]> gcc.gnu.org Git - gcc.git/blob - gcc/c-typeck.c
* tree-ssa-phiopt.c: Fix comments.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "tree-gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_argpass_nonproto,
53 ic_assign,
54 ic_init,
55 ic_return
56 };
57
58 /* The level of nesting inside "__alignof__". */
59 int in_alignof;
60
61 /* The level of nesting inside "sizeof". */
62 int in_sizeof;
63
64 /* The level of nesting inside "typeof". */
65 int in_typeof;
66
67 struct c_label_context *label_context_stack;
68
69 /* Nonzero if we've already printed a "missing braces around initializer"
70 message within this initializer. */
71 static int missing_braces_mentioned;
72
73 static int require_constant_value;
74 static int require_constant_elements;
75
76 static tree qualify_type (tree, tree);
77 static int tagged_types_tu_compatible_p (tree, tree);
78 static int comp_target_types (tree, tree, int);
79 static int function_types_compatible_p (tree, tree);
80 static int type_lists_compatible_p (tree, tree);
81 static tree decl_constant_value_for_broken_optimization (tree);
82 static tree default_function_array_conversion (tree);
83 static tree lookup_field (tree, tree);
84 static tree convert_arguments (tree, tree, tree, tree);
85 static tree pointer_diff (tree, tree);
86 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
87 int);
88 static tree valid_compound_expr_initializer (tree, tree);
89 static void push_string (const char *);
90 static void push_member_name (tree);
91 static void push_array_bounds (int);
92 static int spelling_length (void);
93 static char *print_spelling (char *);
94 static void warning_init (const char *);
95 static tree digest_init (tree, tree, bool, int);
96 static void output_init_element (tree, bool, tree, tree, int);
97 static void output_pending_init_elements (int);
98 static int set_designator (int);
99 static void push_range_stack (tree);
100 static void add_pending_init (tree, tree);
101 static void set_nonincremental_init (void);
102 static void set_nonincremental_init_from_string (tree);
103 static tree find_init_member (tree);
104 static void readonly_error (tree, enum lvalue_use);
105 static int lvalue_or_else (tree, enum lvalue_use);
106 static int lvalue_p (tree);
107 static void record_maybe_used_decl (tree);
108 \f
109 /* Do `exp = require_complete_type (exp);' to make sure exp
110 does not have an incomplete type. (That includes void types.) */
111
112 tree
113 require_complete_type (tree value)
114 {
115 tree type = TREE_TYPE (value);
116
117 if (value == error_mark_node || type == error_mark_node)
118 return error_mark_node;
119
120 /* First, detect a valid value with a complete type. */
121 if (COMPLETE_TYPE_P (type))
122 return value;
123
124 c_incomplete_type_error (value, type);
125 return error_mark_node;
126 }
127
128 /* Print an error message for invalid use of an incomplete type.
129 VALUE is the expression that was used (or 0 if that isn't known)
130 and TYPE is the type that was invalid. */
131
132 void
133 c_incomplete_type_error (tree value, tree type)
134 {
135 const char *type_code_string;
136
137 /* Avoid duplicate error message. */
138 if (TREE_CODE (type) == ERROR_MARK)
139 return;
140
141 if (value != 0 && (TREE_CODE (value) == VAR_DECL
142 || TREE_CODE (value) == PARM_DECL))
143 error ("%qD has an incomplete type", value);
144 else
145 {
146 retry:
147 /* We must print an error message. Be clever about what it says. */
148
149 switch (TREE_CODE (type))
150 {
151 case RECORD_TYPE:
152 type_code_string = "struct";
153 break;
154
155 case UNION_TYPE:
156 type_code_string = "union";
157 break;
158
159 case ENUMERAL_TYPE:
160 type_code_string = "enum";
161 break;
162
163 case VOID_TYPE:
164 error ("invalid use of void expression");
165 return;
166
167 case ARRAY_TYPE:
168 if (TYPE_DOMAIN (type))
169 {
170 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
171 {
172 error ("invalid use of flexible array member");
173 return;
174 }
175 type = TREE_TYPE (type);
176 goto retry;
177 }
178 error ("invalid use of array with unspecified bounds");
179 return;
180
181 default:
182 gcc_unreachable ();
183 }
184
185 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
186 error ("invalid use of undefined type %<%s %E%>",
187 type_code_string, TYPE_NAME (type));
188 else
189 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
190 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
191 }
192 }
193
194 /* Given a type, apply default promotions wrt unnamed function
195 arguments and return the new type. */
196
197 tree
198 c_type_promotes_to (tree type)
199 {
200 if (TYPE_MAIN_VARIANT (type) == float_type_node)
201 return double_type_node;
202
203 if (c_promoting_integer_type_p (type))
204 {
205 /* Preserve unsignedness if not really getting any wider. */
206 if (TYPE_UNSIGNED (type)
207 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
208 return unsigned_type_node;
209 return integer_type_node;
210 }
211
212 return type;
213 }
214
215 /* Return a variant of TYPE which has all the type qualifiers of LIKE
216 as well as those of TYPE. */
217
218 static tree
219 qualify_type (tree type, tree like)
220 {
221 return c_build_qualified_type (type,
222 TYPE_QUALS (type) | TYPE_QUALS (like));
223 }
224 \f
225 /* Return the composite type of two compatible types.
226
227 We assume that comptypes has already been done and returned
228 nonzero; if that isn't so, this may crash. In particular, we
229 assume that qualifiers match. */
230
231 tree
232 composite_type (tree t1, tree t2)
233 {
234 enum tree_code code1;
235 enum tree_code code2;
236 tree attributes;
237
238 /* Save time if the two types are the same. */
239
240 if (t1 == t2) return t1;
241
242 /* If one type is nonsense, use the other. */
243 if (t1 == error_mark_node)
244 return t2;
245 if (t2 == error_mark_node)
246 return t1;
247
248 code1 = TREE_CODE (t1);
249 code2 = TREE_CODE (t2);
250
251 /* Merge the attributes. */
252 attributes = targetm.merge_type_attributes (t1, t2);
253
254 /* If one is an enumerated type and the other is the compatible
255 integer type, the composite type might be either of the two
256 (DR#013 question 3). For consistency, use the enumerated type as
257 the composite type. */
258
259 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
260 return t1;
261 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
262 return t2;
263
264 gcc_assert (code1 == code2);
265
266 switch (code1)
267 {
268 case POINTER_TYPE:
269 /* For two pointers, do this recursively on the target type. */
270 {
271 tree pointed_to_1 = TREE_TYPE (t1);
272 tree pointed_to_2 = TREE_TYPE (t2);
273 tree target = composite_type (pointed_to_1, pointed_to_2);
274 t1 = build_pointer_type (target);
275 t1 = build_type_attribute_variant (t1, attributes);
276 return qualify_type (t1, t2);
277 }
278
279 case ARRAY_TYPE:
280 {
281 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
282 int quals;
283 tree unqual_elt;
284
285 /* We should not have any type quals on arrays at all. */
286 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
287
288 /* Save space: see if the result is identical to one of the args. */
289 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
290 return build_type_attribute_variant (t1, attributes);
291 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
292 return build_type_attribute_variant (t2, attributes);
293
294 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
295 return build_type_attribute_variant (t1, attributes);
296 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
297 return build_type_attribute_variant (t2, attributes);
298
299 /* Merge the element types, and have a size if either arg has
300 one. We may have qualifiers on the element types. To set
301 up TYPE_MAIN_VARIANT correctly, we need to form the
302 composite of the unqualified types and add the qualifiers
303 back at the end. */
304 quals = TYPE_QUALS (strip_array_types (elt));
305 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
306 t1 = build_array_type (unqual_elt,
307 TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
308 t1 = c_build_qualified_type (t1, quals);
309 return build_type_attribute_variant (t1, attributes);
310 }
311
312 case FUNCTION_TYPE:
313 /* Function types: prefer the one that specified arg types.
314 If both do, merge the arg types. Also merge the return types. */
315 {
316 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
317 tree p1 = TYPE_ARG_TYPES (t1);
318 tree p2 = TYPE_ARG_TYPES (t2);
319 int len;
320 tree newargs, n;
321 int i;
322
323 /* Save space: see if the result is identical to one of the args. */
324 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
325 return build_type_attribute_variant (t1, attributes);
326 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
327 return build_type_attribute_variant (t2, attributes);
328
329 /* Simple way if one arg fails to specify argument types. */
330 if (TYPE_ARG_TYPES (t1) == 0)
331 {
332 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
333 t1 = build_type_attribute_variant (t1, attributes);
334 return qualify_type (t1, t2);
335 }
336 if (TYPE_ARG_TYPES (t2) == 0)
337 {
338 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
339 t1 = build_type_attribute_variant (t1, attributes);
340 return qualify_type (t1, t2);
341 }
342
343 /* If both args specify argument types, we must merge the two
344 lists, argument by argument. */
345 /* Tell global_bindings_p to return false so that variable_size
346 doesn't abort on VLAs in parameter types. */
347 c_override_global_bindings_to_false = true;
348
349 len = list_length (p1);
350 newargs = 0;
351
352 for (i = 0; i < len; i++)
353 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
354
355 n = newargs;
356
357 for (; p1;
358 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
359 {
360 /* A null type means arg type is not specified.
361 Take whatever the other function type has. */
362 if (TREE_VALUE (p1) == 0)
363 {
364 TREE_VALUE (n) = TREE_VALUE (p2);
365 goto parm_done;
366 }
367 if (TREE_VALUE (p2) == 0)
368 {
369 TREE_VALUE (n) = TREE_VALUE (p1);
370 goto parm_done;
371 }
372
373 /* Given wait (union {union wait *u; int *i} *)
374 and wait (union wait *),
375 prefer union wait * as type of parm. */
376 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
377 && TREE_VALUE (p1) != TREE_VALUE (p2))
378 {
379 tree memb;
380 tree mv2 = TREE_VALUE (p2);
381 if (mv2 && mv2 != error_mark_node
382 && TREE_CODE (mv2) != ARRAY_TYPE)
383 mv2 = TYPE_MAIN_VARIANT (mv2);
384 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
385 memb; memb = TREE_CHAIN (memb))
386 {
387 tree mv3 = TREE_TYPE (memb);
388 if (mv3 && mv3 != error_mark_node
389 && TREE_CODE (mv3) != ARRAY_TYPE)
390 mv3 = TYPE_MAIN_VARIANT (mv3);
391 if (comptypes (mv3, mv2))
392 {
393 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
394 TREE_VALUE (p2));
395 if (pedantic)
396 pedwarn ("function types not truly compatible in ISO C");
397 goto parm_done;
398 }
399 }
400 }
401 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
402 && TREE_VALUE (p2) != TREE_VALUE (p1))
403 {
404 tree memb;
405 tree mv1 = TREE_VALUE (p1);
406 if (mv1 && mv1 != error_mark_node
407 && TREE_CODE (mv1) != ARRAY_TYPE)
408 mv1 = TYPE_MAIN_VARIANT (mv1);
409 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
410 memb; memb = TREE_CHAIN (memb))
411 {
412 tree mv3 = TREE_TYPE (memb);
413 if (mv3 && mv3 != error_mark_node
414 && TREE_CODE (mv3) != ARRAY_TYPE)
415 mv3 = TYPE_MAIN_VARIANT (mv3);
416 if (comptypes (mv3, mv1))
417 {
418 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
419 TREE_VALUE (p1));
420 if (pedantic)
421 pedwarn ("function types not truly compatible in ISO C");
422 goto parm_done;
423 }
424 }
425 }
426 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
427 parm_done: ;
428 }
429
430 c_override_global_bindings_to_false = false;
431 t1 = build_function_type (valtype, newargs);
432 t1 = qualify_type (t1, t2);
433 /* ... falls through ... */
434 }
435
436 default:
437 return build_type_attribute_variant (t1, attributes);
438 }
439
440 }
441
442 /* Return the type of a conditional expression between pointers to
443 possibly differently qualified versions of compatible types.
444
445 We assume that comp_target_types has already been done and returned
446 nonzero; if that isn't so, this may crash. */
447
448 static tree
449 common_pointer_type (tree t1, tree t2)
450 {
451 tree attributes;
452 tree pointed_to_1, mv1;
453 tree pointed_to_2, mv2;
454 tree target;
455
456 /* Save time if the two types are the same. */
457
458 if (t1 == t2) return t1;
459
460 /* If one type is nonsense, use the other. */
461 if (t1 == error_mark_node)
462 return t2;
463 if (t2 == error_mark_node)
464 return t1;
465
466 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
467 && TREE_CODE (t2) == POINTER_TYPE);
468
469 /* Merge the attributes. */
470 attributes = targetm.merge_type_attributes (t1, t2);
471
472 /* Find the composite type of the target types, and combine the
473 qualifiers of the two types' targets. Do not lose qualifiers on
474 array element types by taking the TYPE_MAIN_VARIANT. */
475 mv1 = pointed_to_1 = TREE_TYPE (t1);
476 mv2 = pointed_to_2 = TREE_TYPE (t2);
477 if (TREE_CODE (mv1) != ARRAY_TYPE)
478 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
479 if (TREE_CODE (mv2) != ARRAY_TYPE)
480 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
481 target = composite_type (mv1, mv2);
482 t1 = build_pointer_type (c_build_qualified_type
483 (target,
484 TYPE_QUALS (pointed_to_1) |
485 TYPE_QUALS (pointed_to_2)));
486 return build_type_attribute_variant (t1, attributes);
487 }
488
489 /* Return the common type for two arithmetic types under the usual
490 arithmetic conversions. The default conversions have already been
491 applied, and enumerated types converted to their compatible integer
492 types. The resulting type is unqualified and has no attributes.
493
494 This is the type for the result of most arithmetic operations
495 if the operands have the given two types. */
496
497 static tree
498 c_common_type (tree t1, tree t2)
499 {
500 enum tree_code code1;
501 enum tree_code code2;
502
503 /* If one type is nonsense, use the other. */
504 if (t1 == error_mark_node)
505 return t2;
506 if (t2 == error_mark_node)
507 return t1;
508
509 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
510 t1 = TYPE_MAIN_VARIANT (t1);
511
512 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
513 t2 = TYPE_MAIN_VARIANT (t2);
514
515 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
516 t1 = build_type_attribute_variant (t1, NULL_TREE);
517
518 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
519 t2 = build_type_attribute_variant (t2, NULL_TREE);
520
521 /* Save time if the two types are the same. */
522
523 if (t1 == t2) return t1;
524
525 code1 = TREE_CODE (t1);
526 code2 = TREE_CODE (t2);
527
528 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
529 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
530 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
531 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
532
533 /* If one type is a vector type, return that type. (How the usual
534 arithmetic conversions apply to the vector types extension is not
535 precisely specified.) */
536 if (code1 == VECTOR_TYPE)
537 return t1;
538
539 if (code2 == VECTOR_TYPE)
540 return t2;
541
542 /* If one type is complex, form the common type of the non-complex
543 components, then make that complex. Use T1 or T2 if it is the
544 required type. */
545 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
546 {
547 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
548 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
549 tree subtype = c_common_type (subtype1, subtype2);
550
551 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
552 return t1;
553 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
554 return t2;
555 else
556 return build_complex_type (subtype);
557 }
558
559 /* If only one is real, use it as the result. */
560
561 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
562 return t1;
563
564 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
565 return t2;
566
567 /* Both real or both integers; use the one with greater precision. */
568
569 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
570 return t1;
571 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
572 return t2;
573
574 /* Same precision. Prefer long longs to longs to ints when the
575 same precision, following the C99 rules on integer type rank
576 (which are equivalent to the C90 rules for C90 types). */
577
578 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
579 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
580 return long_long_unsigned_type_node;
581
582 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
583 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
584 {
585 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
586 return long_long_unsigned_type_node;
587 else
588 return long_long_integer_type_node;
589 }
590
591 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
592 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
593 return long_unsigned_type_node;
594
595 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
596 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
597 {
598 /* But preserve unsignedness from the other type,
599 since long cannot hold all the values of an unsigned int. */
600 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
601 return long_unsigned_type_node;
602 else
603 return long_integer_type_node;
604 }
605
606 /* Likewise, prefer long double to double even if same size. */
607 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
608 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
609 return long_double_type_node;
610
611 /* Otherwise prefer the unsigned one. */
612
613 if (TYPE_UNSIGNED (t1))
614 return t1;
615 else
616 return t2;
617 }
618 \f
619 /* Wrapper around c_common_type that is used by c-common.c. ENUMERAL_TYPEs
620 are allowed here and are converted to their compatible integer types. */
621 tree
622 common_type (tree t1, tree t2)
623 {
624 if (TREE_CODE (t1) == ENUMERAL_TYPE)
625 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
626 if (TREE_CODE (t2) == ENUMERAL_TYPE)
627 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
628 return c_common_type (t1, t2);
629 }
630 \f
631 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
632 or various other operations. Return 2 if they are compatible
633 but a warning may be needed if you use them together. */
634
635 int
636 comptypes (tree type1, tree type2)
637 {
638 tree t1 = type1;
639 tree t2 = type2;
640 int attrval, val;
641
642 /* Suppress errors caused by previously reported errors. */
643
644 if (t1 == t2 || !t1 || !t2
645 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
646 return 1;
647
648 /* If either type is the internal version of sizetype, return the
649 language version. */
650 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
651 && TYPE_ORIG_SIZE_TYPE (t1))
652 t1 = TYPE_ORIG_SIZE_TYPE (t1);
653
654 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
655 && TYPE_ORIG_SIZE_TYPE (t2))
656 t2 = TYPE_ORIG_SIZE_TYPE (t2);
657
658
659 /* Enumerated types are compatible with integer types, but this is
660 not transitive: two enumerated types in the same translation unit
661 are compatible with each other only if they are the same type. */
662
663 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
664 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
665 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
666 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
667
668 if (t1 == t2)
669 return 1;
670
671 /* Different classes of types can't be compatible. */
672
673 if (TREE_CODE (t1) != TREE_CODE (t2))
674 return 0;
675
676 /* Qualifiers must match. C99 6.7.3p9 */
677
678 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
679 return 0;
680
681 /* Allow for two different type nodes which have essentially the same
682 definition. Note that we already checked for equality of the type
683 qualifiers (just above). */
684
685 if (TREE_CODE (t1) != ARRAY_TYPE
686 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
687 return 1;
688
689 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
690 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
691 return 0;
692
693 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
694 val = 0;
695
696 switch (TREE_CODE (t1))
697 {
698 case POINTER_TYPE:
699 /* We must give ObjC the first crack at comparing pointers, since
700 protocol qualifiers may be involved. */
701 if (c_dialect_objc () && (val = objc_comptypes (t1, t2, 0)) >= 0)
702 break;
703 /* Do not remove mode or aliasing information. */
704 if (TYPE_MODE (t1) != TYPE_MODE (t2)
705 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
706 break;
707 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
708 ? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
709 break;
710
711 case FUNCTION_TYPE:
712 val = function_types_compatible_p (t1, t2);
713 break;
714
715 case ARRAY_TYPE:
716 {
717 tree d1 = TYPE_DOMAIN (t1);
718 tree d2 = TYPE_DOMAIN (t2);
719 bool d1_variable, d2_variable;
720 bool d1_zero, d2_zero;
721 val = 1;
722
723 /* Target types must match incl. qualifiers. */
724 if (TREE_TYPE (t1) != TREE_TYPE (t2)
725 && 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
726 return 0;
727
728 /* Sizes must match unless one is missing or variable. */
729 if (d1 == 0 || d2 == 0 || d1 == d2)
730 break;
731
732 d1_zero = !TYPE_MAX_VALUE (d1);
733 d2_zero = !TYPE_MAX_VALUE (d2);
734
735 d1_variable = (!d1_zero
736 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
737 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
738 d2_variable = (!d2_zero
739 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
740 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
741
742 if (d1_variable || d2_variable)
743 break;
744 if (d1_zero && d2_zero)
745 break;
746 if (d1_zero || d2_zero
747 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
748 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
749 val = 0;
750
751 break;
752 }
753
754 case RECORD_TYPE:
755 /* We are dealing with two distinct structs. In assorted Objective-C
756 corner cases, however, these can still be deemed equivalent. */
757 if (c_dialect_objc () && objc_comptypes (t1, t2, 0) == 1)
758 val = 1;
759
760 case ENUMERAL_TYPE:
761 case UNION_TYPE:
762 if (val != 1 && !same_translation_unit_p (t1, t2))
763 val = tagged_types_tu_compatible_p (t1, t2);
764 break;
765
766 case VECTOR_TYPE:
767 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
768 && comptypes (TREE_TYPE (t1), TREE_TYPE (t2));
769 break;
770
771 default:
772 break;
773 }
774 return attrval == 2 && val == 1 ? 2 : val;
775 }
776
777 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
778 ignoring their qualifiers. REFLEXIVE is only used by ObjC - set it
779 to 1 or 0 depending if the check of the pointer types is meant to
780 be reflexive or not (typically, assignments are not reflexive,
781 while comparisons are reflexive).
782 */
783
784 static int
785 comp_target_types (tree ttl, tree ttr, int reflexive)
786 {
787 int val;
788 tree mvl, mvr;
789
790 /* Give objc_comptypes a crack at letting these types through. */
791 if ((val = objc_comptypes (ttl, ttr, reflexive)) >= 0)
792 return val;
793
794 /* Do not lose qualifiers on element types of array types that are
795 pointer targets by taking their TYPE_MAIN_VARIANT. */
796 mvl = TREE_TYPE (ttl);
797 mvr = TREE_TYPE (ttr);
798 if (TREE_CODE (mvl) != ARRAY_TYPE)
799 mvl = TYPE_MAIN_VARIANT (mvl);
800 if (TREE_CODE (mvr) != ARRAY_TYPE)
801 mvr = TYPE_MAIN_VARIANT (mvr);
802 val = comptypes (mvl, mvr);
803
804 if (val == 2 && pedantic)
805 pedwarn ("types are not quite compatible");
806 return val;
807 }
808 \f
809 /* Subroutines of `comptypes'. */
810
811 /* Determine whether two trees derive from the same translation unit.
812 If the CONTEXT chain ends in a null, that tree's context is still
813 being parsed, so if two trees have context chains ending in null,
814 they're in the same translation unit. */
815 int
816 same_translation_unit_p (tree t1, tree t2)
817 {
818 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
819 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
820 {
821 case tcc_declaration:
822 t1 = DECL_CONTEXT (t1); break;
823 case tcc_type:
824 t1 = TYPE_CONTEXT (t1); break;
825 case tcc_exceptional:
826 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
827 default: gcc_unreachable ();
828 }
829
830 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
831 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
832 {
833 case tcc_declaration:
834 t2 = DECL_CONTEXT (t2); break;
835 case tcc_type:
836 t2 = TYPE_CONTEXT (t2); break;
837 case tcc_exceptional:
838 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
839 default: gcc_unreachable ();
840 }
841
842 return t1 == t2;
843 }
844
845 /* The C standard says that two structures in different translation
846 units are compatible with each other only if the types of their
847 fields are compatible (among other things). So, consider two copies
848 of this structure: */
849
850 struct tagged_tu_seen {
851 const struct tagged_tu_seen * next;
852 tree t1;
853 tree t2;
854 };
855
856 /* Can they be compatible with each other? We choose to break the
857 recursion by allowing those types to be compatible. */
858
859 static const struct tagged_tu_seen * tagged_tu_seen_base;
860
861 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
862 compatible. If the two types are not the same (which has been
863 checked earlier), this can only happen when multiple translation
864 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
865 rules. */
866
867 static int
868 tagged_types_tu_compatible_p (tree t1, tree t2)
869 {
870 tree s1, s2;
871 bool needs_warning = false;
872
873 /* We have to verify that the tags of the types are the same. This
874 is harder than it looks because this may be a typedef, so we have
875 to go look at the original type. It may even be a typedef of a
876 typedef...
877 In the case of compiler-created builtin structs the TYPE_DECL
878 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
879 while (TYPE_NAME (t1)
880 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
881 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
882 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
883
884 while (TYPE_NAME (t2)
885 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
886 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
887 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
888
889 /* C90 didn't have the requirement that the two tags be the same. */
890 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
891 return 0;
892
893 /* C90 didn't say what happened if one or both of the types were
894 incomplete; we choose to follow C99 rules here, which is that they
895 are compatible. */
896 if (TYPE_SIZE (t1) == NULL
897 || TYPE_SIZE (t2) == NULL)
898 return 1;
899
900 {
901 const struct tagged_tu_seen * tts_i;
902 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
903 if (tts_i->t1 == t1 && tts_i->t2 == t2)
904 return 1;
905 }
906
907 switch (TREE_CODE (t1))
908 {
909 case ENUMERAL_TYPE:
910 {
911
912 /* Speed up the case where the type values are in the same order. */
913 tree tv1 = TYPE_VALUES (t1);
914 tree tv2 = TYPE_VALUES (t2);
915
916 if (tv1 == tv2)
917 return 1;
918
919 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
920 {
921 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
922 break;
923 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
924 return 0;
925 }
926
927 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
928 return 1;
929 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
930 return 0;
931
932 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
933 return 0;
934
935 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
936 {
937 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
938 if (s2 == NULL
939 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
940 return 0;
941 }
942 return 1;
943 }
944
945 case UNION_TYPE:
946 {
947 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
948 return 0;
949
950 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
951 {
952 bool ok = false;
953 struct tagged_tu_seen tts;
954
955 tts.next = tagged_tu_seen_base;
956 tts.t1 = t1;
957 tts.t2 = t2;
958 tagged_tu_seen_base = &tts;
959
960 if (DECL_NAME (s1) != NULL)
961 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
962 if (DECL_NAME (s1) == DECL_NAME (s2))
963 {
964 int result;
965 result = comptypes (TREE_TYPE (s1), TREE_TYPE (s2));
966 if (result == 0)
967 break;
968 if (result == 2)
969 needs_warning = true;
970
971 if (TREE_CODE (s1) == FIELD_DECL
972 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
973 DECL_FIELD_BIT_OFFSET (s2)) != 1)
974 break;
975
976 ok = true;
977 break;
978 }
979 tagged_tu_seen_base = tts.next;
980 if (!ok)
981 return 0;
982 }
983 return needs_warning ? 2 : 1;
984 }
985
986 case RECORD_TYPE:
987 {
988 struct tagged_tu_seen tts;
989
990 tts.next = tagged_tu_seen_base;
991 tts.t1 = t1;
992 tts.t2 = t2;
993 tagged_tu_seen_base = &tts;
994
995 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
996 s1 && s2;
997 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
998 {
999 int result;
1000 if (TREE_CODE (s1) != TREE_CODE (s2)
1001 || DECL_NAME (s1) != DECL_NAME (s2))
1002 break;
1003 result = comptypes (TREE_TYPE (s1), TREE_TYPE (s2));
1004 if (result == 0)
1005 break;
1006 if (result == 2)
1007 needs_warning = true;
1008
1009 if (TREE_CODE (s1) == FIELD_DECL
1010 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1011 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1012 break;
1013 }
1014 tagged_tu_seen_base = tts.next;
1015 if (s1 && s2)
1016 return 0;
1017 return needs_warning ? 2 : 1;
1018 }
1019
1020 default:
1021 gcc_unreachable ();
1022 }
1023 }
1024
1025 /* Return 1 if two function types F1 and F2 are compatible.
1026 If either type specifies no argument types,
1027 the other must specify a fixed number of self-promoting arg types.
1028 Otherwise, if one type specifies only the number of arguments,
1029 the other must specify that number of self-promoting arg types.
1030 Otherwise, the argument types must match. */
1031
1032 static int
1033 function_types_compatible_p (tree f1, tree f2)
1034 {
1035 tree args1, args2;
1036 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1037 int val = 1;
1038 int val1;
1039 tree ret1, ret2;
1040
1041 ret1 = TREE_TYPE (f1);
1042 ret2 = TREE_TYPE (f2);
1043
1044 /* 'volatile' qualifiers on a function's return type used to mean
1045 the function is noreturn. */
1046 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1047 pedwarn ("function return types not compatible due to %<volatile%>");
1048 if (TYPE_VOLATILE (ret1))
1049 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1050 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1051 if (TYPE_VOLATILE (ret2))
1052 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1053 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1054 val = comptypes (ret1, ret2);
1055 if (val == 0)
1056 return 0;
1057
1058 args1 = TYPE_ARG_TYPES (f1);
1059 args2 = TYPE_ARG_TYPES (f2);
1060
1061 /* An unspecified parmlist matches any specified parmlist
1062 whose argument types don't need default promotions. */
1063
1064 if (args1 == 0)
1065 {
1066 if (!self_promoting_args_p (args2))
1067 return 0;
1068 /* If one of these types comes from a non-prototype fn definition,
1069 compare that with the other type's arglist.
1070 If they don't match, ask for a warning (but no error). */
1071 if (TYPE_ACTUAL_ARG_TYPES (f1)
1072 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1073 val = 2;
1074 return val;
1075 }
1076 if (args2 == 0)
1077 {
1078 if (!self_promoting_args_p (args1))
1079 return 0;
1080 if (TYPE_ACTUAL_ARG_TYPES (f2)
1081 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1082 val = 2;
1083 return val;
1084 }
1085
1086 /* Both types have argument lists: compare them and propagate results. */
1087 val1 = type_lists_compatible_p (args1, args2);
1088 return val1 != 1 ? val1 : val;
1089 }
1090
1091 /* Check two lists of types for compatibility,
1092 returning 0 for incompatible, 1 for compatible,
1093 or 2 for compatible with warning. */
1094
1095 static int
1096 type_lists_compatible_p (tree args1, tree args2)
1097 {
1098 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1099 int val = 1;
1100 int newval = 0;
1101
1102 while (1)
1103 {
1104 tree a1, mv1, a2, mv2;
1105 if (args1 == 0 && args2 == 0)
1106 return val;
1107 /* If one list is shorter than the other,
1108 they fail to match. */
1109 if (args1 == 0 || args2 == 0)
1110 return 0;
1111 mv1 = a1 = TREE_VALUE (args1);
1112 mv2 = a2 = TREE_VALUE (args2);
1113 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1114 mv1 = TYPE_MAIN_VARIANT (mv1);
1115 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1116 mv2 = TYPE_MAIN_VARIANT (mv2);
1117 /* A null pointer instead of a type
1118 means there is supposed to be an argument
1119 but nothing is specified about what type it has.
1120 So match anything that self-promotes. */
1121 if (a1 == 0)
1122 {
1123 if (c_type_promotes_to (a2) != a2)
1124 return 0;
1125 }
1126 else if (a2 == 0)
1127 {
1128 if (c_type_promotes_to (a1) != a1)
1129 return 0;
1130 }
1131 /* If one of the lists has an error marker, ignore this arg. */
1132 else if (TREE_CODE (a1) == ERROR_MARK
1133 || TREE_CODE (a2) == ERROR_MARK)
1134 ;
1135 else if (!(newval = comptypes (mv1, mv2)))
1136 {
1137 /* Allow wait (union {union wait *u; int *i} *)
1138 and wait (union wait *) to be compatible. */
1139 if (TREE_CODE (a1) == UNION_TYPE
1140 && (TYPE_NAME (a1) == 0
1141 || TYPE_TRANSPARENT_UNION (a1))
1142 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1143 && tree_int_cst_equal (TYPE_SIZE (a1),
1144 TYPE_SIZE (a2)))
1145 {
1146 tree memb;
1147 for (memb = TYPE_FIELDS (a1);
1148 memb; memb = TREE_CHAIN (memb))
1149 {
1150 tree mv3 = TREE_TYPE (memb);
1151 if (mv3 && mv3 != error_mark_node
1152 && TREE_CODE (mv3) != ARRAY_TYPE)
1153 mv3 = TYPE_MAIN_VARIANT (mv3);
1154 if (comptypes (mv3, mv2))
1155 break;
1156 }
1157 if (memb == 0)
1158 return 0;
1159 }
1160 else if (TREE_CODE (a2) == UNION_TYPE
1161 && (TYPE_NAME (a2) == 0
1162 || TYPE_TRANSPARENT_UNION (a2))
1163 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1164 && tree_int_cst_equal (TYPE_SIZE (a2),
1165 TYPE_SIZE (a1)))
1166 {
1167 tree memb;
1168 for (memb = TYPE_FIELDS (a2);
1169 memb; memb = TREE_CHAIN (memb))
1170 {
1171 tree mv3 = TREE_TYPE (memb);
1172 if (mv3 && mv3 != error_mark_node
1173 && TREE_CODE (mv3) != ARRAY_TYPE)
1174 mv3 = TYPE_MAIN_VARIANT (mv3);
1175 if (comptypes (mv3, mv1))
1176 break;
1177 }
1178 if (memb == 0)
1179 return 0;
1180 }
1181 else
1182 return 0;
1183 }
1184
1185 /* comptypes said ok, but record if it said to warn. */
1186 if (newval > val)
1187 val = newval;
1188
1189 args1 = TREE_CHAIN (args1);
1190 args2 = TREE_CHAIN (args2);
1191 }
1192 }
1193 \f
1194 /* Compute the size to increment a pointer by. */
1195
1196 static tree
1197 c_size_in_bytes (tree type)
1198 {
1199 enum tree_code code = TREE_CODE (type);
1200
1201 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1202 return size_one_node;
1203
1204 if (!COMPLETE_OR_VOID_TYPE_P (type))
1205 {
1206 error ("arithmetic on pointer to an incomplete type");
1207 return size_one_node;
1208 }
1209
1210 /* Convert in case a char is more than one unit. */
1211 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1212 size_int (TYPE_PRECISION (char_type_node)
1213 / BITS_PER_UNIT));
1214 }
1215 \f
1216 /* Return either DECL or its known constant value (if it has one). */
1217
1218 tree
1219 decl_constant_value (tree decl)
1220 {
1221 if (/* Don't change a variable array bound or initial value to a constant
1222 in a place where a variable is invalid. Note that DECL_INITIAL
1223 isn't valid for a PARM_DECL. */
1224 current_function_decl != 0
1225 && TREE_CODE (decl) != PARM_DECL
1226 && !TREE_THIS_VOLATILE (decl)
1227 && TREE_READONLY (decl)
1228 && DECL_INITIAL (decl) != 0
1229 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1230 /* This is invalid if initial value is not constant.
1231 If it has either a function call, a memory reference,
1232 or a variable, then re-evaluating it could give different results. */
1233 && TREE_CONSTANT (DECL_INITIAL (decl))
1234 /* Check for cases where this is sub-optimal, even though valid. */
1235 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1236 return DECL_INITIAL (decl);
1237 return decl;
1238 }
1239
1240 /* Return either DECL or its known constant value (if it has one), but
1241 return DECL if pedantic or DECL has mode BLKmode. This is for
1242 bug-compatibility with the old behavior of decl_constant_value
1243 (before GCC 3.0); every use of this function is a bug and it should
1244 be removed before GCC 3.1. It is not appropriate to use pedantic
1245 in a way that affects optimization, and BLKmode is probably not the
1246 right test for avoiding misoptimizations either. */
1247
1248 static tree
1249 decl_constant_value_for_broken_optimization (tree decl)
1250 {
1251 if (pedantic || DECL_MODE (decl) == BLKmode)
1252 return decl;
1253 else
1254 return decl_constant_value (decl);
1255 }
1256
1257
1258 /* Perform the default conversion of arrays and functions to pointers.
1259 Return the result of converting EXP. For any other expression, just
1260 return EXP. */
1261
1262 static tree
1263 default_function_array_conversion (tree exp)
1264 {
1265 tree orig_exp;
1266 tree type = TREE_TYPE (exp);
1267 enum tree_code code = TREE_CODE (type);
1268 int not_lvalue = 0;
1269
1270 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
1271 an lvalue.
1272
1273 Do not use STRIP_NOPS here! It will remove conversions from pointer
1274 to integer and cause infinite recursion. */
1275 orig_exp = exp;
1276 while (TREE_CODE (exp) == NON_LVALUE_EXPR
1277 || (TREE_CODE (exp) == NOP_EXPR
1278 && TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
1279 {
1280 if (TREE_CODE (exp) == NON_LVALUE_EXPR)
1281 not_lvalue = 1;
1282 exp = TREE_OPERAND (exp, 0);
1283 }
1284
1285 if (TREE_NO_WARNING (orig_exp))
1286 TREE_NO_WARNING (exp) = 1;
1287
1288 if (code == FUNCTION_TYPE)
1289 {
1290 return build_unary_op (ADDR_EXPR, exp, 0);
1291 }
1292 if (code == ARRAY_TYPE)
1293 {
1294 tree adr;
1295 tree restype = TREE_TYPE (type);
1296 tree ptrtype;
1297 int constp = 0;
1298 int volatilep = 0;
1299 int lvalue_array_p;
1300
1301 if (REFERENCE_CLASS_P (exp) || DECL_P (exp))
1302 {
1303 constp = TREE_READONLY (exp);
1304 volatilep = TREE_THIS_VOLATILE (exp);
1305 }
1306
1307 if (TYPE_QUALS (type) || constp || volatilep)
1308 restype
1309 = c_build_qualified_type (restype,
1310 TYPE_QUALS (type)
1311 | (constp * TYPE_QUAL_CONST)
1312 | (volatilep * TYPE_QUAL_VOLATILE));
1313
1314 if (TREE_CODE (exp) == INDIRECT_REF)
1315 return convert (build_pointer_type (restype),
1316 TREE_OPERAND (exp, 0));
1317
1318 if (TREE_CODE (exp) == COMPOUND_EXPR)
1319 {
1320 tree op1 = default_conversion (TREE_OPERAND (exp, 1));
1321 return build2 (COMPOUND_EXPR, TREE_TYPE (op1),
1322 TREE_OPERAND (exp, 0), op1);
1323 }
1324
1325 lvalue_array_p = !not_lvalue && lvalue_p (exp);
1326 if (!flag_isoc99 && !lvalue_array_p)
1327 {
1328 /* Before C99, non-lvalue arrays do not decay to pointers.
1329 Normally, using such an array would be invalid; but it can
1330 be used correctly inside sizeof or as a statement expression.
1331 Thus, do not give an error here; an error will result later. */
1332 return exp;
1333 }
1334
1335 ptrtype = build_pointer_type (restype);
1336
1337 if (TREE_CODE (exp) == VAR_DECL)
1338 {
1339 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1340 ADDR_EXPR because it's the best way of representing what
1341 happens in C when we take the address of an array and place
1342 it in a pointer to the element type. */
1343 adr = build1 (ADDR_EXPR, ptrtype, exp);
1344 if (!c_mark_addressable (exp))
1345 return error_mark_node;
1346 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1347 return adr;
1348 }
1349 /* This way is better for a COMPONENT_REF since it can
1350 simplify the offset for a component. */
1351 adr = build_unary_op (ADDR_EXPR, exp, 1);
1352 return convert (ptrtype, adr);
1353 }
1354 return exp;
1355 }
1356
1357
1358 /* EXP is an expression of integer type. Apply the integer promotions
1359 to it and return the promoted value. */
1360
1361 tree
1362 perform_integral_promotions (tree exp)
1363 {
1364 tree type = TREE_TYPE (exp);
1365 enum tree_code code = TREE_CODE (type);
1366
1367 gcc_assert (INTEGRAL_TYPE_P (type));
1368
1369 /* Normally convert enums to int,
1370 but convert wide enums to something wider. */
1371 if (code == ENUMERAL_TYPE)
1372 {
1373 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1374 TYPE_PRECISION (integer_type_node)),
1375 ((TYPE_PRECISION (type)
1376 >= TYPE_PRECISION (integer_type_node))
1377 && TYPE_UNSIGNED (type)));
1378
1379 return convert (type, exp);
1380 }
1381
1382 /* ??? This should no longer be needed now bit-fields have their
1383 proper types. */
1384 if (TREE_CODE (exp) == COMPONENT_REF
1385 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1386 /* If it's thinner than an int, promote it like a
1387 c_promoting_integer_type_p, otherwise leave it alone. */
1388 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1389 TYPE_PRECISION (integer_type_node)))
1390 return convert (integer_type_node, exp);
1391
1392 if (c_promoting_integer_type_p (type))
1393 {
1394 /* Preserve unsignedness if not really getting any wider. */
1395 if (TYPE_UNSIGNED (type)
1396 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1397 return convert (unsigned_type_node, exp);
1398
1399 return convert (integer_type_node, exp);
1400 }
1401
1402 return exp;
1403 }
1404
1405
1406 /* Perform default promotions for C data used in expressions.
1407 Arrays and functions are converted to pointers;
1408 enumeral types or short or char, to int.
1409 In addition, manifest constants symbols are replaced by their values. */
1410
1411 tree
1412 default_conversion (tree exp)
1413 {
1414 tree orig_exp;
1415 tree type = TREE_TYPE (exp);
1416 enum tree_code code = TREE_CODE (type);
1417
1418 if (code == FUNCTION_TYPE || code == ARRAY_TYPE)
1419 return default_function_array_conversion (exp);
1420
1421 /* Constants can be used directly unless they're not loadable. */
1422 if (TREE_CODE (exp) == CONST_DECL)
1423 exp = DECL_INITIAL (exp);
1424
1425 /* Replace a nonvolatile const static variable with its value unless
1426 it is an array, in which case we must be sure that taking the
1427 address of the array produces consistent results. */
1428 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1429 {
1430 exp = decl_constant_value_for_broken_optimization (exp);
1431 type = TREE_TYPE (exp);
1432 }
1433
1434 /* Strip no-op conversions. */
1435 orig_exp = exp;
1436 STRIP_TYPE_NOPS (exp);
1437
1438 if (TREE_NO_WARNING (orig_exp))
1439 TREE_NO_WARNING (exp) = 1;
1440
1441 if (INTEGRAL_TYPE_P (type))
1442 return perform_integral_promotions (exp);
1443
1444 if (code == VOID_TYPE)
1445 {
1446 error ("void value not ignored as it ought to be");
1447 return error_mark_node;
1448 }
1449 return exp;
1450 }
1451 \f
1452 /* Look up COMPONENT in a structure or union DECL.
1453
1454 If the component name is not found, returns NULL_TREE. Otherwise,
1455 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1456 stepping down the chain to the component, which is in the last
1457 TREE_VALUE of the list. Normally the list is of length one, but if
1458 the component is embedded within (nested) anonymous structures or
1459 unions, the list steps down the chain to the component. */
1460
1461 static tree
1462 lookup_field (tree decl, tree component)
1463 {
1464 tree type = TREE_TYPE (decl);
1465 tree field;
1466
1467 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1468 to the field elements. Use a binary search on this array to quickly
1469 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1470 will always be set for structures which have many elements. */
1471
1472 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1473 {
1474 int bot, top, half;
1475 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1476
1477 field = TYPE_FIELDS (type);
1478 bot = 0;
1479 top = TYPE_LANG_SPECIFIC (type)->s->len;
1480 while (top - bot > 1)
1481 {
1482 half = (top - bot + 1) >> 1;
1483 field = field_array[bot+half];
1484
1485 if (DECL_NAME (field) == NULL_TREE)
1486 {
1487 /* Step through all anon unions in linear fashion. */
1488 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1489 {
1490 field = field_array[bot++];
1491 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1492 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1493 {
1494 tree anon = lookup_field (field, component);
1495
1496 if (anon)
1497 return tree_cons (NULL_TREE, field, anon);
1498 }
1499 }
1500
1501 /* Entire record is only anon unions. */
1502 if (bot > top)
1503 return NULL_TREE;
1504
1505 /* Restart the binary search, with new lower bound. */
1506 continue;
1507 }
1508
1509 if (DECL_NAME (field) == component)
1510 break;
1511 if (DECL_NAME (field) < component)
1512 bot += half;
1513 else
1514 top = bot + half;
1515 }
1516
1517 if (DECL_NAME (field_array[bot]) == component)
1518 field = field_array[bot];
1519 else if (DECL_NAME (field) != component)
1520 return NULL_TREE;
1521 }
1522 else
1523 {
1524 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1525 {
1526 if (DECL_NAME (field) == NULL_TREE
1527 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1528 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1529 {
1530 tree anon = lookup_field (field, component);
1531
1532 if (anon)
1533 return tree_cons (NULL_TREE, field, anon);
1534 }
1535
1536 if (DECL_NAME (field) == component)
1537 break;
1538 }
1539
1540 if (field == NULL_TREE)
1541 return NULL_TREE;
1542 }
1543
1544 return tree_cons (NULL_TREE, field, NULL_TREE);
1545 }
1546
1547 /* Make an expression to refer to the COMPONENT field of
1548 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1549
1550 tree
1551 build_component_ref (tree datum, tree component)
1552 {
1553 tree type = TREE_TYPE (datum);
1554 enum tree_code code = TREE_CODE (type);
1555 tree field = NULL;
1556 tree ref;
1557
1558 if (!objc_is_public (datum, component))
1559 return error_mark_node;
1560
1561 /* See if there is a field or component with name COMPONENT. */
1562
1563 if (code == RECORD_TYPE || code == UNION_TYPE)
1564 {
1565 if (!COMPLETE_TYPE_P (type))
1566 {
1567 c_incomplete_type_error (NULL_TREE, type);
1568 return error_mark_node;
1569 }
1570
1571 field = lookup_field (datum, component);
1572
1573 if (!field)
1574 {
1575 error ("%qT has no member named %qE", type, component);
1576 return error_mark_node;
1577 }
1578
1579 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1580 This might be better solved in future the way the C++ front
1581 end does it - by giving the anonymous entities each a
1582 separate name and type, and then have build_component_ref
1583 recursively call itself. We can't do that here. */
1584 do
1585 {
1586 tree subdatum = TREE_VALUE (field);
1587
1588 if (TREE_TYPE (subdatum) == error_mark_node)
1589 return error_mark_node;
1590
1591 ref = build3 (COMPONENT_REF, TREE_TYPE (subdatum), datum, subdatum,
1592 NULL_TREE);
1593 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1594 TREE_READONLY (ref) = 1;
1595 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1596 TREE_THIS_VOLATILE (ref) = 1;
1597
1598 if (TREE_DEPRECATED (subdatum))
1599 warn_deprecated_use (subdatum);
1600
1601 datum = ref;
1602
1603 field = TREE_CHAIN (field);
1604 }
1605 while (field);
1606
1607 return ref;
1608 }
1609 else if (code != ERROR_MARK)
1610 error ("request for member %qE in something not a structure or union",
1611 component);
1612
1613 return error_mark_node;
1614 }
1615 \f
1616 /* Given an expression PTR for a pointer, return an expression
1617 for the value pointed to.
1618 ERRORSTRING is the name of the operator to appear in error messages. */
1619
1620 tree
1621 build_indirect_ref (tree ptr, const char *errorstring)
1622 {
1623 tree pointer = default_conversion (ptr);
1624 tree type = TREE_TYPE (pointer);
1625
1626 if (TREE_CODE (type) == POINTER_TYPE)
1627 {
1628 if (TREE_CODE (pointer) == ADDR_EXPR
1629 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1630 == TREE_TYPE (type)))
1631 return TREE_OPERAND (pointer, 0);
1632 else
1633 {
1634 tree t = TREE_TYPE (type);
1635 tree mvt = t;
1636 tree ref;
1637
1638 if (TREE_CODE (mvt) != ARRAY_TYPE)
1639 mvt = TYPE_MAIN_VARIANT (mvt);
1640 ref = build1 (INDIRECT_REF, mvt, pointer);
1641
1642 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1643 {
1644 error ("dereferencing pointer to incomplete type");
1645 return error_mark_node;
1646 }
1647 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1648 warning ("dereferencing %<void *%> pointer");
1649
1650 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1651 so that we get the proper error message if the result is used
1652 to assign to. Also, &* is supposed to be a no-op.
1653 And ANSI C seems to specify that the type of the result
1654 should be the const type. */
1655 /* A de-reference of a pointer to const is not a const. It is valid
1656 to change it via some other pointer. */
1657 TREE_READONLY (ref) = TYPE_READONLY (t);
1658 TREE_SIDE_EFFECTS (ref)
1659 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1660 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1661 return ref;
1662 }
1663 }
1664 else if (TREE_CODE (pointer) != ERROR_MARK)
1665 error ("invalid type argument of %qs", errorstring);
1666 return error_mark_node;
1667 }
1668
1669 /* This handles expressions of the form "a[i]", which denotes
1670 an array reference.
1671
1672 This is logically equivalent in C to *(a+i), but we may do it differently.
1673 If A is a variable or a member, we generate a primitive ARRAY_REF.
1674 This avoids forcing the array out of registers, and can work on
1675 arrays that are not lvalues (for example, members of structures returned
1676 by functions). */
1677
1678 tree
1679 build_array_ref (tree array, tree index)
1680 {
1681 bool swapped = false;
1682 if (TREE_TYPE (array) == error_mark_node
1683 || TREE_TYPE (index) == error_mark_node)
1684 return error_mark_node;
1685
1686 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1687 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1688 {
1689 tree temp;
1690 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1691 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1692 {
1693 error ("subscripted value is neither array nor pointer");
1694 return error_mark_node;
1695 }
1696 temp = array;
1697 array = index;
1698 index = temp;
1699 swapped = true;
1700 }
1701
1702 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1703 {
1704 error ("array subscript is not an integer");
1705 return error_mark_node;
1706 }
1707
1708 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1709 {
1710 error ("subscripted value is pointer to function");
1711 return error_mark_node;
1712 }
1713
1714 /* Subscripting with type char is likely to lose on a machine where
1715 chars are signed. So warn on any machine, but optionally. Don't
1716 warn for unsigned char since that type is safe. Don't warn for
1717 signed char because anyone who uses that must have done so
1718 deliberately. ??? Existing practice has also been to warn only
1719 when the char index is syntactically the index, not for
1720 char[array]. */
1721 if (warn_char_subscripts && !swapped
1722 && TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
1723 warning ("array subscript has type %<char%>");
1724
1725 /* Apply default promotions *after* noticing character types. */
1726 index = default_conversion (index);
1727
1728 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1729
1730 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1731 {
1732 tree rval, type;
1733
1734 /* An array that is indexed by a non-constant
1735 cannot be stored in a register; we must be able to do
1736 address arithmetic on its address.
1737 Likewise an array of elements of variable size. */
1738 if (TREE_CODE (index) != INTEGER_CST
1739 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1740 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1741 {
1742 if (!c_mark_addressable (array))
1743 return error_mark_node;
1744 }
1745 /* An array that is indexed by a constant value which is not within
1746 the array bounds cannot be stored in a register either; because we
1747 would get a crash in store_bit_field/extract_bit_field when trying
1748 to access a non-existent part of the register. */
1749 if (TREE_CODE (index) == INTEGER_CST
1750 && TYPE_DOMAIN (TREE_TYPE (array))
1751 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
1752 {
1753 if (!c_mark_addressable (array))
1754 return error_mark_node;
1755 }
1756
1757 if (pedantic)
1758 {
1759 tree foo = array;
1760 while (TREE_CODE (foo) == COMPONENT_REF)
1761 foo = TREE_OPERAND (foo, 0);
1762 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
1763 pedwarn ("ISO C forbids subscripting %<register%> array");
1764 else if (!flag_isoc99 && !lvalue_p (foo))
1765 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
1766 }
1767
1768 type = TREE_TYPE (TREE_TYPE (array));
1769 if (TREE_CODE (type) != ARRAY_TYPE)
1770 type = TYPE_MAIN_VARIANT (type);
1771 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
1772 /* Array ref is const/volatile if the array elements are
1773 or if the array is. */
1774 TREE_READONLY (rval)
1775 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
1776 | TREE_READONLY (array));
1777 TREE_SIDE_EFFECTS (rval)
1778 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1779 | TREE_SIDE_EFFECTS (array));
1780 TREE_THIS_VOLATILE (rval)
1781 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
1782 /* This was added by rms on 16 Nov 91.
1783 It fixes vol struct foo *a; a->elts[1]
1784 in an inline function.
1785 Hope it doesn't break something else. */
1786 | TREE_THIS_VOLATILE (array));
1787 return require_complete_type (fold (rval));
1788 }
1789 else
1790 {
1791 tree ar = default_conversion (array);
1792
1793 if (ar == error_mark_node)
1794 return ar;
1795
1796 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
1797 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
1798
1799 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
1800 "array indexing");
1801 }
1802 }
1803 \f
1804 /* Build an external reference to identifier ID. FUN indicates
1805 whether this will be used for a function call. LOC is the source
1806 location of the identifier. */
1807 tree
1808 build_external_ref (tree id, int fun, location_t loc)
1809 {
1810 tree ref;
1811 tree decl = lookup_name (id);
1812
1813 /* In Objective-C, an instance variable (ivar) may be preferred to
1814 whatever lookup_name() found. */
1815 decl = objc_lookup_ivar (decl, id);
1816
1817 if (decl && decl != error_mark_node)
1818 ref = decl;
1819 else if (fun)
1820 /* Implicit function declaration. */
1821 ref = implicitly_declare (id);
1822 else if (decl == error_mark_node)
1823 /* Don't complain about something that's already been
1824 complained about. */
1825 return error_mark_node;
1826 else
1827 {
1828 undeclared_variable (id, loc);
1829 return error_mark_node;
1830 }
1831
1832 if (TREE_TYPE (ref) == error_mark_node)
1833 return error_mark_node;
1834
1835 if (TREE_DEPRECATED (ref))
1836 warn_deprecated_use (ref);
1837
1838 if (!skip_evaluation)
1839 assemble_external (ref);
1840 TREE_USED (ref) = 1;
1841
1842 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
1843 {
1844 if (!in_sizeof && !in_typeof)
1845 C_DECL_USED (ref) = 1;
1846 else if (DECL_INITIAL (ref) == 0
1847 && DECL_EXTERNAL (ref)
1848 && !TREE_PUBLIC (ref))
1849 record_maybe_used_decl (ref);
1850 }
1851
1852 if (TREE_CODE (ref) == CONST_DECL)
1853 {
1854 ref = DECL_INITIAL (ref);
1855 TREE_CONSTANT (ref) = 1;
1856 TREE_INVARIANT (ref) = 1;
1857 }
1858 else if (current_function_decl != 0
1859 && !DECL_FILE_SCOPE_P (current_function_decl)
1860 && (TREE_CODE (ref) == VAR_DECL
1861 || TREE_CODE (ref) == PARM_DECL
1862 || TREE_CODE (ref) == FUNCTION_DECL))
1863 {
1864 tree context = decl_function_context (ref);
1865
1866 if (context != 0 && context != current_function_decl)
1867 DECL_NONLOCAL (ref) = 1;
1868 }
1869
1870 return ref;
1871 }
1872
1873 /* Record details of decls possibly used inside sizeof or typeof. */
1874 struct maybe_used_decl
1875 {
1876 /* The decl. */
1877 tree decl;
1878 /* The level seen at (in_sizeof + in_typeof). */
1879 int level;
1880 /* The next one at this level or above, or NULL. */
1881 struct maybe_used_decl *next;
1882 };
1883
1884 static struct maybe_used_decl *maybe_used_decls;
1885
1886 /* Record that DECL, an undefined static function reference seen
1887 inside sizeof or typeof, might be used if the operand of sizeof is
1888 a VLA type or the operand of typeof is a variably modified
1889 type. */
1890
1891 static void
1892 record_maybe_used_decl (tree decl)
1893 {
1894 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
1895 t->decl = decl;
1896 t->level = in_sizeof + in_typeof;
1897 t->next = maybe_used_decls;
1898 maybe_used_decls = t;
1899 }
1900
1901 /* Pop the stack of decls possibly used inside sizeof or typeof. If
1902 USED is false, just discard them. If it is true, mark them used
1903 (if no longer inside sizeof or typeof) or move them to the next
1904 level up (if still inside sizeof or typeof). */
1905
1906 void
1907 pop_maybe_used (bool used)
1908 {
1909 struct maybe_used_decl *p = maybe_used_decls;
1910 int cur_level = in_sizeof + in_typeof;
1911 while (p && p->level > cur_level)
1912 {
1913 if (used)
1914 {
1915 if (cur_level == 0)
1916 C_DECL_USED (p->decl) = 1;
1917 else
1918 p->level = cur_level;
1919 }
1920 p = p->next;
1921 }
1922 if (!used || cur_level == 0)
1923 maybe_used_decls = p;
1924 }
1925
1926 /* Return the result of sizeof applied to EXPR. */
1927
1928 struct c_expr
1929 c_expr_sizeof_expr (struct c_expr expr)
1930 {
1931 struct c_expr ret;
1932 if (expr.value == error_mark_node)
1933 {
1934 ret.value = error_mark_node;
1935 ret.original_code = ERROR_MARK;
1936 pop_maybe_used (false);
1937 }
1938 else
1939 {
1940 ret.value = c_sizeof (TREE_TYPE (expr.value));
1941 ret.original_code = ERROR_MARK;
1942 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
1943 }
1944 return ret;
1945 }
1946
1947 /* Return the result of sizeof applied to T, a structure for the type
1948 name passed to sizeof (rather than the type itself). */
1949
1950 struct c_expr
1951 c_expr_sizeof_type (struct c_type_name *t)
1952 {
1953 tree type;
1954 struct c_expr ret;
1955 type = groktypename (t);
1956 ret.value = c_sizeof (type);
1957 ret.original_code = ERROR_MARK;
1958 pop_maybe_used (C_TYPE_VARIABLE_SIZE (type));
1959 return ret;
1960 }
1961
1962 /* Build a function call to function FUNCTION with parameters PARAMS.
1963 PARAMS is a list--a chain of TREE_LIST nodes--in which the
1964 TREE_VALUE of each node is a parameter-expression.
1965 FUNCTION's data type may be a function type or a pointer-to-function. */
1966
1967 tree
1968 build_function_call (tree function, tree params)
1969 {
1970 tree fntype, fundecl = 0;
1971 tree coerced_params;
1972 tree name = NULL_TREE, result;
1973 tree tem;
1974
1975 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1976 STRIP_TYPE_NOPS (function);
1977
1978 /* Convert anything with function type to a pointer-to-function. */
1979 if (TREE_CODE (function) == FUNCTION_DECL)
1980 {
1981 if (DECL_BUILT_IN_CLASS (function) == BUILT_IN_NORMAL)
1982 {
1983 tem = resolve_overloaded_builtin (function, params);
1984 if (tem)
1985 return tem;
1986 }
1987
1988 name = DECL_NAME (function);
1989
1990 /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1991 (because calling an inline function does not mean the function
1992 needs to be separately compiled). */
1993 fntype = build_type_variant (TREE_TYPE (function),
1994 TREE_READONLY (function),
1995 TREE_THIS_VOLATILE (function));
1996 fundecl = function;
1997 function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
1998 }
1999 else
2000 function = default_conversion (function);
2001
2002 fntype = TREE_TYPE (function);
2003
2004 if (TREE_CODE (fntype) == ERROR_MARK)
2005 return error_mark_node;
2006
2007 if (!(TREE_CODE (fntype) == POINTER_TYPE
2008 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2009 {
2010 error ("called object %qE is not a function", function);
2011 return error_mark_node;
2012 }
2013
2014 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2015 current_function_returns_abnormally = 1;
2016
2017 /* fntype now gets the type of function pointed to. */
2018 fntype = TREE_TYPE (fntype);
2019
2020 /* Check that the function is called through a compatible prototype.
2021 If it is not, replace the call by a trap, wrapped up in a compound
2022 expression if necessary. This has the nice side-effect to prevent
2023 the tree-inliner from generating invalid assignment trees which may
2024 blow up in the RTL expander later.
2025
2026 ??? This doesn't work for Objective-C because objc_comptypes
2027 refuses to compare function prototypes, yet the compiler appears
2028 to build calls that are flagged as invalid by C's comptypes. */
2029 if (!c_dialect_objc ()
2030 && TREE_CODE (function) == NOP_EXPR
2031 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2032 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2033 && !comptypes (fntype, TREE_TYPE (tem)))
2034 {
2035 tree return_type = TREE_TYPE (fntype);
2036 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2037 NULL_TREE);
2038
2039 /* This situation leads to run-time undefined behavior. We can't,
2040 therefore, simply error unless we can prove that all possible
2041 executions of the program must execute the code. */
2042 warning ("function called through a non-compatible type");
2043
2044 /* We can, however, treat "undefined" any way we please.
2045 Call abort to encourage the user to fix the program. */
2046 inform ("if this code is reached, the program will abort");
2047
2048 if (VOID_TYPE_P (return_type))
2049 return trap;
2050 else
2051 {
2052 tree rhs;
2053
2054 if (AGGREGATE_TYPE_P (return_type))
2055 rhs = build_compound_literal (return_type,
2056 build_constructor (return_type,
2057 NULL_TREE));
2058 else
2059 rhs = fold (build1 (NOP_EXPR, return_type, integer_zero_node));
2060
2061 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2062 }
2063 }
2064
2065 /* Convert the parameters to the types declared in the
2066 function prototype, or apply default promotions. */
2067
2068 coerced_params
2069 = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
2070
2071 if (coerced_params == error_mark_node)
2072 return error_mark_node;
2073
2074 /* Check that the arguments to the function are valid. */
2075
2076 check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params);
2077
2078 result = build3 (CALL_EXPR, TREE_TYPE (fntype),
2079 function, coerced_params, NULL_TREE);
2080 TREE_SIDE_EFFECTS (result) = 1;
2081
2082 if (require_constant_value)
2083 {
2084 result = fold_initializer (result);
2085
2086 if (TREE_CONSTANT (result)
2087 && (name == NULL_TREE
2088 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2089 pedwarn_init ("initializer element is not constant");
2090 }
2091 else
2092 result = fold (result);
2093
2094 if (VOID_TYPE_P (TREE_TYPE (result)))
2095 return result;
2096 return require_complete_type (result);
2097 }
2098 \f
2099 /* Convert the argument expressions in the list VALUES
2100 to the types in the list TYPELIST. The result is a list of converted
2101 argument expressions, unless there are too few arguments in which
2102 case it is error_mark_node.
2103
2104 If TYPELIST is exhausted, or when an element has NULL as its type,
2105 perform the default conversions.
2106
2107 PARMLIST is the chain of parm decls for the function being called.
2108 It may be 0, if that info is not available.
2109 It is used only for generating error messages.
2110
2111 FUNCTION is a tree for the called function. It is used only for
2112 error messages, where it is formatted with %qE.
2113
2114 This is also where warnings about wrong number of args are generated.
2115
2116 Both VALUES and the returned value are chains of TREE_LIST nodes
2117 with the elements of the list in the TREE_VALUE slots of those nodes. */
2118
2119 static tree
2120 convert_arguments (tree typelist, tree values, tree function, tree fundecl)
2121 {
2122 tree typetail, valtail;
2123 tree result = NULL;
2124 int parmnum;
2125 tree selector;
2126
2127 /* Change pointer to function to the function itself for
2128 diagnostics. */
2129 if (TREE_CODE (function) == ADDR_EXPR
2130 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2131 function = TREE_OPERAND (function, 0);
2132
2133 /* Handle an ObjC selector specially for diagnostics. */
2134 selector = objc_message_selector ();
2135
2136 /* Scan the given expressions and types, producing individual
2137 converted arguments and pushing them on RESULT in reverse order. */
2138
2139 for (valtail = values, typetail = typelist, parmnum = 0;
2140 valtail;
2141 valtail = TREE_CHAIN (valtail), parmnum++)
2142 {
2143 tree type = typetail ? TREE_VALUE (typetail) : 0;
2144 tree val = TREE_VALUE (valtail);
2145 tree rname = function;
2146 int argnum = parmnum + 1;
2147 const char *invalid_func_diag;
2148
2149 if (type == void_type_node)
2150 {
2151 error ("too many arguments to function %qE", function);
2152 break;
2153 }
2154
2155 if (selector && argnum > 2)
2156 {
2157 rname = selector;
2158 argnum -= 2;
2159 }
2160
2161 STRIP_TYPE_NOPS (val);
2162
2163 val = default_function_array_conversion (val);
2164
2165 val = require_complete_type (val);
2166
2167 if (type != 0)
2168 {
2169 /* Formal parm type is specified by a function prototype. */
2170 tree parmval;
2171
2172 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2173 {
2174 error ("type of formal parameter %d is incomplete", parmnum + 1);
2175 parmval = val;
2176 }
2177 else
2178 {
2179 /* Optionally warn about conversions that
2180 differ from the default conversions. */
2181 if (warn_conversion || warn_traditional)
2182 {
2183 unsigned int formal_prec = TYPE_PRECISION (type);
2184
2185 if (INTEGRAL_TYPE_P (type)
2186 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2187 warning ("passing argument %d of %qE as integer "
2188 "rather than floating due to prototype",
2189 argnum, rname);
2190 if (INTEGRAL_TYPE_P (type)
2191 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2192 warning ("passing argument %d of %qE as integer "
2193 "rather than complex due to prototype",
2194 argnum, rname);
2195 else if (TREE_CODE (type) == COMPLEX_TYPE
2196 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2197 warning ("passing argument %d of %qE as complex "
2198 "rather than floating due to prototype",
2199 argnum, rname);
2200 else if (TREE_CODE (type) == REAL_TYPE
2201 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2202 warning ("passing argument %d of %qE as floating "
2203 "rather than integer due to prototype",
2204 argnum, rname);
2205 else if (TREE_CODE (type) == COMPLEX_TYPE
2206 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2207 warning ("passing argument %d of %qE as complex "
2208 "rather than integer due to prototype",
2209 argnum, rname);
2210 else if (TREE_CODE (type) == REAL_TYPE
2211 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2212 warning ("passing argument %d of %qE as floating "
2213 "rather than complex due to prototype",
2214 argnum, rname);
2215 /* ??? At some point, messages should be written about
2216 conversions between complex types, but that's too messy
2217 to do now. */
2218 else if (TREE_CODE (type) == REAL_TYPE
2219 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2220 {
2221 /* Warn if any argument is passed as `float',
2222 since without a prototype it would be `double'. */
2223 if (formal_prec == TYPE_PRECISION (float_type_node))
2224 warning ("passing argument %d of %qE as %<float%> "
2225 "rather than %<double%> due to prototype",
2226 argnum, rname);
2227 }
2228 /* Detect integer changing in width or signedness.
2229 These warnings are only activated with
2230 -Wconversion, not with -Wtraditional. */
2231 else if (warn_conversion && INTEGRAL_TYPE_P (type)
2232 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2233 {
2234 tree would_have_been = default_conversion (val);
2235 tree type1 = TREE_TYPE (would_have_been);
2236
2237 if (TREE_CODE (type) == ENUMERAL_TYPE
2238 && (TYPE_MAIN_VARIANT (type)
2239 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2240 /* No warning if function asks for enum
2241 and the actual arg is that enum type. */
2242 ;
2243 else if (formal_prec != TYPE_PRECISION (type1))
2244 warning ("passing argument %d of %qE with different "
2245 "width due to prototype", argnum, rname);
2246 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2247 ;
2248 /* Don't complain if the formal parameter type
2249 is an enum, because we can't tell now whether
2250 the value was an enum--even the same enum. */
2251 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2252 ;
2253 else if (TREE_CODE (val) == INTEGER_CST
2254 && int_fits_type_p (val, type))
2255 /* Change in signedness doesn't matter
2256 if a constant value is unaffected. */
2257 ;
2258 /* If the value is extended from a narrower
2259 unsigned type, it doesn't matter whether we
2260 pass it as signed or unsigned; the value
2261 certainly is the same either way. */
2262 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2263 && TYPE_UNSIGNED (TREE_TYPE (val)))
2264 ;
2265 else if (TYPE_UNSIGNED (type))
2266 warning ("passing argument %d of %qE as unsigned "
2267 "due to prototype", argnum, rname);
2268 else
2269 warning ("passing argument %d of %qE as signed "
2270 "due to prototype", argnum, rname);
2271 }
2272 }
2273
2274 parmval = convert_for_assignment (type, val, ic_argpass,
2275 fundecl, function,
2276 parmnum + 1);
2277
2278 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2279 && INTEGRAL_TYPE_P (type)
2280 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2281 parmval = default_conversion (parmval);
2282 }
2283 result = tree_cons (NULL_TREE, parmval, result);
2284 }
2285 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2286 && (TYPE_PRECISION (TREE_TYPE (val))
2287 < TYPE_PRECISION (double_type_node)))
2288 /* Convert `float' to `double'. */
2289 result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
2290 else if ((invalid_func_diag =
2291 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2292 {
2293 error (invalid_func_diag);
2294 return error_mark_node;
2295 }
2296 else
2297 /* Convert `short' and `char' to full-size `int'. */
2298 result = tree_cons (NULL_TREE, default_conversion (val), result);
2299
2300 if (typetail)
2301 typetail = TREE_CHAIN (typetail);
2302 }
2303
2304 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2305 {
2306 error ("too few arguments to function %qE", function);
2307 return error_mark_node;
2308 }
2309
2310 return nreverse (result);
2311 }
2312 \f
2313 /* This is the entry point used by the parser
2314 for binary operators in the input.
2315 In addition to constructing the expression,
2316 we check for operands that were written with other binary operators
2317 in a way that is likely to confuse the user. */
2318
2319 struct c_expr
2320 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2321 struct c_expr arg2)
2322 {
2323 struct c_expr result;
2324
2325 enum tree_code code1 = arg1.original_code;
2326 enum tree_code code2 = arg2.original_code;
2327
2328 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2329 result.original_code = code;
2330
2331 if (TREE_CODE (result.value) == ERROR_MARK)
2332 return result;
2333
2334 /* Check for cases such as x+y<<z which users are likely
2335 to misinterpret. */
2336 if (warn_parentheses)
2337 {
2338 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
2339 {
2340 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2341 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2342 warning ("suggest parentheses around + or - inside shift");
2343 }
2344
2345 if (code == TRUTH_ORIF_EXPR)
2346 {
2347 if (code1 == TRUTH_ANDIF_EXPR
2348 || code2 == TRUTH_ANDIF_EXPR)
2349 warning ("suggest parentheses around && within ||");
2350 }
2351
2352 if (code == BIT_IOR_EXPR)
2353 {
2354 if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
2355 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2356 || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
2357 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2358 warning ("suggest parentheses around arithmetic in operand of |");
2359 /* Check cases like x|y==z */
2360 if (TREE_CODE_CLASS (code1) == tcc_comparison
2361 || TREE_CODE_CLASS (code2) == tcc_comparison)
2362 warning ("suggest parentheses around comparison in operand of |");
2363 }
2364
2365 if (code == BIT_XOR_EXPR)
2366 {
2367 if (code1 == BIT_AND_EXPR
2368 || code1 == PLUS_EXPR || code1 == MINUS_EXPR
2369 || code2 == BIT_AND_EXPR
2370 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2371 warning ("suggest parentheses around arithmetic in operand of ^");
2372 /* Check cases like x^y==z */
2373 if (TREE_CODE_CLASS (code1) == tcc_comparison
2374 || TREE_CODE_CLASS (code2) == tcc_comparison)
2375 warning ("suggest parentheses around comparison in operand of ^");
2376 }
2377
2378 if (code == BIT_AND_EXPR)
2379 {
2380 if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
2381 || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
2382 warning ("suggest parentheses around + or - in operand of &");
2383 /* Check cases like x&y==z */
2384 if (TREE_CODE_CLASS (code1) == tcc_comparison
2385 || TREE_CODE_CLASS (code2) == tcc_comparison)
2386 warning ("suggest parentheses around comparison in operand of &");
2387 }
2388 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
2389 if (TREE_CODE_CLASS (code) == tcc_comparison
2390 && (TREE_CODE_CLASS (code1) == tcc_comparison
2391 || TREE_CODE_CLASS (code2) == tcc_comparison))
2392 warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
2393
2394 }
2395
2396 unsigned_conversion_warning (result.value, arg1.value);
2397 unsigned_conversion_warning (result.value, arg2.value);
2398 overflow_warning (result.value);
2399
2400 return result;
2401 }
2402 \f
2403 /* Return a tree for the difference of pointers OP0 and OP1.
2404 The resulting tree has type int. */
2405
2406 static tree
2407 pointer_diff (tree op0, tree op1)
2408 {
2409 tree restype = ptrdiff_type_node;
2410
2411 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2412 tree con0, con1, lit0, lit1;
2413 tree orig_op1 = op1;
2414
2415 if (pedantic || warn_pointer_arith)
2416 {
2417 if (TREE_CODE (target_type) == VOID_TYPE)
2418 pedwarn ("pointer of type %<void *%> used in subtraction");
2419 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2420 pedwarn ("pointer to a function used in subtraction");
2421 }
2422
2423 /* If the conversion to ptrdiff_type does anything like widening or
2424 converting a partial to an integral mode, we get a convert_expression
2425 that is in the way to do any simplifications.
2426 (fold-const.c doesn't know that the extra bits won't be needed.
2427 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2428 different mode in place.)
2429 So first try to find a common term here 'by hand'; we want to cover
2430 at least the cases that occur in legal static initializers. */
2431 con0 = TREE_CODE (op0) == NOP_EXPR ? TREE_OPERAND (op0, 0) : op0;
2432 con1 = TREE_CODE (op1) == NOP_EXPR ? TREE_OPERAND (op1, 0) : op1;
2433
2434 if (TREE_CODE (con0) == PLUS_EXPR)
2435 {
2436 lit0 = TREE_OPERAND (con0, 1);
2437 con0 = TREE_OPERAND (con0, 0);
2438 }
2439 else
2440 lit0 = integer_zero_node;
2441
2442 if (TREE_CODE (con1) == PLUS_EXPR)
2443 {
2444 lit1 = TREE_OPERAND (con1, 1);
2445 con1 = TREE_OPERAND (con1, 0);
2446 }
2447 else
2448 lit1 = integer_zero_node;
2449
2450 if (operand_equal_p (con0, con1, 0))
2451 {
2452 op0 = lit0;
2453 op1 = lit1;
2454 }
2455
2456
2457 /* First do the subtraction as integers;
2458 then drop through to build the divide operator.
2459 Do not do default conversions on the minus operator
2460 in case restype is a short type. */
2461
2462 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2463 convert (restype, op1), 0);
2464 /* This generates an error if op1 is pointer to incomplete type. */
2465 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2466 error ("arithmetic on pointer to an incomplete type");
2467
2468 /* This generates an error if op0 is pointer to incomplete type. */
2469 op1 = c_size_in_bytes (target_type);
2470
2471 /* Divide by the size, in easiest possible way. */
2472 return fold (build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1)));
2473 }
2474 \f
2475 /* Construct and perhaps optimize a tree representation
2476 for a unary operation. CODE, a tree_code, specifies the operation
2477 and XARG is the operand.
2478 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2479 the default promotions (such as from short to int).
2480 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2481 allows non-lvalues; this is only used to handle conversion of non-lvalue
2482 arrays to pointers in C99. */
2483
2484 tree
2485 build_unary_op (enum tree_code code, tree xarg, int flag)
2486 {
2487 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2488 tree arg = xarg;
2489 tree argtype = 0;
2490 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2491 tree val;
2492 int noconvert = flag;
2493
2494 if (typecode == ERROR_MARK)
2495 return error_mark_node;
2496 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2497 typecode = INTEGER_TYPE;
2498
2499 switch (code)
2500 {
2501 case CONVERT_EXPR:
2502 /* This is used for unary plus, because a CONVERT_EXPR
2503 is enough to prevent anybody from looking inside for
2504 associativity, but won't generate any code. */
2505 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2506 || typecode == COMPLEX_TYPE
2507 || typecode == VECTOR_TYPE))
2508 {
2509 error ("wrong type argument to unary plus");
2510 return error_mark_node;
2511 }
2512 else if (!noconvert)
2513 arg = default_conversion (arg);
2514 arg = non_lvalue (arg);
2515 break;
2516
2517 case NEGATE_EXPR:
2518 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2519 || typecode == COMPLEX_TYPE
2520 || typecode == VECTOR_TYPE))
2521 {
2522 error ("wrong type argument to unary minus");
2523 return error_mark_node;
2524 }
2525 else if (!noconvert)
2526 arg = default_conversion (arg);
2527 break;
2528
2529 case BIT_NOT_EXPR:
2530 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2531 {
2532 if (!noconvert)
2533 arg = default_conversion (arg);
2534 }
2535 else if (typecode == COMPLEX_TYPE)
2536 {
2537 code = CONJ_EXPR;
2538 if (pedantic)
2539 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2540 if (!noconvert)
2541 arg = default_conversion (arg);
2542 }
2543 else
2544 {
2545 error ("wrong type argument to bit-complement");
2546 return error_mark_node;
2547 }
2548 break;
2549
2550 case ABS_EXPR:
2551 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2552 {
2553 error ("wrong type argument to abs");
2554 return error_mark_node;
2555 }
2556 else if (!noconvert)
2557 arg = default_conversion (arg);
2558 break;
2559
2560 case CONJ_EXPR:
2561 /* Conjugating a real value is a no-op, but allow it anyway. */
2562 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2563 || typecode == COMPLEX_TYPE))
2564 {
2565 error ("wrong type argument to conjugation");
2566 return error_mark_node;
2567 }
2568 else if (!noconvert)
2569 arg = default_conversion (arg);
2570 break;
2571
2572 case TRUTH_NOT_EXPR:
2573 /* ??? Why do most validation here but that for non-lvalue arrays
2574 in c_objc_common_truthvalue_conversion? */
2575 if (typecode != INTEGER_TYPE
2576 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2577 && typecode != COMPLEX_TYPE
2578 /* These will convert to a pointer. */
2579 && typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
2580 {
2581 error ("wrong type argument to unary exclamation mark");
2582 return error_mark_node;
2583 }
2584 arg = c_objc_common_truthvalue_conversion (arg);
2585 return invert_truthvalue (arg);
2586
2587 case NOP_EXPR:
2588 break;
2589
2590 case REALPART_EXPR:
2591 if (TREE_CODE (arg) == COMPLEX_CST)
2592 return TREE_REALPART (arg);
2593 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2594 return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2595 else
2596 return arg;
2597
2598 case IMAGPART_EXPR:
2599 if (TREE_CODE (arg) == COMPLEX_CST)
2600 return TREE_IMAGPART (arg);
2601 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2602 return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
2603 else
2604 return convert (TREE_TYPE (arg), integer_zero_node);
2605
2606 case PREINCREMENT_EXPR:
2607 case POSTINCREMENT_EXPR:
2608 case PREDECREMENT_EXPR:
2609 case POSTDECREMENT_EXPR:
2610
2611 /* Increment or decrement the real part of the value,
2612 and don't change the imaginary part. */
2613 if (typecode == COMPLEX_TYPE)
2614 {
2615 tree real, imag;
2616
2617 if (pedantic)
2618 pedwarn ("ISO C does not support %<++%> and %<--%>"
2619 " on complex types");
2620
2621 arg = stabilize_reference (arg);
2622 real = build_unary_op (REALPART_EXPR, arg, 1);
2623 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2624 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2625 build_unary_op (code, real, 1), imag);
2626 }
2627
2628 /* Report invalid types. */
2629
2630 if (typecode != POINTER_TYPE
2631 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2632 {
2633 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2634 error ("wrong type argument to increment");
2635 else
2636 error ("wrong type argument to decrement");
2637
2638 return error_mark_node;
2639 }
2640
2641 {
2642 tree inc;
2643 tree result_type = TREE_TYPE (arg);
2644
2645 arg = get_unwidened (arg, 0);
2646 argtype = TREE_TYPE (arg);
2647
2648 /* Compute the increment. */
2649
2650 if (typecode == POINTER_TYPE)
2651 {
2652 /* If pointer target is an undefined struct,
2653 we just cannot know how to do the arithmetic. */
2654 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2655 {
2656 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2657 error ("increment of pointer to unknown structure");
2658 else
2659 error ("decrement of pointer to unknown structure");
2660 }
2661 else if ((pedantic || warn_pointer_arith)
2662 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2663 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2664 {
2665 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2666 pedwarn ("wrong type argument to increment");
2667 else
2668 pedwarn ("wrong type argument to decrement");
2669 }
2670
2671 inc = c_size_in_bytes (TREE_TYPE (result_type));
2672 }
2673 else
2674 inc = integer_one_node;
2675
2676 inc = convert (argtype, inc);
2677
2678 /* Complain about anything else that is not a true lvalue. */
2679 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2680 || code == POSTINCREMENT_EXPR)
2681 ? lv_increment
2682 : lv_decrement)))
2683 return error_mark_node;
2684
2685 /* Report a read-only lvalue. */
2686 if (TREE_READONLY (arg))
2687 readonly_error (arg,
2688 ((code == PREINCREMENT_EXPR
2689 || code == POSTINCREMENT_EXPR)
2690 ? lv_increment : lv_decrement));
2691
2692 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2693 val = boolean_increment (code, arg);
2694 else
2695 val = build2 (code, TREE_TYPE (arg), arg, inc);
2696 TREE_SIDE_EFFECTS (val) = 1;
2697 val = convert (result_type, val);
2698 if (TREE_CODE (val) != code)
2699 TREE_NO_WARNING (val) = 1;
2700 return val;
2701 }
2702
2703 case ADDR_EXPR:
2704 /* Note that this operation never does default_conversion. */
2705
2706 /* Let &* cancel out to simplify resulting code. */
2707 if (TREE_CODE (arg) == INDIRECT_REF)
2708 {
2709 /* Don't let this be an lvalue. */
2710 if (lvalue_p (TREE_OPERAND (arg, 0)))
2711 return non_lvalue (TREE_OPERAND (arg, 0));
2712 return TREE_OPERAND (arg, 0);
2713 }
2714
2715 /* For &x[y], return x+y */
2716 if (TREE_CODE (arg) == ARRAY_REF)
2717 {
2718 if (!c_mark_addressable (TREE_OPERAND (arg, 0)))
2719 return error_mark_node;
2720 return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
2721 TREE_OPERAND (arg, 1), 1);
2722 }
2723
2724 /* Anything not already handled and not a true memory reference
2725 or a non-lvalue array is an error. */
2726 else if (typecode != FUNCTION_TYPE && !flag
2727 && !lvalue_or_else (arg, lv_addressof))
2728 return error_mark_node;
2729
2730 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
2731 argtype = TREE_TYPE (arg);
2732
2733 /* If the lvalue is const or volatile, merge that into the type
2734 to which the address will point. Note that you can't get a
2735 restricted pointer by taking the address of something, so we
2736 only have to deal with `const' and `volatile' here. */
2737 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
2738 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
2739 argtype = c_build_type_variant (argtype,
2740 TREE_READONLY (arg),
2741 TREE_THIS_VOLATILE (arg));
2742
2743 if (!c_mark_addressable (arg))
2744 return error_mark_node;
2745
2746 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
2747 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
2748
2749 argtype = build_pointer_type (argtype);
2750
2751 /* ??? Cope with user tricks that amount to offsetof. Delete this
2752 when we have proper support for integer constant expressions. */
2753 val = get_base_address (arg);
2754 if (val && TREE_CODE (val) == INDIRECT_REF
2755 && integer_zerop (TREE_OPERAND (val, 0)))
2756 return fold_convert (argtype, fold_offsetof (arg));
2757
2758 val = build1 (ADDR_EXPR, argtype, arg);
2759
2760 if (TREE_CODE (arg) == COMPOUND_LITERAL_EXPR)
2761 TREE_INVARIANT (val) = TREE_CONSTANT (val) = 1;
2762
2763 return val;
2764
2765 default:
2766 break;
2767 }
2768
2769 if (argtype == 0)
2770 argtype = TREE_TYPE (arg);
2771 val = build1 (code, argtype, arg);
2772 return require_constant_value ? fold_initializer (val) : fold (val);
2773 }
2774
2775 /* Return nonzero if REF is an lvalue valid for this language.
2776 Lvalues can be assigned, unless their type has TYPE_READONLY.
2777 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
2778
2779 static int
2780 lvalue_p (tree ref)
2781 {
2782 enum tree_code code = TREE_CODE (ref);
2783
2784 switch (code)
2785 {
2786 case REALPART_EXPR:
2787 case IMAGPART_EXPR:
2788 case COMPONENT_REF:
2789 return lvalue_p (TREE_OPERAND (ref, 0));
2790
2791 case COMPOUND_LITERAL_EXPR:
2792 case STRING_CST:
2793 return 1;
2794
2795 case INDIRECT_REF:
2796 case ARRAY_REF:
2797 case VAR_DECL:
2798 case PARM_DECL:
2799 case RESULT_DECL:
2800 case ERROR_MARK:
2801 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
2802 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
2803
2804 case BIND_EXPR:
2805 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
2806
2807 default:
2808 return 0;
2809 }
2810 }
2811 \f
2812 /* Give an error for storing in something that is 'const'. */
2813
2814 static void
2815 readonly_error (tree arg, enum lvalue_use use)
2816 {
2817 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement);
2818 /* Using this macro rather than (for example) arrays of messages
2819 ensures that all the format strings are checked at compile
2820 time. */
2821 #define READONLY_MSG(A, I, D) (use == lv_assign \
2822 ? (A) \
2823 : (use == lv_increment ? (I) : (D)))
2824 if (TREE_CODE (arg) == COMPONENT_REF)
2825 {
2826 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
2827 readonly_error (TREE_OPERAND (arg, 0), use);
2828 else
2829 error (READONLY_MSG (N_("assignment of read-only member %qD"),
2830 N_("increment of read-only member %qD"),
2831 N_("decrement of read-only member %qD")),
2832 TREE_OPERAND (arg, 1));
2833 }
2834 else if (TREE_CODE (arg) == VAR_DECL)
2835 error (READONLY_MSG (N_("assignment of read-only variable %qD"),
2836 N_("increment of read-only variable %qD"),
2837 N_("decrement of read-only variable %qD")),
2838 arg);
2839 else
2840 error (READONLY_MSG (N_("assignment of read-only location"),
2841 N_("increment of read-only location"),
2842 N_("decrement of read-only location")));
2843 }
2844
2845
2846 /* Return nonzero if REF is an lvalue valid for this language;
2847 otherwise, print an error message and return zero. USE says
2848 how the lvalue is being used and so selects the error message. */
2849
2850 static int
2851 lvalue_or_else (tree ref, enum lvalue_use use)
2852 {
2853 int win = lvalue_p (ref);
2854
2855 if (!win)
2856 lvalue_error (use);
2857
2858 return win;
2859 }
2860 \f
2861 /* Mark EXP saying that we need to be able to take the
2862 address of it; it should not be allocated in a register.
2863 Returns true if successful. */
2864
2865 bool
2866 c_mark_addressable (tree exp)
2867 {
2868 tree x = exp;
2869
2870 while (1)
2871 switch (TREE_CODE (x))
2872 {
2873 case COMPONENT_REF:
2874 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
2875 {
2876 error
2877 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
2878 return false;
2879 }
2880
2881 /* ... fall through ... */
2882
2883 case ADDR_EXPR:
2884 case ARRAY_REF:
2885 case REALPART_EXPR:
2886 case IMAGPART_EXPR:
2887 x = TREE_OPERAND (x, 0);
2888 break;
2889
2890 case COMPOUND_LITERAL_EXPR:
2891 case CONSTRUCTOR:
2892 TREE_ADDRESSABLE (x) = 1;
2893 return true;
2894
2895 case VAR_DECL:
2896 case CONST_DECL:
2897 case PARM_DECL:
2898 case RESULT_DECL:
2899 if (C_DECL_REGISTER (x)
2900 && DECL_NONLOCAL (x))
2901 {
2902 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
2903 {
2904 error
2905 ("global register variable %qD used in nested function", x);
2906 return false;
2907 }
2908 pedwarn ("register variable %qD used in nested function", x);
2909 }
2910 else if (C_DECL_REGISTER (x))
2911 {
2912 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
2913 error ("address of global register variable %qD requested", x);
2914 else
2915 error ("address of register variable %qD requested", x);
2916 return false;
2917 }
2918
2919 /* drops in */
2920 case FUNCTION_DECL:
2921 TREE_ADDRESSABLE (x) = 1;
2922 /* drops out */
2923 default:
2924 return true;
2925 }
2926 }
2927 \f
2928 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
2929
2930 tree
2931 build_conditional_expr (tree ifexp, tree op1, tree op2)
2932 {
2933 tree type1;
2934 tree type2;
2935 enum tree_code code1;
2936 enum tree_code code2;
2937 tree result_type = NULL;
2938 tree orig_op1 = op1, orig_op2 = op2;
2939
2940 /* Promote both alternatives. */
2941
2942 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
2943 op1 = default_conversion (op1);
2944 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
2945 op2 = default_conversion (op2);
2946
2947 if (TREE_CODE (ifexp) == ERROR_MARK
2948 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
2949 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
2950 return error_mark_node;
2951
2952 type1 = TREE_TYPE (op1);
2953 code1 = TREE_CODE (type1);
2954 type2 = TREE_TYPE (op2);
2955 code2 = TREE_CODE (type2);
2956
2957 /* C90 does not permit non-lvalue arrays in conditional expressions.
2958 In C99 they will be pointers by now. */
2959 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
2960 {
2961 error ("non-lvalue array in conditional expression");
2962 return error_mark_node;
2963 }
2964
2965 /* Quickly detect the usual case where op1 and op2 have the same type
2966 after promotion. */
2967 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
2968 {
2969 if (type1 == type2)
2970 result_type = type1;
2971 else
2972 result_type = TYPE_MAIN_VARIANT (type1);
2973 }
2974 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
2975 || code1 == COMPLEX_TYPE)
2976 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
2977 || code2 == COMPLEX_TYPE))
2978 {
2979 result_type = c_common_type (type1, type2);
2980
2981 /* If -Wsign-compare, warn here if type1 and type2 have
2982 different signedness. We'll promote the signed to unsigned
2983 and later code won't know it used to be different.
2984 Do this check on the original types, so that explicit casts
2985 will be considered, but default promotions won't. */
2986 if (warn_sign_compare && !skip_evaluation)
2987 {
2988 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
2989 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
2990
2991 if (unsigned_op1 ^ unsigned_op2)
2992 {
2993 /* Do not warn if the result type is signed, since the
2994 signed type will only be chosen if it can represent
2995 all the values of the unsigned type. */
2996 if (!TYPE_UNSIGNED (result_type))
2997 /* OK */;
2998 /* Do not warn if the signed quantity is an unsuffixed
2999 integer literal (or some static constant expression
3000 involving such literals) and it is non-negative. */
3001 else if ((unsigned_op2 && tree_expr_nonnegative_p (op1))
3002 || (unsigned_op1 && tree_expr_nonnegative_p (op2)))
3003 /* OK */;
3004 else
3005 warning ("signed and unsigned type in conditional expression");
3006 }
3007 }
3008 }
3009 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3010 {
3011 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3012 pedwarn ("ISO C forbids conditional expr with only one void side");
3013 result_type = void_type_node;
3014 }
3015 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3016 {
3017 if (comp_target_types (type1, type2, 1))
3018 result_type = common_pointer_type (type1, type2);
3019 else if (integer_zerop (op1) && TREE_TYPE (type1) == void_type_node
3020 && TREE_CODE (orig_op1) != NOP_EXPR)
3021 result_type = qualify_type (type2, type1);
3022 else if (integer_zerop (op2) && TREE_TYPE (type2) == void_type_node
3023 && TREE_CODE (orig_op2) != NOP_EXPR)
3024 result_type = qualify_type (type1, type2);
3025 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3026 {
3027 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3028 pedwarn ("ISO C forbids conditional expr between "
3029 "%<void *%> and function pointer");
3030 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3031 TREE_TYPE (type2)));
3032 }
3033 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3034 {
3035 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3036 pedwarn ("ISO C forbids conditional expr between "
3037 "%<void *%> and function pointer");
3038 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3039 TREE_TYPE (type1)));
3040 }
3041 else
3042 {
3043 pedwarn ("pointer type mismatch in conditional expression");
3044 result_type = build_pointer_type (void_type_node);
3045 }
3046 }
3047 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3048 {
3049 if (!integer_zerop (op2))
3050 pedwarn ("pointer/integer type mismatch in conditional expression");
3051 else
3052 {
3053 op2 = null_pointer_node;
3054 }
3055 result_type = type1;
3056 }
3057 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3058 {
3059 if (!integer_zerop (op1))
3060 pedwarn ("pointer/integer type mismatch in conditional expression");
3061 else
3062 {
3063 op1 = null_pointer_node;
3064 }
3065 result_type = type2;
3066 }
3067
3068 if (!result_type)
3069 {
3070 if (flag_cond_mismatch)
3071 result_type = void_type_node;
3072 else
3073 {
3074 error ("type mismatch in conditional expression");
3075 return error_mark_node;
3076 }
3077 }
3078
3079 /* Merge const and volatile flags of the incoming types. */
3080 result_type
3081 = build_type_variant (result_type,
3082 TREE_READONLY (op1) || TREE_READONLY (op2),
3083 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3084
3085 if (result_type != TREE_TYPE (op1))
3086 op1 = convert_and_check (result_type, op1);
3087 if (result_type != TREE_TYPE (op2))
3088 op2 = convert_and_check (result_type, op2);
3089
3090 if (TREE_CODE (ifexp) == INTEGER_CST)
3091 return non_lvalue (integer_zerop (ifexp) ? op2 : op1);
3092
3093 return fold (build3 (COND_EXPR, result_type, ifexp, op1, op2));
3094 }
3095 \f
3096 /* Return a compound expression that performs two expressions and
3097 returns the value of the second of them. */
3098
3099 tree
3100 build_compound_expr (tree expr1, tree expr2)
3101 {
3102 /* Convert arrays and functions to pointers. */
3103 expr2 = default_function_array_conversion (expr2);
3104
3105 if (!TREE_SIDE_EFFECTS (expr1))
3106 {
3107 /* The left-hand operand of a comma expression is like an expression
3108 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3109 any side-effects, unless it was explicitly cast to (void). */
3110 if (warn_unused_value
3111 && !(TREE_CODE (expr1) == CONVERT_EXPR
3112 && VOID_TYPE_P (TREE_TYPE (expr1))))
3113 warning ("left-hand operand of comma expression has no effect");
3114 }
3115
3116 /* With -Wunused, we should also warn if the left-hand operand does have
3117 side-effects, but computes a value which is not used. For example, in
3118 `foo() + bar(), baz()' the result of the `+' operator is not used,
3119 so we should issue a warning. */
3120 else if (warn_unused_value)
3121 warn_if_unused_value (expr1, input_location);
3122
3123 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3124 }
3125
3126 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3127
3128 tree
3129 build_c_cast (tree type, tree expr)
3130 {
3131 tree value = expr;
3132
3133 if (type == error_mark_node || expr == error_mark_node)
3134 return error_mark_node;
3135
3136 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3137 only in <protocol> qualifications. But when constructing cast expressions,
3138 the protocols do matter and must be kept around. */
3139 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3140 return build1 (NOP_EXPR, type, expr);
3141
3142 type = TYPE_MAIN_VARIANT (type);
3143
3144 if (TREE_CODE (type) == ARRAY_TYPE)
3145 {
3146 error ("cast specifies array type");
3147 return error_mark_node;
3148 }
3149
3150 if (TREE_CODE (type) == FUNCTION_TYPE)
3151 {
3152 error ("cast specifies function type");
3153 return error_mark_node;
3154 }
3155
3156 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3157 {
3158 if (pedantic)
3159 {
3160 if (TREE_CODE (type) == RECORD_TYPE
3161 || TREE_CODE (type) == UNION_TYPE)
3162 pedwarn ("ISO C forbids casting nonscalar to the same type");
3163 }
3164 }
3165 else if (TREE_CODE (type) == UNION_TYPE)
3166 {
3167 tree field;
3168 value = default_function_array_conversion (value);
3169
3170 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3171 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3172 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3173 break;
3174
3175 if (field)
3176 {
3177 tree t;
3178
3179 if (pedantic)
3180 pedwarn ("ISO C forbids casts to union type");
3181 t = digest_init (type,
3182 build_constructor (type,
3183 build_tree_list (field, value)),
3184 true, 0);
3185 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3186 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3187 return t;
3188 }
3189 error ("cast to union type from type not present in union");
3190 return error_mark_node;
3191 }
3192 else
3193 {
3194 tree otype, ovalue;
3195
3196 /* If casting to void, avoid the error that would come
3197 from default_conversion in the case of a non-lvalue array. */
3198 if (type == void_type_node)
3199 return build1 (CONVERT_EXPR, type, value);
3200
3201 /* Convert functions and arrays to pointers,
3202 but don't convert any other types. */
3203 value = default_function_array_conversion (value);
3204 otype = TREE_TYPE (value);
3205
3206 /* Optionally warn about potentially worrisome casts. */
3207
3208 if (warn_cast_qual
3209 && TREE_CODE (type) == POINTER_TYPE
3210 && TREE_CODE (otype) == POINTER_TYPE)
3211 {
3212 tree in_type = type;
3213 tree in_otype = otype;
3214 int added = 0;
3215 int discarded = 0;
3216
3217 /* Check that the qualifiers on IN_TYPE are a superset of
3218 the qualifiers of IN_OTYPE. The outermost level of
3219 POINTER_TYPE nodes is uninteresting and we stop as soon
3220 as we hit a non-POINTER_TYPE node on either type. */
3221 do
3222 {
3223 in_otype = TREE_TYPE (in_otype);
3224 in_type = TREE_TYPE (in_type);
3225
3226 /* GNU C allows cv-qualified function types. 'const'
3227 means the function is very pure, 'volatile' means it
3228 can't return. We need to warn when such qualifiers
3229 are added, not when they're taken away. */
3230 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3231 && TREE_CODE (in_type) == FUNCTION_TYPE)
3232 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3233 else
3234 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3235 }
3236 while (TREE_CODE (in_type) == POINTER_TYPE
3237 && TREE_CODE (in_otype) == POINTER_TYPE);
3238
3239 if (added)
3240 warning ("cast adds new qualifiers to function type");
3241
3242 if (discarded)
3243 /* There are qualifiers present in IN_OTYPE that are not
3244 present in IN_TYPE. */
3245 warning ("cast discards qualifiers from pointer target type");
3246 }
3247
3248 /* Warn about possible alignment problems. */
3249 if (STRICT_ALIGNMENT && warn_cast_align
3250 && TREE_CODE (type) == POINTER_TYPE
3251 && TREE_CODE (otype) == POINTER_TYPE
3252 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3253 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3254 /* Don't warn about opaque types, where the actual alignment
3255 restriction is unknown. */
3256 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3257 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3258 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3259 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3260 warning ("cast increases required alignment of target type");
3261
3262 if (warn_pointer_to_int_cast
3263 && TREE_CODE (type) == INTEGER_TYPE
3264 && TREE_CODE (otype) == POINTER_TYPE
3265 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3266 && !TREE_CONSTANT (value))
3267 warning ("cast from pointer to integer of different size");
3268
3269 if (warn_bad_function_cast
3270 && TREE_CODE (value) == CALL_EXPR
3271 && TREE_CODE (type) != TREE_CODE (otype))
3272 warning ("cast from function call of type %qT to non-matching "
3273 "type %qT", otype, type);
3274
3275 if (warn_int_to_pointer_cast
3276 && TREE_CODE (type) == POINTER_TYPE
3277 && TREE_CODE (otype) == INTEGER_TYPE
3278 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3279 /* Don't warn about converting any constant. */
3280 && !TREE_CONSTANT (value))
3281 warning ("cast to pointer from integer of different size");
3282
3283 if (TREE_CODE (type) == POINTER_TYPE
3284 && TREE_CODE (otype) == POINTER_TYPE
3285 && TREE_CODE (expr) == ADDR_EXPR
3286 && DECL_P (TREE_OPERAND (expr, 0))
3287 && flag_strict_aliasing && warn_strict_aliasing
3288 && !VOID_TYPE_P (TREE_TYPE (type)))
3289 {
3290 /* Casting the address of a decl to non void pointer. Warn
3291 if the cast breaks type based aliasing. */
3292 if (!COMPLETE_TYPE_P (TREE_TYPE (type)))
3293 warning ("type-punning to incomplete type might break strict-aliasing rules");
3294 else
3295 {
3296 HOST_WIDE_INT set1 = get_alias_set (TREE_TYPE (TREE_OPERAND (expr, 0)));
3297 HOST_WIDE_INT set2 = get_alias_set (TREE_TYPE (type));
3298
3299 if (!alias_sets_conflict_p (set1, set2))
3300 warning ("dereferencing type-punned pointer will break strict-aliasing rules");
3301 else if (warn_strict_aliasing > 1
3302 && !alias_sets_might_conflict_p (set1, set2))
3303 warning ("dereferencing type-punned pointer might break strict-aliasing rules");
3304 }
3305 }
3306
3307 /* If pedantic, warn for conversions between function and object
3308 pointer types, except for converting a null pointer constant
3309 to function pointer type. */
3310 if (pedantic
3311 && TREE_CODE (type) == POINTER_TYPE
3312 && TREE_CODE (otype) == POINTER_TYPE
3313 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3314 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3315 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3316
3317 if (pedantic
3318 && TREE_CODE (type) == POINTER_TYPE
3319 && TREE_CODE (otype) == POINTER_TYPE
3320 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3321 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3322 && !(integer_zerop (value) && TREE_TYPE (otype) == void_type_node
3323 && TREE_CODE (expr) != NOP_EXPR))
3324 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3325
3326 ovalue = value;
3327 value = convert (type, value);
3328
3329 /* Ignore any integer overflow caused by the cast. */
3330 if (TREE_CODE (value) == INTEGER_CST)
3331 {
3332 if (EXPR_P (ovalue))
3333 /* If OVALUE had overflow set, then so will VALUE, so it
3334 is safe to overwrite. */
3335 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3336 else
3337 TREE_OVERFLOW (value) = 0;
3338
3339 if (CONSTANT_CLASS_P (ovalue))
3340 /* Similarly, constant_overflow cannot have become
3341 cleared. */
3342 TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
3343 }
3344 }
3345
3346 /* Don't let a cast be an lvalue. */
3347 if (value == expr)
3348 value = non_lvalue (value);
3349
3350 return value;
3351 }
3352
3353 /* Interpret a cast of expression EXPR to type TYPE. */
3354 tree
3355 c_cast_expr (struct c_type_name *type_name, tree expr)
3356 {
3357 tree type;
3358 int saved_wsp = warn_strict_prototypes;
3359
3360 /* This avoids warnings about unprototyped casts on
3361 integers. E.g. "#define SIG_DFL (void(*)())0". */
3362 if (TREE_CODE (expr) == INTEGER_CST)
3363 warn_strict_prototypes = 0;
3364 type = groktypename (type_name);
3365 warn_strict_prototypes = saved_wsp;
3366
3367 return build_c_cast (type, expr);
3368 }
3369
3370 \f
3371 /* Build an assignment expression of lvalue LHS from value RHS.
3372 MODIFYCODE is the code for a binary operator that we use
3373 to combine the old value of LHS with RHS to get the new value.
3374 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3375
3376 tree
3377 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3378 {
3379 tree result;
3380 tree newrhs;
3381 tree lhstype = TREE_TYPE (lhs);
3382 tree olhstype = lhstype;
3383
3384 /* Types that aren't fully specified cannot be used in assignments. */
3385 lhs = require_complete_type (lhs);
3386
3387 /* Avoid duplicate error messages from operands that had errors. */
3388 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3389 return error_mark_node;
3390
3391 STRIP_TYPE_NOPS (rhs);
3392
3393 newrhs = rhs;
3394
3395 /* If a binary op has been requested, combine the old LHS value with the RHS
3396 producing the value we should actually store into the LHS. */
3397
3398 if (modifycode != NOP_EXPR)
3399 {
3400 lhs = stabilize_reference (lhs);
3401 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3402 }
3403
3404 if (!lvalue_or_else (lhs, lv_assign))
3405 return error_mark_node;
3406
3407 /* Give an error for storing in something that is 'const'. */
3408
3409 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3410 || ((TREE_CODE (lhstype) == RECORD_TYPE
3411 || TREE_CODE (lhstype) == UNION_TYPE)
3412 && C_TYPE_FIELDS_READONLY (lhstype)))
3413 readonly_error (lhs, lv_assign);
3414
3415 /* If storing into a structure or union member,
3416 it has probably been given type `int'.
3417 Compute the type that would go with
3418 the actual amount of storage the member occupies. */
3419
3420 if (TREE_CODE (lhs) == COMPONENT_REF
3421 && (TREE_CODE (lhstype) == INTEGER_TYPE
3422 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3423 || TREE_CODE (lhstype) == REAL_TYPE
3424 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3425 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3426
3427 /* If storing in a field that is in actuality a short or narrower than one,
3428 we must store in the field in its actual type. */
3429
3430 if (lhstype != TREE_TYPE (lhs))
3431 {
3432 lhs = copy_node (lhs);
3433 TREE_TYPE (lhs) = lhstype;
3434 }
3435
3436 /* Convert new value to destination type. */
3437
3438 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3439 NULL_TREE, NULL_TREE, 0);
3440 if (TREE_CODE (newrhs) == ERROR_MARK)
3441 return error_mark_node;
3442
3443 /* Scan operands. */
3444
3445 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3446 TREE_SIDE_EFFECTS (result) = 1;
3447
3448 /* If we got the LHS in a different type for storing in,
3449 convert the result back to the nominal type of LHS
3450 so that the value we return always has the same type
3451 as the LHS argument. */
3452
3453 if (olhstype == TREE_TYPE (result))
3454 return result;
3455 return convert_for_assignment (olhstype, result, ic_assign,
3456 NULL_TREE, NULL_TREE, 0);
3457 }
3458 \f
3459 /* Convert value RHS to type TYPE as preparation for an assignment
3460 to an lvalue of type TYPE.
3461 The real work of conversion is done by `convert'.
3462 The purpose of this function is to generate error messages
3463 for assignments that are not allowed in C.
3464 ERRTYPE says whether it is argument passing, assignment,
3465 initialization or return.
3466
3467 FUNCTION is a tree for the function being called.
3468 PARMNUM is the number of the argument, for printing in error messages. */
3469
3470 static tree
3471 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3472 tree fundecl, tree function, int parmnum)
3473 {
3474 enum tree_code codel = TREE_CODE (type);
3475 tree rhstype;
3476 enum tree_code coder;
3477 tree rname = NULL_TREE;
3478
3479 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3480 {
3481 tree selector;
3482 /* Change pointer to function to the function itself for
3483 diagnostics. */
3484 if (TREE_CODE (function) == ADDR_EXPR
3485 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3486 function = TREE_OPERAND (function, 0);
3487
3488 /* Handle an ObjC selector specially for diagnostics. */
3489 selector = objc_message_selector ();
3490 rname = function;
3491 if (selector && parmnum > 2)
3492 {
3493 rname = selector;
3494 parmnum -= 2;
3495 }
3496 }
3497
3498 /* This macro is used to emit diagnostics to ensure that all format
3499 strings are complete sentences, visible to gettext and checked at
3500 compile time. */
3501 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3502 do { \
3503 switch (errtype) \
3504 { \
3505 case ic_argpass: \
3506 pedwarn (AR, parmnum, rname); \
3507 break; \
3508 case ic_argpass_nonproto: \
3509 warning (AR, parmnum, rname); \
3510 break; \
3511 case ic_assign: \
3512 pedwarn (AS); \
3513 break; \
3514 case ic_init: \
3515 pedwarn (IN); \
3516 break; \
3517 case ic_return: \
3518 pedwarn (RE); \
3519 break; \
3520 default: \
3521 gcc_unreachable (); \
3522 } \
3523 } while (0)
3524
3525 STRIP_TYPE_NOPS (rhs);
3526
3527 if (TREE_CODE (TREE_TYPE (rhs)) == ARRAY_TYPE
3528 || TREE_CODE (TREE_TYPE (rhs)) == FUNCTION_TYPE)
3529 rhs = default_conversion (rhs);
3530 else if (optimize && TREE_CODE (rhs) == VAR_DECL)
3531 rhs = decl_constant_value_for_broken_optimization (rhs);
3532
3533 rhstype = TREE_TYPE (rhs);
3534 coder = TREE_CODE (rhstype);
3535
3536 if (coder == ERROR_MARK)
3537 return error_mark_node;
3538
3539 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3540 {
3541 overflow_warning (rhs);
3542 /* Check for Objective-C protocols. This will automatically
3543 issue a warning if there are protocol violations. No need to
3544 use the return value. */
3545 if (c_dialect_objc ())
3546 objc_comptypes (type, rhstype, 0);
3547 return rhs;
3548 }
3549
3550 if (coder == VOID_TYPE)
3551 {
3552 /* Except for passing an argument to an unprototyped function,
3553 this is a constraint violation. When passing an argument to
3554 an unprototyped function, it is compile-time undefined;
3555 making it a constraint in that case was rejected in
3556 DR#252. */
3557 error ("void value not ignored as it ought to be");
3558 return error_mark_node;
3559 }
3560 /* A type converts to a reference to it.
3561 This code doesn't fully support references, it's just for the
3562 special case of va_start and va_copy. */
3563 if (codel == REFERENCE_TYPE
3564 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3565 {
3566 if (!lvalue_p (rhs))
3567 {
3568 error ("cannot pass rvalue to reference parameter");
3569 return error_mark_node;
3570 }
3571 if (!c_mark_addressable (rhs))
3572 return error_mark_node;
3573 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3574
3575 /* We already know that these two types are compatible, but they
3576 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3577 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3578 likely to be va_list, a typedef to __builtin_va_list, which
3579 is different enough that it will cause problems later. */
3580 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3581 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3582
3583 rhs = build1 (NOP_EXPR, type, rhs);
3584 return rhs;
3585 }
3586 /* Some types can interconvert without explicit casts. */
3587 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3588 && vector_types_convertible_p (type, TREE_TYPE (rhs)))
3589 return convert (type, rhs);
3590 /* Arithmetic types all interconvert, and enum is treated like int. */
3591 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3592 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3593 || codel == BOOLEAN_TYPE)
3594 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3595 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3596 || coder == BOOLEAN_TYPE))
3597 return convert_and_check (type, rhs);
3598
3599 /* Conversion to a transparent union from its member types.
3600 This applies only to function arguments. */
3601 else if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3602 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3603 {
3604 tree memb_types;
3605 tree marginal_memb_type = 0;
3606
3607 for (memb_types = TYPE_FIELDS (type); memb_types;
3608 memb_types = TREE_CHAIN (memb_types))
3609 {
3610 tree memb_type = TREE_TYPE (memb_types);
3611
3612 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3613 TYPE_MAIN_VARIANT (rhstype)))
3614 break;
3615
3616 if (TREE_CODE (memb_type) != POINTER_TYPE)
3617 continue;
3618
3619 if (coder == POINTER_TYPE)
3620 {
3621 tree ttl = TREE_TYPE (memb_type);
3622 tree ttr = TREE_TYPE (rhstype);
3623
3624 /* Any non-function converts to a [const][volatile] void *
3625 and vice versa; otherwise, targets must be the same.
3626 Meanwhile, the lhs target must have all the qualifiers of
3627 the rhs. */
3628 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3629 || comp_target_types (memb_type, rhstype, 0))
3630 {
3631 /* If this type won't generate any warnings, use it. */
3632 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3633 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3634 && TREE_CODE (ttl) == FUNCTION_TYPE)
3635 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3636 == TYPE_QUALS (ttr))
3637 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3638 == TYPE_QUALS (ttl))))
3639 break;
3640
3641 /* Keep looking for a better type, but remember this one. */
3642 if (!marginal_memb_type)
3643 marginal_memb_type = memb_type;
3644 }
3645 }
3646
3647 /* Can convert integer zero to any pointer type. */
3648 if (integer_zerop (rhs)
3649 || (TREE_CODE (rhs) == NOP_EXPR
3650 && integer_zerop (TREE_OPERAND (rhs, 0))))
3651 {
3652 rhs = null_pointer_node;
3653 break;
3654 }
3655 }
3656
3657 if (memb_types || marginal_memb_type)
3658 {
3659 if (!memb_types)
3660 {
3661 /* We have only a marginally acceptable member type;
3662 it needs a warning. */
3663 tree ttl = TREE_TYPE (marginal_memb_type);
3664 tree ttr = TREE_TYPE (rhstype);
3665
3666 /* Const and volatile mean something different for function
3667 types, so the usual warnings are not appropriate. */
3668 if (TREE_CODE (ttr) == FUNCTION_TYPE
3669 && TREE_CODE (ttl) == FUNCTION_TYPE)
3670 {
3671 /* Because const and volatile on functions are
3672 restrictions that say the function will not do
3673 certain things, it is okay to use a const or volatile
3674 function where an ordinary one is wanted, but not
3675 vice-versa. */
3676 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3677 WARN_FOR_ASSIGNMENT (N_("passing argument %d of %qE "
3678 "makes qualified function "
3679 "pointer from unqualified"),
3680 N_("assignment makes qualified "
3681 "function pointer from "
3682 "unqualified"),
3683 N_("initialization makes qualified "
3684 "function pointer from "
3685 "unqualified"),
3686 N_("return makes qualified function "
3687 "pointer from unqualified"));
3688 }
3689 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3690 WARN_FOR_ASSIGNMENT (N_("passing argument %d of %qE discards "
3691 "qualifiers from pointer target type"),
3692 N_("assignment discards qualifiers "
3693 "from pointer target type"),
3694 N_("initialization discards qualifiers "
3695 "from pointer target type"),
3696 N_("return discards qualifiers from "
3697 "pointer target type"));
3698 }
3699
3700 if (pedantic && !DECL_IN_SYSTEM_HEADER (fundecl))
3701 pedwarn ("ISO C prohibits argument conversion to union type");
3702
3703 return build1 (NOP_EXPR, type, rhs);
3704 }
3705 }
3706
3707 /* Conversions among pointers */
3708 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
3709 && (coder == codel))
3710 {
3711 tree ttl = TREE_TYPE (type);
3712 tree ttr = TREE_TYPE (rhstype);
3713 tree mvl = ttl;
3714 tree mvr = ttr;
3715 bool is_opaque_pointer;
3716 int target_cmp = 0; /* Cache comp_target_types () result. */
3717
3718 if (TREE_CODE (mvl) != ARRAY_TYPE)
3719 mvl = TYPE_MAIN_VARIANT (mvl);
3720 if (TREE_CODE (mvr) != ARRAY_TYPE)
3721 mvr = TYPE_MAIN_VARIANT (mvr);
3722 /* Opaque pointers are treated like void pointers. */
3723 is_opaque_pointer = (targetm.vector_opaque_p (type)
3724 || targetm.vector_opaque_p (rhstype))
3725 && TREE_CODE (ttl) == VECTOR_TYPE
3726 && TREE_CODE (ttr) == VECTOR_TYPE;
3727
3728 /* Any non-function converts to a [const][volatile] void *
3729 and vice versa; otherwise, targets must be the same.
3730 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
3731 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3732 || (target_cmp = comp_target_types (type, rhstype, 0))
3733 || is_opaque_pointer
3734 || (c_common_unsigned_type (mvl)
3735 == c_common_unsigned_type (mvr)))
3736 {
3737 if (pedantic
3738 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
3739 ||
3740 (VOID_TYPE_P (ttr)
3741 /* Check TREE_CODE to catch cases like (void *) (char *) 0
3742 which are not ANSI null ptr constants. */
3743 && (!integer_zerop (rhs) || TREE_CODE (rhs) == NOP_EXPR)
3744 && TREE_CODE (ttl) == FUNCTION_TYPE)))
3745 WARN_FOR_ASSIGNMENT (N_("ISO C forbids passing argument %d of "
3746 "%qE between function pointer "
3747 "and %<void *%>"),
3748 N_("ISO C forbids assignment between "
3749 "function pointer and %<void *%>"),
3750 N_("ISO C forbids initialization between "
3751 "function pointer and %<void *%>"),
3752 N_("ISO C forbids return between function "
3753 "pointer and %<void *%>"));
3754 /* Const and volatile mean something different for function types,
3755 so the usual warnings are not appropriate. */
3756 else if (TREE_CODE (ttr) != FUNCTION_TYPE
3757 && TREE_CODE (ttl) != FUNCTION_TYPE)
3758 {
3759 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
3760 WARN_FOR_ASSIGNMENT (N_("passing argument %d of %qE discards "
3761 "qualifiers from pointer target type"),
3762 N_("assignment discards qualifiers "
3763 "from pointer target type"),
3764 N_("initialization discards qualifiers "
3765 "from pointer target type"),
3766 N_("return discards qualifiers from "
3767 "pointer target type"));
3768 /* If this is not a case of ignoring a mismatch in signedness,
3769 no warning. */
3770 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3771 || target_cmp)
3772 ;
3773 /* If there is a mismatch, do warn. */
3774 else if (warn_pointer_sign)
3775 WARN_FOR_ASSIGNMENT (N_("pointer targets in passing argument "
3776 "%d of %qE differ in signedness"),
3777 N_("pointer targets in assignment "
3778 "differ in signedness"),
3779 N_("pointer targets in initialization "
3780 "differ in signedness"),
3781 N_("pointer targets in return differ "
3782 "in signedness"));
3783 }
3784 else if (TREE_CODE (ttl) == FUNCTION_TYPE
3785 && TREE_CODE (ttr) == FUNCTION_TYPE)
3786 {
3787 /* Because const and volatile on functions are restrictions
3788 that say the function will not do certain things,
3789 it is okay to use a const or volatile function
3790 where an ordinary one is wanted, but not vice-versa. */
3791 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
3792 WARN_FOR_ASSIGNMENT (N_("passing argument %d of %qE makes "
3793 "qualified function pointer "
3794 "from unqualified"),
3795 N_("assignment makes qualified function "
3796 "pointer from unqualified"),
3797 N_("initialization makes qualified "
3798 "function pointer from unqualified"),
3799 N_("return makes qualified function "
3800 "pointer from unqualified"));
3801 }
3802 }
3803 else
3804 WARN_FOR_ASSIGNMENT (N_("passing argument %d of %qE from "
3805 "incompatible pointer type"),
3806 N_("assignment from incompatible pointer type"),
3807 N_("initialization from incompatible "
3808 "pointer type"),
3809 N_("return from incompatible pointer type"));
3810 return convert (type, rhs);
3811 }
3812 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
3813 {
3814 /* ??? This should not be an error when inlining calls to
3815 unprototyped functions. */
3816 error ("invalid use of non-lvalue array");
3817 return error_mark_node;
3818 }
3819 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
3820 {
3821 /* An explicit constant 0 can convert to a pointer,
3822 or one that results from arithmetic, even including
3823 a cast to integer type. */
3824 if (!(TREE_CODE (rhs) == INTEGER_CST && integer_zerop (rhs))
3825 &&
3826 !(TREE_CODE (rhs) == NOP_EXPR
3827 && TREE_CODE (TREE_TYPE (rhs)) == INTEGER_TYPE
3828 && TREE_CODE (TREE_OPERAND (rhs, 0)) == INTEGER_CST
3829 && integer_zerop (TREE_OPERAND (rhs, 0))))
3830 WARN_FOR_ASSIGNMENT (N_("passing argument %d of %qE makes "
3831 "pointer from integer without a cast"),
3832 N_("assignment makes pointer from integer "
3833 "without a cast"),
3834 N_("initialization makes pointer from "
3835 "integer without a cast"),
3836 N_("return makes pointer from integer "
3837 "without a cast"));
3838
3839 return convert (type, rhs);
3840 }
3841 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
3842 {
3843 WARN_FOR_ASSIGNMENT (N_("passing argument %d of %qE makes integer "
3844 "from pointer without a cast"),
3845 N_("assignment makes integer from pointer "
3846 "without a cast"),
3847 N_("initialization makes integer from pointer "
3848 "without a cast"),
3849 N_("return makes integer from pointer "
3850 "without a cast"));
3851 return convert (type, rhs);
3852 }
3853 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
3854 return convert (type, rhs);
3855
3856 switch (errtype)
3857 {
3858 case ic_argpass:
3859 case ic_argpass_nonproto:
3860 /* ??? This should not be an error when inlining calls to
3861 unprototyped functions. */
3862 error ("incompatible type for argument %d of %qE", parmnum, rname);
3863 break;
3864 case ic_assign:
3865 error ("incompatible types in assignment");
3866 break;
3867 case ic_init:
3868 error ("incompatible types in initialization");
3869 break;
3870 case ic_return:
3871 error ("incompatible types in return");
3872 break;
3873 default:
3874 gcc_unreachable ();
3875 }
3876
3877 return error_mark_node;
3878 }
3879
3880 /* Convert VALUE for assignment into inlined parameter PARM. ARGNUM
3881 is used for error and waring reporting and indicates which argument
3882 is being processed. */
3883
3884 tree
3885 c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
3886 {
3887 tree ret, type;
3888
3889 /* If FN was prototyped, the value has been converted already
3890 in convert_arguments. */
3891 if (!value || TYPE_ARG_TYPES (TREE_TYPE (fn)))
3892 return value;
3893
3894 type = TREE_TYPE (parm);
3895 ret = convert_for_assignment (type, value,
3896 ic_argpass_nonproto, fn,
3897 fn, argnum);
3898 if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
3899 && INTEGRAL_TYPE_P (type)
3900 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
3901 ret = default_conversion (ret);
3902 return ret;
3903 }
3904 \f
3905 /* If VALUE is a compound expr all of whose expressions are constant, then
3906 return its value. Otherwise, return error_mark_node.
3907
3908 This is for handling COMPOUND_EXPRs as initializer elements
3909 which is allowed with a warning when -pedantic is specified. */
3910
3911 static tree
3912 valid_compound_expr_initializer (tree value, tree endtype)
3913 {
3914 if (TREE_CODE (value) == COMPOUND_EXPR)
3915 {
3916 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
3917 == error_mark_node)
3918 return error_mark_node;
3919 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
3920 endtype);
3921 }
3922 else if (!initializer_constant_valid_p (value, endtype))
3923 return error_mark_node;
3924 else
3925 return value;
3926 }
3927 \f
3928 /* Perform appropriate conversions on the initial value of a variable,
3929 store it in the declaration DECL,
3930 and print any error messages that are appropriate.
3931 If the init is invalid, store an ERROR_MARK. */
3932
3933 void
3934 store_init_value (tree decl, tree init)
3935 {
3936 tree value, type;
3937
3938 /* If variable's type was invalidly declared, just ignore it. */
3939
3940 type = TREE_TYPE (decl);
3941 if (TREE_CODE (type) == ERROR_MARK)
3942 return;
3943
3944 /* Digest the specified initializer into an expression. */
3945
3946 value = digest_init (type, init, true, TREE_STATIC (decl));
3947
3948 /* Store the expression if valid; else report error. */
3949
3950 if (warn_traditional && !in_system_header
3951 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
3952 warning ("traditional C rejects automatic aggregate initialization");
3953
3954 DECL_INITIAL (decl) = value;
3955
3956 /* ANSI wants warnings about out-of-range constant initializers. */
3957 STRIP_TYPE_NOPS (value);
3958 constant_expression_warning (value);
3959
3960 /* Check if we need to set array size from compound literal size. */
3961 if (TREE_CODE (type) == ARRAY_TYPE
3962 && TYPE_DOMAIN (type) == 0
3963 && value != error_mark_node)
3964 {
3965 tree inside_init = init;
3966
3967 STRIP_TYPE_NOPS (inside_init);
3968 inside_init = fold (inside_init);
3969
3970 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
3971 {
3972 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
3973
3974 if (TYPE_DOMAIN (TREE_TYPE (decl)))
3975 {
3976 /* For int foo[] = (int [3]){1}; we need to set array size
3977 now since later on array initializer will be just the
3978 brace enclosed list of the compound literal. */
3979 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (decl));
3980 layout_type (type);
3981 layout_decl (decl, 0);
3982 }
3983 }
3984 }
3985 }
3986 \f
3987 /* Methods for storing and printing names for error messages. */
3988
3989 /* Implement a spelling stack that allows components of a name to be pushed
3990 and popped. Each element on the stack is this structure. */
3991
3992 struct spelling
3993 {
3994 int kind;
3995 union
3996 {
3997 int i;
3998 const char *s;
3999 } u;
4000 };
4001
4002 #define SPELLING_STRING 1
4003 #define SPELLING_MEMBER 2
4004 #define SPELLING_BOUNDS 3
4005
4006 static struct spelling *spelling; /* Next stack element (unused). */
4007 static struct spelling *spelling_base; /* Spelling stack base. */
4008 static int spelling_size; /* Size of the spelling stack. */
4009
4010 /* Macros to save and restore the spelling stack around push_... functions.
4011 Alternative to SAVE_SPELLING_STACK. */
4012
4013 #define SPELLING_DEPTH() (spelling - spelling_base)
4014 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4015
4016 /* Push an element on the spelling stack with type KIND and assign VALUE
4017 to MEMBER. */
4018
4019 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4020 { \
4021 int depth = SPELLING_DEPTH (); \
4022 \
4023 if (depth >= spelling_size) \
4024 { \
4025 spelling_size += 10; \
4026 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4027 spelling_size); \
4028 RESTORE_SPELLING_DEPTH (depth); \
4029 } \
4030 \
4031 spelling->kind = (KIND); \
4032 spelling->MEMBER = (VALUE); \
4033 spelling++; \
4034 }
4035
4036 /* Push STRING on the stack. Printed literally. */
4037
4038 static void
4039 push_string (const char *string)
4040 {
4041 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4042 }
4043
4044 /* Push a member name on the stack. Printed as '.' STRING. */
4045
4046 static void
4047 push_member_name (tree decl)
4048 {
4049 const char *const string
4050 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4051 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4052 }
4053
4054 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4055
4056 static void
4057 push_array_bounds (int bounds)
4058 {
4059 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4060 }
4061
4062 /* Compute the maximum size in bytes of the printed spelling. */
4063
4064 static int
4065 spelling_length (void)
4066 {
4067 int size = 0;
4068 struct spelling *p;
4069
4070 for (p = spelling_base; p < spelling; p++)
4071 {
4072 if (p->kind == SPELLING_BOUNDS)
4073 size += 25;
4074 else
4075 size += strlen (p->u.s) + 1;
4076 }
4077
4078 return size;
4079 }
4080
4081 /* Print the spelling to BUFFER and return it. */
4082
4083 static char *
4084 print_spelling (char *buffer)
4085 {
4086 char *d = buffer;
4087 struct spelling *p;
4088
4089 for (p = spelling_base; p < spelling; p++)
4090 if (p->kind == SPELLING_BOUNDS)
4091 {
4092 sprintf (d, "[%d]", p->u.i);
4093 d += strlen (d);
4094 }
4095 else
4096 {
4097 const char *s;
4098 if (p->kind == SPELLING_MEMBER)
4099 *d++ = '.';
4100 for (s = p->u.s; (*d = *s++); d++)
4101 ;
4102 }
4103 *d++ = '\0';
4104 return buffer;
4105 }
4106
4107 /* Issue an error message for a bad initializer component.
4108 MSGID identifies the message.
4109 The component name is taken from the spelling stack. */
4110
4111 void
4112 error_init (const char *msgid)
4113 {
4114 char *ofwhat;
4115
4116 error ("%s", _(msgid));
4117 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4118 if (*ofwhat)
4119 error ("(near initialization for %qs)", ofwhat);
4120 }
4121
4122 /* Issue a pedantic warning for a bad initializer component.
4123 MSGID identifies the message.
4124 The component name is taken from the spelling stack. */
4125
4126 void
4127 pedwarn_init (const char *msgid)
4128 {
4129 char *ofwhat;
4130
4131 pedwarn ("%s", _(msgid));
4132 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4133 if (*ofwhat)
4134 pedwarn ("(near initialization for %qs)", ofwhat);
4135 }
4136
4137 /* Issue a warning for a bad initializer component.
4138 MSGID identifies the message.
4139 The component name is taken from the spelling stack. */
4140
4141 static void
4142 warning_init (const char *msgid)
4143 {
4144 char *ofwhat;
4145
4146 warning ("%s", _(msgid));
4147 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4148 if (*ofwhat)
4149 warning ("(near initialization for %qs)", ofwhat);
4150 }
4151 \f
4152 /* If TYPE is an array type and EXPR is a parenthesized string
4153 constant, warn if pedantic that EXPR is being used to initialize an
4154 object of type TYPE. */
4155
4156 void
4157 maybe_warn_string_init (tree type, struct c_expr expr)
4158 {
4159 if (pedantic
4160 && TREE_CODE (type) == ARRAY_TYPE
4161 && TREE_CODE (expr.value) == STRING_CST
4162 && expr.original_code != STRING_CST)
4163 pedwarn_init ("array initialized from parenthesized string constant");
4164 }
4165
4166 /* Digest the parser output INIT as an initializer for type TYPE.
4167 Return a C expression of type TYPE to represent the initial value.
4168
4169 If INIT is a string constant, STRICT_STRING is true if it is
4170 unparenthesized or we should not warn here for it being parenthesized.
4171 For other types of INIT, STRICT_STRING is not used.
4172
4173 REQUIRE_CONSTANT requests an error if non-constant initializers or
4174 elements are seen. */
4175
4176 static tree
4177 digest_init (tree type, tree init, bool strict_string, int require_constant)
4178 {
4179 enum tree_code code = TREE_CODE (type);
4180 tree inside_init = init;
4181
4182 if (type == error_mark_node
4183 || init == error_mark_node
4184 || TREE_TYPE (init) == error_mark_node)
4185 return error_mark_node;
4186
4187 STRIP_TYPE_NOPS (inside_init);
4188
4189 inside_init = fold (inside_init);
4190
4191 /* Initialization of an array of chars from a string constant
4192 optionally enclosed in braces. */
4193
4194 if (code == ARRAY_TYPE && inside_init
4195 && TREE_CODE (inside_init) == STRING_CST)
4196 {
4197 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4198 /* Note that an array could be both an array of character type
4199 and an array of wchar_t if wchar_t is signed char or unsigned
4200 char. */
4201 bool char_array = (typ1 == char_type_node
4202 || typ1 == signed_char_type_node
4203 || typ1 == unsigned_char_type_node);
4204 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4205 if (char_array || wchar_array)
4206 {
4207 struct c_expr expr;
4208 bool char_string;
4209 expr.value = inside_init;
4210 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4211 maybe_warn_string_init (type, expr);
4212
4213 char_string
4214 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4215 == char_type_node);
4216
4217 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4218 TYPE_MAIN_VARIANT (type)))
4219 return inside_init;
4220
4221 if (!wchar_array && !char_string)
4222 {
4223 error_init ("char-array initialized from wide string");
4224 return error_mark_node;
4225 }
4226 if (char_string && !char_array)
4227 {
4228 error_init ("wchar_t-array initialized from non-wide string");
4229 return error_mark_node;
4230 }
4231
4232 TREE_TYPE (inside_init) = type;
4233 if (TYPE_DOMAIN (type) != 0
4234 && TYPE_SIZE (type) != 0
4235 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4236 /* Subtract 1 (or sizeof (wchar_t))
4237 because it's ok to ignore the terminating null char
4238 that is counted in the length of the constant. */
4239 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4240 TREE_STRING_LENGTH (inside_init)
4241 - ((TYPE_PRECISION (typ1)
4242 != TYPE_PRECISION (char_type_node))
4243 ? (TYPE_PRECISION (wchar_type_node)
4244 / BITS_PER_UNIT)
4245 : 1)))
4246 pedwarn_init ("initializer-string for array of chars is too long");
4247
4248 return inside_init;
4249 }
4250 else if (INTEGRAL_TYPE_P (typ1))
4251 {
4252 error_init ("array of inappropriate type initialized "
4253 "from string constant");
4254 return error_mark_node;
4255 }
4256 }
4257
4258 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4259 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4260 below and handle as a constructor. */
4261 if (code == VECTOR_TYPE
4262 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4263 && vector_types_convertible_p (TREE_TYPE (inside_init), type)
4264 && TREE_CONSTANT (inside_init))
4265 {
4266 if (TREE_CODE (inside_init) == VECTOR_CST
4267 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4268 TYPE_MAIN_VARIANT (type)))
4269 return inside_init;
4270
4271 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4272 {
4273 tree link;
4274
4275 /* Iterate through elements and check if all constructor
4276 elements are *_CSTs. */
4277 for (link = CONSTRUCTOR_ELTS (inside_init);
4278 link;
4279 link = TREE_CHAIN (link))
4280 if (! CONSTANT_CLASS_P (TREE_VALUE (link)))
4281 break;
4282
4283 if (link == NULL)
4284 return build_vector (type, CONSTRUCTOR_ELTS (inside_init));
4285 }
4286 }
4287
4288 /* Any type can be initialized
4289 from an expression of the same type, optionally with braces. */
4290
4291 if (inside_init && TREE_TYPE (inside_init) != 0
4292 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4293 TYPE_MAIN_VARIANT (type))
4294 || (code == ARRAY_TYPE
4295 && comptypes (TREE_TYPE (inside_init), type))
4296 || (code == VECTOR_TYPE
4297 && comptypes (TREE_TYPE (inside_init), type))
4298 || (code == POINTER_TYPE
4299 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4300 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4301 TREE_TYPE (type)))
4302 || (code == POINTER_TYPE
4303 && TREE_CODE (TREE_TYPE (inside_init)) == FUNCTION_TYPE
4304 && comptypes (TREE_TYPE (inside_init),
4305 TREE_TYPE (type)))))
4306 {
4307 if (code == POINTER_TYPE)
4308 {
4309 inside_init = default_function_array_conversion (inside_init);
4310
4311 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4312 {
4313 error_init ("invalid use of non-lvalue array");
4314 return error_mark_node;
4315 }
4316 }
4317
4318 if (code == VECTOR_TYPE)
4319 /* Although the types are compatible, we may require a
4320 conversion. */
4321 inside_init = convert (type, inside_init);
4322
4323 if (require_constant && !flag_isoc99
4324 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4325 {
4326 /* As an extension, allow initializing objects with static storage
4327 duration with compound literals (which are then treated just as
4328 the brace enclosed list they contain). */
4329 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4330 inside_init = DECL_INITIAL (decl);
4331 }
4332
4333 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4334 && TREE_CODE (inside_init) != CONSTRUCTOR)
4335 {
4336 error_init ("array initialized from non-constant array expression");
4337 return error_mark_node;
4338 }
4339
4340 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4341 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4342
4343 /* Compound expressions can only occur here if -pedantic or
4344 -pedantic-errors is specified. In the later case, we always want
4345 an error. In the former case, we simply want a warning. */
4346 if (require_constant && pedantic
4347 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4348 {
4349 inside_init
4350 = valid_compound_expr_initializer (inside_init,
4351 TREE_TYPE (inside_init));
4352 if (inside_init == error_mark_node)
4353 error_init ("initializer element is not constant");
4354 else
4355 pedwarn_init ("initializer element is not constant");
4356 if (flag_pedantic_errors)
4357 inside_init = error_mark_node;
4358 }
4359 else if (require_constant
4360 && !initializer_constant_valid_p (inside_init,
4361 TREE_TYPE (inside_init)))
4362 {
4363 error_init ("initializer element is not constant");
4364 inside_init = error_mark_node;
4365 }
4366
4367 return inside_init;
4368 }
4369
4370 /* Handle scalar types, including conversions. */
4371
4372 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4373 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4374 || code == VECTOR_TYPE)
4375 {
4376 /* Note that convert_for_assignment calls default_conversion
4377 for arrays and functions. We must not call it in the
4378 case where inside_init is a null pointer constant. */
4379 inside_init
4380 = convert_for_assignment (type, init, ic_init,
4381 NULL_TREE, NULL_TREE, 0);
4382
4383 /* Check to see if we have already given an error message. */
4384 if (inside_init == error_mark_node)
4385 ;
4386 else if (require_constant && !TREE_CONSTANT (inside_init))
4387 {
4388 error_init ("initializer element is not constant");
4389 inside_init = error_mark_node;
4390 }
4391 else if (require_constant
4392 && !initializer_constant_valid_p (inside_init,
4393 TREE_TYPE (inside_init)))
4394 {
4395 error_init ("initializer element is not computable at load time");
4396 inside_init = error_mark_node;
4397 }
4398
4399 return inside_init;
4400 }
4401
4402 /* Come here only for records and arrays. */
4403
4404 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4405 {
4406 error_init ("variable-sized object may not be initialized");
4407 return error_mark_node;
4408 }
4409
4410 error_init ("invalid initializer");
4411 return error_mark_node;
4412 }
4413 \f
4414 /* Handle initializers that use braces. */
4415
4416 /* Type of object we are accumulating a constructor for.
4417 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4418 static tree constructor_type;
4419
4420 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4421 left to fill. */
4422 static tree constructor_fields;
4423
4424 /* For an ARRAY_TYPE, this is the specified index
4425 at which to store the next element we get. */
4426 static tree constructor_index;
4427
4428 /* For an ARRAY_TYPE, this is the maximum index. */
4429 static tree constructor_max_index;
4430
4431 /* For a RECORD_TYPE, this is the first field not yet written out. */
4432 static tree constructor_unfilled_fields;
4433
4434 /* For an ARRAY_TYPE, this is the index of the first element
4435 not yet written out. */
4436 static tree constructor_unfilled_index;
4437
4438 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4439 This is so we can generate gaps between fields, when appropriate. */
4440 static tree constructor_bit_index;
4441
4442 /* If we are saving up the elements rather than allocating them,
4443 this is the list of elements so far (in reverse order,
4444 most recent first). */
4445 static tree constructor_elements;
4446
4447 /* 1 if constructor should be incrementally stored into a constructor chain,
4448 0 if all the elements should be kept in AVL tree. */
4449 static int constructor_incremental;
4450
4451 /* 1 if so far this constructor's elements are all compile-time constants. */
4452 static int constructor_constant;
4453
4454 /* 1 if so far this constructor's elements are all valid address constants. */
4455 static int constructor_simple;
4456
4457 /* 1 if this constructor is erroneous so far. */
4458 static int constructor_erroneous;
4459
4460 /* Structure for managing pending initializer elements, organized as an
4461 AVL tree. */
4462
4463 struct init_node
4464 {
4465 struct init_node *left, *right;
4466 struct init_node *parent;
4467 int balance;
4468 tree purpose;
4469 tree value;
4470 };
4471
4472 /* Tree of pending elements at this constructor level.
4473 These are elements encountered out of order
4474 which belong at places we haven't reached yet in actually
4475 writing the output.
4476 Will never hold tree nodes across GC runs. */
4477 static struct init_node *constructor_pending_elts;
4478
4479 /* The SPELLING_DEPTH of this constructor. */
4480 static int constructor_depth;
4481
4482 /* DECL node for which an initializer is being read.
4483 0 means we are reading a constructor expression
4484 such as (struct foo) {...}. */
4485 static tree constructor_decl;
4486
4487 /* Nonzero if this is an initializer for a top-level decl. */
4488 static int constructor_top_level;
4489
4490 /* Nonzero if there were any member designators in this initializer. */
4491 static int constructor_designated;
4492
4493 /* Nesting depth of designator list. */
4494 static int designator_depth;
4495
4496 /* Nonzero if there were diagnosed errors in this designator list. */
4497 static int designator_errorneous;
4498
4499 \f
4500 /* This stack has a level for each implicit or explicit level of
4501 structuring in the initializer, including the outermost one. It
4502 saves the values of most of the variables above. */
4503
4504 struct constructor_range_stack;
4505
4506 struct constructor_stack
4507 {
4508 struct constructor_stack *next;
4509 tree type;
4510 tree fields;
4511 tree index;
4512 tree max_index;
4513 tree unfilled_index;
4514 tree unfilled_fields;
4515 tree bit_index;
4516 tree elements;
4517 struct init_node *pending_elts;
4518 int offset;
4519 int depth;
4520 /* If value nonzero, this value should replace the entire
4521 constructor at this level. */
4522 struct c_expr replacement_value;
4523 struct constructor_range_stack *range_stack;
4524 char constant;
4525 char simple;
4526 char implicit;
4527 char erroneous;
4528 char outer;
4529 char incremental;
4530 char designated;
4531 };
4532
4533 static struct constructor_stack *constructor_stack;
4534
4535 /* This stack represents designators from some range designator up to
4536 the last designator in the list. */
4537
4538 struct constructor_range_stack
4539 {
4540 struct constructor_range_stack *next, *prev;
4541 struct constructor_stack *stack;
4542 tree range_start;
4543 tree index;
4544 tree range_end;
4545 tree fields;
4546 };
4547
4548 static struct constructor_range_stack *constructor_range_stack;
4549
4550 /* This stack records separate initializers that are nested.
4551 Nested initializers can't happen in ANSI C, but GNU C allows them
4552 in cases like { ... (struct foo) { ... } ... }. */
4553
4554 struct initializer_stack
4555 {
4556 struct initializer_stack *next;
4557 tree decl;
4558 struct constructor_stack *constructor_stack;
4559 struct constructor_range_stack *constructor_range_stack;
4560 tree elements;
4561 struct spelling *spelling;
4562 struct spelling *spelling_base;
4563 int spelling_size;
4564 char top_level;
4565 char require_constant_value;
4566 char require_constant_elements;
4567 };
4568
4569 static struct initializer_stack *initializer_stack;
4570 \f
4571 /* Prepare to parse and output the initializer for variable DECL. */
4572
4573 void
4574 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4575 {
4576 const char *locus;
4577 struct initializer_stack *p = xmalloc (sizeof (struct initializer_stack));
4578
4579 p->decl = constructor_decl;
4580 p->require_constant_value = require_constant_value;
4581 p->require_constant_elements = require_constant_elements;
4582 p->constructor_stack = constructor_stack;
4583 p->constructor_range_stack = constructor_range_stack;
4584 p->elements = constructor_elements;
4585 p->spelling = spelling;
4586 p->spelling_base = spelling_base;
4587 p->spelling_size = spelling_size;
4588 p->top_level = constructor_top_level;
4589 p->next = initializer_stack;
4590 initializer_stack = p;
4591
4592 constructor_decl = decl;
4593 constructor_designated = 0;
4594 constructor_top_level = top_level;
4595
4596 if (decl != 0 && decl != error_mark_node)
4597 {
4598 require_constant_value = TREE_STATIC (decl);
4599 require_constant_elements
4600 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4601 /* For a scalar, you can always use any value to initialize,
4602 even within braces. */
4603 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4604 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4605 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4606 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4607 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4608 }
4609 else
4610 {
4611 require_constant_value = 0;
4612 require_constant_elements = 0;
4613 locus = "(anonymous)";
4614 }
4615
4616 constructor_stack = 0;
4617 constructor_range_stack = 0;
4618
4619 missing_braces_mentioned = 0;
4620
4621 spelling_base = 0;
4622 spelling_size = 0;
4623 RESTORE_SPELLING_DEPTH (0);
4624
4625 if (locus)
4626 push_string (locus);
4627 }
4628
4629 void
4630 finish_init (void)
4631 {
4632 struct initializer_stack *p = initializer_stack;
4633
4634 /* Free the whole constructor stack of this initializer. */
4635 while (constructor_stack)
4636 {
4637 struct constructor_stack *q = constructor_stack;
4638 constructor_stack = q->next;
4639 free (q);
4640 }
4641
4642 gcc_assert (!constructor_range_stack);
4643
4644 /* Pop back to the data of the outer initializer (if any). */
4645 free (spelling_base);
4646
4647 constructor_decl = p->decl;
4648 require_constant_value = p->require_constant_value;
4649 require_constant_elements = p->require_constant_elements;
4650 constructor_stack = p->constructor_stack;
4651 constructor_range_stack = p->constructor_range_stack;
4652 constructor_elements = p->elements;
4653 spelling = p->spelling;
4654 spelling_base = p->spelling_base;
4655 spelling_size = p->spelling_size;
4656 constructor_top_level = p->top_level;
4657 initializer_stack = p->next;
4658 free (p);
4659 }
4660 \f
4661 /* Call here when we see the initializer is surrounded by braces.
4662 This is instead of a call to push_init_level;
4663 it is matched by a call to pop_init_level.
4664
4665 TYPE is the type to initialize, for a constructor expression.
4666 For an initializer for a decl, TYPE is zero. */
4667
4668 void
4669 really_start_incremental_init (tree type)
4670 {
4671 struct constructor_stack *p = XNEW (struct constructor_stack);
4672
4673 if (type == 0)
4674 type = TREE_TYPE (constructor_decl);
4675
4676 if (targetm.vector_opaque_p (type))
4677 error ("opaque vector types cannot be initialized");
4678
4679 p->type = constructor_type;
4680 p->fields = constructor_fields;
4681 p->index = constructor_index;
4682 p->max_index = constructor_max_index;
4683 p->unfilled_index = constructor_unfilled_index;
4684 p->unfilled_fields = constructor_unfilled_fields;
4685 p->bit_index = constructor_bit_index;
4686 p->elements = constructor_elements;
4687 p->constant = constructor_constant;
4688 p->simple = constructor_simple;
4689 p->erroneous = constructor_erroneous;
4690 p->pending_elts = constructor_pending_elts;
4691 p->depth = constructor_depth;
4692 p->replacement_value.value = 0;
4693 p->replacement_value.original_code = ERROR_MARK;
4694 p->implicit = 0;
4695 p->range_stack = 0;
4696 p->outer = 0;
4697 p->incremental = constructor_incremental;
4698 p->designated = constructor_designated;
4699 p->next = 0;
4700 constructor_stack = p;
4701
4702 constructor_constant = 1;
4703 constructor_simple = 1;
4704 constructor_depth = SPELLING_DEPTH ();
4705 constructor_elements = 0;
4706 constructor_pending_elts = 0;
4707 constructor_type = type;
4708 constructor_incremental = 1;
4709 constructor_designated = 0;
4710 designator_depth = 0;
4711 designator_errorneous = 0;
4712
4713 if (TREE_CODE (constructor_type) == RECORD_TYPE
4714 || TREE_CODE (constructor_type) == UNION_TYPE)
4715 {
4716 constructor_fields = TYPE_FIELDS (constructor_type);
4717 /* Skip any nameless bit fields at the beginning. */
4718 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
4719 && DECL_NAME (constructor_fields) == 0)
4720 constructor_fields = TREE_CHAIN (constructor_fields);
4721
4722 constructor_unfilled_fields = constructor_fields;
4723 constructor_bit_index = bitsize_zero_node;
4724 }
4725 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
4726 {
4727 if (TYPE_DOMAIN (constructor_type))
4728 {
4729 constructor_max_index
4730 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
4731
4732 /* Detect non-empty initializations of zero-length arrays. */
4733 if (constructor_max_index == NULL_TREE
4734 && TYPE_SIZE (constructor_type))
4735 constructor_max_index = build_int_cst (NULL_TREE, -1);
4736
4737 /* constructor_max_index needs to be an INTEGER_CST. Attempts
4738 to initialize VLAs will cause a proper error; avoid tree
4739 checking errors as well by setting a safe value. */
4740 if (constructor_max_index
4741 && TREE_CODE (constructor_max_index) != INTEGER_CST)
4742 constructor_max_index = build_int_cst (NULL_TREE, -1);
4743
4744 constructor_index
4745 = convert (bitsizetype,
4746 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
4747 }
4748 else
4749 {
4750 constructor_index = bitsize_zero_node;
4751 constructor_max_index = NULL_TREE;
4752 }
4753
4754 constructor_unfilled_index = constructor_index;
4755 }
4756 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
4757 {
4758 /* Vectors are like simple fixed-size arrays. */
4759 constructor_max_index =
4760 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
4761 constructor_index = convert (bitsizetype, bitsize_zero_node);
4762 constructor_unfilled_index = constructor_index;
4763 }
4764 else
4765 {
4766 /* Handle the case of int x = {5}; */
4767 constructor_fields = constructor_type;
4768 constructor_unfilled_fields = constructor_type;
4769 }
4770 }
4771 \f
4772 /* Push down into a subobject, for initialization.
4773 If this is for an explicit set of braces, IMPLICIT is 0.
4774 If it is because the next element belongs at a lower level,
4775 IMPLICIT is 1 (or 2 if the push is because of designator list). */
4776
4777 void
4778 push_init_level (int implicit)
4779 {
4780 struct constructor_stack *p;
4781 tree value = NULL_TREE;
4782
4783 /* If we've exhausted any levels that didn't have braces,
4784 pop them now. */
4785 while (constructor_stack->implicit)
4786 {
4787 if ((TREE_CODE (constructor_type) == RECORD_TYPE
4788 || TREE_CODE (constructor_type) == UNION_TYPE)
4789 && constructor_fields == 0)
4790 process_init_element (pop_init_level (1));
4791 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
4792 && constructor_max_index
4793 && tree_int_cst_lt (constructor_max_index, constructor_index))
4794 process_init_element (pop_init_level (1));
4795 else
4796 break;
4797 }
4798
4799 /* Unless this is an explicit brace, we need to preserve previous
4800 content if any. */
4801 if (implicit)
4802 {
4803 if ((TREE_CODE (constructor_type) == RECORD_TYPE
4804 || TREE_CODE (constructor_type) == UNION_TYPE)
4805 && constructor_fields)
4806 value = find_init_member (constructor_fields);
4807 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
4808 value = find_init_member (constructor_index);
4809 }
4810
4811 p = XNEW (struct constructor_stack);
4812 p->type = constructor_type;
4813 p->fields = constructor_fields;
4814 p->index = constructor_index;
4815 p->max_index = constructor_max_index;
4816 p->unfilled_index = constructor_unfilled_index;
4817 p->unfilled_fields = constructor_unfilled_fields;
4818 p->bit_index = constructor_bit_index;
4819 p->elements = constructor_elements;
4820 p->constant = constructor_constant;
4821 p->simple = constructor_simple;
4822 p->erroneous = constructor_erroneous;
4823 p->pending_elts = constructor_pending_elts;
4824 p->depth = constructor_depth;
4825 p->replacement_value.value = 0;
4826 p->replacement_value.original_code = ERROR_MARK;
4827 p->implicit = implicit;
4828 p->outer = 0;
4829 p->incremental = constructor_incremental;
4830 p->designated = constructor_designated;
4831 p->next = constructor_stack;
4832 p->range_stack = 0;
4833 constructor_stack = p;
4834
4835 constructor_constant = 1;
4836 constructor_simple = 1;
4837 constructor_depth = SPELLING_DEPTH ();
4838 constructor_elements = 0;
4839 constructor_incremental = 1;
4840 constructor_designated = 0;
4841 constructor_pending_elts = 0;
4842 if (!implicit)
4843 {
4844 p->range_stack = constructor_range_stack;
4845 constructor_range_stack = 0;
4846 designator_depth = 0;
4847 designator_errorneous = 0;
4848 }
4849
4850 /* Don't die if an entire brace-pair level is superfluous
4851 in the containing level. */
4852 if (constructor_type == 0)
4853 ;
4854 else if (TREE_CODE (constructor_type) == RECORD_TYPE
4855 || TREE_CODE (constructor_type) == UNION_TYPE)
4856 {
4857 /* Don't die if there are extra init elts at the end. */
4858 if (constructor_fields == 0)
4859 constructor_type = 0;
4860 else
4861 {
4862 constructor_type = TREE_TYPE (constructor_fields);
4863 push_member_name (constructor_fields);
4864 constructor_depth++;
4865 }
4866 }
4867 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
4868 {
4869 constructor_type = TREE_TYPE (constructor_type);
4870 push_array_bounds (tree_low_cst (constructor_index, 0));
4871 constructor_depth++;
4872 }
4873
4874 if (constructor_type == 0)
4875 {
4876 error_init ("extra brace group at end of initializer");
4877 constructor_fields = 0;
4878 constructor_unfilled_fields = 0;
4879 return;
4880 }
4881
4882 if (value && TREE_CODE (value) == CONSTRUCTOR)
4883 {
4884 constructor_constant = TREE_CONSTANT (value);
4885 constructor_simple = TREE_STATIC (value);
4886 constructor_elements = CONSTRUCTOR_ELTS (value);
4887 if (constructor_elements
4888 && (TREE_CODE (constructor_type) == RECORD_TYPE
4889 || TREE_CODE (constructor_type) == ARRAY_TYPE))
4890 set_nonincremental_init ();
4891 }
4892
4893 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
4894 {
4895 missing_braces_mentioned = 1;
4896 warning_init ("missing braces around initializer");
4897 }
4898
4899 if (TREE_CODE (constructor_type) == RECORD_TYPE
4900 || TREE_CODE (constructor_type) == UNION_TYPE)
4901 {
4902 constructor_fields = TYPE_FIELDS (constructor_type);
4903 /* Skip any nameless bit fields at the beginning. */
4904 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
4905 && DECL_NAME (constructor_fields) == 0)
4906 constructor_fields = TREE_CHAIN (constructor_fields);
4907
4908 constructor_unfilled_fields = constructor_fields;
4909 constructor_bit_index = bitsize_zero_node;
4910 }
4911 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
4912 {
4913 /* Vectors are like simple fixed-size arrays. */
4914 constructor_max_index =
4915 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
4916 constructor_index = convert (bitsizetype, integer_zero_node);
4917 constructor_unfilled_index = constructor_index;
4918 }
4919 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
4920 {
4921 if (TYPE_DOMAIN (constructor_type))
4922 {
4923 constructor_max_index
4924 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
4925
4926 /* Detect non-empty initializations of zero-length arrays. */
4927 if (constructor_max_index == NULL_TREE
4928 && TYPE_SIZE (constructor_type))
4929 constructor_max_index = build_int_cst (NULL_TREE, -1);
4930
4931 /* constructor_max_index needs to be an INTEGER_CST. Attempts
4932 to initialize VLAs will cause a proper error; avoid tree
4933 checking errors as well by setting a safe value. */
4934 if (constructor_max_index
4935 && TREE_CODE (constructor_max_index) != INTEGER_CST)
4936 constructor_max_index = build_int_cst (NULL_TREE, -1);
4937
4938 constructor_index
4939 = convert (bitsizetype,
4940 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
4941 }
4942 else
4943 constructor_index = bitsize_zero_node;
4944
4945 constructor_unfilled_index = constructor_index;
4946 if (value && TREE_CODE (value) == STRING_CST)
4947 {
4948 /* We need to split the char/wchar array into individual
4949 characters, so that we don't have to special case it
4950 everywhere. */
4951 set_nonincremental_init_from_string (value);
4952 }
4953 }
4954 else
4955 {
4956 if (constructor_type != error_mark_node)
4957 warning_init ("braces around scalar initializer");
4958 constructor_fields = constructor_type;
4959 constructor_unfilled_fields = constructor_type;
4960 }
4961 }
4962
4963 /* At the end of an implicit or explicit brace level,
4964 finish up that level of constructor. If a single expression
4965 with redundant braces initialized that level, return the
4966 c_expr structure for that expression. Otherwise, the original_code
4967 element is set to ERROR_MARK.
4968 If we were outputting the elements as they are read, return 0 as the value
4969 from inner levels (process_init_element ignores that),
4970 but return error_mark_node as the value from the outermost level
4971 (that's what we want to put in DECL_INITIAL).
4972 Otherwise, return a CONSTRUCTOR expression as the value. */
4973
4974 struct c_expr
4975 pop_init_level (int implicit)
4976 {
4977 struct constructor_stack *p;
4978 struct c_expr ret;
4979 ret.value = 0;
4980 ret.original_code = ERROR_MARK;
4981
4982 if (implicit == 0)
4983 {
4984 /* When we come to an explicit close brace,
4985 pop any inner levels that didn't have explicit braces. */
4986 while (constructor_stack->implicit)
4987 process_init_element (pop_init_level (1));
4988
4989 gcc_assert (!constructor_range_stack);
4990 }
4991
4992 /* Now output all pending elements. */
4993 constructor_incremental = 1;
4994 output_pending_init_elements (1);
4995
4996 p = constructor_stack;
4997
4998 /* Error for initializing a flexible array member, or a zero-length
4999 array member in an inappropriate context. */
5000 if (constructor_type && constructor_fields
5001 && TREE_CODE (constructor_type) == ARRAY_TYPE
5002 && TYPE_DOMAIN (constructor_type)
5003 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5004 {
5005 /* Silently discard empty initializations. The parser will
5006 already have pedwarned for empty brackets. */
5007 if (integer_zerop (constructor_unfilled_index))
5008 constructor_type = NULL_TREE;
5009 else
5010 {
5011 gcc_assert (!TYPE_SIZE (constructor_type));
5012
5013 if (constructor_depth > 2)
5014 error_init ("initialization of flexible array member in a nested context");
5015 else if (pedantic)
5016 pedwarn_init ("initialization of a flexible array member");
5017
5018 /* We have already issued an error message for the existence
5019 of a flexible array member not at the end of the structure.
5020 Discard the initializer so that we do not abort later. */
5021 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5022 constructor_type = NULL_TREE;
5023 }
5024 }
5025
5026 /* Warn when some struct elements are implicitly initialized to zero. */
5027 if (warn_missing_field_initializers
5028 && constructor_type
5029 && TREE_CODE (constructor_type) == RECORD_TYPE
5030 && constructor_unfilled_fields)
5031 {
5032 /* Do not warn for flexible array members or zero-length arrays. */
5033 while (constructor_unfilled_fields
5034 && (!DECL_SIZE (constructor_unfilled_fields)
5035 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5036 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5037
5038 /* Do not warn if this level of the initializer uses member
5039 designators; it is likely to be deliberate. */
5040 if (constructor_unfilled_fields && !constructor_designated)
5041 {
5042 push_member_name (constructor_unfilled_fields);
5043 warning_init ("missing initializer");
5044 RESTORE_SPELLING_DEPTH (constructor_depth);
5045 }
5046 }
5047
5048 /* Pad out the end of the structure. */
5049 if (p->replacement_value.value)
5050 /* If this closes a superfluous brace pair,
5051 just pass out the element between them. */
5052 ret = p->replacement_value;
5053 else if (constructor_type == 0)
5054 ;
5055 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5056 && TREE_CODE (constructor_type) != UNION_TYPE
5057 && TREE_CODE (constructor_type) != ARRAY_TYPE
5058 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5059 {
5060 /* A nonincremental scalar initializer--just return
5061 the element, after verifying there is just one. */
5062 if (constructor_elements == 0)
5063 {
5064 if (!constructor_erroneous)
5065 error_init ("empty scalar initializer");
5066 ret.value = error_mark_node;
5067 }
5068 else if (TREE_CHAIN (constructor_elements) != 0)
5069 {
5070 error_init ("extra elements in scalar initializer");
5071 ret.value = TREE_VALUE (constructor_elements);
5072 }
5073 else
5074 ret.value = TREE_VALUE (constructor_elements);
5075 }
5076 else
5077 {
5078 if (constructor_erroneous)
5079 ret.value = error_mark_node;
5080 else
5081 {
5082 ret.value = build_constructor (constructor_type,
5083 nreverse (constructor_elements));
5084 if (constructor_constant)
5085 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5086 if (constructor_constant && constructor_simple)
5087 TREE_STATIC (ret.value) = 1;
5088 }
5089 }
5090
5091 constructor_type = p->type;
5092 constructor_fields = p->fields;
5093 constructor_index = p->index;
5094 constructor_max_index = p->max_index;
5095 constructor_unfilled_index = p->unfilled_index;
5096 constructor_unfilled_fields = p->unfilled_fields;
5097 constructor_bit_index = p->bit_index;
5098 constructor_elements = p->elements;
5099 constructor_constant = p->constant;
5100 constructor_simple = p->simple;
5101 constructor_erroneous = p->erroneous;
5102 constructor_incremental = p->incremental;
5103 constructor_designated = p->designated;
5104 constructor_pending_elts = p->pending_elts;
5105 constructor_depth = p->depth;
5106 if (!p->implicit)
5107 constructor_range_stack = p->range_stack;
5108 RESTORE_SPELLING_DEPTH (constructor_depth);
5109
5110 constructor_stack = p->next;
5111 free (p);
5112
5113 if (ret.value == 0)
5114 {
5115 if (constructor_stack == 0)
5116 {
5117 ret.value = error_mark_node;
5118 return ret;
5119 }
5120 return ret;
5121 }
5122 return ret;
5123 }
5124
5125 /* Common handling for both array range and field name designators.
5126 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5127
5128 static int
5129 set_designator (int array)
5130 {
5131 tree subtype;
5132 enum tree_code subcode;
5133
5134 /* Don't die if an entire brace-pair level is superfluous
5135 in the containing level. */
5136 if (constructor_type == 0)
5137 return 1;
5138
5139 /* If there were errors in this designator list already, bail out
5140 silently. */
5141 if (designator_errorneous)
5142 return 1;
5143
5144 if (!designator_depth)
5145 {
5146 gcc_assert (!constructor_range_stack);
5147
5148 /* Designator list starts at the level of closest explicit
5149 braces. */
5150 while (constructor_stack->implicit)
5151 process_init_element (pop_init_level (1));
5152 constructor_designated = 1;
5153 return 0;
5154 }
5155
5156 switch (TREE_CODE (constructor_type))
5157 {
5158 case RECORD_TYPE:
5159 case UNION_TYPE:
5160 subtype = TREE_TYPE (constructor_fields);
5161 if (subtype != error_mark_node)
5162 subtype = TYPE_MAIN_VARIANT (subtype);
5163 break;
5164 case ARRAY_TYPE:
5165 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5166 break;
5167 default:
5168 gcc_unreachable ();
5169 }
5170
5171 subcode = TREE_CODE (subtype);
5172 if (array && subcode != ARRAY_TYPE)
5173 {
5174 error_init ("array index in non-array initializer");
5175 return 1;
5176 }
5177 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5178 {
5179 error_init ("field name not in record or union initializer");
5180 return 1;
5181 }
5182
5183 constructor_designated = 1;
5184 push_init_level (2);
5185 return 0;
5186 }
5187
5188 /* If there are range designators in designator list, push a new designator
5189 to constructor_range_stack. RANGE_END is end of such stack range or
5190 NULL_TREE if there is no range designator at this level. */
5191
5192 static void
5193 push_range_stack (tree range_end)
5194 {
5195 struct constructor_range_stack *p;
5196
5197 p = GGC_NEW (struct constructor_range_stack);
5198 p->prev = constructor_range_stack;
5199 p->next = 0;
5200 p->fields = constructor_fields;
5201 p->range_start = constructor_index;
5202 p->index = constructor_index;
5203 p->stack = constructor_stack;
5204 p->range_end = range_end;
5205 if (constructor_range_stack)
5206 constructor_range_stack->next = p;
5207 constructor_range_stack = p;
5208 }
5209
5210 /* Within an array initializer, specify the next index to be initialized.
5211 FIRST is that index. If LAST is nonzero, then initialize a range
5212 of indices, running from FIRST through LAST. */
5213
5214 void
5215 set_init_index (tree first, tree last)
5216 {
5217 if (set_designator (1))
5218 return;
5219
5220 designator_errorneous = 1;
5221
5222 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5223 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5224 {
5225 error_init ("array index in initializer not of integer type");
5226 return;
5227 }
5228
5229 if (TREE_CODE (first) != INTEGER_CST)
5230 error_init ("nonconstant array index in initializer");
5231 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5232 error_init ("nonconstant array index in initializer");
5233 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5234 error_init ("array index in non-array initializer");
5235 else if (tree_int_cst_sgn (first) == -1)
5236 error_init ("array index in initializer exceeds array bounds");
5237 else if (constructor_max_index
5238 && tree_int_cst_lt (constructor_max_index, first))
5239 error_init ("array index in initializer exceeds array bounds");
5240 else
5241 {
5242 constructor_index = convert (bitsizetype, first);
5243
5244 if (last)
5245 {
5246 if (tree_int_cst_equal (first, last))
5247 last = 0;
5248 else if (tree_int_cst_lt (last, first))
5249 {
5250 error_init ("empty index range in initializer");
5251 last = 0;
5252 }
5253 else
5254 {
5255 last = convert (bitsizetype, last);
5256 if (constructor_max_index != 0
5257 && tree_int_cst_lt (constructor_max_index, last))
5258 {
5259 error_init ("array index range in initializer exceeds array bounds");
5260 last = 0;
5261 }
5262 }
5263 }
5264
5265 designator_depth++;
5266 designator_errorneous = 0;
5267 if (constructor_range_stack || last)
5268 push_range_stack (last);
5269 }
5270 }
5271
5272 /* Within a struct initializer, specify the next field to be initialized. */
5273
5274 void
5275 set_init_label (tree fieldname)
5276 {
5277 tree tail;
5278
5279 if (set_designator (0))
5280 return;
5281
5282 designator_errorneous = 1;
5283
5284 if (TREE_CODE (constructor_type) != RECORD_TYPE
5285 && TREE_CODE (constructor_type) != UNION_TYPE)
5286 {
5287 error_init ("field name not in record or union initializer");
5288 return;
5289 }
5290
5291 for (tail = TYPE_FIELDS (constructor_type); tail;
5292 tail = TREE_CHAIN (tail))
5293 {
5294 if (DECL_NAME (tail) == fieldname)
5295 break;
5296 }
5297
5298 if (tail == 0)
5299 error ("unknown field %qE specified in initializer", fieldname);
5300 else
5301 {
5302 constructor_fields = tail;
5303 designator_depth++;
5304 designator_errorneous = 0;
5305 if (constructor_range_stack)
5306 push_range_stack (NULL_TREE);
5307 }
5308 }
5309 \f
5310 /* Add a new initializer to the tree of pending initializers. PURPOSE
5311 identifies the initializer, either array index or field in a structure.
5312 VALUE is the value of that index or field. */
5313
5314 static void
5315 add_pending_init (tree purpose, tree value)
5316 {
5317 struct init_node *p, **q, *r;
5318
5319 q = &constructor_pending_elts;
5320 p = 0;
5321
5322 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5323 {
5324 while (*q != 0)
5325 {
5326 p = *q;
5327 if (tree_int_cst_lt (purpose, p->purpose))
5328 q = &p->left;
5329 else if (tree_int_cst_lt (p->purpose, purpose))
5330 q = &p->right;
5331 else
5332 {
5333 if (TREE_SIDE_EFFECTS (p->value))
5334 warning_init ("initialized field with side-effects overwritten");
5335 p->value = value;
5336 return;
5337 }
5338 }
5339 }
5340 else
5341 {
5342 tree bitpos;
5343
5344 bitpos = bit_position (purpose);
5345 while (*q != NULL)
5346 {
5347 p = *q;
5348 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5349 q = &p->left;
5350 else if (p->purpose != purpose)
5351 q = &p->right;
5352 else
5353 {
5354 if (TREE_SIDE_EFFECTS (p->value))
5355 warning_init ("initialized field with side-effects overwritten");
5356 p->value = value;
5357 return;
5358 }
5359 }
5360 }
5361
5362 r = GGC_NEW (struct init_node);
5363 r->purpose = purpose;
5364 r->value = value;
5365
5366 *q = r;
5367 r->parent = p;
5368 r->left = 0;
5369 r->right = 0;
5370 r->balance = 0;
5371
5372 while (p)
5373 {
5374 struct init_node *s;
5375
5376 if (r == p->left)
5377 {
5378 if (p->balance == 0)
5379 p->balance = -1;
5380 else if (p->balance < 0)
5381 {
5382 if (r->balance < 0)
5383 {
5384 /* L rotation. */
5385 p->left = r->right;
5386 if (p->left)
5387 p->left->parent = p;
5388 r->right = p;
5389
5390 p->balance = 0;
5391 r->balance = 0;
5392
5393 s = p->parent;
5394 p->parent = r;
5395 r->parent = s;
5396 if (s)
5397 {
5398 if (s->left == p)
5399 s->left = r;
5400 else
5401 s->right = r;
5402 }
5403 else
5404 constructor_pending_elts = r;
5405 }
5406 else
5407 {
5408 /* LR rotation. */
5409 struct init_node *t = r->right;
5410
5411 r->right = t->left;
5412 if (r->right)
5413 r->right->parent = r;
5414 t->left = r;
5415
5416 p->left = t->right;
5417 if (p->left)
5418 p->left->parent = p;
5419 t->right = p;
5420
5421 p->balance = t->balance < 0;
5422 r->balance = -(t->balance > 0);
5423 t->balance = 0;
5424
5425 s = p->parent;
5426 p->parent = t;
5427 r->parent = t;
5428 t->parent = s;
5429 if (s)
5430 {
5431 if (s->left == p)
5432 s->left = t;
5433 else
5434 s->right = t;
5435 }
5436 else
5437 constructor_pending_elts = t;
5438 }
5439 break;
5440 }
5441 else
5442 {
5443 /* p->balance == +1; growth of left side balances the node. */
5444 p->balance = 0;
5445 break;
5446 }
5447 }
5448 else /* r == p->right */
5449 {
5450 if (p->balance == 0)
5451 /* Growth propagation from right side. */
5452 p->balance++;
5453 else if (p->balance > 0)
5454 {
5455 if (r->balance > 0)
5456 {
5457 /* R rotation. */
5458 p->right = r->left;
5459 if (p->right)
5460 p->right->parent = p;
5461 r->left = p;
5462
5463 p->balance = 0;
5464 r->balance = 0;
5465
5466 s = p->parent;
5467 p->parent = r;
5468 r->parent = s;
5469 if (s)
5470 {
5471 if (s->left == p)
5472 s->left = r;
5473 else
5474 s->right = r;
5475 }
5476 else
5477 constructor_pending_elts = r;
5478 }
5479 else /* r->balance == -1 */
5480 {
5481 /* RL rotation */
5482 struct init_node *t = r->left;
5483
5484 r->left = t->right;
5485 if (r->left)
5486 r->left->parent = r;
5487 t->right = r;
5488
5489 p->right = t->left;
5490 if (p->right)
5491 p->right->parent = p;
5492 t->left = p;
5493
5494 r->balance = (t->balance < 0);
5495 p->balance = -(t->balance > 0);
5496 t->balance = 0;
5497
5498 s = p->parent;
5499 p->parent = t;
5500 r->parent = t;
5501 t->parent = s;
5502 if (s)
5503 {
5504 if (s->left == p)
5505 s->left = t;
5506 else
5507 s->right = t;
5508 }
5509 else
5510 constructor_pending_elts = t;
5511 }
5512 break;
5513 }
5514 else
5515 {
5516 /* p->balance == -1; growth of right side balances the node. */
5517 p->balance = 0;
5518 break;
5519 }
5520 }
5521
5522 r = p;
5523 p = p->parent;
5524 }
5525 }
5526
5527 /* Build AVL tree from a sorted chain. */
5528
5529 static void
5530 set_nonincremental_init (void)
5531 {
5532 tree chain;
5533
5534 if (TREE_CODE (constructor_type) != RECORD_TYPE
5535 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5536 return;
5537
5538 for (chain = constructor_elements; chain; chain = TREE_CHAIN (chain))
5539 add_pending_init (TREE_PURPOSE (chain), TREE_VALUE (chain));
5540 constructor_elements = 0;
5541 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5542 {
5543 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5544 /* Skip any nameless bit fields at the beginning. */
5545 while (constructor_unfilled_fields != 0
5546 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5547 && DECL_NAME (constructor_unfilled_fields) == 0)
5548 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5549
5550 }
5551 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5552 {
5553 if (TYPE_DOMAIN (constructor_type))
5554 constructor_unfilled_index
5555 = convert (bitsizetype,
5556 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5557 else
5558 constructor_unfilled_index = bitsize_zero_node;
5559 }
5560 constructor_incremental = 0;
5561 }
5562
5563 /* Build AVL tree from a string constant. */
5564
5565 static void
5566 set_nonincremental_init_from_string (tree str)
5567 {
5568 tree value, purpose, type;
5569 HOST_WIDE_INT val[2];
5570 const char *p, *end;
5571 int byte, wchar_bytes, charwidth, bitpos;
5572
5573 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5574
5575 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5576 == TYPE_PRECISION (char_type_node))
5577 wchar_bytes = 1;
5578 else
5579 {
5580 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5581 == TYPE_PRECISION (wchar_type_node));
5582 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5583 }
5584 charwidth = TYPE_PRECISION (char_type_node);
5585 type = TREE_TYPE (constructor_type);
5586 p = TREE_STRING_POINTER (str);
5587 end = p + TREE_STRING_LENGTH (str);
5588
5589 for (purpose = bitsize_zero_node;
5590 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5591 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5592 {
5593 if (wchar_bytes == 1)
5594 {
5595 val[1] = (unsigned char) *p++;
5596 val[0] = 0;
5597 }
5598 else
5599 {
5600 val[0] = 0;
5601 val[1] = 0;
5602 for (byte = 0; byte < wchar_bytes; byte++)
5603 {
5604 if (BYTES_BIG_ENDIAN)
5605 bitpos = (wchar_bytes - byte - 1) * charwidth;
5606 else
5607 bitpos = byte * charwidth;
5608 val[bitpos < HOST_BITS_PER_WIDE_INT]
5609 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5610 << (bitpos % HOST_BITS_PER_WIDE_INT);
5611 }
5612 }
5613
5614 if (!TYPE_UNSIGNED (type))
5615 {
5616 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5617 if (bitpos < HOST_BITS_PER_WIDE_INT)
5618 {
5619 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5620 {
5621 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
5622 val[0] = -1;
5623 }
5624 }
5625 else if (bitpos == HOST_BITS_PER_WIDE_INT)
5626 {
5627 if (val[1] < 0)
5628 val[0] = -1;
5629 }
5630 else if (val[0] & (((HOST_WIDE_INT) 1)
5631 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
5632 val[0] |= ((HOST_WIDE_INT) -1)
5633 << (bitpos - HOST_BITS_PER_WIDE_INT);
5634 }
5635
5636 value = build_int_cst_wide (type, val[1], val[0]);
5637 add_pending_init (purpose, value);
5638 }
5639
5640 constructor_incremental = 0;
5641 }
5642
5643 /* Return value of FIELD in pending initializer or zero if the field was
5644 not initialized yet. */
5645
5646 static tree
5647 find_init_member (tree field)
5648 {
5649 struct init_node *p;
5650
5651 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5652 {
5653 if (constructor_incremental
5654 && tree_int_cst_lt (field, constructor_unfilled_index))
5655 set_nonincremental_init ();
5656
5657 p = constructor_pending_elts;
5658 while (p)
5659 {
5660 if (tree_int_cst_lt (field, p->purpose))
5661 p = p->left;
5662 else if (tree_int_cst_lt (p->purpose, field))
5663 p = p->right;
5664 else
5665 return p->value;
5666 }
5667 }
5668 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
5669 {
5670 tree bitpos = bit_position (field);
5671
5672 if (constructor_incremental
5673 && (!constructor_unfilled_fields
5674 || tree_int_cst_lt (bitpos,
5675 bit_position (constructor_unfilled_fields))))
5676 set_nonincremental_init ();
5677
5678 p = constructor_pending_elts;
5679 while (p)
5680 {
5681 if (field == p->purpose)
5682 return p->value;
5683 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5684 p = p->left;
5685 else
5686 p = p->right;
5687 }
5688 }
5689 else if (TREE_CODE (constructor_type) == UNION_TYPE)
5690 {
5691 if (constructor_elements
5692 && TREE_PURPOSE (constructor_elements) == field)
5693 return TREE_VALUE (constructor_elements);
5694 }
5695 return 0;
5696 }
5697
5698 /* "Output" the next constructor element.
5699 At top level, really output it to assembler code now.
5700 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
5701 TYPE is the data type that the containing data type wants here.
5702 FIELD is the field (a FIELD_DECL) or the index that this element fills.
5703 If VALUE is a string constant, STRICT_STRING is true if it is
5704 unparenthesized or we should not warn here for it being parenthesized.
5705 For other types of VALUE, STRICT_STRING is not used.
5706
5707 PENDING if non-nil means output pending elements that belong
5708 right after this element. (PENDING is normally 1;
5709 it is 0 while outputting pending elements, to avoid recursion.) */
5710
5711 static void
5712 output_init_element (tree value, bool strict_string, tree type, tree field,
5713 int pending)
5714 {
5715 if (type == error_mark_node || value == error_mark_node)
5716 {
5717 constructor_erroneous = 1;
5718 return;
5719 }
5720 if (TREE_CODE (TREE_TYPE (value)) == FUNCTION_TYPE
5721 || (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
5722 && !(TREE_CODE (value) == STRING_CST
5723 && TREE_CODE (type) == ARRAY_TYPE
5724 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
5725 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
5726 TYPE_MAIN_VARIANT (type))))
5727 value = default_conversion (value);
5728
5729 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
5730 && require_constant_value && !flag_isoc99 && pending)
5731 {
5732 /* As an extension, allow initializing objects with static storage
5733 duration with compound literals (which are then treated just as
5734 the brace enclosed list they contain). */
5735 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
5736 value = DECL_INITIAL (decl);
5737 }
5738
5739 if (value == error_mark_node)
5740 constructor_erroneous = 1;
5741 else if (!TREE_CONSTANT (value))
5742 constructor_constant = 0;
5743 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
5744 || ((TREE_CODE (constructor_type) == RECORD_TYPE
5745 || TREE_CODE (constructor_type) == UNION_TYPE)
5746 && DECL_C_BIT_FIELD (field)
5747 && TREE_CODE (value) != INTEGER_CST))
5748 constructor_simple = 0;
5749
5750 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
5751 {
5752 if (require_constant_value)
5753 {
5754 error_init ("initializer element is not constant");
5755 value = error_mark_node;
5756 }
5757 else if (require_constant_elements)
5758 pedwarn ("initializer element is not computable at load time");
5759 }
5760
5761 /* If this field is empty (and not at the end of structure),
5762 don't do anything other than checking the initializer. */
5763 if (field
5764 && (TREE_TYPE (field) == error_mark_node
5765 || (COMPLETE_TYPE_P (TREE_TYPE (field))
5766 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
5767 && (TREE_CODE (constructor_type) == ARRAY_TYPE
5768 || TREE_CHAIN (field)))))
5769 return;
5770
5771 value = digest_init (type, value, strict_string, require_constant_value);
5772 if (value == error_mark_node)
5773 {
5774 constructor_erroneous = 1;
5775 return;
5776 }
5777
5778 /* If this element doesn't come next in sequence,
5779 put it on constructor_pending_elts. */
5780 if (TREE_CODE (constructor_type) == ARRAY_TYPE
5781 && (!constructor_incremental
5782 || !tree_int_cst_equal (field, constructor_unfilled_index)))
5783 {
5784 if (constructor_incremental
5785 && tree_int_cst_lt (field, constructor_unfilled_index))
5786 set_nonincremental_init ();
5787
5788 add_pending_init (field, value);
5789 return;
5790 }
5791 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5792 && (!constructor_incremental
5793 || field != constructor_unfilled_fields))
5794 {
5795 /* We do this for records but not for unions. In a union,
5796 no matter which field is specified, it can be initialized
5797 right away since it starts at the beginning of the union. */
5798 if (constructor_incremental)
5799 {
5800 if (!constructor_unfilled_fields)
5801 set_nonincremental_init ();
5802 else
5803 {
5804 tree bitpos, unfillpos;
5805
5806 bitpos = bit_position (field);
5807 unfillpos = bit_position (constructor_unfilled_fields);
5808
5809 if (tree_int_cst_lt (bitpos, unfillpos))
5810 set_nonincremental_init ();
5811 }
5812 }
5813
5814 add_pending_init (field, value);
5815 return;
5816 }
5817 else if (TREE_CODE (constructor_type) == UNION_TYPE
5818 && constructor_elements)
5819 {
5820 if (TREE_SIDE_EFFECTS (TREE_VALUE (constructor_elements)))
5821 warning_init ("initialized field with side-effects overwritten");
5822
5823 /* We can have just one union field set. */
5824 constructor_elements = 0;
5825 }
5826
5827 /* Otherwise, output this element either to
5828 constructor_elements or to the assembler file. */
5829
5830 if (field && TREE_CODE (field) == INTEGER_CST)
5831 field = copy_node (field);
5832 constructor_elements
5833 = tree_cons (field, value, constructor_elements);
5834
5835 /* Advance the variable that indicates sequential elements output. */
5836 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5837 constructor_unfilled_index
5838 = size_binop (PLUS_EXPR, constructor_unfilled_index,
5839 bitsize_one_node);
5840 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
5841 {
5842 constructor_unfilled_fields
5843 = TREE_CHAIN (constructor_unfilled_fields);
5844
5845 /* Skip any nameless bit fields. */
5846 while (constructor_unfilled_fields != 0
5847 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5848 && DECL_NAME (constructor_unfilled_fields) == 0)
5849 constructor_unfilled_fields =
5850 TREE_CHAIN (constructor_unfilled_fields);
5851 }
5852 else if (TREE_CODE (constructor_type) == UNION_TYPE)
5853 constructor_unfilled_fields = 0;
5854
5855 /* Now output any pending elements which have become next. */
5856 if (pending)
5857 output_pending_init_elements (0);
5858 }
5859
5860 /* Output any pending elements which have become next.
5861 As we output elements, constructor_unfilled_{fields,index}
5862 advances, which may cause other elements to become next;
5863 if so, they too are output.
5864
5865 If ALL is 0, we return when there are
5866 no more pending elements to output now.
5867
5868 If ALL is 1, we output space as necessary so that
5869 we can output all the pending elements. */
5870
5871 static void
5872 output_pending_init_elements (int all)
5873 {
5874 struct init_node *elt = constructor_pending_elts;
5875 tree next;
5876
5877 retry:
5878
5879 /* Look through the whole pending tree.
5880 If we find an element that should be output now,
5881 output it. Otherwise, set NEXT to the element
5882 that comes first among those still pending. */
5883
5884 next = 0;
5885 while (elt)
5886 {
5887 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5888 {
5889 if (tree_int_cst_equal (elt->purpose,
5890 constructor_unfilled_index))
5891 output_init_element (elt->value, true,
5892 TREE_TYPE (constructor_type),
5893 constructor_unfilled_index, 0);
5894 else if (tree_int_cst_lt (constructor_unfilled_index,
5895 elt->purpose))
5896 {
5897 /* Advance to the next smaller node. */
5898 if (elt->left)
5899 elt = elt->left;
5900 else
5901 {
5902 /* We have reached the smallest node bigger than the
5903 current unfilled index. Fill the space first. */
5904 next = elt->purpose;
5905 break;
5906 }
5907 }
5908 else
5909 {
5910 /* Advance to the next bigger node. */
5911 if (elt->right)
5912 elt = elt->right;
5913 else
5914 {
5915 /* We have reached the biggest node in a subtree. Find
5916 the parent of it, which is the next bigger node. */
5917 while (elt->parent && elt->parent->right == elt)
5918 elt = elt->parent;
5919 elt = elt->parent;
5920 if (elt && tree_int_cst_lt (constructor_unfilled_index,
5921 elt->purpose))
5922 {
5923 next = elt->purpose;
5924 break;
5925 }
5926 }
5927 }
5928 }
5929 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5930 || TREE_CODE (constructor_type) == UNION_TYPE)
5931 {
5932 tree ctor_unfilled_bitpos, elt_bitpos;
5933
5934 /* If the current record is complete we are done. */
5935 if (constructor_unfilled_fields == 0)
5936 break;
5937
5938 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
5939 elt_bitpos = bit_position (elt->purpose);
5940 /* We can't compare fields here because there might be empty
5941 fields in between. */
5942 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
5943 {
5944 constructor_unfilled_fields = elt->purpose;
5945 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
5946 elt->purpose, 0);
5947 }
5948 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
5949 {
5950 /* Advance to the next smaller node. */
5951 if (elt->left)
5952 elt = elt->left;
5953 else
5954 {
5955 /* We have reached the smallest node bigger than the
5956 current unfilled field. Fill the space first. */
5957 next = elt->purpose;
5958 break;
5959 }
5960 }
5961 else
5962 {
5963 /* Advance to the next bigger node. */
5964 if (elt->right)
5965 elt = elt->right;
5966 else
5967 {
5968 /* We have reached the biggest node in a subtree. Find
5969 the parent of it, which is the next bigger node. */
5970 while (elt->parent && elt->parent->right == elt)
5971 elt = elt->parent;
5972 elt = elt->parent;
5973 if (elt
5974 && (tree_int_cst_lt (ctor_unfilled_bitpos,
5975 bit_position (elt->purpose))))
5976 {
5977 next = elt->purpose;
5978 break;
5979 }
5980 }
5981 }
5982 }
5983 }
5984
5985 /* Ordinarily return, but not if we want to output all
5986 and there are elements left. */
5987 if (!(all && next != 0))
5988 return;
5989
5990 /* If it's not incremental, just skip over the gap, so that after
5991 jumping to retry we will output the next successive element. */
5992 if (TREE_CODE (constructor_type) == RECORD_TYPE
5993 || TREE_CODE (constructor_type) == UNION_TYPE)
5994 constructor_unfilled_fields = next;
5995 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5996 constructor_unfilled_index = next;
5997
5998 /* ELT now points to the node in the pending tree with the next
5999 initializer to output. */
6000 goto retry;
6001 }
6002 \f
6003 /* Add one non-braced element to the current constructor level.
6004 This adjusts the current position within the constructor's type.
6005 This may also start or terminate implicit levels
6006 to handle a partly-braced initializer.
6007
6008 Once this has found the correct level for the new element,
6009 it calls output_init_element. */
6010
6011 void
6012 process_init_element (struct c_expr value)
6013 {
6014 tree orig_value = value.value;
6015 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6016 bool strict_string = value.original_code == STRING_CST;
6017
6018 designator_depth = 0;
6019 designator_errorneous = 0;
6020
6021 /* Handle superfluous braces around string cst as in
6022 char x[] = {"foo"}; */
6023 if (string_flag
6024 && constructor_type
6025 && TREE_CODE (constructor_type) == ARRAY_TYPE
6026 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6027 && integer_zerop (constructor_unfilled_index))
6028 {
6029 if (constructor_stack->replacement_value.value)
6030 error_init ("excess elements in char array initializer");
6031 constructor_stack->replacement_value = value;
6032 return;
6033 }
6034
6035 if (constructor_stack->replacement_value.value != 0)
6036 {
6037 error_init ("excess elements in struct initializer");
6038 return;
6039 }
6040
6041 /* Ignore elements of a brace group if it is entirely superfluous
6042 and has already been diagnosed. */
6043 if (constructor_type == 0)
6044 return;
6045
6046 /* If we've exhausted any levels that didn't have braces,
6047 pop them now. */
6048 while (constructor_stack->implicit)
6049 {
6050 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6051 || TREE_CODE (constructor_type) == UNION_TYPE)
6052 && constructor_fields == 0)
6053 process_init_element (pop_init_level (1));
6054 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6055 && (constructor_max_index == 0
6056 || tree_int_cst_lt (constructor_max_index,
6057 constructor_index)))
6058 process_init_element (pop_init_level (1));
6059 else
6060 break;
6061 }
6062
6063 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6064 if (constructor_range_stack)
6065 {
6066 /* If value is a compound literal and we'll be just using its
6067 content, don't put it into a SAVE_EXPR. */
6068 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6069 || !require_constant_value
6070 || flag_isoc99)
6071 value.value = save_expr (value.value);
6072 }
6073
6074 while (1)
6075 {
6076 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6077 {
6078 tree fieldtype;
6079 enum tree_code fieldcode;
6080
6081 if (constructor_fields == 0)
6082 {
6083 pedwarn_init ("excess elements in struct initializer");
6084 break;
6085 }
6086
6087 fieldtype = TREE_TYPE (constructor_fields);
6088 if (fieldtype != error_mark_node)
6089 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6090 fieldcode = TREE_CODE (fieldtype);
6091
6092 /* Error for non-static initialization of a flexible array member. */
6093 if (fieldcode == ARRAY_TYPE
6094 && !require_constant_value
6095 && TYPE_SIZE (fieldtype) == NULL_TREE
6096 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6097 {
6098 error_init ("non-static initialization of a flexible array member");
6099 break;
6100 }
6101
6102 /* Accept a string constant to initialize a subarray. */
6103 if (value.value != 0
6104 && fieldcode == ARRAY_TYPE
6105 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6106 && string_flag)
6107 value.value = orig_value;
6108 /* Otherwise, if we have come to a subaggregate,
6109 and we don't have an element of its type, push into it. */
6110 else if (value.value != 0
6111 && value.value != error_mark_node
6112 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6113 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6114 || fieldcode == UNION_TYPE))
6115 {
6116 push_init_level (1);
6117 continue;
6118 }
6119
6120 if (value.value)
6121 {
6122 push_member_name (constructor_fields);
6123 output_init_element (value.value, strict_string,
6124 fieldtype, constructor_fields, 1);
6125 RESTORE_SPELLING_DEPTH (constructor_depth);
6126 }
6127 else
6128 /* Do the bookkeeping for an element that was
6129 directly output as a constructor. */
6130 {
6131 /* For a record, keep track of end position of last field. */
6132 if (DECL_SIZE (constructor_fields))
6133 constructor_bit_index
6134 = size_binop (PLUS_EXPR,
6135 bit_position (constructor_fields),
6136 DECL_SIZE (constructor_fields));
6137
6138 /* If the current field was the first one not yet written out,
6139 it isn't now, so update. */
6140 if (constructor_unfilled_fields == constructor_fields)
6141 {
6142 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6143 /* Skip any nameless bit fields. */
6144 while (constructor_unfilled_fields != 0
6145 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6146 && DECL_NAME (constructor_unfilled_fields) == 0)
6147 constructor_unfilled_fields =
6148 TREE_CHAIN (constructor_unfilled_fields);
6149 }
6150 }
6151
6152 constructor_fields = TREE_CHAIN (constructor_fields);
6153 /* Skip any nameless bit fields at the beginning. */
6154 while (constructor_fields != 0
6155 && DECL_C_BIT_FIELD (constructor_fields)
6156 && DECL_NAME (constructor_fields) == 0)
6157 constructor_fields = TREE_CHAIN (constructor_fields);
6158 }
6159 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6160 {
6161 tree fieldtype;
6162 enum tree_code fieldcode;
6163
6164 if (constructor_fields == 0)
6165 {
6166 pedwarn_init ("excess elements in union initializer");
6167 break;
6168 }
6169
6170 fieldtype = TREE_TYPE (constructor_fields);
6171 if (fieldtype != error_mark_node)
6172 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6173 fieldcode = TREE_CODE (fieldtype);
6174
6175 /* Warn that traditional C rejects initialization of unions.
6176 We skip the warning if the value is zero. This is done
6177 under the assumption that the zero initializer in user
6178 code appears conditioned on e.g. __STDC__ to avoid
6179 "missing initializer" warnings and relies on default
6180 initialization to zero in the traditional C case.
6181 We also skip the warning if the initializer is designated,
6182 again on the assumption that this must be conditional on
6183 __STDC__ anyway (and we've already complained about the
6184 member-designator already). */
6185 if (warn_traditional && !in_system_header && !constructor_designated
6186 && !(value.value && (integer_zerop (value.value)
6187 || real_zerop (value.value))))
6188 warning ("traditional C rejects initialization of unions");
6189
6190 /* Accept a string constant to initialize a subarray. */
6191 if (value.value != 0
6192 && fieldcode == ARRAY_TYPE
6193 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6194 && string_flag)
6195 value.value = orig_value;
6196 /* Otherwise, if we have come to a subaggregate,
6197 and we don't have an element of its type, push into it. */
6198 else if (value.value != 0
6199 && value.value != error_mark_node
6200 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6201 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6202 || fieldcode == UNION_TYPE))
6203 {
6204 push_init_level (1);
6205 continue;
6206 }
6207
6208 if (value.value)
6209 {
6210 push_member_name (constructor_fields);
6211 output_init_element (value.value, strict_string,
6212 fieldtype, constructor_fields, 1);
6213 RESTORE_SPELLING_DEPTH (constructor_depth);
6214 }
6215 else
6216 /* Do the bookkeeping for an element that was
6217 directly output as a constructor. */
6218 {
6219 constructor_bit_index = DECL_SIZE (constructor_fields);
6220 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6221 }
6222
6223 constructor_fields = 0;
6224 }
6225 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6226 {
6227 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6228 enum tree_code eltcode = TREE_CODE (elttype);
6229
6230 /* Accept a string constant to initialize a subarray. */
6231 if (value.value != 0
6232 && eltcode == ARRAY_TYPE
6233 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6234 && string_flag)
6235 value.value = orig_value;
6236 /* Otherwise, if we have come to a subaggregate,
6237 and we don't have an element of its type, push into it. */
6238 else if (value.value != 0
6239 && value.value != error_mark_node
6240 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6241 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6242 || eltcode == UNION_TYPE))
6243 {
6244 push_init_level (1);
6245 continue;
6246 }
6247
6248 if (constructor_max_index != 0
6249 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6250 || integer_all_onesp (constructor_max_index)))
6251 {
6252 pedwarn_init ("excess elements in array initializer");
6253 break;
6254 }
6255
6256 /* Now output the actual element. */
6257 if (value.value)
6258 {
6259 push_array_bounds (tree_low_cst (constructor_index, 0));
6260 output_init_element (value.value, strict_string,
6261 elttype, constructor_index, 1);
6262 RESTORE_SPELLING_DEPTH (constructor_depth);
6263 }
6264
6265 constructor_index
6266 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6267
6268 if (!value.value)
6269 /* If we are doing the bookkeeping for an element that was
6270 directly output as a constructor, we must update
6271 constructor_unfilled_index. */
6272 constructor_unfilled_index = constructor_index;
6273 }
6274 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6275 {
6276 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6277
6278 /* Do a basic check of initializer size. Note that vectors
6279 always have a fixed size derived from their type. */
6280 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6281 {
6282 pedwarn_init ("excess elements in vector initializer");
6283 break;
6284 }
6285
6286 /* Now output the actual element. */
6287 if (value.value)
6288 output_init_element (value.value, strict_string,
6289 elttype, constructor_index, 1);
6290
6291 constructor_index
6292 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6293
6294 if (!value.value)
6295 /* If we are doing the bookkeeping for an element that was
6296 directly output as a constructor, we must update
6297 constructor_unfilled_index. */
6298 constructor_unfilled_index = constructor_index;
6299 }
6300
6301 /* Handle the sole element allowed in a braced initializer
6302 for a scalar variable. */
6303 else if (constructor_type != error_mark_node
6304 && constructor_fields == 0)
6305 {
6306 pedwarn_init ("excess elements in scalar initializer");
6307 break;
6308 }
6309 else
6310 {
6311 if (value.value)
6312 output_init_element (value.value, strict_string,
6313 constructor_type, NULL_TREE, 1);
6314 constructor_fields = 0;
6315 }
6316
6317 /* Handle range initializers either at this level or anywhere higher
6318 in the designator stack. */
6319 if (constructor_range_stack)
6320 {
6321 struct constructor_range_stack *p, *range_stack;
6322 int finish = 0;
6323
6324 range_stack = constructor_range_stack;
6325 constructor_range_stack = 0;
6326 while (constructor_stack != range_stack->stack)
6327 {
6328 gcc_assert (constructor_stack->implicit);
6329 process_init_element (pop_init_level (1));
6330 }
6331 for (p = range_stack;
6332 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6333 p = p->prev)
6334 {
6335 gcc_assert (constructor_stack->implicit);
6336 process_init_element (pop_init_level (1));
6337 }
6338
6339 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6340 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6341 finish = 1;
6342
6343 while (1)
6344 {
6345 constructor_index = p->index;
6346 constructor_fields = p->fields;
6347 if (finish && p->range_end && p->index == p->range_start)
6348 {
6349 finish = 0;
6350 p->prev = 0;
6351 }
6352 p = p->next;
6353 if (!p)
6354 break;
6355 push_init_level (2);
6356 p->stack = constructor_stack;
6357 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6358 p->index = p->range_start;
6359 }
6360
6361 if (!finish)
6362 constructor_range_stack = range_stack;
6363 continue;
6364 }
6365
6366 break;
6367 }
6368
6369 constructor_range_stack = 0;
6370 }
6371 \f
6372 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6373 (guaranteed to be 'volatile' or null) and ARGS (represented using
6374 an ASM_EXPR node). */
6375 tree
6376 build_asm_stmt (tree cv_qualifier, tree args)
6377 {
6378 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6379 ASM_VOLATILE_P (args) = 1;
6380 return add_stmt (args);
6381 }
6382
6383 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6384 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6385 SIMPLE indicates whether there was anything at all after the
6386 string in the asm expression -- asm("blah") and asm("blah" : )
6387 are subtly different. We use a ASM_EXPR node to represent this. */
6388 tree
6389 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6390 bool simple)
6391 {
6392 tree tail;
6393 tree args;
6394 int i;
6395 const char *constraint;
6396 const char **oconstraints;
6397 bool allows_mem, allows_reg, is_inout;
6398 int ninputs, noutputs;
6399
6400 ninputs = list_length (inputs);
6401 noutputs = list_length (outputs);
6402 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6403
6404 string = resolve_asm_operand_names (string, outputs, inputs);
6405
6406 /* Remove output conversions that change the type but not the mode. */
6407 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6408 {
6409 tree output = TREE_VALUE (tail);
6410
6411 /* ??? Really, this should not be here. Users should be using a
6412 proper lvalue, dammit. But there's a long history of using casts
6413 in the output operands. In cases like longlong.h, this becomes a
6414 primitive form of typechecking -- if the cast can be removed, then
6415 the output operand had a type of the proper width; otherwise we'll
6416 get an error. Gross, but ... */
6417 STRIP_NOPS (output);
6418
6419 if (!lvalue_or_else (output, lv_asm))
6420 output = error_mark_node;
6421
6422 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6423 oconstraints[i] = constraint;
6424
6425 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6426 &allows_mem, &allows_reg, &is_inout))
6427 {
6428 /* If the operand is going to end up in memory,
6429 mark it addressable. */
6430 if (!allows_reg && !c_mark_addressable (output))
6431 output = error_mark_node;
6432 }
6433 else
6434 output = error_mark_node;
6435
6436 TREE_VALUE (tail) = output;
6437 }
6438
6439 /* Perform default conversions on array and function inputs.
6440 Don't do this for other types as it would screw up operands
6441 expected to be in memory. */
6442 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6443 {
6444 tree input;
6445
6446 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6447 input = TREE_VALUE (tail);
6448
6449 input = default_function_array_conversion (input);
6450
6451 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6452 oconstraints, &allows_mem, &allows_reg))
6453 {
6454 /* If the operand is going to end up in memory,
6455 mark it addressable. */
6456 if (!allows_reg && allows_mem)
6457 {
6458 /* Strip the nops as we allow this case. FIXME, this really
6459 should be rejected or made deprecated. */
6460 STRIP_NOPS (input);
6461 if (!c_mark_addressable (input))
6462 input = error_mark_node;
6463 }
6464 }
6465 else
6466 input = error_mark_node;
6467
6468 TREE_VALUE (tail) = input;
6469 }
6470
6471 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6472
6473 /* Simple asm statements are treated as volatile. */
6474 if (simple)
6475 {
6476 ASM_VOLATILE_P (args) = 1;
6477 ASM_INPUT_P (args) = 1;
6478 }
6479
6480 return args;
6481 }
6482 \f
6483 /* Generate a goto statement to LABEL. */
6484
6485 tree
6486 c_finish_goto_label (tree label)
6487 {
6488 tree decl = lookup_label (label);
6489 if (!decl)
6490 return NULL_TREE;
6491
6492 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6493 {
6494 error ("jump into statement expression");
6495 return NULL_TREE;
6496 }
6497
6498 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6499 {
6500 /* No jump from outside this statement expression context, so
6501 record that there is a jump from within this context. */
6502 struct c_label_list *nlist;
6503 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6504 nlist->next = label_context_stack->labels_used;
6505 nlist->label = decl;
6506 label_context_stack->labels_used = nlist;
6507 }
6508
6509 TREE_USED (decl) = 1;
6510 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6511 }
6512
6513 /* Generate a computed goto statement to EXPR. */
6514
6515 tree
6516 c_finish_goto_ptr (tree expr)
6517 {
6518 if (pedantic)
6519 pedwarn ("ISO C forbids %<goto *expr;%>");
6520 expr = convert (ptr_type_node, expr);
6521 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6522 }
6523
6524 /* Generate a C `return' statement. RETVAL is the expression for what
6525 to return, or a null pointer for `return;' with no value. */
6526
6527 tree
6528 c_finish_return (tree retval)
6529 {
6530 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl));
6531
6532 if (TREE_THIS_VOLATILE (current_function_decl))
6533 warning ("function declared %<noreturn%> has a %<return%> statement");
6534
6535 if (!retval)
6536 {
6537 current_function_returns_null = 1;
6538 if ((warn_return_type || flag_isoc99)
6539 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6540 pedwarn_c99 ("%<return%> with no value, in "
6541 "function returning non-void");
6542 }
6543 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6544 {
6545 current_function_returns_null = 1;
6546 if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6547 pedwarn ("%<return%> with a value, in function returning void");
6548 }
6549 else
6550 {
6551 tree t = convert_for_assignment (valtype, retval, ic_return,
6552 NULL_TREE, NULL_TREE, 0);
6553 tree res = DECL_RESULT (current_function_decl);
6554 tree inner;
6555
6556 current_function_returns_value = 1;
6557 if (t == error_mark_node)
6558 return NULL_TREE;
6559
6560 inner = t = convert (TREE_TYPE (res), t);
6561
6562 /* Strip any conversions, additions, and subtractions, and see if
6563 we are returning the address of a local variable. Warn if so. */
6564 while (1)
6565 {
6566 switch (TREE_CODE (inner))
6567 {
6568 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6569 case PLUS_EXPR:
6570 inner = TREE_OPERAND (inner, 0);
6571 continue;
6572
6573 case MINUS_EXPR:
6574 /* If the second operand of the MINUS_EXPR has a pointer
6575 type (or is converted from it), this may be valid, so
6576 don't give a warning. */
6577 {
6578 tree op1 = TREE_OPERAND (inner, 1);
6579
6580 while (!POINTER_TYPE_P (TREE_TYPE (op1))
6581 && (TREE_CODE (op1) == NOP_EXPR
6582 || TREE_CODE (op1) == NON_LVALUE_EXPR
6583 || TREE_CODE (op1) == CONVERT_EXPR))
6584 op1 = TREE_OPERAND (op1, 0);
6585
6586 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6587 break;
6588
6589 inner = TREE_OPERAND (inner, 0);
6590 continue;
6591 }
6592
6593 case ADDR_EXPR:
6594 inner = TREE_OPERAND (inner, 0);
6595
6596 while (REFERENCE_CLASS_P (inner)
6597 && TREE_CODE (inner) != INDIRECT_REF)
6598 inner = TREE_OPERAND (inner, 0);
6599
6600 if (DECL_P (inner)
6601 && !DECL_EXTERNAL (inner)
6602 && !TREE_STATIC (inner)
6603 && DECL_CONTEXT (inner) == current_function_decl)
6604 warning ("function returns address of local variable");
6605 break;
6606
6607 default:
6608 break;
6609 }
6610
6611 break;
6612 }
6613
6614 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
6615 }
6616
6617 return add_stmt (build_stmt (RETURN_EXPR, retval));
6618 }
6619 \f
6620 struct c_switch {
6621 /* The SWITCH_EXPR being built. */
6622 tree switch_expr;
6623
6624 /* The original type of the testing expression, i.e. before the
6625 default conversion is applied. */
6626 tree orig_type;
6627
6628 /* A splay-tree mapping the low element of a case range to the high
6629 element, or NULL_TREE if there is no high element. Used to
6630 determine whether or not a new case label duplicates an old case
6631 label. We need a tree, rather than simply a hash table, because
6632 of the GNU case range extension. */
6633 splay_tree cases;
6634
6635 /* Number of nested statement expressions within this switch
6636 statement; if nonzero, case and default labels may not
6637 appear. */
6638 unsigned int blocked_stmt_expr;
6639
6640 /* The next node on the stack. */
6641 struct c_switch *next;
6642 };
6643
6644 /* A stack of the currently active switch statements. The innermost
6645 switch statement is on the top of the stack. There is no need to
6646 mark the stack for garbage collection because it is only active
6647 during the processing of the body of a function, and we never
6648 collect at that point. */
6649
6650 struct c_switch *c_switch_stack;
6651
6652 /* Start a C switch statement, testing expression EXP. Return the new
6653 SWITCH_EXPR. */
6654
6655 tree
6656 c_start_case (tree exp)
6657 {
6658 enum tree_code code;
6659 tree type, orig_type = error_mark_node;
6660 struct c_switch *cs;
6661
6662 if (exp != error_mark_node)
6663 {
6664 code = TREE_CODE (TREE_TYPE (exp));
6665 orig_type = TREE_TYPE (exp);
6666
6667 if (!INTEGRAL_TYPE_P (orig_type)
6668 && code != ERROR_MARK)
6669 {
6670 error ("switch quantity not an integer");
6671 exp = integer_zero_node;
6672 orig_type = error_mark_node;
6673 }
6674 else
6675 {
6676 type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
6677
6678 if (warn_traditional && !in_system_header
6679 && (type == long_integer_type_node
6680 || type == long_unsigned_type_node))
6681 warning ("%<long%> switch expression not converted to "
6682 "%<int%> in ISO C");
6683
6684 exp = default_conversion (exp);
6685 type = TREE_TYPE (exp);
6686 }
6687 }
6688
6689 /* Add this new SWITCH_EXPR to the stack. */
6690 cs = XNEW (struct c_switch);
6691 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
6692 cs->orig_type = orig_type;
6693 cs->cases = splay_tree_new (case_compare, NULL, NULL);
6694 cs->blocked_stmt_expr = 0;
6695 cs->next = c_switch_stack;
6696 c_switch_stack = cs;
6697
6698 return add_stmt (cs->switch_expr);
6699 }
6700
6701 /* Process a case label. */
6702
6703 tree
6704 do_case (tree low_value, tree high_value)
6705 {
6706 tree label = NULL_TREE;
6707
6708 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr)
6709 {
6710 label = c_add_case_label (c_switch_stack->cases,
6711 SWITCH_COND (c_switch_stack->switch_expr),
6712 c_switch_stack->orig_type,
6713 low_value, high_value);
6714 if (label == error_mark_node)
6715 label = NULL_TREE;
6716 }
6717 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
6718 {
6719 if (low_value)
6720 error ("case label in statement expression not containing "
6721 "enclosing switch statement");
6722 else
6723 error ("%<default%> label in statement expression not containing "
6724 "enclosing switch statement");
6725 }
6726 else if (low_value)
6727 error ("case label not within a switch statement");
6728 else
6729 error ("%<default%> label not within a switch statement");
6730
6731 return label;
6732 }
6733
6734 /* Finish the switch statement. */
6735
6736 void
6737 c_finish_case (tree body)
6738 {
6739 struct c_switch *cs = c_switch_stack;
6740 location_t switch_location;
6741
6742 SWITCH_BODY (cs->switch_expr) = body;
6743
6744 gcc_assert (!cs->blocked_stmt_expr);
6745
6746 /* Emit warnings as needed. */
6747 if (EXPR_HAS_LOCATION (cs->switch_expr))
6748 switch_location = EXPR_LOCATION (cs->switch_expr);
6749 else
6750 switch_location = input_location;
6751 c_do_switch_warnings (cs->cases, switch_location,
6752 TREE_TYPE (cs->switch_expr),
6753 SWITCH_COND (cs->switch_expr));
6754
6755 /* Pop the stack. */
6756 c_switch_stack = cs->next;
6757 splay_tree_delete (cs->cases);
6758 XDELETE (cs);
6759 }
6760 \f
6761 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
6762 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
6763 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
6764 statement, and was not surrounded with parenthesis. */
6765
6766 void
6767 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
6768 tree else_block, bool nested_if)
6769 {
6770 tree stmt;
6771
6772 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
6773 if (warn_parentheses && nested_if && else_block == NULL)
6774 {
6775 tree inner_if = then_block;
6776
6777 /* We know from the grammar productions that there is an IF nested
6778 within THEN_BLOCK. Due to labels and c99 conditional declarations,
6779 it might not be exactly THEN_BLOCK, but should be the last
6780 non-container statement within. */
6781 while (1)
6782 switch (TREE_CODE (inner_if))
6783 {
6784 case COND_EXPR:
6785 goto found;
6786 case BIND_EXPR:
6787 inner_if = BIND_EXPR_BODY (inner_if);
6788 break;
6789 case STATEMENT_LIST:
6790 inner_if = expr_last (then_block);
6791 break;
6792 case TRY_FINALLY_EXPR:
6793 case TRY_CATCH_EXPR:
6794 inner_if = TREE_OPERAND (inner_if, 0);
6795 break;
6796 default:
6797 gcc_unreachable ();
6798 }
6799 found:
6800
6801 if (COND_EXPR_ELSE (inner_if))
6802 warning ("%Hsuggest explicit braces to avoid ambiguous %<else%>",
6803 &if_locus);
6804 }
6805
6806 /* Diagnose ";" via the special empty statement node that we create. */
6807 if (extra_warnings)
6808 {
6809 if (TREE_CODE (then_block) == NOP_EXPR && !TREE_TYPE (then_block))
6810 {
6811 if (!else_block)
6812 warning ("%Hempty body in an if-statement",
6813 EXPR_LOCUS (then_block));
6814 then_block = alloc_stmt_list ();
6815 }
6816 if (else_block
6817 && TREE_CODE (else_block) == NOP_EXPR
6818 && !TREE_TYPE (else_block))
6819 {
6820 warning ("%Hempty body in an else-statement",
6821 EXPR_LOCUS (else_block));
6822 else_block = alloc_stmt_list ();
6823 }
6824 }
6825
6826 stmt = build3 (COND_EXPR, NULL_TREE, cond, then_block, else_block);
6827 SET_EXPR_LOCATION (stmt, if_locus);
6828 add_stmt (stmt);
6829 }
6830
6831 /* Emit a general-purpose loop construct. START_LOCUS is the location of
6832 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
6833 is false for DO loops. INCR is the FOR increment expression. BODY is
6834 the statement controlled by the loop. BLAB is the break label. CLAB is
6835 the continue label. Everything is allowed to be NULL. */
6836
6837 void
6838 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
6839 tree blab, tree clab, bool cond_is_first)
6840 {
6841 tree entry = NULL, exit = NULL, t;
6842
6843 /* If the condition is zero don't generate a loop construct. */
6844 if (cond && integer_zerop (cond))
6845 {
6846 if (cond_is_first)
6847 {
6848 t = build_and_jump (&blab);
6849 SET_EXPR_LOCATION (t, start_locus);
6850 add_stmt (t);
6851 }
6852 }
6853 else
6854 {
6855 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
6856
6857 /* If we have an exit condition, then we build an IF with gotos either
6858 out of the loop, or to the top of it. If there's no exit condition,
6859 then we just build a jump back to the top. */
6860 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
6861
6862 if (cond && !integer_nonzerop (cond))
6863 {
6864 /* Canonicalize the loop condition to the end. This means
6865 generating a branch to the loop condition. Reuse the
6866 continue label, if possible. */
6867 if (cond_is_first)
6868 {
6869 if (incr || !clab)
6870 {
6871 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
6872 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
6873 }
6874 else
6875 t = build1 (GOTO_EXPR, void_type_node, clab);
6876 SET_EXPR_LOCATION (t, start_locus);
6877 add_stmt (t);
6878 }
6879
6880 t = build_and_jump (&blab);
6881 exit = build3 (COND_EXPR, void_type_node, cond, exit, t);
6882 exit = fold (exit);
6883 if (cond_is_first)
6884 SET_EXPR_LOCATION (exit, start_locus);
6885 else
6886 SET_EXPR_LOCATION (exit, input_location);
6887 }
6888
6889 add_stmt (top);
6890 }
6891
6892 if (body)
6893 add_stmt (body);
6894 if (clab)
6895 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
6896 if (incr)
6897 add_stmt (incr);
6898 if (entry)
6899 add_stmt (entry);
6900 if (exit)
6901 add_stmt (exit);
6902 if (blab)
6903 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
6904 }
6905
6906 tree
6907 c_finish_bc_stmt (tree *label_p, bool is_break)
6908 {
6909 bool skip;
6910 tree label = *label_p;
6911
6912 /* In switch statements break is sometimes stylistically used after
6913 a return statement. This can lead to spurious warnings about
6914 control reaching the end of a non-void function when it is
6915 inlined. Note that we are calling block_may_fallthru with
6916 language specific tree nodes; this works because
6917 block_may_fallthru returns true when given something it does not
6918 understand. */
6919 skip = !block_may_fallthru (cur_stmt_list);
6920
6921 if (!label)
6922 {
6923 if (!skip)
6924 *label_p = label = create_artificial_label ();
6925 }
6926 else if (TREE_CODE (label) != LABEL_DECL)
6927 {
6928 if (is_break)
6929 error ("break statement not within loop or switch");
6930 else
6931 error ("continue statement not within a loop");
6932 return NULL_TREE;
6933 }
6934
6935 if (skip)
6936 return NULL_TREE;
6937
6938 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
6939 }
6940
6941 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
6942
6943 static void
6944 emit_side_effect_warnings (tree expr)
6945 {
6946 if (expr == error_mark_node)
6947 ;
6948 else if (!TREE_SIDE_EFFECTS (expr))
6949 {
6950 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
6951 warning ("%Hstatement with no effect",
6952 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
6953 }
6954 else if (warn_unused_value)
6955 warn_if_unused_value (expr, input_location);
6956 }
6957
6958 /* Process an expression as if it were a complete statement. Emit
6959 diagnostics, but do not call ADD_STMT. */
6960
6961 tree
6962 c_process_expr_stmt (tree expr)
6963 {
6964 if (!expr)
6965 return NULL_TREE;
6966
6967 /* Do default conversion if safe and possibly important,
6968 in case within ({...}). */
6969 if ((TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE
6970 && (flag_isoc99 || lvalue_p (expr)))
6971 || TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE)
6972 expr = default_conversion (expr);
6973
6974 if (warn_sequence_point)
6975 verify_sequence_points (expr);
6976
6977 if (TREE_TYPE (expr) != error_mark_node
6978 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
6979 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
6980 error ("expression statement has incomplete type");
6981
6982 /* If we're not processing a statement expression, warn about unused values.
6983 Warnings for statement expressions will be emitted later, once we figure
6984 out which is the result. */
6985 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
6986 && (extra_warnings || warn_unused_value))
6987 emit_side_effect_warnings (expr);
6988
6989 /* If the expression is not of a type to which we cannot assign a line
6990 number, wrap the thing in a no-op NOP_EXPR. */
6991 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
6992 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
6993
6994 if (EXPR_P (expr))
6995 SET_EXPR_LOCATION (expr, input_location);
6996
6997 return expr;
6998 }
6999
7000 /* Emit an expression as a statement. */
7001
7002 tree
7003 c_finish_expr_stmt (tree expr)
7004 {
7005 if (expr)
7006 return add_stmt (c_process_expr_stmt (expr));
7007 else
7008 return NULL;
7009 }
7010
7011 /* Do the opposite and emit a statement as an expression. To begin,
7012 create a new binding level and return it. */
7013
7014 tree
7015 c_begin_stmt_expr (void)
7016 {
7017 tree ret;
7018 struct c_label_context *nstack;
7019 struct c_label_list *glist;
7020
7021 /* We must force a BLOCK for this level so that, if it is not expanded
7022 later, there is a way to turn off the entire subtree of blocks that
7023 are contained in it. */
7024 keep_next_level ();
7025 ret = c_begin_compound_stmt (true);
7026 if (c_switch_stack)
7027 {
7028 c_switch_stack->blocked_stmt_expr++;
7029 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7030 }
7031 for (glist = label_context_stack->labels_used;
7032 glist != NULL;
7033 glist = glist->next)
7034 {
7035 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7036 }
7037 nstack = XOBNEW (&parser_obstack, struct c_label_context);
7038 nstack->labels_def = NULL;
7039 nstack->labels_used = NULL;
7040 nstack->next = label_context_stack;
7041 label_context_stack = nstack;
7042
7043 /* Mark the current statement list as belonging to a statement list. */
7044 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7045
7046 return ret;
7047 }
7048
7049 tree
7050 c_finish_stmt_expr (tree body)
7051 {
7052 tree last, type, tmp, val;
7053 tree *last_p;
7054 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7055
7056 body = c_end_compound_stmt (body, true);
7057 if (c_switch_stack)
7058 {
7059 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7060 c_switch_stack->blocked_stmt_expr--;
7061 }
7062 /* It is no longer possible to jump to labels defined within this
7063 statement expression. */
7064 for (dlist = label_context_stack->labels_def;
7065 dlist != NULL;
7066 dlist = dlist->next)
7067 {
7068 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7069 }
7070 /* It is again possible to define labels with a goto just outside
7071 this statement expression. */
7072 for (glist = label_context_stack->next->labels_used;
7073 glist != NULL;
7074 glist = glist->next)
7075 {
7076 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7077 glist_prev = glist;
7078 }
7079 if (glist_prev != NULL)
7080 glist_prev->next = label_context_stack->labels_used;
7081 else
7082 label_context_stack->next->labels_used = label_context_stack->labels_used;
7083 label_context_stack = label_context_stack->next;
7084
7085 /* Locate the last statement in BODY. See c_end_compound_stmt
7086 about always returning a BIND_EXPR. */
7087 last_p = &BIND_EXPR_BODY (body);
7088 last = BIND_EXPR_BODY (body);
7089
7090 continue_searching:
7091 if (TREE_CODE (last) == STATEMENT_LIST)
7092 {
7093 tree_stmt_iterator i;
7094
7095 /* This can happen with degenerate cases like ({ }). No value. */
7096 if (!TREE_SIDE_EFFECTS (last))
7097 return body;
7098
7099 /* If we're supposed to generate side effects warnings, process
7100 all of the statements except the last. */
7101 if (extra_warnings || warn_unused_value)
7102 {
7103 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7104 emit_side_effect_warnings (tsi_stmt (i));
7105 }
7106 else
7107 i = tsi_last (last);
7108 last_p = tsi_stmt_ptr (i);
7109 last = *last_p;
7110 }
7111
7112 /* If the end of the list is exception related, then the list was split
7113 by a call to push_cleanup. Continue searching. */
7114 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7115 || TREE_CODE (last) == TRY_CATCH_EXPR)
7116 {
7117 last_p = &TREE_OPERAND (last, 0);
7118 last = *last_p;
7119 goto continue_searching;
7120 }
7121
7122 /* In the case that the BIND_EXPR is not necessary, return the
7123 expression out from inside it. */
7124 if (last == error_mark_node
7125 || (last == BIND_EXPR_BODY (body)
7126 && BIND_EXPR_VARS (body) == NULL))
7127 return last;
7128
7129 /* Extract the type of said expression. */
7130 type = TREE_TYPE (last);
7131
7132 /* If we're not returning a value at all, then the BIND_EXPR that
7133 we already have is a fine expression to return. */
7134 if (!type || VOID_TYPE_P (type))
7135 return body;
7136
7137 /* Now that we've located the expression containing the value, it seems
7138 silly to make voidify_wrapper_expr repeat the process. Create a
7139 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7140 tmp = create_tmp_var_raw (type, NULL);
7141
7142 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7143 tree_expr_nonnegative_p giving up immediately. */
7144 val = last;
7145 if (TREE_CODE (val) == NOP_EXPR
7146 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7147 val = TREE_OPERAND (val, 0);
7148
7149 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7150 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7151
7152 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7153 }
7154 \f
7155 /* Begin and end compound statements. This is as simple as pushing
7156 and popping new statement lists from the tree. */
7157
7158 tree
7159 c_begin_compound_stmt (bool do_scope)
7160 {
7161 tree stmt = push_stmt_list ();
7162 if (do_scope)
7163 push_scope ();
7164 return stmt;
7165 }
7166
7167 tree
7168 c_end_compound_stmt (tree stmt, bool do_scope)
7169 {
7170 tree block = NULL;
7171
7172 if (do_scope)
7173 {
7174 if (c_dialect_objc ())
7175 objc_clear_super_receiver ();
7176 block = pop_scope ();
7177 }
7178
7179 stmt = pop_stmt_list (stmt);
7180 stmt = c_build_bind_expr (block, stmt);
7181
7182 /* If this compound statement is nested immediately inside a statement
7183 expression, then force a BIND_EXPR to be created. Otherwise we'll
7184 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7185 STATEMENT_LISTs merge, and thus we can lose track of what statement
7186 was really last. */
7187 if (cur_stmt_list
7188 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7189 && TREE_CODE (stmt) != BIND_EXPR)
7190 {
7191 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7192 TREE_SIDE_EFFECTS (stmt) = 1;
7193 }
7194
7195 return stmt;
7196 }
7197
7198 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7199 when the current scope is exited. EH_ONLY is true when this is not
7200 meant to apply to normal control flow transfer. */
7201
7202 void
7203 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7204 {
7205 enum tree_code code;
7206 tree stmt, list;
7207 bool stmt_expr;
7208
7209 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7210 stmt = build_stmt (code, NULL, cleanup);
7211 add_stmt (stmt);
7212 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7213 list = push_stmt_list ();
7214 TREE_OPERAND (stmt, 0) = list;
7215 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7216 }
7217 \f
7218 /* Build a binary-operation expression without default conversions.
7219 CODE is the kind of expression to build.
7220 This function differs from `build' in several ways:
7221 the data type of the result is computed and recorded in it,
7222 warnings are generated if arg data types are invalid,
7223 special handling for addition and subtraction of pointers is known,
7224 and some optimization is done (operations on narrow ints
7225 are done in the narrower type when that gives the same result).
7226 Constant folding is also done before the result is returned.
7227
7228 Note that the operands will never have enumeral types, or function
7229 or array types, because either they will have the default conversions
7230 performed or they have both just been converted to some other type in which
7231 the arithmetic is to be done. */
7232
7233 tree
7234 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7235 int convert_p)
7236 {
7237 tree type0, type1;
7238 enum tree_code code0, code1;
7239 tree op0, op1;
7240
7241 /* Expression code to give to the expression when it is built.
7242 Normally this is CODE, which is what the caller asked for,
7243 but in some special cases we change it. */
7244 enum tree_code resultcode = code;
7245
7246 /* Data type in which the computation is to be performed.
7247 In the simplest cases this is the common type of the arguments. */
7248 tree result_type = NULL;
7249
7250 /* Nonzero means operands have already been type-converted
7251 in whatever way is necessary.
7252 Zero means they need to be converted to RESULT_TYPE. */
7253 int converted = 0;
7254
7255 /* Nonzero means create the expression with this type, rather than
7256 RESULT_TYPE. */
7257 tree build_type = 0;
7258
7259 /* Nonzero means after finally constructing the expression
7260 convert it to this type. */
7261 tree final_type = 0;
7262
7263 /* Nonzero if this is an operation like MIN or MAX which can
7264 safely be computed in short if both args are promoted shorts.
7265 Also implies COMMON.
7266 -1 indicates a bitwise operation; this makes a difference
7267 in the exact conditions for when it is safe to do the operation
7268 in a narrower mode. */
7269 int shorten = 0;
7270
7271 /* Nonzero if this is a comparison operation;
7272 if both args are promoted shorts, compare the original shorts.
7273 Also implies COMMON. */
7274 int short_compare = 0;
7275
7276 /* Nonzero if this is a right-shift operation, which can be computed on the
7277 original short and then promoted if the operand is a promoted short. */
7278 int short_shift = 0;
7279
7280 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7281 int common = 0;
7282
7283 if (convert_p)
7284 {
7285 op0 = default_conversion (orig_op0);
7286 op1 = default_conversion (orig_op1);
7287 }
7288 else
7289 {
7290 op0 = orig_op0;
7291 op1 = orig_op1;
7292 }
7293
7294 type0 = TREE_TYPE (op0);
7295 type1 = TREE_TYPE (op1);
7296
7297 /* The expression codes of the data types of the arguments tell us
7298 whether the arguments are integers, floating, pointers, etc. */
7299 code0 = TREE_CODE (type0);
7300 code1 = TREE_CODE (type1);
7301
7302 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7303 STRIP_TYPE_NOPS (op0);
7304 STRIP_TYPE_NOPS (op1);
7305
7306 /* If an error was already reported for one of the arguments,
7307 avoid reporting another error. */
7308
7309 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7310 return error_mark_node;
7311
7312 switch (code)
7313 {
7314 case PLUS_EXPR:
7315 /* Handle the pointer + int case. */
7316 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7317 return pointer_int_sum (PLUS_EXPR, op0, op1);
7318 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7319 return pointer_int_sum (PLUS_EXPR, op1, op0);
7320 else
7321 common = 1;
7322 break;
7323
7324 case MINUS_EXPR:
7325 /* Subtraction of two similar pointers.
7326 We must subtract them as integers, then divide by object size. */
7327 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7328 && comp_target_types (type0, type1, 1))
7329 return pointer_diff (op0, op1);
7330 /* Handle pointer minus int. Just like pointer plus int. */
7331 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7332 return pointer_int_sum (MINUS_EXPR, op0, op1);
7333 else
7334 common = 1;
7335 break;
7336
7337 case MULT_EXPR:
7338 common = 1;
7339 break;
7340
7341 case TRUNC_DIV_EXPR:
7342 case CEIL_DIV_EXPR:
7343 case FLOOR_DIV_EXPR:
7344 case ROUND_DIV_EXPR:
7345 case EXACT_DIV_EXPR:
7346 /* Floating point division by zero is a legitimate way to obtain
7347 infinities and NaNs. */
7348 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
7349 warning ("division by zero");
7350
7351 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7352 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7353 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7354 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7355 {
7356 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7357 code0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7358 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7359 code1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7360
7361 if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
7362 resultcode = RDIV_EXPR;
7363 else
7364 /* Although it would be tempting to shorten always here, that
7365 loses on some targets, since the modulo instruction is
7366 undefined if the quotient can't be represented in the
7367 computation mode. We shorten only if unsigned or if
7368 dividing by something we know != -1. */
7369 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7370 || (TREE_CODE (op1) == INTEGER_CST
7371 && !integer_all_onesp (op1)));
7372 common = 1;
7373 }
7374 break;
7375
7376 case BIT_AND_EXPR:
7377 case BIT_IOR_EXPR:
7378 case BIT_XOR_EXPR:
7379 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7380 shorten = -1;
7381 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7382 common = 1;
7383 break;
7384
7385 case TRUNC_MOD_EXPR:
7386 case FLOOR_MOD_EXPR:
7387 if (warn_div_by_zero && skip_evaluation == 0 && integer_zerop (op1))
7388 warning ("division by zero");
7389
7390 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7391 {
7392 /* Although it would be tempting to shorten always here, that loses
7393 on some targets, since the modulo instruction is undefined if the
7394 quotient can't be represented in the computation mode. We shorten
7395 only if unsigned or if dividing by something we know != -1. */
7396 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7397 || (TREE_CODE (op1) == INTEGER_CST
7398 && !integer_all_onesp (op1)));
7399 common = 1;
7400 }
7401 break;
7402
7403 case TRUTH_ANDIF_EXPR:
7404 case TRUTH_ORIF_EXPR:
7405 case TRUTH_AND_EXPR:
7406 case TRUTH_OR_EXPR:
7407 case TRUTH_XOR_EXPR:
7408 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7409 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7410 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7411 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7412 {
7413 /* Result of these operations is always an int,
7414 but that does not mean the operands should be
7415 converted to ints! */
7416 result_type = integer_type_node;
7417 op0 = c_common_truthvalue_conversion (op0);
7418 op1 = c_common_truthvalue_conversion (op1);
7419 converted = 1;
7420 }
7421 break;
7422
7423 /* Shift operations: result has same type as first operand;
7424 always convert second operand to int.
7425 Also set SHORT_SHIFT if shifting rightward. */
7426
7427 case RSHIFT_EXPR:
7428 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7429 {
7430 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7431 {
7432 if (tree_int_cst_sgn (op1) < 0)
7433 warning ("right shift count is negative");
7434 else
7435 {
7436 if (!integer_zerop (op1))
7437 short_shift = 1;
7438
7439 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7440 warning ("right shift count >= width of type");
7441 }
7442 }
7443
7444 /* Use the type of the value to be shifted. */
7445 result_type = type0;
7446 /* Convert the shift-count to an integer, regardless of size
7447 of value being shifted. */
7448 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7449 op1 = convert (integer_type_node, op1);
7450 /* Avoid converting op1 to result_type later. */
7451 converted = 1;
7452 }
7453 break;
7454
7455 case LSHIFT_EXPR:
7456 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7457 {
7458 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7459 {
7460 if (tree_int_cst_sgn (op1) < 0)
7461 warning ("left shift count is negative");
7462
7463 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7464 warning ("left shift count >= width of type");
7465 }
7466
7467 /* Use the type of the value to be shifted. */
7468 result_type = type0;
7469 /* Convert the shift-count to an integer, regardless of size
7470 of value being shifted. */
7471 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7472 op1 = convert (integer_type_node, op1);
7473 /* Avoid converting op1 to result_type later. */
7474 converted = 1;
7475 }
7476 break;
7477
7478 case EQ_EXPR:
7479 case NE_EXPR:
7480 if (warn_float_equal && (code0 == REAL_TYPE || code1 == REAL_TYPE))
7481 warning ("comparing floating point with == or != is unsafe");
7482 /* Result of comparison is always int,
7483 but don't convert the args to int! */
7484 build_type = integer_type_node;
7485 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7486 || code0 == COMPLEX_TYPE)
7487 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7488 || code1 == COMPLEX_TYPE))
7489 short_compare = 1;
7490 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7491 {
7492 tree tt0 = TREE_TYPE (type0);
7493 tree tt1 = TREE_TYPE (type1);
7494 /* Anything compares with void *. void * compares with anything.
7495 Otherwise, the targets must be compatible
7496 and both must be object or both incomplete. */
7497 if (comp_target_types (type0, type1, 1))
7498 result_type = common_pointer_type (type0, type1);
7499 else if (VOID_TYPE_P (tt0))
7500 {
7501 /* op0 != orig_op0 detects the case of something
7502 whose value is 0 but which isn't a valid null ptr const. */
7503 if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
7504 && TREE_CODE (tt1) == FUNCTION_TYPE)
7505 pedwarn ("ISO C forbids comparison of %<void *%>"
7506 " with function pointer");
7507 }
7508 else if (VOID_TYPE_P (tt1))
7509 {
7510 if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
7511 && TREE_CODE (tt0) == FUNCTION_TYPE)
7512 pedwarn ("ISO C forbids comparison of %<void *%>"
7513 " with function pointer");
7514 }
7515 else
7516 pedwarn ("comparison of distinct pointer types lacks a cast");
7517
7518 if (result_type == NULL_TREE)
7519 result_type = ptr_type_node;
7520 }
7521 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
7522 && integer_zerop (op1))
7523 result_type = type0;
7524 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
7525 && integer_zerop (op0))
7526 result_type = type1;
7527 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7528 {
7529 result_type = type0;
7530 pedwarn ("comparison between pointer and integer");
7531 }
7532 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
7533 {
7534 result_type = type1;
7535 pedwarn ("comparison between pointer and integer");
7536 }
7537 break;
7538
7539 case LE_EXPR:
7540 case GE_EXPR:
7541 case LT_EXPR:
7542 case GT_EXPR:
7543 build_type = integer_type_node;
7544 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
7545 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
7546 short_compare = 1;
7547 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
7548 {
7549 if (comp_target_types (type0, type1, 1))
7550 {
7551 result_type = common_pointer_type (type0, type1);
7552 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
7553 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
7554 pedwarn ("comparison of complete and incomplete pointers");
7555 else if (pedantic
7556 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
7557 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
7558 }
7559 else
7560 {
7561 result_type = ptr_type_node;
7562 pedwarn ("comparison of distinct pointer types lacks a cast");
7563 }
7564 }
7565 else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
7566 && integer_zerop (op1))
7567 {
7568 result_type = type0;
7569 if (pedantic || extra_warnings)
7570 pedwarn ("ordered comparison of pointer with integer zero");
7571 }
7572 else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
7573 && integer_zerop (op0))
7574 {
7575 result_type = type1;
7576 if (pedantic)
7577 pedwarn ("ordered comparison of pointer with integer zero");
7578 }
7579 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7580 {
7581 result_type = type0;
7582 pedwarn ("comparison between pointer and integer");
7583 }
7584 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
7585 {
7586 result_type = type1;
7587 pedwarn ("comparison between pointer and integer");
7588 }
7589 break;
7590
7591 default:
7592 gcc_unreachable ();
7593 }
7594
7595 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7596 return error_mark_node;
7597
7598 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
7599 || code0 == VECTOR_TYPE)
7600 &&
7601 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
7602 || code1 == VECTOR_TYPE))
7603 {
7604 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
7605
7606 if (shorten || common || short_compare)
7607 result_type = c_common_type (type0, type1);
7608
7609 /* For certain operations (which identify themselves by shorten != 0)
7610 if both args were extended from the same smaller type,
7611 do the arithmetic in that type and then extend.
7612
7613 shorten !=0 and !=1 indicates a bitwise operation.
7614 For them, this optimization is safe only if
7615 both args are zero-extended or both are sign-extended.
7616 Otherwise, we might change the result.
7617 Eg, (short)-1 | (unsigned short)-1 is (int)-1
7618 but calculated in (unsigned short) it would be (unsigned short)-1. */
7619
7620 if (shorten && none_complex)
7621 {
7622 int unsigned0, unsigned1;
7623 tree arg0 = get_narrower (op0, &unsigned0);
7624 tree arg1 = get_narrower (op1, &unsigned1);
7625 /* UNS is 1 if the operation to be done is an unsigned one. */
7626 int uns = TYPE_UNSIGNED (result_type);
7627 tree type;
7628
7629 final_type = result_type;
7630
7631 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
7632 but it *requires* conversion to FINAL_TYPE. */
7633
7634 if ((TYPE_PRECISION (TREE_TYPE (op0))
7635 == TYPE_PRECISION (TREE_TYPE (arg0)))
7636 && TREE_TYPE (op0) != final_type)
7637 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
7638 if ((TYPE_PRECISION (TREE_TYPE (op1))
7639 == TYPE_PRECISION (TREE_TYPE (arg1)))
7640 && TREE_TYPE (op1) != final_type)
7641 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
7642
7643 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
7644
7645 /* For bitwise operations, signedness of nominal type
7646 does not matter. Consider only how operands were extended. */
7647 if (shorten == -1)
7648 uns = unsigned0;
7649
7650 /* Note that in all three cases below we refrain from optimizing
7651 an unsigned operation on sign-extended args.
7652 That would not be valid. */
7653
7654 /* Both args variable: if both extended in same way
7655 from same width, do it in that width.
7656 Do it unsigned if args were zero-extended. */
7657 if ((TYPE_PRECISION (TREE_TYPE (arg0))
7658 < TYPE_PRECISION (result_type))
7659 && (TYPE_PRECISION (TREE_TYPE (arg1))
7660 == TYPE_PRECISION (TREE_TYPE (arg0)))
7661 && unsigned0 == unsigned1
7662 && (unsigned0 || !uns))
7663 result_type
7664 = c_common_signed_or_unsigned_type
7665 (unsigned0, c_common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
7666 else if (TREE_CODE (arg0) == INTEGER_CST
7667 && (unsigned1 || !uns)
7668 && (TYPE_PRECISION (TREE_TYPE (arg1))
7669 < TYPE_PRECISION (result_type))
7670 && (type
7671 = c_common_signed_or_unsigned_type (unsigned1,
7672 TREE_TYPE (arg1)),
7673 int_fits_type_p (arg0, type)))
7674 result_type = type;
7675 else if (TREE_CODE (arg1) == INTEGER_CST
7676 && (unsigned0 || !uns)
7677 && (TYPE_PRECISION (TREE_TYPE (arg0))
7678 < TYPE_PRECISION (result_type))
7679 && (type
7680 = c_common_signed_or_unsigned_type (unsigned0,
7681 TREE_TYPE (arg0)),
7682 int_fits_type_p (arg1, type)))
7683 result_type = type;
7684 }
7685
7686 /* Shifts can be shortened if shifting right. */
7687
7688 if (short_shift)
7689 {
7690 int unsigned_arg;
7691 tree arg0 = get_narrower (op0, &unsigned_arg);
7692
7693 final_type = result_type;
7694
7695 if (arg0 == op0 && final_type == TREE_TYPE (op0))
7696 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
7697
7698 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
7699 /* We can shorten only if the shift count is less than the
7700 number of bits in the smaller type size. */
7701 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
7702 /* We cannot drop an unsigned shift after sign-extension. */
7703 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
7704 {
7705 /* Do an unsigned shift if the operand was zero-extended. */
7706 result_type
7707 = c_common_signed_or_unsigned_type (unsigned_arg,
7708 TREE_TYPE (arg0));
7709 /* Convert value-to-be-shifted to that type. */
7710 if (TREE_TYPE (op0) != result_type)
7711 op0 = convert (result_type, op0);
7712 converted = 1;
7713 }
7714 }
7715
7716 /* Comparison operations are shortened too but differently.
7717 They identify themselves by setting short_compare = 1. */
7718
7719 if (short_compare)
7720 {
7721 /* Don't write &op0, etc., because that would prevent op0
7722 from being kept in a register.
7723 Instead, make copies of the our local variables and
7724 pass the copies by reference, then copy them back afterward. */
7725 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
7726 enum tree_code xresultcode = resultcode;
7727 tree val
7728 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
7729
7730 if (val != 0)
7731 return val;
7732
7733 op0 = xop0, op1 = xop1;
7734 converted = 1;
7735 resultcode = xresultcode;
7736
7737 if (warn_sign_compare && skip_evaluation == 0)
7738 {
7739 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
7740 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
7741 int unsignedp0, unsignedp1;
7742 tree primop0 = get_narrower (op0, &unsignedp0);
7743 tree primop1 = get_narrower (op1, &unsignedp1);
7744
7745 xop0 = orig_op0;
7746 xop1 = orig_op1;
7747 STRIP_TYPE_NOPS (xop0);
7748 STRIP_TYPE_NOPS (xop1);
7749
7750 /* Give warnings for comparisons between signed and unsigned
7751 quantities that may fail.
7752
7753 Do the checking based on the original operand trees, so that
7754 casts will be considered, but default promotions won't be.
7755
7756 Do not warn if the comparison is being done in a signed type,
7757 since the signed type will only be chosen if it can represent
7758 all the values of the unsigned type. */
7759 if (!TYPE_UNSIGNED (result_type))
7760 /* OK */;
7761 /* Do not warn if both operands are the same signedness. */
7762 else if (op0_signed == op1_signed)
7763 /* OK */;
7764 else
7765 {
7766 tree sop, uop;
7767
7768 if (op0_signed)
7769 sop = xop0, uop = xop1;
7770 else
7771 sop = xop1, uop = xop0;
7772
7773 /* Do not warn if the signed quantity is an
7774 unsuffixed integer literal (or some static
7775 constant expression involving such literals or a
7776 conditional expression involving such literals)
7777 and it is non-negative. */
7778 if (tree_expr_nonnegative_p (sop))
7779 /* OK */;
7780 /* Do not warn if the comparison is an equality operation,
7781 the unsigned quantity is an integral constant, and it
7782 would fit in the result if the result were signed. */
7783 else if (TREE_CODE (uop) == INTEGER_CST
7784 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
7785 && int_fits_type_p
7786 (uop, c_common_signed_type (result_type)))
7787 /* OK */;
7788 /* Do not warn if the unsigned quantity is an enumeration
7789 constant and its maximum value would fit in the result
7790 if the result were signed. */
7791 else if (TREE_CODE (uop) == INTEGER_CST
7792 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
7793 && int_fits_type_p
7794 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
7795 c_common_signed_type (result_type)))
7796 /* OK */;
7797 else
7798 warning ("comparison between signed and unsigned");
7799 }
7800
7801 /* Warn if two unsigned values are being compared in a size
7802 larger than their original size, and one (and only one) is the
7803 result of a `~' operator. This comparison will always fail.
7804
7805 Also warn if one operand is a constant, and the constant
7806 does not have all bits set that are set in the ~ operand
7807 when it is extended. */
7808
7809 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
7810 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
7811 {
7812 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
7813 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
7814 &unsignedp0);
7815 else
7816 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
7817 &unsignedp1);
7818
7819 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
7820 {
7821 tree primop;
7822 HOST_WIDE_INT constant, mask;
7823 int unsignedp, bits;
7824
7825 if (host_integerp (primop0, 0))
7826 {
7827 primop = primop1;
7828 unsignedp = unsignedp1;
7829 constant = tree_low_cst (primop0, 0);
7830 }
7831 else
7832 {
7833 primop = primop0;
7834 unsignedp = unsignedp0;
7835 constant = tree_low_cst (primop1, 0);
7836 }
7837
7838 bits = TYPE_PRECISION (TREE_TYPE (primop));
7839 if (bits < TYPE_PRECISION (result_type)
7840 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
7841 {
7842 mask = (~(HOST_WIDE_INT) 0) << bits;
7843 if ((mask & constant) != mask)
7844 warning ("comparison of promoted ~unsigned with constant");
7845 }
7846 }
7847 else if (unsignedp0 && unsignedp1
7848 && (TYPE_PRECISION (TREE_TYPE (primop0))
7849 < TYPE_PRECISION (result_type))
7850 && (TYPE_PRECISION (TREE_TYPE (primop1))
7851 < TYPE_PRECISION (result_type)))
7852 warning ("comparison of promoted ~unsigned with unsigned");
7853 }
7854 }
7855 }
7856 }
7857
7858 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
7859 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
7860 Then the expression will be built.
7861 It will be given type FINAL_TYPE if that is nonzero;
7862 otherwise, it will be given type RESULT_TYPE. */
7863
7864 if (!result_type)
7865 {
7866 binary_op_error (code);
7867 return error_mark_node;
7868 }
7869
7870 if (!converted)
7871 {
7872 if (TREE_TYPE (op0) != result_type)
7873 op0 = convert (result_type, op0);
7874 if (TREE_TYPE (op1) != result_type)
7875 op1 = convert (result_type, op1);
7876
7877 /* This can happen if one operand has a vector type, and the other
7878 has a different type. */
7879 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
7880 return error_mark_node;
7881 }
7882
7883 if (build_type == NULL_TREE)
7884 build_type = result_type;
7885
7886 {
7887 tree result = build2 (resultcode, build_type, op0, op1);
7888
7889 /* Treat expressions in initializers specially as they can't trap. */
7890 result = require_constant_value ? fold_initializer (result)
7891 : fold (result);
7892
7893 if (final_type != 0)
7894 result = convert (final_type, result);
7895 return result;
7896 }
7897 }
7898
7899
7900 /* Convert EXPR to be a truth-value, validating its type for this
7901 purpose. Passes EXPR to default_function_array_conversion. */
7902
7903 tree
7904 c_objc_common_truthvalue_conversion (tree expr)
7905 {
7906 expr = default_function_array_conversion (expr);
7907 switch (TREE_CODE (TREE_TYPE (expr)))
7908 {
7909 case ARRAY_TYPE:
7910 error ("used array that cannot be converted to pointer where scalar is required");
7911 return error_mark_node;
7912
7913 case RECORD_TYPE:
7914 error ("used struct type value where scalar is required");
7915 return error_mark_node;
7916
7917 case UNION_TYPE:
7918 error ("used union type value where scalar is required");
7919 return error_mark_node;
7920
7921 default:
7922 break;
7923 }
7924
7925 /* ??? Should we also give an error for void and vectors rather than
7926 leaving those to give errors later? */
7927 return c_common_truthvalue_conversion (expr);
7928 }
This page took 0.403429 seconds and 6 git commands to generate.