]> gcc.gnu.org Git - gcc.git/blob - gcc/cfgloopanal.c
cfgloop.c (flow_loop_entry_edges_find, [...]): Removed.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "expr.h"
31 #include "output.h"
32
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34
35 bool
36 just_once_each_iteration_p (struct loop *loop, basic_block bb)
37 {
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
40 return false;
41
42 /* And just once. */
43 if (bb->loop_father != loop)
44 return false;
45
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb->flags & BB_IRREDUCIBLE_LOOP)
48 return false;
49
50 return true;
51 }
52
53 /* Structure representing edge of a graph. */
54
55 struct edge
56 {
57 int src, dest; /* Source and destination. */
58 struct edge *pred_next, *succ_next;
59 /* Next edge in predecessor and successor lists. */
60 void *data; /* Data attached to the edge. */
61 };
62
63 /* Structure representing vertex of a graph. */
64
65 struct vertex
66 {
67 struct edge *pred, *succ;
68 /* Lists of predecessors and successors. */
69 int component; /* Number of dfs restarts before reaching the
70 vertex. */
71 int post; /* Postorder number. */
72 };
73
74 /* Structure representing a graph. */
75
76 struct graph
77 {
78 int n_vertices; /* Number of vertices. */
79 struct vertex *vertices;
80 /* The vertices. */
81 };
82
83 /* Dumps graph G into F. */
84
85 extern void dump_graph (FILE *, struct graph *);
86 void dump_graph (FILE *f, struct graph *g)
87 {
88 int i;
89 struct edge *e;
90
91 for (i = 0; i < g->n_vertices; i++)
92 {
93 if (!g->vertices[i].pred
94 && !g->vertices[i].succ)
95 continue;
96
97 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
98 for (e = g->vertices[i].pred; e; e = e->pred_next)
99 fprintf (f, " %d", e->src);
100 fprintf (f, "\n");
101
102 fprintf (f, "\t->");
103 for (e = g->vertices[i].succ; e; e = e->succ_next)
104 fprintf (f, " %d", e->dest);
105 fprintf (f, "\n");
106 }
107 }
108
109 /* Creates a new graph with N_VERTICES vertices. */
110
111 static struct graph *
112 new_graph (int n_vertices)
113 {
114 struct graph *g = xmalloc (sizeof (struct graph));
115
116 g->n_vertices = n_vertices;
117 g->vertices = xcalloc (n_vertices, sizeof (struct vertex));
118
119 return g;
120 }
121
122 /* Adds an edge from F to T to graph G, with DATA attached. */
123
124 static void
125 add_edge (struct graph *g, int f, int t, void *data)
126 {
127 struct edge *e = xmalloc (sizeof (struct edge));
128
129 e->src = f;
130 e->dest = t;
131 e->data = data;
132
133 e->pred_next = g->vertices[t].pred;
134 g->vertices[t].pred = e;
135
136 e->succ_next = g->vertices[f].succ;
137 g->vertices[f].succ = e;
138 }
139
140 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
141 The vertices in postorder are stored into QT. If FORWARD is false,
142 backward dfs is run. */
143
144 static void
145 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
146 {
147 int i, tick = 0, v, comp = 0, top;
148 struct edge *e;
149 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
150
151 for (i = 0; i < g->n_vertices; i++)
152 {
153 g->vertices[i].component = -1;
154 g->vertices[i].post = -1;
155 }
156
157 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
158 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
159 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
160 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
161
162 for (i = 0; i < nq; i++)
163 {
164 v = qs[i];
165 if (g->vertices[v].post != -1)
166 continue;
167
168 g->vertices[v].component = comp++;
169 e = FST_EDGE (v);
170 top = 0;
171
172 while (1)
173 {
174 while (e && g->vertices[EDGE_DEST (e)].component != -1)
175 e = NEXT_EDGE (e);
176
177 if (!e)
178 {
179 if (qt)
180 qt[tick] = v;
181 g->vertices[v].post = tick++;
182
183 if (!top)
184 break;
185
186 e = stack[--top];
187 v = EDGE_SRC (e);
188 e = NEXT_EDGE (e);
189 continue;
190 }
191
192 stack[top++] = e;
193 v = EDGE_DEST (e);
194 e = FST_EDGE (v);
195 g->vertices[v].component = comp - 1;
196 }
197 }
198
199 free (stack);
200 }
201
202 /* Marks the edge E in graph G irreducible if it connects two vertices in the
203 same scc. */
204
205 static void
206 check_irred (struct graph *g, struct edge *e)
207 {
208 edge real = e->data;
209
210 /* All edges should lead from a component with higher number to the
211 one with lower one. */
212 gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
213
214 if (g->vertices[e->src].component != g->vertices[e->dest].component)
215 return;
216
217 real->flags |= EDGE_IRREDUCIBLE_LOOP;
218 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
219 real->src->flags |= BB_IRREDUCIBLE_LOOP;
220 }
221
222 /* Runs CALLBACK for all edges in G. */
223
224 static void
225 for_each_edge (struct graph *g,
226 void (callback) (struct graph *, struct edge *))
227 {
228 struct edge *e;
229 int i;
230
231 for (i = 0; i < g->n_vertices; i++)
232 for (e = g->vertices[i].succ; e; e = e->succ_next)
233 callback (g, e);
234 }
235
236 /* Releases the memory occupied by G. */
237
238 static void
239 free_graph (struct graph *g)
240 {
241 struct edge *e, *n;
242 int i;
243
244 for (i = 0; i < g->n_vertices; i++)
245 for (e = g->vertices[i].succ; e; e = n)
246 {
247 n = e->succ_next;
248 free (e);
249 }
250 free (g->vertices);
251 free (g);
252 }
253
254 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
255 throw away all latch edges and mark blocks inside any remaining cycle.
256 Everything is a bit complicated due to fact we do not want to do this
257 for parts of cycles that only "pass" through some loop -- i.e. for
258 each cycle, we want to mark blocks that belong directly to innermost
259 loop containing the whole cycle.
260
261 LOOPS is the loop tree. */
262
263 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
264 #define BB_REPR(BB) ((BB)->index + 1)
265
266 void
267 mark_irreducible_loops (struct loops *loops)
268 {
269 basic_block act;
270 edge e;
271 edge_iterator ei;
272 int i, src, dest;
273 struct graph *g;
274 int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
275 int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
276 int nq, depth;
277 struct loop *cloop;
278
279 /* Reset the flags. */
280 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
281 {
282 act->flags &= ~BB_IRREDUCIBLE_LOOP;
283 FOR_EACH_EDGE (e, ei, act->succs)
284 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
285 }
286
287 /* Create the edge lists. */
288 g = new_graph (last_basic_block + loops->num);
289
290 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
291 FOR_EACH_EDGE (e, ei, act->succs)
292 {
293 /* Ignore edges to exit. */
294 if (e->dest == EXIT_BLOCK_PTR)
295 continue;
296
297 /* And latch edges. */
298 if (e->dest->loop_father->header == e->dest
299 && e->dest->loop_father->latch == act)
300 continue;
301
302 /* Edges inside a single loop should be left where they are. Edges
303 to subloop headers should lead to representative of the subloop,
304 but from the same place.
305
306 Edges exiting loops should lead from representative
307 of the son of nearest common ancestor of the loops in that
308 act lays. */
309
310 src = BB_REPR (act);
311 dest = BB_REPR (e->dest);
312
313 if (e->dest->loop_father->header == e->dest)
314 dest = LOOP_REPR (e->dest->loop_father);
315
316 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
317 {
318 depth = find_common_loop (act->loop_father,
319 e->dest->loop_father)->depth + 1;
320 if (depth == act->loop_father->depth)
321 cloop = act->loop_father;
322 else
323 cloop = act->loop_father->pred[depth];
324
325 src = LOOP_REPR (cloop);
326 }
327
328 add_edge (g, src, dest, e);
329 }
330
331 /* Find the strongly connected components. Use the algorithm of Tarjan --
332 first determine the postorder dfs numbering in reversed graph, then
333 run the dfs on the original graph in the order given by decreasing
334 numbers assigned by the previous pass. */
335 nq = 0;
336 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
337 {
338 queue1[nq++] = BB_REPR (act);
339 }
340 for (i = 1; i < (int) loops->num; i++)
341 if (loops->parray[i])
342 queue1[nq++] = LOOP_REPR (loops->parray[i]);
343 dfs (g, queue1, nq, queue2, false);
344 for (i = 0; i < nq; i++)
345 queue1[i] = queue2[nq - i - 1];
346 dfs (g, queue1, nq, NULL, true);
347
348 /* Mark the irreducible loops. */
349 for_each_edge (g, check_irred);
350
351 free_graph (g);
352 free (queue1);
353 free (queue2);
354
355 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
356 }
357
358 /* Counts number of insns inside LOOP. */
359 int
360 num_loop_insns (struct loop *loop)
361 {
362 basic_block *bbs, bb;
363 unsigned i, ninsns = 0;
364 rtx insn;
365
366 bbs = get_loop_body (loop);
367 for (i = 0; i < loop->num_nodes; i++)
368 {
369 bb = bbs[i];
370 ninsns++;
371 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
372 if (INSN_P (insn))
373 ninsns++;
374 }
375 free(bbs);
376
377 return ninsns;
378 }
379
380 /* Counts number of insns executed on average per iteration LOOP. */
381 int
382 average_num_loop_insns (struct loop *loop)
383 {
384 basic_block *bbs, bb;
385 unsigned i, binsns, ninsns, ratio;
386 rtx insn;
387
388 ninsns = 0;
389 bbs = get_loop_body (loop);
390 for (i = 0; i < loop->num_nodes; i++)
391 {
392 bb = bbs[i];
393
394 binsns = 1;
395 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
396 if (INSN_P (insn))
397 binsns++;
398
399 ratio = loop->header->frequency == 0
400 ? BB_FREQ_MAX
401 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
402 ninsns += binsns * ratio;
403 }
404 free(bbs);
405
406 ninsns /= BB_FREQ_MAX;
407 if (!ninsns)
408 ninsns = 1; /* To avoid division by zero. */
409
410 return ninsns;
411 }
412
413 /* Returns expected number of LOOP iterations.
414 Compute upper bound on number of iterations in case they do not fit integer
415 to help loop peeling heuristics. Use exact counts if at all possible. */
416 unsigned
417 expected_loop_iterations (const struct loop *loop)
418 {
419 edge e;
420 edge_iterator ei;
421
422 if (loop->header->count)
423 {
424 gcov_type count_in, count_latch, expected;
425
426 count_in = 0;
427 count_latch = 0;
428
429 FOR_EACH_EDGE (e, ei, loop->header->preds)
430 if (e->src == loop->latch)
431 count_latch = e->count;
432 else
433 count_in += e->count;
434
435 if (count_in == 0)
436 expected = count_latch * 2;
437 else
438 expected = (count_latch + count_in - 1) / count_in;
439
440 /* Avoid overflows. */
441 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
442 }
443 else
444 {
445 int freq_in, freq_latch;
446
447 freq_in = 0;
448 freq_latch = 0;
449
450 FOR_EACH_EDGE (e, ei, loop->header->preds)
451 if (e->src == loop->latch)
452 freq_latch = EDGE_FREQUENCY (e);
453 else
454 freq_in += EDGE_FREQUENCY (e);
455
456 if (freq_in == 0)
457 return freq_latch * 2;
458
459 return (freq_latch + freq_in - 1) / freq_in;
460 }
461 }
462
463 /* Returns the maximum level of nesting of subloops of LOOP. */
464
465 unsigned
466 get_loop_level (const struct loop *loop)
467 {
468 const struct loop *ploop;
469 unsigned mx = 0, l;
470
471 for (ploop = loop->inner; ploop; ploop = ploop->next)
472 {
473 l = get_loop_level (ploop);
474 if (l >= mx)
475 mx = l + 1;
476 }
477 return mx;
478 }
479
480 /* Returns estimate on cost of computing SEQ. */
481
482 static unsigned
483 seq_cost (rtx seq)
484 {
485 unsigned cost = 0;
486 rtx set;
487
488 for (; seq; seq = NEXT_INSN (seq))
489 {
490 set = single_set (seq);
491 if (set)
492 cost += rtx_cost (set, SET);
493 else
494 cost++;
495 }
496
497 return cost;
498 }
499
500 /* The properties of the target. */
501
502 unsigned target_avail_regs; /* Number of available registers. */
503 unsigned target_res_regs; /* Number of reserved registers. */
504 unsigned target_small_cost; /* The cost for register when there is a free one. */
505 unsigned target_pres_cost; /* The cost for register when there are not too many
506 free ones. */
507 unsigned target_spill_cost; /* The cost for register when we need to spill. */
508
509 /* Initialize the constants for computing set costs. */
510
511 void
512 init_set_costs (void)
513 {
514 rtx seq;
515 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
516 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
517 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
518 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
519 unsigned i;
520
521 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
522 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
523 && !fixed_regs[i])
524 target_avail_regs++;
525
526 target_res_regs = 3;
527
528 /* These are really just heuristic values. */
529
530 start_sequence ();
531 emit_move_insn (reg1, reg2);
532 seq = get_insns ();
533 end_sequence ();
534 target_small_cost = seq_cost (seq);
535 target_pres_cost = 2 * target_small_cost;
536
537 start_sequence ();
538 emit_move_insn (mem, reg1);
539 emit_move_insn (reg2, mem);
540 seq = get_insns ();
541 end_sequence ();
542 target_spill_cost = seq_cost (seq);
543 }
544
545 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
546 number of global registers used in loop. N_USES is the number of relevant
547 variable uses. */
548
549 unsigned
550 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
551 {
552 unsigned regs_needed = regs_used + size;
553 unsigned cost = 0;
554
555 if (regs_needed + target_res_regs <= target_avail_regs)
556 cost += target_small_cost * size;
557 else if (regs_needed <= target_avail_regs)
558 cost += target_pres_cost * size;
559 else
560 {
561 cost += target_pres_cost * size;
562 cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
563 }
564
565 return cost;
566 }
567
568 /* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS. */
569
570 void
571 mark_loop_exit_edges (struct loops *loops)
572 {
573 basic_block bb;
574 edge e;
575
576 if (loops->num <= 1)
577 return;
578
579 FOR_EACH_BB (bb)
580 {
581 edge_iterator ei;
582
583 /* Do not mark exits from the fake outermost loop. */
584 if (!bb->loop_father->outer)
585 continue;
586
587 FOR_EACH_EDGE (e, ei, bb->succs)
588 {
589 if (loop_exit_edge_p (bb->loop_father, e))
590 e->flags |= EDGE_LOOP_EXIT;
591 else
592 e->flags &= ~EDGE_LOOP_EXIT;
593 }
594 }
595 }
596
This page took 0.069095 seconds and 6 git commands to generate.