]> gcc.gnu.org Git - gcc.git/blob - gcc/cfganal.c
* cfganal.c: Fix a reference to Harvey's paper.
[gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "timevar.h"
36
37 /* Store the data structures necessary for depth-first search. */
38 struct depth_first_search_dsS {
39 /* stack for backtracking during the algorithm */
40 basic_block *stack;
41
42 /* number of edges in the stack. That is, positions 0, ..., sp-1
43 have edges. */
44 unsigned int sp;
45
46 /* record of basic blocks already seen by depth-first search */
47 sbitmap visited_blocks;
48 };
49 typedef struct depth_first_search_dsS *depth_first_search_ds;
50
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53 basic_block);
54 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55 basic_block);
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57 static bool flow_active_insn_p (rtx);
58 \f
59 /* Like active_insn_p, except keep the return value clobber around
60 even after reload. */
61
62 static bool
63 flow_active_insn_p (rtx insn)
64 {
65 if (active_insn_p (insn))
66 return true;
67
68 /* A clobber of the function return value exists for buggy
69 programs that fail to return a value. Its effect is to
70 keep the return value from being live across the entire
71 function. If we allow it to be skipped, we introduce the
72 possibility for register livetime aborts. */
73 if (GET_CODE (PATTERN (insn)) == CLOBBER
74 && REG_P (XEXP (PATTERN (insn), 0))
75 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76 return true;
77
78 return false;
79 }
80
81 /* Return true if the block has no effect and only forwards control flow to
82 its single destination. */
83
84 bool
85 forwarder_block_p (basic_block bb)
86 {
87 rtx insn;
88
89 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90 || EDGE_COUNT (bb->succs) != 1)
91 return false;
92
93 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94 if (INSN_P (insn) && flow_active_insn_p (insn))
95 return false;
96
97 return (!INSN_P (insn)
98 || (JUMP_P (insn) && simplejump_p (insn))
99 || !flow_active_insn_p (insn));
100 }
101
102 /* Return nonzero if we can reach target from src by falling through. */
103
104 bool
105 can_fallthru (basic_block src, basic_block target)
106 {
107 rtx insn = BB_END (src);
108 rtx insn2;
109 edge e;
110 edge_iterator ei;
111
112 if (target == EXIT_BLOCK_PTR)
113 return true;
114 if (src->next_bb != target)
115 return 0;
116 FOR_EACH_EDGE (e, ei, src->succs)
117 if (e->dest == EXIT_BLOCK_PTR
118 && e->flags & EDGE_FALLTHRU)
119 return 0;
120
121 insn2 = BB_HEAD (target);
122 if (insn2 && !active_insn_p (insn2))
123 insn2 = next_active_insn (insn2);
124
125 /* ??? Later we may add code to move jump tables offline. */
126 return next_active_insn (insn) == insn2;
127 }
128
129 /* Return nonzero if we could reach target from src by falling through,
130 if the target was made adjacent. If we already have a fall-through
131 edge to the exit block, we can't do that. */
132 bool
133 could_fall_through (basic_block src, basic_block target)
134 {
135 edge e;
136 edge_iterator ei;
137
138 if (target == EXIT_BLOCK_PTR)
139 return true;
140 FOR_EACH_EDGE (e, ei, src->succs)
141 if (e->dest == EXIT_BLOCK_PTR
142 && e->flags & EDGE_FALLTHRU)
143 return 0;
144 return true;
145 }
146 \f
147 /* Mark the back edges in DFS traversal.
148 Return nonzero if a loop (natural or otherwise) is present.
149 Inspired by Depth_First_Search_PP described in:
150
151 Advanced Compiler Design and Implementation
152 Steven Muchnick
153 Morgan Kaufmann, 1997
154
155 and heavily borrowed from flow_depth_first_order_compute. */
156
157 bool
158 mark_dfs_back_edges (void)
159 {
160 edge_iterator *stack;
161 int *pre;
162 int *post;
163 int sp;
164 int prenum = 1;
165 int postnum = 1;
166 sbitmap visited;
167 bool found = false;
168
169 /* Allocate the preorder and postorder number arrays. */
170 pre = xcalloc (last_basic_block, sizeof (int));
171 post = xcalloc (last_basic_block, sizeof (int));
172
173 /* Allocate stack for back-tracking up CFG. */
174 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
175 sp = 0;
176
177 /* Allocate bitmap to track nodes that have been visited. */
178 visited = sbitmap_alloc (last_basic_block);
179
180 /* None of the nodes in the CFG have been visited yet. */
181 sbitmap_zero (visited);
182
183 /* Push the first edge on to the stack. */
184 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
185
186 while (sp)
187 {
188 edge_iterator ei;
189 basic_block src;
190 basic_block dest;
191
192 /* Look at the edge on the top of the stack. */
193 ei = stack[sp - 1];
194 src = ei_edge (ei)->src;
195 dest = ei_edge (ei)->dest;
196 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
197
198 /* Check if the edge destination has been visited yet. */
199 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
200 {
201 /* Mark that we have visited the destination. */
202 SET_BIT (visited, dest->index);
203
204 pre[dest->index] = prenum++;
205 if (EDGE_COUNT (dest->succs) > 0)
206 {
207 /* Since the DEST node has been visited for the first
208 time, check its successors. */
209 stack[sp++] = ei_start (dest->succs);
210 }
211 else
212 post[dest->index] = postnum++;
213 }
214 else
215 {
216 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217 && pre[src->index] >= pre[dest->index]
218 && post[dest->index] == 0)
219 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
220
221 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222 post[src->index] = postnum++;
223
224 if (!ei_one_before_end_p (ei))
225 ei_next (&stack[sp - 1]);
226 else
227 sp--;
228 }
229 }
230
231 free (pre);
232 free (post);
233 free (stack);
234 sbitmap_free (visited);
235
236 return found;
237 }
238
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
240
241 void
242 set_edge_can_fallthru_flag (void)
243 {
244 basic_block bb;
245
246 FOR_EACH_BB (bb)
247 {
248 edge e;
249 edge_iterator ei;
250
251 FOR_EACH_EDGE (e, ei, bb->succs)
252 {
253 e->flags &= ~EDGE_CAN_FALLTHRU;
254
255 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
256 if (e->flags & EDGE_FALLTHRU)
257 e->flags |= EDGE_CAN_FALLTHRU;
258 }
259
260 /* If the BB ends with an invertible condjump all (2) edges are
261 CAN_FALLTHRU edges. */
262 if (EDGE_COUNT (bb->succs) != 2)
263 continue;
264 if (!any_condjump_p (BB_END (bb)))
265 continue;
266 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267 continue;
268 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
271 }
272 }
273
274 /* Find unreachable blocks. An unreachable block will have 0 in
275 the reachable bit in block->flags. A nonzero value indicates the
276 block is reachable. */
277
278 void
279 find_unreachable_blocks (void)
280 {
281 edge e;
282 edge_iterator ei;
283 basic_block *tos, *worklist, bb;
284
285 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
286
287 /* Clear all the reachability flags. */
288
289 FOR_EACH_BB (bb)
290 bb->flags &= ~BB_REACHABLE;
291
292 /* Add our starting points to the worklist. Almost always there will
293 be only one. It isn't inconceivable that we might one day directly
294 support Fortran alternate entry points. */
295
296 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
297 {
298 *tos++ = e->dest;
299
300 /* Mark the block reachable. */
301 e->dest->flags |= BB_REACHABLE;
302 }
303
304 /* Iterate: find everything reachable from what we've already seen. */
305
306 while (tos != worklist)
307 {
308 basic_block b = *--tos;
309
310 FOR_EACH_EDGE (e, ei, b->succs)
311 if (!(e->dest->flags & BB_REACHABLE))
312 {
313 *tos++ = e->dest;
314 e->dest->flags |= BB_REACHABLE;
315 }
316 }
317
318 free (worklist);
319 }
320 \f
321 /* Functions to access an edge list with a vector representation.
322 Enough data is kept such that given an index number, the
323 pred and succ that edge represents can be determined, or
324 given a pred and a succ, its index number can be returned.
325 This allows algorithms which consume a lot of memory to
326 represent the normally full matrix of edge (pred,succ) with a
327 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
328 wasted space in the client code due to sparse flow graphs. */
329
330 /* This functions initializes the edge list. Basically the entire
331 flowgraph is processed, and all edges are assigned a number,
332 and the data structure is filled in. */
333
334 struct edge_list *
335 create_edge_list (void)
336 {
337 struct edge_list *elist;
338 edge e;
339 int num_edges;
340 int block_count;
341 basic_block bb;
342 edge_iterator ei;
343
344 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
345
346 num_edges = 0;
347
348 /* Determine the number of edges in the flow graph by counting successor
349 edges on each basic block. */
350 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
351 {
352 num_edges += EDGE_COUNT (bb->succs);
353 }
354
355 elist = xmalloc (sizeof (struct edge_list));
356 elist->num_blocks = block_count;
357 elist->num_edges = num_edges;
358 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
359
360 num_edges = 0;
361
362 /* Follow successors of blocks, and register these edges. */
363 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
364 FOR_EACH_EDGE (e, ei, bb->succs)
365 elist->index_to_edge[num_edges++] = e;
366
367 return elist;
368 }
369
370 /* This function free's memory associated with an edge list. */
371
372 void
373 free_edge_list (struct edge_list *elist)
374 {
375 if (elist)
376 {
377 free (elist->index_to_edge);
378 free (elist);
379 }
380 }
381
382 /* This function provides debug output showing an edge list. */
383
384 void
385 print_edge_list (FILE *f, struct edge_list *elist)
386 {
387 int x;
388
389 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
390 elist->num_blocks - 2, elist->num_edges);
391
392 for (x = 0; x < elist->num_edges; x++)
393 {
394 fprintf (f, " %-4d - edge(", x);
395 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
396 fprintf (f, "entry,");
397 else
398 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
399
400 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
401 fprintf (f, "exit)\n");
402 else
403 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
404 }
405 }
406
407 /* This function provides an internal consistency check of an edge list,
408 verifying that all edges are present, and that there are no
409 extra edges. */
410
411 void
412 verify_edge_list (FILE *f, struct edge_list *elist)
413 {
414 int pred, succ, index;
415 edge e;
416 basic_block bb, p, s;
417 edge_iterator ei;
418
419 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
420 {
421 FOR_EACH_EDGE (e, ei, bb->succs)
422 {
423 pred = e->src->index;
424 succ = e->dest->index;
425 index = EDGE_INDEX (elist, e->src, e->dest);
426 if (index == EDGE_INDEX_NO_EDGE)
427 {
428 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
429 continue;
430 }
431
432 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
433 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
434 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
435 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
436 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
437 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
438 }
439 }
440
441 /* We've verified that all the edges are in the list, now lets make sure
442 there are no spurious edges in the list. */
443
444 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
445 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
446 {
447 int found_edge = 0;
448
449 FOR_EACH_EDGE (e, ei, p->succs)
450 if (e->dest == s)
451 {
452 found_edge = 1;
453 break;
454 }
455
456 FOR_EACH_EDGE (e, ei, s->preds)
457 if (e->src == p)
458 {
459 found_edge = 1;
460 break;
461 }
462
463 if (EDGE_INDEX (elist, p, s)
464 == EDGE_INDEX_NO_EDGE && found_edge != 0)
465 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
466 p->index, s->index);
467 if (EDGE_INDEX (elist, p, s)
468 != EDGE_INDEX_NO_EDGE && found_edge == 0)
469 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
470 p->index, s->index, EDGE_INDEX (elist, p, s));
471 }
472 }
473
474 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
475 If no such edge exists, return NULL. */
476
477 edge
478 find_edge (basic_block pred, basic_block succ)
479 {
480 edge e;
481 edge_iterator ei;
482
483 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
484 {
485 FOR_EACH_EDGE (e, ei, pred->succs)
486 if (e->dest == succ)
487 return e;
488 }
489 else
490 {
491 FOR_EACH_EDGE (e, ei, succ->preds)
492 if (e->src == pred)
493 return e;
494 }
495
496 return NULL;
497 }
498
499 /* This routine will determine what, if any, edge there is between
500 a specified predecessor and successor. */
501
502 int
503 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
504 {
505 int x;
506
507 for (x = 0; x < NUM_EDGES (edge_list); x++)
508 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
509 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
510 return x;
511
512 return (EDGE_INDEX_NO_EDGE);
513 }
514
515 /* Dump the list of basic blocks in the bitmap NODES. */
516
517 void
518 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
519 {
520 int node;
521
522 if (! nodes)
523 return;
524
525 fprintf (file, "%s { ", str);
526 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
527 fputs ("}\n", file);
528 }
529
530 /* Dump the list of edges in the array EDGE_LIST. */
531
532 void
533 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
534 {
535 int i;
536
537 if (! edge_list)
538 return;
539
540 fprintf (file, "%s { ", str);
541 for (i = 0; i < num_edges; i++)
542 fprintf (file, "%d->%d ", edge_list[i]->src->index,
543 edge_list[i]->dest->index);
544
545 fputs ("}\n", file);
546 }
547
548 \f
549 /* This routine will remove any fake predecessor edges for a basic block.
550 When the edge is removed, it is also removed from whatever successor
551 list it is in. */
552
553 static void
554 remove_fake_predecessors (basic_block bb)
555 {
556 edge e;
557 edge_iterator ei;
558
559 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
560 {
561 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
562 remove_edge (e);
563 else
564 ei_next (&ei);
565 }
566 }
567
568 /* This routine will remove all fake edges from the flow graph. If
569 we remove all fake successors, it will automatically remove all
570 fake predecessors. */
571
572 void
573 remove_fake_edges (void)
574 {
575 basic_block bb;
576
577 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
578 remove_fake_predecessors (bb);
579 }
580
581 /* This routine will remove all fake edges to the EXIT_BLOCK. */
582
583 void
584 remove_fake_exit_edges (void)
585 {
586 remove_fake_predecessors (EXIT_BLOCK_PTR);
587 }
588
589
590 /* This function will add a fake edge between any block which has no
591 successors, and the exit block. Some data flow equations require these
592 edges to exist. */
593
594 void
595 add_noreturn_fake_exit_edges (void)
596 {
597 basic_block bb;
598
599 FOR_EACH_BB (bb)
600 if (EDGE_COUNT (bb->succs) == 0)
601 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
602 }
603
604 /* This function adds a fake edge between any infinite loops to the
605 exit block. Some optimizations require a path from each node to
606 the exit node.
607
608 See also Morgan, Figure 3.10, pp. 82-83.
609
610 The current implementation is ugly, not attempting to minimize the
611 number of inserted fake edges. To reduce the number of fake edges
612 to insert, add fake edges from _innermost_ loops containing only
613 nodes not reachable from the exit block. */
614
615 void
616 connect_infinite_loops_to_exit (void)
617 {
618 basic_block unvisited_block = EXIT_BLOCK_PTR;
619 struct depth_first_search_dsS dfs_ds;
620
621 /* Perform depth-first search in the reverse graph to find nodes
622 reachable from the exit block. */
623 flow_dfs_compute_reverse_init (&dfs_ds);
624 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
625
626 /* Repeatedly add fake edges, updating the unreachable nodes. */
627 while (1)
628 {
629 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
630 unvisited_block);
631 if (!unvisited_block)
632 break;
633
634 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
635 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
636 }
637
638 flow_dfs_compute_reverse_finish (&dfs_ds);
639 return;
640 }
641 \f
642 /* Compute reverse top sort order. */
643
644 void
645 flow_reverse_top_sort_order_compute (int *rts_order)
646 {
647 edge_iterator *stack;
648 int sp;
649 int postnum = 0;
650 sbitmap visited;
651
652 /* Allocate stack for back-tracking up CFG. */
653 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
654 sp = 0;
655
656 /* Allocate bitmap to track nodes that have been visited. */
657 visited = sbitmap_alloc (last_basic_block);
658
659 /* None of the nodes in the CFG have been visited yet. */
660 sbitmap_zero (visited);
661
662 /* Push the first edge on to the stack. */
663 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
664
665 while (sp)
666 {
667 edge_iterator ei;
668 basic_block src;
669 basic_block dest;
670
671 /* Look at the edge on the top of the stack. */
672 ei = stack[sp - 1];
673 src = ei_edge (ei)->src;
674 dest = ei_edge (ei)->dest;
675
676 /* Check if the edge destination has been visited yet. */
677 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
678 {
679 /* Mark that we have visited the destination. */
680 SET_BIT (visited, dest->index);
681
682 if (EDGE_COUNT (dest->succs) > 0)
683 /* Since the DEST node has been visited for the first
684 time, check its successors. */
685 stack[sp++] = ei_start (dest->succs);
686 else
687 rts_order[postnum++] = dest->index;
688 }
689 else
690 {
691 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
692 rts_order[postnum++] = src->index;
693
694 if (!ei_one_before_end_p (ei))
695 ei_next (&stack[sp - 1]);
696 else
697 sp--;
698 }
699 }
700
701 free (stack);
702 sbitmap_free (visited);
703 }
704
705 /* Compute the depth first search order and store in the array
706 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
707 RC_ORDER is nonzero, return the reverse completion number for each
708 node. Returns the number of nodes visited. A depth first search
709 tries to get as far away from the starting point as quickly as
710 possible. */
711
712 int
713 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
714 {
715 edge_iterator *stack;
716 int sp;
717 int dfsnum = 0;
718 int rcnum = n_basic_blocks - 1;
719 sbitmap visited;
720
721 /* Allocate stack for back-tracking up CFG. */
722 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
723 sp = 0;
724
725 /* Allocate bitmap to track nodes that have been visited. */
726 visited = sbitmap_alloc (last_basic_block);
727
728 /* None of the nodes in the CFG have been visited yet. */
729 sbitmap_zero (visited);
730
731 /* Push the first edge on to the stack. */
732 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
733
734 while (sp)
735 {
736 edge_iterator ei;
737 basic_block src;
738 basic_block dest;
739
740 /* Look at the edge on the top of the stack. */
741 ei = stack[sp - 1];
742 src = ei_edge (ei)->src;
743 dest = ei_edge (ei)->dest;
744
745 /* Check if the edge destination has been visited yet. */
746 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
747 {
748 /* Mark that we have visited the destination. */
749 SET_BIT (visited, dest->index);
750
751 if (dfs_order)
752 dfs_order[dfsnum] = dest->index;
753
754 dfsnum++;
755
756 if (EDGE_COUNT (dest->succs) > 0)
757 /* Since the DEST node has been visited for the first
758 time, check its successors. */
759 stack[sp++] = ei_start (dest->succs);
760 else if (rc_order)
761 /* There are no successors for the DEST node so assign
762 its reverse completion number. */
763 rc_order[rcnum--] = dest->index;
764 }
765 else
766 {
767 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
768 && rc_order)
769 /* There are no more successors for the SRC node
770 so assign its reverse completion number. */
771 rc_order[rcnum--] = src->index;
772
773 if (!ei_one_before_end_p (ei))
774 ei_next (&stack[sp - 1]);
775 else
776 sp--;
777 }
778 }
779
780 free (stack);
781 sbitmap_free (visited);
782
783 /* The number of nodes visited should be the number of blocks. */
784 gcc_assert (dfsnum == n_basic_blocks);
785
786 return dfsnum;
787 }
788
789 /* Compute the depth first search order on the _reverse_ graph and
790 store in the array DFS_ORDER, marking the nodes visited in VISITED.
791 Returns the number of nodes visited.
792
793 The computation is split into three pieces:
794
795 flow_dfs_compute_reverse_init () creates the necessary data
796 structures.
797
798 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
799 structures. The block will start the search.
800
801 flow_dfs_compute_reverse_execute () continues (or starts) the
802 search using the block on the top of the stack, stopping when the
803 stack is empty.
804
805 flow_dfs_compute_reverse_finish () destroys the necessary data
806 structures.
807
808 Thus, the user will probably call ..._init(), call ..._add_bb() to
809 add a beginning basic block to the stack, call ..._execute(),
810 possibly add another bb to the stack and again call ..._execute(),
811 ..., and finally call _finish(). */
812
813 /* Initialize the data structures used for depth-first search on the
814 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
815 added to the basic block stack. DATA is the current depth-first
816 search context. If INITIALIZE_STACK is nonzero, there is an
817 element on the stack. */
818
819 static void
820 flow_dfs_compute_reverse_init (depth_first_search_ds data)
821 {
822 /* Allocate stack for back-tracking up CFG. */
823 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
824 * sizeof (basic_block));
825 data->sp = 0;
826
827 /* Allocate bitmap to track nodes that have been visited. */
828 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
829
830 /* None of the nodes in the CFG have been visited yet. */
831 sbitmap_zero (data->visited_blocks);
832
833 return;
834 }
835
836 /* Add the specified basic block to the top of the dfs data
837 structures. When the search continues, it will start at the
838 block. */
839
840 static void
841 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
842 {
843 data->stack[data->sp++] = bb;
844 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
845 }
846
847 /* Continue the depth-first search through the reverse graph starting with the
848 block at the stack's top and ending when the stack is empty. Visited nodes
849 are marked. Returns an unvisited basic block, or NULL if there is none
850 available. */
851
852 static basic_block
853 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
854 basic_block last_unvisited)
855 {
856 basic_block bb;
857 edge e;
858 edge_iterator ei;
859
860 while (data->sp > 0)
861 {
862 bb = data->stack[--data->sp];
863
864 /* Perform depth-first search on adjacent vertices. */
865 FOR_EACH_EDGE (e, ei, bb->preds)
866 if (!TEST_BIT (data->visited_blocks,
867 e->src->index - (INVALID_BLOCK + 1)))
868 flow_dfs_compute_reverse_add_bb (data, e->src);
869 }
870
871 /* Determine if there are unvisited basic blocks. */
872 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
873 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
874 return bb;
875
876 return NULL;
877 }
878
879 /* Destroy the data structures needed for depth-first search on the
880 reverse graph. */
881
882 static void
883 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
884 {
885 free (data->stack);
886 sbitmap_free (data->visited_blocks);
887 }
888
889 /* Performs dfs search from BB over vertices satisfying PREDICATE;
890 if REVERSE, go against direction of edges. Returns number of blocks
891 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
892 int
893 dfs_enumerate_from (basic_block bb, int reverse,
894 bool (*predicate) (basic_block, void *),
895 basic_block *rslt, int rslt_max, void *data)
896 {
897 basic_block *st, lbb;
898 int sp = 0, tv = 0;
899
900 st = xcalloc (rslt_max, sizeof (basic_block));
901 rslt[tv++] = st[sp++] = bb;
902 bb->flags |= BB_VISITED;
903 while (sp)
904 {
905 edge e;
906 edge_iterator ei;
907 lbb = st[--sp];
908 if (reverse)
909 {
910 FOR_EACH_EDGE (e, ei, lbb->preds)
911 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
912 {
913 gcc_assert (tv != rslt_max);
914 rslt[tv++] = st[sp++] = e->src;
915 e->src->flags |= BB_VISITED;
916 }
917 }
918 else
919 {
920 FOR_EACH_EDGE (e, ei, lbb->succs)
921 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
922 {
923 gcc_assert (tv != rslt_max);
924 rslt[tv++] = st[sp++] = e->dest;
925 e->dest->flags |= BB_VISITED;
926 }
927 }
928 }
929 free (st);
930 for (sp = 0; sp < tv; sp++)
931 rslt[sp]->flags &= ~BB_VISITED;
932 return tv;
933 }
934
935
936 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
937
938 This algorithm can be found in Timothy Harvey's PhD thesis, at
939 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
940 dominance algorithms.
941
942 First, we identify each join point, j (any node with more than one
943 incoming edge is a join point).
944
945 We then examine each predecessor, p, of j and walk up the dominator tree
946 starting at p.
947
948 We stop the walk when we reach j's immediate dominator - j is in the
949 dominance frontier of each of the nodes in the walk, except for j's
950 immediate dominator. Intuitively, all of the rest of j's dominators are
951 shared by j's predecessors as well.
952 Since they dominate j, they will not have j in their dominance frontiers.
953
954 The number of nodes touched by this algorithm is equal to the size
955 of the dominance frontiers, no more, no less.
956 */
957
958
959 static void
960 compute_dominance_frontiers_1 (bitmap *frontiers)
961 {
962 edge p;
963 edge_iterator ei;
964 basic_block b;
965 FOR_EACH_BB (b)
966 {
967 if (EDGE_COUNT (b->preds) >= 2)
968 {
969 FOR_EACH_EDGE (p, ei, b->preds)
970 {
971 basic_block runner = p->src;
972 basic_block domsb;
973 if (runner == ENTRY_BLOCK_PTR)
974 continue;
975
976 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
977 while (runner != domsb)
978 {
979 bitmap_set_bit (frontiers[runner->index],
980 b->index);
981 runner = get_immediate_dominator (CDI_DOMINATORS,
982 runner);
983 }
984 }
985 }
986 }
987 }
988
989
990 void
991 compute_dominance_frontiers (bitmap *frontiers)
992 {
993 timevar_push (TV_DOM_FRONTIERS);
994
995 compute_dominance_frontiers_1 (frontiers);
996
997 timevar_pop (TV_DOM_FRONTIERS);
998 }
999
This page took 0.090117 seconds and 6 git commands to generate.