]> gcc.gnu.org Git - gcc.git/blob - gcc/cfganal.c
cfganal.c (find_unreachable_blocks): Manually CSE load of e->dest.
[gcc.git] / gcc / cfganal.c
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "timevar.h"
36
37 /* Store the data structures necessary for depth-first search. */
38 struct depth_first_search_dsS {
39 /* stack for backtracking during the algorithm */
40 basic_block *stack;
41
42 /* number of edges in the stack. That is, positions 0, ..., sp-1
43 have edges. */
44 unsigned int sp;
45
46 /* record of basic blocks already seen by depth-first search */
47 sbitmap visited_blocks;
48 };
49 typedef struct depth_first_search_dsS *depth_first_search_ds;
50
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53 basic_block);
54 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55 basic_block);
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57 static bool flow_active_insn_p (rtx);
58 \f
59 /* Like active_insn_p, except keep the return value clobber around
60 even after reload. */
61
62 static bool
63 flow_active_insn_p (rtx insn)
64 {
65 if (active_insn_p (insn))
66 return true;
67
68 /* A clobber of the function return value exists for buggy
69 programs that fail to return a value. Its effect is to
70 keep the return value from being live across the entire
71 function. If we allow it to be skipped, we introduce the
72 possibility for register livetime aborts. */
73 if (GET_CODE (PATTERN (insn)) == CLOBBER
74 && REG_P (XEXP (PATTERN (insn), 0))
75 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76 return true;
77
78 return false;
79 }
80
81 /* Return true if the block has no effect and only forwards control flow to
82 its single destination. */
83
84 bool
85 forwarder_block_p (basic_block bb)
86 {
87 rtx insn;
88
89 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90 || EDGE_COUNT (bb->succs) != 1)
91 return false;
92
93 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94 if (INSN_P (insn) && flow_active_insn_p (insn))
95 return false;
96
97 return (!INSN_P (insn)
98 || (JUMP_P (insn) && simplejump_p (insn))
99 || !flow_active_insn_p (insn));
100 }
101
102 /* Return nonzero if we can reach target from src by falling through. */
103
104 bool
105 can_fallthru (basic_block src, basic_block target)
106 {
107 rtx insn = BB_END (src);
108 rtx insn2;
109 edge e;
110 edge_iterator ei;
111
112 if (target == EXIT_BLOCK_PTR)
113 return true;
114 if (src->next_bb != target)
115 return 0;
116 FOR_EACH_EDGE (e, ei, src->succs)
117 if (e->dest == EXIT_BLOCK_PTR
118 && e->flags & EDGE_FALLTHRU)
119 return 0;
120
121 insn2 = BB_HEAD (target);
122 if (insn2 && !active_insn_p (insn2))
123 insn2 = next_active_insn (insn2);
124
125 /* ??? Later we may add code to move jump tables offline. */
126 return next_active_insn (insn) == insn2;
127 }
128
129 /* Return nonzero if we could reach target from src by falling through,
130 if the target was made adjacent. If we already have a fall-through
131 edge to the exit block, we can't do that. */
132 bool
133 could_fall_through (basic_block src, basic_block target)
134 {
135 edge e;
136 edge_iterator ei;
137
138 if (target == EXIT_BLOCK_PTR)
139 return true;
140 FOR_EACH_EDGE (e, ei, src->succs)
141 if (e->dest == EXIT_BLOCK_PTR
142 && e->flags & EDGE_FALLTHRU)
143 return 0;
144 return true;
145 }
146 \f
147 /* Mark the back edges in DFS traversal.
148 Return nonzero if a loop (natural or otherwise) is present.
149 Inspired by Depth_First_Search_PP described in:
150
151 Advanced Compiler Design and Implementation
152 Steven Muchnick
153 Morgan Kaufmann, 1997
154
155 and heavily borrowed from flow_depth_first_order_compute. */
156
157 bool
158 mark_dfs_back_edges (void)
159 {
160 edge_iterator *stack;
161 int *pre;
162 int *post;
163 int sp;
164 int prenum = 1;
165 int postnum = 1;
166 sbitmap visited;
167 bool found = false;
168
169 /* Allocate the preorder and postorder number arrays. */
170 pre = xcalloc (last_basic_block, sizeof (int));
171 post = xcalloc (last_basic_block, sizeof (int));
172
173 /* Allocate stack for back-tracking up CFG. */
174 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
175 sp = 0;
176
177 /* Allocate bitmap to track nodes that have been visited. */
178 visited = sbitmap_alloc (last_basic_block);
179
180 /* None of the nodes in the CFG have been visited yet. */
181 sbitmap_zero (visited);
182
183 /* Push the first edge on to the stack. */
184 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
185
186 while (sp)
187 {
188 edge_iterator ei;
189 basic_block src;
190 basic_block dest;
191
192 /* Look at the edge on the top of the stack. */
193 ei = stack[sp - 1];
194 src = ei_edge (ei)->src;
195 dest = ei_edge (ei)->dest;
196 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
197
198 /* Check if the edge destination has been visited yet. */
199 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
200 {
201 /* Mark that we have visited the destination. */
202 SET_BIT (visited, dest->index);
203
204 pre[dest->index] = prenum++;
205 if (EDGE_COUNT (dest->succs) > 0)
206 {
207 /* Since the DEST node has been visited for the first
208 time, check its successors. */
209 stack[sp++] = ei_start (dest->succs);
210 }
211 else
212 post[dest->index] = postnum++;
213 }
214 else
215 {
216 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217 && pre[src->index] >= pre[dest->index]
218 && post[dest->index] == 0)
219 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
220
221 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222 post[src->index] = postnum++;
223
224 if (!ei_one_before_end_p (ei))
225 ei_next (&stack[sp - 1]);
226 else
227 sp--;
228 }
229 }
230
231 free (pre);
232 free (post);
233 free (stack);
234 sbitmap_free (visited);
235
236 return found;
237 }
238
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
240
241 void
242 set_edge_can_fallthru_flag (void)
243 {
244 basic_block bb;
245
246 FOR_EACH_BB (bb)
247 {
248 edge e;
249 edge_iterator ei;
250
251 FOR_EACH_EDGE (e, ei, bb->succs)
252 {
253 e->flags &= ~EDGE_CAN_FALLTHRU;
254
255 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
256 if (e->flags & EDGE_FALLTHRU)
257 e->flags |= EDGE_CAN_FALLTHRU;
258 }
259
260 /* If the BB ends with an invertible condjump all (2) edges are
261 CAN_FALLTHRU edges. */
262 if (EDGE_COUNT (bb->succs) != 2)
263 continue;
264 if (!any_condjump_p (BB_END (bb)))
265 continue;
266 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267 continue;
268 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
271 }
272 }
273
274 /* Find unreachable blocks. An unreachable block will have 0 in
275 the reachable bit in block->flags. A nonzero value indicates the
276 block is reachable. */
277
278 void
279 find_unreachable_blocks (void)
280 {
281 edge e;
282 edge_iterator ei;
283 basic_block *tos, *worklist, bb;
284
285 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
286
287 /* Clear all the reachability flags. */
288
289 FOR_EACH_BB (bb)
290 bb->flags &= ~BB_REACHABLE;
291
292 /* Add our starting points to the worklist. Almost always there will
293 be only one. It isn't inconceivable that we might one day directly
294 support Fortran alternate entry points. */
295
296 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
297 {
298 *tos++ = e->dest;
299
300 /* Mark the block reachable. */
301 e->dest->flags |= BB_REACHABLE;
302 }
303
304 /* Iterate: find everything reachable from what we've already seen. */
305
306 while (tos != worklist)
307 {
308 basic_block b = *--tos;
309
310 FOR_EACH_EDGE (e, ei, b->succs)
311 {
312 basic_block dest = e->dest;
313
314 if (!(dest->flags & BB_REACHABLE))
315 {
316 *tos++ = dest;
317 dest->flags |= BB_REACHABLE;
318 }
319 }
320 }
321
322 free (worklist);
323 }
324 \f
325 /* Functions to access an edge list with a vector representation.
326 Enough data is kept such that given an index number, the
327 pred and succ that edge represents can be determined, or
328 given a pred and a succ, its index number can be returned.
329 This allows algorithms which consume a lot of memory to
330 represent the normally full matrix of edge (pred,succ) with a
331 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
332 wasted space in the client code due to sparse flow graphs. */
333
334 /* This functions initializes the edge list. Basically the entire
335 flowgraph is processed, and all edges are assigned a number,
336 and the data structure is filled in. */
337
338 struct edge_list *
339 create_edge_list (void)
340 {
341 struct edge_list *elist;
342 edge e;
343 int num_edges;
344 int block_count;
345 basic_block bb;
346 edge_iterator ei;
347
348 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
349
350 num_edges = 0;
351
352 /* Determine the number of edges in the flow graph by counting successor
353 edges on each basic block. */
354 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
355 {
356 num_edges += EDGE_COUNT (bb->succs);
357 }
358
359 elist = xmalloc (sizeof (struct edge_list));
360 elist->num_blocks = block_count;
361 elist->num_edges = num_edges;
362 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
363
364 num_edges = 0;
365
366 /* Follow successors of blocks, and register these edges. */
367 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368 FOR_EACH_EDGE (e, ei, bb->succs)
369 elist->index_to_edge[num_edges++] = e;
370
371 return elist;
372 }
373
374 /* This function free's memory associated with an edge list. */
375
376 void
377 free_edge_list (struct edge_list *elist)
378 {
379 if (elist)
380 {
381 free (elist->index_to_edge);
382 free (elist);
383 }
384 }
385
386 /* This function provides debug output showing an edge list. */
387
388 void
389 print_edge_list (FILE *f, struct edge_list *elist)
390 {
391 int x;
392
393 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394 elist->num_blocks - 2, elist->num_edges);
395
396 for (x = 0; x < elist->num_edges; x++)
397 {
398 fprintf (f, " %-4d - edge(", x);
399 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400 fprintf (f, "entry,");
401 else
402 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
403
404 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405 fprintf (f, "exit)\n");
406 else
407 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
408 }
409 }
410
411 /* This function provides an internal consistency check of an edge list,
412 verifying that all edges are present, and that there are no
413 extra edges. */
414
415 void
416 verify_edge_list (FILE *f, struct edge_list *elist)
417 {
418 int pred, succ, index;
419 edge e;
420 basic_block bb, p, s;
421 edge_iterator ei;
422
423 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
424 {
425 FOR_EACH_EDGE (e, ei, bb->succs)
426 {
427 pred = e->src->index;
428 succ = e->dest->index;
429 index = EDGE_INDEX (elist, e->src, e->dest);
430 if (index == EDGE_INDEX_NO_EDGE)
431 {
432 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433 continue;
434 }
435
436 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
442 }
443 }
444
445 /* We've verified that all the edges are in the list, now lets make sure
446 there are no spurious edges in the list. */
447
448 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
450 {
451 int found_edge = 0;
452
453 FOR_EACH_EDGE (e, ei, p->succs)
454 if (e->dest == s)
455 {
456 found_edge = 1;
457 break;
458 }
459
460 FOR_EACH_EDGE (e, ei, s->preds)
461 if (e->src == p)
462 {
463 found_edge = 1;
464 break;
465 }
466
467 if (EDGE_INDEX (elist, p, s)
468 == EDGE_INDEX_NO_EDGE && found_edge != 0)
469 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470 p->index, s->index);
471 if (EDGE_INDEX (elist, p, s)
472 != EDGE_INDEX_NO_EDGE && found_edge == 0)
473 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474 p->index, s->index, EDGE_INDEX (elist, p, s));
475 }
476 }
477
478 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
479 If no such edge exists, return NULL. */
480
481 edge
482 find_edge (basic_block pred, basic_block succ)
483 {
484 edge e;
485 edge_iterator ei;
486
487 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
488 {
489 FOR_EACH_EDGE (e, ei, pred->succs)
490 if (e->dest == succ)
491 return e;
492 }
493 else
494 {
495 FOR_EACH_EDGE (e, ei, succ->preds)
496 if (e->src == pred)
497 return e;
498 }
499
500 return NULL;
501 }
502
503 /* This routine will determine what, if any, edge there is between
504 a specified predecessor and successor. */
505
506 int
507 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
508 {
509 int x;
510
511 for (x = 0; x < NUM_EDGES (edge_list); x++)
512 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514 return x;
515
516 return (EDGE_INDEX_NO_EDGE);
517 }
518
519 /* Dump the list of basic blocks in the bitmap NODES. */
520
521 void
522 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
523 {
524 int node;
525
526 if (! nodes)
527 return;
528
529 fprintf (file, "%s { ", str);
530 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
531 fputs ("}\n", file);
532 }
533
534 /* Dump the list of edges in the array EDGE_LIST. */
535
536 void
537 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
538 {
539 int i;
540
541 if (! edge_list)
542 return;
543
544 fprintf (file, "%s { ", str);
545 for (i = 0; i < num_edges; i++)
546 fprintf (file, "%d->%d ", edge_list[i]->src->index,
547 edge_list[i]->dest->index);
548
549 fputs ("}\n", file);
550 }
551
552 \f
553 /* This routine will remove any fake predecessor edges for a basic block.
554 When the edge is removed, it is also removed from whatever successor
555 list it is in. */
556
557 static void
558 remove_fake_predecessors (basic_block bb)
559 {
560 edge e;
561 edge_iterator ei;
562
563 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
564 {
565 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
566 remove_edge (e);
567 else
568 ei_next (&ei);
569 }
570 }
571
572 /* This routine will remove all fake edges from the flow graph. If
573 we remove all fake successors, it will automatically remove all
574 fake predecessors. */
575
576 void
577 remove_fake_edges (void)
578 {
579 basic_block bb;
580
581 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
582 remove_fake_predecessors (bb);
583 }
584
585 /* This routine will remove all fake edges to the EXIT_BLOCK. */
586
587 void
588 remove_fake_exit_edges (void)
589 {
590 remove_fake_predecessors (EXIT_BLOCK_PTR);
591 }
592
593
594 /* This function will add a fake edge between any block which has no
595 successors, and the exit block. Some data flow equations require these
596 edges to exist. */
597
598 void
599 add_noreturn_fake_exit_edges (void)
600 {
601 basic_block bb;
602
603 FOR_EACH_BB (bb)
604 if (EDGE_COUNT (bb->succs) == 0)
605 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
606 }
607
608 /* This function adds a fake edge between any infinite loops to the
609 exit block. Some optimizations require a path from each node to
610 the exit node.
611
612 See also Morgan, Figure 3.10, pp. 82-83.
613
614 The current implementation is ugly, not attempting to minimize the
615 number of inserted fake edges. To reduce the number of fake edges
616 to insert, add fake edges from _innermost_ loops containing only
617 nodes not reachable from the exit block. */
618
619 void
620 connect_infinite_loops_to_exit (void)
621 {
622 basic_block unvisited_block = EXIT_BLOCK_PTR;
623 struct depth_first_search_dsS dfs_ds;
624
625 /* Perform depth-first search in the reverse graph to find nodes
626 reachable from the exit block. */
627 flow_dfs_compute_reverse_init (&dfs_ds);
628 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
629
630 /* Repeatedly add fake edges, updating the unreachable nodes. */
631 while (1)
632 {
633 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
634 unvisited_block);
635 if (!unvisited_block)
636 break;
637
638 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
639 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
640 }
641
642 flow_dfs_compute_reverse_finish (&dfs_ds);
643 return;
644 }
645 \f
646 /* Compute reverse top sort order. */
647
648 void
649 flow_reverse_top_sort_order_compute (int *rts_order)
650 {
651 edge_iterator *stack;
652 int sp;
653 int postnum = 0;
654 sbitmap visited;
655
656 /* Allocate stack for back-tracking up CFG. */
657 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
658 sp = 0;
659
660 /* Allocate bitmap to track nodes that have been visited. */
661 visited = sbitmap_alloc (last_basic_block);
662
663 /* None of the nodes in the CFG have been visited yet. */
664 sbitmap_zero (visited);
665
666 /* Push the first edge on to the stack. */
667 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
668
669 while (sp)
670 {
671 edge_iterator ei;
672 basic_block src;
673 basic_block dest;
674
675 /* Look at the edge on the top of the stack. */
676 ei = stack[sp - 1];
677 src = ei_edge (ei)->src;
678 dest = ei_edge (ei)->dest;
679
680 /* Check if the edge destination has been visited yet. */
681 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
682 {
683 /* Mark that we have visited the destination. */
684 SET_BIT (visited, dest->index);
685
686 if (EDGE_COUNT (dest->succs) > 0)
687 /* Since the DEST node has been visited for the first
688 time, check its successors. */
689 stack[sp++] = ei_start (dest->succs);
690 else
691 rts_order[postnum++] = dest->index;
692 }
693 else
694 {
695 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
696 rts_order[postnum++] = src->index;
697
698 if (!ei_one_before_end_p (ei))
699 ei_next (&stack[sp - 1]);
700 else
701 sp--;
702 }
703 }
704
705 free (stack);
706 sbitmap_free (visited);
707 }
708
709 /* Compute the depth first search order and store in the array
710 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
711 RC_ORDER is nonzero, return the reverse completion number for each
712 node. Returns the number of nodes visited. A depth first search
713 tries to get as far away from the starting point as quickly as
714 possible. */
715
716 int
717 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
718 {
719 edge_iterator *stack;
720 int sp;
721 int dfsnum = 0;
722 int rcnum = n_basic_blocks - 1;
723 sbitmap visited;
724
725 /* Allocate stack for back-tracking up CFG. */
726 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
727 sp = 0;
728
729 /* Allocate bitmap to track nodes that have been visited. */
730 visited = sbitmap_alloc (last_basic_block);
731
732 /* None of the nodes in the CFG have been visited yet. */
733 sbitmap_zero (visited);
734
735 /* Push the first edge on to the stack. */
736 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
737
738 while (sp)
739 {
740 edge_iterator ei;
741 basic_block src;
742 basic_block dest;
743
744 /* Look at the edge on the top of the stack. */
745 ei = stack[sp - 1];
746 src = ei_edge (ei)->src;
747 dest = ei_edge (ei)->dest;
748
749 /* Check if the edge destination has been visited yet. */
750 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
751 {
752 /* Mark that we have visited the destination. */
753 SET_BIT (visited, dest->index);
754
755 if (dfs_order)
756 dfs_order[dfsnum] = dest->index;
757
758 dfsnum++;
759
760 if (EDGE_COUNT (dest->succs) > 0)
761 /* Since the DEST node has been visited for the first
762 time, check its successors. */
763 stack[sp++] = ei_start (dest->succs);
764 else if (rc_order)
765 /* There are no successors for the DEST node so assign
766 its reverse completion number. */
767 rc_order[rcnum--] = dest->index;
768 }
769 else
770 {
771 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
772 && rc_order)
773 /* There are no more successors for the SRC node
774 so assign its reverse completion number. */
775 rc_order[rcnum--] = src->index;
776
777 if (!ei_one_before_end_p (ei))
778 ei_next (&stack[sp - 1]);
779 else
780 sp--;
781 }
782 }
783
784 free (stack);
785 sbitmap_free (visited);
786
787 /* The number of nodes visited should be the number of blocks. */
788 gcc_assert (dfsnum == n_basic_blocks);
789
790 return dfsnum;
791 }
792
793 /* Compute the depth first search order on the _reverse_ graph and
794 store in the array DFS_ORDER, marking the nodes visited in VISITED.
795 Returns the number of nodes visited.
796
797 The computation is split into three pieces:
798
799 flow_dfs_compute_reverse_init () creates the necessary data
800 structures.
801
802 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
803 structures. The block will start the search.
804
805 flow_dfs_compute_reverse_execute () continues (or starts) the
806 search using the block on the top of the stack, stopping when the
807 stack is empty.
808
809 flow_dfs_compute_reverse_finish () destroys the necessary data
810 structures.
811
812 Thus, the user will probably call ..._init(), call ..._add_bb() to
813 add a beginning basic block to the stack, call ..._execute(),
814 possibly add another bb to the stack and again call ..._execute(),
815 ..., and finally call _finish(). */
816
817 /* Initialize the data structures used for depth-first search on the
818 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
819 added to the basic block stack. DATA is the current depth-first
820 search context. If INITIALIZE_STACK is nonzero, there is an
821 element on the stack. */
822
823 static void
824 flow_dfs_compute_reverse_init (depth_first_search_ds data)
825 {
826 /* Allocate stack for back-tracking up CFG. */
827 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
828 * sizeof (basic_block));
829 data->sp = 0;
830
831 /* Allocate bitmap to track nodes that have been visited. */
832 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
833
834 /* None of the nodes in the CFG have been visited yet. */
835 sbitmap_zero (data->visited_blocks);
836
837 return;
838 }
839
840 /* Add the specified basic block to the top of the dfs data
841 structures. When the search continues, it will start at the
842 block. */
843
844 static void
845 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
846 {
847 data->stack[data->sp++] = bb;
848 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
849 }
850
851 /* Continue the depth-first search through the reverse graph starting with the
852 block at the stack's top and ending when the stack is empty. Visited nodes
853 are marked. Returns an unvisited basic block, or NULL if there is none
854 available. */
855
856 static basic_block
857 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
858 basic_block last_unvisited)
859 {
860 basic_block bb;
861 edge e;
862 edge_iterator ei;
863
864 while (data->sp > 0)
865 {
866 bb = data->stack[--data->sp];
867
868 /* Perform depth-first search on adjacent vertices. */
869 FOR_EACH_EDGE (e, ei, bb->preds)
870 if (!TEST_BIT (data->visited_blocks,
871 e->src->index - (INVALID_BLOCK + 1)))
872 flow_dfs_compute_reverse_add_bb (data, e->src);
873 }
874
875 /* Determine if there are unvisited basic blocks. */
876 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
877 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
878 return bb;
879
880 return NULL;
881 }
882
883 /* Destroy the data structures needed for depth-first search on the
884 reverse graph. */
885
886 static void
887 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
888 {
889 free (data->stack);
890 sbitmap_free (data->visited_blocks);
891 }
892
893 /* Performs dfs search from BB over vertices satisfying PREDICATE;
894 if REVERSE, go against direction of edges. Returns number of blocks
895 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
896 int
897 dfs_enumerate_from (basic_block bb, int reverse,
898 bool (*predicate) (basic_block, void *),
899 basic_block *rslt, int rslt_max, void *data)
900 {
901 basic_block *st, lbb;
902 int sp = 0, tv = 0;
903
904 st = xcalloc (rslt_max, sizeof (basic_block));
905 rslt[tv++] = st[sp++] = bb;
906 bb->flags |= BB_VISITED;
907 while (sp)
908 {
909 edge e;
910 edge_iterator ei;
911 lbb = st[--sp];
912 if (reverse)
913 {
914 FOR_EACH_EDGE (e, ei, lbb->preds)
915 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
916 {
917 gcc_assert (tv != rslt_max);
918 rslt[tv++] = st[sp++] = e->src;
919 e->src->flags |= BB_VISITED;
920 }
921 }
922 else
923 {
924 FOR_EACH_EDGE (e, ei, lbb->succs)
925 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
926 {
927 gcc_assert (tv != rslt_max);
928 rslt[tv++] = st[sp++] = e->dest;
929 e->dest->flags |= BB_VISITED;
930 }
931 }
932 }
933 free (st);
934 for (sp = 0; sp < tv; sp++)
935 rslt[sp]->flags &= ~BB_VISITED;
936 return tv;
937 }
938
939
940 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
941
942 This algorithm can be found in Timothy Harvey's PhD thesis, at
943 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
944 dominance algorithms.
945
946 First, we identify each join point, j (any node with more than one
947 incoming edge is a join point).
948
949 We then examine each predecessor, p, of j and walk up the dominator tree
950 starting at p.
951
952 We stop the walk when we reach j's immediate dominator - j is in the
953 dominance frontier of each of the nodes in the walk, except for j's
954 immediate dominator. Intuitively, all of the rest of j's dominators are
955 shared by j's predecessors as well.
956 Since they dominate j, they will not have j in their dominance frontiers.
957
958 The number of nodes touched by this algorithm is equal to the size
959 of the dominance frontiers, no more, no less.
960 */
961
962
963 static void
964 compute_dominance_frontiers_1 (bitmap *frontiers)
965 {
966 edge p;
967 edge_iterator ei;
968 basic_block b;
969 FOR_EACH_BB (b)
970 {
971 if (EDGE_COUNT (b->preds) >= 2)
972 {
973 FOR_EACH_EDGE (p, ei, b->preds)
974 {
975 basic_block runner = p->src;
976 basic_block domsb;
977 if (runner == ENTRY_BLOCK_PTR)
978 continue;
979
980 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
981 while (runner != domsb)
982 {
983 bitmap_set_bit (frontiers[runner->index],
984 b->index);
985 runner = get_immediate_dominator (CDI_DOMINATORS,
986 runner);
987 }
988 }
989 }
990 }
991 }
992
993
994 void
995 compute_dominance_frontiers (bitmap *frontiers)
996 {
997 timevar_push (TV_DOM_FRONTIERS);
998
999 compute_dominance_frontiers_1 (frontiers);
1000
1001 timevar_pop (TV_DOM_FRONTIERS);
1002 }
1003
This page took 0.084436 seconds and 6 git commands to generate.