]> gcc.gnu.org Git - gcc.git/blob - gcc/cfgloopmanip.c
cfghooks.c (lv_flush_pending_stmts, [...]): New.
[gcc.git] / gcc / cfgloopmanip.c
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33
34 static void duplicate_subloops (struct loops *, struct loop *, struct loop *);
35 static void copy_loops_to (struct loops *, struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static bool loop_delete_branch_edge (edge, int);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (basic_block, void *);
41 static int find_path (edge, basic_block **);
42 static bool alp_enum_p (basic_block, void *);
43 static void add_loop (struct loops *, struct loop *);
44 static void fix_loop_placements (struct loops *, struct loop *);
45 static bool fix_bb_placement (struct loops *, basic_block);
46 static void fix_bb_placements (struct loops *, basic_block);
47 static void place_new_loop (struct loops *, struct loop *);
48 static void scale_loop_frequencies (struct loop *, int, int);
49 static basic_block create_preheader (struct loop *, int);
50 static void fix_irreducible_loops (basic_block);
51 static void unloop (struct loops *, struct loop *);
52
53 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
54
55 /* Splits basic block BB after INSN, returns created edge. Updates loops
56 and dominators. */
57 edge
58 split_loop_bb (basic_block bb, void *insn)
59 {
60 edge e;
61
62 /* Split the block. */
63 e = split_block (bb, insn);
64
65 /* Add dest to loop. */
66 add_bb_to_loop (e->dest, e->src->loop_father);
67
68 return e;
69 }
70
71 /* Checks whether basic block BB is dominated by DATA. */
72 static bool
73 rpe_enum_p (basic_block bb, void *data)
74 {
75 return dominated_by_p (CDI_DOMINATORS, bb, data);
76 }
77
78 /* Remove basic blocks BBS from loop structure and dominance info,
79 and delete them afterwards. */
80 static void
81 remove_bbs (basic_block *bbs, int nbbs)
82 {
83 int i;
84
85 for (i = 0; i < nbbs; i++)
86 {
87 remove_bb_from_loops (bbs[i]);
88 delete_basic_block (bbs[i]);
89 }
90 }
91
92 /* Find path -- i.e. the basic blocks dominated by edge E and put them
93 into array BBS, that will be allocated large enough to contain them.
94 E->dest must have exactly one predecessor for this to work (it is
95 easy to achieve and we do not put it here because we do not want to
96 alter anything by this function). The number of basic blocks in the
97 path is returned. */
98 static int
99 find_path (edge e, basic_block **bbs)
100 {
101 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
102
103 /* Find bbs in the path. */
104 *bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
105 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
106 n_basic_blocks, e->dest);
107 }
108
109 /* Fix placement of basic block BB inside loop hierarchy stored in LOOPS --
110 Let L be a loop to that BB belongs. Then every successor of BB must either
111 1) belong to some superloop of loop L, or
112 2) be a header of loop K such that K->outer is superloop of L
113 Returns true if we had to move BB into other loop to enforce this condition,
114 false if the placement of BB was already correct (provided that placements
115 of its successors are correct). */
116 static bool
117 fix_bb_placement (struct loops *loops, basic_block bb)
118 {
119 edge e;
120 edge_iterator ei;
121 struct loop *loop = loops->tree_root, *act;
122
123 FOR_EACH_EDGE (e, ei, bb->succs)
124 {
125 if (e->dest == EXIT_BLOCK_PTR)
126 continue;
127
128 act = e->dest->loop_father;
129 if (act->header == e->dest)
130 act = act->outer;
131
132 if (flow_loop_nested_p (loop, act))
133 loop = act;
134 }
135
136 if (loop == bb->loop_father)
137 return false;
138
139 remove_bb_from_loops (bb);
140 add_bb_to_loop (bb, loop);
141
142 return true;
143 }
144
145 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
146 enforce condition condition stated in description of fix_bb_placement. We
147 start from basic block FROM that had some of its successors removed, so that
148 his placement no longer has to be correct, and iteratively fix placement of
149 its predecessors that may change if placement of FROM changed. Also fix
150 placement of subloops of FROM->loop_father, that might also be altered due
151 to this change; the condition for them is similar, except that instead of
152 successors we consider edges coming out of the loops. */
153 static void
154 fix_bb_placements (struct loops *loops, basic_block from)
155 {
156 sbitmap in_queue;
157 basic_block *queue, *qtop, *qbeg, *qend;
158 struct loop *base_loop;
159 edge e;
160
161 /* We pass through blocks back-reachable from FROM, testing whether some
162 of their successors moved to outer loop. It may be necessary to
163 iterate several times, but it is finite, as we stop unless we move
164 the basic block up the loop structure. The whole story is a bit
165 more complicated due to presence of subloops, those are moved using
166 fix_loop_placement. */
167
168 base_loop = from->loop_father;
169 if (base_loop == loops->tree_root)
170 return;
171
172 in_queue = sbitmap_alloc (last_basic_block);
173 sbitmap_zero (in_queue);
174 SET_BIT (in_queue, from->index);
175 /* Prevent us from going out of the base_loop. */
176 SET_BIT (in_queue, base_loop->header->index);
177
178 queue = xmalloc ((base_loop->num_nodes + 1) * sizeof (basic_block));
179 qtop = queue + base_loop->num_nodes + 1;
180 qbeg = queue;
181 qend = queue + 1;
182 *qbeg = from;
183
184 while (qbeg != qend)
185 {
186 edge_iterator ei;
187 from = *qbeg;
188 qbeg++;
189 if (qbeg == qtop)
190 qbeg = queue;
191 RESET_BIT (in_queue, from->index);
192
193 if (from->loop_father->header == from)
194 {
195 /* Subloop header, maybe move the loop upward. */
196 if (!fix_loop_placement (from->loop_father))
197 continue;
198 }
199 else
200 {
201 /* Ordinary basic block. */
202 if (!fix_bb_placement (loops, from))
203 continue;
204 }
205
206 /* Something has changed, insert predecessors into queue. */
207 FOR_EACH_EDGE (e, ei, from->preds)
208 {
209 basic_block pred = e->src;
210 struct loop *nca;
211
212 if (TEST_BIT (in_queue, pred->index))
213 continue;
214
215 /* If it is subloop, then it either was not moved, or
216 the path up the loop tree from base_loop do not contain
217 it. */
218 nca = find_common_loop (pred->loop_father, base_loop);
219 if (pred->loop_father != base_loop
220 && (nca == base_loop
221 || nca != pred->loop_father))
222 pred = pred->loop_father->header;
223 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
224 {
225 /* No point in processing it. */
226 continue;
227 }
228
229 if (TEST_BIT (in_queue, pred->index))
230 continue;
231
232 /* Schedule the basic block. */
233 *qend = pred;
234 qend++;
235 if (qend == qtop)
236 qend = queue;
237 SET_BIT (in_queue, pred->index);
238 }
239 }
240 free (in_queue);
241 free (queue);
242 }
243
244 /* Basic block from has lost one or more of its predecessors, so it might
245 mo longer be part irreducible loop. Fix it and proceed recursively
246 for its successors if needed. */
247 static void
248 fix_irreducible_loops (basic_block from)
249 {
250 basic_block bb;
251 basic_block *stack;
252 int stack_top;
253 sbitmap on_stack;
254 edge *edges, e;
255 unsigned n_edges, i;
256
257 if (!(from->flags & BB_IRREDUCIBLE_LOOP))
258 return;
259
260 on_stack = sbitmap_alloc (last_basic_block);
261 sbitmap_zero (on_stack);
262 SET_BIT (on_stack, from->index);
263 stack = xmalloc (from->loop_father->num_nodes * sizeof (basic_block));
264 stack[0] = from;
265 stack_top = 1;
266
267 while (stack_top)
268 {
269 edge_iterator ei;
270 bb = stack[--stack_top];
271 RESET_BIT (on_stack, bb->index);
272
273 FOR_EACH_EDGE (e, ei, bb->preds)
274 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
275 break;
276 if (e)
277 continue;
278
279 bb->flags &= ~BB_IRREDUCIBLE_LOOP;
280 if (bb->loop_father->header == bb)
281 edges = get_loop_exit_edges (bb->loop_father, &n_edges);
282 else
283 {
284 n_edges = EDGE_COUNT (bb->succs);
285 edges = xmalloc (n_edges * sizeof (edge));
286 FOR_EACH_EDGE (e, ei, bb->succs)
287 edges[ei.index] = e;
288 }
289
290 for (i = 0; i < n_edges; i++)
291 {
292 e = edges[i];
293
294 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
295 {
296 if (!flow_bb_inside_loop_p (from->loop_father, e->dest))
297 continue;
298
299 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
300 if (TEST_BIT (on_stack, e->dest->index))
301 continue;
302
303 SET_BIT (on_stack, e->dest->index);
304 stack[stack_top++] = e->dest;
305 }
306 }
307 free (edges);
308 }
309
310 free (on_stack);
311 free (stack);
312 }
313
314 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
315 and update loop structure stored in LOOPS and dominators. Return true if
316 we were able to remove the path, false otherwise (and nothing is affected
317 then). */
318 bool
319 remove_path (struct loops *loops, edge e)
320 {
321 edge ae;
322 basic_block *rem_bbs, *bord_bbs, *dom_bbs, from, bb;
323 int i, nrem, n_bord_bbs, n_dom_bbs;
324 sbitmap seen;
325 bool deleted;
326
327 if (!loop_delete_branch_edge (e, 0))
328 return false;
329
330 /* We need to check whether basic blocks are dominated by the edge
331 e, but we only have basic block dominators. This is easy to
332 fix -- when e->dest has exactly one predecessor, this corresponds
333 to blocks dominated by e->dest, if not, split the edge. */
334 if (!single_pred_p (e->dest))
335 e = single_pred_edge (loop_split_edge_with (e, NULL_RTX));
336
337 /* It may happen that by removing path we remove one or more loops
338 we belong to. In this case first unloop the loops, then proceed
339 normally. We may assume that e->dest is not a header of any loop,
340 as it now has exactly one predecessor. */
341 while (e->src->loop_father->outer
342 && dominated_by_p (CDI_DOMINATORS,
343 e->src->loop_father->latch, e->dest))
344 unloop (loops, e->src->loop_father);
345
346 /* Identify the path. */
347 nrem = find_path (e, &rem_bbs);
348
349 n_bord_bbs = 0;
350 bord_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
351 seen = sbitmap_alloc (last_basic_block);
352 sbitmap_zero (seen);
353
354 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
355 for (i = 0; i < nrem; i++)
356 SET_BIT (seen, rem_bbs[i]->index);
357 for (i = 0; i < nrem; i++)
358 {
359 edge_iterator ei;
360 bb = rem_bbs[i];
361 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
362 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
363 {
364 SET_BIT (seen, ae->dest->index);
365 bord_bbs[n_bord_bbs++] = ae->dest;
366 }
367 }
368
369 /* Remove the path. */
370 from = e->src;
371 deleted = loop_delete_branch_edge (e, 1);
372 gcc_assert (deleted);
373 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
374
375 /* Cancel loops contained in the path. */
376 for (i = 0; i < nrem; i++)
377 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
378 cancel_loop_tree (loops, rem_bbs[i]->loop_father);
379
380 remove_bbs (rem_bbs, nrem);
381 free (rem_bbs);
382
383 /* Find blocks whose dominators may be affected. */
384 n_dom_bbs = 0;
385 sbitmap_zero (seen);
386 for (i = 0; i < n_bord_bbs; i++)
387 {
388 basic_block ldom;
389
390 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
391 if (TEST_BIT (seen, bb->index))
392 continue;
393 SET_BIT (seen, bb->index);
394
395 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
396 ldom;
397 ldom = next_dom_son (CDI_DOMINATORS, ldom))
398 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
399 dom_bbs[n_dom_bbs++] = ldom;
400 }
401
402 free (seen);
403
404 /* Recount dominators. */
405 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
406 free (dom_bbs);
407
408 /* These blocks have lost some predecessor(s), thus their irreducible
409 status could be changed. */
410 for (i = 0; i < n_bord_bbs; i++)
411 fix_irreducible_loops (bord_bbs[i]);
412 free (bord_bbs);
413
414 /* Fix placements of basic blocks inside loops and the placement of
415 loops in the loop tree. */
416 fix_bb_placements (loops, from);
417 fix_loop_placements (loops, from->loop_father);
418
419 return true;
420 }
421
422 /* Predicate for enumeration in add_loop. */
423 static bool
424 alp_enum_p (basic_block bb, void *alp_header)
425 {
426 return bb != (basic_block) alp_header;
427 }
428
429 /* Given LOOP structure with filled header and latch, find the body of the
430 corresponding loop and add it to LOOPS tree. */
431 static void
432 add_loop (struct loops *loops, struct loop *loop)
433 {
434 basic_block *bbs;
435 int i, n;
436
437 /* Add it to loop structure. */
438 place_new_loop (loops, loop);
439 loop->level = 1;
440
441 /* Find its nodes. */
442 bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
443 n = dfs_enumerate_from (loop->latch, 1, alp_enum_p,
444 bbs, n_basic_blocks, loop->header);
445
446 for (i = 0; i < n; i++)
447 add_bb_to_loop (bbs[i], loop);
448 add_bb_to_loop (loop->header, loop);
449
450 free (bbs);
451 }
452
453 /* Multiply all frequencies in LOOP by NUM/DEN. */
454 static void
455 scale_loop_frequencies (struct loop *loop, int num, int den)
456 {
457 basic_block *bbs;
458
459 bbs = get_loop_body (loop);
460 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
461 free (bbs);
462 }
463
464 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
465 latch to header and update loop tree stored in LOOPS and dominators
466 accordingly. Everything between them plus LATCH_EDGE destination must
467 be dominated by HEADER_EDGE destination, and back-reachable from
468 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
469 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
470 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
471 Returns newly created loop. */
472
473 struct loop *
474 loopify (struct loops *loops, edge latch_edge, edge header_edge,
475 basic_block switch_bb, edge true_edge, edge false_edge,
476 bool redirect_all_edges)
477 {
478 basic_block succ_bb = latch_edge->dest;
479 basic_block pred_bb = header_edge->src;
480 basic_block *dom_bbs, *body;
481 unsigned n_dom_bbs, i;
482 sbitmap seen;
483 struct loop *loop = xcalloc (1, sizeof (struct loop));
484 struct loop *outer = succ_bb->loop_father->outer;
485 int freq, prob, tot_prob;
486 gcov_type cnt;
487 edge e;
488 edge_iterator ei;
489
490 loop->header = header_edge->dest;
491 loop->latch = latch_edge->src;
492
493 freq = EDGE_FREQUENCY (header_edge);
494 cnt = header_edge->count;
495 prob = EDGE_SUCC (switch_bb, 0)->probability;
496 tot_prob = prob + EDGE_SUCC (switch_bb, 1)->probability;
497 if (tot_prob == 0)
498 tot_prob = 1;
499
500 /* Redirect edges. */
501 loop_redirect_edge (latch_edge, loop->header);
502 loop_redirect_edge (true_edge, succ_bb);
503
504 /* During loop versioning, one of the switch_bb edge is already properly
505 set. Do not redirect it again unless redirect_all_edges is true. */
506 if (redirect_all_edges)
507 {
508 loop_redirect_edge (header_edge, switch_bb);
509 loop_redirect_edge (false_edge, loop->header);
510
511 /* Update dominators. */
512 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
513 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
514 }
515
516 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
517
518 /* Compute new loop. */
519 add_loop (loops, loop);
520 flow_loop_tree_node_add (outer, loop);
521
522 /* Add switch_bb to appropriate loop. */
523 add_bb_to_loop (switch_bb, outer);
524
525 /* Fix frequencies. */
526 switch_bb->frequency = freq;
527 switch_bb->count = cnt;
528 FOR_EACH_EDGE (e, ei, switch_bb->succs)
529 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
530 scale_loop_frequencies (loop, prob, tot_prob);
531 scale_loop_frequencies (succ_bb->loop_father, tot_prob - prob, tot_prob);
532
533 /* Update dominators of blocks outside of LOOP. */
534 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
535 n_dom_bbs = 0;
536 seen = sbitmap_alloc (last_basic_block);
537 sbitmap_zero (seen);
538 body = get_loop_body (loop);
539
540 for (i = 0; i < loop->num_nodes; i++)
541 SET_BIT (seen, body[i]->index);
542
543 for (i = 0; i < loop->num_nodes; i++)
544 {
545 basic_block ldom;
546
547 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
548 ldom;
549 ldom = next_dom_son (CDI_DOMINATORS, ldom))
550 if (!TEST_BIT (seen, ldom->index))
551 {
552 SET_BIT (seen, ldom->index);
553 dom_bbs[n_dom_bbs++] = ldom;
554 }
555 }
556
557 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
558
559 free (body);
560 free (seen);
561 free (dom_bbs);
562
563 return loop;
564 }
565
566 /* Remove the latch edge of a LOOP and update LOOPS tree to indicate that
567 the LOOP was removed. After this function, original loop latch will
568 have no successor, which caller is expected to fix somehow. */
569 static void
570 unloop (struct loops *loops, struct loop *loop)
571 {
572 basic_block *body;
573 struct loop *ploop;
574 unsigned i, n;
575 basic_block latch = loop->latch;
576 edge *edges;
577 unsigned n_edges;
578
579 /* This is relatively straightforward. The dominators are unchanged, as
580 loop header dominates loop latch, so the only thing we have to care of
581 is the placement of loops and basic blocks inside the loop tree. We
582 move them all to the loop->outer, and then let fix_bb_placements do
583 its work. */
584
585 body = get_loop_body (loop);
586 edges = get_loop_exit_edges (loop, &n_edges);
587 n = loop->num_nodes;
588 for (i = 0; i < n; i++)
589 if (body[i]->loop_father == loop)
590 {
591 remove_bb_from_loops (body[i]);
592 add_bb_to_loop (body[i], loop->outer);
593 }
594 free(body);
595
596 while (loop->inner)
597 {
598 ploop = loop->inner;
599 flow_loop_tree_node_remove (ploop);
600 flow_loop_tree_node_add (loop->outer, ploop);
601 }
602
603 /* Remove the loop and free its data. */
604 flow_loop_tree_node_remove (loop);
605 loops->parray[loop->num] = NULL;
606 flow_loop_free (loop);
607
608 remove_edge (single_succ_edge (latch));
609 fix_bb_placements (loops, latch);
610
611 /* If the loop was inside an irreducible region, we would have to somehow
612 update the irreducible marks inside its body. While it is certainly
613 possible to do, it is a bit complicated and this situation should be
614 very rare, so we just remark all loops in this case. */
615 for (i = 0; i < n_edges; i++)
616 if (edges[i]->flags & EDGE_IRREDUCIBLE_LOOP)
617 break;
618 if (i != n_edges)
619 mark_irreducible_loops (loops);
620 free (edges);
621 }
622
623 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
624 FATHER of LOOP such that all of the edges coming out of LOOP belong to
625 FATHER, and set it as outer loop of LOOP. Return 1 if placement of
626 LOOP changed. */
627 int
628 fix_loop_placement (struct loop *loop)
629 {
630 basic_block *body;
631 unsigned i;
632 edge e;
633 edge_iterator ei;
634 struct loop *father = loop->pred[0], *act;
635
636 body = get_loop_body (loop);
637 for (i = 0; i < loop->num_nodes; i++)
638 FOR_EACH_EDGE (e, ei, body[i]->succs)
639 if (!flow_bb_inside_loop_p (loop, e->dest))
640 {
641 act = find_common_loop (loop, e->dest->loop_father);
642 if (flow_loop_nested_p (father, act))
643 father = act;
644 }
645 free (body);
646
647 if (father != loop->outer)
648 {
649 for (act = loop->outer; act != father; act = act->outer)
650 act->num_nodes -= loop->num_nodes;
651 flow_loop_tree_node_remove (loop);
652 flow_loop_tree_node_add (father, loop);
653 return 1;
654 }
655 return 0;
656 }
657
658 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
659 condition stated in description of fix_loop_placement holds for them.
660 It is used in case when we removed some edges coming out of LOOP, which
661 may cause the right placement of LOOP inside loop tree to change. */
662 static void
663 fix_loop_placements (struct loops *loops, struct loop *loop)
664 {
665 struct loop *outer;
666
667 while (loop->outer)
668 {
669 outer = loop->outer;
670 if (!fix_loop_placement (loop))
671 break;
672
673 /* Changing the placement of a loop in the loop tree may alter the
674 validity of condition 2) of the description of fix_bb_placement
675 for its preheader, because the successor is the header and belongs
676 to the loop. So call fix_bb_placements to fix up the placement
677 of the preheader and (possibly) of its predecessors. */
678 fix_bb_placements (loops, loop_preheader_edge (loop)->src);
679 loop = outer;
680 }
681 }
682
683 /* Creates place for a new LOOP in LOOPS structure. */
684 static void
685 place_new_loop (struct loops *loops, struct loop *loop)
686 {
687 loops->parray =
688 xrealloc (loops->parray, (loops->num + 1) * sizeof (struct loop *));
689 loops->parray[loops->num] = loop;
690
691 loop->num = loops->num++;
692 }
693
694 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
695 created loop into LOOPS structure. */
696 struct loop *
697 duplicate_loop (struct loops *loops, struct loop *loop, struct loop *target)
698 {
699 struct loop *cloop;
700 cloop = xcalloc (1, sizeof (struct loop));
701 place_new_loop (loops, cloop);
702
703 /* Initialize copied loop. */
704 cloop->level = loop->level;
705
706 /* Set it as copy of loop. */
707 loop->copy = cloop;
708
709 /* Add it to target. */
710 flow_loop_tree_node_add (target, cloop);
711
712 return cloop;
713 }
714
715 /* Copies structure of subloops of LOOP into TARGET loop, placing
716 newly created loops into loop tree stored in LOOPS. */
717 static void
718 duplicate_subloops (struct loops *loops, struct loop *loop, struct loop *target)
719 {
720 struct loop *aloop, *cloop;
721
722 for (aloop = loop->inner; aloop; aloop = aloop->next)
723 {
724 cloop = duplicate_loop (loops, aloop, target);
725 duplicate_subloops (loops, aloop, cloop);
726 }
727 }
728
729 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
730 into TARGET loop, placing newly created loops into loop tree LOOPS. */
731 static void
732 copy_loops_to (struct loops *loops, struct loop **copied_loops, int n, struct loop *target)
733 {
734 struct loop *aloop;
735 int i;
736
737 for (i = 0; i < n; i++)
738 {
739 aloop = duplicate_loop (loops, copied_loops[i], target);
740 duplicate_subloops (loops, copied_loops[i], aloop);
741 }
742 }
743
744 /* Redirects edge E to basic block DEST. */
745 static void
746 loop_redirect_edge (edge e, basic_block dest)
747 {
748 if (e->dest == dest)
749 return;
750
751 redirect_edge_and_branch_force (e, dest);
752 }
753
754 /* Deletes edge E from a branch if possible. Unless REALLY_DELETE is set,
755 just test whether it is possible to remove the edge. */
756 static bool
757 loop_delete_branch_edge (edge e, int really_delete)
758 {
759 basic_block src = e->src;
760 basic_block newdest;
761 int irr;
762 edge snd;
763
764 gcc_assert (EDGE_COUNT (src->succs) > 1);
765
766 /* Cannot handle more than two exit edges. */
767 if (EDGE_COUNT (src->succs) > 2)
768 return false;
769 /* And it must be just a simple branch. */
770 if (!any_condjump_p (BB_END (src)))
771 return false;
772
773 snd = e == EDGE_SUCC (src, 0) ? EDGE_SUCC (src, 1) : EDGE_SUCC (src, 0);
774 newdest = snd->dest;
775 if (newdest == EXIT_BLOCK_PTR)
776 return false;
777
778 /* Hopefully the above conditions should suffice. */
779 if (!really_delete)
780 return true;
781
782 /* Redirecting behaves wrongly wrto this flag. */
783 irr = snd->flags & EDGE_IRREDUCIBLE_LOOP;
784
785 if (!redirect_edge_and_branch (e, newdest))
786 return false;
787 single_succ_edge (src)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
788 single_succ_edge (src)->flags |= irr;
789
790 return true;
791 }
792
793 /* Check whether LOOP's body can be duplicated. */
794 bool
795 can_duplicate_loop_p (struct loop *loop)
796 {
797 int ret;
798 basic_block *bbs = get_loop_body (loop);
799
800 ret = can_copy_bbs_p (bbs, loop->num_nodes);
801 free (bbs);
802
803 return ret;
804 }
805
806 /* The NBBS blocks in BBS will get duplicated and the copies will be placed
807 to LOOP. Update the single_exit information in superloops of LOOP. */
808
809 static void
810 update_single_exits_after_duplication (basic_block *bbs, unsigned nbbs,
811 struct loop *loop)
812 {
813 unsigned i;
814
815 for (i = 0; i < nbbs; i++)
816 bbs[i]->rbi->duplicated = 1;
817
818 for (; loop->outer; loop = loop->outer)
819 {
820 if (!loop->single_exit)
821 continue;
822
823 if (loop->single_exit->src->rbi->duplicated)
824 loop->single_exit = NULL;
825 }
826
827 for (i = 0; i < nbbs; i++)
828 bbs[i]->rbi->duplicated = 0;
829 }
830
831 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
832 LOOPS structure and dominators. E's destination must be LOOP header for
833 this to work, i.e. it must be entry or latch edge of this loop; these are
834 unique, as the loops must have preheaders for this function to work
835 correctly (in case E is latch, the function unrolls the loop, if E is entry
836 edge, it peels the loop). Store edges created by copying ORIG edge from
837 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
838 original LOOP body, the other copies are numbered in order given by control
839 flow through them) into TO_REMOVE array. Returns false if duplication is
840 impossible. */
841 bool
842 duplicate_loop_to_header_edge (struct loop *loop, edge e, struct loops *loops,
843 unsigned int ndupl, sbitmap wont_exit,
844 edge orig, edge *to_remove,
845 unsigned int *n_to_remove, int flags)
846 {
847 struct loop *target, *aloop;
848 struct loop **orig_loops;
849 unsigned n_orig_loops;
850 basic_block header = loop->header, latch = loop->latch;
851 basic_block *new_bbs, *bbs, *first_active;
852 basic_block new_bb, bb, first_active_latch = NULL;
853 edge ae, latch_edge;
854 edge spec_edges[2], new_spec_edges[2];
855 #define SE_LATCH 0
856 #define SE_ORIG 1
857 unsigned i, j, n;
858 int is_latch = (latch == e->src);
859 int scale_act = 0, *scale_step = NULL, scale_main = 0;
860 int p, freq_in, freq_le, freq_out_orig;
861 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
862 int add_irreducible_flag;
863
864 gcc_assert (e->dest == loop->header);
865 gcc_assert (ndupl > 0);
866
867 if (orig)
868 {
869 /* Orig must be edge out of the loop. */
870 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
871 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
872 }
873
874 bbs = get_loop_body (loop);
875
876 /* Check whether duplication is possible. */
877 if (!can_copy_bbs_p (bbs, loop->num_nodes))
878 {
879 free (bbs);
880 return false;
881 }
882 new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
883
884 /* In case we are doing loop peeling and the loop is in the middle of
885 irreducible region, the peeled copies will be inside it too. */
886 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
887 gcc_assert (!is_latch || !add_irreducible_flag);
888
889 /* Find edge from latch. */
890 latch_edge = loop_latch_edge (loop);
891
892 if (flags & DLTHE_FLAG_UPDATE_FREQ)
893 {
894 /* Calculate coefficients by that we have to scale frequencies
895 of duplicated loop bodies. */
896 freq_in = header->frequency;
897 freq_le = EDGE_FREQUENCY (latch_edge);
898 if (freq_in == 0)
899 freq_in = 1;
900 if (freq_in < freq_le)
901 freq_in = freq_le;
902 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
903 if (freq_out_orig > freq_in - freq_le)
904 freq_out_orig = freq_in - freq_le;
905 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
906 prob_pass_wont_exit =
907 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
908
909 scale_step = xmalloc (ndupl * sizeof (int));
910
911 for (i = 1; i <= ndupl; i++)
912 scale_step[i - 1] = TEST_BIT (wont_exit, i)
913 ? prob_pass_wont_exit
914 : prob_pass_thru;
915
916 if (is_latch)
917 {
918 prob_pass_main = TEST_BIT (wont_exit, 0)
919 ? prob_pass_wont_exit
920 : prob_pass_thru;
921 p = prob_pass_main;
922 scale_main = REG_BR_PROB_BASE;
923 for (i = 0; i < ndupl; i++)
924 {
925 scale_main += p;
926 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
927 }
928 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
929 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
930 }
931 else
932 {
933 scale_main = REG_BR_PROB_BASE;
934 for (i = 0; i < ndupl; i++)
935 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
936 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
937 }
938 for (i = 0; i < ndupl; i++)
939 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
940 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
941 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
942 }
943
944 /* Loop the new bbs will belong to. */
945 target = e->src->loop_father;
946
947 /* Original loops. */
948 n_orig_loops = 0;
949 for (aloop = loop->inner; aloop; aloop = aloop->next)
950 n_orig_loops++;
951 orig_loops = xcalloc (n_orig_loops, sizeof (struct loop *));
952 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
953 orig_loops[i] = aloop;
954
955 loop->copy = target;
956
957 n = loop->num_nodes;
958
959 first_active = xmalloc (n * sizeof (basic_block));
960 if (is_latch)
961 {
962 memcpy (first_active, bbs, n * sizeof (basic_block));
963 first_active_latch = latch;
964 }
965
966 /* Update the information about single exits. */
967 if (loops->state & LOOPS_HAVE_MARKED_SINGLE_EXITS)
968 update_single_exits_after_duplication (bbs, n, target);
969
970 /* Record exit edge in original loop body. */
971 if (orig && TEST_BIT (wont_exit, 0))
972 to_remove[(*n_to_remove)++] = orig;
973
974 spec_edges[SE_ORIG] = orig;
975 spec_edges[SE_LATCH] = latch_edge;
976
977 for (j = 0; j < ndupl; j++)
978 {
979 /* Copy loops. */
980 copy_loops_to (loops, orig_loops, n_orig_loops, target);
981
982 /* Copy bbs. */
983 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop);
984
985 for (i = 0; i < n; i++)
986 new_bbs[i]->rbi->copy_number = j + 1;
987
988 /* Note whether the blocks and edges belong to an irreducible loop. */
989 if (add_irreducible_flag)
990 {
991 for (i = 0; i < n; i++)
992 new_bbs[i]->rbi->duplicated = 1;
993 for (i = 0; i < n; i++)
994 {
995 edge_iterator ei;
996 new_bb = new_bbs[i];
997 if (new_bb->loop_father == target)
998 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
999
1000 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1001 if (ae->dest->rbi->duplicated
1002 && (ae->src->loop_father == target
1003 || ae->dest->loop_father == target))
1004 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1005 }
1006 for (i = 0; i < n; i++)
1007 new_bbs[i]->rbi->duplicated = 0;
1008 }
1009
1010 /* Redirect the special edges. */
1011 if (is_latch)
1012 {
1013 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1014 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1015 loop->header);
1016 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1017 latch = loop->latch = new_bbs[1];
1018 e = latch_edge = new_spec_edges[SE_LATCH];
1019 }
1020 else
1021 {
1022 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1023 loop->header);
1024 redirect_edge_and_branch_force (e, new_bbs[0]);
1025 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1026 e = new_spec_edges[SE_LATCH];
1027 }
1028
1029 /* Record exit edge in this copy. */
1030 if (orig && TEST_BIT (wont_exit, j + 1))
1031 to_remove[(*n_to_remove)++] = new_spec_edges[SE_ORIG];
1032
1033 /* Record the first copy in the control flow order if it is not
1034 the original loop (i.e. in case of peeling). */
1035 if (!first_active_latch)
1036 {
1037 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1038 first_active_latch = new_bbs[1];
1039 }
1040
1041 /* Set counts and frequencies. */
1042 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1043 {
1044 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1045 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1046 }
1047 }
1048 free (new_bbs);
1049 free (orig_loops);
1050
1051 /* Update the original loop. */
1052 if (!is_latch)
1053 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1054 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1055 {
1056 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1057 free (scale_step);
1058 }
1059
1060 /* Update dominators of outer blocks if affected. */
1061 for (i = 0; i < n; i++)
1062 {
1063 basic_block dominated, dom_bb, *dom_bbs;
1064 int n_dom_bbs,j;
1065
1066 bb = bbs[i];
1067 bb->rbi->copy_number = 0;
1068
1069 n_dom_bbs = get_dominated_by (CDI_DOMINATORS, bb, &dom_bbs);
1070 for (j = 0; j < n_dom_bbs; j++)
1071 {
1072 dominated = dom_bbs[j];
1073 if (flow_bb_inside_loop_p (loop, dominated))
1074 continue;
1075 dom_bb = nearest_common_dominator (
1076 CDI_DOMINATORS, first_active[i], first_active_latch);
1077 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1078 }
1079 free (dom_bbs);
1080 }
1081 free (first_active);
1082
1083 free (bbs);
1084
1085 return true;
1086 }
1087
1088 /* A callback for make_forwarder block, to redirect all edges except for
1089 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1090 whether to redirect it. */
1091
1092 static edge mfb_kj_edge;
1093 static bool
1094 mfb_keep_just (edge e)
1095 {
1096 return e != mfb_kj_edge;
1097 }
1098
1099 /* A callback for make_forwarder block, to update data structures for a basic
1100 block JUMP created by redirecting an edge (only the latch edge is being
1101 redirected). */
1102
1103 static void
1104 mfb_update_loops (basic_block jump)
1105 {
1106 struct loop *loop = single_succ (jump)->loop_father;
1107
1108 if (dom_computed[CDI_DOMINATORS])
1109 set_immediate_dominator (CDI_DOMINATORS, jump, single_pred (jump));
1110 add_bb_to_loop (jump, loop);
1111 loop->latch = jump;
1112 }
1113
1114 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1115 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1116 entry; otherwise we also force preheader block to have only one successor.
1117 The function also updates dominators. */
1118
1119 static basic_block
1120 create_preheader (struct loop *loop, int flags)
1121 {
1122 edge e, fallthru;
1123 basic_block dummy;
1124 struct loop *cloop, *ploop;
1125 int nentry = 0;
1126 bool irred = false;
1127 bool latch_edge_was_fallthru;
1128 edge one_succ_pred = 0;
1129 edge_iterator ei;
1130
1131 cloop = loop->outer;
1132
1133 FOR_EACH_EDGE (e, ei, loop->header->preds)
1134 {
1135 if (e->src == loop->latch)
1136 continue;
1137 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1138 nentry++;
1139 if (single_succ_p (e->src))
1140 one_succ_pred = e;
1141 }
1142 gcc_assert (nentry);
1143 if (nentry == 1)
1144 {
1145 /* Get an edge that is different from the one from loop->latch
1146 to loop->header. */
1147 e = EDGE_PRED (loop->header,
1148 EDGE_PRED (loop->header, 0)->src == loop->latch);
1149
1150 if (!(flags & CP_SIMPLE_PREHEADERS) || single_succ_p (e->src))
1151 return NULL;
1152 }
1153
1154 mfb_kj_edge = loop_latch_edge (loop);
1155 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1156 fallthru = make_forwarder_block (loop->header, mfb_keep_just,
1157 mfb_update_loops);
1158 dummy = fallthru->src;
1159 loop->header = fallthru->dest;
1160
1161 /* The header could be a latch of some superloop(s); due to design of
1162 split_block, it would now move to fallthru->dest. */
1163 for (ploop = loop; ploop; ploop = ploop->outer)
1164 if (ploop->latch == dummy)
1165 ploop->latch = fallthru->dest;
1166
1167 /* Try to be clever in placing the newly created preheader. The idea is to
1168 avoid breaking any "fallthruness" relationship between blocks.
1169
1170 The preheader was created just before the header and all incoming edges
1171 to the header were redirected to the preheader, except the latch edge.
1172 So the only problematic case is when this latch edge was a fallthru
1173 edge: it is not anymore after the preheader creation so we have broken
1174 the fallthruness. We're therefore going to look for a better place. */
1175 if (latch_edge_was_fallthru)
1176 {
1177 if (one_succ_pred)
1178 e = one_succ_pred;
1179 else
1180 e = EDGE_PRED (dummy, 0);
1181
1182 move_block_after (dummy, e->src);
1183 }
1184
1185 loop->header->loop_father = loop;
1186 add_bb_to_loop (dummy, cloop);
1187
1188 if (irred)
1189 {
1190 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1191 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1192 }
1193
1194 if (dump_file)
1195 fprintf (dump_file, "Created preheader block for loop %i\n",
1196 loop->num);
1197
1198 return dummy;
1199 }
1200
1201 /* Create preheaders for each loop from loop tree stored in LOOPS; for meaning
1202 of FLAGS see create_preheader. */
1203 void
1204 create_preheaders (struct loops *loops, int flags)
1205 {
1206 unsigned i;
1207 for (i = 1; i < loops->num; i++)
1208 create_preheader (loops->parray[i], flags);
1209 loops->state |= LOOPS_HAVE_PREHEADERS;
1210 }
1211
1212 /* Forces all loop latches of loops from loop tree LOOPS to have only single
1213 successor. */
1214 void
1215 force_single_succ_latches (struct loops *loops)
1216 {
1217 unsigned i;
1218 struct loop *loop;
1219 edge e;
1220
1221 for (i = 1; i < loops->num; i++)
1222 {
1223 loop = loops->parray[i];
1224 if (loop->latch != loop->header && single_succ_p (loop->latch))
1225 continue;
1226
1227 e = find_edge (loop->latch, loop->header);
1228
1229 loop_split_edge_with (e, NULL_RTX);
1230 }
1231 loops->state |= LOOPS_HAVE_SIMPLE_LATCHES;
1232 }
1233
1234 /* A quite stupid function to put INSNS on edge E. They are supposed to form
1235 just one basic block. Jumps in INSNS are not handled, so cfg do not have to
1236 be ok after this function. The created block is placed on correct place
1237 in LOOPS structure and its dominator is set. */
1238 basic_block
1239 loop_split_edge_with (edge e, rtx insns)
1240 {
1241 basic_block src, dest, new_bb;
1242 struct loop *loop_c;
1243
1244 src = e->src;
1245 dest = e->dest;
1246
1247 loop_c = find_common_loop (src->loop_father, dest->loop_father);
1248
1249 /* Create basic block for it. */
1250
1251 new_bb = split_edge (e);
1252 add_bb_to_loop (new_bb, loop_c);
1253 new_bb->flags |= (insns ? BB_SUPERBLOCK : 0);
1254
1255 if (insns)
1256 emit_insn_after (insns, BB_END (new_bb));
1257
1258 if (dest->loop_father->latch == src)
1259 dest->loop_father->latch = new_bb;
1260
1261 return new_bb;
1262 }
1263
1264 /* Uses the natural loop discovery to recreate loop notes. */
1265 void
1266 create_loop_notes (void)
1267 {
1268 rtx insn, head, end;
1269 struct loops loops;
1270 struct loop *loop;
1271 basic_block *first, *last, bb, pbb;
1272 struct loop **stack, **top;
1273
1274 #ifdef ENABLE_CHECKING
1275 /* Verify that there really are no loop notes. */
1276 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1277 gcc_assert (!NOTE_P (insn) ||
1278 NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
1279 #endif
1280
1281 flow_loops_find (&loops);
1282 free_dominance_info (CDI_DOMINATORS);
1283 if (loops.num > 1)
1284 {
1285 last = xcalloc (loops.num, sizeof (basic_block));
1286
1287 FOR_EACH_BB (bb)
1288 {
1289 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1290 last[loop->num] = bb;
1291 }
1292
1293 first = xcalloc (loops.num, sizeof (basic_block));
1294 stack = xcalloc (loops.num, sizeof (struct loop *));
1295 top = stack;
1296
1297 FOR_EACH_BB (bb)
1298 {
1299 for (loop = bb->loop_father; loop->outer; loop = loop->outer)
1300 {
1301 if (!first[loop->num])
1302 {
1303 *top++ = loop;
1304 first[loop->num] = bb;
1305 }
1306
1307 if (bb == last[loop->num])
1308 {
1309 /* Prevent loops from overlapping. */
1310 while (*--top != loop)
1311 last[(*top)->num] = EXIT_BLOCK_PTR;
1312
1313 /* If loop starts with jump into it, place the note in
1314 front of the jump. */
1315 insn = PREV_INSN (BB_HEAD (first[loop->num]));
1316 if (insn
1317 && BARRIER_P (insn))
1318 insn = PREV_INSN (insn);
1319
1320 if (insn
1321 && JUMP_P (insn)
1322 && any_uncondjump_p (insn)
1323 && onlyjump_p (insn))
1324 {
1325 pbb = BLOCK_FOR_INSN (insn);
1326 gcc_assert (pbb && single_succ_p (pbb));
1327
1328 if (!flow_bb_inside_loop_p (loop, single_succ (pbb)))
1329 insn = BB_HEAD (first[loop->num]);
1330 }
1331 else
1332 insn = BB_HEAD (first[loop->num]);
1333
1334 head = BB_HEAD (first[loop->num]);
1335 emit_note_before (NOTE_INSN_LOOP_BEG, insn);
1336 BB_HEAD (first[loop->num]) = head;
1337
1338 /* Position the note correctly wrto barrier. */
1339 insn = BB_END (last[loop->num]);
1340 if (NEXT_INSN (insn)
1341 && BARRIER_P (NEXT_INSN (insn)))
1342 insn = NEXT_INSN (insn);
1343
1344 end = BB_END (last[loop->num]);
1345 emit_note_after (NOTE_INSN_LOOP_END, insn);
1346 BB_END (last[loop->num]) = end;
1347 }
1348 }
1349 }
1350
1351 free (first);
1352 free (last);
1353 free (stack);
1354 }
1355 flow_loops_free (&loops);
1356 }
1357
1358 /* This function is called from loop_version. It splits the entry edge
1359 of the loop we want to version, adds the versioning condition, and
1360 adjust the edges to the two versions of the loop appropriately.
1361 e is an incoming edge. Returns the basic block containing the
1362 condition.
1363
1364 --- edge e ---- > [second_head]
1365
1366 Split it and insert new conditional expression and adjust edges.
1367
1368 --- edge e ---> [cond expr] ---> [first_head]
1369 |
1370 +---------> [second_head]
1371 */
1372
1373 static basic_block
1374 lv_adjust_loop_entry_edge (basic_block first_head,
1375 basic_block second_head,
1376 edge e,
1377 tree cond_expr)
1378 {
1379 basic_block new_head = NULL;
1380 edge e1;
1381
1382 gcc_assert (e->dest == second_head);
1383
1384 /* Split edge 'e'. This will create a new basic block, where we can
1385 insert conditional expr. */
1386 new_head = split_edge (e);
1387
1388
1389 lv_add_condition_to_bb (first_head, second_head, new_head,
1390 cond_expr);
1391
1392 e1 = make_edge (new_head, first_head, EDGE_TRUE_VALUE);
1393 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1394 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1395
1396 /* Adjust loop header phi nodes. */
1397 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1398
1399 return new_head;
1400 }
1401
1402 /* Main entry point for Loop Versioning transformation.
1403
1404 This transformation given a condition and a loop, creates
1405 -if (condition) { loop_copy1 } else { loop_copy2 },
1406 where loop_copy1 is the loop transformed in one way, and loop_copy2
1407 is the loop transformed in another way (or unchanged). 'condition'
1408 may be a run time test for things that were not resolved by static
1409 analysis (overlapping ranges (anti-aliasing), alignment, etc.). */
1410
1411 struct loop *
1412 loop_version (struct loops *loops, struct loop * loop,
1413 void *cond_expr, basic_block *condition_bb)
1414 {
1415 basic_block first_head, second_head;
1416 edge entry, latch_edge, exit, true_edge, false_edge;
1417 int irred_flag;
1418 struct loop *nloop;
1419
1420 /* CHECKME: Loop versioning does not handle nested loop at this point. */
1421 if (loop->inner)
1422 return NULL;
1423
1424 /* Record entry and latch edges for the loop */
1425 entry = loop_preheader_edge (loop);
1426 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1427 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1428
1429 /* Note down head of loop as first_head. */
1430 first_head = entry->dest;
1431
1432 /* Duplicate loop. */
1433 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, loops, 1,
1434 NULL, NULL, NULL, NULL, 0))
1435 return NULL;
1436
1437 /* After duplication entry edge now points to new loop head block.
1438 Note down new head as second_head. */
1439 second_head = entry->dest;
1440
1441 /* Split loop entry edge and insert new block with cond expr. */
1442 *condition_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1443 entry, cond_expr);
1444 if (!*condition_bb)
1445 {
1446 entry->flags |= irred_flag;
1447 return NULL;
1448 }
1449
1450 latch_edge = single_succ_edge (loop->latch->rbi->copy);
1451
1452 extract_cond_bb_edges (*condition_bb, &true_edge, &false_edge);
1453 nloop = loopify (loops,
1454 latch_edge,
1455 single_pred_edge (loop->header->rbi->copy),
1456 *condition_bb, true_edge, false_edge,
1457 false /* Do not redirect all edges. */);
1458
1459 exit = loop->single_exit;
1460 if (exit)
1461 nloop->single_exit = find_edge (exit->src->rbi->copy, exit->dest);
1462
1463 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1464 lv_flush_pending_stmts (latch_edge);
1465
1466 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1467 extract_cond_bb_edges (*condition_bb, &true_edge, &false_edge);
1468 lv_flush_pending_stmts (false_edge);
1469 /* Adjust irreducible flag. */
1470 if (irred_flag)
1471 {
1472 (*condition_bb)->flags |= BB_IRREDUCIBLE_LOOP;
1473 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1474 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1475 single_pred_edge ((*condition_bb))->flags |= EDGE_IRREDUCIBLE_LOOP;
1476 }
1477
1478 /* At this point condition_bb is loop predheader with two successors,
1479 first_head and second_head. Make sure that loop predheader has only
1480 one successor. */
1481 loop_split_edge_with (loop_preheader_edge (loop), NULL);
1482 loop_split_edge_with (loop_preheader_edge (nloop), NULL);
1483
1484 return nloop;
1485 }
1486
1487 /* The structure of LOOPS might have changed. Some loops might get removed
1488 (and their headers and latches were set to NULL), loop exists might get
1489 removed (thus the loop nesting may be wrong), and some blocks and edges
1490 were changed (so the information about bb --> loop mapping does not have
1491 to be correct). But still for the remaining loops the header dominates
1492 the latch, and loops did not get new subloobs (new loops might possibly
1493 get created, but we are not interested in them). Fix up the mess.
1494
1495 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1496 marked in it. */
1497
1498 void
1499 fix_loop_structure (struct loops *loops, bitmap changed_bbs)
1500 {
1501 basic_block bb;
1502 struct loop *loop, *ploop;
1503 unsigned i;
1504
1505 /* Remove the old bb -> loop mapping. */
1506 FOR_EACH_BB (bb)
1507 {
1508 bb->aux = (void *) (size_t) bb->loop_father->depth;
1509 bb->loop_father = loops->tree_root;
1510 }
1511
1512 /* Remove the dead loops from structures. */
1513 loops->tree_root->num_nodes = n_basic_blocks + 2;
1514 for (i = 1; i < loops->num; i++)
1515 {
1516 loop = loops->parray[i];
1517 if (!loop)
1518 continue;
1519
1520 loop->num_nodes = 0;
1521 if (loop->header)
1522 continue;
1523
1524 while (loop->inner)
1525 {
1526 ploop = loop->inner;
1527 flow_loop_tree_node_remove (ploop);
1528 flow_loop_tree_node_add (loop->outer, ploop);
1529 }
1530
1531 /* Remove the loop and free its data. */
1532 flow_loop_tree_node_remove (loop);
1533 loops->parray[loop->num] = NULL;
1534 flow_loop_free (loop);
1535 }
1536
1537 /* Rescan the bodies of loops, starting from the outermost. */
1538 loop = loops->tree_root;
1539 while (1)
1540 {
1541 if (loop->inner)
1542 loop = loop->inner;
1543 else
1544 {
1545 while (!loop->next
1546 && loop != loops->tree_root)
1547 loop = loop->outer;
1548 if (loop == loops->tree_root)
1549 break;
1550
1551 loop = loop->next;
1552 }
1553
1554 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1555 }
1556
1557 /* Now fix the loop nesting. */
1558 for (i = 1; i < loops->num; i++)
1559 {
1560 loop = loops->parray[i];
1561 if (!loop)
1562 continue;
1563
1564 bb = loop_preheader_edge (loop)->src;
1565 if (bb->loop_father != loop->outer)
1566 {
1567 flow_loop_tree_node_remove (loop);
1568 flow_loop_tree_node_add (bb->loop_father, loop);
1569 }
1570 }
1571
1572 /* Mark the blocks whose loop has changed. */
1573 FOR_EACH_BB (bb)
1574 {
1575 if (changed_bbs
1576 && (void *) (size_t) bb->loop_father->depth != bb->aux)
1577 bitmap_set_bit (changed_bbs, bb->index);
1578
1579 bb->aux = NULL;
1580 }
1581
1582 mark_single_exit_loops (loops);
1583 mark_irreducible_loops (loops);
1584 }
This page took 0.111892 seconds and 6 git commands to generate.