]> gcc.gnu.org Git - gcc.git/blob - gcc/cfgloopanal.c
tree-ssa-loop-niter.c (idx_infer_loop_bounds): Add and use argument "reliable".
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34
35 bool
36 just_once_each_iteration_p (const struct loop *loop, basic_block bb)
37 {
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
40 return false;
41
42 /* And just once. */
43 if (bb->loop_father != loop)
44 return false;
45
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb->flags & BB_IRREDUCIBLE_LOOP)
48 return false;
49
50 return true;
51 }
52
53 /* Structure representing edge of a graph. */
54
55 struct edge
56 {
57 int src, dest; /* Source and destination. */
58 struct edge *pred_next, *succ_next;
59 /* Next edge in predecessor and successor lists. */
60 void *data; /* Data attached to the edge. */
61 };
62
63 /* Structure representing vertex of a graph. */
64
65 struct vertex
66 {
67 struct edge *pred, *succ;
68 /* Lists of predecessors and successors. */
69 int component; /* Number of dfs restarts before reaching the
70 vertex. */
71 int post; /* Postorder number. */
72 };
73
74 /* Structure representing a graph. */
75
76 struct graph
77 {
78 int n_vertices; /* Number of vertices. */
79 struct vertex *vertices;
80 /* The vertices. */
81 };
82
83 /* Dumps graph G into F. */
84
85 extern void dump_graph (FILE *, struct graph *);
86
87 void
88 dump_graph (FILE *f, struct graph *g)
89 {
90 int i;
91 struct edge *e;
92
93 for (i = 0; i < g->n_vertices; i++)
94 {
95 if (!g->vertices[i].pred
96 && !g->vertices[i].succ)
97 continue;
98
99 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
100 for (e = g->vertices[i].pred; e; e = e->pred_next)
101 fprintf (f, " %d", e->src);
102 fprintf (f, "\n");
103
104 fprintf (f, "\t->");
105 for (e = g->vertices[i].succ; e; e = e->succ_next)
106 fprintf (f, " %d", e->dest);
107 fprintf (f, "\n");
108 }
109 }
110
111 /* Creates a new graph with N_VERTICES vertices. */
112
113 static struct graph *
114 new_graph (int n_vertices)
115 {
116 struct graph *g = XNEW (struct graph);
117
118 g->n_vertices = n_vertices;
119 g->vertices = XCNEWVEC (struct vertex, n_vertices);
120
121 return g;
122 }
123
124 /* Adds an edge from F to T to graph G, with DATA attached. */
125
126 static void
127 add_edge (struct graph *g, int f, int t, void *data)
128 {
129 struct edge *e = xmalloc (sizeof (struct edge));
130
131 e->src = f;
132 e->dest = t;
133 e->data = data;
134
135 e->pred_next = g->vertices[t].pred;
136 g->vertices[t].pred = e;
137
138 e->succ_next = g->vertices[f].succ;
139 g->vertices[f].succ = e;
140 }
141
142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
143 The vertices in postorder are stored into QT. If FORWARD is false,
144 backward dfs is run. */
145
146 static void
147 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
148 {
149 int i, tick = 0, v, comp = 0, top;
150 struct edge *e;
151 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
152
153 for (i = 0; i < g->n_vertices; i++)
154 {
155 g->vertices[i].component = -1;
156 g->vertices[i].post = -1;
157 }
158
159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
163
164 for (i = 0; i < nq; i++)
165 {
166 v = qs[i];
167 if (g->vertices[v].post != -1)
168 continue;
169
170 g->vertices[v].component = comp++;
171 e = FST_EDGE (v);
172 top = 0;
173
174 while (1)
175 {
176 while (e && g->vertices[EDGE_DEST (e)].component != -1)
177 e = NEXT_EDGE (e);
178
179 if (!e)
180 {
181 if (qt)
182 qt[tick] = v;
183 g->vertices[v].post = tick++;
184
185 if (!top)
186 break;
187
188 e = stack[--top];
189 v = EDGE_SRC (e);
190 e = NEXT_EDGE (e);
191 continue;
192 }
193
194 stack[top++] = e;
195 v = EDGE_DEST (e);
196 e = FST_EDGE (v);
197 g->vertices[v].component = comp - 1;
198 }
199 }
200
201 free (stack);
202 }
203
204 /* Marks the edge E in graph G irreducible if it connects two vertices in the
205 same scc. */
206
207 static void
208 check_irred (struct graph *g, struct edge *e)
209 {
210 edge real = e->data;
211
212 /* All edges should lead from a component with higher number to the
213 one with lower one. */
214 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
215
216 if (g->vertices[e->src].component != g->vertices[e->dest].component)
217 return;
218
219 real->flags |= EDGE_IRREDUCIBLE_LOOP;
220 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
221 real->src->flags |= BB_IRREDUCIBLE_LOOP;
222 }
223
224 /* Runs CALLBACK for all edges in G. */
225
226 static void
227 for_each_edge (struct graph *g,
228 void (callback) (struct graph *, struct edge *))
229 {
230 struct edge *e;
231 int i;
232
233 for (i = 0; i < g->n_vertices; i++)
234 for (e = g->vertices[i].succ; e; e = e->succ_next)
235 callback (g, e);
236 }
237
238 /* Releases the memory occupied by G. */
239
240 static void
241 free_graph (struct graph *g)
242 {
243 struct edge *e, *n;
244 int i;
245
246 for (i = 0; i < g->n_vertices; i++)
247 for (e = g->vertices[i].succ; e; e = n)
248 {
249 n = e->succ_next;
250 free (e);
251 }
252 free (g->vertices);
253 free (g);
254 }
255
256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
257 throw away all latch edges and mark blocks inside any remaining cycle.
258 Everything is a bit complicated due to fact we do not want to do this
259 for parts of cycles that only "pass" through some loop -- i.e. for
260 each cycle, we want to mark blocks that belong directly to innermost
261 loop containing the whole cycle.
262
263 LOOPS is the loop tree. */
264
265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
266 #define BB_REPR(BB) ((BB)->index + 1)
267
268 void
269 mark_irreducible_loops (void)
270 {
271 basic_block act;
272 edge e;
273 edge_iterator ei;
274 int i, src, dest;
275 struct graph *g;
276 int num = current_loops ? number_of_loops () : 1;
277 int *queue1 = XNEWVEC (int, last_basic_block + num);
278 int *queue2 = XNEWVEC (int, last_basic_block + num);
279 int nq, depth;
280 struct loop *cloop, *loop;
281 loop_iterator li;
282
283 /* Reset the flags. */
284 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
285 {
286 act->flags &= ~BB_IRREDUCIBLE_LOOP;
287 FOR_EACH_EDGE (e, ei, act->succs)
288 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
289 }
290
291 /* Create the edge lists. */
292 g = new_graph (last_basic_block + num);
293
294 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
295 FOR_EACH_EDGE (e, ei, act->succs)
296 {
297 /* Ignore edges to exit. */
298 if (e->dest == EXIT_BLOCK_PTR)
299 continue;
300
301 src = BB_REPR (act);
302 dest = BB_REPR (e->dest);
303
304 if (current_loops)
305 {
306 /* Ignore latch edges. */
307 if (e->dest->loop_father->header == e->dest
308 && e->dest->loop_father->latch == act)
309 continue;
310
311 /* Edges inside a single loop should be left where they are. Edges
312 to subloop headers should lead to representative of the subloop,
313 but from the same place.
314
315 Edges exiting loops should lead from representative
316 of the son of nearest common ancestor of the loops in that
317 act lays. */
318
319 if (e->dest->loop_father->header == e->dest)
320 dest = LOOP_REPR (e->dest->loop_father);
321
322 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
323 {
324 depth = find_common_loop (act->loop_father,
325 e->dest->loop_father)->depth + 1;
326 if (depth == act->loop_father->depth)
327 cloop = act->loop_father;
328 else
329 cloop = act->loop_father->pred[depth];
330
331 src = LOOP_REPR (cloop);
332 }
333 }
334
335 add_edge (g, src, dest, e);
336 }
337
338 /* Find the strongly connected components. Use the algorithm of Tarjan --
339 first determine the postorder dfs numbering in reversed graph, then
340 run the dfs on the original graph in the order given by decreasing
341 numbers assigned by the previous pass. */
342 nq = 0;
343 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
344 {
345 queue1[nq++] = BB_REPR (act);
346 }
347
348 if (current_loops)
349 {
350 FOR_EACH_LOOP (li, loop, 0)
351 {
352 queue1[nq++] = LOOP_REPR (loop);
353 }
354 }
355 dfs (g, queue1, nq, queue2, false);
356 for (i = 0; i < nq; i++)
357 queue1[i] = queue2[nq - i - 1];
358 dfs (g, queue1, nq, NULL, true);
359
360 /* Mark the irreducible loops. */
361 for_each_edge (g, check_irred);
362
363 free_graph (g);
364 free (queue1);
365 free (queue2);
366
367 if (current_loops)
368 current_loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
369 }
370
371 /* Counts number of insns inside LOOP. */
372 int
373 num_loop_insns (struct loop *loop)
374 {
375 basic_block *bbs, bb;
376 unsigned i, ninsns = 0;
377 rtx insn;
378
379 bbs = get_loop_body (loop);
380 for (i = 0; i < loop->num_nodes; i++)
381 {
382 bb = bbs[i];
383 ninsns++;
384 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
385 if (INSN_P (insn))
386 ninsns++;
387 }
388 free(bbs);
389
390 return ninsns;
391 }
392
393 /* Counts number of insns executed on average per iteration LOOP. */
394 int
395 average_num_loop_insns (struct loop *loop)
396 {
397 basic_block *bbs, bb;
398 unsigned i, binsns, ninsns, ratio;
399 rtx insn;
400
401 ninsns = 0;
402 bbs = get_loop_body (loop);
403 for (i = 0; i < loop->num_nodes; i++)
404 {
405 bb = bbs[i];
406
407 binsns = 1;
408 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
409 if (INSN_P (insn))
410 binsns++;
411
412 ratio = loop->header->frequency == 0
413 ? BB_FREQ_MAX
414 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
415 ninsns += binsns * ratio;
416 }
417 free(bbs);
418
419 ninsns /= BB_FREQ_MAX;
420 if (!ninsns)
421 ninsns = 1; /* To avoid division by zero. */
422
423 return ninsns;
424 }
425
426 /* Returns expected number of iterations of LOOP, according to
427 measured or guessed profile. No bounding is done on the
428 value. */
429
430 gcov_type
431 expected_loop_iterations_unbounded (const struct loop *loop)
432 {
433 edge e;
434 edge_iterator ei;
435
436 if (loop->latch->count || loop->header->count)
437 {
438 gcov_type count_in, count_latch, expected;
439
440 count_in = 0;
441 count_latch = 0;
442
443 FOR_EACH_EDGE (e, ei, loop->header->preds)
444 if (e->src == loop->latch)
445 count_latch = e->count;
446 else
447 count_in += e->count;
448
449 if (count_in == 0)
450 expected = count_latch * 2;
451 else
452 expected = (count_latch + count_in - 1) / count_in;
453
454 return expected;
455 }
456 else
457 {
458 int freq_in, freq_latch;
459
460 freq_in = 0;
461 freq_latch = 0;
462
463 FOR_EACH_EDGE (e, ei, loop->header->preds)
464 if (e->src == loop->latch)
465 freq_latch = EDGE_FREQUENCY (e);
466 else
467 freq_in += EDGE_FREQUENCY (e);
468
469 if (freq_in == 0)
470 return freq_latch * 2;
471
472 return (freq_latch + freq_in - 1) / freq_in;
473 }
474 }
475
476 /* Returns expected number of LOOP iterations. The returned value is bounded
477 by REG_BR_PROB_BASE. */
478
479 unsigned
480 expected_loop_iterations (const struct loop *loop)
481 {
482 gcov_type expected = expected_loop_iterations_unbounded (loop);
483 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
484 }
485
486 /* Returns the maximum level of nesting of subloops of LOOP. */
487
488 unsigned
489 get_loop_level (const struct loop *loop)
490 {
491 const struct loop *ploop;
492 unsigned mx = 0, l;
493
494 for (ploop = loop->inner; ploop; ploop = ploop->next)
495 {
496 l = get_loop_level (ploop);
497 if (l >= mx)
498 mx = l + 1;
499 }
500 return mx;
501 }
502
503 /* Returns estimate on cost of computing SEQ. */
504
505 static unsigned
506 seq_cost (rtx seq)
507 {
508 unsigned cost = 0;
509 rtx set;
510
511 for (; seq; seq = NEXT_INSN (seq))
512 {
513 set = single_set (seq);
514 if (set)
515 cost += rtx_cost (set, SET);
516 else
517 cost++;
518 }
519
520 return cost;
521 }
522
523 /* The properties of the target. */
524
525 unsigned target_avail_regs; /* Number of available registers. */
526 unsigned target_res_regs; /* Number of reserved registers. */
527 unsigned target_small_cost; /* The cost for register when there is a free one. */
528 unsigned target_pres_cost; /* The cost for register when there are not too many
529 free ones. */
530 unsigned target_spill_cost; /* The cost for register when we need to spill. */
531
532 /* Initialize the constants for computing set costs. */
533
534 void
535 init_set_costs (void)
536 {
537 rtx seq;
538 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
539 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
540 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
541 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
542 unsigned i;
543
544 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
545 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
546 && !fixed_regs[i])
547 target_avail_regs++;
548
549 target_res_regs = 3;
550
551 /* These are really just heuristic values. */
552
553 start_sequence ();
554 emit_move_insn (reg1, reg2);
555 seq = get_insns ();
556 end_sequence ();
557 target_small_cost = seq_cost (seq);
558 target_pres_cost = 2 * target_small_cost;
559
560 start_sequence ();
561 emit_move_insn (mem, reg1);
562 emit_move_insn (reg2, mem);
563 seq = get_insns ();
564 end_sequence ();
565 target_spill_cost = seq_cost (seq);
566 }
567
568 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
569 number of global registers used in loop. N_USES is the number of relevant
570 variable uses. */
571
572 unsigned
573 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
574 {
575 unsigned regs_needed = regs_used + size;
576 unsigned cost = 0;
577
578 if (regs_needed + target_res_regs <= target_avail_regs)
579 cost += target_small_cost * size;
580 else if (regs_needed <= target_avail_regs)
581 cost += target_pres_cost * size;
582 else
583 {
584 cost += target_pres_cost * size;
585 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
586 }
587
588 return cost;
589 }
590
591 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
592
593 void
594 mark_loop_exit_edges (void)
595 {
596 basic_block bb;
597 edge e;
598
599 if (!current_loops)
600 return;
601
602 FOR_EACH_BB (bb)
603 {
604 edge_iterator ei;
605
606 FOR_EACH_EDGE (e, ei, bb->succs)
607 {
608 if (bb->loop_father->outer
609 && loop_exit_edge_p (bb->loop_father, e))
610 e->flags |= EDGE_LOOP_EXIT;
611 else
612 e->flags &= ~EDGE_LOOP_EXIT;
613 }
614 }
615 }
616
This page took 0.068389 seconds and 6 git commands to generate.