]> gcc.gnu.org Git - gcc.git/blob - gcc/cfgrtl.c
bt-load.c, [...]: Remove unnecessary casts.
[gcc.git] / gcc / cfgrtl.c
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains low level functions to manipulate the CFG and analyze it
23 that are aware of the RTL intermediate language.
24
25 Available functionality:
26 - Basic CFG/RTL manipulation API documented in cfghooks.h
27 - CFG-aware instruction chain manipulation
28 delete_insn, delete_insn_chain
29 - Edge splitting and committing to edges
30 insert_insn_on_edge, commit_edge_insertions
31 - CFG updating after insn simplification
32 purge_dead_edges, purge_all_dead_edges
33
34 Functions not supposed for generic use:
35 - Infrastructure to determine quickly basic block for insn
36 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
37 - Edge redirection with updating and optimizing of insn chain
38 block_label, tidy_fallthru_edge, force_nonfallthru */
39 \f
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "tm.h"
44 #include "tree.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "basic-block.h"
48 #include "regs.h"
49 #include "flags.h"
50 #include "output.h"
51 #include "function.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "tm_p.h"
55 #include "obstack.h"
56 #include "insn-config.h"
57 #include "cfglayout.h"
58 #include "expr.h"
59
60 /* Stubs in case we don't have a return insn. */
61 #ifndef HAVE_return
62 #define HAVE_return 0
63 #define gen_return() NULL_RTX
64 #endif
65
66 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
67 /* ??? Should probably be using LABEL_NUSES instead. It would take a
68 bit of surgery to be able to use or co-opt the routines in jump. */
69 rtx label_value_list;
70 rtx tail_recursion_label_list;
71
72 static int can_delete_note_p (rtx);
73 static int can_delete_label_p (rtx);
74 static void commit_one_edge_insertion (edge, int);
75 static rtx last_loop_beg_note (rtx);
76 static bool back_edge_of_syntactic_loop_p (basic_block, basic_block);
77 basic_block force_nonfallthru_and_redirect (edge, basic_block);
78 static basic_block rtl_split_edge (edge);
79 static bool rtl_move_block_after (basic_block, basic_block);
80 static int rtl_verify_flow_info (void);
81 static basic_block cfg_layout_split_block (basic_block, void *);
82 static bool cfg_layout_redirect_edge_and_branch (edge, basic_block);
83 static basic_block cfg_layout_redirect_edge_and_branch_force (edge, basic_block);
84 static void cfg_layout_delete_block (basic_block);
85 static void rtl_delete_block (basic_block);
86 static basic_block rtl_redirect_edge_and_branch_force (edge, basic_block);
87 static bool rtl_redirect_edge_and_branch (edge, basic_block);
88 static basic_block rtl_split_block (basic_block, void *);
89 static void rtl_dump_bb (basic_block, FILE *, int);
90 static int rtl_verify_flow_info_1 (void);
91 static void mark_killed_regs (rtx, rtx, void *);
92 static void rtl_make_forwarder_block (edge);
93 \f
94 /* Return true if NOTE is not one of the ones that must be kept paired,
95 so that we may simply delete it. */
96
97 static int
98 can_delete_note_p (rtx note)
99 {
100 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
101 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK
102 || NOTE_LINE_NUMBER (note) == NOTE_INSN_PREDICTION);
103 }
104
105 /* True if a given label can be deleted. */
106
107 static int
108 can_delete_label_p (rtx label)
109 {
110 return (!LABEL_PRESERVE_P (label)
111 /* User declared labels must be preserved. */
112 && LABEL_NAME (label) == 0
113 && !in_expr_list_p (forced_labels, label)
114 && !in_expr_list_p (label_value_list, label));
115 }
116
117 /* Delete INSN by patching it out. Return the next insn. */
118
119 rtx
120 delete_insn (rtx insn)
121 {
122 rtx next = NEXT_INSN (insn);
123 rtx note;
124 bool really_delete = true;
125
126 if (GET_CODE (insn) == CODE_LABEL)
127 {
128 /* Some labels can't be directly removed from the INSN chain, as they
129 might be references via variables, constant pool etc.
130 Convert them to the special NOTE_INSN_DELETED_LABEL note. */
131 if (! can_delete_label_p (insn))
132 {
133 const char *name = LABEL_NAME (insn);
134
135 really_delete = false;
136 PUT_CODE (insn, NOTE);
137 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
138 NOTE_SOURCE_FILE (insn) = name;
139 }
140
141 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
142 }
143
144 if (really_delete)
145 {
146 /* If this insn has already been deleted, something is very wrong. */
147 if (INSN_DELETED_P (insn))
148 abort ();
149 remove_insn (insn);
150 INSN_DELETED_P (insn) = 1;
151 }
152
153 /* If deleting a jump, decrement the use count of the label. Deleting
154 the label itself should happen in the normal course of block merging. */
155 if (GET_CODE (insn) == JUMP_INSN
156 && JUMP_LABEL (insn)
157 && GET_CODE (JUMP_LABEL (insn)) == CODE_LABEL)
158 LABEL_NUSES (JUMP_LABEL (insn))--;
159
160 /* Also if deleting an insn that references a label. */
161 else
162 {
163 while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
164 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
165 {
166 LABEL_NUSES (XEXP (note, 0))--;
167 remove_note (insn, note);
168 }
169 }
170
171 if (GET_CODE (insn) == JUMP_INSN
172 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
173 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
174 {
175 rtx pat = PATTERN (insn);
176 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
177 int len = XVECLEN (pat, diff_vec_p);
178 int i;
179
180 for (i = 0; i < len; i++)
181 {
182 rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
183
184 /* When deleting code in bulk (e.g. removing many unreachable
185 blocks) we can delete a label that's a target of the vector
186 before deleting the vector itself. */
187 if (GET_CODE (label) != NOTE)
188 LABEL_NUSES (label)--;
189 }
190 }
191
192 return next;
193 }
194
195 /* Like delete_insn but also purge dead edges from BB. */
196 rtx
197 delete_insn_and_edges (rtx insn)
198 {
199 rtx x;
200 bool purge = false;
201
202 if (INSN_P (insn)
203 && BLOCK_FOR_INSN (insn)
204 && BB_END (BLOCK_FOR_INSN (insn)) == insn)
205 purge = true;
206 x = delete_insn (insn);
207 if (purge)
208 purge_dead_edges (BLOCK_FOR_INSN (insn));
209 return x;
210 }
211
212 /* Unlink a chain of insns between START and FINISH, leaving notes
213 that must be paired. */
214
215 void
216 delete_insn_chain (rtx start, rtx finish)
217 {
218 rtx next;
219
220 /* Unchain the insns one by one. It would be quicker to delete all of these
221 with a single unchaining, rather than one at a time, but we need to keep
222 the NOTE's. */
223 while (1)
224 {
225 next = NEXT_INSN (start);
226 if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
227 ;
228 else
229 next = delete_insn (start);
230
231 if (start == finish)
232 break;
233 start = next;
234 }
235 }
236
237 /* Like delete_insn but also purge dead edges from BB. */
238 void
239 delete_insn_chain_and_edges (rtx first, rtx last)
240 {
241 bool purge = false;
242
243 if (INSN_P (last)
244 && BLOCK_FOR_INSN (last)
245 && BB_END (BLOCK_FOR_INSN (last)) == last)
246 purge = true;
247 delete_insn_chain (first, last);
248 if (purge)
249 purge_dead_edges (BLOCK_FOR_INSN (last));
250 }
251 \f
252 /* Create a new basic block consisting of the instructions between HEAD and END
253 inclusive. This function is designed to allow fast BB construction - reuses
254 the note and basic block struct in BB_NOTE, if any and do not grow
255 BASIC_BLOCK chain and should be used directly only by CFG construction code.
256 END can be NULL in to create new empty basic block before HEAD. Both END
257 and HEAD can be NULL to create basic block at the end of INSN chain.
258 AFTER is the basic block we should be put after. */
259
260 basic_block
261 create_basic_block_structure (rtx head, rtx end, rtx bb_note, basic_block after)
262 {
263 basic_block bb;
264
265 if (bb_note
266 && ! RTX_INTEGRATED_P (bb_note)
267 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
268 && bb->aux == NULL)
269 {
270 /* If we found an existing note, thread it back onto the chain. */
271
272 rtx after;
273
274 if (GET_CODE (head) == CODE_LABEL)
275 after = head;
276 else
277 {
278 after = PREV_INSN (head);
279 head = bb_note;
280 }
281
282 if (after != bb_note && NEXT_INSN (after) != bb_note)
283 reorder_insns_nobb (bb_note, bb_note, after);
284 }
285 else
286 {
287 /* Otherwise we must create a note and a basic block structure. */
288
289 bb = alloc_block ();
290
291 if (!head && !end)
292 head = end = bb_note
293 = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
294 else if (GET_CODE (head) == CODE_LABEL && end)
295 {
296 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
297 if (head == end)
298 end = bb_note;
299 }
300 else
301 {
302 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
303 head = bb_note;
304 if (!end)
305 end = head;
306 }
307
308 NOTE_BASIC_BLOCK (bb_note) = bb;
309 }
310
311 /* Always include the bb note in the block. */
312 if (NEXT_INSN (end) == bb_note)
313 end = bb_note;
314
315 BB_HEAD (bb) = head;
316 BB_END (bb) = end;
317 bb->index = last_basic_block++;
318 bb->flags = BB_NEW;
319 link_block (bb, after);
320 BASIC_BLOCK (bb->index) = bb;
321 update_bb_for_insn (bb);
322
323 /* Tag the block so that we know it has been used when considering
324 other basic block notes. */
325 bb->aux = bb;
326
327 return bb;
328 }
329
330 /* Create new basic block consisting of instructions in between HEAD and END
331 and place it to the BB chain after block AFTER. END can be NULL in to
332 create new empty basic block before HEAD. Both END and HEAD can be NULL to
333 create basic block at the end of INSN chain. */
334
335 static basic_block
336 rtl_create_basic_block (void *headp, void *endp, basic_block after)
337 {
338 rtx head = headp, end = endp;
339 basic_block bb;
340
341 /* Grow the basic block array if needed. */
342 if ((size_t) last_basic_block >= VARRAY_SIZE (basic_block_info))
343 {
344 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
345 VARRAY_GROW (basic_block_info, new_size);
346 }
347
348 n_basic_blocks++;
349
350 bb = create_basic_block_structure (head, end, NULL, after);
351 bb->aux = NULL;
352 return bb;
353 }
354
355 static basic_block
356 cfg_layout_create_basic_block (void *head, void *end, basic_block after)
357 {
358 basic_block newbb = rtl_create_basic_block (head, end, after);
359
360 cfg_layout_initialize_rbi (newbb);
361 return newbb;
362 }
363 \f
364 /* Delete the insns in a (non-live) block. We physically delete every
365 non-deleted-note insn, and update the flow graph appropriately.
366
367 Return nonzero if we deleted an exception handler. */
368
369 /* ??? Preserving all such notes strikes me as wrong. It would be nice
370 to post-process the stream to remove empty blocks, loops, ranges, etc. */
371
372 static void
373 rtl_delete_block (basic_block b)
374 {
375 rtx insn, end, tmp;
376
377 /* If the head of this block is a CODE_LABEL, then it might be the
378 label for an exception handler which can't be reached.
379
380 We need to remove the label from the exception_handler_label list
381 and remove the associated NOTE_INSN_EH_REGION_BEG and
382 NOTE_INSN_EH_REGION_END notes. */
383
384 /* Get rid of all NOTE_INSN_PREDICTIONs and NOTE_INSN_LOOP_CONTs
385 hanging before the block. */
386
387 for (insn = PREV_INSN (BB_HEAD (b)); insn; insn = PREV_INSN (insn))
388 {
389 if (GET_CODE (insn) != NOTE)
390 break;
391 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PREDICTION
392 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
393 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
394 }
395
396 insn = BB_HEAD (b);
397
398 never_reached_warning (insn, BB_END (b));
399
400 if (GET_CODE (insn) == CODE_LABEL)
401 maybe_remove_eh_handler (insn);
402
403 /* Include any jump table following the basic block. */
404 end = BB_END (b);
405 if (tablejump_p (end, NULL, &tmp))
406 end = tmp;
407
408 /* Include any barrier that may follow the basic block. */
409 tmp = next_nonnote_insn (end);
410 if (tmp && GET_CODE (tmp) == BARRIER)
411 end = tmp;
412
413 /* Selectively delete the entire chain. */
414 BB_HEAD (b) = NULL;
415 delete_insn_chain (insn, end);
416 }
417 \f
418 /* Records the basic block struct in BLOCK_FOR_INSN for every insn. */
419
420 void
421 compute_bb_for_insn (void)
422 {
423 basic_block bb;
424
425 FOR_EACH_BB (bb)
426 {
427 rtx end = BB_END (bb);
428 rtx insn;
429
430 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
431 {
432 BLOCK_FOR_INSN (insn) = bb;
433 if (insn == end)
434 break;
435 }
436 }
437 }
438
439 /* Release the basic_block_for_insn array. */
440
441 void
442 free_bb_for_insn (void)
443 {
444 rtx insn;
445 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
446 if (GET_CODE (insn) != BARRIER)
447 BLOCK_FOR_INSN (insn) = NULL;
448 }
449
450 /* Update insns block within BB. */
451
452 void
453 update_bb_for_insn (basic_block bb)
454 {
455 rtx insn;
456
457 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
458 {
459 if (GET_CODE (insn) != BARRIER)
460 set_block_for_insn (insn, bb);
461 if (insn == BB_END (bb))
462 break;
463 }
464 }
465 \f
466 /* Creates a new basic block just after basic block B by splitting
467 everything after specified instruction I. */
468
469 static basic_block
470 rtl_split_block (basic_block bb, void *insnp)
471 {
472 basic_block new_bb;
473 rtx insn = insnp;
474 edge e;
475
476 if (!insn)
477 {
478 insn = first_insn_after_basic_block_note (bb);
479
480 if (insn)
481 insn = PREV_INSN (insn);
482 else
483 insn = get_last_insn ();
484 }
485
486 /* We probably should check type of the insn so that we do not create
487 inconsistent cfg. It is checked in verify_flow_info anyway, so do not
488 bother. */
489 if (insn == BB_END (bb))
490 emit_note_after (NOTE_INSN_DELETED, insn);
491
492 /* Create the new basic block. */
493 new_bb = create_basic_block (NEXT_INSN (insn), BB_END (bb), bb);
494 BB_END (bb) = insn;
495
496 /* Redirect the outgoing edges. */
497 new_bb->succ = bb->succ;
498 bb->succ = NULL;
499 for (e = new_bb->succ; e; e = e->succ_next)
500 e->src = new_bb;
501
502 if (bb->global_live_at_start)
503 {
504 new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
505 new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
506 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
507
508 /* We now have to calculate which registers are live at the end
509 of the split basic block and at the start of the new basic
510 block. Start with those registers that are known to be live
511 at the end of the original basic block and get
512 propagate_block to determine which registers are live. */
513 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
514 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
515 COPY_REG_SET (bb->global_live_at_end,
516 new_bb->global_live_at_start);
517 #ifdef HAVE_conditional_execution
518 /* In the presence of conditional execution we are not able to update
519 liveness precisely. */
520 if (reload_completed)
521 {
522 bb->flags |= BB_DIRTY;
523 new_bb->flags |= BB_DIRTY;
524 }
525 #endif
526 }
527
528 return new_bb;
529 }
530
531 /* Blocks A and B are to be merged into a single block A. The insns
532 are already contiguous. */
533
534 static void
535 rtl_merge_blocks (basic_block a, basic_block b)
536 {
537 rtx b_head = BB_HEAD (b), b_end = BB_END (b), a_end = BB_END (a);
538 rtx del_first = NULL_RTX, del_last = NULL_RTX;
539 int b_empty = 0;
540
541 /* If there was a CODE_LABEL beginning B, delete it. */
542 if (GET_CODE (b_head) == CODE_LABEL)
543 {
544 /* Detect basic blocks with nothing but a label. This can happen
545 in particular at the end of a function. */
546 if (b_head == b_end)
547 b_empty = 1;
548
549 del_first = del_last = b_head;
550 b_head = NEXT_INSN (b_head);
551 }
552
553 /* Delete the basic block note and handle blocks containing just that
554 note. */
555 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
556 {
557 if (b_head == b_end)
558 b_empty = 1;
559 if (! del_last)
560 del_first = b_head;
561
562 del_last = b_head;
563 b_head = NEXT_INSN (b_head);
564 }
565
566 /* If there was a jump out of A, delete it. */
567 if (GET_CODE (a_end) == JUMP_INSN)
568 {
569 rtx prev;
570
571 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
572 if (GET_CODE (prev) != NOTE
573 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
574 || prev == BB_HEAD (a))
575 break;
576
577 del_first = a_end;
578
579 #ifdef HAVE_cc0
580 /* If this was a conditional jump, we need to also delete
581 the insn that set cc0. */
582 if (only_sets_cc0_p (prev))
583 {
584 rtx tmp = prev;
585
586 prev = prev_nonnote_insn (prev);
587 if (!prev)
588 prev = BB_HEAD (a);
589 del_first = tmp;
590 }
591 #endif
592
593 a_end = PREV_INSN (del_first);
594 }
595 else if (GET_CODE (NEXT_INSN (a_end)) == BARRIER)
596 del_first = NEXT_INSN (a_end);
597
598 /* Delete everything marked above as well as crap that might be
599 hanging out between the two blocks. */
600 BB_HEAD (b) = NULL;
601 delete_insn_chain (del_first, del_last);
602
603 /* Reassociate the insns of B with A. */
604 if (!b_empty)
605 {
606 rtx x;
607
608 for (x = a_end; x != b_end; x = NEXT_INSN (x))
609 set_block_for_insn (x, a);
610
611 set_block_for_insn (b_end, a);
612
613 a_end = b_end;
614 }
615
616 BB_END (a) = a_end;
617 }
618
619 /* Return true when block A and B can be merged. */
620 static bool
621 rtl_can_merge_blocks (basic_block a,basic_block b)
622 {
623 /* There must be exactly one edge in between the blocks. */
624 return (a->succ && !a->succ->succ_next && a->succ->dest == b
625 && !b->pred->pred_next && a != b
626 /* Must be simple edge. */
627 && !(a->succ->flags & EDGE_COMPLEX)
628 && a->next_bb == b
629 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
630 /* If the jump insn has side effects,
631 we can't kill the edge. */
632 && (GET_CODE (BB_END (a)) != JUMP_INSN
633 || (reload_completed
634 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
635 }
636 \f
637 /* Return the label in the head of basic block BLOCK. Create one if it doesn't
638 exist. */
639
640 rtx
641 block_label (basic_block block)
642 {
643 if (block == EXIT_BLOCK_PTR)
644 return NULL_RTX;
645
646 if (GET_CODE (BB_HEAD (block)) != CODE_LABEL)
647 {
648 BB_HEAD (block) = emit_label_before (gen_label_rtx (), BB_HEAD (block));
649 }
650
651 return BB_HEAD (block);
652 }
653
654 /* Attempt to perform edge redirection by replacing possibly complex jump
655 instruction by unconditional jump or removing jump completely. This can
656 apply only if all edges now point to the same block. The parameters and
657 return values are equivalent to redirect_edge_and_branch. */
658
659 bool
660 try_redirect_by_replacing_jump (edge e, basic_block target, bool in_cfglayout)
661 {
662 basic_block src = e->src;
663 rtx insn = BB_END (src), kill_from;
664 edge tmp;
665 rtx set;
666 int fallthru = 0;
667
668 /* Verify that all targets will be TARGET. */
669 for (tmp = src->succ; tmp; tmp = tmp->succ_next)
670 if (tmp->dest != target && tmp != e)
671 break;
672
673 if (tmp || !onlyjump_p (insn))
674 return false;
675 if ((!optimize || reload_completed) && tablejump_p (insn, NULL, NULL))
676 return false;
677
678 /* Avoid removing branch with side effects. */
679 set = single_set (insn);
680 if (!set || side_effects_p (set))
681 return false;
682
683 /* In case we zap a conditional jump, we'll need to kill
684 the cc0 setter too. */
685 kill_from = insn;
686 #ifdef HAVE_cc0
687 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
688 kill_from = PREV_INSN (insn);
689 #endif
690
691 /* See if we can create the fallthru edge. */
692 if (in_cfglayout || can_fallthru (src, target))
693 {
694 if (dump_file)
695 fprintf (dump_file, "Removing jump %i.\n", INSN_UID (insn));
696 fallthru = 1;
697
698 /* Selectively unlink whole insn chain. */
699 if (in_cfglayout)
700 {
701 rtx insn = src->rbi->footer;
702
703 delete_insn_chain (kill_from, BB_END (src));
704
705 /* Remove barriers but keep jumptables. */
706 while (insn)
707 {
708 if (GET_CODE (insn) == BARRIER)
709 {
710 if (PREV_INSN (insn))
711 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
712 else
713 src->rbi->footer = NEXT_INSN (insn);
714 if (NEXT_INSN (insn))
715 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
716 }
717 if (GET_CODE (insn) == CODE_LABEL)
718 break;
719 insn = NEXT_INSN (insn);
720 }
721 }
722 else
723 delete_insn_chain (kill_from, PREV_INSN (BB_HEAD (target)));
724 }
725
726 /* If this already is simplejump, redirect it. */
727 else if (simplejump_p (insn))
728 {
729 if (e->dest == target)
730 return false;
731 if (dump_file)
732 fprintf (dump_file, "Redirecting jump %i from %i to %i.\n",
733 INSN_UID (insn), e->dest->index, target->index);
734 if (!redirect_jump (insn, block_label (target), 0))
735 {
736 if (target == EXIT_BLOCK_PTR)
737 return false;
738 abort ();
739 }
740 }
741
742 /* Cannot do anything for target exit block. */
743 else if (target == EXIT_BLOCK_PTR)
744 return false;
745
746 /* Or replace possibly complicated jump insn by simple jump insn. */
747 else
748 {
749 rtx target_label = block_label (target);
750 rtx barrier, label, table;
751
752 emit_jump_insn_after (gen_jump (target_label), insn);
753 JUMP_LABEL (BB_END (src)) = target_label;
754 LABEL_NUSES (target_label)++;
755 if (dump_file)
756 fprintf (dump_file, "Replacing insn %i by jump %i\n",
757 INSN_UID (insn), INSN_UID (BB_END (src)));
758
759
760 delete_insn_chain (kill_from, insn);
761
762 /* Recognize a tablejump that we are converting to a
763 simple jump and remove its associated CODE_LABEL
764 and ADDR_VEC or ADDR_DIFF_VEC. */
765 if (tablejump_p (insn, &label, &table))
766 delete_insn_chain (label, table);
767
768 barrier = next_nonnote_insn (BB_END (src));
769 if (!barrier || GET_CODE (barrier) != BARRIER)
770 emit_barrier_after (BB_END (src));
771 else
772 {
773 if (barrier != NEXT_INSN (BB_END (src)))
774 {
775 /* Move the jump before barrier so that the notes
776 which originally were or were created before jump table are
777 inside the basic block. */
778 rtx new_insn = BB_END (src);
779 rtx tmp;
780
781 for (tmp = NEXT_INSN (BB_END (src)); tmp != barrier;
782 tmp = NEXT_INSN (tmp))
783 set_block_for_insn (tmp, src);
784
785 NEXT_INSN (PREV_INSN (new_insn)) = NEXT_INSN (new_insn);
786 PREV_INSN (NEXT_INSN (new_insn)) = PREV_INSN (new_insn);
787
788 NEXT_INSN (new_insn) = barrier;
789 NEXT_INSN (PREV_INSN (barrier)) = new_insn;
790
791 PREV_INSN (new_insn) = PREV_INSN (barrier);
792 PREV_INSN (barrier) = new_insn;
793 }
794 }
795 }
796
797 /* Keep only one edge out and set proper flags. */
798 while (src->succ->succ_next)
799 remove_edge (src->succ);
800 e = src->succ;
801 if (fallthru)
802 e->flags = EDGE_FALLTHRU;
803 else
804 e->flags = 0;
805
806 e->probability = REG_BR_PROB_BASE;
807 e->count = src->count;
808
809 /* We don't want a block to end on a line-number note since that has
810 the potential of changing the code between -g and not -g. */
811 while (GET_CODE (BB_END (e->src)) == NOTE
812 && NOTE_LINE_NUMBER (BB_END (e->src)) >= 0)
813 delete_insn (BB_END (e->src));
814
815 if (e->dest != target)
816 redirect_edge_succ (e, target);
817
818 return true;
819 }
820
821 /* Return last loop_beg note appearing after INSN, before start of next
822 basic block. Return INSN if there are no such notes.
823
824 When emitting jump to redirect a fallthru edge, it should always appear
825 after the LOOP_BEG notes, as loop optimizer expect loop to either start by
826 fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
827 test. */
828
829 static rtx
830 last_loop_beg_note (rtx insn)
831 {
832 rtx last = insn;
833
834 for (insn = NEXT_INSN (insn); insn && GET_CODE (insn) == NOTE
835 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
836 insn = NEXT_INSN (insn))
837 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
838 last = insn;
839
840 return last;
841 }
842
843 /* Redirect edge representing branch of (un)conditional jump or tablejump. */
844 static bool
845 redirect_branch_edge (edge e, basic_block target)
846 {
847 rtx tmp;
848 rtx old_label = BB_HEAD (e->dest);
849 basic_block src = e->src;
850 rtx insn = BB_END (src);
851
852 /* We can only redirect non-fallthru edges of jump insn. */
853 if (e->flags & EDGE_FALLTHRU)
854 return false;
855 else if (GET_CODE (insn) != JUMP_INSN)
856 return false;
857
858 /* Recognize a tablejump and adjust all matching cases. */
859 if (tablejump_p (insn, NULL, &tmp))
860 {
861 rtvec vec;
862 int j;
863 rtx new_label = block_label (target);
864
865 if (target == EXIT_BLOCK_PTR)
866 return false;
867 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
868 vec = XVEC (PATTERN (tmp), 0);
869 else
870 vec = XVEC (PATTERN (tmp), 1);
871
872 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
873 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
874 {
875 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
876 --LABEL_NUSES (old_label);
877 ++LABEL_NUSES (new_label);
878 }
879
880 /* Handle casesi dispatch insns. */
881 if ((tmp = single_set (insn)) != NULL
882 && SET_DEST (tmp) == pc_rtx
883 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
884 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
885 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
886 {
887 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
888 new_label);
889 --LABEL_NUSES (old_label);
890 ++LABEL_NUSES (new_label);
891 }
892 }
893 else
894 {
895 /* ?? We may play the games with moving the named labels from
896 one basic block to the other in case only one computed_jump is
897 available. */
898 if (computed_jump_p (insn)
899 /* A return instruction can't be redirected. */
900 || returnjump_p (insn))
901 return false;
902
903 /* If the insn doesn't go where we think, we're confused. */
904 if (JUMP_LABEL (insn) != old_label)
905 abort ();
906
907 /* If the substitution doesn't succeed, die. This can happen
908 if the back end emitted unrecognizable instructions or if
909 target is exit block on some arches. */
910 if (!redirect_jump (insn, block_label (target), 0))
911 {
912 if (target == EXIT_BLOCK_PTR)
913 return false;
914 abort ();
915 }
916 }
917
918 if (dump_file)
919 fprintf (dump_file, "Edge %i->%i redirected to %i\n",
920 e->src->index, e->dest->index, target->index);
921
922 if (e->dest != target)
923 redirect_edge_succ_nodup (e, target);
924 return true;
925 }
926
927 /* Attempt to change code to redirect edge E to TARGET. Don't do that on
928 expense of adding new instructions or reordering basic blocks.
929
930 Function can be also called with edge destination equivalent to the TARGET.
931 Then it should try the simplifications and do nothing if none is possible.
932
933 Return true if transformation succeeded. We still return false in case E
934 already destinated TARGET and we didn't managed to simplify instruction
935 stream. */
936
937 static bool
938 rtl_redirect_edge_and_branch (edge e, basic_block target)
939 {
940 basic_block src = e->src;
941
942 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
943 return false;
944
945 if (e->dest == target)
946 return true;
947
948 if (try_redirect_by_replacing_jump (e, target, false))
949 {
950 src->flags |= BB_DIRTY;
951 return true;
952 }
953
954 if (!redirect_branch_edge (e, target))
955 return false;
956
957 src->flags |= BB_DIRTY;
958 return true;
959 }
960
961 /* Like force_nonfallthru below, but additionally performs redirection
962 Used by redirect_edge_and_branch_force. */
963
964 basic_block
965 force_nonfallthru_and_redirect (edge e, basic_block target)
966 {
967 basic_block jump_block, new_bb = NULL, src = e->src;
968 rtx note;
969 edge new_edge;
970 int abnormal_edge_flags = 0;
971
972 /* In the case the last instruction is conditional jump to the next
973 instruction, first redirect the jump itself and then continue
974 by creating a basic block afterwards to redirect fallthru edge. */
975 if (e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR
976 && any_condjump_p (BB_END (e->src))
977 /* When called from cfglayout, fallthru edges do not
978 necessarily go to the next block. */
979 && e->src->next_bb == e->dest
980 && JUMP_LABEL (BB_END (e->src)) == BB_HEAD (e->dest))
981 {
982 rtx note;
983 edge b = unchecked_make_edge (e->src, target, 0);
984
985 if (!redirect_jump (BB_END (e->src), block_label (target), 0))
986 abort ();
987 note = find_reg_note (BB_END (e->src), REG_BR_PROB, NULL_RTX);
988 if (note)
989 {
990 int prob = INTVAL (XEXP (note, 0));
991
992 b->probability = prob;
993 b->count = e->count * prob / REG_BR_PROB_BASE;
994 e->probability -= e->probability;
995 e->count -= b->count;
996 if (e->probability < 0)
997 e->probability = 0;
998 if (e->count < 0)
999 e->count = 0;
1000 }
1001 }
1002
1003 if (e->flags & EDGE_ABNORMAL)
1004 {
1005 /* Irritating special case - fallthru edge to the same block as abnormal
1006 edge.
1007 We can't redirect abnormal edge, but we still can split the fallthru
1008 one and create separate abnormal edge to original destination.
1009 This allows bb-reorder to make such edge non-fallthru. */
1010 if (e->dest != target)
1011 abort ();
1012 abnormal_edge_flags = e->flags & ~(EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
1013 e->flags &= EDGE_FALLTHRU | EDGE_CAN_FALLTHRU;
1014 }
1015 else if (!(e->flags & EDGE_FALLTHRU))
1016 abort ();
1017 else if (e->src == ENTRY_BLOCK_PTR)
1018 {
1019 /* We can't redirect the entry block. Create an empty block at the
1020 start of the function which we use to add the new jump. */
1021 edge *pe1;
1022 basic_block bb = create_basic_block (BB_HEAD (e->dest), NULL, ENTRY_BLOCK_PTR);
1023
1024 /* Change the existing edge's source to be the new block, and add
1025 a new edge from the entry block to the new block. */
1026 e->src = bb;
1027 for (pe1 = &ENTRY_BLOCK_PTR->succ; *pe1; pe1 = &(*pe1)->succ_next)
1028 if (*pe1 == e)
1029 {
1030 *pe1 = e->succ_next;
1031 break;
1032 }
1033 e->succ_next = 0;
1034 bb->succ = e;
1035 make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
1036 }
1037
1038 if (e->src->succ->succ_next || abnormal_edge_flags)
1039 {
1040 /* Create the new structures. */
1041
1042 /* If the old block ended with a tablejump, skip its table
1043 by searching forward from there. Otherwise start searching
1044 forward from the last instruction of the old block. */
1045 if (!tablejump_p (BB_END (e->src), NULL, &note))
1046 note = BB_END (e->src);
1047
1048 /* Position the new block correctly relative to loop notes. */
1049 note = last_loop_beg_note (note);
1050 note = NEXT_INSN (note);
1051
1052 jump_block = create_basic_block (note, NULL, e->src);
1053 jump_block->count = e->count;
1054 jump_block->frequency = EDGE_FREQUENCY (e);
1055 jump_block->loop_depth = target->loop_depth;
1056
1057 if (target->global_live_at_start)
1058 {
1059 jump_block->global_live_at_start
1060 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1061 jump_block->global_live_at_end
1062 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1063 COPY_REG_SET (jump_block->global_live_at_start,
1064 target->global_live_at_start);
1065 COPY_REG_SET (jump_block->global_live_at_end,
1066 target->global_live_at_start);
1067 }
1068
1069 /* Wire edge in. */
1070 new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
1071 new_edge->probability = e->probability;
1072 new_edge->count = e->count;
1073
1074 /* Redirect old edge. */
1075 redirect_edge_pred (e, jump_block);
1076 e->probability = REG_BR_PROB_BASE;
1077
1078 new_bb = jump_block;
1079 }
1080 else
1081 jump_block = e->src;
1082
1083 e->flags &= ~EDGE_FALLTHRU;
1084 if (target == EXIT_BLOCK_PTR)
1085 {
1086 if (HAVE_return)
1087 emit_jump_insn_after (gen_return (), BB_END (jump_block));
1088 else
1089 abort ();
1090 }
1091 else
1092 {
1093 rtx label = block_label (target);
1094 emit_jump_insn_after (gen_jump (label), BB_END (jump_block));
1095 JUMP_LABEL (BB_END (jump_block)) = label;
1096 LABEL_NUSES (label)++;
1097 }
1098
1099 emit_barrier_after (BB_END (jump_block));
1100 redirect_edge_succ_nodup (e, target);
1101
1102 if (abnormal_edge_flags)
1103 make_edge (src, target, abnormal_edge_flags);
1104
1105 return new_bb;
1106 }
1107
1108 /* Edge E is assumed to be fallthru edge. Emit needed jump instruction
1109 (and possibly create new basic block) to make edge non-fallthru.
1110 Return newly created BB or NULL if none. */
1111
1112 basic_block
1113 force_nonfallthru (edge e)
1114 {
1115 return force_nonfallthru_and_redirect (e, e->dest);
1116 }
1117
1118 /* Redirect edge even at the expense of creating new jump insn or
1119 basic block. Return new basic block if created, NULL otherwise.
1120 Abort if conversion is impossible. */
1121
1122 static basic_block
1123 rtl_redirect_edge_and_branch_force (edge e, basic_block target)
1124 {
1125 if (redirect_edge_and_branch (e, target)
1126 || e->dest == target)
1127 return NULL;
1128
1129 /* In case the edge redirection failed, try to force it to be non-fallthru
1130 and redirect newly created simplejump. */
1131 return force_nonfallthru_and_redirect (e, target);
1132 }
1133
1134 /* The given edge should potentially be a fallthru edge. If that is in
1135 fact true, delete the jump and barriers that are in the way. */
1136
1137 static void
1138 rtl_tidy_fallthru_edge (edge e)
1139 {
1140 rtx q;
1141 basic_block b = e->src, c = b->next_bb;
1142
1143 /* ??? In a late-running flow pass, other folks may have deleted basic
1144 blocks by nopping out blocks, leaving multiple BARRIERs between here
1145 and the target label. They ought to be chastized and fixed.
1146
1147 We can also wind up with a sequence of undeletable labels between
1148 one block and the next.
1149
1150 So search through a sequence of barriers, labels, and notes for
1151 the head of block C and assert that we really do fall through. */
1152
1153 for (q = NEXT_INSN (BB_END (b)); q != BB_HEAD (c); q = NEXT_INSN (q))
1154 if (INSN_P (q))
1155 return;
1156
1157 /* Remove what will soon cease being the jump insn from the source block.
1158 If block B consisted only of this single jump, turn it into a deleted
1159 note. */
1160 q = BB_END (b);
1161 if (GET_CODE (q) == JUMP_INSN
1162 && onlyjump_p (q)
1163 && (any_uncondjump_p (q)
1164 || (b->succ == e && e->succ_next == NULL)))
1165 {
1166 #ifdef HAVE_cc0
1167 /* If this was a conditional jump, we need to also delete
1168 the insn that set cc0. */
1169 if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1170 q = PREV_INSN (q);
1171 #endif
1172
1173 q = PREV_INSN (q);
1174
1175 /* We don't want a block to end on a line-number note since that has
1176 the potential of changing the code between -g and not -g. */
1177 while (GET_CODE (q) == NOTE && NOTE_LINE_NUMBER (q) >= 0)
1178 q = PREV_INSN (q);
1179 }
1180
1181 /* Selectively unlink the sequence. */
1182 if (q != PREV_INSN (BB_HEAD (c)))
1183 delete_insn_chain (NEXT_INSN (q), PREV_INSN (BB_HEAD (c)));
1184
1185 e->flags |= EDGE_FALLTHRU;
1186 }
1187 \f
1188 /* Helper function for split_edge. Return true in case edge BB2 to BB1
1189 is back edge of syntactic loop. */
1190
1191 static bool
1192 back_edge_of_syntactic_loop_p (basic_block bb1, basic_block bb2)
1193 {
1194 rtx insn;
1195 int count = 0;
1196 basic_block bb;
1197
1198 if (bb1 == bb2)
1199 return true;
1200
1201 /* ??? Could we guarantee that bb indices are monotone, so that we could
1202 just compare them? */
1203 for (bb = bb1; bb && bb != bb2; bb = bb->next_bb)
1204 continue;
1205
1206 if (!bb)
1207 return false;
1208
1209 for (insn = BB_END (bb1); insn != BB_HEAD (bb2) && count >= 0;
1210 insn = NEXT_INSN (insn))
1211 if (GET_CODE (insn) == NOTE)
1212 {
1213 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1214 count++;
1215 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1216 count--;
1217 }
1218
1219 return count >= 0;
1220 }
1221
1222 /* Should move basic block BB after basic block AFTER. NIY. */
1223
1224 static bool
1225 rtl_move_block_after (basic_block bb ATTRIBUTE_UNUSED,
1226 basic_block after ATTRIBUTE_UNUSED)
1227 {
1228 return false;
1229 }
1230
1231 /* Split a (typically critical) edge. Return the new block.
1232 Abort on abnormal edges.
1233
1234 ??? The code generally expects to be called on critical edges.
1235 The case of a block ending in an unconditional jump to a
1236 block with multiple predecessors is not handled optimally. */
1237
1238 static basic_block
1239 rtl_split_edge (edge edge_in)
1240 {
1241 basic_block bb;
1242 rtx before;
1243
1244 /* Abnormal edges cannot be split. */
1245 if ((edge_in->flags & EDGE_ABNORMAL) != 0)
1246 abort ();
1247
1248 /* We are going to place the new block in front of edge destination.
1249 Avoid existence of fallthru predecessors. */
1250 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1251 {
1252 edge e;
1253
1254 for (e = edge_in->dest->pred; e; e = e->pred_next)
1255 if (e->flags & EDGE_FALLTHRU)
1256 break;
1257
1258 if (e)
1259 force_nonfallthru (e);
1260 }
1261
1262 /* Create the basic block note.
1263
1264 Where we place the note can have a noticeable impact on the generated
1265 code. Consider this cfg:
1266
1267 E
1268 |
1269 0
1270 / \
1271 +->1-->2--->E
1272 | |
1273 +--+
1274
1275 If we need to insert an insn on the edge from block 0 to block 1,
1276 we want to ensure the instructions we insert are outside of any
1277 loop notes that physically sit between block 0 and block 1. Otherwise
1278 we confuse the loop optimizer into thinking the loop is a phony. */
1279
1280 if (edge_in->dest != EXIT_BLOCK_PTR
1281 && PREV_INSN (BB_HEAD (edge_in->dest))
1282 && GET_CODE (PREV_INSN (BB_HEAD (edge_in->dest))) == NOTE
1283 && (NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (edge_in->dest)))
1284 == NOTE_INSN_LOOP_BEG)
1285 && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1286 before = PREV_INSN (BB_HEAD (edge_in->dest));
1287 else if (edge_in->dest != EXIT_BLOCK_PTR)
1288 before = BB_HEAD (edge_in->dest);
1289 else
1290 before = NULL_RTX;
1291
1292 bb = create_basic_block (before, NULL, edge_in->dest->prev_bb);
1293
1294 /* ??? This info is likely going to be out of date very soon. */
1295 if (edge_in->dest->global_live_at_start)
1296 {
1297 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1298 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1299 COPY_REG_SET (bb->global_live_at_start,
1300 edge_in->dest->global_live_at_start);
1301 COPY_REG_SET (bb->global_live_at_end,
1302 edge_in->dest->global_live_at_start);
1303 }
1304
1305 make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1306
1307 /* For non-fallthru edges, we must adjust the predecessor's
1308 jump instruction to target our new block. */
1309 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1310 {
1311 if (!redirect_edge_and_branch (edge_in, bb))
1312 abort ();
1313 }
1314 else
1315 redirect_edge_succ (edge_in, bb);
1316
1317 return bb;
1318 }
1319
1320 /* Queue instructions for insertion on an edge between two basic blocks.
1321 The new instructions and basic blocks (if any) will not appear in the
1322 CFG until commit_edge_insertions is called. */
1323
1324 void
1325 insert_insn_on_edge (rtx pattern, edge e)
1326 {
1327 /* We cannot insert instructions on an abnormal critical edge.
1328 It will be easier to find the culprit if we die now. */
1329 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
1330 abort ();
1331
1332 if (e->insns == NULL_RTX)
1333 start_sequence ();
1334 else
1335 push_to_sequence (e->insns);
1336
1337 emit_insn (pattern);
1338
1339 e->insns = get_insns ();
1340 end_sequence ();
1341 }
1342
1343 /* Called from safe_insert_insn_on_edge through note_stores, marks live
1344 registers that are killed by the store. */
1345 static void
1346 mark_killed_regs (rtx reg, rtx set ATTRIBUTE_UNUSED, void *data)
1347 {
1348 regset killed = data;
1349 int regno, i;
1350
1351 if (GET_CODE (reg) == SUBREG)
1352 reg = SUBREG_REG (reg);
1353 if (!REG_P (reg))
1354 return;
1355 regno = REGNO (reg);
1356 if (regno >= FIRST_PSEUDO_REGISTER)
1357 SET_REGNO_REG_SET (killed, regno);
1358 else
1359 {
1360 for (i = 0; i < (int) hard_regno_nregs[regno][GET_MODE (reg)]; i++)
1361 SET_REGNO_REG_SET (killed, regno + i);
1362 }
1363 }
1364
1365 /* Similar to insert_insn_on_edge, tries to put INSN to edge E. Additionally
1366 it checks whether this will not clobber the registers that are live on the
1367 edge (i.e. it requires liveness information to be up-to-date) and if there
1368 are some, then it tries to save and restore them. Returns true if
1369 successful. */
1370 bool
1371 safe_insert_insn_on_edge (rtx insn, edge e)
1372 {
1373 rtx x;
1374 regset_head killed_head;
1375 regset killed = INITIALIZE_REG_SET (killed_head);
1376 rtx save_regs = NULL_RTX;
1377 int regno, noccmode;
1378 enum machine_mode mode;
1379
1380 #ifdef AVOID_CCMODE_COPIES
1381 noccmode = true;
1382 #else
1383 noccmode = false;
1384 #endif
1385
1386 for (x = insn; x; x = NEXT_INSN (x))
1387 if (INSN_P (x))
1388 note_stores (PATTERN (x), mark_killed_regs, killed);
1389 bitmap_operation (killed, killed, e->dest->global_live_at_start,
1390 BITMAP_AND);
1391
1392 EXECUTE_IF_SET_IN_REG_SET (killed, 0, regno,
1393 {
1394 mode = regno < FIRST_PSEUDO_REGISTER
1395 ? reg_raw_mode[regno]
1396 : GET_MODE (regno_reg_rtx[regno]);
1397 if (mode == VOIDmode)
1398 return false;
1399
1400 if (noccmode && mode == CCmode)
1401 return false;
1402
1403 save_regs = alloc_EXPR_LIST (0,
1404 alloc_EXPR_LIST (0,
1405 gen_reg_rtx (mode),
1406 gen_raw_REG (mode, regno)),
1407 save_regs);
1408 });
1409
1410 if (save_regs)
1411 {
1412 rtx from, to;
1413
1414 start_sequence ();
1415 for (x = save_regs; x; x = XEXP (x, 1))
1416 {
1417 from = XEXP (XEXP (x, 0), 1);
1418 to = XEXP (XEXP (x, 0), 0);
1419 emit_move_insn (to, from);
1420 }
1421 emit_insn (insn);
1422 for (x = save_regs; x; x = XEXP (x, 1))
1423 {
1424 from = XEXP (XEXP (x, 0), 0);
1425 to = XEXP (XEXP (x, 0), 1);
1426 emit_move_insn (to, from);
1427 }
1428 insn = get_insns ();
1429 end_sequence ();
1430 free_EXPR_LIST_list (&save_regs);
1431 }
1432 insert_insn_on_edge (insn, e);
1433
1434 FREE_REG_SET (killed);
1435 return true;
1436 }
1437
1438 /* Update the CFG for the instructions queued on edge E. */
1439
1440 static void
1441 commit_one_edge_insertion (edge e, int watch_calls)
1442 {
1443 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1444 basic_block bb = NULL;
1445
1446 /* Pull the insns off the edge now since the edge might go away. */
1447 insns = e->insns;
1448 e->insns = NULL_RTX;
1449
1450 /* Special case -- avoid inserting code between call and storing
1451 its return value. */
1452 if (watch_calls && (e->flags & EDGE_FALLTHRU) && !e->dest->pred->pred_next
1453 && e->src != ENTRY_BLOCK_PTR
1454 && GET_CODE (BB_END (e->src)) == CALL_INSN)
1455 {
1456 rtx next = next_nonnote_insn (BB_END (e->src));
1457
1458 after = BB_HEAD (e->dest);
1459 /* The first insn after the call may be a stack pop, skip it. */
1460 while (next
1461 && keep_with_call_p (next))
1462 {
1463 after = next;
1464 next = next_nonnote_insn (next);
1465 }
1466 bb = e->dest;
1467 }
1468 if (!before && !after)
1469 {
1470 /* Figure out where to put these things. If the destination has
1471 one predecessor, insert there. Except for the exit block. */
1472 if (e->dest->pred->pred_next == NULL && e->dest != EXIT_BLOCK_PTR)
1473 {
1474 bb = e->dest;
1475
1476 /* Get the location correct wrt a code label, and "nice" wrt
1477 a basic block note, and before everything else. */
1478 tmp = BB_HEAD (bb);
1479 if (GET_CODE (tmp) == CODE_LABEL)
1480 tmp = NEXT_INSN (tmp);
1481 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1482 tmp = NEXT_INSN (tmp);
1483 if (tmp == BB_HEAD (bb))
1484 before = tmp;
1485 else if (tmp)
1486 after = PREV_INSN (tmp);
1487 else
1488 after = get_last_insn ();
1489 }
1490
1491 /* If the source has one successor and the edge is not abnormal,
1492 insert there. Except for the entry block. */
1493 else if ((e->flags & EDGE_ABNORMAL) == 0
1494 && e->src->succ->succ_next == NULL
1495 && e->src != ENTRY_BLOCK_PTR)
1496 {
1497 bb = e->src;
1498
1499 /* It is possible to have a non-simple jump here. Consider a target
1500 where some forms of unconditional jumps clobber a register. This
1501 happens on the fr30 for example.
1502
1503 We know this block has a single successor, so we can just emit
1504 the queued insns before the jump. */
1505 if (GET_CODE (BB_END (bb)) == JUMP_INSN)
1506 for (before = BB_END (bb);
1507 GET_CODE (PREV_INSN (before)) == NOTE
1508 && NOTE_LINE_NUMBER (PREV_INSN (before)) ==
1509 NOTE_INSN_LOOP_BEG; before = PREV_INSN (before))
1510 ;
1511 else
1512 {
1513 /* We'd better be fallthru, or we've lost track of what's what. */
1514 if ((e->flags & EDGE_FALLTHRU) == 0)
1515 abort ();
1516
1517 after = BB_END (bb);
1518 }
1519 }
1520 /* Otherwise we must split the edge. */
1521 else
1522 {
1523 bb = split_edge (e);
1524 after = BB_END (bb);
1525 }
1526 }
1527
1528 /* Now that we've found the spot, do the insertion. */
1529
1530 if (before)
1531 {
1532 emit_insn_before (insns, before);
1533 last = prev_nonnote_insn (before);
1534 }
1535 else
1536 last = emit_insn_after (insns, after);
1537
1538 if (returnjump_p (last))
1539 {
1540 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1541 This is not currently a problem because this only happens
1542 for the (single) epilogue, which already has a fallthru edge
1543 to EXIT. */
1544
1545 e = bb->succ;
1546 if (e->dest != EXIT_BLOCK_PTR
1547 || e->succ_next != NULL || (e->flags & EDGE_FALLTHRU) == 0)
1548 abort ();
1549
1550 e->flags &= ~EDGE_FALLTHRU;
1551 emit_barrier_after (last);
1552
1553 if (before)
1554 delete_insn (before);
1555 }
1556 else if (GET_CODE (last) == JUMP_INSN)
1557 abort ();
1558
1559 /* Mark the basic block for find_sub_basic_blocks. */
1560 bb->aux = &bb->aux;
1561 }
1562
1563 /* Update the CFG for all queued instructions. */
1564
1565 void
1566 commit_edge_insertions (void)
1567 {
1568 basic_block bb;
1569 sbitmap blocks;
1570 bool changed = false;
1571
1572 #ifdef ENABLE_CHECKING
1573 verify_flow_info ();
1574 #endif
1575
1576 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1577 {
1578 edge e, next;
1579
1580 for (e = bb->succ; e; e = next)
1581 {
1582 next = e->succ_next;
1583 if (e->insns)
1584 {
1585 changed = true;
1586 commit_one_edge_insertion (e, false);
1587 }
1588 }
1589 }
1590
1591 if (!changed)
1592 return;
1593
1594 blocks = sbitmap_alloc (last_basic_block);
1595 sbitmap_zero (blocks);
1596 FOR_EACH_BB (bb)
1597 if (bb->aux)
1598 {
1599 SET_BIT (blocks, bb->index);
1600 /* Check for forgotten bb->aux values before commit_edge_insertions
1601 call. */
1602 if (bb->aux != &bb->aux)
1603 abort ();
1604 bb->aux = NULL;
1605 }
1606 find_many_sub_basic_blocks (blocks);
1607 sbitmap_free (blocks);
1608 }
1609 \f
1610 /* Update the CFG for all queued instructions, taking special care of inserting
1611 code on edges between call and storing its return value. */
1612
1613 void
1614 commit_edge_insertions_watch_calls (void)
1615 {
1616 basic_block bb;
1617 sbitmap blocks;
1618 bool changed = false;
1619
1620 #ifdef ENABLE_CHECKING
1621 verify_flow_info ();
1622 #endif
1623
1624 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1625 {
1626 edge e, next;
1627
1628 for (e = bb->succ; e; e = next)
1629 {
1630 next = e->succ_next;
1631 if (e->insns)
1632 {
1633 changed = true;
1634 commit_one_edge_insertion (e, true);
1635 }
1636 }
1637 }
1638
1639 if (!changed)
1640 return;
1641
1642 blocks = sbitmap_alloc (last_basic_block);
1643 sbitmap_zero (blocks);
1644 FOR_EACH_BB (bb)
1645 if (bb->aux)
1646 {
1647 SET_BIT (blocks, bb->index);
1648 /* Check for forgotten bb->aux values before commit_edge_insertions
1649 call. */
1650 if (bb->aux != &bb->aux)
1651 abort ();
1652 bb->aux = NULL;
1653 }
1654 find_many_sub_basic_blocks (blocks);
1655 sbitmap_free (blocks);
1656 }
1657 \f
1658 /* Print out RTL-specific basic block information (live information
1659 at start and end). */
1660
1661 static void
1662 rtl_dump_bb (basic_block bb, FILE *outf, int indent)
1663 {
1664 rtx insn;
1665 rtx last;
1666 char *s_indent;
1667
1668 s_indent = alloca ((size_t) indent + 1);
1669 memset (s_indent, ' ', (size_t) indent);
1670 s_indent[indent] = '\0';
1671
1672 fprintf (outf, ";;%s Registers live at start: ", s_indent);
1673 dump_regset (bb->global_live_at_start, outf);
1674 putc ('\n', outf);
1675
1676 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb)); insn != last;
1677 insn = NEXT_INSN (insn))
1678 print_rtl_single (outf, insn);
1679
1680 fprintf (outf, ";;%s Registers live at end: ", s_indent);
1681 dump_regset (bb->global_live_at_end, outf);
1682 putc ('\n', outf);
1683 }
1684 \f
1685 /* Like print_rtl, but also print out live information for the start of each
1686 basic block. */
1687
1688 void
1689 print_rtl_with_bb (FILE *outf, rtx rtx_first)
1690 {
1691 rtx tmp_rtx;
1692
1693 if (rtx_first == 0)
1694 fprintf (outf, "(nil)\n");
1695 else
1696 {
1697 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1698 int max_uid = get_max_uid ();
1699 basic_block *start = xcalloc (max_uid, sizeof (basic_block));
1700 basic_block *end = xcalloc (max_uid, sizeof (basic_block));
1701 enum bb_state *in_bb_p = xcalloc (max_uid, sizeof (enum bb_state));
1702
1703 basic_block bb;
1704
1705 FOR_EACH_BB_REVERSE (bb)
1706 {
1707 rtx x;
1708
1709 start[INSN_UID (BB_HEAD (bb))] = bb;
1710 end[INSN_UID (BB_END (bb))] = bb;
1711 for (x = BB_HEAD (bb); x != NULL_RTX; x = NEXT_INSN (x))
1712 {
1713 enum bb_state state = IN_MULTIPLE_BB;
1714
1715 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1716 state = IN_ONE_BB;
1717 in_bb_p[INSN_UID (x)] = state;
1718
1719 if (x == BB_END (bb))
1720 break;
1721 }
1722 }
1723
1724 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1725 {
1726 int did_output;
1727
1728 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1729 {
1730 fprintf (outf, ";; Start of basic block %d, registers live:",
1731 bb->index);
1732 dump_regset (bb->global_live_at_start, outf);
1733 putc ('\n', outf);
1734 }
1735
1736 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1737 && GET_CODE (tmp_rtx) != NOTE
1738 && GET_CODE (tmp_rtx) != BARRIER)
1739 fprintf (outf, ";; Insn is not within a basic block\n");
1740 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1741 fprintf (outf, ";; Insn is in multiple basic blocks\n");
1742
1743 did_output = print_rtl_single (outf, tmp_rtx);
1744
1745 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1746 {
1747 fprintf (outf, ";; End of basic block %d, registers live:\n",
1748 bb->index);
1749 dump_regset (bb->global_live_at_end, outf);
1750 putc ('\n', outf);
1751 }
1752
1753 if (did_output)
1754 putc ('\n', outf);
1755 }
1756
1757 free (start);
1758 free (end);
1759 free (in_bb_p);
1760 }
1761
1762 if (current_function_epilogue_delay_list != 0)
1763 {
1764 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1765 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1766 tmp_rtx = XEXP (tmp_rtx, 1))
1767 print_rtl_single (outf, XEXP (tmp_rtx, 0));
1768 }
1769 }
1770 \f
1771 void
1772 update_br_prob_note (basic_block bb)
1773 {
1774 rtx note;
1775 if (GET_CODE (BB_END (bb)) != JUMP_INSN)
1776 return;
1777 note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX);
1778 if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1779 return;
1780 XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1781 }
1782 \f
1783 /* Verify the CFG and RTL consistency common for both underlying RTL and
1784 cfglayout RTL.
1785
1786 Currently it does following checks:
1787
1788 - test head/end pointers
1789 - overlapping of basic blocks
1790 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1791 - tails of basic blocks (ensure that boundary is necessary)
1792 - scans body of the basic block for JUMP_INSN, CODE_LABEL
1793 and NOTE_INSN_BASIC_BLOCK
1794
1795 In future it can be extended check a lot of other stuff as well
1796 (reachability of basic blocks, life information, etc. etc.). */
1797
1798 static int
1799 rtl_verify_flow_info_1 (void)
1800 {
1801 const int max_uid = get_max_uid ();
1802 rtx last_head = get_last_insn ();
1803 basic_block *bb_info;
1804 rtx x;
1805 int err = 0;
1806 basic_block bb, last_bb_seen;
1807
1808 bb_info = xcalloc (max_uid, sizeof (basic_block));
1809
1810 /* Check bb chain & numbers. */
1811 last_bb_seen = ENTRY_BLOCK_PTR;
1812
1813 FOR_EACH_BB_REVERSE (bb)
1814 {
1815 rtx head = BB_HEAD (bb);
1816 rtx end = BB_END (bb);
1817
1818 /* Verify the end of the basic block is in the INSN chain. */
1819 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1820 if (x == end)
1821 break;
1822
1823 if (!x)
1824 {
1825 error ("end insn %d for block %d not found in the insn stream",
1826 INSN_UID (end), bb->index);
1827 err = 1;
1828 }
1829
1830 /* Work backwards from the end to the head of the basic block
1831 to verify the head is in the RTL chain. */
1832 for (; x != NULL_RTX; x = PREV_INSN (x))
1833 {
1834 /* While walking over the insn chain, verify insns appear
1835 in only one basic block and initialize the BB_INFO array
1836 used by other passes. */
1837 if (bb_info[INSN_UID (x)] != NULL)
1838 {
1839 error ("insn %d is in multiple basic blocks (%d and %d)",
1840 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1841 err = 1;
1842 }
1843
1844 bb_info[INSN_UID (x)] = bb;
1845
1846 if (x == head)
1847 break;
1848 }
1849 if (!x)
1850 {
1851 error ("head insn %d for block %d not found in the insn stream",
1852 INSN_UID (head), bb->index);
1853 err = 1;
1854 }
1855
1856 last_head = x;
1857 }
1858
1859 /* Now check the basic blocks (boundaries etc.) */
1860 FOR_EACH_BB_REVERSE (bb)
1861 {
1862 int n_fallthru = 0, n_eh = 0, n_call = 0, n_abnormal = 0, n_branch = 0;
1863 edge e, fallthru = NULL;
1864 rtx note;
1865
1866 if (INSN_P (BB_END (bb))
1867 && (note = find_reg_note (BB_END (bb), REG_BR_PROB, NULL_RTX))
1868 && bb->succ && bb->succ->succ_next
1869 && any_condjump_p (BB_END (bb)))
1870 {
1871 if (INTVAL (XEXP (note, 0)) != BRANCH_EDGE (bb)->probability)
1872 {
1873 error ("verify_flow_info: REG_BR_PROB does not match cfg %wi %i",
1874 INTVAL (XEXP (note, 0)), BRANCH_EDGE (bb)->probability);
1875 err = 1;
1876 }
1877 }
1878 for (e = bb->succ; e; e = e->succ_next)
1879 {
1880 if (e->flags & EDGE_FALLTHRU)
1881 n_fallthru++, fallthru = e;
1882
1883 if ((e->flags & ~(EDGE_DFS_BACK
1884 | EDGE_CAN_FALLTHRU
1885 | EDGE_IRREDUCIBLE_LOOP
1886 | EDGE_LOOP_EXIT)) == 0)
1887 n_branch++;
1888
1889 if (e->flags & EDGE_ABNORMAL_CALL)
1890 n_call++;
1891
1892 if (e->flags & EDGE_EH)
1893 n_eh++;
1894 else if (e->flags & EDGE_ABNORMAL)
1895 n_abnormal++;
1896 }
1897
1898 if (n_eh && GET_CODE (PATTERN (BB_END (bb))) != RESX
1899 && !find_reg_note (BB_END (bb), REG_EH_REGION, NULL_RTX))
1900 {
1901 error ("Missing REG_EH_REGION note in the end of bb %i", bb->index);
1902 err = 1;
1903 }
1904 if (n_branch
1905 && (GET_CODE (BB_END (bb)) != JUMP_INSN
1906 || (n_branch > 1 && (any_uncondjump_p (BB_END (bb))
1907 || any_condjump_p (BB_END (bb))))))
1908 {
1909 error ("Too many outgoing branch edges from bb %i", bb->index);
1910 err = 1;
1911 }
1912 if (n_fallthru && any_uncondjump_p (BB_END (bb)))
1913 {
1914 error ("Fallthru edge after unconditional jump %i", bb->index);
1915 err = 1;
1916 }
1917 if (n_branch != 1 && any_uncondjump_p (BB_END (bb)))
1918 {
1919 error ("Wrong amount of branch edges after unconditional jump %i", bb->index);
1920 err = 1;
1921 }
1922 if (n_branch != 1 && any_condjump_p (BB_END (bb))
1923 && JUMP_LABEL (BB_END (bb)) != BB_HEAD (fallthru->dest))
1924 {
1925 error ("Wrong amount of branch edges after conditional jump %i", bb->index);
1926 err = 1;
1927 }
1928 if (n_call && GET_CODE (BB_END (bb)) != CALL_INSN)
1929 {
1930 error ("Call edges for non-call insn in bb %i", bb->index);
1931 err = 1;
1932 }
1933 if (n_abnormal
1934 && (GET_CODE (BB_END (bb)) != CALL_INSN && n_call != n_abnormal)
1935 && (GET_CODE (BB_END (bb)) != JUMP_INSN
1936 || any_condjump_p (BB_END (bb))
1937 || any_uncondjump_p (BB_END (bb))))
1938 {
1939 error ("Abnormal edges for no purpose in bb %i", bb->index);
1940 err = 1;
1941 }
1942
1943 for (x = BB_HEAD (bb); x != NEXT_INSN (BB_END (bb)); x = NEXT_INSN (x))
1944 if (BLOCK_FOR_INSN (x) != bb)
1945 {
1946 debug_rtx (x);
1947 if (! BLOCK_FOR_INSN (x))
1948 error
1949 ("insn %d inside basic block %d but block_for_insn is NULL",
1950 INSN_UID (x), bb->index);
1951 else
1952 error
1953 ("insn %d inside basic block %d but block_for_insn is %i",
1954 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
1955
1956 err = 1;
1957 }
1958
1959 /* OK pointers are correct. Now check the header of basic
1960 block. It ought to contain optional CODE_LABEL followed
1961 by NOTE_BASIC_BLOCK. */
1962 x = BB_HEAD (bb);
1963 if (GET_CODE (x) == CODE_LABEL)
1964 {
1965 if (BB_END (bb) == x)
1966 {
1967 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1968 bb->index);
1969 err = 1;
1970 }
1971
1972 x = NEXT_INSN (x);
1973 }
1974
1975 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
1976 {
1977 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1978 bb->index);
1979 err = 1;
1980 }
1981
1982 if (BB_END (bb) == x)
1983 /* Do checks for empty blocks her. e */
1984 ;
1985 else
1986 for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
1987 {
1988 if (NOTE_INSN_BASIC_BLOCK_P (x))
1989 {
1990 error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
1991 INSN_UID (x), bb->index);
1992 err = 1;
1993 }
1994
1995 if (x == BB_END (bb))
1996 break;
1997
1998 if (control_flow_insn_p (x))
1999 {
2000 error ("in basic block %d:", bb->index);
2001 fatal_insn ("flow control insn inside a basic block", x);
2002 }
2003 }
2004 }
2005
2006 /* Clean up. */
2007 free (bb_info);
2008 return err;
2009 }
2010
2011 /* Verify the CFG and RTL consistency common for both underlying RTL and
2012 cfglayout RTL.
2013
2014 Currently it does following checks:
2015 - all checks of rtl_verify_flow_info_1
2016 - check that all insns are in the basic blocks
2017 (except the switch handling code, barriers and notes)
2018 - check that all returns are followed by barriers
2019 - check that all fallthru edge points to the adjacent blocks. */
2020 static int
2021 rtl_verify_flow_info (void)
2022 {
2023 basic_block bb;
2024 int err = rtl_verify_flow_info_1 ();
2025 rtx x;
2026 int num_bb_notes;
2027 const rtx rtx_first = get_insns ();
2028 basic_block last_bb_seen = ENTRY_BLOCK_PTR, curr_bb = NULL;
2029
2030 FOR_EACH_BB_REVERSE (bb)
2031 {
2032 edge e;
2033 for (e = bb->succ; e; e = e->succ_next)
2034 if (e->flags & EDGE_FALLTHRU)
2035 break;
2036 if (!e)
2037 {
2038 rtx insn;
2039
2040 /* Ensure existence of barrier in BB with no fallthru edges. */
2041 for (insn = BB_END (bb); !insn || GET_CODE (insn) != BARRIER;
2042 insn = NEXT_INSN (insn))
2043 if (!insn
2044 || (GET_CODE (insn) == NOTE
2045 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
2046 {
2047 error ("missing barrier after block %i", bb->index);
2048 err = 1;
2049 break;
2050 }
2051 }
2052 else if (e->src != ENTRY_BLOCK_PTR
2053 && e->dest != EXIT_BLOCK_PTR)
2054 {
2055 rtx insn;
2056
2057 if (e->src->next_bb != e->dest)
2058 {
2059 error
2060 ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
2061 e->src->index, e->dest->index);
2062 err = 1;
2063 }
2064 else
2065 for (insn = NEXT_INSN (BB_END (e->src)); insn != BB_HEAD (e->dest);
2066 insn = NEXT_INSN (insn))
2067 if (GET_CODE (insn) == BARRIER
2068 #ifndef CASE_DROPS_THROUGH
2069 || INSN_P (insn)
2070 #else
2071 || (INSN_P (insn) && ! JUMP_TABLE_DATA_P (insn))
2072 #endif
2073 )
2074 {
2075 error ("verify_flow_info: Incorrect fallthru %i->%i",
2076 e->src->index, e->dest->index);
2077 fatal_insn ("wrong insn in the fallthru edge", insn);
2078 err = 1;
2079 }
2080 }
2081 }
2082
2083 num_bb_notes = 0;
2084 last_bb_seen = ENTRY_BLOCK_PTR;
2085
2086 for (x = rtx_first; x; x = NEXT_INSN (x))
2087 {
2088 if (NOTE_INSN_BASIC_BLOCK_P (x))
2089 {
2090 bb = NOTE_BASIC_BLOCK (x);
2091
2092 num_bb_notes++;
2093 if (bb != last_bb_seen->next_bb)
2094 internal_error ("basic blocks not laid down consecutively");
2095
2096 curr_bb = last_bb_seen = bb;
2097 }
2098
2099 if (!curr_bb)
2100 {
2101 switch (GET_CODE (x))
2102 {
2103 case BARRIER:
2104 case NOTE:
2105 break;
2106
2107 case CODE_LABEL:
2108 /* An addr_vec is placed outside any block block. */
2109 if (NEXT_INSN (x)
2110 && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
2111 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
2112 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
2113 x = NEXT_INSN (x);
2114
2115 /* But in any case, non-deletable labels can appear anywhere. */
2116 break;
2117
2118 default:
2119 fatal_insn ("insn outside basic block", x);
2120 }
2121 }
2122
2123 if (INSN_P (x)
2124 && GET_CODE (x) == JUMP_INSN
2125 && returnjump_p (x) && ! condjump_p (x)
2126 && ! (NEXT_INSN (x) && GET_CODE (NEXT_INSN (x)) == BARRIER))
2127 fatal_insn ("return not followed by barrier", x);
2128 if (curr_bb && x == BB_END (curr_bb))
2129 curr_bb = NULL;
2130 }
2131
2132 if (num_bb_notes != n_basic_blocks)
2133 internal_error
2134 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
2135 num_bb_notes, n_basic_blocks);
2136
2137 return err;
2138 }
2139 \f
2140 /* Assume that the preceding pass has possibly eliminated jump instructions
2141 or converted the unconditional jumps. Eliminate the edges from CFG.
2142 Return true if any edges are eliminated. */
2143
2144 bool
2145 purge_dead_edges (basic_block bb)
2146 {
2147 edge e, next;
2148 rtx insn = BB_END (bb), note;
2149 bool purged = false;
2150
2151 /* If this instruction cannot trap, remove REG_EH_REGION notes. */
2152 if (GET_CODE (insn) == INSN
2153 && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
2154 {
2155 rtx eqnote;
2156
2157 if (! may_trap_p (PATTERN (insn))
2158 || ((eqnote = find_reg_equal_equiv_note (insn))
2159 && ! may_trap_p (XEXP (eqnote, 0))))
2160 remove_note (insn, note);
2161 }
2162
2163 /* Cleanup abnormal edges caused by exceptions or non-local gotos. */
2164 for (e = bb->succ; e; e = next)
2165 {
2166 next = e->succ_next;
2167 if (e->flags & EDGE_EH)
2168 {
2169 if (can_throw_internal (BB_END (bb)))
2170 continue;
2171 }
2172 else if (e->flags & EDGE_ABNORMAL_CALL)
2173 {
2174 if (GET_CODE (BB_END (bb)) == CALL_INSN
2175 && (! (note = find_reg_note (insn, REG_EH_REGION, NULL))
2176 || INTVAL (XEXP (note, 0)) >= 0))
2177 continue;
2178 }
2179 else
2180 continue;
2181
2182 remove_edge (e);
2183 bb->flags |= BB_DIRTY;
2184 purged = true;
2185 }
2186
2187 if (GET_CODE (insn) == JUMP_INSN)
2188 {
2189 rtx note;
2190 edge b,f;
2191
2192 /* We do care only about conditional jumps and simplejumps. */
2193 if (!any_condjump_p (insn)
2194 && !returnjump_p (insn)
2195 && !simplejump_p (insn))
2196 return purged;
2197
2198 /* Branch probability/prediction notes are defined only for
2199 condjumps. We've possibly turned condjump into simplejump. */
2200 if (simplejump_p (insn))
2201 {
2202 note = find_reg_note (insn, REG_BR_PROB, NULL);
2203 if (note)
2204 remove_note (insn, note);
2205 while ((note = find_reg_note (insn, REG_BR_PRED, NULL)))
2206 remove_note (insn, note);
2207 }
2208
2209 for (e = bb->succ; e; e = next)
2210 {
2211 next = e->succ_next;
2212
2213 /* Avoid abnormal flags to leak from computed jumps turned
2214 into simplejumps. */
2215
2216 e->flags &= ~EDGE_ABNORMAL;
2217
2218 /* See if this edge is one we should keep. */
2219 if ((e->flags & EDGE_FALLTHRU) && any_condjump_p (insn))
2220 /* A conditional jump can fall through into the next
2221 block, so we should keep the edge. */
2222 continue;
2223 else if (e->dest != EXIT_BLOCK_PTR
2224 && BB_HEAD (e->dest) == JUMP_LABEL (insn))
2225 /* If the destination block is the target of the jump,
2226 keep the edge. */
2227 continue;
2228 else if (e->dest == EXIT_BLOCK_PTR && returnjump_p (insn))
2229 /* If the destination block is the exit block, and this
2230 instruction is a return, then keep the edge. */
2231 continue;
2232 else if ((e->flags & EDGE_EH) && can_throw_internal (insn))
2233 /* Keep the edges that correspond to exceptions thrown by
2234 this instruction and rematerialize the EDGE_ABNORMAL
2235 flag we just cleared above. */
2236 {
2237 e->flags |= EDGE_ABNORMAL;
2238 continue;
2239 }
2240
2241 /* We do not need this edge. */
2242 bb->flags |= BB_DIRTY;
2243 purged = true;
2244 remove_edge (e);
2245 }
2246
2247 if (!bb->succ || !purged)
2248 return purged;
2249
2250 if (dump_file)
2251 fprintf (dump_file, "Purged edges from bb %i\n", bb->index);
2252
2253 if (!optimize)
2254 return purged;
2255
2256 /* Redistribute probabilities. */
2257 if (!bb->succ->succ_next)
2258 {
2259 bb->succ->probability = REG_BR_PROB_BASE;
2260 bb->succ->count = bb->count;
2261 }
2262 else
2263 {
2264 note = find_reg_note (insn, REG_BR_PROB, NULL);
2265 if (!note)
2266 return purged;
2267
2268 b = BRANCH_EDGE (bb);
2269 f = FALLTHRU_EDGE (bb);
2270 b->probability = INTVAL (XEXP (note, 0));
2271 f->probability = REG_BR_PROB_BASE - b->probability;
2272 b->count = bb->count * b->probability / REG_BR_PROB_BASE;
2273 f->count = bb->count * f->probability / REG_BR_PROB_BASE;
2274 }
2275
2276 return purged;
2277 }
2278 else if (GET_CODE (insn) == CALL_INSN && SIBLING_CALL_P (insn))
2279 {
2280 /* First, there should not be any EH or ABCALL edges resulting
2281 from non-local gotos and the like. If there were, we shouldn't
2282 have created the sibcall in the first place. Second, there
2283 should of course never have been a fallthru edge. */
2284 if (!bb->succ || bb->succ->succ_next)
2285 abort ();
2286 if (bb->succ->flags != (EDGE_SIBCALL | EDGE_ABNORMAL))
2287 abort ();
2288
2289 return 0;
2290 }
2291
2292 /* If we don't see a jump insn, we don't know exactly why the block would
2293 have been broken at this point. Look for a simple, non-fallthru edge,
2294 as these are only created by conditional branches. If we find such an
2295 edge we know that there used to be a jump here and can then safely
2296 remove all non-fallthru edges. */
2297 for (e = bb->succ; e && (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU));
2298 e = e->succ_next)
2299 ;
2300
2301 if (!e)
2302 return purged;
2303
2304 for (e = bb->succ; e; e = next)
2305 {
2306 next = e->succ_next;
2307 if (!(e->flags & EDGE_FALLTHRU))
2308 {
2309 bb->flags |= BB_DIRTY;
2310 remove_edge (e);
2311 purged = true;
2312 }
2313 }
2314
2315 if (!bb->succ || bb->succ->succ_next)
2316 abort ();
2317
2318 bb->succ->probability = REG_BR_PROB_BASE;
2319 bb->succ->count = bb->count;
2320
2321 if (dump_file)
2322 fprintf (dump_file, "Purged non-fallthru edges from bb %i\n",
2323 bb->index);
2324 return purged;
2325 }
2326
2327 /* Search all basic blocks for potentially dead edges and purge them. Return
2328 true if some edge has been eliminated. */
2329
2330 bool
2331 purge_all_dead_edges (int update_life_p)
2332 {
2333 int purged = false;
2334 sbitmap blocks = 0;
2335 basic_block bb;
2336
2337 if (update_life_p)
2338 {
2339 blocks = sbitmap_alloc (last_basic_block);
2340 sbitmap_zero (blocks);
2341 }
2342
2343 FOR_EACH_BB (bb)
2344 {
2345 bool purged_here = purge_dead_edges (bb);
2346
2347 purged |= purged_here;
2348 if (purged_here && update_life_p)
2349 SET_BIT (blocks, bb->index);
2350 }
2351
2352 if (update_life_p && purged)
2353 update_life_info (blocks, UPDATE_LIFE_GLOBAL,
2354 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2355 | PROP_KILL_DEAD_CODE);
2356
2357 if (update_life_p)
2358 sbitmap_free (blocks);
2359 return purged;
2360 }
2361
2362 /* Same as split_block but update cfg_layout structures. */
2363
2364 static basic_block
2365 cfg_layout_split_block (basic_block bb, void *insnp)
2366 {
2367 rtx insn = insnp;
2368 basic_block new_bb = rtl_split_block (bb, insn);
2369
2370 new_bb->rbi->footer = bb->rbi->footer;
2371 bb->rbi->footer = NULL;
2372
2373 return new_bb;
2374 }
2375
2376
2377 /* Redirect Edge to DEST. */
2378 static bool
2379 cfg_layout_redirect_edge_and_branch (edge e, basic_block dest)
2380 {
2381 basic_block src = e->src;
2382 bool ret;
2383
2384 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
2385 return false;
2386
2387 if (e->dest == dest)
2388 return true;
2389
2390 if (e->src != ENTRY_BLOCK_PTR
2391 && try_redirect_by_replacing_jump (e, dest, true))
2392 {
2393 src->flags |= BB_DIRTY;
2394 return true;
2395 }
2396
2397 if (e->src == ENTRY_BLOCK_PTR
2398 && (e->flags & EDGE_FALLTHRU) && !(e->flags & EDGE_COMPLEX))
2399 {
2400 if (dump_file)
2401 fprintf (dump_file, "Redirecting entry edge from bb %i to %i\n",
2402 e->src->index, dest->index);
2403
2404 e->src->flags |= BB_DIRTY;
2405 redirect_edge_succ (e, dest);
2406 return true;
2407 }
2408
2409 /* Redirect_edge_and_branch may decide to turn branch into fallthru edge
2410 in the case the basic block appears to be in sequence. Avoid this
2411 transformation. */
2412
2413 if (e->flags & EDGE_FALLTHRU)
2414 {
2415 /* Redirect any branch edges unified with the fallthru one. */
2416 if (GET_CODE (BB_END (src)) == JUMP_INSN
2417 && label_is_jump_target_p (BB_HEAD (e->dest),
2418 BB_END (src)))
2419 {
2420 if (dump_file)
2421 fprintf (dump_file, "Fallthru edge unified with branch "
2422 "%i->%i redirected to %i\n",
2423 e->src->index, e->dest->index, dest->index);
2424 e->flags &= ~EDGE_FALLTHRU;
2425 if (!redirect_branch_edge (e, dest))
2426 abort ();
2427 e->flags |= EDGE_FALLTHRU;
2428 e->src->flags |= BB_DIRTY;
2429 return true;
2430 }
2431 /* In case we are redirecting fallthru edge to the branch edge
2432 of conditional jump, remove it. */
2433 if (src->succ->succ_next
2434 && !src->succ->succ_next->succ_next)
2435 {
2436 edge s = e->succ_next ? e->succ_next : src->succ;
2437 if (s->dest == dest
2438 && any_condjump_p (BB_END (src))
2439 && onlyjump_p (BB_END (src)))
2440 delete_insn (BB_END (src));
2441 }
2442
2443 if (dump_file)
2444 fprintf (dump_file, "Fallthru edge %i->%i redirected to %i\n",
2445 e->src->index, e->dest->index, dest->index);
2446 redirect_edge_succ_nodup (e, dest);
2447
2448 ret = true;
2449 }
2450 else
2451 ret = redirect_branch_edge (e, dest);
2452
2453 /* We don't want simplejumps in the insn stream during cfglayout. */
2454 if (simplejump_p (BB_END (src)))
2455 abort ();
2456
2457 src->flags |= BB_DIRTY;
2458 return ret;
2459 }
2460
2461 /* Simple wrapper as we always can redirect fallthru edges. */
2462 static basic_block
2463 cfg_layout_redirect_edge_and_branch_force (edge e, basic_block dest)
2464 {
2465 if (!cfg_layout_redirect_edge_and_branch (e, dest))
2466 abort ();
2467 return NULL;
2468 }
2469
2470 /* Same as delete_basic_block but update cfg_layout structures. */
2471
2472 static void
2473 cfg_layout_delete_block (basic_block bb)
2474 {
2475 rtx insn, next, prev = PREV_INSN (BB_HEAD (bb)), *to, remaints;
2476
2477 if (bb->rbi->header)
2478 {
2479 next = BB_HEAD (bb);
2480 if (prev)
2481 NEXT_INSN (prev) = bb->rbi->header;
2482 else
2483 set_first_insn (bb->rbi->header);
2484 PREV_INSN (bb->rbi->header) = prev;
2485 insn = bb->rbi->header;
2486 while (NEXT_INSN (insn))
2487 insn = NEXT_INSN (insn);
2488 NEXT_INSN (insn) = next;
2489 PREV_INSN (next) = insn;
2490 }
2491 next = NEXT_INSN (BB_END (bb));
2492 if (bb->rbi->footer)
2493 {
2494 insn = bb->rbi->footer;
2495 while (insn)
2496 {
2497 if (GET_CODE (insn) == BARRIER)
2498 {
2499 if (PREV_INSN (insn))
2500 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2501 else
2502 bb->rbi->footer = NEXT_INSN (insn);
2503 if (NEXT_INSN (insn))
2504 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2505 }
2506 if (GET_CODE (insn) == CODE_LABEL)
2507 break;
2508 insn = NEXT_INSN (insn);
2509 }
2510 if (bb->rbi->footer)
2511 {
2512 insn = BB_END (bb);
2513 NEXT_INSN (insn) = bb->rbi->footer;
2514 PREV_INSN (bb->rbi->footer) = insn;
2515 while (NEXT_INSN (insn))
2516 insn = NEXT_INSN (insn);
2517 NEXT_INSN (insn) = next;
2518 if (next)
2519 PREV_INSN (next) = insn;
2520 else
2521 set_last_insn (insn);
2522 }
2523 }
2524 if (bb->next_bb != EXIT_BLOCK_PTR)
2525 to = &bb->next_bb->rbi->header;
2526 else
2527 to = &cfg_layout_function_footer;
2528 rtl_delete_block (bb);
2529
2530 if (prev)
2531 prev = NEXT_INSN (prev);
2532 else
2533 prev = get_insns ();
2534 if (next)
2535 next = PREV_INSN (next);
2536 else
2537 next = get_last_insn ();
2538
2539 if (next && NEXT_INSN (next) != prev)
2540 {
2541 remaints = unlink_insn_chain (prev, next);
2542 insn = remaints;
2543 while (NEXT_INSN (insn))
2544 insn = NEXT_INSN (insn);
2545 NEXT_INSN (insn) = *to;
2546 if (*to)
2547 PREV_INSN (*to) = insn;
2548 *to = remaints;
2549 }
2550 }
2551
2552 /* Return true when blocks A and B can be safely merged. */
2553 static bool
2554 cfg_layout_can_merge_blocks_p (basic_block a, basic_block b)
2555 {
2556 /* There must be exactly one edge in between the blocks. */
2557 return (a->succ && !a->succ->succ_next && a->succ->dest == b
2558 && !b->pred->pred_next && a != b
2559 /* Must be simple edge. */
2560 && !(a->succ->flags & EDGE_COMPLEX)
2561 && a != ENTRY_BLOCK_PTR && b != EXIT_BLOCK_PTR
2562 /* If the jump insn has side effects,
2563 we can't kill the edge. */
2564 && (GET_CODE (BB_END (a)) != JUMP_INSN
2565 || (reload_completed
2566 ? simplejump_p (BB_END (a)) : onlyjump_p (BB_END (a)))));
2567 }
2568
2569 /* Merge block A and B, abort when it is not possible. */
2570 static void
2571 cfg_layout_merge_blocks (basic_block a, basic_block b)
2572 {
2573 #ifdef ENABLE_CHECKING
2574 if (!cfg_layout_can_merge_blocks_p (a, b))
2575 abort ();
2576 #endif
2577
2578 /* If there was a CODE_LABEL beginning B, delete it. */
2579 if (GET_CODE (BB_HEAD (b)) == CODE_LABEL)
2580 delete_insn (BB_HEAD (b));
2581
2582 /* We should have fallthru edge in a, or we can do dummy redirection to get
2583 it cleaned up. */
2584 if (GET_CODE (BB_END (a)) == JUMP_INSN)
2585 try_redirect_by_replacing_jump (a->succ, b, true);
2586 if (GET_CODE (BB_END (a)) == JUMP_INSN)
2587 abort ();
2588
2589 /* Possible line number notes should appear in between. */
2590 if (b->rbi->header)
2591 {
2592 rtx first = BB_END (a), last;
2593
2594 last = emit_insn_after (b->rbi->header, BB_END (a));
2595 delete_insn_chain (NEXT_INSN (first), last);
2596 b->rbi->header = NULL;
2597 }
2598
2599 /* In the case basic blocks are not adjacent, move them around. */
2600 if (NEXT_INSN (BB_END (a)) != BB_HEAD (b))
2601 {
2602 rtx first = unlink_insn_chain (BB_HEAD (b), BB_END (b));
2603
2604 emit_insn_after (first, BB_END (a));
2605 /* Skip possible DELETED_LABEL insn. */
2606 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2607 first = NEXT_INSN (first);
2608 if (!NOTE_INSN_BASIC_BLOCK_P (first))
2609 abort ();
2610 BB_HEAD (b) = NULL;
2611 delete_insn (first);
2612 }
2613 /* Otherwise just re-associate the instructions. */
2614 else
2615 {
2616 rtx insn;
2617
2618 for (insn = BB_HEAD (b);
2619 insn != NEXT_INSN (BB_END (b));
2620 insn = NEXT_INSN (insn))
2621 set_block_for_insn (insn, a);
2622 insn = BB_HEAD (b);
2623 /* Skip possible DELETED_LABEL insn. */
2624 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2625 insn = NEXT_INSN (insn);
2626 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
2627 abort ();
2628 BB_HEAD (b) = NULL;
2629 BB_END (a) = BB_END (b);
2630 delete_insn (insn);
2631 }
2632
2633 /* Possible tablejumps and barriers should appear after the block. */
2634 if (b->rbi->footer)
2635 {
2636 if (!a->rbi->footer)
2637 a->rbi->footer = b->rbi->footer;
2638 else
2639 {
2640 rtx last = a->rbi->footer;
2641
2642 while (NEXT_INSN (last))
2643 last = NEXT_INSN (last);
2644 NEXT_INSN (last) = b->rbi->footer;
2645 PREV_INSN (b->rbi->footer) = last;
2646 }
2647 b->rbi->footer = NULL;
2648 }
2649
2650 if (dump_file)
2651 fprintf (dump_file, "Merged blocks %d and %d.\n",
2652 a->index, b->index);
2653 }
2654
2655 /* Split edge E. */
2656
2657 static basic_block
2658 cfg_layout_split_edge (edge e)
2659 {
2660 edge new_e;
2661 basic_block new_bb =
2662 create_basic_block (e->src != ENTRY_BLOCK_PTR
2663 ? NEXT_INSN (BB_END (e->src)) : get_insns (),
2664 NULL_RTX, e->src);
2665
2666 new_e = make_edge (new_bb, e->dest, EDGE_FALLTHRU);
2667 redirect_edge_and_branch_force (e, new_bb);
2668
2669 return new_bb;
2670 }
2671
2672 /* Do postprocessing after making a forwarder block joined by edge FALLTHRU. */
2673
2674 static void
2675 rtl_make_forwarder_block (edge fallthru ATTRIBUTE_UNUSED)
2676 {
2677 }
2678
2679 /* Implementation of CFG manipulation for linearized RTL. */
2680 struct cfg_hooks rtl_cfg_hooks = {
2681 "rtl",
2682 rtl_verify_flow_info,
2683 rtl_dump_bb,
2684 rtl_create_basic_block,
2685 rtl_redirect_edge_and_branch,
2686 rtl_redirect_edge_and_branch_force,
2687 rtl_delete_block,
2688 rtl_split_block,
2689 rtl_move_block_after,
2690 rtl_can_merge_blocks, /* can_merge_blocks_p */
2691 rtl_merge_blocks,
2692 rtl_split_edge,
2693 rtl_make_forwarder_block,
2694 rtl_tidy_fallthru_edge
2695 };
2696
2697 /* Implementation of CFG manipulation for cfg layout RTL, where
2698 basic block connected via fallthru edges does not have to be adjacent.
2699 This representation will hopefully become the default one in future
2700 version of the compiler. */
2701 struct cfg_hooks cfg_layout_rtl_cfg_hooks = {
2702 "cfglayout mode",
2703 rtl_verify_flow_info_1,
2704 rtl_dump_bb,
2705 cfg_layout_create_basic_block,
2706 cfg_layout_redirect_edge_and_branch,
2707 cfg_layout_redirect_edge_and_branch_force,
2708 cfg_layout_delete_block,
2709 cfg_layout_split_block,
2710 rtl_move_block_after,
2711 cfg_layout_can_merge_blocks_p,
2712 cfg_layout_merge_blocks,
2713 cfg_layout_split_edge,
2714 rtl_make_forwarder_block,
2715 NULL
2716 };
This page took 0.154717 seconds and 5 git commands to generate.