]> gcc.gnu.org Git - gcc.git/blob - gcc/cfgloopmanip.c
cfg.c (init_flow): Use type safe memory macros.
[gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33
34 static void duplicate_subloops (struct loop *, struct loop *);
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (basic_block, void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *);
44 static void unloop (struct loop *, bool *);
45
46 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
47
48 /* Checks whether basic block BB is dominated by DATA. */
49 static bool
50 rpe_enum_p (basic_block bb, void *data)
51 {
52 return dominated_by_p (CDI_DOMINATORS, bb, (basic_block) data);
53 }
54
55 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
56
57 static void
58 remove_bbs (basic_block *bbs, int nbbs)
59 {
60 int i;
61
62 for (i = 0; i < nbbs; i++)
63 delete_basic_block (bbs[i]);
64 }
65
66 /* Find path -- i.e. the basic blocks dominated by edge E and put them
67 into array BBS, that will be allocated large enough to contain them.
68 E->dest must have exactly one predecessor for this to work (it is
69 easy to achieve and we do not put it here because we do not want to
70 alter anything by this function). The number of basic blocks in the
71 path is returned. */
72 static int
73 find_path (edge e, basic_block **bbs)
74 {
75 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
76
77 /* Find bbs in the path. */
78 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
79 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
80 n_basic_blocks, e->dest);
81 }
82
83 /* Fix placement of basic block BB inside loop hierarchy --
84 Let L be a loop to that BB belongs. Then every successor of BB must either
85 1) belong to some superloop of loop L, or
86 2) be a header of loop K such that K->outer is superloop of L
87 Returns true if we had to move BB into other loop to enforce this condition,
88 false if the placement of BB was already correct (provided that placements
89 of its successors are correct). */
90 static bool
91 fix_bb_placement (basic_block bb)
92 {
93 edge e;
94 edge_iterator ei;
95 struct loop *loop = current_loops->tree_root, *act;
96
97 FOR_EACH_EDGE (e, ei, bb->succs)
98 {
99 if (e->dest == EXIT_BLOCK_PTR)
100 continue;
101
102 act = e->dest->loop_father;
103 if (act->header == e->dest)
104 act = loop_outer (act);
105
106 if (flow_loop_nested_p (loop, act))
107 loop = act;
108 }
109
110 if (loop == bb->loop_father)
111 return false;
112
113 remove_bb_from_loops (bb);
114 add_bb_to_loop (bb, loop);
115
116 return true;
117 }
118
119 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
120 of LOOP to that leads at least one exit edge of LOOP, and set it
121 as the immediate superloop of LOOP. Return true if the immediate superloop
122 of LOOP changed. */
123
124 static bool
125 fix_loop_placement (struct loop *loop)
126 {
127 unsigned i;
128 edge e;
129 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
132
133 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
134 {
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
138 }
139
140 if (father != loop_outer (loop))
141 {
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
146
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
150 rescan_loop_exit (e, false, false);
151
152 ret = true;
153 }
154
155 VEC_free (edge, heap, exits);
156 return ret;
157 }
158
159 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
160 enforce condition condition stated in description of fix_bb_placement. We
161 start from basic block FROM that had some of its successors removed, so that
162 his placement no longer has to be correct, and iteratively fix placement of
163 its predecessors that may change if placement of FROM changed. Also fix
164 placement of subloops of FROM->loop_father, that might also be altered due
165 to this change; the condition for them is similar, except that instead of
166 successors we consider edges coming out of the loops.
167
168 If the changes may invalidate the information about irreducible regions,
169 IRRED_INVALIDATED is set to true. */
170
171 static void
172 fix_bb_placements (basic_block from,
173 bool *irred_invalidated)
174 {
175 sbitmap in_queue;
176 basic_block *queue, *qtop, *qbeg, *qend;
177 struct loop *base_loop;
178 edge e;
179
180 /* We pass through blocks back-reachable from FROM, testing whether some
181 of their successors moved to outer loop. It may be necessary to
182 iterate several times, but it is finite, as we stop unless we move
183 the basic block up the loop structure. The whole story is a bit
184 more complicated due to presence of subloops, those are moved using
185 fix_loop_placement. */
186
187 base_loop = from->loop_father;
188 if (base_loop == current_loops->tree_root)
189 return;
190
191 in_queue = sbitmap_alloc (last_basic_block);
192 sbitmap_zero (in_queue);
193 SET_BIT (in_queue, from->index);
194 /* Prevent us from going out of the base_loop. */
195 SET_BIT (in_queue, base_loop->header->index);
196
197 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
198 qtop = queue + base_loop->num_nodes + 1;
199 qbeg = queue;
200 qend = queue + 1;
201 *qbeg = from;
202
203 while (qbeg != qend)
204 {
205 edge_iterator ei;
206 from = *qbeg;
207 qbeg++;
208 if (qbeg == qtop)
209 qbeg = queue;
210 RESET_BIT (in_queue, from->index);
211
212 if (from->loop_father->header == from)
213 {
214 /* Subloop header, maybe move the loop upward. */
215 if (!fix_loop_placement (from->loop_father))
216 continue;
217 }
218 else
219 {
220 /* Ordinary basic block. */
221 if (!fix_bb_placement (from))
222 continue;
223 }
224
225 FOR_EACH_EDGE (e, ei, from->succs)
226 {
227 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
228 *irred_invalidated = true;
229 }
230
231 /* Something has changed, insert predecessors into queue. */
232 FOR_EACH_EDGE (e, ei, from->preds)
233 {
234 basic_block pred = e->src;
235 struct loop *nca;
236
237 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
238 *irred_invalidated = true;
239
240 if (TEST_BIT (in_queue, pred->index))
241 continue;
242
243 /* If it is subloop, then it either was not moved, or
244 the path up the loop tree from base_loop do not contain
245 it. */
246 nca = find_common_loop (pred->loop_father, base_loop);
247 if (pred->loop_father != base_loop
248 && (nca == base_loop
249 || nca != pred->loop_father))
250 pred = pred->loop_father->header;
251 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
252 {
253 /* No point in processing it. */
254 continue;
255 }
256
257 if (TEST_BIT (in_queue, pred->index))
258 continue;
259
260 /* Schedule the basic block. */
261 *qend = pred;
262 qend++;
263 if (qend == qtop)
264 qend = queue;
265 SET_BIT (in_queue, pred->index);
266 }
267 }
268 free (in_queue);
269 free (queue);
270 }
271
272 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
273 and update loop structures and dominators. Return true if we were able
274 to remove the path, false otherwise (and nothing is affected then). */
275 bool
276 remove_path (edge e)
277 {
278 edge ae;
279 basic_block *rem_bbs, *bord_bbs, from, bb;
280 VEC (basic_block, heap) *dom_bbs;
281 int i, nrem, n_bord_bbs, nreml;
282 sbitmap seen;
283 bool irred_invalidated = false;
284 struct loop **deleted_loop;
285
286 if (!can_remove_branch_p (e))
287 return false;
288
289 /* Keep track of whether we need to update information about irreducible
290 regions. This is the case if the removed area is a part of the
291 irreducible region, or if the set of basic blocks that belong to a loop
292 that is inside an irreducible region is changed, or if such a loop is
293 removed. */
294 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 irred_invalidated = true;
296
297 /* We need to check whether basic blocks are dominated by the edge
298 e, but we only have basic block dominators. This is easy to
299 fix -- when e->dest has exactly one predecessor, this corresponds
300 to blocks dominated by e->dest, if not, split the edge. */
301 if (!single_pred_p (e->dest))
302 e = single_pred_edge (split_edge (e));
303
304 /* It may happen that by removing path we remove one or more loops
305 we belong to. In this case first unloop the loops, then proceed
306 normally. We may assume that e->dest is not a header of any loop,
307 as it now has exactly one predecessor. */
308 while (loop_outer (e->src->loop_father)
309 && dominated_by_p (CDI_DOMINATORS,
310 e->src->loop_father->latch, e->dest))
311 unloop (e->src->loop_father, &irred_invalidated);
312
313 /* Identify the path. */
314 nrem = find_path (e, &rem_bbs);
315
316 n_bord_bbs = 0;
317 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
318 seen = sbitmap_alloc (last_basic_block);
319 sbitmap_zero (seen);
320
321 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
322 for (i = 0; i < nrem; i++)
323 SET_BIT (seen, rem_bbs[i]->index);
324 for (i = 0; i < nrem; i++)
325 {
326 edge_iterator ei;
327 bb = rem_bbs[i];
328 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
329 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
330 {
331 SET_BIT (seen, ae->dest->index);
332 bord_bbs[n_bord_bbs++] = ae->dest;
333
334 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
335 irred_invalidated = true;
336 }
337 }
338
339 /* Remove the path. */
340 from = e->src;
341 remove_branch (e);
342 dom_bbs = NULL;
343
344 /* Cancel loops contained in the path. */
345 deleted_loop = XNEWVEC (struct loop *, nrem);
346 nreml = 0;
347 for (i = 0; i < nrem; i++)
348 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
349 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
350
351 remove_bbs (rem_bbs, nrem);
352 free (rem_bbs);
353
354 for (i = 0; i < nreml; i++)
355 cancel_loop_tree (deleted_loop[i]);
356 free (deleted_loop);
357
358 /* Find blocks whose dominators may be affected. */
359 sbitmap_zero (seen);
360 for (i = 0; i < n_bord_bbs; i++)
361 {
362 basic_block ldom;
363
364 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
365 if (TEST_BIT (seen, bb->index))
366 continue;
367 SET_BIT (seen, bb->index);
368
369 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
370 ldom;
371 ldom = next_dom_son (CDI_DOMINATORS, ldom))
372 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
373 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
374 }
375
376 free (seen);
377
378 /* Recount dominators. */
379 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
380 VEC_free (basic_block, heap, dom_bbs);
381 free (bord_bbs);
382
383 /* Fix placements of basic blocks inside loops and the placement of
384 loops in the loop tree. */
385 fix_bb_placements (from, &irred_invalidated);
386 fix_loop_placements (from->loop_father, &irred_invalidated);
387
388 if (irred_invalidated
389 && (current_loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS) != 0)
390 mark_irreducible_loops ();
391
392 return true;
393 }
394
395 /* Creates place for a new LOOP in loops structure. */
396
397 static void
398 place_new_loop (struct loop *loop)
399 {
400 loop->num = number_of_loops ();
401 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
402 }
403
404 /* Given LOOP structure with filled header and latch, find the body of the
405 corresponding loop and add it to loops tree. Insert the LOOP as a son of
406 outer. */
407
408 void
409 add_loop (struct loop *loop, struct loop *outer)
410 {
411 basic_block *bbs;
412 int i, n;
413 struct loop *subloop;
414
415 /* Add it to loop structure. */
416 place_new_loop (loop);
417 flow_loop_tree_node_add (outer, loop);
418
419 /* Find its nodes. */
420 bbs = XNEWVEC (basic_block, n_basic_blocks);
421 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
422
423 for (i = 0; i < n; i++)
424 {
425 if (bbs[i]->loop_father == outer)
426 {
427 remove_bb_from_loops (bbs[i]);
428 add_bb_to_loop (bbs[i], loop);
429 continue;
430 }
431
432 loop->num_nodes++;
433
434 /* If we find a direct subloop of OUTER, move it to LOOP. */
435 subloop = bbs[i]->loop_father;
436 if (loop_outer (subloop) == outer
437 && subloop->header == bbs[i])
438 {
439 flow_loop_tree_node_remove (subloop);
440 flow_loop_tree_node_add (loop, subloop);
441 }
442 }
443
444 free (bbs);
445 }
446
447 /* Multiply all frequencies in LOOP by NUM/DEN. */
448 void
449 scale_loop_frequencies (struct loop *loop, int num, int den)
450 {
451 basic_block *bbs;
452
453 bbs = get_loop_body (loop);
454 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
455 free (bbs);
456 }
457
458 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
459 latch to header and update loop tree and dominators
460 accordingly. Everything between them plus LATCH_EDGE destination must
461 be dominated by HEADER_EDGE destination, and back-reachable from
462 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
463 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
464 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
465 Returns the newly created loop. Frequencies and counts in the new loop
466 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
467
468 struct loop *
469 loopify (edge latch_edge, edge header_edge,
470 basic_block switch_bb, edge true_edge, edge false_edge,
471 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
472 {
473 basic_block succ_bb = latch_edge->dest;
474 basic_block pred_bb = header_edge->src;
475 basic_block *body;
476 VEC (basic_block, heap) *dom_bbs;
477 unsigned i;
478 sbitmap seen;
479 struct loop *loop = alloc_loop ();
480 struct loop *outer = loop_outer (succ_bb->loop_father);
481 int freq;
482 gcov_type cnt;
483 edge e;
484 edge_iterator ei;
485
486 loop->header = header_edge->dest;
487 loop->latch = latch_edge->src;
488
489 freq = EDGE_FREQUENCY (header_edge);
490 cnt = header_edge->count;
491
492 /* Redirect edges. */
493 loop_redirect_edge (latch_edge, loop->header);
494 loop_redirect_edge (true_edge, succ_bb);
495
496 /* During loop versioning, one of the switch_bb edge is already properly
497 set. Do not redirect it again unless redirect_all_edges is true. */
498 if (redirect_all_edges)
499 {
500 loop_redirect_edge (header_edge, switch_bb);
501 loop_redirect_edge (false_edge, loop->header);
502
503 /* Update dominators. */
504 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
505 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
506 }
507
508 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
509
510 /* Compute new loop. */
511 add_loop (loop, outer);
512
513 /* Add switch_bb to appropriate loop. */
514 if (switch_bb->loop_father)
515 remove_bb_from_loops (switch_bb);
516 add_bb_to_loop (switch_bb, outer);
517
518 /* Fix frequencies. */
519 if (redirect_all_edges)
520 {
521 switch_bb->frequency = freq;
522 switch_bb->count = cnt;
523 FOR_EACH_EDGE (e, ei, switch_bb->succs)
524 {
525 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
526 }
527 }
528 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
529 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
530
531 /* Update dominators of blocks outside of LOOP. */
532 dom_bbs = NULL;
533 seen = sbitmap_alloc (last_basic_block);
534 sbitmap_zero (seen);
535 body = get_loop_body (loop);
536
537 for (i = 0; i < loop->num_nodes; i++)
538 SET_BIT (seen, body[i]->index);
539
540 for (i = 0; i < loop->num_nodes; i++)
541 {
542 basic_block ldom;
543
544 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
545 ldom;
546 ldom = next_dom_son (CDI_DOMINATORS, ldom))
547 if (!TEST_BIT (seen, ldom->index))
548 {
549 SET_BIT (seen, ldom->index);
550 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
551 }
552 }
553
554 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
555
556 free (body);
557 free (seen);
558 VEC_free (basic_block, heap, dom_bbs);
559
560 return loop;
561 }
562
563 /* Remove the latch edge of a LOOP and update loops to indicate that
564 the LOOP was removed. After this function, original loop latch will
565 have no successor, which caller is expected to fix somehow.
566
567 If this may cause the information about irreducible regions to become
568 invalid, IRRED_INVALIDATED is set to true. */
569
570 static void
571 unloop (struct loop *loop, bool *irred_invalidated)
572 {
573 basic_block *body;
574 struct loop *ploop;
575 unsigned i, n;
576 basic_block latch = loop->latch;
577 bool dummy = false;
578
579 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
580 *irred_invalidated = true;
581
582 /* This is relatively straightforward. The dominators are unchanged, as
583 loop header dominates loop latch, so the only thing we have to care of
584 is the placement of loops and basic blocks inside the loop tree. We
585 move them all to the loop->outer, and then let fix_bb_placements do
586 its work. */
587
588 body = get_loop_body (loop);
589 n = loop->num_nodes;
590 for (i = 0; i < n; i++)
591 if (body[i]->loop_father == loop)
592 {
593 remove_bb_from_loops (body[i]);
594 add_bb_to_loop (body[i], loop_outer (loop));
595 }
596 free(body);
597
598 while (loop->inner)
599 {
600 ploop = loop->inner;
601 flow_loop_tree_node_remove (ploop);
602 flow_loop_tree_node_add (loop_outer (loop), ploop);
603 }
604
605 /* Remove the loop and free its data. */
606 delete_loop (loop);
607
608 remove_edge (single_succ_edge (latch));
609
610 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
611 there is an irreducible region inside the cancelled loop, the flags will
612 be still correct. */
613 fix_bb_placements (latch, &dummy);
614 }
615
616 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
617 condition stated in description of fix_loop_placement holds for them.
618 It is used in case when we removed some edges coming out of LOOP, which
619 may cause the right placement of LOOP inside loop tree to change.
620
621 IRRED_INVALIDATED is set to true if a change in the loop structures might
622 invalidate the information about irreducible regions. */
623
624 static void
625 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
626 {
627 struct loop *outer;
628
629 while (loop_outer (loop))
630 {
631 outer = loop_outer (loop);
632 if (!fix_loop_placement (loop))
633 break;
634
635 /* Changing the placement of a loop in the loop tree may alter the
636 validity of condition 2) of the description of fix_bb_placement
637 for its preheader, because the successor is the header and belongs
638 to the loop. So call fix_bb_placements to fix up the placement
639 of the preheader and (possibly) of its predecessors. */
640 fix_bb_placements (loop_preheader_edge (loop)->src,
641 irred_invalidated);
642 loop = outer;
643 }
644 }
645
646 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
647 created loop into loops structure. */
648 struct loop *
649 duplicate_loop (struct loop *loop, struct loop *target)
650 {
651 struct loop *cloop;
652 cloop = alloc_loop ();
653 place_new_loop (cloop);
654
655 /* Mark the new loop as copy of LOOP. */
656 set_loop_copy (loop, cloop);
657
658 /* Add it to target. */
659 flow_loop_tree_node_add (target, cloop);
660
661 return cloop;
662 }
663
664 /* Copies structure of subloops of LOOP into TARGET loop, placing
665 newly created loops into loop tree. */
666 static void
667 duplicate_subloops (struct loop *loop, struct loop *target)
668 {
669 struct loop *aloop, *cloop;
670
671 for (aloop = loop->inner; aloop; aloop = aloop->next)
672 {
673 cloop = duplicate_loop (aloop, target);
674 duplicate_subloops (aloop, cloop);
675 }
676 }
677
678 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
679 into TARGET loop, placing newly created loops into loop tree. */
680 static void
681 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
682 {
683 struct loop *aloop;
684 int i;
685
686 for (i = 0; i < n; i++)
687 {
688 aloop = duplicate_loop (copied_loops[i], target);
689 duplicate_subloops (copied_loops[i], aloop);
690 }
691 }
692
693 /* Redirects edge E to basic block DEST. */
694 static void
695 loop_redirect_edge (edge e, basic_block dest)
696 {
697 if (e->dest == dest)
698 return;
699
700 redirect_edge_and_branch_force (e, dest);
701 }
702
703 /* Check whether LOOP's body can be duplicated. */
704 bool
705 can_duplicate_loop_p (struct loop *loop)
706 {
707 int ret;
708 basic_block *bbs = get_loop_body (loop);
709
710 ret = can_copy_bbs_p (bbs, loop->num_nodes);
711 free (bbs);
712
713 return ret;
714 }
715
716 /* Sets probability and count of edge E to zero. The probability and count
717 is redistributed evenly to the remaining edges coming from E->src. */
718
719 static void
720 set_zero_probability (edge e)
721 {
722 basic_block bb = e->src;
723 edge_iterator ei;
724 edge ae, last = NULL;
725 unsigned n = EDGE_COUNT (bb->succs);
726 gcov_type cnt = e->count, cnt1;
727 unsigned prob = e->probability, prob1;
728
729 gcc_assert (n > 1);
730 cnt1 = cnt / (n - 1);
731 prob1 = prob / (n - 1);
732
733 FOR_EACH_EDGE (ae, ei, bb->succs)
734 {
735 if (ae == e)
736 continue;
737
738 ae->probability += prob1;
739 ae->count += cnt1;
740 last = ae;
741 }
742
743 /* Move the rest to one of the edges. */
744 last->probability += prob % (n - 1);
745 last->count += cnt % (n - 1);
746
747 e->probability = 0;
748 e->count = 0;
749 }
750
751 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
752 loop structure and dominators. E's destination must be LOOP header for
753 this to work, i.e. it must be entry or latch edge of this loop; these are
754 unique, as the loops must have preheaders for this function to work
755 correctly (in case E is latch, the function unrolls the loop, if E is entry
756 edge, it peels the loop). Store edges created by copying ORIG edge from
757 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
758 original LOOP body, the other copies are numbered in order given by control
759 flow through them) into TO_REMOVE array. Returns false if duplication is
760 impossible. */
761
762 bool
763 duplicate_loop_to_header_edge (struct loop *loop, edge e,
764 unsigned int ndupl, sbitmap wont_exit,
765 edge orig, VEC (edge, heap) **to_remove,
766 int flags)
767 {
768 struct loop *target, *aloop;
769 struct loop **orig_loops;
770 unsigned n_orig_loops;
771 basic_block header = loop->header, latch = loop->latch;
772 basic_block *new_bbs, *bbs, *first_active;
773 basic_block new_bb, bb, first_active_latch = NULL;
774 edge ae, latch_edge;
775 edge spec_edges[2], new_spec_edges[2];
776 #define SE_LATCH 0
777 #define SE_ORIG 1
778 unsigned i, j, n;
779 int is_latch = (latch == e->src);
780 int scale_act = 0, *scale_step = NULL, scale_main = 0;
781 int scale_after_exit = 0;
782 int p, freq_in, freq_le, freq_out_orig;
783 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
784 int add_irreducible_flag;
785 basic_block place_after;
786 bitmap bbs_to_scale = NULL;
787 bitmap_iterator bi;
788
789 gcc_assert (e->dest == loop->header);
790 gcc_assert (ndupl > 0);
791
792 if (orig)
793 {
794 /* Orig must be edge out of the loop. */
795 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
796 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
797 }
798
799 n = loop->num_nodes;
800 bbs = get_loop_body_in_dom_order (loop);
801 gcc_assert (bbs[0] == loop->header);
802 gcc_assert (bbs[n - 1] == loop->latch);
803
804 /* Check whether duplication is possible. */
805 if (!can_copy_bbs_p (bbs, loop->num_nodes))
806 {
807 free (bbs);
808 return false;
809 }
810 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
811
812 /* In case we are doing loop peeling and the loop is in the middle of
813 irreducible region, the peeled copies will be inside it too. */
814 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
815 gcc_assert (!is_latch || !add_irreducible_flag);
816
817 /* Find edge from latch. */
818 latch_edge = loop_latch_edge (loop);
819
820 if (flags & DLTHE_FLAG_UPDATE_FREQ)
821 {
822 /* Calculate coefficients by that we have to scale frequencies
823 of duplicated loop bodies. */
824 freq_in = header->frequency;
825 freq_le = EDGE_FREQUENCY (latch_edge);
826 if (freq_in == 0)
827 freq_in = 1;
828 if (freq_in < freq_le)
829 freq_in = freq_le;
830 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
831 if (freq_out_orig > freq_in - freq_le)
832 freq_out_orig = freq_in - freq_le;
833 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
834 prob_pass_wont_exit =
835 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
836
837 if (orig
838 && REG_BR_PROB_BASE - orig->probability != 0)
839 {
840 /* The blocks that are dominated by a removed exit edge ORIG have
841 frequencies scaled by this. */
842 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
843 REG_BR_PROB_BASE - orig->probability);
844 bbs_to_scale = BITMAP_ALLOC (NULL);
845 for (i = 0; i < n; i++)
846 {
847 if (bbs[i] != orig->src
848 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
849 bitmap_set_bit (bbs_to_scale, i);
850 }
851 }
852
853 scale_step = XNEWVEC (int, ndupl);
854
855 for (i = 1; i <= ndupl; i++)
856 scale_step[i - 1] = TEST_BIT (wont_exit, i)
857 ? prob_pass_wont_exit
858 : prob_pass_thru;
859
860 /* Complete peeling is special as the probability of exit in last
861 copy becomes 1. */
862 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
863 {
864 int wanted_freq = EDGE_FREQUENCY (e);
865
866 if (wanted_freq > freq_in)
867 wanted_freq = freq_in;
868
869 gcc_assert (!is_latch);
870 /* First copy has frequency of incoming edge. Each subsequent
871 frequency should be reduced by prob_pass_wont_exit. Caller
872 should've managed the flags so all except for original loop
873 has won't exist set. */
874 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
875 /* Now simulate the duplication adjustments and compute header
876 frequency of the last copy. */
877 for (i = 0; i < ndupl; i++)
878 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
879 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
880 }
881 else if (is_latch)
882 {
883 prob_pass_main = TEST_BIT (wont_exit, 0)
884 ? prob_pass_wont_exit
885 : prob_pass_thru;
886 p = prob_pass_main;
887 scale_main = REG_BR_PROB_BASE;
888 for (i = 0; i < ndupl; i++)
889 {
890 scale_main += p;
891 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
892 }
893 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
894 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
895 }
896 else
897 {
898 scale_main = REG_BR_PROB_BASE;
899 for (i = 0; i < ndupl; i++)
900 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
901 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
902 }
903 for (i = 0; i < ndupl; i++)
904 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
905 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
906 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
907 }
908
909 /* Loop the new bbs will belong to. */
910 target = e->src->loop_father;
911
912 /* Original loops. */
913 n_orig_loops = 0;
914 for (aloop = loop->inner; aloop; aloop = aloop->next)
915 n_orig_loops++;
916 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
917 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
918 orig_loops[i] = aloop;
919
920 set_loop_copy (loop, target);
921
922 first_active = XNEWVEC (basic_block, n);
923 if (is_latch)
924 {
925 memcpy (first_active, bbs, n * sizeof (basic_block));
926 first_active_latch = latch;
927 }
928
929 spec_edges[SE_ORIG] = orig;
930 spec_edges[SE_LATCH] = latch_edge;
931
932 place_after = e->src;
933 for (j = 0; j < ndupl; j++)
934 {
935 /* Copy loops. */
936 copy_loops_to (orig_loops, n_orig_loops, target);
937
938 /* Copy bbs. */
939 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
940 place_after);
941 place_after = new_spec_edges[SE_LATCH]->src;
942
943 if (flags & DLTHE_RECORD_COPY_NUMBER)
944 for (i = 0; i < n; i++)
945 {
946 gcc_assert (!new_bbs[i]->aux);
947 new_bbs[i]->aux = (void *)(size_t)(j + 1);
948 }
949
950 /* Note whether the blocks and edges belong to an irreducible loop. */
951 if (add_irreducible_flag)
952 {
953 for (i = 0; i < n; i++)
954 new_bbs[i]->flags |= BB_DUPLICATED;
955 for (i = 0; i < n; i++)
956 {
957 edge_iterator ei;
958 new_bb = new_bbs[i];
959 if (new_bb->loop_father == target)
960 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
961
962 FOR_EACH_EDGE (ae, ei, new_bb->succs)
963 if ((ae->dest->flags & BB_DUPLICATED)
964 && (ae->src->loop_father == target
965 || ae->dest->loop_father == target))
966 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
967 }
968 for (i = 0; i < n; i++)
969 new_bbs[i]->flags &= ~BB_DUPLICATED;
970 }
971
972 /* Redirect the special edges. */
973 if (is_latch)
974 {
975 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
976 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
977 loop->header);
978 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
979 latch = loop->latch = new_bbs[n - 1];
980 e = latch_edge = new_spec_edges[SE_LATCH];
981 }
982 else
983 {
984 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
985 loop->header);
986 redirect_edge_and_branch_force (e, new_bbs[0]);
987 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
988 e = new_spec_edges[SE_LATCH];
989 }
990
991 /* Record exit edge in this copy. */
992 if (orig && TEST_BIT (wont_exit, j + 1))
993 {
994 if (to_remove)
995 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
996 set_zero_probability (new_spec_edges[SE_ORIG]);
997
998 /* Scale the frequencies of the blocks dominated by the exit. */
999 if (bbs_to_scale)
1000 {
1001 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1002 {
1003 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1004 REG_BR_PROB_BASE);
1005 }
1006 }
1007 }
1008
1009 /* Record the first copy in the control flow order if it is not
1010 the original loop (i.e. in case of peeling). */
1011 if (!first_active_latch)
1012 {
1013 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1014 first_active_latch = new_bbs[n - 1];
1015 }
1016
1017 /* Set counts and frequencies. */
1018 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1019 {
1020 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1021 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1022 }
1023 }
1024 free (new_bbs);
1025 free (orig_loops);
1026
1027 /* Record the exit edge in the original loop body, and update the frequencies. */
1028 if (orig && TEST_BIT (wont_exit, 0))
1029 {
1030 if (to_remove)
1031 VEC_safe_push (edge, heap, *to_remove, orig);
1032 set_zero_probability (orig);
1033
1034 /* Scale the frequencies of the blocks dominated by the exit. */
1035 if (bbs_to_scale)
1036 {
1037 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1038 {
1039 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1040 REG_BR_PROB_BASE);
1041 }
1042 }
1043 }
1044
1045 /* Update the original loop. */
1046 if (!is_latch)
1047 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1048 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1049 {
1050 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1051 free (scale_step);
1052 }
1053
1054 /* Update dominators of outer blocks if affected. */
1055 for (i = 0; i < n; i++)
1056 {
1057 basic_block dominated, dom_bb;
1058 VEC (basic_block, heap) *dom_bbs;
1059 unsigned j;
1060
1061 bb = bbs[i];
1062 bb->aux = 0;
1063
1064 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1065 for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
1066 {
1067 if (flow_bb_inside_loop_p (loop, dominated))
1068 continue;
1069 dom_bb = nearest_common_dominator (
1070 CDI_DOMINATORS, first_active[i], first_active_latch);
1071 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1072 }
1073 VEC_free (basic_block, heap, dom_bbs);
1074 }
1075 free (first_active);
1076
1077 free (bbs);
1078 BITMAP_FREE (bbs_to_scale);
1079
1080 return true;
1081 }
1082
1083 /* A callback for make_forwarder block, to redirect all edges except for
1084 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1085 whether to redirect it. */
1086
1087 edge mfb_kj_edge;
1088 bool
1089 mfb_keep_just (edge e)
1090 {
1091 return e != mfb_kj_edge;
1092 }
1093
1094 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1095 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1096 entry; otherwise we also force preheader block to have only one successor.
1097 The function also updates dominators. */
1098
1099 basic_block
1100 create_preheader (struct loop *loop, int flags)
1101 {
1102 edge e, fallthru;
1103 basic_block dummy;
1104 int nentry = 0;
1105 bool irred = false;
1106 bool latch_edge_was_fallthru;
1107 edge one_succ_pred = NULL, single_entry = NULL;
1108 edge_iterator ei;
1109
1110 FOR_EACH_EDGE (e, ei, loop->header->preds)
1111 {
1112 if (e->src == loop->latch)
1113 continue;
1114 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1115 nentry++;
1116 single_entry = e;
1117 if (single_succ_p (e->src))
1118 one_succ_pred = e;
1119 }
1120 gcc_assert (nentry);
1121 if (nentry == 1)
1122 {
1123 if (/* We do not allow entry block to be the loop preheader, since we
1124 cannot emit code there. */
1125 single_entry->src != ENTRY_BLOCK_PTR
1126 /* If we want simple preheaders, also force the preheader to have
1127 just a single successor. */
1128 && !((flags & CP_SIMPLE_PREHEADERS)
1129 && !single_succ_p (single_entry->src)))
1130 return NULL;
1131 }
1132
1133 mfb_kj_edge = loop_latch_edge (loop);
1134 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1135 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1136 dummy = fallthru->src;
1137 loop->header = fallthru->dest;
1138
1139 /* Try to be clever in placing the newly created preheader. The idea is to
1140 avoid breaking any "fallthruness" relationship between blocks.
1141
1142 The preheader was created just before the header and all incoming edges
1143 to the header were redirected to the preheader, except the latch edge.
1144 So the only problematic case is when this latch edge was a fallthru
1145 edge: it is not anymore after the preheader creation so we have broken
1146 the fallthruness. We're therefore going to look for a better place. */
1147 if (latch_edge_was_fallthru)
1148 {
1149 if (one_succ_pred)
1150 e = one_succ_pred;
1151 else
1152 e = EDGE_PRED (dummy, 0);
1153
1154 move_block_after (dummy, e->src);
1155 }
1156
1157 if (irred)
1158 {
1159 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1160 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1161 }
1162
1163 if (dump_file)
1164 fprintf (dump_file, "Created preheader block for loop %i\n",
1165 loop->num);
1166
1167 return dummy;
1168 }
1169
1170 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1171
1172 void
1173 create_preheaders (int flags)
1174 {
1175 loop_iterator li;
1176 struct loop *loop;
1177
1178 if (!current_loops)
1179 return;
1180
1181 FOR_EACH_LOOP (li, loop, 0)
1182 create_preheader (loop, flags);
1183 current_loops->state |= LOOPS_HAVE_PREHEADERS;
1184 }
1185
1186 /* Forces all loop latches to have only single successor. */
1187
1188 void
1189 force_single_succ_latches (void)
1190 {
1191 loop_iterator li;
1192 struct loop *loop;
1193 edge e;
1194
1195 FOR_EACH_LOOP (li, loop, 0)
1196 {
1197 if (loop->latch != loop->header && single_succ_p (loop->latch))
1198 continue;
1199
1200 e = find_edge (loop->latch, loop->header);
1201
1202 split_edge (e);
1203 }
1204 current_loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1205 }
1206
1207 /* This function is called from loop_version. It splits the entry edge
1208 of the loop we want to version, adds the versioning condition, and
1209 adjust the edges to the two versions of the loop appropriately.
1210 e is an incoming edge. Returns the basic block containing the
1211 condition.
1212
1213 --- edge e ---- > [second_head]
1214
1215 Split it and insert new conditional expression and adjust edges.
1216
1217 --- edge e ---> [cond expr] ---> [first_head]
1218 |
1219 +---------> [second_head]
1220
1221 THEN_PROB is the probability of then branch of the condition. */
1222
1223 static basic_block
1224 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1225 edge e, void *cond_expr, unsigned then_prob)
1226 {
1227 basic_block new_head = NULL;
1228 edge e1;
1229
1230 gcc_assert (e->dest == second_head);
1231
1232 /* Split edge 'e'. This will create a new basic block, where we can
1233 insert conditional expr. */
1234 new_head = split_edge (e);
1235
1236 lv_add_condition_to_bb (first_head, second_head, new_head,
1237 cond_expr);
1238
1239 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1240 e = single_succ_edge (new_head);
1241 e1 = make_edge (new_head, first_head,
1242 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1243 e1->probability = then_prob;
1244 e->probability = REG_BR_PROB_BASE - then_prob;
1245 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1246 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1247
1248 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1249 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1250
1251 /* Adjust loop header phi nodes. */
1252 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1253
1254 return new_head;
1255 }
1256
1257 /* Main entry point for Loop Versioning transformation.
1258
1259 This transformation given a condition and a loop, creates
1260 -if (condition) { loop_copy1 } else { loop_copy2 },
1261 where loop_copy1 is the loop transformed in one way, and loop_copy2
1262 is the loop transformed in another way (or unchanged). 'condition'
1263 may be a run time test for things that were not resolved by static
1264 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1265
1266 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1267 is the ratio by that the frequencies in the original loop should
1268 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1269 new loop should be scaled.
1270
1271 If PLACE_AFTER is true, we place the new loop after LOOP in the
1272 instruction stream, otherwise it is placed before LOOP. */
1273
1274 struct loop *
1275 loop_version (struct loop *loop,
1276 void *cond_expr, basic_block *condition_bb,
1277 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1278 bool place_after)
1279 {
1280 basic_block first_head, second_head;
1281 edge entry, latch_edge, true_edge, false_edge;
1282 int irred_flag;
1283 struct loop *nloop;
1284 basic_block cond_bb;
1285
1286 /* CHECKME: Loop versioning does not handle nested loop at this point. */
1287 if (loop->inner)
1288 return NULL;
1289
1290 /* Record entry and latch edges for the loop */
1291 entry = loop_preheader_edge (loop);
1292 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1293 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1294
1295 /* Note down head of loop as first_head. */
1296 first_head = entry->dest;
1297
1298 /* Duplicate loop. */
1299 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1300 NULL, NULL, NULL, 0))
1301 return NULL;
1302
1303 /* After duplication entry edge now points to new loop head block.
1304 Note down new head as second_head. */
1305 second_head = entry->dest;
1306
1307 /* Split loop entry edge and insert new block with cond expr. */
1308 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1309 entry, cond_expr, then_prob);
1310 if (condition_bb)
1311 *condition_bb = cond_bb;
1312
1313 if (!cond_bb)
1314 {
1315 entry->flags |= irred_flag;
1316 return NULL;
1317 }
1318
1319 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1320
1321 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1322 nloop = loopify (latch_edge,
1323 single_pred_edge (get_bb_copy (loop->header)),
1324 cond_bb, true_edge, false_edge,
1325 false /* Do not redirect all edges. */,
1326 then_scale, else_scale);
1327
1328 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1329 lv_flush_pending_stmts (latch_edge);
1330
1331 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1332 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1333 lv_flush_pending_stmts (false_edge);
1334 /* Adjust irreducible flag. */
1335 if (irred_flag)
1336 {
1337 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1338 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1339 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1340 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1341 }
1342
1343 if (place_after)
1344 {
1345 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1346 unsigned i;
1347
1348 after = loop->latch;
1349
1350 for (i = 0; i < nloop->num_nodes; i++)
1351 {
1352 move_block_after (bbs[i], after);
1353 after = bbs[i];
1354 }
1355 free (bbs);
1356 }
1357
1358 /* At this point condition_bb is loop predheader with two successors,
1359 first_head and second_head. Make sure that loop predheader has only
1360 one successor. */
1361 split_edge (loop_preheader_edge (loop));
1362 split_edge (loop_preheader_edge (nloop));
1363
1364 return nloop;
1365 }
1366
1367 /* The structure of loops might have changed. Some loops might get removed
1368 (and their headers and latches were set to NULL), loop exists might get
1369 removed (thus the loop nesting may be wrong), and some blocks and edges
1370 were changed (so the information about bb --> loop mapping does not have
1371 to be correct). But still for the remaining loops the header dominates
1372 the latch, and loops did not get new subloobs (new loops might possibly
1373 get created, but we are not interested in them). Fix up the mess.
1374
1375 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1376 marked in it. */
1377
1378 void
1379 fix_loop_structure (bitmap changed_bbs)
1380 {
1381 basic_block bb;
1382 struct loop *loop, *ploop;
1383 loop_iterator li;
1384 bool record_exits = false;
1385 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1386
1387 gcc_assert (current_loops->state & LOOPS_HAVE_SIMPLE_LATCHES);
1388
1389 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1390 the loop hierarchy, so that we can recognize blocks whose loop nesting
1391 relationship has changed. */
1392 FOR_EACH_BB (bb)
1393 {
1394 if (changed_bbs)
1395 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1396 bb->loop_father = current_loops->tree_root;
1397 }
1398
1399 if (current_loops->state & LOOPS_HAVE_RECORDED_EXITS)
1400 {
1401 release_recorded_exits ();
1402 record_exits = true;
1403 }
1404
1405 /* Remove the dead loops from structures. We start from the innermost
1406 loops, so that when we remove the loops, we know that the loops inside
1407 are preserved, and do not waste time relinking loops that will be
1408 removed later. */
1409 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1410 {
1411 if (loop->header)
1412 continue;
1413
1414 while (loop->inner)
1415 {
1416 ploop = loop->inner;
1417 flow_loop_tree_node_remove (ploop);
1418 flow_loop_tree_node_add (loop_outer (loop), ploop);
1419 }
1420
1421 /* Remove the loop and free its data. */
1422 delete_loop (loop);
1423 }
1424
1425 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1426 that no optimization interchanges the order of the loops, i.e., it cannot
1427 happen that L1 was superloop of L2 before and it is subloop of L2 now
1428 (without explicitly updating loop information). At the same time, we also
1429 determine the new loop structure. */
1430 current_loops->tree_root->num_nodes = n_basic_blocks;
1431 FOR_EACH_LOOP (li, loop, 0)
1432 {
1433 superloop[loop->num] = loop->header->loop_father;
1434 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1435 }
1436
1437 /* Now fix the loop nesting. */
1438 FOR_EACH_LOOP (li, loop, 0)
1439 {
1440 ploop = superloop[loop->num];
1441 if (ploop != loop_outer (loop))
1442 {
1443 flow_loop_tree_node_remove (loop);
1444 flow_loop_tree_node_add (ploop, loop);
1445 }
1446 }
1447 free (superloop);
1448
1449 /* Mark the blocks whose loop has changed. */
1450 if (changed_bbs)
1451 {
1452 FOR_EACH_BB (bb)
1453 {
1454 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1455 bitmap_set_bit (changed_bbs, bb->index);
1456
1457 bb->aux = NULL;
1458 }
1459 }
1460
1461 if (current_loops->state & LOOPS_HAVE_PREHEADERS)
1462 create_preheaders (CP_SIMPLE_PREHEADERS);
1463
1464 if (current_loops->state & LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1465 mark_irreducible_loops ();
1466
1467 if (record_exits)
1468 record_loop_exits ();
1469
1470 #ifdef ENABLE_CHECKING
1471 verify_loop_structure ();
1472 #endif
1473 }
This page took 0.10604 seconds and 6 git commands to generate.