CONST_INT
7198 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
7199 {
7200 op0 = XEXP (op0, 0);
7201 code = (code == NE || code == GT ? LT : GE);
7202 continue;
7203 }
7204 break;
7205 }
7206
7207 break;
7208 }
7209
7210 /* Now make any compound operations involved in this comparison. Then,
7211 check for an outmost SUBREG on OP0 that isn't doing anything or is
7212 paradoxical. The latter case can only occur when it is known that the
7213 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
7214 We can never remove a SUBREG for a non-equality comparison because the
7215 sign bit is in a different place in the underlying object. */
7216
7217 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
7218 op1 = make_compound_operation (op1, SET);
7219
7220 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
7221 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7222 && (code == NE || code == EQ)
7223 && ((GET_MODE_SIZE (GET_MODE (op0))
7224 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
7225 {
7226 op0 = SUBREG_REG (op0);
7227 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
7228 }
7229
7230 else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
7231 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7232 && (code == NE || code == EQ)
7233 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
7234 && (significant_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
7235 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0
7236 && (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
7237 op1),
7238 (significant_bits (tem, GET_MODE (SUBREG_REG (op0)))
7239 & ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
7240 op0 = SUBREG_REG (op0), op1 = tem;
7241
7242 /* We now do the opposite procedure: Some machines don't have compare
7243 insns in all modes. If OP0's mode is an integer mode smaller than a
7244 word and we can't do a compare in that mode, see if there is a larger
7245 mode for which we can do the compare and where the only significant
7246 bits in OP0 and OP1 are those in the narrower mode. We can do
7247 this if this is an equality comparison, in which case we can
7248 merely widen the operation, or if we are testing the sign bit, in
7249 which case we can explicitly put in the test. */
7250
7251 mode = GET_MODE (op0);
7252 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
7253 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
7254 && cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
7255 for (tmode = GET_MODE_WIDER_MODE (mode);
7256 tmode != VOIDmode && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_INT;
7257 tmode = GET_MODE_WIDER_MODE (tmode))
7258 if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing
7259 && (significant_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
7260 && (significant_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0
7261 && (code == EQ || code == NE
7262 || (op1 == const0_rtx && (code == LT || code == GE)
7263 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT)))
7264 {
7265 op0 = gen_lowpart_for_combine (tmode, op0);
7266 op1 = gen_lowpart_for_combine (tmode, op1);
7267
7268 if (code == LT || code == GE)
7269 {
7270 op0 = gen_binary (AND, tmode, op0,
7271 gen_rtx (CONST_INT, VOIDmode,
7272 1 << (GET_MODE_BITSIZE (mode) - 1)));
7273 code = (code == LT) ? NE : EQ;
7274 }
7275
7276 break;
7277 }
7278
7279 *pop0 = op0;
7280 *pop1 = op1;
7281
7282 return code;
7283 }
7284 \f
7285 /* Return 1 if we know that X, a comparison operation, is not operating
7286 on a floating-point value or is EQ or NE, meaning that we can safely
7287 reverse it. */
7288
7289 static int
7290 reversible_comparison_p (x)
7291 rtx x;
7292 {
7293 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
7294 || GET_CODE (x) == NE || GET_CODE (x) == EQ)
7295 return 1;
7296
7297 switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
7298 {
7299 case MODE_INT:
7300 return 1;
7301
7302 case MODE_CC:
7303 x = get_last_value (XEXP (x, 0));
7304 return (x && GET_CODE (x) == COMPARE
7305 && GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) == MODE_INT);
7306 }
7307
7308 return 0;
7309 }
7310 \f
7311 /* Utility function for following routine. Called when X is part of a value
7312 being stored into reg_last_set_value. Sets reg_last_set_table_tick
7313 for each register mentioned. Similar to mention_regs in cse.c */
7314
7315 static void
7316 update_table_tick (x)
7317 rtx x;
7318 {
7319 register enum rtx_code code = GET_CODE (x);
7320 register char *fmt = GET_RTX_FORMAT (code);
7321 register int i;
7322
7323 if (code == REG)
7324 {
7325 int regno = REGNO (x);
7326 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
7327 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
7328
7329 for (i = regno; i < endregno; i++)
7330 reg_last_set_table_tick[i] = label_tick;
7331
7332 return;
7333 }
7334
7335 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7336 /* Note that we can't have an "E" in values stored; see
7337 get_last_value_validate. */
7338 if (fmt[i] == 'e')
7339 update_table_tick (XEXP (x, i));
7340 }
7341
7342 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
7343 are saying that the register is clobbered and we no longer know its
7344 value. If INSN is zero, don't update reg_last_set; this call is normally
7345 done with VALUE also zero to invalidate the register. */
7346
7347 static void
7348 record_value_for_reg (reg, insn, value)
7349 rtx reg;
7350 rtx insn;
7351 rtx value;
7352 {
7353 int regno = REGNO (reg);
7354 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
7355 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
7356 int i;
7357
7358 /* If VALUE contains REG and we have a previous value for REG, substitute
7359 the previous value. */
7360 if (value && insn && reg_overlap_mentioned_p (reg, value))
7361 {
7362 rtx tem;
7363
7364 /* Set things up so get_last_value is allowed to see anything set up to
7365 our insn. */
7366 subst_low_cuid = INSN_CUID (insn);
7367 tem = get_last_value (reg);
7368
7369 if (tem)
7370 value = replace_rtx (copy_rtx (value), reg, tem);
7371 }
7372
7373 /* For each register modified, show we don't know its value, that
7374 its value has been updated, and that we don't know the location of
7375 the death of the register. */
7376 for (i = regno; i < endregno; i ++)
7377 {
7378 if (insn)
7379 reg_last_set[i] = insn;
7380 reg_last_set_value[i] = 0;
7381 reg_last_death[i] = 0;
7382 }
7383
7384 /* Mark registers that are being referenced in this value. */
7385 if (value)
7386 update_table_tick (value);
7387
7388 /* Now update the status of each register being set.
7389 If someone is using this register in this block, set this register
7390 to invalid since we will get confused between the two lives in this
7391 basic block. This makes using this register always invalid. In cse, we
7392 scan the table to invalidate all entries using this register, but this
7393 is too much work for us. */
7394
7395 for (i = regno; i < endregno; i++)
7396 {
7397 reg_last_set_label[i] = label_tick;
7398 if (value && reg_last_set_table_tick[i] == label_tick)
7399 reg_last_set_invalid[i] = 1;
7400 else
7401 reg_last_set_invalid[i] = 0;
7402 }
7403
7404 /* The value being assigned might refer to X (like in "x++;"). In that
7405 case, we must replace it with (clobber (const_int 0)) to prevent
7406 infinite loops. */
7407 if (value && ! get_last_value_validate (&value,
7408 reg_last_set_label[regno], 0))
7409 {
7410 value = copy_rtx (value);
7411 if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
7412 value = 0;
7413 }
7414
7415 /* For the main register being modified, update the value. */
7416 reg_last_set_value[regno] = value;
7417
7418 }
7419
7420 /* Used for communication between the following two routines. */
7421 static rtx record_dead_insn;
7422
7423 /* Called via note_stores from record_dead_and_set_regs to handle one
7424 SET or CLOBBER in an insn. */
7425
7426 static void
7427 record_dead_and_set_regs_1 (dest, setter)
7428 rtx dest, setter;
7429 {
7430 if (GET_CODE (dest) == REG)
7431 {
7432 /* If we are setting the whole register, we know its value. Otherwise
7433 show that we don't know the value. We can handle SUBREG in
7434 some cases. */
7435 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
7436 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
7437 else if (GET_CODE (setter) == SET
7438 && GET_CODE (SET_DEST (setter)) == SUBREG
7439 && SUBREG_REG (SET_DEST (setter)) == dest
7440 && subreg_lowpart_p (SET_DEST (setter)))
7441 record_value_for_reg
7442 (dest, record_dead_insn,
7443 gen_lowpart_for_combine (GET_MODE (SET_DEST (setter)),
7444 SET_SRC (setter)));
7445 else
7446 record_value_for_reg (dest, record_dead_insn, 0);
7447 }
7448 else if (GET_CODE (dest) == MEM
7449 /* Ignore pushes, they clobber nothing. */
7450 && ! push_operand (dest, GET_MODE (dest)))
7451 mem_last_set = INSN_CUID (record_dead_insn);
7452 }
7453
7454 /* Update the records of when each REG was most recently set or killed
7455 for the things done by INSN. This is the last thing done in processing
7456 INSN in the combiner loop.
7457
7458 We update reg_last_set, reg_last_set_value, reg_last_death, and also the
7459 similar information mem_last_set (which insn most recently modified memory)
7460 and last_call_cuid (which insn was the most recent subroutine call). */
7461
7462 static void
7463 record_dead_and_set_regs (insn)
7464 rtx insn;
7465 {
7466 register rtx link;
7467 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7468 {
7469 if (REG_NOTE_KIND (link) == REG_DEAD)
7470 reg_last_death[REGNO (XEXP (link, 0))] = insn;
7471 else if (REG_NOTE_KIND (link) == REG_INC)
7472 record_value_for_reg (XEXP (link, 0), insn, 0);
7473 }
7474
7475 if (GET_CODE (insn) == CALL_INSN)
7476 last_call_cuid = mem_last_set = INSN_CUID (insn);
7477
7478 record_dead_insn = insn;
7479 note_stores (PATTERN (insn), record_dead_and_set_regs_1);
7480 }
7481 \f
7482 /* Utility routine for the following function. Verify that all the registers
7483 mentioned in *LOC are valid when *LOC was part of a value set when
7484 label_tick == TICK. Return 0 if some are not.
7485
7486 If REPLACE is non-zero, replace the invalid reference with
7487 (clobber (const_int 0)) and return 1. This replacement is useful because
7488 we often can get useful information about the form of a value (e.g., if
7489 it was produced by a shift that always produces -1 or 0) even though
7490 we don't know exactly what registers it was produced from. */
7491
7492 static int
7493 get_last_value_validate (loc, tick, replace)
7494 rtx *loc;
7495 int tick;
7496 int replace;
7497 {
7498 rtx x = *loc;
7499 char *fmt = GET_RTX_FORMAT (GET_CODE (x));
7500 int len = GET_RTX_LENGTH (GET_CODE (x));
7501 int i;
7502
7503 if (GET_CODE (x) == REG)
7504 {
7505 int regno = REGNO (x);
7506 int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
7507 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
7508 int j;
7509
7510 for (j = regno; j < endregno; j++)
7511 if (reg_last_set_invalid[j]
7512 /* If this is a pseudo-register that was only set once, it is
7513 always valid. */
7514 || (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
7515 && reg_last_set_label[j] > tick))
7516 {
7517 if (replace)
7518 *loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
7519 return replace;
7520 }
7521
7522 return 1;
7523 }
7524
7525 for (i = 0; i < len; i++)
7526 if ((fmt[i] == 'e'
7527 && get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
7528 /* Don't bother with these. They shouldn't occur anyway. */
7529 || fmt[i] == 'E')
7530 return 0;
7531
7532 /* If we haven't found a reason for it to be invalid, it is valid. */
7533 return 1;
7534 }
7535
7536 /* Get the last value assigned to X, if known. Some registers
7537 in the value may be replaced with (clobber (const_int 0)) if their value
7538 is known longer known reliably. */
7539
7540 static rtx
7541 get_last_value (x)
7542 rtx x;
7543 {
7544 int regno;
7545 rtx value;
7546
7547 /* If this is a non-paradoxical SUBREG, get the value of its operand and
7548 then convert it to the desired mode. If this is a paradoxical SUBREG,
7549 we cannot predict what values the "extra" bits might have. */
7550 if (GET_CODE (x) == SUBREG
7551 && subreg_lowpart_p (x)
7552 && (GET_MODE_SIZE (GET_MODE (x))
7553 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7554 && (value = get_last_value (SUBREG_REG (x))) != 0)
7555 return gen_lowpart_for_combine (GET_MODE (x), value);
7556
7557 if (GET_CODE (x) != REG)
7558 return 0;
7559
7560 regno = REGNO (x);
7561 value = reg_last_set_value[regno];
7562
7563 /* If we don't have a value, it isn't for this basic block, or if it was
7564 set in a later insn that the ones we are processing, return 0. */
7565
7566 if (value == 0
7567 || (reg_n_sets[regno] != 1
7568 && (reg_last_set_label[regno] != label_tick
7569 || INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)))
7570 return 0;
7571
7572 /* If the value has all its register valid, return it. */
7573 if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
7574 return value;
7575
7576 /* Otherwise, make a copy and replace any invalid register with
7577 (clobber (const_int 0)). If that fails for some reason, return 0. */
7578
7579 value = copy_rtx (value);
7580 if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
7581 return value;
7582
7583 return 0;
7584 }
7585 \f
7586 /* Return nonzero if expression X refers to a REG or to memory
7587 that is set in an instruction more recent than FROM_CUID. */
7588
7589 static int
7590 use_crosses_set_p (x, from_cuid)
7591 register rtx x;
7592 int from_cuid;
7593 {
7594 register char *fmt;
7595 register int i;
7596 register enum rtx_code code = GET_CODE (x);
7597
7598 if (code == REG)
7599 {
7600 register int regno = REGNO (x);
7601 #ifdef PUSH_ROUNDING
7602 /* Don't allow uses of the stack pointer to be moved,
7603 because we don't know whether the move crosses a push insn. */
7604 if (regno == STACK_POINTER_REGNUM)
7605 return 1;
7606 #endif
7607 return (reg_last_set[regno]
7608 && INSN_CUID (reg_last_set[regno]) > from_cuid);
7609 }
7610
7611 if (code == MEM && mem_last_set > from_cuid)
7612 return 1;
7613
7614 fmt = GET_RTX_FORMAT (code);
7615
7616 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7617 {
7618 if (fmt[i] == 'E')
7619 {
7620 register int j;
7621 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7622 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
7623 return 1;
7624 }
7625 else if (fmt[i] == 'e'
7626 && use_crosses_set_p (XEXP (x, i), from_cuid))
7627 return 1;
7628 }
7629 return 0;
7630 }
7631 \f
7632 /* Define three variables used for communication between the following
7633 routines. */
7634
7635 static int reg_dead_regno, reg_dead_endregno;
7636 static int reg_dead_flag;
7637
7638 /* Function called via note_stores from reg_dead_at_p.
7639
7640 If DEST is within [reg_dead_rengno, reg_dead_endregno), set
7641 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
7642
7643 static void
7644 reg_dead_at_p_1 (dest, x)
7645 rtx dest;
7646 rtx x;
7647 {
7648 int regno, endregno;
7649
7650 if (GET_CODE (dest) != REG)
7651 return;
7652
7653 regno = REGNO (dest);
7654 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
7655 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
7656
7657 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
7658 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
7659 }
7660
7661 /* Return non-zero if REG is known to be dead at INSN.
7662
7663 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
7664 referencing REG, it is dead. If we hit a SET referencing REG, it is
7665 live. Otherwise, see if it is live or dead at the start of the basic
7666 block we are in. */
7667
7668 static int
7669 reg_dead_at_p (reg, insn)
7670 rtx reg;
7671 rtx insn;
7672 {
7673 int block, i;
7674
7675 /* Set variables for reg_dead_at_p_1. */
7676 reg_dead_regno = REGNO (reg);
7677 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
7678 ? HARD_REGNO_NREGS (reg_dead_regno,
7679 GET_MODE (reg))
7680 : 1);
7681
7682 reg_dead_flag = 0;
7683
7684 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
7685 beginning of function. */
7686 for (; insn && GET_CODE (insn) != CODE_LABEL;
7687 insn = prev_nonnote_insn (insn))
7688 {
7689 note_stores (PATTERN (insn), reg_dead_at_p_1);
7690 if (reg_dead_flag)
7691 return reg_dead_flag == 1 ? 1 : 0;
7692
7693 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
7694 return 1;
7695 }
7696
7697 /* Get the basic block number that we were in. */
7698 if (insn == 0)
7699 block = 0;
7700 else
7701 {
7702 for (block = 0; block < n_basic_blocks; block++)
7703 if (insn == basic_block_head[block])
7704 break;
7705
7706 if (block == n_basic_blocks)
7707 return 0;
7708 }
7709
7710 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
7711 if (basic_block_live_at_start[block][i / HOST_BITS_PER_INT]
7712 & (1 << (i % HOST_BITS_PER_INT)))
7713 return 0;
7714
7715 return 1;
7716 }
7717 \f
7718 /* Remove register number REGNO from the dead registers list of INSN.
7719
7720 Return the note used to record the death, if there was one. */
7721
7722 rtx
7723 remove_death (regno, insn)
7724 int regno;
7725 rtx insn;
7726 {
7727 register rtx note = find_regno_note (insn, REG_DEAD, regno);
7728
7729 if (note)
7730 remove_note (insn, note);
7731
7732 return note;
7733 }
7734
7735 /* For each register (hardware or pseudo) used within expression X, if its
7736 death is in an instruction with cuid between FROM_CUID (inclusive) and
7737 TO_INSN (exclusive), put a REG_DEAD note for that register in the
7738 list headed by PNOTES.
7739
7740 This is done when X is being merged by combination into TO_INSN. These
7741 notes will then be distributed as needed. */
7742
7743 static void
7744 move_deaths (x, from_cuid, to_insn, pnotes)
7745 rtx x;
7746 int from_cuid;
7747 rtx to_insn;
7748 rtx *pnotes;
7749 {
7750 register char *fmt;
7751 register int len, i;
7752 register enum rtx_code code = GET_CODE (x);
7753
7754 if (code == REG)
7755 {
7756 register int regno = REGNO (x);
7757 register rtx where_dead = reg_last_death[regno];
7758
7759 if (where_dead && INSN_CUID (where_dead) >= from_cuid
7760 && INSN_CUID (where_dead) < INSN_CUID (to_insn))
7761 {
7762 rtx note = remove_death (regno, reg_last_death[regno]);
7763
7764 /* It is possible for the call above to return 0. This can occur
7765 when reg_last_death points to I2 or I1 that we combined with.
7766 In that case make a new note. */
7767
7768 if (note)
7769 {
7770 XEXP (note, 1) = *pnotes;
7771 *pnotes = note;
7772 }
7773 else
7774 *pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
7775 }
7776
7777 return;
7778 }
7779
7780 else if (GET_CODE (x) == SET)
7781 {
7782 rtx dest = SET_DEST (x);
7783
7784 move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes);
7785
7786 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
7787 that accesses one word of a multi-word item, some
7788 piece of everything register in the expression is used by
7789 this insn, so remove any old death. */
7790
7791 if (GET_CODE (dest) == ZERO_EXTRACT
7792 || GET_CODE (dest) == STRICT_LOW_PART
7793 || (GET_CODE (dest) == SUBREG
7794 && (((GET_MODE_SIZE (GET_MODE (dest))
7795 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
7796 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
7797 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
7798 {
7799 move_deaths (dest, from_cuid, to_insn, pnotes);
7800 return;
7801 }
7802
7803 /* If this is some other SUBREG, we know it replaces the entire
7804 value, so use that as the destination. */
7805 if (GET_CODE (dest) == SUBREG)
7806 dest = SUBREG_REG (dest);
7807
7808 /* If this is a MEM, adjust deaths of anything used in the address.
7809 For a REG (the only other possibility), the entire value is
7810 being replaced so the old value is not used in this insn. */
7811
7812 if (GET_CODE (dest) == MEM)
7813 move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes);
7814 return;
7815 }
7816
7817 else if (GET_CODE (x) == CLOBBER)
7818 return;
7819
7820 len = GET_RTX_LENGTH (code);
7821 fmt = GET_RTX_FORMAT (code);
7822
7823 for (i = 0; i < len; i++)
7824 {
7825 if (fmt[i] == 'E')
7826 {
7827 register int j;
7828 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7829 move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes);
7830 }
7831 else if (fmt[i] == 'e')
7832 move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes);
7833 }
7834 }
7835 \f
7836 /* Return 1 if X is the target of a bit-field assignment in BODY, the
7837 pattern of an insn. X must be a REG. */
7838
7839 static int
7840 reg_bitfield_target_p (x, body)
7841 rtx x;
7842 rtx body;
7843 {
7844 int i;
7845
7846 if (GET_CODE (body) == SET)
7847 {
7848 rtx dest = SET_DEST (body);
7849 rtx target;
7850 int regno, tregno, endregno, endtregno;
7851
7852 if (GET_CODE (dest) == ZERO_EXTRACT)
7853 target = XEXP (dest, 0);
7854 else if (GET_CODE (dest) == STRICT_LOW_PART)
7855 target = SUBREG_REG (XEXP (dest, 0));
7856 else
7857 return 0;
7858
7859 if (GET_CODE (target) == SUBREG)
7860 target = SUBREG_REG (target);
7861
7862 if (GET_CODE (target) != REG)
7863 return 0;
7864
7865 tregno = REGNO (target), regno = REGNO (x);
7866 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
7867 return target == x;
7868
7869 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
7870 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
7871
7872 return endregno > tregno && regno < endtregno;
7873 }
7874
7875 else if (GET_CODE (body) == PARALLEL)
7876 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
7877 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
7878 return 1;
7879
7880 return 0;
7881 }
7882 \f
7883 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
7884 as appropriate. I3 and I2 are the insns resulting from the combination
7885 insns including FROM (I2 may be zero).
7886
7887 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
7888 not need REG_DEAD notes because they are being substituted for. This
7889 saves searching in the most common cases.
7890
7891 Each note in the list is either ignored or placed on some insns, depending
7892 on the type of note. */
7893
7894 static void
7895 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
7896 rtx notes;
7897 rtx from_insn;
7898 rtx i3, i2;
7899 rtx elim_i2, elim_i1;
7900 {
7901 rtx note, next_note;
7902 rtx tem;
7903
7904 for (note = notes; note; note = next_note)
7905 {
7906 rtx place = 0, place2 = 0;
7907
7908 /* If this NOTE references a pseudo register, ensure it references
7909 the latest copy of that register. */
7910 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
7911 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
7912 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
7913
7914 next_note = XEXP (note, 1);
7915 switch (REG_NOTE_KIND (note))
7916 {
7917 case REG_UNUSED:
7918 /* If this register is set or clobbered in I3, put the note there
7919 unless there is one already. */
7920 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
7921 {
7922 if (! (GET_CODE (XEXP (note, 0)) == REG
7923 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
7924 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
7925 place = i3;
7926 }
7927 /* Otherwise, if this register is used by I3, then this register
7928 now dies here, so we must put a REG_DEAD note here unless there
7929 is one already. */
7930 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
7931 && ! (GET_CODE (XEXP (note, 0)) == REG
7932 ? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
7933 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
7934 {
7935 PUT_REG_NOTE_KIND (note, REG_DEAD);
7936 place = i3;
7937 }
7938 break;
7939
7940 case REG_EQUAL:
7941 case REG_EQUIV:
7942 case REG_NONNEG:
7943 /* These notes say something about results of an insn. We can
7944 only support them if they used to be on I3 in which case they
7945 remain on I3. Otherwise they are ignored. */
7946 if (from_insn == i3)
7947 place = i3;
7948 break;
7949
7950 case REG_INC:
7951 case REG_NO_CONFLICT:
7952 case REG_LABEL:
7953 /* These notes say something about how a register is used. They must
7954 be present on any use of the register in I2 or I3. */
7955 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
7956 place = i3;
7957
7958 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
7959 {
7960 if (place)
7961 place2 = i2;
7962 else
7963 place = i2;
7964 }
7965 break;
7966
7967 case REG_WAS_0:
7968 /* It is too much trouble to try to see if this note is still
7969 correct in all situations. It is better to simply delete it. */
7970 break;
7971
7972 case REG_RETVAL:
7973 /* If the insn previously containing this note still exists,
7974 put it back where it was. Otherwise move it to the previous
7975 insn. Adjust the corresponding REG_LIBCALL note. */
7976 if (GET_CODE (from_insn) != NOTE)
7977 place = from_insn;
7978 else
7979 {
7980 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, 0);
7981 place = prev_real_insn (from_insn);
7982 if (tem && place)
7983 XEXP (tem, 0) = place;
7984 }
7985 break;
7986
7987 case REG_LIBCALL:
7988 /* This is handled similarly to REG_RETVAL. */
7989 if (GET_CODE (from_insn) != NOTE)
7990 place = from_insn;
7991 else
7992 {
7993 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, 0);
7994 place = next_real_insn (from_insn);
7995 if (tem && place)
7996 XEXP (tem, 0) = place;
7997 }
7998 break;
7999
8000 case REG_DEAD:
8001 /* If the register is used as an input in I3, it dies there.
8002 Similarly for I2, if it is non-zero and adjacent to I3.
8003
8004 If the register is not used as an input in either I3 or I2
8005 and it is not one of the registers we were supposed to eliminate,
8006 there are two possibilities. We might have a non-adjacent I2
8007 or we might have somehow eliminated an additional register
8008 from a computation. For example, we might have had A & B where
8009 we discover that B will always be zero. In this case we will
8010 eliminate the reference to A.
8011
8012 In both cases, we must search to see if we can find a previous
8013 use of A and put the death note there. */
8014
8015 if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
8016 place = i3;
8017 else if (i2 != 0 && next_nonnote_insn (i2) == i3
8018 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
8019 place = i2;
8020
8021 if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
8022 break;
8023
8024 if (place == 0)
8025 for (tem = prev_nonnote_insn (i3);
8026 tem && (GET_CODE (tem) == INSN
8027 || GET_CODE (tem) == CALL_INSN);
8028 tem = prev_nonnote_insn (tem))
8029 {
8030 /* If the register is being set at TEM, see if that is all
8031 TEM is doing. If so, delete TEM. Otherwise, make this
8032 into a REG_UNUSED note instead. */
8033 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
8034 {
8035 rtx set = single_set (tem);
8036
8037 /* Verify that it was the set, and not a clobber that
8038 modified the register. */
8039
8040 if (set != 0 && ! side_effects_p (SET_SRC (set))
8041 && rtx_equal_p (XEXP (note, 0), SET_DEST (set)))
8042 {
8043 /* Move the notes and links of TEM elsewhere.
8044 This might delete other dead insns recursively.
8045 First set the pattern to something that won't use
8046 any register. */
8047
8048 PATTERN (tem) = pc_rtx;
8049
8050 distribute_notes (REG_NOTES (tem), tem, tem, 0, 0, 0);
8051 distribute_links (LOG_LINKS (tem));
8052
8053 PUT_CODE (tem, NOTE);
8054 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
8055 NOTE_SOURCE_FILE (tem) = 0;
8056 }
8057 else
8058 {
8059 PUT_REG_NOTE_KIND (note, REG_UNUSED);
8060
8061 /* If there isn't already a REG_UNUSED note, put one
8062 here. */
8063 if (! find_regno_note (tem, REG_UNUSED,
8064 REGNO (XEXP (note, 0))))
8065 place = tem;
8066 break;
8067 }
8068 }
8069 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem)))
8070 {
8071 place = tem;
8072 break;
8073 }
8074 }
8075
8076 /* If the register is set or already dead at PLACE, we needn't do
8077 anything with this note if it is still a REG_DEAD note.
8078
8079 Note that we cannot use just `dead_or_set_p' here since we can
8080 convert an assignment to a register into a bit-field assignment.
8081 Therefore, we must also omit the note if the register is the
8082 target of a bitfield assignment. */
8083
8084 if (place && REG_NOTE_KIND (note) == REG_DEAD)
8085 {
8086 int regno = REGNO (XEXP (note, 0));
8087
8088 if (dead_or_set_p (place, XEXP (note, 0))
8089 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
8090 {
8091 /* Unless the register previously died in PLACE, clear
8092 reg_last_death. [I no longer understand why this is
8093 being done.] */
8094 if (reg_last_death[regno] != place)
8095 reg_last_death[regno] = 0;
8096 place = 0;
8097 }
8098 else
8099 reg_last_death[regno] = place;
8100
8101 /* If this is a death note for a hard reg that is occupying
8102 multiple registers, ensure that we are still using all
8103 parts of the object. If we find a piece of the object
8104 that is unused, we must add a USE for that piece before
8105 PLACE and put the appropriate REG_DEAD note on it.
8106
8107 An alternative would be to put a REG_UNUSED for the pieces
8108 on the insn that set the register, but that can't be done if
8109 it is not in the same block. It is simpler, though less
8110 efficient, to add the USE insns. */
8111
8112 if (place && regno < FIRST_PSEUDO_REGISTER
8113 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
8114 {
8115 int endregno
8116 = regno + HARD_REGNO_NREGS (regno,
8117 GET_MODE (XEXP (note, 0)));
8118 int all_used = 1;
8119 int i;
8120
8121 for (i = regno; i < endregno; i++)
8122 if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0))
8123 {
8124 rtx piece = gen_rtx (REG, word_mode, i);
8125 rtx p;
8126
8127 /* See if we already placed a USE note for this
8128 register in front of PLACE. */
8129 for (p = place;
8130 GET_CODE (PREV_INSN (p)) == INSN
8131 && GET_CODE (PATTERN (PREV_INSN (p))) == USE;
8132 p = PREV_INSN (p))
8133 if (rtx_equal_p (piece,
8134 XEXP (PATTERN (PREV_INSN (p)), 0)))
8135 {
8136 p = 0;
8137 break;
8138 }
8139
8140 if (p)
8141 {
8142 rtx use_insn
8143 = emit_insn_before (gen_rtx (USE, VOIDmode,
8144 piece),
8145 p);
8146 REG_NOTES (use_insn)
8147 = gen_rtx (EXPR_LIST, REG_DEAD, piece,
8148 REG_NOTES (use_insn));
8149 }
8150
8151 all_used = 0;
8152 }
8153
8154 if (! all_used)
8155 {
8156 /* Put only REG_DEAD notes for pieces that are
8157 still used and that are not already dead or set. */
8158
8159 for (i = regno; i < endregno; i++)
8160 {
8161 rtx piece = gen_rtx (REG, word_mode, i);
8162
8163 if (reg_referenced_p (piece, PATTERN (place))
8164 && ! dead_or_set_p (place, piece)
8165 && ! reg_bitfield_target_p (piece,
8166 PATTERN (place)))
8167 REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
8168 piece,
8169 REG_NOTES (place));
8170 }
8171
8172 place = 0;
8173 }
8174 }
8175 }
8176 break;
8177
8178 default:
8179 /* Any other notes should not be present at this point in the
8180 compilation. */
8181 abort ();
8182 }
8183
8184 if (place)
8185 {
8186 XEXP (note, 1) = REG_NOTES (place);
8187 REG_NOTES (place) = note;
8188 }
8189
8190 if (place2)
8191 REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
8192 XEXP (note, 0), REG_NOTES (place2));
8193 }
8194 }
8195 \f
8196 /* Similarly to above, distribute the LOG_LINKS that used to be present on
8197 I3, I2, and I1 to new locations. This is also called in one case to
8198 add a link pointing at I3 when I3's destination is changed. */
8199
8200 static void
8201 distribute_links (links)
8202 rtx links;
8203 {
8204 rtx link, next_link;
8205
8206 for (link = links; link; link = next_link)
8207 {
8208 rtx place = 0;
8209 rtx insn;
8210 rtx set, reg;
8211
8212 next_link = XEXP (link, 1);
8213
8214 /* If the insn that this link points to is a NOTE or isn't a single
8215 set, ignore it. In the latter case, it isn't clear what we
8216 can do other than ignore the link, since we can't tell which
8217 register it was for. Such links wouldn't be used by combine
8218 anyway.
8219
8220 It is not possible for the destination of the target of the link to
8221 have been changed by combine. The only potential of this is if we
8222 replace I3, I2, and I1 by I3 and I2. But in that case the
8223 destination of I2 also remains unchanged. */
8224
8225 if (GET_CODE (XEXP (link, 0)) == NOTE
8226 || (set = single_set (XEXP (link, 0))) == 0)
8227 continue;
8228
8229 reg = SET_DEST (set);
8230 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
8231 || GET_CODE (reg) == SIGN_EXTRACT
8232 || GET_CODE (reg) == STRICT_LOW_PART)
8233 reg = XEXP (reg, 0);
8234
8235 /* A LOG_LINK is defined as being placed on the first insn that uses
8236 a register and points to the insn that sets the register. Start
8237 searching at the next insn after the target of the link and stop
8238 when we reach a set of the register or the end of the basic block.
8239
8240 Note that this correctly handles the link that used to point from
8241 I3 to I2. Also note that not much searching is typically done here
8242 since most links don't point very far away. */
8243
8244 for (insn = NEXT_INSN (XEXP (link, 0));
8245 (insn && GET_CODE (insn) != CODE_LABEL
8246 && GET_CODE (PREV_INSN (insn)) != JUMP_INSN);
8247 insn = NEXT_INSN (insn))
8248 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8249 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
8250 {
8251 if (reg_referenced_p (reg, PATTERN (insn)))
8252 place = insn;
8253 break;
8254 }
8255
8256 /* If we found a place to put the link, place it there unless there
8257 is already a link to the same insn as LINK at that point. */
8258
8259 if (place)
8260 {
8261 rtx link2;
8262
8263 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
8264 if (XEXP (link2, 0) == XEXP (link, 0))
8265 break;
8266
8267 if (link2 == 0)
8268 {
8269 XEXP (link, 1) = LOG_LINKS (place);
8270 LOG_LINKS (place) = link;
8271 }
8272 }
8273 }
8274 }
8275 \f
8276 void
8277 dump_combine_stats (file)
8278 FILE *file;
8279 {
8280 fprintf
8281 (file,
8282 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
8283 combine_attempts, combine_merges, combine_extras, combine_successes);
8284 }
8285
8286 void
8287 dump_combine_total_stats (file)
8288 FILE *file;
8289 {
8290 fprintf
8291 (file,
8292 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
8293 total_attempts, total_merges, total_extras, total_successes);
8294 }
This page took 0.472779 seconds and 5 git commands to generate.