]> gcc.gnu.org Git - gcc.git/blob - gcc/cfgloopanal.c
Eliminate profile_status macro.
[gcc.git] / gcc / cfgloopanal.c
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "graphds.h"
31 #include "params.h"
32
33 struct target_cfgloop default_target_cfgloop;
34 #if SWITCHABLE_TARGET
35 struct target_cfgloop *this_target_cfgloop = &default_target_cfgloop;
36 #endif
37
38 /* Checks whether BB is executed exactly once in each LOOP iteration. */
39
40 bool
41 just_once_each_iteration_p (const struct loop *loop, const_basic_block bb)
42 {
43 /* It must be executed at least once each iteration. */
44 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
45 return false;
46
47 /* And just once. */
48 if (bb->loop_father != loop)
49 return false;
50
51 /* But this was not enough. We might have some irreducible loop here. */
52 if (bb->flags & BB_IRREDUCIBLE_LOOP)
53 return false;
54
55 return true;
56 }
57
58 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
59 throw away all latch edges and mark blocks inside any remaining cycle.
60 Everything is a bit complicated due to fact we do not want to do this
61 for parts of cycles that only "pass" through some loop -- i.e. for
62 each cycle, we want to mark blocks that belong directly to innermost
63 loop containing the whole cycle.
64
65 LOOPS is the loop tree. */
66
67 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
68 #define BB_REPR(BB) ((BB)->index + 1)
69
70 bool
71 mark_irreducible_loops (void)
72 {
73 basic_block act;
74 struct graph_edge *ge;
75 edge e;
76 edge_iterator ei;
77 int src, dest;
78 unsigned depth;
79 struct graph *g;
80 int num = number_of_loops (cfun);
81 struct loop *cloop;
82 bool irred_loop_found = false;
83 int i;
84
85 gcc_assert (current_loops != NULL);
86
87 /* Reset the flags. */
88 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
89 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
90 {
91 act->flags &= ~BB_IRREDUCIBLE_LOOP;
92 FOR_EACH_EDGE (e, ei, act->succs)
93 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
94 }
95
96 /* Create the edge lists. */
97 g = new_graph (last_basic_block + num);
98
99 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR_FOR_FN (cfun),
100 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
101 FOR_EACH_EDGE (e, ei, act->succs)
102 {
103 /* Ignore edges to exit. */
104 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
105 continue;
106
107 src = BB_REPR (act);
108 dest = BB_REPR (e->dest);
109
110 /* Ignore latch edges. */
111 if (e->dest->loop_father->header == e->dest
112 && e->dest->loop_father->latch == act)
113 continue;
114
115 /* Edges inside a single loop should be left where they are. Edges
116 to subloop headers should lead to representative of the subloop,
117 but from the same place.
118
119 Edges exiting loops should lead from representative
120 of the son of nearest common ancestor of the loops in that
121 act lays. */
122
123 if (e->dest->loop_father->header == e->dest)
124 dest = LOOP_REPR (e->dest->loop_father);
125
126 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
127 {
128 depth = 1 + loop_depth (find_common_loop (act->loop_father,
129 e->dest->loop_father));
130 if (depth == loop_depth (act->loop_father))
131 cloop = act->loop_father;
132 else
133 cloop = (*act->loop_father->superloops)[depth];
134
135 src = LOOP_REPR (cloop);
136 }
137
138 add_edge (g, src, dest)->data = e;
139 }
140
141 /* Find the strongly connected components. */
142 graphds_scc (g, NULL);
143
144 /* Mark the irreducible loops. */
145 for (i = 0; i < g->n_vertices; i++)
146 for (ge = g->vertices[i].succ; ge; ge = ge->succ_next)
147 {
148 edge real = (edge) ge->data;
149 /* edge E in graph G is irreducible if it connects two vertices in the
150 same scc. */
151
152 /* All edges should lead from a component with higher number to the
153 one with lower one. */
154 gcc_assert (g->vertices[ge->src].component >= g->vertices[ge->dest].component);
155
156 if (g->vertices[ge->src].component != g->vertices[ge->dest].component)
157 continue;
158
159 real->flags |= EDGE_IRREDUCIBLE_LOOP;
160 irred_loop_found = true;
161 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
162 real->src->flags |= BB_IRREDUCIBLE_LOOP;
163 }
164
165 free_graph (g);
166
167 loops_state_set (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
168 return irred_loop_found;
169 }
170
171 /* Counts number of insns inside LOOP. */
172 int
173 num_loop_insns (const struct loop *loop)
174 {
175 basic_block *bbs, bb;
176 unsigned i, ninsns = 0;
177 rtx insn;
178
179 bbs = get_loop_body (loop);
180 for (i = 0; i < loop->num_nodes; i++)
181 {
182 bb = bbs[i];
183 FOR_BB_INSNS (bb, insn)
184 if (NONDEBUG_INSN_P (insn))
185 ninsns++;
186 }
187 free (bbs);
188
189 if (!ninsns)
190 ninsns = 1; /* To avoid division by zero. */
191
192 return ninsns;
193 }
194
195 /* Counts number of insns executed on average per iteration LOOP. */
196 int
197 average_num_loop_insns (const struct loop *loop)
198 {
199 basic_block *bbs, bb;
200 unsigned i, binsns, ninsns, ratio;
201 rtx insn;
202
203 ninsns = 0;
204 bbs = get_loop_body (loop);
205 for (i = 0; i < loop->num_nodes; i++)
206 {
207 bb = bbs[i];
208
209 binsns = 0;
210 FOR_BB_INSNS (bb, insn)
211 if (NONDEBUG_INSN_P (insn))
212 binsns++;
213
214 ratio = loop->header->frequency == 0
215 ? BB_FREQ_MAX
216 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
217 ninsns += binsns * ratio;
218 }
219 free (bbs);
220
221 ninsns /= BB_FREQ_MAX;
222 if (!ninsns)
223 ninsns = 1; /* To avoid division by zero. */
224
225 return ninsns;
226 }
227
228 /* Returns expected number of iterations of LOOP, according to
229 measured or guessed profile. No bounding is done on the
230 value. */
231
232 gcov_type
233 expected_loop_iterations_unbounded (const struct loop *loop)
234 {
235 edge e;
236 edge_iterator ei;
237
238 if (loop->latch->count || loop->header->count)
239 {
240 gcov_type count_in, count_latch, expected;
241
242 count_in = 0;
243 count_latch = 0;
244
245 FOR_EACH_EDGE (e, ei, loop->header->preds)
246 if (e->src == loop->latch)
247 count_latch = e->count;
248 else
249 count_in += e->count;
250
251 if (count_in == 0)
252 expected = count_latch * 2;
253 else
254 expected = (count_latch + count_in - 1) / count_in;
255
256 return expected;
257 }
258 else
259 {
260 int freq_in, freq_latch;
261
262 freq_in = 0;
263 freq_latch = 0;
264
265 FOR_EACH_EDGE (e, ei, loop->header->preds)
266 if (e->src == loop->latch)
267 freq_latch = EDGE_FREQUENCY (e);
268 else
269 freq_in += EDGE_FREQUENCY (e);
270
271 if (freq_in == 0)
272 return freq_latch * 2;
273
274 return (freq_latch + freq_in - 1) / freq_in;
275 }
276 }
277
278 /* Returns expected number of LOOP iterations. The returned value is bounded
279 by REG_BR_PROB_BASE. */
280
281 unsigned
282 expected_loop_iterations (const struct loop *loop)
283 {
284 gcov_type expected = expected_loop_iterations_unbounded (loop);
285 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
286 }
287
288 /* Returns the maximum level of nesting of subloops of LOOP. */
289
290 unsigned
291 get_loop_level (const struct loop *loop)
292 {
293 const struct loop *ploop;
294 unsigned mx = 0, l;
295
296 for (ploop = loop->inner; ploop; ploop = ploop->next)
297 {
298 l = get_loop_level (ploop);
299 if (l >= mx)
300 mx = l + 1;
301 }
302 return mx;
303 }
304
305 /* Returns estimate on cost of computing SEQ. */
306
307 static unsigned
308 seq_cost (const_rtx seq, bool speed)
309 {
310 unsigned cost = 0;
311 rtx set;
312
313 for (; seq; seq = NEXT_INSN (seq))
314 {
315 set = single_set (seq);
316 if (set)
317 cost += set_rtx_cost (set, speed);
318 else
319 cost++;
320 }
321
322 return cost;
323 }
324
325 /* Initialize the constants for computing set costs. */
326
327 void
328 init_set_costs (void)
329 {
330 int speed;
331 rtx seq;
332 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
333 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
334 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
335 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
336 unsigned i;
337
338 target_avail_regs = 0;
339 target_clobbered_regs = 0;
340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
341 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
342 && !fixed_regs[i])
343 {
344 target_avail_regs++;
345 if (call_used_regs[i])
346 target_clobbered_regs++;
347 }
348
349 target_res_regs = 3;
350
351 for (speed = 0; speed < 2; speed++)
352 {
353 crtl->maybe_hot_insn_p = speed;
354 /* Set up the costs for using extra registers:
355
356 1) If not many free registers remain, we should prefer having an
357 additional move to decreasing the number of available registers.
358 (TARGET_REG_COST).
359 2) If no registers are available, we need to spill, which may require
360 storing the old value to memory and loading it back
361 (TARGET_SPILL_COST). */
362
363 start_sequence ();
364 emit_move_insn (reg1, reg2);
365 seq = get_insns ();
366 end_sequence ();
367 target_reg_cost [speed] = seq_cost (seq, speed);
368
369 start_sequence ();
370 emit_move_insn (mem, reg1);
371 emit_move_insn (reg2, mem);
372 seq = get_insns ();
373 end_sequence ();
374 target_spill_cost [speed] = seq_cost (seq, speed);
375 }
376 default_rtl_profile ();
377 }
378
379 /* Estimates cost of increased register pressure caused by making N_NEW new
380 registers live around the loop. N_OLD is the number of registers live
381 around the loop. If CALL_P is true, also take into account that
382 call-used registers may be clobbered in the loop body, reducing the
383 number of available registers before we spill. */
384
385 unsigned
386 estimate_reg_pressure_cost (unsigned n_new, unsigned n_old, bool speed,
387 bool call_p)
388 {
389 unsigned cost;
390 unsigned regs_needed = n_new + n_old;
391 unsigned available_regs = target_avail_regs;
392
393 /* If there is a call in the loop body, the call-clobbered registers
394 are not available for loop invariants. */
395 if (call_p)
396 available_regs = available_regs - target_clobbered_regs;
397
398 /* If we have enough registers, we should use them and not restrict
399 the transformations unnecessarily. */
400 if (regs_needed + target_res_regs <= available_regs)
401 return 0;
402
403 if (regs_needed <= available_regs)
404 /* If we are close to running out of registers, try to preserve
405 them. */
406 cost = target_reg_cost [speed] * n_new;
407 else
408 /* If we run out of registers, it is very expensive to add another
409 one. */
410 cost = target_spill_cost [speed] * n_new;
411
412 if (optimize && (flag_ira_region == IRA_REGION_ALL
413 || flag_ira_region == IRA_REGION_MIXED)
414 && number_of_loops (cfun) <= (unsigned) IRA_MAX_LOOPS_NUM)
415 /* IRA regional allocation deals with high register pressure
416 better. So decrease the cost (to do more accurate the cost
417 calculation for IRA, we need to know how many registers lives
418 through the loop transparently). */
419 cost /= 2;
420
421 return cost;
422 }
423
424 /* Sets EDGE_LOOP_EXIT flag for all loop exits. */
425
426 void
427 mark_loop_exit_edges (void)
428 {
429 basic_block bb;
430 edge e;
431
432 if (number_of_loops (cfun) <= 1)
433 return;
434
435 FOR_EACH_BB (bb)
436 {
437 edge_iterator ei;
438
439 FOR_EACH_EDGE (e, ei, bb->succs)
440 {
441 if (loop_outer (bb->loop_father)
442 && loop_exit_edge_p (bb->loop_father, e))
443 e->flags |= EDGE_LOOP_EXIT;
444 else
445 e->flags &= ~EDGE_LOOP_EXIT;
446 }
447 }
448 }
449
450 /* Return exit edge if loop has only one exit that is likely
451 to be executed on runtime (i.e. it is not EH or leading
452 to noreturn call. */
453
454 edge
455 single_likely_exit (struct loop *loop)
456 {
457 edge found = single_exit (loop);
458 vec<edge> exits;
459 unsigned i;
460 edge ex;
461
462 if (found)
463 return found;
464 exits = get_loop_exit_edges (loop);
465 FOR_EACH_VEC_ELT (exits, i, ex)
466 {
467 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
468 continue;
469 /* The constant of 5 is set in a way so noreturn calls are
470 ruled out by this test. The static branch prediction algorithm
471 will not assign such a low probability to conditionals for usual
472 reasons. */
473 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
474 && ex->probability < 5 && !ex->count)
475 continue;
476 if (!found)
477 found = ex;
478 else
479 {
480 exits.release ();
481 return NULL;
482 }
483 }
484 exits.release ();
485 return found;
486 }
487
488
489 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
490 order against direction of edges from latch. Specially, if
491 header != latch, latch is the 1-st block. */
492
493 vec<basic_block>
494 get_loop_hot_path (const struct loop *loop)
495 {
496 basic_block bb = loop->header;
497 vec<basic_block> path = vNULL;
498 bitmap visited = BITMAP_ALLOC (NULL);
499
500 while (true)
501 {
502 edge_iterator ei;
503 edge e;
504 edge best = NULL;
505
506 path.safe_push (bb);
507 bitmap_set_bit (visited, bb->index);
508 FOR_EACH_EDGE (e, ei, bb->succs)
509 if ((!best || e->probability > best->probability)
510 && !loop_exit_edge_p (loop, e)
511 && !bitmap_bit_p (visited, e->dest->index))
512 best = e;
513 if (!best || best->dest == loop->header)
514 break;
515 bb = best->dest;
516 }
517 BITMAP_FREE (visited);
518 return path;
519 }
This page took 0.077397 seconds and 5 git commands to generate.