]> gcc.gnu.org Git - gcc.git/blob - gcc/cfgloopmanip.c
basic-block.h (scale_bbs_frequencies_int, [...]): Declare.
[gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "output.h"
32
33 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
34 static void copy_loops_to (struct loops *, struct loop **, int,
35 struct loop *);
36 static void loop_redirect_edge (edge, basic_block);
37 static bool loop_delete_branch_edge (edge, int);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (basic_block, void *);
40 static int find_path (edge, basic_block **);
41 static bool alp_enum_p (basic_block, void *);
42 static void add_loop (struct loops *, struct loop *);
43 static void fix_loop_placements (struct loops *, struct loop *);
44 static bool fix_bb_placement (struct loops *, basic_block);
45 static void fix_bb_placements (struct loops *, basic_block);
46 static void place_new_loop (struct loops *, struct loop *);
47 static void scale_loop_frequencies (struct loop *, int, int);
48 static basic_block create_preheader (struct loop *, int);
49 static void fix_irreducible_loops (basic_block);
50 static void unloop (struct loops *, struct loop *);
51
52 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
53
54 /* Splits basic block BB after INSN, returns created edge. Updates loops
55 and dominators. */
56 edge
57 split_loop_bb (basic_block bb, void *insn)
58 {
59 edge e;
60
61 /* Split the block. */
62 e = split_block (bb, insn);
63
64 /* Add dest to loop. */
65 add_bb_to_loop (e->dest, e->src->loop_father);
66
67 return e;
68 }
69
70 /* Checks whether basic block BB is dominated by DATA. */
71 static bool
72 rpe_enum_p (basic_block bb, void *data)
73 {
74 return dominated_by_p (CDI_DOMINATORS, bb, data);
75 }
76
77 /* Remove basic blocks BBS from loop structure and dominance info,
78 and delete them afterwards. */
79 static void
80 remove_bbs (basic_block *bbs, int nbbs)
81 {
82 int i;
83
84 for (i = 0; i < nbbs; i++)
85 {
86 remove_bb_from_loops (bbs[i]);
87 delete_basic_block (bbs[i]);
88 }
89 }
90
91 /* Find path -- i.e. the basic blocks dominated by edge E and put them
92 into array BBS, that will be allocated large enough to contain them.
93 E->dest must have exactly one predecessor for this to work (it is
94 easy to achieve and we do not put it here because we do not want to
95 alter anything by this function). The number of basic blocks in the
96 path is returned. */
97 static int
98 find_path (edge e, basic_block **bbs)
99 {
100 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
101
102 /* Find bbs in the path. */
103 *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
104 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
105 n_basic_blocks, e->dest);
106 }
107
108 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
109 Let L be a loop to that BB belongs. Then every successor of BB must either
110 1) belong to some superloop of loop L, or
111 2) be a header of loop K such that K->outer is superloop of L
112 Returns true if we had to move BB into other loop to enforce this condition,
113 false if the placement of BB was already correct (provided that placements
114 of its successors are correct). */
115 static bool
116 fix_bb_placement (struct loops *loops, basic_block bb)
117 {
118 edge e;
119 edge_iterator ei;
120 struct loop *loop = loops->tree_root, *act;
121
122 FOR_EACH_EDGE (e, ei, bb->succs)
123 {
124 if (e->dest == EXIT_BLOCK_PTR)
125 continue;
126
127 act = e->dest->loop_father;
128 if (act->header == e->dest)
129 act = act->outer;
130
131 if (flow_loop_nested_p (loop, act))
132 loop = act;
133 }
134
135 if (loop == bb->loop_father)
136 return false;
137
138 remove_bb_from_loops (bb);
139 add_bb_to_loop (bb, loop);
140
141 return true;
142 }
143
144 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
145 enforce condition condition stated in description of fix_bb_placement. We
146 start from basic block FROM that had some of its successors removed, so that
147 his placement no longer has to be correct, and iteratively fix placement of
148 its predecessors that may change if placement of FROM changed. Also fix
149 placement of subloops of FROM->loop_father, that might also be altered due
150 to this change; the condition for them is similar, except that instead of
151 successors we consider edges coming out of the loops. */
152 static void
153 fix_bb_placements (struct loops *loops, basic_block from)
154 {
155 sbitmap in_queue;
156 basic_block *queue, *qtop, *qbeg, *qend;
157 struct loop *base_loop;
158 edge e;
159
160 /* We pass through blocks back-reachable from FROM, testing whether some
161 of their successors moved to outer loop. It may be necessary to
162 iterate several times, but it is finite, as we stop unless we move
163 the basic block up the loop structure. The whole story is a bit
164 more complicated due to presence of subloops, those are moved using
165 fix_loop_placement. */
166
167 base_loop = from->loop_father;
168 if (base_loop == loops->tree_root)
169 return;
170
171 in_queue = sbitmap_alloc (last_basic_block);
172 sbitmap_zero (in_queue);
173 SET_BIT (in_queue, from->index);
174 /* Prevent us from going out of the base_loop. */
175 SET_BIT (in_queue, base_loop->header->index);
176
177 queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
178 qtop = queue + base_loop->num_nodes + 1;
179 qbeg = queue;
180 qend = queue + 1;
181 *qbeg = from;
182
183 while (qbeg != qend)
184 {
185 edge_iterator ei;
186 from = *qbeg;
187 qbeg++;
188 if (qbeg == qtop)
189 qbeg = queue;
190 RESET_BIT (in_queue, from->index);
191
192 if (from->loop_father->header == from)
193 {
194 /* Subloop header, maybe move the loop upward. */
195 if (!fix_loop_placement (from->loop_father))
196 continue;
197 }
198 else
199 {
200 /* Ordinary basic block. */
201 if (!fix_bb_placement (loops, from))
202 continue;
203 }
204
205 /* Something has changed, insert predecessors into queue. */
206 FOR_EACH_EDGE (e, ei, from->preds)
207 {
208 basic_block pred = e->src;
209 struct loop *nca;
210
211 if (TEST_BIT (in_queue, pred->index))
212 continue;
213
214 /* If it is subloop, then it either was not moved, or
215 the path up the loop tree from base_loop do not contain
216 it. */
217 nca = find_common_loop (pred->loop_father, base_loop);
218 if (pred->loop_father != base_loop
219 && (nca == base_loop
220 || nca != pred->loop_father))
221 pred = pred->loop_father->header;
222 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
223 {
224 /* No point in processing it. */
225 continue;
226 }
227
228 if (TEST_BIT (in_queue, pred->index))
229 continue;
230
231 /* Schedule the basic block. */
232 *qend = pred;
233 qend++;
234 if (qend == qtop)
235 qend = queue;
236 SET_BIT (in_queue, pred->index);
237 }
238 }
239 free (in_queue);
240 free (queue);
241 }
242
243 /* Basic block from has lost one or more of its predecessors, so it might
244 mo longer be part irreducible loop. Fix it and proceed recursively
245 for its successors if needed. */
246 static void
247 fix_irreducible_loops (basic_block from)
248 {
249 basic_block bb;
250 basic_block *stack;
251 int stack_top;
252 sbitmap on_stack;
253 edge *edges, e;
254 unsigned n_edges, i;
255
256 if (!(from->flags & BB_IRREDUCIBLE_LOOP))
257 return;
258
259 on_stack = sbitmap_alloc (last_basic_block);
260 sbitmap_zero (on_stack);
261 SET_BIT (on_stack, from->index);
262 stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
263 stack[0] = from;
264 stack_top = 1;
265
266 while (stack_top)
267 {
268 edge_iterator ei;
269 bb = stack[--stack_top];
270 RESET_BIT (on_stack, bb->index);
271
272 FOR_EACH_EDGE (e, ei, bb->preds)
273 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
274 break;
275 if (e)
276 continue;
277
278 bb->flags &= ~BB_IRREDUCIBLE_LOOP;
279 if (bb->loop_father->header == bb)
280 edges = get_loop_exit_edges (bb->loop_father, &n_edges);
281 else
282 {
283 n_edges = EDGE_COUNT (bb->succs);
284 edges = xmalloc (n_edges * sizeof (edge));
285 FOR_EACH_EDGE (e, ei, bb->succs)
286 edges[ei.index] = e;
287 }
288
289 for (i = 0; i < n_edges; i++)
290 {
291 e = edges[i];
292
293 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
294 {
295 if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
296 continue;
297
298 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
299 if (TEST_BIT (on_stack, e->dest->index))
300 continue;
301
302 SET_BIT (on_stack, e->dest->index);
303 stack[stack_top++] = e->dest;
304 }
305 }
306 free (edges);
307 }
308
309 free (on_stack);
310 free (stack);
311 }
312
313 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
314 and update loop structure stored in LOOPS and dominators. Return true if
315 we were able to remove the path, false otherwise (and nothing is affected
316 then). */
317 bool
318 remove_path (struct loops *loops, edge e)
319 {
320 edge ae;
321 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
322 int i, nrem, n_bord_bbs, n_dom_bbs;
323 sbitmap seen;
324 bool deleted;
325
326 if (!loop_delete_branch_edge (e, 0))
327 return false;
328
329 /* We need to check whether basic blocks are dominated by the edge
330 e, but we only have basic block dominators. This is easy to
331 fix -- when e->dest has exactly one predecessor, this corresponds
332 to blocks dominated by e->dest, if not, split the edge. */
333 if (!single_pred_p (e->dest))
334 e = single_pred_edge (loop_split_edge_with (e, NULL_RTX));
335
336 /* It may happen that by removing path we remove one or more loops
337 we belong to. In this case first unloop the loops, then proceed
338 normally. We may assume that e->dest is not a header of any loop,
339 as it now has exactly one predecessor. */
340 while (e->src->loop_father->outer
341 && dominated_by_p (CDI_DOMINATORS,
342 e->src->loop_father->latch, e->dest))
343 unloop (loops, e->src->loop_father);
344
345 /* Identify the path. */
346 nrem = find_path (e, &rem_bbs);
347
348 n_bord_bbs = 0;
349 bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
350 seen = sbitmap_alloc (last_basic_block);
351 sbitmap_zero (seen);
352
353 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
354 for (i = 0; i < nrem; i++)
355 SET_BIT (seen, rem_bbs[i]->index);
356 for (i = 0; i < nrem; i++)
357 {
358 edge_iterator ei;
359 bb = rem_bbs[i];
360 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
361 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
362 {
363 SET_BIT (seen, ae->dest->index);
364 bord_bbs[n_bord_bbs++] = ae->dest;
365 }
366 }
367
368 /* Remove the path. */
369 from = e->src;
370 deleted = loop_delete_branch_edge (e, 1);
371 gcc_assert (deleted);
372 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
373
374 /* Cancel loops contained in the path. */
375 for (i = 0; i < nrem; i++)
376 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
377 cancel_loop_tree (loops, rem_bbs[i]->loop_father);
378
379 remove_bbs (rem_bbs, nrem);
380 free (rem_bbs);
381
382 /* Find blocks whose dominators may be affected. */
383 n_dom_bbs = 0;
384 sbitmap_zero (seen);
385 for (i = 0; i < n_bord_bbs; i++)
386 {
387 basic_block ldom;
388
389 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
390 if (TEST_BIT (seen, bb->index))
391 continue;
392 SET_BIT (seen, bb->index);
393
394 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
395 ldom;
396 ldom = next_dom_son (CDI_DOMINATORS, ldom))
397 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
398 dom_bbs[n_dom_bbs++] = ldom;
399 }
400
401 free (seen);
402
403 /* Recount dominators. */
404 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
405 free (dom_bbs);
406
407 /* These blocks have lost some predecessor(s), thus their irreducible
408 status could be changed. */
409 for (i = 0; i < n_bord_bbs; i++)
410 fix_irreducible_loops (bord_bbs[i]);
411 free (bord_bbs);
412
413 /* Fix placements of basic blocks inside loops and the placement of
414 loops in the loop tree. */
415 fix_bb_placements (loops, from);
416 fix_loop_placements (loops, from->loop_father);
417
418 return true;
419 }
420
421 /* Predicate for enumeration in add_loop. */
422 static bool
423 alp_enum_p (basic_block bb, void *alp_header)
424 {
425 return bb != (basic_block) alp_header;
426 }
427
428 /* Given LOOP structure with filled header and latch, find the body of the
429 corresponding loop and add it to LOOPS tree. */
430 static void
431 add_loop (struct loops *loops, struct loop *loop)
432 {
433 basic_block *bbs;
434 int i, n;
435
436 /* Add it to loop structure. */
437 place_new_loop (loops, loop);
438 loop->level = 1;
439
440 /* Find its nodes. */
441 bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
442 n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
443 bbs, n_basic_blocks, loop->header);
444
445 for (i = 0; i < n; i++)
446 add_bb_to_loop (bbs[i], loop);
447 add_bb_to_loop (loop->header, loop);
448
449 free (bbs);
450 }
451
452 /* Multiply all frequencies in LOOP by NUM/DEN. */
453 static void
454 scale_loop_frequencies (struct loop *loop, int num, int den)
455 {
456 basic_block *bbs;
457
458 bbs = get_loop_body (loop);
459 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
460 free (bbs);
461 }
462
463 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
464 latch to header and update loop tree stored in LOOPS and dominators
465 accordingly. Everything between them plus LATCH_EDGE destination must
466 be dominated by HEADER_EDGE destination, and back-reachable from
467 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
468 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
469 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
470 Returns newly created loop. */
471
472 struct loop *
473 loopify (struct loops *loops, edge latch_edge, edge header_edge,
474 basic_block switch_bb, edge true_edge, edge false_edge,
475 bool redirect_all_edges)
476 {
477 basic_block succ_bb = latch_edge->dest;
478 basic_block pred_bb = header_edge->src;
479 basic_block *dom_bbs, *body;
480 unsigned n_dom_bbs, i;
481 sbitmap seen;
482 struct loop *loop = xcalloc (1, sizeof (struct loop));
483 struct loop *outer = succ_bb->loop_father->outer;
484 int freq, prob, tot_prob;
485 gcov_type cnt;
486 edge e;
487 edge_iterator ei;
488
489 loop->header = header_edge->dest;
490 loop->latch = latch_edge->src;
491
492 freq = EDGE_FREQUENCY (header_edge);
493 cnt = header_edge->count;
494 prob = EDGE_SUCC (switch_bb, 0)->probability;
495 tot_prob = prob + EDGE_SUCC (switch_bb, 1)->probability;
496 if (tot_prob == 0)
497 tot_prob = 1;
498
499 /* Redirect edges. */
500 loop_redirect_edge (latch_edge, loop->header);
501 loop_redirect_edge (true_edge, succ_bb);
502
503 /* During loop versioning, one of the switch_bb edge is already properly
504 set. Do not redirect it again unless redirect_all_edges is true. */
505 if (redirect_all_edges)
506 {
507 loop_redirect_edge (header_edge, switch_bb);
508 loop_redirect_edge (false_edge, loop->header);
509
510 /* Update dominators. */
511 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
512 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
513 }
514
515 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
516
517 /* Compute new loop. */
518 add_loop (loops, loop);
519 flow_loop_tree_node_add (outer, loop);
520
521 /* Add switch_bb to appropriate loop. */
522 add_bb_to_loop (switch_bb, outer);
523
524 /* Fix frequencies. */
525 switch_bb->frequency = freq;
526 switch_bb->count = cnt;
527 FOR_EACH_EDGE (e, ei, switch_bb->succs)
528 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
529 scale_loop_frequencies (loop, prob, tot_prob);
530 scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
531
532 /* Update dominators of blocks outside of LOOP. */
533 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
534 n_dom_bbs = 0;
535 seen = sbitmap_alloc (last_basic_block);
536 sbitmap_zero (seen);
537 body = get_loop_body (loop);
538
539 for (i = 0; i < loop->num_nodes; i++)
540 SET_BIT (seen, body[i]->index);
541
542 for (i = 0; i < loop->num_nodes; i++)
543 {
544 basic_block ldom;
545
546 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
547 ldom;
548 ldom = next_dom_son (CDI_DOMINATORS, ldom))
549 if (!TEST_BIT (seen, ldom->index))
550 {
551 SET_BIT (seen, ldom->index);
552 dom_bbs[n_dom_bbs++] = ldom;
553 }
554 }
555
556 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
557
558 free (body);
559 free (seen);
560 free (dom_bbs);
561
562 return loop;
563 }
564
565 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
566 the LOOP was removed. After this function, original loop latch will
567 have no successor, which caller is expected to fix somehow. */
568 static void
569 unloop (struct loops *loops, struct loop *loop)
570 {
571 basic_block *body;
572 struct loop *ploop;
573 unsigned i, n;
574 basic_block latch = loop->latch;
575 edge *edges;
576 unsigned n_edges;
577
578 /* This is relatively straightforward. The dominators are unchanged, as
579 loop header dominates loop latch, so the only thing we have to care of
580 is the placement of loops and basic blocks inside the loop tree. We
581 move them all to the loop->outer, and then let fix_bb_placements do
582 its work. */
583
584 body = get_loop_body (loop);
585 edges = get_loop_exit_edges (loop, &n_edges);
586 n = loop->num_nodes;
587 for (i = 0; i < n; i++)
588 if (body[i]->loop_father == loop)
589 {
590 remove_bb_from_loops (body[i]);
591 add_bb_to_loop (body[i], loop->outer);
592 }
593 free(body);
594
595 while (loop->inner)
596 {
597 ploop = loop->inner;
598 flow_loop_tree_node_remove (ploop);
599 flow_loop_tree_node_add (loop->outer, ploop);
600 }
601
602 /* Remove the loop and free its data. */
603 flow_loop_tree_node_remove (loop);
604 loops->parray[loop->num] = NULL;
605 flow_loop_free (loop);
606
607 remove_edge (single_succ_edge (latch));
608 fix_bb_placements (loops, latch);
609
610 /* If the loop was inside an irreducible region, we would have to somehow
611 update the irreducible marks inside its body. While it is certainly
612 possible to do, it is a bit complicated and this situation should be
613 very rare, so we just remark all loops in this case. */
614 for (i = 0; i < n_edges; i++)
615 if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
616 break;
617 if (i != n_edges)
618 mark_irreducible_loops (loops);
619 free (edges);
620 }
621
622 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
623 FATHER of LOOP such that all of the edges coming out of LOOP belong to
624 FATHER, and set it as outer loop of LOOP. Return 1 if placement of
625 LOOP changed. */
626 int
627 fix_loop_placement (struct loop *loop)
628 {
629 basic_block *body;
630 unsigned i;
631 edge e;
632 edge_iterator ei;
633 struct loop *father = loop->pred[0], *act;
634
635 body = get_loop_body (loop);
636 for (i = 0; i < loop->num_nodes; i++)
637 FOR_EACH_EDGE (e, ei, body[i]->succs)
638 if (!flow_bb_inside_loop_p (loop, e->dest))
639 {
640 act = find_common_loop (loop, e->dest->loop_father);
641 if (flow_loop_nested_p (father, act))
642 father = act;
643 }
644 free (body);
645
646 if (father != loop->outer)
647 {
648 for (act = loop->outer; act != father; act = act->outer)
649 act->num_nodes -= loop->num_nodes;
650 flow_loop_tree_node_remove (loop);
651 flow_loop_tree_node_add (father, loop);
652 return 1;
653 }
654 return 0;
655 }
656
657 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
658 condition stated in description of fix_loop_placement holds for them.
659 It is used in case when we removed some edges coming out of LOOP, which
660 may cause the right placement of LOOP inside loop tree to change. */
661 static void
662 fix_loop_placements (struct loops *loops, struct loop *loop)
663 {
664 struct loop *outer;
665
666 while (loop->outer)
667 {
668 outer = loop->outer;
669 if (!fix_loop_placement (loop))
670 break;
671
672 /* Changing the placement of a loop in the loop tree may alter the
673 validity of condition 2) of the description of fix_bb_placement
674 for its preheader, because the successor is the header and belongs
675 to the loop. So call fix_bb_placements to fix up the placement
676 of the preheader and (possibly) of its predecessors. */
677 fix_bb_placements (loops, loop_preheader_edge (loop)->src);
678 loop = outer;
679 }
680 }
681
682 /* Creates place for a new LOOP in LOOPS structure. */
683 static void
684 place_new_loop (struct loops *loops, struct loop *loop)
685 {
686 loops->parray =
687 xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
688 loops->parray[loops->num] = loop;
689
690 loop->num = loops->num++;
691 }
692
693 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
694 created loop into LOOPS structure. */
695 struct loop *
696 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
697 {
698 struct loop *cloop;
699 cloop = xcalloc (1, sizeof (struct loop));
700 place_new_loop (loops, cloop);
701
702 /* Initialize copied loop. */
703 cloop->level = loop->level;
704
705 /* Set it as copy of loop. */
706 loop->copy = cloop;
707
708 /* Add it to target. */
709 flow_loop_tree_node_add (target, cloop);
710
711 return cloop;
712 }
713
714 /* Copies structure of subloops of LOOP into TARGET loop, placing
715 newly created loops into loop tree stored in LOOPS. */
716 static void
717 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
718 {
719 struct loop *aloop, *cloop;
720
721 for (aloop = loop->inner; aloop; aloop = aloop->next)
722 {
723 cloop = duplicate_loop (loops, aloop, target);
724 duplicate_subloops (loops, aloop, cloop);
725 }
726 }
727
728 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
729 into TARGET loop, placing newly created loops into loop tree LOOPS. */
730 static void
731 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
732 {
733 struct loop *aloop;
734 int i;
735
736 for (i = 0; i < n; i++)
737 {
738 aloop = duplicate_loop (loops, copied_loops[i], target);
739 duplicate_subloops (loops, copied_loops[i], aloop);
740 }
741 }
742
743 /* Redirects edge E to basic block DEST. */
744 static void
745 loop_redirect_edge (edge e, basic_block dest)
746 {
747 if (e->dest == dest)
748 return;
749
750 redirect_edge_and_branch_force (e, dest);
751 }
752
753 /* Deletes edge E from a branch if possible. Unless REALLY_DELETE is set,
754 just test whether it is possible to remove the edge. */
755 static bool
756 loop_delete_branch_edge (edge e, int really_delete)
757 {
758 basic_block src = e->src;
759 basic_block newdest;
760 int irr;
761 edge snd;
762
763 gcc_assert (EDGE_COUNT (src->succs) > 1);
764
765 /* Cannot handle more than two exit edges. */
766 if (EDGE_COUNT (src->succs) > 2)
767 return false;
768 /* And it must be just a simple branch. */
769 if (!any_condjump_p (BB_END (src)))
770 return false;
771
772 snd = e == EDGE_SUCC (src, 0) ? EDGE_SUCC (src, 1) : EDGE_SUCC (src, 0);
773 newdest = snd->dest;
774 if (newdest == EXIT_BLOCK_PTR)
775 return false;
776
777 /* Hopefully the above conditions should suffice. */
778 if (!really_delete)
779 return true;
780
781 /* Redirecting behaves wrongly wrto this flag. */
782 irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
783
784 if (!redirect_edge_and_branch (e, newdest))
785 return false;
786 single_succ_edge (src)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
787 single_succ_edge (src)->flags |= irr;
788
789 return true;
790 }
791
792 /* Check whether LOOP's body can be duplicated. */
793 bool
794 can_duplicate_loop_p (struct loop *loop)
795 {
796 int ret;
797 basic_block *bbs = get_loop_body (loop);
798
799 ret = can_copy_bbs_p (bbs, loop->num_nodes);
800 free (bbs);
801
802 return ret;
803 }
804
805 /* The NBBS blocks in BBS will get duplicated and the copies will be placed
806 to LOOP. Update the single_exit information in superloops of LOOP. */
807
808 static void
809 update_single_exits_after_duplication (basic_block *bbs, unsigned nbbs,
810 struct loop *loop)
811 {
812 unsigned i;
813
814 for (i = 0; i < nbbs; i++)
815 bbs[i]->rbi->duplicated = 1;
816
817 for (; loop->outer; loop = loop->outer)
818 {
819 if (!loop->single_exit)
820 continue;
821
822 if (loop->single_exit->src->rbi->duplicated)
823 loop->single_exit = NULL;
824 }
825
826 for (i = 0; i < nbbs; i++)
827 bbs[i]->rbi->duplicated = 0;
828 }
829
830 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
831 LOOPS structure and dominators. E's destination must be LOOP header for
832 this to work, i.e. it must be entry or latch edge of this loop; these are
833 unique, as the loops must have preheaders for this function to work
834 correctly (in case E is latch, the function unrolls the loop, if E is entry
835 edge, it peels the loop). Store edges created by copying ORIG edge from
836 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
837 original LOOP body, the other copies are numbered in order given by control
838 flow through them) into TO_REMOVE array. Returns false if duplication is
839 impossible. */
840 int
841 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
842 unsigned int ndupl, sbitmap wont_exit,
843 edge orig, edge *to_remove,
844 unsigned int *n_to_remove, int flags)
845 {
846 struct loop *target, *aloop;
847 struct loop **orig_loops;
848 unsigned n_orig_loops;
849 basic_block header = loop->header, latch = loop->latch;
850 basic_block *new_bbs, *bbs, *first_active;
851 basic_block new_bb, bb, first_active_latch = NULL;
852 edge ae, latch_edge;
853 edge spec_edges[2], new_spec_edges[2];
854 #define SE_LATCH 0
855 #define SE_ORIG 1
856 unsigned i, j, n;
857 int is_latch = (latch == e->src);
858 int scale_act = 0, *scale_step = NULL, scale_main = 0;
859 int p, freq_in, freq_le, freq_out_orig;
860 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
861 int add_irreducible_flag;
862
863 gcc_assert (e->dest == loop->header);
864 gcc_assert (ndupl > 0);
865
866 if (orig)
867 {
868 /* Orig must be edge out of the loop. */
869 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
870 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
871 }
872
873 bbs = get_loop_body (loop);
874
875 /* Check whether duplication is possible. */
876 if (!can_copy_bbs_p (bbs, loop->num_nodes))
877 {
878 free (bbs);
879 return false;
880 }
881 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
882
883 /* In case we are doing loop peeling and the loop is in the middle of
884 irreducible region, the peeled copies will be inside it too. */
885 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
886 gcc_assert (!is_latch || !add_irreducible_flag);
887
888 /* Find edge from latch. */
889 latch_edge = loop_latch_edge (loop);
890
891 if (flags & DLTHE_FLAG_UPDATE_FREQ)
892 {
893 /* Calculate coefficients by that we have to scale frequencies
894 of duplicated loop bodies. */
895 freq_in = header->frequency;
896 freq_le = EDGE_FREQUENCY (latch_edge);
897 if (freq_in == 0)
898 freq_in = 1;
899 if (freq_in < freq_le)
900 freq_in = freq_le;
901 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
902 if (freq_out_orig > freq_in - freq_le)
903 freq_out_orig = freq_in - freq_le;
904 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
905 prob_pass_wont_exit =
906 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
907
908 scale_step = xmalloc (ndupl * sizeof (int));
909
910 for (i = 1; i <= ndupl; i++)
911 scale_step[i - 1] = TEST_BIT (wont_exit, i)
912 ? prob_pass_wont_exit
913 : prob_pass_thru;
914
915 if (is_latch)
916 {
917 prob_pass_main = TEST_BIT (wont_exit, 0)
918 ? prob_pass_wont_exit
919 : prob_pass_thru;
920 p = prob_pass_main;
921 scale_main = REG_BR_PROB_BASE;
922 for (i = 0; i < ndupl; i++)
923 {
924 scale_main += p;
925 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
926 }
927 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
928 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
929 }
930 else
931 {
932 scale_main = REG_BR_PROB_BASE;
933 for (i = 0; i < ndupl; i++)
934 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
935 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
936 }
937 for (i = 0; i < ndupl; i++)
938 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
939 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
940 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
941 }
942
943 /* Loop the new bbs will belong to. */
944 target = e->src->loop_father;
945
946 /* Original loops. */
947 n_orig_loops = 0;
948 for (aloop = loop->inner; aloop; aloop = aloop->next)
949 n_orig_loops++;
950 orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
951 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
952 orig_loops[i] = aloop;
953
954 loop->copy = target;
955
956 n = loop->num_nodes;
957
958 first_active = xmalloc (n * sizeof (basic_block));
959 if (is_latch)
960 {
961 memcpy (first_active, bbs, n * sizeof (basic_block));
962 first_active_latch = latch;
963 }
964
965 /* Update the information about single exits. */
966 if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
967 update_single_exits_after_duplication (bbs, n, target);
968
969 /* Record exit edge in original loop body. */
970 if (orig && TEST_BIT (wont_exit, 0))
971 to_remove[(*n_to_remove)++] = orig;
972
973 spec_edges[SE_ORIG] = orig;
974 spec_edges[SE_LATCH] = latch_edge;
975
976 for (j = 0; j < ndupl; j++)
977 {
978 /* Copy loops. */
979 copy_loops_to (loops, orig_loops, n_orig_loops, target);
980
981 /* Copy bbs. */
982 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop);
983
984 for (i = 0; i < n; i++)
985 new_bbs[i]->rbi->copy_number = j + 1;
986
987 /* Note whether the blocks and edges belong to an irreducible loop. */
988 if (add_irreducible_flag)
989 {
990 for (i = 0; i < n; i++)
991 new_bbs[i]->rbi->duplicated = 1;
992 for (i = 0; i < n; i++)
993 {
994 edge_iterator ei;
995 new_bb = new_bbs[i];
996 if (new_bb->loop_father == target)
997 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
998
999 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1000 if (ae->dest->rbi->duplicated
1001 && (ae->src->loop_father == target
1002 || ae->dest->loop_father == target))
1003 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1004 }
1005 for (i = 0; i < n; i++)
1006 new_bbs[i]->rbi->duplicated = 0;
1007 }
1008
1009 /* Redirect the special edges. */
1010 if (is_latch)
1011 {
1012 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1013 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1014 loop->header);
1015 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1016 latch = loop->latch = new_bbs[1];
1017 e = latch_edge = new_spec_edges[SE_LATCH];
1018 }
1019 else
1020 {
1021 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1022 loop->header);
1023 redirect_edge_and_branch_force (e, new_bbs[0]);
1024 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1025 e = new_spec_edges[SE_LATCH];
1026 }
1027
1028 /* Record exit edge in this copy. */
1029 if (orig && TEST_BIT (wont_exit, j + 1))
1030 to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1031
1032 /* Record the first copy in the control flow order if it is not
1033 the original loop (i.e. in case of peeling). */
1034 if (!first_active_latch)
1035 {
1036 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1037 first_active_latch = new_bbs[1];
1038 }
1039
1040 /* Set counts and frequencies. */
1041 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1042 {
1043 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1044 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1045 }
1046 }
1047 free (new_bbs);
1048 free (orig_loops);
1049
1050 /* Update the original loop. */
1051 if (!is_latch)
1052 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1053 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1054 {
1055 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1056 free (scale_step);
1057 }
1058
1059 /* Update dominators of outer blocks if affected. */
1060 for (i = 0; i < n; i++)
1061 {
1062 basic_block dominated, dom_bb, *dom_bbs;
1063 int n_dom_bbs,j;
1064
1065 bb = bbs[i];
1066 bb->rbi->copy_number = 0;
1067
1068 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1069 for (j = 0; j < n_dom_bbs; j++)
1070 {
1071 dominated = dom_bbs[j];
1072 if (flow_bb_inside_loop_p (loop, dominated))
1073 continue;
1074 dom_bb = nearest_common_dominator (
1075 CDI_DOMINATORS, first_active[i], first_active_latch);
1076 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1077 }
1078 free (dom_bbs);
1079 }
1080 free (first_active);
1081
1082 free (bbs);
1083
1084 return true;
1085 }
1086
1087 /* A callback for make_forwarder block, to redirect all edges except for
1088 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1089 whether to redirect it. */
1090
1091 static edge mfb_kj_edge;
1092 static bool
1093 mfb_keep_just (edge e)
1094 {
1095 return e != mfb_kj_edge;
1096 }
1097
1098 /* A callback for make_forwarder block, to update data structures for a basic
1099 block JUMP created by redirecting an edge (only the latch edge is being
1100 redirected). */
1101
1102 static void
1103 mfb_update_loops (basic_block jump)
1104 {
1105 struct loop *loop = single_succ (jump)->loop_father;
1106
1107 if (dom_computed[CDI_DOMINATORS])
1108 set_immediate_dominator (CDI_DOMINATORS, jump, single_pred (jump));
1109 add_bb_to_loop (jump, loop);
1110 loop->latch = jump;
1111 }
1112
1113 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1114 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1115 entry; otherwise we also force preheader block to have only one successor.
1116 The function also updates dominators. */
1117
1118 static basic_block
1119 create_preheader (struct loop *loop, int flags)
1120 {
1121 edge e, fallthru;
1122 basic_block dummy;
1123 struct loop *cloop, *ploop;
1124 int nentry = 0;
1125 bool irred = false;
1126 bool latch_edge_was_fallthru;
1127 edge one_succ_pred = 0;
1128 edge_iterator ei;
1129
1130 cloop = loop->outer;
1131
1132 FOR_EACH_EDGE (e, ei, loop->header->preds)
1133 {
1134 if (e->src == loop->latch)
1135 continue;
1136 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1137 nentry++;
1138 if (single_succ_p (e->src))
1139 one_succ_pred = e;
1140 }
1141 gcc_assert (nentry);
1142 if (nentry == 1)
1143 {
1144 /* Get an edge that is different from the one from loop->latch
1145 to loop->header. */
1146 e = EDGE_PRED (loop->header,
1147 EDGE_PRED (loop->header, 0)->src == loop->latch);
1148
1149 if (!(flags & CP_SIMPLE_PREHEADERS) || single_succ_p (e->src))
1150 return NULL;
1151 }
1152
1153 mfb_kj_edge = loop_latch_edge (loop);
1154 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1155 fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1156 mfb_update_loops);
1157 dummy = fallthru->src;
1158 loop->header = fallthru->dest;
1159
1160 /* The header could be a latch of some superloop(s); due to design of
1161 split_block, it would now move to fallthru->dest. */
1162 for (ploop = loop; ploop; ploop = ploop->outer)
1163 if (ploop->latch == dummy)
1164 ploop->latch = fallthru->dest;
1165
1166 /* Try to be clever in placing the newly created preheader. The idea is to
1167 avoid breaking any "fallthruness" relationship between blocks.
1168
1169 The preheader was created just before the header and all incoming edges
1170 to the header were redirected to the preheader, except the latch edge.
1171 So the only problematic case is when this latch edge was a fallthru
1172 edge: it is not anymore after the preheader creation so we have broken
1173 the fallthruness. We're therefore going to look for a better place. */
1174 if (latch_edge_was_fallthru)
1175 {
1176 if (one_succ_pred)
1177 e = one_succ_pred;
1178 else
1179 e = EDGE_PRED (dummy, 0);
1180
1181 move_block_after (dummy, e->src);
1182 }
1183
1184 loop->header->loop_father = loop;
1185 add_bb_to_loop (dummy, cloop);
1186
1187 if (irred)
1188 {
1189 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1190 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1191 }
1192
1193 if (dump_file)
1194 fprintf (dump_file, "Created preheader block for loop %i\n",
1195 loop->num);
1196
1197 return dummy;
1198 }
1199
1200 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1201 of FLAGS see create_preheader. */
1202 void
1203 create_preheaders (struct loops *loops, int flags)
1204 {
1205 unsigned i;
1206 for (i = 1; i < loops->num; i++)
1207 create_preheader (loops->parray[i], flags);
1208 loops->state |= LOOPS_HAVE_PREHEADERS;
1209 }
1210
1211 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1212 successor. */
1213 void
1214 force_single_succ_latches (struct loops *loops)
1215 {
1216 unsigned i;
1217 struct loop *loop;
1218 edge e;
1219
1220 for (i = 1; i < loops->num; i++)
1221 {
1222 loop = loops->parray[i];
1223 if (loop->latch != loop->header && single_succ_p (loop->latch))
1224 continue;
1225
1226 e = find_edge (loop->latch, loop->header);
1227
1228 loop_split_edge_with (e, NULL_RTX);
1229 }
1230 loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1231 }
1232
1233 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1234 just one basic block. Jumps in INSNS are not handled, so cfg do not have to
1235 be ok after this function. The created block is placed on correct place
1236 in LOOPS structure and its dominator is set. */
1237 basic_block
1238 loop_split_edge_with (edge e, rtx insns)
1239 {
1240 basic_block src, dest, new_bb;
1241 struct loop *loop_c;
1242
1243 src = e->src;
1244 dest = e->dest;
1245
1246 loop_c = find_common_loop (src->loop_father, dest->loop_father);
1247
1248 /* Create basic block for it. */
1249
1250 new_bb = split_edge (e);
1251 add_bb_to_loop (new_bb, loop_c);
1252 new_bb->flags |= (insns ? BB_SUPERBLOCK : 0);
1253
1254 if (insns)
1255 emit_insn_after (insns, BB_END (new_bb));
1256
1257 if (dest->loop_father->latch == src)
1258 dest->loop_father->latch = new_bb;
1259
1260 return new_bb;
1261 }
1262
1263 /* Uses the natural loop discovery to recreate loop notes. */
1264 void
1265 create_loop_notes (void)
1266 {
1267 rtx insn, head, end;
1268 struct loops loops;
1269 struct loop *loop;
1270 basic_block *first, *last, bb, pbb;
1271 struct loop **stack, **top;
1272
1273 #ifdef ENABLE_CHECKING
1274 /* Verify that there really are no loop notes. */
1275 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1276 gcc_assert (!NOTE_P (insn) ||
1277 NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
1278 #endif
1279
1280 flow_loops_find (&loops);
1281 free_dominance_info (CDI_DOMINATORS);
1282 if (loops.num > 1)
1283 {
1284 last = xcalloc (loops.num, sizeof (basic_block));
1285
1286 FOR_EACH_BB (bb)
1287 {
1288 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1289 last[loop->num] = bb;
1290 }
1291
1292 first = xcalloc (loops.num, sizeof (basic_block));
1293 stack = xcalloc (loops.num, sizeof (struct loop *));
1294 top = stack;
1295
1296 FOR_EACH_BB (bb)
1297 {
1298 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1299 {
1300 if (!first[loop->num])
1301 {
1302 *top++ = loop;
1303 first[loop->num] = bb;
1304 }
1305
1306 if (bb == last[loop->num])
1307 {
1308 /* Prevent loops from overlapping. */
1309 while (*--top != loop)
1310 last[(*top)->num] = EXIT_BLOCK_PTR;
1311
1312 /* If loop starts with jump into it, place the note in
1313 front of the jump. */
1314 insn = PREV_INSN (BB_HEAD (first[loop->num]));
1315 if (insn
1316 && BARRIER_P (insn))
1317 insn = PREV_INSN (insn);
1318
1319 if (insn
1320 && JUMP_P (insn)
1321 && any_uncondjump_p (insn)
1322 && onlyjump_p (insn))
1323 {
1324 pbb = BLOCK_FOR_INSN (insn);
1325 gcc_assert (pbb && single_succ_p (pbb));
1326
1327 if (!flow_bb_inside_loop_p (loop, single_succ (pbb)))
1328 insn = BB_HEAD (first[loop->num]);
1329 }
1330 else
1331 insn = BB_HEAD (first[loop->num]);
1332
1333 head = BB_HEAD (first[loop->num]);
1334 emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1335 BB_HEAD (first[loop->num]) = head;
1336
1337 /* Position the note correctly wrto barrier. */
1338 insn = BB_END (last[loop->num]);
1339 if (NEXT_INSN (insn)
1340 && BARRIER_P (NEXT_INSN (insn)))
1341 insn = NEXT_INSN (insn);
1342
1343 end = BB_END (last[loop->num]);
1344 emit_note_after (NOTE_INSN_LOOP_END, insn);
1345 BB_END (last[loop->num]) = end;
1346 }
1347 }
1348 }
1349
1350 free (first);
1351 free (last);
1352 free (stack);
1353 }
1354 flow_loops_free (&loops);
1355 }
1356
1357 /* The structure of LOOPS might have changed. Some loops might get removed
1358 (and their headers and latches were set to NULL), loop exists might get
1359 removed (thus the loop nesting may be wrong), and some blocks and edges
1360 were changed (so the information about bb --> loop mapping does not have
1361 to be correct). But still for the remaining loops the header dominates
1362 the latch, and loops did not get new subloobs (new loops might possibly
1363 get created, but we are not interested in them). Fix up the mess.
1364
1365 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1366 marked in it. */
1367
1368 void
1369 fix_loop_structure (struct loops *loops, bitmap changed_bbs)
1370 {
1371 basic_block bb;
1372 struct loop *loop, *ploop;
1373 unsigned i;
1374
1375 /* Remove the old bb -> loop mapping. */
1376 FOR_EACH_BB (bb)
1377 {
1378 bb->aux = (void *) (size_t) bb->loop_father->depth;
1379 bb->loop_father = loops->tree_root;
1380 }
1381
1382 /* Remove the dead loops from structures. */
1383 loops->tree_root->num_nodes = n_basic_blocks + 2;
1384 for (i = 1; i < loops->num; i++)
1385 {
1386 loop = loops->parray[i];
1387 if (!loop)
1388 continue;
1389
1390 loop->num_nodes = 0;
1391 if (loop->header)
1392 continue;
1393
1394 while (loop->inner)
1395 {
1396 ploop = loop->inner;
1397 flow_loop_tree_node_remove (ploop);
1398 flow_loop_tree_node_add (loop->outer, ploop);
1399 }
1400
1401 /* Remove the loop and free its data. */
1402 flow_loop_tree_node_remove (loop);
1403 loops->parray[loop->num] = NULL;
1404 flow_loop_free (loop);
1405 }
1406
1407 /* Rescan the bodies of loops, starting from the outermost. */
1408 loop = loops->tree_root;
1409 while (1)
1410 {
1411 if (loop->inner)
1412 loop = loop->inner;
1413 else
1414 {
1415 while (!loop->next
1416 && loop != loops->tree_root)
1417 loop = loop->outer;
1418 if (loop == loops->tree_root)
1419 break;
1420
1421 loop = loop->next;
1422 }
1423
1424 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1425 }
1426
1427 /* Now fix the loop nesting. */
1428 for (i = 1; i < loops->num; i++)
1429 {
1430 loop = loops->parray[i];
1431 if (!loop)
1432 continue;
1433
1434 bb = loop_preheader_edge (loop)->src;
1435 if (bb->loop_father != loop->outer)
1436 {
1437 flow_loop_tree_node_remove (loop);
1438 flow_loop_tree_node_add (bb->loop_father, loop);
1439 }
1440 }
1441
1442 /* Mark the blocks whose loop has changed. */
1443 FOR_EACH_BB (bb)
1444 {
1445 if (changed_bbs
1446 && (void *) (size_t) bb->loop_father->depth != bb->aux)
1447 bitmap_set_bit (changed_bbs, bb->index);
1448
1449 bb->aux = NULL;
1450 }
1451
1452 mark_single_exit_loops (loops);
1453 mark_irreducible_loops (loops);
1454 }
This page took 0.101803 seconds and 6 git commands to generate.