]> gcc.gnu.org Git - gcc.git/blob - gcc/c-typeck.c
2151f970afcc50997fa9b4608c18b77f742205b0
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 /* This file is part of the C front end.
25 It contains routines to build C expressions given their operands,
26 including computing the types of the result, C-specific error checks,
27 and some optimization. */
28
29 #include "config.h"
30 #include "system.h"
31 #include "coretypes.h"
32 #include "tm.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "langhooks.h"
36 #include "c-tree.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "output.h"
40 #include "expr.h"
41 #include "toplev.h"
42 #include "intl.h"
43 #include "ggc.h"
44 #include "target.h"
45 #include "tree-iterator.h"
46 #include "tree-gimple.h"
47 #include "tree-flow.h"
48
49 /* Possible cases of implicit bad conversions. Used to select
50 diagnostic messages in convert_for_assignment. */
51 enum impl_conv {
52 ic_argpass,
53 ic_argpass_nonproto,
54 ic_assign,
55 ic_init,
56 ic_return
57 };
58
59 /* The level of nesting inside "__alignof__". */
60 int in_alignof;
61
62 /* The level of nesting inside "sizeof". */
63 int in_sizeof;
64
65 /* The level of nesting inside "typeof". */
66 int in_typeof;
67
68 struct c_label_context_se *label_context_stack_se;
69 struct c_label_context_vm *label_context_stack_vm;
70
71 /* Nonzero if we've already printed a "missing braces around initializer"
72 message within this initializer. */
73 static int missing_braces_mentioned;
74
75 static int require_constant_value;
76 static int require_constant_elements;
77
78 static bool null_pointer_constant_p (tree);
79 static tree qualify_type (tree, tree);
80 static int tagged_types_tu_compatible_p (tree, tree);
81 static int comp_target_types (tree, tree);
82 static int function_types_compatible_p (tree, tree);
83 static int type_lists_compatible_p (tree, tree);
84 static tree decl_constant_value_for_broken_optimization (tree);
85 static tree lookup_field (tree, tree);
86 static int convert_arguments (int, tree *, tree, tree, tree, tree);
87 static tree pointer_diff (tree, tree);
88 static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
89 int);
90 static tree valid_compound_expr_initializer (tree, tree);
91 static void push_string (const char *);
92 static void push_member_name (tree);
93 static int spelling_length (void);
94 static char *print_spelling (char *);
95 static void warning_init (const char *);
96 static tree digest_init (tree, tree, bool, int);
97 static void output_init_element (tree, bool, tree, tree, int);
98 static void output_pending_init_elements (int);
99 static int set_designator (int);
100 static void push_range_stack (tree);
101 static void add_pending_init (tree, tree);
102 static void set_nonincremental_init (void);
103 static void set_nonincremental_init_from_string (tree);
104 static tree find_init_member (tree);
105 static void readonly_error (tree, enum lvalue_use);
106 static int lvalue_or_else (tree, enum lvalue_use);
107 static int lvalue_p (tree);
108 static void record_maybe_used_decl (tree);
109 static int comptypes_internal (tree, tree);
110 \f
111 /* Return true if EXP is a null pointer constant, false otherwise. */
112
113 static bool
114 null_pointer_constant_p (tree expr)
115 {
116 /* This should really operate on c_expr structures, but they aren't
117 yet available everywhere required. */
118 tree type = TREE_TYPE (expr);
119 return (TREE_CODE (expr) == INTEGER_CST
120 && !TREE_OVERFLOW (expr)
121 && integer_zerop (expr)
122 && (INTEGRAL_TYPE_P (type)
123 || (TREE_CODE (type) == POINTER_TYPE
124 && VOID_TYPE_P (TREE_TYPE (type))
125 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
126 }
127 \f/* This is a cache to hold if two types are compatible or not. */
128
129 struct tagged_tu_seen_cache {
130 const struct tagged_tu_seen_cache * next;
131 tree t1;
132 tree t2;
133 /* The return value of tagged_types_tu_compatible_p if we had seen
134 these two types already. */
135 int val;
136 };
137
138 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
139 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
140
141 /* Do `exp = require_complete_type (exp);' to make sure exp
142 does not have an incomplete type. (That includes void types.) */
143
144 tree
145 require_complete_type (tree value)
146 {
147 tree type = TREE_TYPE (value);
148
149 if (value == error_mark_node || type == error_mark_node)
150 return error_mark_node;
151
152 /* First, detect a valid value with a complete type. */
153 if (COMPLETE_TYPE_P (type))
154 return value;
155
156 c_incomplete_type_error (value, type);
157 return error_mark_node;
158 }
159
160 /* Print an error message for invalid use of an incomplete type.
161 VALUE is the expression that was used (or 0 if that isn't known)
162 and TYPE is the type that was invalid. */
163
164 void
165 c_incomplete_type_error (tree value, tree type)
166 {
167 const char *type_code_string;
168
169 /* Avoid duplicate error message. */
170 if (TREE_CODE (type) == ERROR_MARK)
171 return;
172
173 if (value != 0 && (TREE_CODE (value) == VAR_DECL
174 || TREE_CODE (value) == PARM_DECL))
175 error ("%qD has an incomplete type", value);
176 else
177 {
178 retry:
179 /* We must print an error message. Be clever about what it says. */
180
181 switch (TREE_CODE (type))
182 {
183 case RECORD_TYPE:
184 type_code_string = "struct";
185 break;
186
187 case UNION_TYPE:
188 type_code_string = "union";
189 break;
190
191 case ENUMERAL_TYPE:
192 type_code_string = "enum";
193 break;
194
195 case VOID_TYPE:
196 error ("invalid use of void expression");
197 return;
198
199 case ARRAY_TYPE:
200 if (TYPE_DOMAIN (type))
201 {
202 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
203 {
204 error ("invalid use of flexible array member");
205 return;
206 }
207 type = TREE_TYPE (type);
208 goto retry;
209 }
210 error ("invalid use of array with unspecified bounds");
211 return;
212
213 default:
214 gcc_unreachable ();
215 }
216
217 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
218 error ("invalid use of undefined type %<%s %E%>",
219 type_code_string, TYPE_NAME (type));
220 else
221 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
222 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
223 }
224 }
225
226 /* Given a type, apply default promotions wrt unnamed function
227 arguments and return the new type. */
228
229 tree
230 c_type_promotes_to (tree type)
231 {
232 if (TYPE_MAIN_VARIANT (type) == float_type_node)
233 return double_type_node;
234
235 if (c_promoting_integer_type_p (type))
236 {
237 /* Preserve unsignedness if not really getting any wider. */
238 if (TYPE_UNSIGNED (type)
239 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
240 return unsigned_type_node;
241 return integer_type_node;
242 }
243
244 return type;
245 }
246
247 /* Return a variant of TYPE which has all the type qualifiers of LIKE
248 as well as those of TYPE. */
249
250 static tree
251 qualify_type (tree type, tree like)
252 {
253 return c_build_qualified_type (type,
254 TYPE_QUALS (type) | TYPE_QUALS (like));
255 }
256
257 /* Return true iff the given tree T is a variable length array. */
258
259 bool
260 c_vla_type_p (tree t)
261 {
262 if (TREE_CODE (t) == ARRAY_TYPE
263 && C_TYPE_VARIABLE_SIZE (t))
264 return true;
265 return false;
266 }
267 \f
268 /* Return the composite type of two compatible types.
269
270 We assume that comptypes has already been done and returned
271 nonzero; if that isn't so, this may crash. In particular, we
272 assume that qualifiers match. */
273
274 tree
275 composite_type (tree t1, tree t2)
276 {
277 enum tree_code code1;
278 enum tree_code code2;
279 tree attributes;
280
281 /* Save time if the two types are the same. */
282
283 if (t1 == t2) return t1;
284
285 /* If one type is nonsense, use the other. */
286 if (t1 == error_mark_node)
287 return t2;
288 if (t2 == error_mark_node)
289 return t1;
290
291 code1 = TREE_CODE (t1);
292 code2 = TREE_CODE (t2);
293
294 /* Merge the attributes. */
295 attributes = targetm.merge_type_attributes (t1, t2);
296
297 /* If one is an enumerated type and the other is the compatible
298 integer type, the composite type might be either of the two
299 (DR#013 question 3). For consistency, use the enumerated type as
300 the composite type. */
301
302 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
303 return t1;
304 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
305 return t2;
306
307 gcc_assert (code1 == code2);
308
309 switch (code1)
310 {
311 case POINTER_TYPE:
312 /* For two pointers, do this recursively on the target type. */
313 {
314 tree pointed_to_1 = TREE_TYPE (t1);
315 tree pointed_to_2 = TREE_TYPE (t2);
316 tree target = composite_type (pointed_to_1, pointed_to_2);
317 t1 = build_pointer_type (target);
318 t1 = build_type_attribute_variant (t1, attributes);
319 return qualify_type (t1, t2);
320 }
321
322 case ARRAY_TYPE:
323 {
324 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
325 int quals;
326 tree unqual_elt;
327 tree d1 = TYPE_DOMAIN (t1);
328 tree d2 = TYPE_DOMAIN (t2);
329 bool d1_variable, d2_variable;
330 bool d1_zero, d2_zero;
331
332 /* We should not have any type quals on arrays at all. */
333 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
334
335 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
336 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
337
338 d1_variable = (!d1_zero
339 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
340 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
341 d2_variable = (!d2_zero
342 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
343 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
344 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
345 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
346
347 /* Save space: see if the result is identical to one of the args. */
348 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
349 && (d2_variable || d2_zero || !d1_variable))
350 return build_type_attribute_variant (t1, attributes);
351 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
352 && (d1_variable || d1_zero || !d2_variable))
353 return build_type_attribute_variant (t2, attributes);
354
355 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
356 return build_type_attribute_variant (t1, attributes);
357 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
358 return build_type_attribute_variant (t2, attributes);
359
360 /* Merge the element types, and have a size if either arg has
361 one. We may have qualifiers on the element types. To set
362 up TYPE_MAIN_VARIANT correctly, we need to form the
363 composite of the unqualified types and add the qualifiers
364 back at the end. */
365 quals = TYPE_QUALS (strip_array_types (elt));
366 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
367 t1 = build_array_type (unqual_elt,
368 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
369 && (d2_variable
370 || d2_zero
371 || !d1_variable))
372 ? t1
373 : t2));
374 t1 = c_build_qualified_type (t1, quals);
375 return build_type_attribute_variant (t1, attributes);
376 }
377
378 case ENUMERAL_TYPE:
379 case RECORD_TYPE:
380 case UNION_TYPE:
381 if (attributes != NULL)
382 {
383 /* Try harder not to create a new aggregate type. */
384 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
385 return t1;
386 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
387 return t2;
388 }
389 return build_type_attribute_variant (t1, attributes);
390
391 case FUNCTION_TYPE:
392 /* Function types: prefer the one that specified arg types.
393 If both do, merge the arg types. Also merge the return types. */
394 {
395 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
396 tree p1 = TYPE_ARG_TYPES (t1);
397 tree p2 = TYPE_ARG_TYPES (t2);
398 int len;
399 tree newargs, n;
400 int i;
401
402 /* Save space: see if the result is identical to one of the args. */
403 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
404 return build_type_attribute_variant (t1, attributes);
405 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
406 return build_type_attribute_variant (t2, attributes);
407
408 /* Simple way if one arg fails to specify argument types. */
409 if (TYPE_ARG_TYPES (t1) == 0)
410 {
411 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
412 t1 = build_type_attribute_variant (t1, attributes);
413 return qualify_type (t1, t2);
414 }
415 if (TYPE_ARG_TYPES (t2) == 0)
416 {
417 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
418 t1 = build_type_attribute_variant (t1, attributes);
419 return qualify_type (t1, t2);
420 }
421
422 /* If both args specify argument types, we must merge the two
423 lists, argument by argument. */
424 /* Tell global_bindings_p to return false so that variable_size
425 doesn't die on VLAs in parameter types. */
426 c_override_global_bindings_to_false = true;
427
428 len = list_length (p1);
429 newargs = 0;
430
431 for (i = 0; i < len; i++)
432 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
433
434 n = newargs;
435
436 for (; p1;
437 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
438 {
439 /* A null type means arg type is not specified.
440 Take whatever the other function type has. */
441 if (TREE_VALUE (p1) == 0)
442 {
443 TREE_VALUE (n) = TREE_VALUE (p2);
444 goto parm_done;
445 }
446 if (TREE_VALUE (p2) == 0)
447 {
448 TREE_VALUE (n) = TREE_VALUE (p1);
449 goto parm_done;
450 }
451
452 /* Given wait (union {union wait *u; int *i} *)
453 and wait (union wait *),
454 prefer union wait * as type of parm. */
455 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
456 && TREE_VALUE (p1) != TREE_VALUE (p2))
457 {
458 tree memb;
459 tree mv2 = TREE_VALUE (p2);
460 if (mv2 && mv2 != error_mark_node
461 && TREE_CODE (mv2) != ARRAY_TYPE)
462 mv2 = TYPE_MAIN_VARIANT (mv2);
463 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
464 memb; memb = TREE_CHAIN (memb))
465 {
466 tree mv3 = TREE_TYPE (memb);
467 if (mv3 && mv3 != error_mark_node
468 && TREE_CODE (mv3) != ARRAY_TYPE)
469 mv3 = TYPE_MAIN_VARIANT (mv3);
470 if (comptypes (mv3, mv2))
471 {
472 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
473 TREE_VALUE (p2));
474 if (pedantic)
475 pedwarn ("function types not truly compatible in ISO C");
476 goto parm_done;
477 }
478 }
479 }
480 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
481 && TREE_VALUE (p2) != TREE_VALUE (p1))
482 {
483 tree memb;
484 tree mv1 = TREE_VALUE (p1);
485 if (mv1 && mv1 != error_mark_node
486 && TREE_CODE (mv1) != ARRAY_TYPE)
487 mv1 = TYPE_MAIN_VARIANT (mv1);
488 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
489 memb; memb = TREE_CHAIN (memb))
490 {
491 tree mv3 = TREE_TYPE (memb);
492 if (mv3 && mv3 != error_mark_node
493 && TREE_CODE (mv3) != ARRAY_TYPE)
494 mv3 = TYPE_MAIN_VARIANT (mv3);
495 if (comptypes (mv3, mv1))
496 {
497 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
498 TREE_VALUE (p1));
499 if (pedantic)
500 pedwarn ("function types not truly compatible in ISO C");
501 goto parm_done;
502 }
503 }
504 }
505 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
506 parm_done: ;
507 }
508
509 c_override_global_bindings_to_false = false;
510 t1 = build_function_type (valtype, newargs);
511 t1 = qualify_type (t1, t2);
512 /* ... falls through ... */
513 }
514
515 default:
516 return build_type_attribute_variant (t1, attributes);
517 }
518
519 }
520
521 /* Return the type of a conditional expression between pointers to
522 possibly differently qualified versions of compatible types.
523
524 We assume that comp_target_types has already been done and returned
525 nonzero; if that isn't so, this may crash. */
526
527 static tree
528 common_pointer_type (tree t1, tree t2)
529 {
530 tree attributes;
531 tree pointed_to_1, mv1;
532 tree pointed_to_2, mv2;
533 tree target;
534
535 /* Save time if the two types are the same. */
536
537 if (t1 == t2) return t1;
538
539 /* If one type is nonsense, use the other. */
540 if (t1 == error_mark_node)
541 return t2;
542 if (t2 == error_mark_node)
543 return t1;
544
545 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
546 && TREE_CODE (t2) == POINTER_TYPE);
547
548 /* Merge the attributes. */
549 attributes = targetm.merge_type_attributes (t1, t2);
550
551 /* Find the composite type of the target types, and combine the
552 qualifiers of the two types' targets. Do not lose qualifiers on
553 array element types by taking the TYPE_MAIN_VARIANT. */
554 mv1 = pointed_to_1 = TREE_TYPE (t1);
555 mv2 = pointed_to_2 = TREE_TYPE (t2);
556 if (TREE_CODE (mv1) != ARRAY_TYPE)
557 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
558 if (TREE_CODE (mv2) != ARRAY_TYPE)
559 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
560 target = composite_type (mv1, mv2);
561 t1 = build_pointer_type (c_build_qualified_type
562 (target,
563 TYPE_QUALS (pointed_to_1) |
564 TYPE_QUALS (pointed_to_2)));
565 return build_type_attribute_variant (t1, attributes);
566 }
567
568 /* Return the common type for two arithmetic types under the usual
569 arithmetic conversions. The default conversions have already been
570 applied, and enumerated types converted to their compatible integer
571 types. The resulting type is unqualified and has no attributes.
572
573 This is the type for the result of most arithmetic operations
574 if the operands have the given two types. */
575
576 static tree
577 c_common_type (tree t1, tree t2)
578 {
579 enum tree_code code1;
580 enum tree_code code2;
581
582 /* If one type is nonsense, use the other. */
583 if (t1 == error_mark_node)
584 return t2;
585 if (t2 == error_mark_node)
586 return t1;
587
588 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
589 t1 = TYPE_MAIN_VARIANT (t1);
590
591 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
592 t2 = TYPE_MAIN_VARIANT (t2);
593
594 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
595 t1 = build_type_attribute_variant (t1, NULL_TREE);
596
597 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
598 t2 = build_type_attribute_variant (t2, NULL_TREE);
599
600 /* Save time if the two types are the same. */
601
602 if (t1 == t2) return t1;
603
604 code1 = TREE_CODE (t1);
605 code2 = TREE_CODE (t2);
606
607 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
608 || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
609 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
610 || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
611
612 /* When one operand is a decimal float type, the other operand cannot be
613 a generic float type or a complex type. We also disallow vector types
614 here. */
615 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
616 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
617 {
618 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
619 {
620 error ("can%'t mix operands of decimal float and vector types");
621 return error_mark_node;
622 }
623 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
624 {
625 error ("can%'t mix operands of decimal float and complex types");
626 return error_mark_node;
627 }
628 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
629 {
630 error ("can%'t mix operands of decimal float and other float types");
631 return error_mark_node;
632 }
633 }
634
635 /* If one type is a vector type, return that type. (How the usual
636 arithmetic conversions apply to the vector types extension is not
637 precisely specified.) */
638 if (code1 == VECTOR_TYPE)
639 return t1;
640
641 if (code2 == VECTOR_TYPE)
642 return t2;
643
644 /* If one type is complex, form the common type of the non-complex
645 components, then make that complex. Use T1 or T2 if it is the
646 required type. */
647 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
648 {
649 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
650 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
651 tree subtype = c_common_type (subtype1, subtype2);
652
653 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
654 return t1;
655 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
656 return t2;
657 else
658 return build_complex_type (subtype);
659 }
660
661 /* If only one is real, use it as the result. */
662
663 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
664 return t1;
665
666 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
667 return t2;
668
669 /* If both are real and either are decimal floating point types, use
670 the decimal floating point type with the greater precision. */
671
672 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
673 {
674 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
675 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
676 return dfloat128_type_node;
677 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
678 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
679 return dfloat64_type_node;
680 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
681 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
682 return dfloat32_type_node;
683 }
684
685 /* Both real or both integers; use the one with greater precision. */
686
687 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
688 return t1;
689 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
690 return t2;
691
692 /* Same precision. Prefer long longs to longs to ints when the
693 same precision, following the C99 rules on integer type rank
694 (which are equivalent to the C90 rules for C90 types). */
695
696 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
697 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
698 return long_long_unsigned_type_node;
699
700 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
701 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
702 {
703 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
704 return long_long_unsigned_type_node;
705 else
706 return long_long_integer_type_node;
707 }
708
709 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
710 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
711 return long_unsigned_type_node;
712
713 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
714 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
715 {
716 /* But preserve unsignedness from the other type,
717 since long cannot hold all the values of an unsigned int. */
718 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
719 return long_unsigned_type_node;
720 else
721 return long_integer_type_node;
722 }
723
724 /* Likewise, prefer long double to double even if same size. */
725 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
726 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
727 return long_double_type_node;
728
729 /* Otherwise prefer the unsigned one. */
730
731 if (TYPE_UNSIGNED (t1))
732 return t1;
733 else
734 return t2;
735 }
736 \f
737 /* Wrapper around c_common_type that is used by c-common.c and other
738 front end optimizations that remove promotions. ENUMERAL_TYPEs
739 are allowed here and are converted to their compatible integer types.
740 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
741 preferably a non-Boolean type as the common type. */
742 tree
743 common_type (tree t1, tree t2)
744 {
745 if (TREE_CODE (t1) == ENUMERAL_TYPE)
746 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
747 if (TREE_CODE (t2) == ENUMERAL_TYPE)
748 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
749
750 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
751 if (TREE_CODE (t1) == BOOLEAN_TYPE
752 && TREE_CODE (t2) == BOOLEAN_TYPE)
753 return boolean_type_node;
754
755 /* If either type is BOOLEAN_TYPE, then return the other. */
756 if (TREE_CODE (t1) == BOOLEAN_TYPE)
757 return t2;
758 if (TREE_CODE (t2) == BOOLEAN_TYPE)
759 return t1;
760
761 return c_common_type (t1, t2);
762 }
763
764 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
765 or various other operations. Return 2 if they are compatible
766 but a warning may be needed if you use them together. */
767
768 int
769 comptypes (tree type1, tree type2)
770 {
771 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
772 int val;
773
774 val = comptypes_internal (type1, type2);
775 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
776
777 return val;
778 }
779 \f
780 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
781 or various other operations. Return 2 if they are compatible
782 but a warning may be needed if you use them together. This
783 differs from comptypes, in that we don't free the seen types. */
784
785 static int
786 comptypes_internal (tree type1, tree type2)
787 {
788 tree t1 = type1;
789 tree t2 = type2;
790 int attrval, val;
791
792 /* Suppress errors caused by previously reported errors. */
793
794 if (t1 == t2 || !t1 || !t2
795 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
796 return 1;
797
798 /* If either type is the internal version of sizetype, return the
799 language version. */
800 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
801 && TYPE_ORIG_SIZE_TYPE (t1))
802 t1 = TYPE_ORIG_SIZE_TYPE (t1);
803
804 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
805 && TYPE_ORIG_SIZE_TYPE (t2))
806 t2 = TYPE_ORIG_SIZE_TYPE (t2);
807
808
809 /* Enumerated types are compatible with integer types, but this is
810 not transitive: two enumerated types in the same translation unit
811 are compatible with each other only if they are the same type. */
812
813 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
814 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
815 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
816 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
817
818 if (t1 == t2)
819 return 1;
820
821 /* Different classes of types can't be compatible. */
822
823 if (TREE_CODE (t1) != TREE_CODE (t2))
824 return 0;
825
826 /* Qualifiers must match. C99 6.7.3p9 */
827
828 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
829 return 0;
830
831 /* Allow for two different type nodes which have essentially the same
832 definition. Note that we already checked for equality of the type
833 qualifiers (just above). */
834
835 if (TREE_CODE (t1) != ARRAY_TYPE
836 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
837 return 1;
838
839 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
840 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
841 return 0;
842
843 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
844 val = 0;
845
846 switch (TREE_CODE (t1))
847 {
848 case POINTER_TYPE:
849 /* Do not remove mode or aliasing information. */
850 if (TYPE_MODE (t1) != TYPE_MODE (t2)
851 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
852 break;
853 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
854 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
855 break;
856
857 case FUNCTION_TYPE:
858 val = function_types_compatible_p (t1, t2);
859 break;
860
861 case ARRAY_TYPE:
862 {
863 tree d1 = TYPE_DOMAIN (t1);
864 tree d2 = TYPE_DOMAIN (t2);
865 bool d1_variable, d2_variable;
866 bool d1_zero, d2_zero;
867 val = 1;
868
869 /* Target types must match incl. qualifiers. */
870 if (TREE_TYPE (t1) != TREE_TYPE (t2)
871 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
872 return 0;
873
874 /* Sizes must match unless one is missing or variable. */
875 if (d1 == 0 || d2 == 0 || d1 == d2)
876 break;
877
878 d1_zero = !TYPE_MAX_VALUE (d1);
879 d2_zero = !TYPE_MAX_VALUE (d2);
880
881 d1_variable = (!d1_zero
882 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
883 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
884 d2_variable = (!d2_zero
885 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
886 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
887 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
888 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
889
890 if (d1_variable || d2_variable)
891 break;
892 if (d1_zero && d2_zero)
893 break;
894 if (d1_zero || d2_zero
895 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
896 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
897 val = 0;
898
899 break;
900 }
901
902 case ENUMERAL_TYPE:
903 case RECORD_TYPE:
904 case UNION_TYPE:
905 if (val != 1 && !same_translation_unit_p (t1, t2))
906 {
907 tree a1 = TYPE_ATTRIBUTES (t1);
908 tree a2 = TYPE_ATTRIBUTES (t2);
909
910 if (! attribute_list_contained (a1, a2)
911 && ! attribute_list_contained (a2, a1))
912 break;
913
914 if (attrval != 2)
915 return tagged_types_tu_compatible_p (t1, t2);
916 val = tagged_types_tu_compatible_p (t1, t2);
917 }
918 break;
919
920 case VECTOR_TYPE:
921 val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
922 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
923 break;
924
925 default:
926 break;
927 }
928 return attrval == 2 && val == 1 ? 2 : val;
929 }
930
931 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
932 ignoring their qualifiers. */
933
934 static int
935 comp_target_types (tree ttl, tree ttr)
936 {
937 int val;
938 tree mvl, mvr;
939
940 /* Do not lose qualifiers on element types of array types that are
941 pointer targets by taking their TYPE_MAIN_VARIANT. */
942 mvl = TREE_TYPE (ttl);
943 mvr = TREE_TYPE (ttr);
944 if (TREE_CODE (mvl) != ARRAY_TYPE)
945 mvl = TYPE_MAIN_VARIANT (mvl);
946 if (TREE_CODE (mvr) != ARRAY_TYPE)
947 mvr = TYPE_MAIN_VARIANT (mvr);
948 val = comptypes (mvl, mvr);
949
950 if (val == 2 && pedantic)
951 pedwarn ("types are not quite compatible");
952 return val;
953 }
954 \f
955 /* Subroutines of `comptypes'. */
956
957 /* Determine whether two trees derive from the same translation unit.
958 If the CONTEXT chain ends in a null, that tree's context is still
959 being parsed, so if two trees have context chains ending in null,
960 they're in the same translation unit. */
961 int
962 same_translation_unit_p (tree t1, tree t2)
963 {
964 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
965 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
966 {
967 case tcc_declaration:
968 t1 = DECL_CONTEXT (t1); break;
969 case tcc_type:
970 t1 = TYPE_CONTEXT (t1); break;
971 case tcc_exceptional:
972 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
973 default: gcc_unreachable ();
974 }
975
976 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
977 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
978 {
979 case tcc_declaration:
980 t2 = DECL_CONTEXT (t2); break;
981 case tcc_type:
982 t2 = TYPE_CONTEXT (t2); break;
983 case tcc_exceptional:
984 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
985 default: gcc_unreachable ();
986 }
987
988 return t1 == t2;
989 }
990
991 /* Allocate the seen two types, assuming that they are compatible. */
992
993 static struct tagged_tu_seen_cache *
994 alloc_tagged_tu_seen_cache (tree t1, tree t2)
995 {
996 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
997 tu->next = tagged_tu_seen_base;
998 tu->t1 = t1;
999 tu->t2 = t2;
1000
1001 tagged_tu_seen_base = tu;
1002
1003 /* The C standard says that two structures in different translation
1004 units are compatible with each other only if the types of their
1005 fields are compatible (among other things). We assume that they
1006 are compatible until proven otherwise when building the cache.
1007 An example where this can occur is:
1008 struct a
1009 {
1010 struct a *next;
1011 };
1012 If we are comparing this against a similar struct in another TU,
1013 and did not assume they were compatible, we end up with an infinite
1014 loop. */
1015 tu->val = 1;
1016 return tu;
1017 }
1018
1019 /* Free the seen types until we get to TU_TIL. */
1020
1021 static void
1022 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1023 {
1024 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1025 while (tu != tu_til)
1026 {
1027 struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
1028 tu = tu1->next;
1029 free (tu1);
1030 }
1031 tagged_tu_seen_base = tu_til;
1032 }
1033
1034 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1035 compatible. If the two types are not the same (which has been
1036 checked earlier), this can only happen when multiple translation
1037 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1038 rules. */
1039
1040 static int
1041 tagged_types_tu_compatible_p (tree t1, tree t2)
1042 {
1043 tree s1, s2;
1044 bool needs_warning = false;
1045
1046 /* We have to verify that the tags of the types are the same. This
1047 is harder than it looks because this may be a typedef, so we have
1048 to go look at the original type. It may even be a typedef of a
1049 typedef...
1050 In the case of compiler-created builtin structs the TYPE_DECL
1051 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1052 while (TYPE_NAME (t1)
1053 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1054 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1055 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1056
1057 while (TYPE_NAME (t2)
1058 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1059 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1060 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1061
1062 /* C90 didn't have the requirement that the two tags be the same. */
1063 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1064 return 0;
1065
1066 /* C90 didn't say what happened if one or both of the types were
1067 incomplete; we choose to follow C99 rules here, which is that they
1068 are compatible. */
1069 if (TYPE_SIZE (t1) == NULL
1070 || TYPE_SIZE (t2) == NULL)
1071 return 1;
1072
1073 {
1074 const struct tagged_tu_seen_cache * tts_i;
1075 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1076 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1077 return tts_i->val;
1078 }
1079
1080 switch (TREE_CODE (t1))
1081 {
1082 case ENUMERAL_TYPE:
1083 {
1084 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1085 /* Speed up the case where the type values are in the same order. */
1086 tree tv1 = TYPE_VALUES (t1);
1087 tree tv2 = TYPE_VALUES (t2);
1088
1089 if (tv1 == tv2)
1090 {
1091 return 1;
1092 }
1093
1094 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1095 {
1096 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1097 break;
1098 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1099 {
1100 tu->val = 0;
1101 return 0;
1102 }
1103 }
1104
1105 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1106 {
1107 return 1;
1108 }
1109 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1110 {
1111 tu->val = 0;
1112 return 0;
1113 }
1114
1115 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1116 {
1117 tu->val = 0;
1118 return 0;
1119 }
1120
1121 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1122 {
1123 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1124 if (s2 == NULL
1125 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1126 {
1127 tu->val = 0;
1128 return 0;
1129 }
1130 }
1131 return 1;
1132 }
1133
1134 case UNION_TYPE:
1135 {
1136 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1137 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1138 {
1139 tu->val = 0;
1140 return 0;
1141 }
1142
1143 /* Speed up the common case where the fields are in the same order. */
1144 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1145 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1146 {
1147 int result;
1148
1149
1150 if (DECL_NAME (s1) == NULL
1151 || DECL_NAME (s1) != DECL_NAME (s2))
1152 break;
1153 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1154 if (result == 0)
1155 {
1156 tu->val = 0;
1157 return 0;
1158 }
1159 if (result == 2)
1160 needs_warning = true;
1161
1162 if (TREE_CODE (s1) == FIELD_DECL
1163 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1164 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1165 {
1166 tu->val = 0;
1167 return 0;
1168 }
1169 }
1170 if (!s1 && !s2)
1171 {
1172 tu->val = needs_warning ? 2 : 1;
1173 return tu->val;
1174 }
1175
1176 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1177 {
1178 bool ok = false;
1179
1180 if (DECL_NAME (s1) != NULL)
1181 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1182 if (DECL_NAME (s1) == DECL_NAME (s2))
1183 {
1184 int result;
1185 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1186 if (result == 0)
1187 {
1188 tu->val = 0;
1189 return 0;
1190 }
1191 if (result == 2)
1192 needs_warning = true;
1193
1194 if (TREE_CODE (s1) == FIELD_DECL
1195 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1196 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1197 break;
1198
1199 ok = true;
1200 break;
1201 }
1202 if (!ok)
1203 {
1204 tu->val = 0;
1205 return 0;
1206 }
1207 }
1208 tu->val = needs_warning ? 2 : 10;
1209 return tu->val;
1210 }
1211
1212 case RECORD_TYPE:
1213 {
1214 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1215
1216 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1217 s1 && s2;
1218 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1219 {
1220 int result;
1221 if (TREE_CODE (s1) != TREE_CODE (s2)
1222 || DECL_NAME (s1) != DECL_NAME (s2))
1223 break;
1224 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
1225 if (result == 0)
1226 break;
1227 if (result == 2)
1228 needs_warning = true;
1229
1230 if (TREE_CODE (s1) == FIELD_DECL
1231 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1232 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1233 break;
1234 }
1235 if (s1 && s2)
1236 tu->val = 0;
1237 else
1238 tu->val = needs_warning ? 2 : 1;
1239 return tu->val;
1240 }
1241
1242 default:
1243 gcc_unreachable ();
1244 }
1245 }
1246
1247 /* Return 1 if two function types F1 and F2 are compatible.
1248 If either type specifies no argument types,
1249 the other must specify a fixed number of self-promoting arg types.
1250 Otherwise, if one type specifies only the number of arguments,
1251 the other must specify that number of self-promoting arg types.
1252 Otherwise, the argument types must match. */
1253
1254 static int
1255 function_types_compatible_p (tree f1, tree f2)
1256 {
1257 tree args1, args2;
1258 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1259 int val = 1;
1260 int val1;
1261 tree ret1, ret2;
1262
1263 ret1 = TREE_TYPE (f1);
1264 ret2 = TREE_TYPE (f2);
1265
1266 /* 'volatile' qualifiers on a function's return type used to mean
1267 the function is noreturn. */
1268 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1269 pedwarn ("function return types not compatible due to %<volatile%>");
1270 if (TYPE_VOLATILE (ret1))
1271 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1272 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1273 if (TYPE_VOLATILE (ret2))
1274 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1275 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1276 val = comptypes_internal (ret1, ret2);
1277 if (val == 0)
1278 return 0;
1279
1280 args1 = TYPE_ARG_TYPES (f1);
1281 args2 = TYPE_ARG_TYPES (f2);
1282
1283 /* An unspecified parmlist matches any specified parmlist
1284 whose argument types don't need default promotions. */
1285
1286 if (args1 == 0)
1287 {
1288 if (!self_promoting_args_p (args2))
1289 return 0;
1290 /* If one of these types comes from a non-prototype fn definition,
1291 compare that with the other type's arglist.
1292 If they don't match, ask for a warning (but no error). */
1293 if (TYPE_ACTUAL_ARG_TYPES (f1)
1294 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
1295 val = 2;
1296 return val;
1297 }
1298 if (args2 == 0)
1299 {
1300 if (!self_promoting_args_p (args1))
1301 return 0;
1302 if (TYPE_ACTUAL_ARG_TYPES (f2)
1303 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
1304 val = 2;
1305 return val;
1306 }
1307
1308 /* Both types have argument lists: compare them and propagate results. */
1309 val1 = type_lists_compatible_p (args1, args2);
1310 return val1 != 1 ? val1 : val;
1311 }
1312
1313 /* Check two lists of types for compatibility,
1314 returning 0 for incompatible, 1 for compatible,
1315 or 2 for compatible with warning. */
1316
1317 static int
1318 type_lists_compatible_p (tree args1, tree args2)
1319 {
1320 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1321 int val = 1;
1322 int newval = 0;
1323
1324 while (1)
1325 {
1326 tree a1, mv1, a2, mv2;
1327 if (args1 == 0 && args2 == 0)
1328 return val;
1329 /* If one list is shorter than the other,
1330 they fail to match. */
1331 if (args1 == 0 || args2 == 0)
1332 return 0;
1333 mv1 = a1 = TREE_VALUE (args1);
1334 mv2 = a2 = TREE_VALUE (args2);
1335 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1336 mv1 = TYPE_MAIN_VARIANT (mv1);
1337 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1338 mv2 = TYPE_MAIN_VARIANT (mv2);
1339 /* A null pointer instead of a type
1340 means there is supposed to be an argument
1341 but nothing is specified about what type it has.
1342 So match anything that self-promotes. */
1343 if (a1 == 0)
1344 {
1345 if (c_type_promotes_to (a2) != a2)
1346 return 0;
1347 }
1348 else if (a2 == 0)
1349 {
1350 if (c_type_promotes_to (a1) != a1)
1351 return 0;
1352 }
1353 /* If one of the lists has an error marker, ignore this arg. */
1354 else if (TREE_CODE (a1) == ERROR_MARK
1355 || TREE_CODE (a2) == ERROR_MARK)
1356 ;
1357 else if (!(newval = comptypes_internal (mv1, mv2)))
1358 {
1359 /* Allow wait (union {union wait *u; int *i} *)
1360 and wait (union wait *) to be compatible. */
1361 if (TREE_CODE (a1) == UNION_TYPE
1362 && (TYPE_NAME (a1) == 0
1363 || TYPE_TRANSPARENT_UNION (a1))
1364 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1365 && tree_int_cst_equal (TYPE_SIZE (a1),
1366 TYPE_SIZE (a2)))
1367 {
1368 tree memb;
1369 for (memb = TYPE_FIELDS (a1);
1370 memb; memb = TREE_CHAIN (memb))
1371 {
1372 tree mv3 = TREE_TYPE (memb);
1373 if (mv3 && mv3 != error_mark_node
1374 && TREE_CODE (mv3) != ARRAY_TYPE)
1375 mv3 = TYPE_MAIN_VARIANT (mv3);
1376 if (comptypes_internal (mv3, mv2))
1377 break;
1378 }
1379 if (memb == 0)
1380 return 0;
1381 }
1382 else if (TREE_CODE (a2) == UNION_TYPE
1383 && (TYPE_NAME (a2) == 0
1384 || TYPE_TRANSPARENT_UNION (a2))
1385 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1386 && tree_int_cst_equal (TYPE_SIZE (a2),
1387 TYPE_SIZE (a1)))
1388 {
1389 tree memb;
1390 for (memb = TYPE_FIELDS (a2);
1391 memb; memb = TREE_CHAIN (memb))
1392 {
1393 tree mv3 = TREE_TYPE (memb);
1394 if (mv3 && mv3 != error_mark_node
1395 && TREE_CODE (mv3) != ARRAY_TYPE)
1396 mv3 = TYPE_MAIN_VARIANT (mv3);
1397 if (comptypes_internal (mv3, mv1))
1398 break;
1399 }
1400 if (memb == 0)
1401 return 0;
1402 }
1403 else
1404 return 0;
1405 }
1406
1407 /* comptypes said ok, but record if it said to warn. */
1408 if (newval > val)
1409 val = newval;
1410
1411 args1 = TREE_CHAIN (args1);
1412 args2 = TREE_CHAIN (args2);
1413 }
1414 }
1415 \f
1416 /* Compute the size to increment a pointer by. */
1417
1418 static tree
1419 c_size_in_bytes (tree type)
1420 {
1421 enum tree_code code = TREE_CODE (type);
1422
1423 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1424 return size_one_node;
1425
1426 if (!COMPLETE_OR_VOID_TYPE_P (type))
1427 {
1428 error ("arithmetic on pointer to an incomplete type");
1429 return size_one_node;
1430 }
1431
1432 /* Convert in case a char is more than one unit. */
1433 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1434 size_int (TYPE_PRECISION (char_type_node)
1435 / BITS_PER_UNIT));
1436 }
1437 \f
1438 /* Return either DECL or its known constant value (if it has one). */
1439
1440 tree
1441 decl_constant_value (tree decl)
1442 {
1443 if (/* Don't change a variable array bound or initial value to a constant
1444 in a place where a variable is invalid. Note that DECL_INITIAL
1445 isn't valid for a PARM_DECL. */
1446 current_function_decl != 0
1447 && TREE_CODE (decl) != PARM_DECL
1448 && !TREE_THIS_VOLATILE (decl)
1449 && TREE_READONLY (decl)
1450 && DECL_INITIAL (decl) != 0
1451 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1452 /* This is invalid if initial value is not constant.
1453 If it has either a function call, a memory reference,
1454 or a variable, then re-evaluating it could give different results. */
1455 && TREE_CONSTANT (DECL_INITIAL (decl))
1456 /* Check for cases where this is sub-optimal, even though valid. */
1457 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1458 return DECL_INITIAL (decl);
1459 return decl;
1460 }
1461
1462 /* Return either DECL or its known constant value (if it has one), but
1463 return DECL if pedantic or DECL has mode BLKmode. This is for
1464 bug-compatibility with the old behavior of decl_constant_value
1465 (before GCC 3.0); every use of this function is a bug and it should
1466 be removed before GCC 3.1. It is not appropriate to use pedantic
1467 in a way that affects optimization, and BLKmode is probably not the
1468 right test for avoiding misoptimizations either. */
1469
1470 static tree
1471 decl_constant_value_for_broken_optimization (tree decl)
1472 {
1473 tree ret;
1474
1475 if (pedantic || DECL_MODE (decl) == BLKmode)
1476 return decl;
1477
1478 ret = decl_constant_value (decl);
1479 /* Avoid unwanted tree sharing between the initializer and current
1480 function's body where the tree can be modified e.g. by the
1481 gimplifier. */
1482 if (ret != decl && TREE_STATIC (decl))
1483 ret = unshare_expr (ret);
1484 return ret;
1485 }
1486
1487 /* Convert the array expression EXP to a pointer. */
1488 static tree
1489 array_to_pointer_conversion (tree exp)
1490 {
1491 tree orig_exp = exp;
1492 tree type = TREE_TYPE (exp);
1493 tree adr;
1494 tree restype = TREE_TYPE (type);
1495 tree ptrtype;
1496
1497 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1498
1499 STRIP_TYPE_NOPS (exp);
1500
1501 if (TREE_NO_WARNING (orig_exp))
1502 TREE_NO_WARNING (exp) = 1;
1503
1504 ptrtype = build_pointer_type (restype);
1505
1506 if (TREE_CODE (exp) == INDIRECT_REF)
1507 return convert (ptrtype, TREE_OPERAND (exp, 0));
1508
1509 if (TREE_CODE (exp) == VAR_DECL)
1510 {
1511 /* We are making an ADDR_EXPR of ptrtype. This is a valid
1512 ADDR_EXPR because it's the best way of representing what
1513 happens in C when we take the address of an array and place
1514 it in a pointer to the element type. */
1515 adr = build1 (ADDR_EXPR, ptrtype, exp);
1516 if (!c_mark_addressable (exp))
1517 return error_mark_node;
1518 TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
1519 return adr;
1520 }
1521
1522 /* This way is better for a COMPONENT_REF since it can
1523 simplify the offset for a component. */
1524 adr = build_unary_op (ADDR_EXPR, exp, 1);
1525 return convert (ptrtype, adr);
1526 }
1527
1528 /* Convert the function expression EXP to a pointer. */
1529 static tree
1530 function_to_pointer_conversion (tree exp)
1531 {
1532 tree orig_exp = exp;
1533
1534 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1535
1536 STRIP_TYPE_NOPS (exp);
1537
1538 if (TREE_NO_WARNING (orig_exp))
1539 TREE_NO_WARNING (exp) = 1;
1540
1541 return build_unary_op (ADDR_EXPR, exp, 0);
1542 }
1543
1544 /* Perform the default conversion of arrays and functions to pointers.
1545 Return the result of converting EXP. For any other expression, just
1546 return EXP after removing NOPs. */
1547
1548 struct c_expr
1549 default_function_array_conversion (struct c_expr exp)
1550 {
1551 tree orig_exp = exp.value;
1552 tree type = TREE_TYPE (exp.value);
1553 enum tree_code code = TREE_CODE (type);
1554
1555 switch (code)
1556 {
1557 case ARRAY_TYPE:
1558 {
1559 bool not_lvalue = false;
1560 bool lvalue_array_p;
1561
1562 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1563 || TREE_CODE (exp.value) == NOP_EXPR
1564 || TREE_CODE (exp.value) == CONVERT_EXPR)
1565 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1566 {
1567 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1568 not_lvalue = true;
1569 exp.value = TREE_OPERAND (exp.value, 0);
1570 }
1571
1572 if (TREE_NO_WARNING (orig_exp))
1573 TREE_NO_WARNING (exp.value) = 1;
1574
1575 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1576 if (!flag_isoc99 && !lvalue_array_p)
1577 {
1578 /* Before C99, non-lvalue arrays do not decay to pointers.
1579 Normally, using such an array would be invalid; but it can
1580 be used correctly inside sizeof or as a statement expression.
1581 Thus, do not give an error here; an error will result later. */
1582 return exp;
1583 }
1584
1585 exp.value = array_to_pointer_conversion (exp.value);
1586 }
1587 break;
1588 case FUNCTION_TYPE:
1589 exp.value = function_to_pointer_conversion (exp.value);
1590 break;
1591 default:
1592 STRIP_TYPE_NOPS (exp.value);
1593 if (TREE_NO_WARNING (orig_exp))
1594 TREE_NO_WARNING (exp.value) = 1;
1595 break;
1596 }
1597
1598 return exp;
1599 }
1600
1601
1602 /* EXP is an expression of integer type. Apply the integer promotions
1603 to it and return the promoted value. */
1604
1605 tree
1606 perform_integral_promotions (tree exp)
1607 {
1608 tree type = TREE_TYPE (exp);
1609 enum tree_code code = TREE_CODE (type);
1610
1611 gcc_assert (INTEGRAL_TYPE_P (type));
1612
1613 /* Normally convert enums to int,
1614 but convert wide enums to something wider. */
1615 if (code == ENUMERAL_TYPE)
1616 {
1617 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1618 TYPE_PRECISION (integer_type_node)),
1619 ((TYPE_PRECISION (type)
1620 >= TYPE_PRECISION (integer_type_node))
1621 && TYPE_UNSIGNED (type)));
1622
1623 return convert (type, exp);
1624 }
1625
1626 /* ??? This should no longer be needed now bit-fields have their
1627 proper types. */
1628 if (TREE_CODE (exp) == COMPONENT_REF
1629 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1630 /* If it's thinner than an int, promote it like a
1631 c_promoting_integer_type_p, otherwise leave it alone. */
1632 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1633 TYPE_PRECISION (integer_type_node)))
1634 return convert (integer_type_node, exp);
1635
1636 if (c_promoting_integer_type_p (type))
1637 {
1638 /* Preserve unsignedness if not really getting any wider. */
1639 if (TYPE_UNSIGNED (type)
1640 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1641 return convert (unsigned_type_node, exp);
1642
1643 return convert (integer_type_node, exp);
1644 }
1645
1646 return exp;
1647 }
1648
1649
1650 /* Perform default promotions for C data used in expressions.
1651 Enumeral types or short or char are converted to int.
1652 In addition, manifest constants symbols are replaced by their values. */
1653
1654 tree
1655 default_conversion (tree exp)
1656 {
1657 tree orig_exp;
1658 tree type = TREE_TYPE (exp);
1659 enum tree_code code = TREE_CODE (type);
1660
1661 /* Functions and arrays have been converted during parsing. */
1662 gcc_assert (code != FUNCTION_TYPE);
1663 if (code == ARRAY_TYPE)
1664 return exp;
1665
1666 /* Constants can be used directly unless they're not loadable. */
1667 if (TREE_CODE (exp) == CONST_DECL)
1668 exp = DECL_INITIAL (exp);
1669
1670 /* Replace a nonvolatile const static variable with its value unless
1671 it is an array, in which case we must be sure that taking the
1672 address of the array produces consistent results. */
1673 else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
1674 {
1675 exp = decl_constant_value_for_broken_optimization (exp);
1676 type = TREE_TYPE (exp);
1677 }
1678
1679 /* Strip no-op conversions. */
1680 orig_exp = exp;
1681 STRIP_TYPE_NOPS (exp);
1682
1683 if (TREE_NO_WARNING (orig_exp))
1684 TREE_NO_WARNING (exp) = 1;
1685
1686 if (INTEGRAL_TYPE_P (type))
1687 return perform_integral_promotions (exp);
1688
1689 if (code == VOID_TYPE)
1690 {
1691 error ("void value not ignored as it ought to be");
1692 return error_mark_node;
1693 }
1694 return exp;
1695 }
1696 \f
1697 /* Look up COMPONENT in a structure or union DECL.
1698
1699 If the component name is not found, returns NULL_TREE. Otherwise,
1700 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1701 stepping down the chain to the component, which is in the last
1702 TREE_VALUE of the list. Normally the list is of length one, but if
1703 the component is embedded within (nested) anonymous structures or
1704 unions, the list steps down the chain to the component. */
1705
1706 static tree
1707 lookup_field (tree decl, tree component)
1708 {
1709 tree type = TREE_TYPE (decl);
1710 tree field;
1711
1712 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1713 to the field elements. Use a binary search on this array to quickly
1714 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1715 will always be set for structures which have many elements. */
1716
1717 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1718 {
1719 int bot, top, half;
1720 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1721
1722 field = TYPE_FIELDS (type);
1723 bot = 0;
1724 top = TYPE_LANG_SPECIFIC (type)->s->len;
1725 while (top - bot > 1)
1726 {
1727 half = (top - bot + 1) >> 1;
1728 field = field_array[bot+half];
1729
1730 if (DECL_NAME (field) == NULL_TREE)
1731 {
1732 /* Step through all anon unions in linear fashion. */
1733 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1734 {
1735 field = field_array[bot++];
1736 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1737 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1738 {
1739 tree anon = lookup_field (field, component);
1740
1741 if (anon)
1742 return tree_cons (NULL_TREE, field, anon);
1743 }
1744 }
1745
1746 /* Entire record is only anon unions. */
1747 if (bot > top)
1748 return NULL_TREE;
1749
1750 /* Restart the binary search, with new lower bound. */
1751 continue;
1752 }
1753
1754 if (DECL_NAME (field) == component)
1755 break;
1756 if (DECL_NAME (field) < component)
1757 bot += half;
1758 else
1759 top = bot + half;
1760 }
1761
1762 if (DECL_NAME (field_array[bot]) == component)
1763 field = field_array[bot];
1764 else if (DECL_NAME (field) != component)
1765 return NULL_TREE;
1766 }
1767 else
1768 {
1769 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1770 {
1771 if (DECL_NAME (field) == NULL_TREE
1772 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1773 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1774 {
1775 tree anon = lookup_field (field, component);
1776
1777 if (anon)
1778 return tree_cons (NULL_TREE, field, anon);
1779 }
1780
1781 if (DECL_NAME (field) == component)
1782 break;
1783 }
1784
1785 if (field == NULL_TREE)
1786 return NULL_TREE;
1787 }
1788
1789 return tree_cons (NULL_TREE, field, NULL_TREE);
1790 }
1791
1792 /* Make an expression to refer to the COMPONENT field of
1793 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1794
1795 tree
1796 build_component_ref (tree datum, tree component)
1797 {
1798 tree type = TREE_TYPE (datum);
1799 enum tree_code code = TREE_CODE (type);
1800 tree field = NULL;
1801 tree ref;
1802
1803 if (!objc_is_public (datum, component))
1804 return error_mark_node;
1805
1806 /* See if there is a field or component with name COMPONENT. */
1807
1808 if (code == RECORD_TYPE || code == UNION_TYPE)
1809 {
1810 if (!COMPLETE_TYPE_P (type))
1811 {
1812 c_incomplete_type_error (NULL_TREE, type);
1813 return error_mark_node;
1814 }
1815
1816 field = lookup_field (datum, component);
1817
1818 if (!field)
1819 {
1820 error ("%qT has no member named %qE", type, component);
1821 return error_mark_node;
1822 }
1823
1824 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1825 This might be better solved in future the way the C++ front
1826 end does it - by giving the anonymous entities each a
1827 separate name and type, and then have build_component_ref
1828 recursively call itself. We can't do that here. */
1829 do
1830 {
1831 tree subdatum = TREE_VALUE (field);
1832 int quals;
1833 tree subtype;
1834
1835 if (TREE_TYPE (subdatum) == error_mark_node)
1836 return error_mark_node;
1837
1838 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
1839 quals |= TYPE_QUALS (TREE_TYPE (datum));
1840 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
1841
1842 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
1843 NULL_TREE);
1844 if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
1845 TREE_READONLY (ref) = 1;
1846 if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
1847 TREE_THIS_VOLATILE (ref) = 1;
1848
1849 if (TREE_DEPRECATED (subdatum))
1850 warn_deprecated_use (subdatum);
1851
1852 datum = ref;
1853
1854 field = TREE_CHAIN (field);
1855 }
1856 while (field);
1857
1858 return ref;
1859 }
1860 else if (code != ERROR_MARK)
1861 error ("request for member %qE in something not a structure or union",
1862 component);
1863
1864 return error_mark_node;
1865 }
1866 \f
1867 /* Given an expression PTR for a pointer, return an expression
1868 for the value pointed to.
1869 ERRORSTRING is the name of the operator to appear in error messages. */
1870
1871 tree
1872 build_indirect_ref (tree ptr, const char *errorstring)
1873 {
1874 tree pointer = default_conversion (ptr);
1875 tree type = TREE_TYPE (pointer);
1876
1877 if (TREE_CODE (type) == POINTER_TYPE)
1878 {
1879 if (TREE_CODE (pointer) == CONVERT_EXPR
1880 || TREE_CODE (pointer) == NOP_EXPR
1881 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
1882 {
1883 /* If a warning is issued, mark it to avoid duplicates from
1884 the backend. This only needs to be done at
1885 warn_strict_aliasing > 2. */
1886 if (warn_strict_aliasing > 2)
1887 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
1888 type, TREE_OPERAND (pointer, 0)))
1889 TREE_NO_WARNING (pointer) = 1;
1890 }
1891
1892 if (TREE_CODE (pointer) == ADDR_EXPR
1893 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
1894 == TREE_TYPE (type)))
1895 return TREE_OPERAND (pointer, 0);
1896 else
1897 {
1898 tree t = TREE_TYPE (type);
1899 tree ref;
1900
1901 ref = build1 (INDIRECT_REF, t, pointer);
1902
1903 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
1904 {
1905 error ("dereferencing pointer to incomplete type");
1906 return error_mark_node;
1907 }
1908 if (VOID_TYPE_P (t) && skip_evaluation == 0)
1909 warning (0, "dereferencing %<void *%> pointer");
1910
1911 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1912 so that we get the proper error message if the result is used
1913 to assign to. Also, &* is supposed to be a no-op.
1914 And ANSI C seems to specify that the type of the result
1915 should be the const type. */
1916 /* A de-reference of a pointer to const is not a const. It is valid
1917 to change it via some other pointer. */
1918 TREE_READONLY (ref) = TYPE_READONLY (t);
1919 TREE_SIDE_EFFECTS (ref)
1920 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
1921 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
1922 return ref;
1923 }
1924 }
1925 else if (TREE_CODE (pointer) != ERROR_MARK)
1926 error ("invalid type argument of %qs (have %qT)", errorstring, type);
1927 return error_mark_node;
1928 }
1929
1930 /* This handles expressions of the form "a[i]", which denotes
1931 an array reference.
1932
1933 This is logically equivalent in C to *(a+i), but we may do it differently.
1934 If A is a variable or a member, we generate a primitive ARRAY_REF.
1935 This avoids forcing the array out of registers, and can work on
1936 arrays that are not lvalues (for example, members of structures returned
1937 by functions). */
1938
1939 tree
1940 build_array_ref (tree array, tree index)
1941 {
1942 bool swapped = false;
1943 if (TREE_TYPE (array) == error_mark_node
1944 || TREE_TYPE (index) == error_mark_node)
1945 return error_mark_node;
1946
1947 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
1948 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
1949 {
1950 tree temp;
1951 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
1952 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
1953 {
1954 error ("subscripted value is neither array nor pointer");
1955 return error_mark_node;
1956 }
1957 temp = array;
1958 array = index;
1959 index = temp;
1960 swapped = true;
1961 }
1962
1963 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
1964 {
1965 error ("array subscript is not an integer");
1966 return error_mark_node;
1967 }
1968
1969 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
1970 {
1971 error ("subscripted value is pointer to function");
1972 return error_mark_node;
1973 }
1974
1975 /* ??? Existing practice has been to warn only when the char
1976 index is syntactically the index, not for char[array]. */
1977 if (!swapped)
1978 warn_array_subscript_with_type_char (index);
1979
1980 /* Apply default promotions *after* noticing character types. */
1981 index = default_conversion (index);
1982
1983 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
1984
1985 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
1986 {
1987 tree rval, type;
1988
1989 /* An array that is indexed by a non-constant
1990 cannot be stored in a register; we must be able to do
1991 address arithmetic on its address.
1992 Likewise an array of elements of variable size. */
1993 if (TREE_CODE (index) != INTEGER_CST
1994 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
1995 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
1996 {
1997 if (!c_mark_addressable (array))
1998 return error_mark_node;
1999 }
2000 /* An array that is indexed by a constant value which is not within
2001 the array bounds cannot be stored in a register either; because we
2002 would get a crash in store_bit_field/extract_bit_field when trying
2003 to access a non-existent part of the register. */
2004 if (TREE_CODE (index) == INTEGER_CST
2005 && TYPE_DOMAIN (TREE_TYPE (array))
2006 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2007 {
2008 if (!c_mark_addressable (array))
2009 return error_mark_node;
2010 }
2011
2012 if (pedantic)
2013 {
2014 tree foo = array;
2015 while (TREE_CODE (foo) == COMPONENT_REF)
2016 foo = TREE_OPERAND (foo, 0);
2017 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2018 pedwarn ("ISO C forbids subscripting %<register%> array");
2019 else if (!flag_isoc99 && !lvalue_p (foo))
2020 pedwarn ("ISO C90 forbids subscripting non-lvalue array");
2021 }
2022
2023 type = TREE_TYPE (TREE_TYPE (array));
2024 if (TREE_CODE (type) != ARRAY_TYPE)
2025 type = TYPE_MAIN_VARIANT (type);
2026 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2027 /* Array ref is const/volatile if the array elements are
2028 or if the array is. */
2029 TREE_READONLY (rval)
2030 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2031 | TREE_READONLY (array));
2032 TREE_SIDE_EFFECTS (rval)
2033 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2034 | TREE_SIDE_EFFECTS (array));
2035 TREE_THIS_VOLATILE (rval)
2036 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2037 /* This was added by rms on 16 Nov 91.
2038 It fixes vol struct foo *a; a->elts[1]
2039 in an inline function.
2040 Hope it doesn't break something else. */
2041 | TREE_THIS_VOLATILE (array));
2042 return require_complete_type (fold (rval));
2043 }
2044 else
2045 {
2046 tree ar = default_conversion (array);
2047
2048 if (ar == error_mark_node)
2049 return ar;
2050
2051 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2052 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2053
2054 return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
2055 "array indexing");
2056 }
2057 }
2058 \f
2059 /* Build an external reference to identifier ID. FUN indicates
2060 whether this will be used for a function call. LOC is the source
2061 location of the identifier. */
2062 tree
2063 build_external_ref (tree id, int fun, location_t loc)
2064 {
2065 tree ref;
2066 tree decl = lookup_name (id);
2067
2068 /* In Objective-C, an instance variable (ivar) may be preferred to
2069 whatever lookup_name() found. */
2070 decl = objc_lookup_ivar (decl, id);
2071
2072 if (decl && decl != error_mark_node)
2073 ref = decl;
2074 else if (fun)
2075 /* Implicit function declaration. */
2076 ref = implicitly_declare (id);
2077 else if (decl == error_mark_node)
2078 /* Don't complain about something that's already been
2079 complained about. */
2080 return error_mark_node;
2081 else
2082 {
2083 undeclared_variable (id, loc);
2084 return error_mark_node;
2085 }
2086
2087 if (TREE_TYPE (ref) == error_mark_node)
2088 return error_mark_node;
2089
2090 if (TREE_DEPRECATED (ref))
2091 warn_deprecated_use (ref);
2092
2093 /* Recursive call does not count as usage. */
2094 if (ref != current_function_decl)
2095 {
2096 if (!skip_evaluation)
2097 assemble_external (ref);
2098 TREE_USED (ref) = 1;
2099 }
2100
2101 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2102 {
2103 if (!in_sizeof && !in_typeof)
2104 C_DECL_USED (ref) = 1;
2105 else if (DECL_INITIAL (ref) == 0
2106 && DECL_EXTERNAL (ref)
2107 && !TREE_PUBLIC (ref))
2108 record_maybe_used_decl (ref);
2109 }
2110
2111 if (TREE_CODE (ref) == CONST_DECL)
2112 {
2113 used_types_insert (TREE_TYPE (ref));
2114 ref = DECL_INITIAL (ref);
2115 TREE_CONSTANT (ref) = 1;
2116 TREE_INVARIANT (ref) = 1;
2117 }
2118 else if (current_function_decl != 0
2119 && !DECL_FILE_SCOPE_P (current_function_decl)
2120 && (TREE_CODE (ref) == VAR_DECL
2121 || TREE_CODE (ref) == PARM_DECL
2122 || TREE_CODE (ref) == FUNCTION_DECL))
2123 {
2124 tree context = decl_function_context (ref);
2125
2126 if (context != 0 && context != current_function_decl)
2127 DECL_NONLOCAL (ref) = 1;
2128 }
2129 /* C99 6.7.4p3: An inline definition of a function with external
2130 linkage ... shall not contain a reference to an identifier with
2131 internal linkage. */
2132 else if (current_function_decl != 0
2133 && DECL_DECLARED_INLINE_P (current_function_decl)
2134 && DECL_EXTERNAL (current_function_decl)
2135 && VAR_OR_FUNCTION_DECL_P (ref)
2136 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2137 && ! TREE_PUBLIC (ref))
2138 pedwarn ("%H%qD is static but used in inline function %qD "
2139 "which is not static", &loc, ref, current_function_decl);
2140
2141 return ref;
2142 }
2143
2144 /* Record details of decls possibly used inside sizeof or typeof. */
2145 struct maybe_used_decl
2146 {
2147 /* The decl. */
2148 tree decl;
2149 /* The level seen at (in_sizeof + in_typeof). */
2150 int level;
2151 /* The next one at this level or above, or NULL. */
2152 struct maybe_used_decl *next;
2153 };
2154
2155 static struct maybe_used_decl *maybe_used_decls;
2156
2157 /* Record that DECL, an undefined static function reference seen
2158 inside sizeof or typeof, might be used if the operand of sizeof is
2159 a VLA type or the operand of typeof is a variably modified
2160 type. */
2161
2162 static void
2163 record_maybe_used_decl (tree decl)
2164 {
2165 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2166 t->decl = decl;
2167 t->level = in_sizeof + in_typeof;
2168 t->next = maybe_used_decls;
2169 maybe_used_decls = t;
2170 }
2171
2172 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2173 USED is false, just discard them. If it is true, mark them used
2174 (if no longer inside sizeof or typeof) or move them to the next
2175 level up (if still inside sizeof or typeof). */
2176
2177 void
2178 pop_maybe_used (bool used)
2179 {
2180 struct maybe_used_decl *p = maybe_used_decls;
2181 int cur_level = in_sizeof + in_typeof;
2182 while (p && p->level > cur_level)
2183 {
2184 if (used)
2185 {
2186 if (cur_level == 0)
2187 C_DECL_USED (p->decl) = 1;
2188 else
2189 p->level = cur_level;
2190 }
2191 p = p->next;
2192 }
2193 if (!used || cur_level == 0)
2194 maybe_used_decls = p;
2195 }
2196
2197 /* Return the result of sizeof applied to EXPR. */
2198
2199 struct c_expr
2200 c_expr_sizeof_expr (struct c_expr expr)
2201 {
2202 struct c_expr ret;
2203 if (expr.value == error_mark_node)
2204 {
2205 ret.value = error_mark_node;
2206 ret.original_code = ERROR_MARK;
2207 pop_maybe_used (false);
2208 }
2209 else
2210 {
2211 ret.value = c_sizeof (TREE_TYPE (expr.value));
2212 ret.original_code = ERROR_MARK;
2213 if (c_vla_type_p (TREE_TYPE (expr.value)))
2214 {
2215 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2216 ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
2217 }
2218 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
2219 }
2220 return ret;
2221 }
2222
2223 /* Return the result of sizeof applied to T, a structure for the type
2224 name passed to sizeof (rather than the type itself). */
2225
2226 struct c_expr
2227 c_expr_sizeof_type (struct c_type_name *t)
2228 {
2229 tree type;
2230 struct c_expr ret;
2231 type = groktypename (t);
2232 ret.value = c_sizeof (type);
2233 ret.original_code = ERROR_MARK;
2234 pop_maybe_used (type != error_mark_node
2235 ? C_TYPE_VARIABLE_SIZE (type) : false);
2236 return ret;
2237 }
2238
2239 /* Build a function call to function FUNCTION with parameters PARAMS.
2240 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2241 TREE_VALUE of each node is a parameter-expression.
2242 FUNCTION's data type may be a function type or a pointer-to-function. */
2243
2244 tree
2245 build_function_call (tree function, tree params)
2246 {
2247 tree fntype, fundecl = 0;
2248 tree name = NULL_TREE, result;
2249 tree tem;
2250 int nargs;
2251 tree *argarray;
2252
2253
2254 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2255 STRIP_TYPE_NOPS (function);
2256
2257 /* Convert anything with function type to a pointer-to-function. */
2258 if (TREE_CODE (function) == FUNCTION_DECL)
2259 {
2260 /* Implement type-directed function overloading for builtins.
2261 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2262 handle all the type checking. The result is a complete expression
2263 that implements this function call. */
2264 tem = resolve_overloaded_builtin (function, params);
2265 if (tem)
2266 return tem;
2267
2268 name = DECL_NAME (function);
2269 fundecl = function;
2270 }
2271 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2272 function = function_to_pointer_conversion (function);
2273
2274 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2275 expressions, like those used for ObjC messenger dispatches. */
2276 function = objc_rewrite_function_call (function, params);
2277
2278 fntype = TREE_TYPE (function);
2279
2280 if (TREE_CODE (fntype) == ERROR_MARK)
2281 return error_mark_node;
2282
2283 if (!(TREE_CODE (fntype) == POINTER_TYPE
2284 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2285 {
2286 error ("called object %qE is not a function", function);
2287 return error_mark_node;
2288 }
2289
2290 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2291 current_function_returns_abnormally = 1;
2292
2293 /* fntype now gets the type of function pointed to. */
2294 fntype = TREE_TYPE (fntype);
2295
2296 /* Check that the function is called through a compatible prototype.
2297 If it is not, replace the call by a trap, wrapped up in a compound
2298 expression if necessary. This has the nice side-effect to prevent
2299 the tree-inliner from generating invalid assignment trees which may
2300 blow up in the RTL expander later. */
2301 if ((TREE_CODE (function) == NOP_EXPR
2302 || TREE_CODE (function) == CONVERT_EXPR)
2303 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2304 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2305 && !comptypes (fntype, TREE_TYPE (tem)))
2306 {
2307 tree return_type = TREE_TYPE (fntype);
2308 tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
2309 NULL_TREE);
2310
2311 /* This situation leads to run-time undefined behavior. We can't,
2312 therefore, simply error unless we can prove that all possible
2313 executions of the program must execute the code. */
2314 warning (0, "function called through a non-compatible type");
2315
2316 /* We can, however, treat "undefined" any way we please.
2317 Call abort to encourage the user to fix the program. */
2318 inform ("if this code is reached, the program will abort");
2319
2320 if (VOID_TYPE_P (return_type))
2321 return trap;
2322 else
2323 {
2324 tree rhs;
2325
2326 if (AGGREGATE_TYPE_P (return_type))
2327 rhs = build_compound_literal (return_type,
2328 build_constructor (return_type, 0));
2329 else
2330 rhs = fold_convert (return_type, integer_zero_node);
2331
2332 return build2 (COMPOUND_EXPR, return_type, trap, rhs);
2333 }
2334 }
2335
2336 /* Convert the parameters to the types declared in the
2337 function prototype, or apply default promotions. */
2338
2339 nargs = list_length (params);
2340 argarray = (tree *) alloca (nargs * sizeof (tree));
2341 nargs = convert_arguments (nargs, argarray, TYPE_ARG_TYPES (fntype),
2342 params, function, fundecl);
2343 if (nargs < 0)
2344 return error_mark_node;
2345
2346 /* Check that the arguments to the function are valid. */
2347
2348 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2349 TYPE_ARG_TYPES (fntype));
2350
2351 if (require_constant_value)
2352 {
2353 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2354 function, nargs, argarray);
2355 if (TREE_CONSTANT (result)
2356 && (name == NULL_TREE
2357 || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
2358 pedwarn_init ("initializer element is not constant");
2359 }
2360 else
2361 result = fold_build_call_array (TREE_TYPE (fntype),
2362 function, nargs, argarray);
2363
2364 if (VOID_TYPE_P (TREE_TYPE (result)))
2365 return result;
2366 return require_complete_type (result);
2367 }
2368 \f
2369 /* Convert the argument expressions in the list VALUES
2370 to the types in the list TYPELIST. The resulting arguments are
2371 stored in the array ARGARRAY which has size NARGS.
2372
2373 If TYPELIST is exhausted, or when an element has NULL as its type,
2374 perform the default conversions.
2375
2376 PARMLIST is the chain of parm decls for the function being called.
2377 It may be 0, if that info is not available.
2378 It is used only for generating error messages.
2379
2380 FUNCTION is a tree for the called function. It is used only for
2381 error messages, where it is formatted with %qE.
2382
2383 This is also where warnings about wrong number of args are generated.
2384
2385 VALUES is a chain of TREE_LIST nodes with the elements of the list
2386 in the TREE_VALUE slots of those nodes.
2387
2388 Returns the actual number of arguments processed (which may be less
2389 than NARGS in some error situations), or -1 on failure. */
2390
2391 static int
2392 convert_arguments (int nargs, tree *argarray,
2393 tree typelist, tree values, tree function, tree fundecl)
2394 {
2395 tree typetail, valtail;
2396 int parmnum;
2397 const bool type_generic = fundecl
2398 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2399 tree selector;
2400
2401 /* Change pointer to function to the function itself for
2402 diagnostics. */
2403 if (TREE_CODE (function) == ADDR_EXPR
2404 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2405 function = TREE_OPERAND (function, 0);
2406
2407 /* Handle an ObjC selector specially for diagnostics. */
2408 selector = objc_message_selector ();
2409
2410 /* Scan the given expressions and types, producing individual
2411 converted arguments and storing them in ARGARRAY. */
2412
2413 for (valtail = values, typetail = typelist, parmnum = 0;
2414 valtail;
2415 valtail = TREE_CHAIN (valtail), parmnum++)
2416 {
2417 tree type = typetail ? TREE_VALUE (typetail) : 0;
2418 tree val = TREE_VALUE (valtail);
2419 tree rname = function;
2420 int argnum = parmnum + 1;
2421 const char *invalid_func_diag;
2422
2423 if (type == void_type_node)
2424 {
2425 error ("too many arguments to function %qE", function);
2426 return parmnum;
2427 }
2428
2429 if (selector && argnum > 2)
2430 {
2431 rname = selector;
2432 argnum -= 2;
2433 }
2434
2435 STRIP_TYPE_NOPS (val);
2436
2437 val = require_complete_type (val);
2438
2439 if (type != 0)
2440 {
2441 /* Formal parm type is specified by a function prototype. */
2442 tree parmval;
2443
2444 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2445 {
2446 error ("type of formal parameter %d is incomplete", parmnum + 1);
2447 parmval = val;
2448 }
2449 else
2450 {
2451 /* Optionally warn about conversions that
2452 differ from the default conversions. */
2453 if (warn_traditional_conversion || warn_traditional)
2454 {
2455 unsigned int formal_prec = TYPE_PRECISION (type);
2456
2457 if (INTEGRAL_TYPE_P (type)
2458 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2459 warning (0, "passing argument %d of %qE as integer "
2460 "rather than floating due to prototype",
2461 argnum, rname);
2462 if (INTEGRAL_TYPE_P (type)
2463 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2464 warning (0, "passing argument %d of %qE as integer "
2465 "rather than complex due to prototype",
2466 argnum, rname);
2467 else if (TREE_CODE (type) == COMPLEX_TYPE
2468 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2469 warning (0, "passing argument %d of %qE as complex "
2470 "rather than floating due to prototype",
2471 argnum, rname);
2472 else if (TREE_CODE (type) == REAL_TYPE
2473 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2474 warning (0, "passing argument %d of %qE as floating "
2475 "rather than integer due to prototype",
2476 argnum, rname);
2477 else if (TREE_CODE (type) == COMPLEX_TYPE
2478 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2479 warning (0, "passing argument %d of %qE as complex "
2480 "rather than integer due to prototype",
2481 argnum, rname);
2482 else if (TREE_CODE (type) == REAL_TYPE
2483 && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
2484 warning (0, "passing argument %d of %qE as floating "
2485 "rather than complex due to prototype",
2486 argnum, rname);
2487 /* ??? At some point, messages should be written about
2488 conversions between complex types, but that's too messy
2489 to do now. */
2490 else if (TREE_CODE (type) == REAL_TYPE
2491 && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
2492 {
2493 /* Warn if any argument is passed as `float',
2494 since without a prototype it would be `double'. */
2495 if (formal_prec == TYPE_PRECISION (float_type_node)
2496 && type != dfloat32_type_node)
2497 warning (0, "passing argument %d of %qE as %<float%> "
2498 "rather than %<double%> due to prototype",
2499 argnum, rname);
2500
2501 /* Warn if mismatch between argument and prototype
2502 for decimal float types. Warn of conversions with
2503 binary float types and of precision narrowing due to
2504 prototype. */
2505 else if (type != TREE_TYPE (val)
2506 && (type == dfloat32_type_node
2507 || type == dfloat64_type_node
2508 || type == dfloat128_type_node
2509 || TREE_TYPE (val) == dfloat32_type_node
2510 || TREE_TYPE (val) == dfloat64_type_node
2511 || TREE_TYPE (val) == dfloat128_type_node)
2512 && (formal_prec
2513 <= TYPE_PRECISION (TREE_TYPE (val))
2514 || (type == dfloat128_type_node
2515 && (TREE_TYPE (val)
2516 != dfloat64_type_node
2517 && (TREE_TYPE (val)
2518 != dfloat32_type_node)))
2519 || (type == dfloat64_type_node
2520 && (TREE_TYPE (val)
2521 != dfloat32_type_node))))
2522 warning (0, "passing argument %d of %qE as %qT "
2523 "rather than %qT due to prototype",
2524 argnum, rname, type, TREE_TYPE (val));
2525
2526 }
2527 /* Detect integer changing in width or signedness.
2528 These warnings are only activated with
2529 -Wtraditional-conversion, not with -Wtraditional. */
2530 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2531 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2532 {
2533 tree would_have_been = default_conversion (val);
2534 tree type1 = TREE_TYPE (would_have_been);
2535
2536 if (TREE_CODE (type) == ENUMERAL_TYPE
2537 && (TYPE_MAIN_VARIANT (type)
2538 == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2539 /* No warning if function asks for enum
2540 and the actual arg is that enum type. */
2541 ;
2542 else if (formal_prec != TYPE_PRECISION (type1))
2543 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2544 "with different width due to prototype",
2545 argnum, rname);
2546 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2547 ;
2548 /* Don't complain if the formal parameter type
2549 is an enum, because we can't tell now whether
2550 the value was an enum--even the same enum. */
2551 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2552 ;
2553 else if (TREE_CODE (val) == INTEGER_CST
2554 && int_fits_type_p (val, type))
2555 /* Change in signedness doesn't matter
2556 if a constant value is unaffected. */
2557 ;
2558 /* If the value is extended from a narrower
2559 unsigned type, it doesn't matter whether we
2560 pass it as signed or unsigned; the value
2561 certainly is the same either way. */
2562 else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
2563 && TYPE_UNSIGNED (TREE_TYPE (val)))
2564 ;
2565 else if (TYPE_UNSIGNED (type))
2566 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2567 "as unsigned due to prototype",
2568 argnum, rname);
2569 else
2570 warning (OPT_Wtraditional_conversion, "passing argument %d of %qE "
2571 "as signed due to prototype", argnum, rname);
2572 }
2573 }
2574
2575 parmval = convert_for_assignment (type, val, ic_argpass,
2576 fundecl, function,
2577 parmnum + 1);
2578
2579 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2580 && INTEGRAL_TYPE_P (type)
2581 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2582 parmval = default_conversion (parmval);
2583 }
2584 argarray[parmnum] = parmval;
2585 }
2586 else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
2587 && (TYPE_PRECISION (TREE_TYPE (val))
2588 < TYPE_PRECISION (double_type_node))
2589 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
2590 {
2591 if (type_generic)
2592 argarray[parmnum] = val;
2593 else
2594 /* Convert `float' to `double'. */
2595 argarray[parmnum] = convert (double_type_node, val);
2596 }
2597 else if ((invalid_func_diag =
2598 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2599 {
2600 error (invalid_func_diag);
2601 return -1;
2602 }
2603 else
2604 /* Convert `short' and `char' to full-size `int'. */
2605 argarray[parmnum] = default_conversion (val);
2606
2607 if (typetail)
2608 typetail = TREE_CHAIN (typetail);
2609 }
2610
2611 gcc_assert (parmnum == nargs);
2612
2613 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2614 {
2615 error ("too few arguments to function %qE", function);
2616 return -1;
2617 }
2618
2619 return parmnum;
2620 }
2621 \f
2622 /* This is the entry point used by the parser to build unary operators
2623 in the input. CODE, a tree_code, specifies the unary operator, and
2624 ARG is the operand. For unary plus, the C parser currently uses
2625 CONVERT_EXPR for code. */
2626
2627 struct c_expr
2628 parser_build_unary_op (enum tree_code code, struct c_expr arg)
2629 {
2630 struct c_expr result;
2631
2632 result.original_code = ERROR_MARK;
2633 result.value = build_unary_op (code, arg.value, 0);
2634
2635 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2636 overflow_warning (result.value);
2637
2638 return result;
2639 }
2640
2641 /* This is the entry point used by the parser to build binary operators
2642 in the input. CODE, a tree_code, specifies the binary operator, and
2643 ARG1 and ARG2 are the operands. In addition to constructing the
2644 expression, we check for operands that were written with other binary
2645 operators in a way that is likely to confuse the user. */
2646
2647 struct c_expr
2648 parser_build_binary_op (enum tree_code code, struct c_expr arg1,
2649 struct c_expr arg2)
2650 {
2651 struct c_expr result;
2652
2653 enum tree_code code1 = arg1.original_code;
2654 enum tree_code code2 = arg2.original_code;
2655
2656 result.value = build_binary_op (code, arg1.value, arg2.value, 1);
2657 result.original_code = code;
2658
2659 if (TREE_CODE (result.value) == ERROR_MARK)
2660 return result;
2661
2662 /* Check for cases such as x+y<<z which users are likely
2663 to misinterpret. */
2664 if (warn_parentheses)
2665 warn_about_parentheses (code, code1, code2);
2666
2667 if (code1 != tcc_comparison)
2668 warn_logical_operator (code, arg1.value, arg2.value);
2669
2670 /* Warn about comparisons against string literals, with the exception
2671 of testing for equality or inequality of a string literal with NULL. */
2672 if (code == EQ_EXPR || code == NE_EXPR)
2673 {
2674 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
2675 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
2676 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2677 }
2678 else if (TREE_CODE_CLASS (code) == tcc_comparison
2679 && (code1 == STRING_CST || code2 == STRING_CST))
2680 warning (OPT_Waddress, "comparison with string literal results in unspecified behavior");
2681
2682 if (TREE_OVERFLOW_P (result.value)
2683 && !TREE_OVERFLOW_P (arg1.value)
2684 && !TREE_OVERFLOW_P (arg2.value))
2685 overflow_warning (result.value);
2686
2687 return result;
2688 }
2689 \f
2690 /* Return a tree for the difference of pointers OP0 and OP1.
2691 The resulting tree has type int. */
2692
2693 static tree
2694 pointer_diff (tree op0, tree op1)
2695 {
2696 tree restype = ptrdiff_type_node;
2697
2698 tree target_type = TREE_TYPE (TREE_TYPE (op0));
2699 tree con0, con1, lit0, lit1;
2700 tree orig_op1 = op1;
2701
2702 if (pedantic || warn_pointer_arith)
2703 {
2704 if (TREE_CODE (target_type) == VOID_TYPE)
2705 pedwarn ("pointer of type %<void *%> used in subtraction");
2706 if (TREE_CODE (target_type) == FUNCTION_TYPE)
2707 pedwarn ("pointer to a function used in subtraction");
2708 }
2709
2710 /* If the conversion to ptrdiff_type does anything like widening or
2711 converting a partial to an integral mode, we get a convert_expression
2712 that is in the way to do any simplifications.
2713 (fold-const.c doesn't know that the extra bits won't be needed.
2714 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
2715 different mode in place.)
2716 So first try to find a common term here 'by hand'; we want to cover
2717 at least the cases that occur in legal static initializers. */
2718 if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
2719 && (TYPE_PRECISION (TREE_TYPE (op0))
2720 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
2721 con0 = TREE_OPERAND (op0, 0);
2722 else
2723 con0 = op0;
2724 if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
2725 && (TYPE_PRECISION (TREE_TYPE (op1))
2726 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
2727 con1 = TREE_OPERAND (op1, 0);
2728 else
2729 con1 = op1;
2730
2731 if (TREE_CODE (con0) == PLUS_EXPR)
2732 {
2733 lit0 = TREE_OPERAND (con0, 1);
2734 con0 = TREE_OPERAND (con0, 0);
2735 }
2736 else
2737 lit0 = integer_zero_node;
2738
2739 if (TREE_CODE (con1) == PLUS_EXPR)
2740 {
2741 lit1 = TREE_OPERAND (con1, 1);
2742 con1 = TREE_OPERAND (con1, 0);
2743 }
2744 else
2745 lit1 = integer_zero_node;
2746
2747 if (operand_equal_p (con0, con1, 0))
2748 {
2749 op0 = lit0;
2750 op1 = lit1;
2751 }
2752
2753
2754 /* First do the subtraction as integers;
2755 then drop through to build the divide operator.
2756 Do not do default conversions on the minus operator
2757 in case restype is a short type. */
2758
2759 op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
2760 convert (restype, op1), 0);
2761 /* This generates an error if op1 is pointer to incomplete type. */
2762 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
2763 error ("arithmetic on pointer to an incomplete type");
2764
2765 /* This generates an error if op0 is pointer to incomplete type. */
2766 op1 = c_size_in_bytes (target_type);
2767
2768 /* Divide by the size, in easiest possible way. */
2769 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
2770 }
2771 \f
2772 /* Construct and perhaps optimize a tree representation
2773 for a unary operation. CODE, a tree_code, specifies the operation
2774 and XARG is the operand.
2775 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
2776 the default promotions (such as from short to int).
2777 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
2778 allows non-lvalues; this is only used to handle conversion of non-lvalue
2779 arrays to pointers in C99. */
2780
2781 tree
2782 build_unary_op (enum tree_code code, tree xarg, int flag)
2783 {
2784 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2785 tree arg = xarg;
2786 tree argtype = 0;
2787 enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
2788 tree val;
2789 int noconvert = flag;
2790 const char *invalid_op_diag;
2791
2792 if (typecode == ERROR_MARK)
2793 return error_mark_node;
2794 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
2795 typecode = INTEGER_TYPE;
2796
2797 if ((invalid_op_diag
2798 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
2799 {
2800 error (invalid_op_diag);
2801 return error_mark_node;
2802 }
2803
2804 switch (code)
2805 {
2806 case CONVERT_EXPR:
2807 /* This is used for unary plus, because a CONVERT_EXPR
2808 is enough to prevent anybody from looking inside for
2809 associativity, but won't generate any code. */
2810 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2811 || typecode == COMPLEX_TYPE
2812 || typecode == VECTOR_TYPE))
2813 {
2814 error ("wrong type argument to unary plus");
2815 return error_mark_node;
2816 }
2817 else if (!noconvert)
2818 arg = default_conversion (arg);
2819 arg = non_lvalue (arg);
2820 break;
2821
2822 case NEGATE_EXPR:
2823 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2824 || typecode == COMPLEX_TYPE
2825 || typecode == VECTOR_TYPE))
2826 {
2827 error ("wrong type argument to unary minus");
2828 return error_mark_node;
2829 }
2830 else if (!noconvert)
2831 arg = default_conversion (arg);
2832 break;
2833
2834 case BIT_NOT_EXPR:
2835 if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
2836 {
2837 if (!noconvert)
2838 arg = default_conversion (arg);
2839 }
2840 else if (typecode == COMPLEX_TYPE)
2841 {
2842 code = CONJ_EXPR;
2843 if (pedantic)
2844 pedwarn ("ISO C does not support %<~%> for complex conjugation");
2845 if (!noconvert)
2846 arg = default_conversion (arg);
2847 }
2848 else
2849 {
2850 error ("wrong type argument to bit-complement");
2851 return error_mark_node;
2852 }
2853 break;
2854
2855 case ABS_EXPR:
2856 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
2857 {
2858 error ("wrong type argument to abs");
2859 return error_mark_node;
2860 }
2861 else if (!noconvert)
2862 arg = default_conversion (arg);
2863 break;
2864
2865 case CONJ_EXPR:
2866 /* Conjugating a real value is a no-op, but allow it anyway. */
2867 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
2868 || typecode == COMPLEX_TYPE))
2869 {
2870 error ("wrong type argument to conjugation");
2871 return error_mark_node;
2872 }
2873 else if (!noconvert)
2874 arg = default_conversion (arg);
2875 break;
2876
2877 case TRUTH_NOT_EXPR:
2878 if (typecode != INTEGER_TYPE
2879 && typecode != REAL_TYPE && typecode != POINTER_TYPE
2880 && typecode != COMPLEX_TYPE)
2881 {
2882 error ("wrong type argument to unary exclamation mark");
2883 return error_mark_node;
2884 }
2885 arg = c_objc_common_truthvalue_conversion (arg);
2886 return invert_truthvalue (arg);
2887
2888 case REALPART_EXPR:
2889 if (TREE_CODE (arg) == COMPLEX_CST)
2890 return TREE_REALPART (arg);
2891 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2892 return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2893 else
2894 return arg;
2895
2896 case IMAGPART_EXPR:
2897 if (TREE_CODE (arg) == COMPLEX_CST)
2898 return TREE_IMAGPART (arg);
2899 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
2900 return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
2901 else
2902 return convert (TREE_TYPE (arg), integer_zero_node);
2903
2904 case PREINCREMENT_EXPR:
2905 case POSTINCREMENT_EXPR:
2906 case PREDECREMENT_EXPR:
2907 case POSTDECREMENT_EXPR:
2908
2909 /* Increment or decrement the real part of the value,
2910 and don't change the imaginary part. */
2911 if (typecode == COMPLEX_TYPE)
2912 {
2913 tree real, imag;
2914
2915 if (pedantic)
2916 pedwarn ("ISO C does not support %<++%> and %<--%>"
2917 " on complex types");
2918
2919 arg = stabilize_reference (arg);
2920 real = build_unary_op (REALPART_EXPR, arg, 1);
2921 imag = build_unary_op (IMAGPART_EXPR, arg, 1);
2922 real = build_unary_op (code, real, 1);
2923 if (real == error_mark_node || imag == error_mark_node)
2924 return error_mark_node;
2925 return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
2926 real, imag);
2927 }
2928
2929 /* Report invalid types. */
2930
2931 if (typecode != POINTER_TYPE
2932 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
2933 {
2934 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2935 error ("wrong type argument to increment");
2936 else
2937 error ("wrong type argument to decrement");
2938
2939 return error_mark_node;
2940 }
2941
2942 {
2943 tree inc;
2944 tree result_type = TREE_TYPE (arg);
2945
2946 arg = get_unwidened (arg, 0);
2947 argtype = TREE_TYPE (arg);
2948
2949 /* Compute the increment. */
2950
2951 if (typecode == POINTER_TYPE)
2952 {
2953 /* If pointer target is an undefined struct,
2954 we just cannot know how to do the arithmetic. */
2955 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
2956 {
2957 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2958 error ("increment of pointer to unknown structure");
2959 else
2960 error ("decrement of pointer to unknown structure");
2961 }
2962 else if ((pedantic || warn_pointer_arith)
2963 && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
2964 || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
2965 {
2966 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
2967 pedwarn ("wrong type argument to increment");
2968 else
2969 pedwarn ("wrong type argument to decrement");
2970 }
2971
2972 inc = c_size_in_bytes (TREE_TYPE (result_type));
2973 inc = fold_convert (sizetype, inc);
2974 }
2975 else
2976 {
2977 inc = integer_one_node;
2978 inc = convert (argtype, inc);
2979 }
2980
2981 /* Complain about anything else that is not a true lvalue. */
2982 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
2983 || code == POSTINCREMENT_EXPR)
2984 ? lv_increment
2985 : lv_decrement)))
2986 return error_mark_node;
2987
2988 /* Report a read-only lvalue. */
2989 if (TREE_READONLY (arg))
2990 {
2991 readonly_error (arg,
2992 ((code == PREINCREMENT_EXPR
2993 || code == POSTINCREMENT_EXPR)
2994 ? lv_increment : lv_decrement));
2995 return error_mark_node;
2996 }
2997
2998 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2999 val = boolean_increment (code, arg);
3000 else
3001 val = build2 (code, TREE_TYPE (arg), arg, inc);
3002 TREE_SIDE_EFFECTS (val) = 1;
3003 val = convert (result_type, val);
3004 if (TREE_CODE (val) != code)
3005 TREE_NO_WARNING (val) = 1;
3006 return val;
3007 }
3008
3009 case ADDR_EXPR:
3010 /* Note that this operation never does default_conversion. */
3011
3012 /* Let &* cancel out to simplify resulting code. */
3013 if (TREE_CODE (arg) == INDIRECT_REF)
3014 {
3015 /* Don't let this be an lvalue. */
3016 if (lvalue_p (TREE_OPERAND (arg, 0)))
3017 return non_lvalue (TREE_OPERAND (arg, 0));
3018 return TREE_OPERAND (arg, 0);
3019 }
3020
3021 /* For &x[y], return x+y */
3022 if (TREE_CODE (arg) == ARRAY_REF)
3023 {
3024 tree op0 = TREE_OPERAND (arg, 0);
3025 if (!c_mark_addressable (op0))
3026 return error_mark_node;
3027 return build_binary_op (PLUS_EXPR,
3028 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3029 ? array_to_pointer_conversion (op0)
3030 : op0),
3031 TREE_OPERAND (arg, 1), 1);
3032 }
3033
3034 /* Anything not already handled and not a true memory reference
3035 or a non-lvalue array is an error. */
3036 else if (typecode != FUNCTION_TYPE && !flag
3037 && !lvalue_or_else (arg, lv_addressof))
3038 return error_mark_node;
3039
3040 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3041 argtype = TREE_TYPE (arg);
3042
3043 /* If the lvalue is const or volatile, merge that into the type
3044 to which the address will point. Note that you can't get a
3045 restricted pointer by taking the address of something, so we
3046 only have to deal with `const' and `volatile' here. */
3047 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3048 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3049 argtype = c_build_type_variant (argtype,
3050 TREE_READONLY (arg),
3051 TREE_THIS_VOLATILE (arg));
3052
3053 if (!c_mark_addressable (arg))
3054 return error_mark_node;
3055
3056 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3057 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3058
3059 argtype = build_pointer_type (argtype);
3060
3061 /* ??? Cope with user tricks that amount to offsetof. Delete this
3062 when we have proper support for integer constant expressions. */
3063 val = get_base_address (arg);
3064 if (val && TREE_CODE (val) == INDIRECT_REF
3065 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3066 {
3067 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3068
3069 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3070 return fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3071 }
3072
3073 val = build1 (ADDR_EXPR, argtype, arg);
3074
3075 return val;
3076
3077 default:
3078 gcc_unreachable ();
3079 }
3080
3081 if (argtype == 0)
3082 argtype = TREE_TYPE (arg);
3083 return require_constant_value ? fold_build1_initializer (code, argtype, arg)
3084 : fold_build1 (code, argtype, arg);
3085 }
3086
3087 /* Return nonzero if REF is an lvalue valid for this language.
3088 Lvalues can be assigned, unless their type has TYPE_READONLY.
3089 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3090
3091 static int
3092 lvalue_p (tree ref)
3093 {
3094 enum tree_code code = TREE_CODE (ref);
3095
3096 switch (code)
3097 {
3098 case REALPART_EXPR:
3099 case IMAGPART_EXPR:
3100 case COMPONENT_REF:
3101 return lvalue_p (TREE_OPERAND (ref, 0));
3102
3103 case COMPOUND_LITERAL_EXPR:
3104 case STRING_CST:
3105 return 1;
3106
3107 case INDIRECT_REF:
3108 case ARRAY_REF:
3109 case VAR_DECL:
3110 case PARM_DECL:
3111 case RESULT_DECL:
3112 case ERROR_MARK:
3113 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3114 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3115
3116 case BIND_EXPR:
3117 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3118
3119 default:
3120 return 0;
3121 }
3122 }
3123 \f
3124 /* Give an error for storing in something that is 'const'. */
3125
3126 static void
3127 readonly_error (tree arg, enum lvalue_use use)
3128 {
3129 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3130 || use == lv_asm);
3131 /* Using this macro rather than (for example) arrays of messages
3132 ensures that all the format strings are checked at compile
3133 time. */
3134 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3135 : (use == lv_increment ? (I) \
3136 : (use == lv_decrement ? (D) : (AS))))
3137 if (TREE_CODE (arg) == COMPONENT_REF)
3138 {
3139 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3140 readonly_error (TREE_OPERAND (arg, 0), use);
3141 else
3142 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3143 G_("increment of read-only member %qD"),
3144 G_("decrement of read-only member %qD"),
3145 G_("read-only member %qD used as %<asm%> output")),
3146 TREE_OPERAND (arg, 1));
3147 }
3148 else if (TREE_CODE (arg) == VAR_DECL)
3149 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3150 G_("increment of read-only variable %qD"),
3151 G_("decrement of read-only variable %qD"),
3152 G_("read-only variable %qD used as %<asm%> output")),
3153 arg);
3154 else
3155 error (READONLY_MSG (G_("assignment of read-only location"),
3156 G_("increment of read-only location"),
3157 G_("decrement of read-only location"),
3158 G_("read-only location used as %<asm%> output")));
3159 }
3160
3161
3162 /* Return nonzero if REF is an lvalue valid for this language;
3163 otherwise, print an error message and return zero. USE says
3164 how the lvalue is being used and so selects the error message. */
3165
3166 static int
3167 lvalue_or_else (tree ref, enum lvalue_use use)
3168 {
3169 int win = lvalue_p (ref);
3170
3171 if (!win)
3172 lvalue_error (use);
3173
3174 return win;
3175 }
3176 \f
3177 /* Mark EXP saying that we need to be able to take the
3178 address of it; it should not be allocated in a register.
3179 Returns true if successful. */
3180
3181 bool
3182 c_mark_addressable (tree exp)
3183 {
3184 tree x = exp;
3185
3186 while (1)
3187 switch (TREE_CODE (x))
3188 {
3189 case COMPONENT_REF:
3190 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3191 {
3192 error
3193 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3194 return false;
3195 }
3196
3197 /* ... fall through ... */
3198
3199 case ADDR_EXPR:
3200 case ARRAY_REF:
3201 case REALPART_EXPR:
3202 case IMAGPART_EXPR:
3203 x = TREE_OPERAND (x, 0);
3204 break;
3205
3206 case COMPOUND_LITERAL_EXPR:
3207 case CONSTRUCTOR:
3208 TREE_ADDRESSABLE (x) = 1;
3209 return true;
3210
3211 case VAR_DECL:
3212 case CONST_DECL:
3213 case PARM_DECL:
3214 case RESULT_DECL:
3215 if (C_DECL_REGISTER (x)
3216 && DECL_NONLOCAL (x))
3217 {
3218 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3219 {
3220 error
3221 ("global register variable %qD used in nested function", x);
3222 return false;
3223 }
3224 pedwarn ("register variable %qD used in nested function", x);
3225 }
3226 else if (C_DECL_REGISTER (x))
3227 {
3228 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3229 error ("address of global register variable %qD requested", x);
3230 else
3231 error ("address of register variable %qD requested", x);
3232 return false;
3233 }
3234
3235 /* drops in */
3236 case FUNCTION_DECL:
3237 TREE_ADDRESSABLE (x) = 1;
3238 /* drops out */
3239 default:
3240 return true;
3241 }
3242 }
3243 \f
3244 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3245
3246 tree
3247 build_conditional_expr (tree ifexp, tree op1, tree op2)
3248 {
3249 tree type1;
3250 tree type2;
3251 enum tree_code code1;
3252 enum tree_code code2;
3253 tree result_type = NULL;
3254 tree orig_op1 = op1, orig_op2 = op2;
3255
3256 /* Promote both alternatives. */
3257
3258 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3259 op1 = default_conversion (op1);
3260 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3261 op2 = default_conversion (op2);
3262
3263 if (TREE_CODE (ifexp) == ERROR_MARK
3264 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3265 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3266 return error_mark_node;
3267
3268 type1 = TREE_TYPE (op1);
3269 code1 = TREE_CODE (type1);
3270 type2 = TREE_TYPE (op2);
3271 code2 = TREE_CODE (type2);
3272
3273 /* C90 does not permit non-lvalue arrays in conditional expressions.
3274 In C99 they will be pointers by now. */
3275 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3276 {
3277 error ("non-lvalue array in conditional expression");
3278 return error_mark_node;
3279 }
3280
3281 /* Quickly detect the usual case where op1 and op2 have the same type
3282 after promotion. */
3283 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3284 {
3285 if (type1 == type2)
3286 result_type = type1;
3287 else
3288 result_type = TYPE_MAIN_VARIANT (type1);
3289 }
3290 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3291 || code1 == COMPLEX_TYPE)
3292 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3293 || code2 == COMPLEX_TYPE))
3294 {
3295 result_type = c_common_type (type1, type2);
3296
3297 /* If -Wsign-compare, warn here if type1 and type2 have
3298 different signedness. We'll promote the signed to unsigned
3299 and later code won't know it used to be different.
3300 Do this check on the original types, so that explicit casts
3301 will be considered, but default promotions won't. */
3302 if (warn_sign_compare && !skip_evaluation)
3303 {
3304 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3305 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3306
3307 if (unsigned_op1 ^ unsigned_op2)
3308 {
3309 bool ovf;
3310
3311 /* Do not warn if the result type is signed, since the
3312 signed type will only be chosen if it can represent
3313 all the values of the unsigned type. */
3314 if (!TYPE_UNSIGNED (result_type))
3315 /* OK */;
3316 /* Do not warn if the signed quantity is an unsuffixed
3317 integer literal (or some static constant expression
3318 involving such literals) and it is non-negative. */
3319 else if ((unsigned_op2
3320 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3321 || (unsigned_op1
3322 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3323 /* OK */;
3324 else
3325 warning (0, "signed and unsigned type in conditional expression");
3326 }
3327 }
3328 }
3329 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3330 {
3331 if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
3332 pedwarn ("ISO C forbids conditional expr with only one void side");
3333 result_type = void_type_node;
3334 }
3335 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3336 {
3337 if (comp_target_types (type1, type2))
3338 result_type = common_pointer_type (type1, type2);
3339 else if (null_pointer_constant_p (orig_op1))
3340 result_type = qualify_type (type2, type1);
3341 else if (null_pointer_constant_p (orig_op2))
3342 result_type = qualify_type (type1, type2);
3343 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3344 {
3345 if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3346 pedwarn ("ISO C forbids conditional expr between "
3347 "%<void *%> and function pointer");
3348 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3349 TREE_TYPE (type2)));
3350 }
3351 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3352 {
3353 if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3354 pedwarn ("ISO C forbids conditional expr between "
3355 "%<void *%> and function pointer");
3356 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3357 TREE_TYPE (type1)));
3358 }
3359 else
3360 {
3361 pedwarn ("pointer type mismatch in conditional expression");
3362 result_type = build_pointer_type (void_type_node);
3363 }
3364 }
3365 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3366 {
3367 if (!null_pointer_constant_p (orig_op2))
3368 pedwarn ("pointer/integer type mismatch in conditional expression");
3369 else
3370 {
3371 op2 = null_pointer_node;
3372 }
3373 result_type = type1;
3374 }
3375 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3376 {
3377 if (!null_pointer_constant_p (orig_op1))
3378 pedwarn ("pointer/integer type mismatch in conditional expression");
3379 else
3380 {
3381 op1 = null_pointer_node;
3382 }
3383 result_type = type2;
3384 }
3385
3386 if (!result_type)
3387 {
3388 if (flag_cond_mismatch)
3389 result_type = void_type_node;
3390 else
3391 {
3392 error ("type mismatch in conditional expression");
3393 return error_mark_node;
3394 }
3395 }
3396
3397 /* Merge const and volatile flags of the incoming types. */
3398 result_type
3399 = build_type_variant (result_type,
3400 TREE_READONLY (op1) || TREE_READONLY (op2),
3401 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
3402
3403 if (result_type != TREE_TYPE (op1))
3404 op1 = convert_and_check (result_type, op1);
3405 if (result_type != TREE_TYPE (op2))
3406 op2 = convert_and_check (result_type, op2);
3407
3408 return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
3409 }
3410 \f
3411 /* Return a compound expression that performs two expressions and
3412 returns the value of the second of them. */
3413
3414 tree
3415 build_compound_expr (tree expr1, tree expr2)
3416 {
3417 if (!TREE_SIDE_EFFECTS (expr1))
3418 {
3419 /* The left-hand operand of a comma expression is like an expression
3420 statement: with -Wextra or -Wunused, we should warn if it doesn't have
3421 any side-effects, unless it was explicitly cast to (void). */
3422 if (warn_unused_value)
3423 {
3424 if (VOID_TYPE_P (TREE_TYPE (expr1))
3425 && (TREE_CODE (expr1) == NOP_EXPR
3426 || TREE_CODE (expr1) == CONVERT_EXPR))
3427 ; /* (void) a, b */
3428 else if (VOID_TYPE_P (TREE_TYPE (expr1))
3429 && TREE_CODE (expr1) == COMPOUND_EXPR
3430 && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
3431 || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
3432 ; /* (void) a, (void) b, c */
3433 else
3434 warning (OPT_Wunused_value,
3435 "left-hand operand of comma expression has no effect");
3436 }
3437 }
3438
3439 /* With -Wunused, we should also warn if the left-hand operand does have
3440 side-effects, but computes a value which is not used. For example, in
3441 `foo() + bar(), baz()' the result of the `+' operator is not used,
3442 so we should issue a warning. */
3443 else if (warn_unused_value)
3444 warn_if_unused_value (expr1, input_location);
3445
3446 if (expr2 == error_mark_node)
3447 return error_mark_node;
3448
3449 return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
3450 }
3451
3452 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3453
3454 tree
3455 build_c_cast (tree type, tree expr)
3456 {
3457 tree value = expr;
3458
3459 if (type == error_mark_node || expr == error_mark_node)
3460 return error_mark_node;
3461
3462 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
3463 only in <protocol> qualifications. But when constructing cast expressions,
3464 the protocols do matter and must be kept around. */
3465 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
3466 return build1 (NOP_EXPR, type, expr);
3467
3468 type = TYPE_MAIN_VARIANT (type);
3469
3470 if (TREE_CODE (type) == ARRAY_TYPE)
3471 {
3472 error ("cast specifies array type");
3473 return error_mark_node;
3474 }
3475
3476 if (TREE_CODE (type) == FUNCTION_TYPE)
3477 {
3478 error ("cast specifies function type");
3479 return error_mark_node;
3480 }
3481
3482 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
3483 {
3484 if (pedantic)
3485 {
3486 if (TREE_CODE (type) == RECORD_TYPE
3487 || TREE_CODE (type) == UNION_TYPE)
3488 pedwarn ("ISO C forbids casting nonscalar to the same type");
3489 }
3490 }
3491 else if (TREE_CODE (type) == UNION_TYPE)
3492 {
3493 tree field;
3494
3495 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3496 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
3497 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
3498 break;
3499
3500 if (field)
3501 {
3502 tree t;
3503
3504 if (pedantic)
3505 pedwarn ("ISO C forbids casts to union type");
3506 t = digest_init (type,
3507 build_constructor_single (type, field, value),
3508 true, 0);
3509 TREE_CONSTANT (t) = TREE_CONSTANT (value);
3510 TREE_INVARIANT (t) = TREE_INVARIANT (value);
3511 return t;
3512 }
3513 error ("cast to union type from type not present in union");
3514 return error_mark_node;
3515 }
3516 else
3517 {
3518 tree otype, ovalue;
3519
3520 if (type == void_type_node)
3521 return build1 (CONVERT_EXPR, type, value);
3522
3523 otype = TREE_TYPE (value);
3524
3525 /* Optionally warn about potentially worrisome casts. */
3526
3527 if (warn_cast_qual
3528 && TREE_CODE (type) == POINTER_TYPE
3529 && TREE_CODE (otype) == POINTER_TYPE)
3530 {
3531 tree in_type = type;
3532 tree in_otype = otype;
3533 int added = 0;
3534 int discarded = 0;
3535
3536 /* Check that the qualifiers on IN_TYPE are a superset of
3537 the qualifiers of IN_OTYPE. The outermost level of
3538 POINTER_TYPE nodes is uninteresting and we stop as soon
3539 as we hit a non-POINTER_TYPE node on either type. */
3540 do
3541 {
3542 in_otype = TREE_TYPE (in_otype);
3543 in_type = TREE_TYPE (in_type);
3544
3545 /* GNU C allows cv-qualified function types. 'const'
3546 means the function is very pure, 'volatile' means it
3547 can't return. We need to warn when such qualifiers
3548 are added, not when they're taken away. */
3549 if (TREE_CODE (in_otype) == FUNCTION_TYPE
3550 && TREE_CODE (in_type) == FUNCTION_TYPE)
3551 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
3552 else
3553 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
3554 }
3555 while (TREE_CODE (in_type) == POINTER_TYPE
3556 && TREE_CODE (in_otype) == POINTER_TYPE);
3557
3558 if (added)
3559 warning (0, "cast adds new qualifiers to function type");
3560
3561 if (discarded)
3562 /* There are qualifiers present in IN_OTYPE that are not
3563 present in IN_TYPE. */
3564 warning (0, "cast discards qualifiers from pointer target type");
3565 }
3566
3567 /* Warn about possible alignment problems. */
3568 if (STRICT_ALIGNMENT
3569 && TREE_CODE (type) == POINTER_TYPE
3570 && TREE_CODE (otype) == POINTER_TYPE
3571 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
3572 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3573 /* Don't warn about opaque types, where the actual alignment
3574 restriction is unknown. */
3575 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
3576 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
3577 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
3578 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
3579 warning (OPT_Wcast_align,
3580 "cast increases required alignment of target type");
3581
3582 if (TREE_CODE (type) == INTEGER_TYPE
3583 && TREE_CODE (otype) == POINTER_TYPE
3584 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
3585 /* Unlike conversion of integers to pointers, where the
3586 warning is disabled for converting constants because
3587 of cases such as SIG_*, warn about converting constant
3588 pointers to integers. In some cases it may cause unwanted
3589 sign extension, and a warning is appropriate. */
3590 warning (OPT_Wpointer_to_int_cast,
3591 "cast from pointer to integer of different size");
3592
3593 if (TREE_CODE (value) == CALL_EXPR
3594 && TREE_CODE (type) != TREE_CODE (otype))
3595 warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
3596 "to non-matching type %qT", otype, type);
3597
3598 if (TREE_CODE (type) == POINTER_TYPE
3599 && TREE_CODE (otype) == INTEGER_TYPE
3600 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
3601 /* Don't warn about converting any constant. */
3602 && !TREE_CONSTANT (value))
3603 warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
3604 "of different size");
3605
3606 if (warn_strict_aliasing <= 2)
3607 strict_aliasing_warning (otype, type, expr);
3608
3609 /* If pedantic, warn for conversions between function and object
3610 pointer types, except for converting a null pointer constant
3611 to function pointer type. */
3612 if (pedantic
3613 && TREE_CODE (type) == POINTER_TYPE
3614 && TREE_CODE (otype) == POINTER_TYPE
3615 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
3616 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
3617 pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
3618
3619 if (pedantic
3620 && TREE_CODE (type) == POINTER_TYPE
3621 && TREE_CODE (otype) == POINTER_TYPE
3622 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3623 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
3624 && !null_pointer_constant_p (value))
3625 pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
3626
3627 ovalue = value;
3628 value = convert (type, value);
3629
3630 /* Ignore any integer overflow caused by the cast. */
3631 if (TREE_CODE (value) == INTEGER_CST)
3632 {
3633 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
3634 {
3635 if (!TREE_OVERFLOW (value))
3636 {
3637 /* Avoid clobbering a shared constant. */
3638 value = copy_node (value);
3639 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
3640 }
3641 }
3642 else if (TREE_OVERFLOW (value))
3643 /* Reset VALUE's overflow flags, ensuring constant sharing. */
3644 value = build_int_cst_wide (TREE_TYPE (value),
3645 TREE_INT_CST_LOW (value),
3646 TREE_INT_CST_HIGH (value));
3647 }
3648 }
3649
3650 /* Don't let a cast be an lvalue. */
3651 if (value == expr)
3652 value = non_lvalue (value);
3653
3654 return value;
3655 }
3656
3657 /* Interpret a cast of expression EXPR to type TYPE. */
3658 tree
3659 c_cast_expr (struct c_type_name *type_name, tree expr)
3660 {
3661 tree type;
3662 int saved_wsp = warn_strict_prototypes;
3663
3664 /* This avoids warnings about unprototyped casts on
3665 integers. E.g. "#define SIG_DFL (void(*)())0". */
3666 if (TREE_CODE (expr) == INTEGER_CST)
3667 warn_strict_prototypes = 0;
3668 type = groktypename (type_name);
3669 warn_strict_prototypes = saved_wsp;
3670
3671 return build_c_cast (type, expr);
3672 }
3673 \f
3674 /* Build an assignment expression of lvalue LHS from value RHS.
3675 MODIFYCODE is the code for a binary operator that we use
3676 to combine the old value of LHS with RHS to get the new value.
3677 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3678
3679 tree
3680 build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
3681 {
3682 tree result;
3683 tree newrhs;
3684 tree lhstype = TREE_TYPE (lhs);
3685 tree olhstype = lhstype;
3686
3687 /* Types that aren't fully specified cannot be used in assignments. */
3688 lhs = require_complete_type (lhs);
3689
3690 /* Avoid duplicate error messages from operands that had errors. */
3691 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
3692 return error_mark_node;
3693
3694 if (!lvalue_or_else (lhs, lv_assign))
3695 return error_mark_node;
3696
3697 STRIP_TYPE_NOPS (rhs);
3698
3699 newrhs = rhs;
3700
3701 /* If a binary op has been requested, combine the old LHS value with the RHS
3702 producing the value we should actually store into the LHS. */
3703
3704 if (modifycode != NOP_EXPR)
3705 {
3706 lhs = stabilize_reference (lhs);
3707 newrhs = build_binary_op (modifycode, lhs, rhs, 1);
3708 }
3709
3710 /* Give an error for storing in something that is 'const'. */
3711
3712 if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
3713 || ((TREE_CODE (lhstype) == RECORD_TYPE
3714 || TREE_CODE (lhstype) == UNION_TYPE)
3715 && C_TYPE_FIELDS_READONLY (lhstype)))
3716 {
3717 readonly_error (lhs, lv_assign);
3718 return error_mark_node;
3719 }
3720
3721 /* If storing into a structure or union member,
3722 it has probably been given type `int'.
3723 Compute the type that would go with
3724 the actual amount of storage the member occupies. */
3725
3726 if (TREE_CODE (lhs) == COMPONENT_REF
3727 && (TREE_CODE (lhstype) == INTEGER_TYPE
3728 || TREE_CODE (lhstype) == BOOLEAN_TYPE
3729 || TREE_CODE (lhstype) == REAL_TYPE
3730 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
3731 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
3732
3733 /* If storing in a field that is in actuality a short or narrower than one,
3734 we must store in the field in its actual type. */
3735
3736 if (lhstype != TREE_TYPE (lhs))
3737 {
3738 lhs = copy_node (lhs);
3739 TREE_TYPE (lhs) = lhstype;
3740 }
3741
3742 /* Convert new value to destination type. */
3743
3744 newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
3745 NULL_TREE, NULL_TREE, 0);
3746 if (TREE_CODE (newrhs) == ERROR_MARK)
3747 return error_mark_node;
3748
3749 /* Emit ObjC write barrier, if necessary. */
3750 if (c_dialect_objc () && flag_objc_gc)
3751 {
3752 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
3753 if (result)
3754 return result;
3755 }
3756
3757 /* Scan operands. */
3758
3759 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
3760 TREE_SIDE_EFFECTS (result) = 1;
3761
3762 /* If we got the LHS in a different type for storing in,
3763 convert the result back to the nominal type of LHS
3764 so that the value we return always has the same type
3765 as the LHS argument. */
3766
3767 if (olhstype == TREE_TYPE (result))
3768 return result;
3769 return convert_for_assignment (olhstype, result, ic_assign,
3770 NULL_TREE, NULL_TREE, 0);
3771 }
3772 \f
3773 /* Convert value RHS to type TYPE as preparation for an assignment
3774 to an lvalue of type TYPE.
3775 The real work of conversion is done by `convert'.
3776 The purpose of this function is to generate error messages
3777 for assignments that are not allowed in C.
3778 ERRTYPE says whether it is argument passing, assignment,
3779 initialization or return.
3780
3781 FUNCTION is a tree for the function being called.
3782 PARMNUM is the number of the argument, for printing in error messages. */
3783
3784 static tree
3785 convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
3786 tree fundecl, tree function, int parmnum)
3787 {
3788 enum tree_code codel = TREE_CODE (type);
3789 tree rhstype;
3790 enum tree_code coder;
3791 tree rname = NULL_TREE;
3792 bool objc_ok = false;
3793
3794 if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
3795 {
3796 tree selector;
3797 /* Change pointer to function to the function itself for
3798 diagnostics. */
3799 if (TREE_CODE (function) == ADDR_EXPR
3800 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
3801 function = TREE_OPERAND (function, 0);
3802
3803 /* Handle an ObjC selector specially for diagnostics. */
3804 selector = objc_message_selector ();
3805 rname = function;
3806 if (selector && parmnum > 2)
3807 {
3808 rname = selector;
3809 parmnum -= 2;
3810 }
3811 }
3812
3813 /* This macro is used to emit diagnostics to ensure that all format
3814 strings are complete sentences, visible to gettext and checked at
3815 compile time. */
3816 #define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE) \
3817 do { \
3818 switch (errtype) \
3819 { \
3820 case ic_argpass: \
3821 pedwarn (AR, parmnum, rname); \
3822 break; \
3823 case ic_argpass_nonproto: \
3824 warning (0, AR, parmnum, rname); \
3825 break; \
3826 case ic_assign: \
3827 pedwarn (AS); \
3828 break; \
3829 case ic_init: \
3830 pedwarn (IN); \
3831 break; \
3832 case ic_return: \
3833 pedwarn (RE); \
3834 break; \
3835 default: \
3836 gcc_unreachable (); \
3837 } \
3838 } while (0)
3839
3840 STRIP_TYPE_NOPS (rhs);
3841
3842 if (optimize && TREE_CODE (rhs) == VAR_DECL
3843 && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
3844 rhs = decl_constant_value_for_broken_optimization (rhs);
3845
3846 rhstype = TREE_TYPE (rhs);
3847 coder = TREE_CODE (rhstype);
3848
3849 if (coder == ERROR_MARK)
3850 return error_mark_node;
3851
3852 if (c_dialect_objc ())
3853 {
3854 int parmno;
3855
3856 switch (errtype)
3857 {
3858 case ic_return:
3859 parmno = 0;
3860 break;
3861
3862 case ic_assign:
3863 parmno = -1;
3864 break;
3865
3866 case ic_init:
3867 parmno = -2;
3868 break;
3869
3870 default:
3871 parmno = parmnum;
3872 break;
3873 }
3874
3875 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
3876 }
3877
3878 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
3879 return rhs;
3880
3881 if (coder == VOID_TYPE)
3882 {
3883 /* Except for passing an argument to an unprototyped function,
3884 this is a constraint violation. When passing an argument to
3885 an unprototyped function, it is compile-time undefined;
3886 making it a constraint in that case was rejected in
3887 DR#252. */
3888 error ("void value not ignored as it ought to be");
3889 return error_mark_node;
3890 }
3891 /* A type converts to a reference to it.
3892 This code doesn't fully support references, it's just for the
3893 special case of va_start and va_copy. */
3894 if (codel == REFERENCE_TYPE
3895 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
3896 {
3897 if (!lvalue_p (rhs))
3898 {
3899 error ("cannot pass rvalue to reference parameter");
3900 return error_mark_node;
3901 }
3902 if (!c_mark_addressable (rhs))
3903 return error_mark_node;
3904 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
3905
3906 /* We already know that these two types are compatible, but they
3907 may not be exactly identical. In fact, `TREE_TYPE (type)' is
3908 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
3909 likely to be va_list, a typedef to __builtin_va_list, which
3910 is different enough that it will cause problems later. */
3911 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
3912 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
3913
3914 rhs = build1 (NOP_EXPR, type, rhs);
3915 return rhs;
3916 }
3917 /* Some types can interconvert without explicit casts. */
3918 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
3919 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
3920 return convert (type, rhs);
3921 /* Arithmetic types all interconvert, and enum is treated like int. */
3922 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
3923 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
3924 || codel == BOOLEAN_TYPE)
3925 && (coder == INTEGER_TYPE || coder == REAL_TYPE
3926 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
3927 || coder == BOOLEAN_TYPE))
3928 return convert_and_check (type, rhs);
3929
3930 /* Aggregates in different TUs might need conversion. */
3931 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
3932 && codel == coder
3933 && comptypes (type, rhstype))
3934 return convert_and_check (type, rhs);
3935
3936 /* Conversion to a transparent union from its member types.
3937 This applies only to function arguments. */
3938 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
3939 && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
3940 {
3941 tree memb, marginal_memb = NULL_TREE;
3942
3943 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
3944 {
3945 tree memb_type = TREE_TYPE (memb);
3946
3947 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
3948 TYPE_MAIN_VARIANT (rhstype)))
3949 break;
3950
3951 if (TREE_CODE (memb_type) != POINTER_TYPE)
3952 continue;
3953
3954 if (coder == POINTER_TYPE)
3955 {
3956 tree ttl = TREE_TYPE (memb_type);
3957 tree ttr = TREE_TYPE (rhstype);
3958
3959 /* Any non-function converts to a [const][volatile] void *
3960 and vice versa; otherwise, targets must be the same.
3961 Meanwhile, the lhs target must have all the qualifiers of
3962 the rhs. */
3963 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
3964 || comp_target_types (memb_type, rhstype))
3965 {
3966 /* If this type won't generate any warnings, use it. */
3967 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
3968 || ((TREE_CODE (ttr) == FUNCTION_TYPE
3969 && TREE_CODE (ttl) == FUNCTION_TYPE)
3970 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3971 == TYPE_QUALS (ttr))
3972 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
3973 == TYPE_QUALS (ttl))))
3974 break;
3975
3976 /* Keep looking for a better type, but remember this one. */
3977 if (!marginal_memb)
3978 marginal_memb = memb;
3979 }
3980 }
3981
3982 /* Can convert integer zero to any pointer type. */
3983 if (null_pointer_constant_p (rhs))
3984 {
3985 rhs = null_pointer_node;
3986 break;
3987 }
3988 }
3989
3990 if (memb || marginal_memb)
3991 {
3992 if (!memb)
3993 {
3994 /* We have only a marginally acceptable member type;
3995 it needs a warning. */
3996 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
3997 tree ttr = TREE_TYPE (rhstype);
3998
3999 /* Const and volatile mean something different for function
4000 types, so the usual warnings are not appropriate. */
4001 if (TREE_CODE (ttr) == FUNCTION_TYPE
4002 && TREE_CODE (ttl) == FUNCTION_TYPE)
4003 {
4004 /* Because const and volatile on functions are
4005 restrictions that say the function will not do
4006 certain things, it is okay to use a const or volatile
4007 function where an ordinary one is wanted, but not
4008 vice-versa. */
4009 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4010 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
4011 "makes qualified function "
4012 "pointer from unqualified"),
4013 G_("assignment makes qualified "
4014 "function pointer from "
4015 "unqualified"),
4016 G_("initialization makes qualified "
4017 "function pointer from "
4018 "unqualified"),
4019 G_("return makes qualified function "
4020 "pointer from unqualified"));
4021 }
4022 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4023 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4024 "qualifiers from pointer target type"),
4025 G_("assignment discards qualifiers "
4026 "from pointer target type"),
4027 G_("initialization discards qualifiers "
4028 "from pointer target type"),
4029 G_("return discards qualifiers from "
4030 "pointer target type"));
4031
4032 memb = marginal_memb;
4033 }
4034
4035 if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
4036 pedwarn ("ISO C prohibits argument conversion to union type");
4037
4038 return build_constructor_single (type, memb, rhs);
4039 }
4040 }
4041
4042 /* Conversions among pointers */
4043 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4044 && (coder == codel))
4045 {
4046 tree ttl = TREE_TYPE (type);
4047 tree ttr = TREE_TYPE (rhstype);
4048 tree mvl = ttl;
4049 tree mvr = ttr;
4050 bool is_opaque_pointer;
4051 int target_cmp = 0; /* Cache comp_target_types () result. */
4052
4053 if (TREE_CODE (mvl) != ARRAY_TYPE)
4054 mvl = TYPE_MAIN_VARIANT (mvl);
4055 if (TREE_CODE (mvr) != ARRAY_TYPE)
4056 mvr = TYPE_MAIN_VARIANT (mvr);
4057 /* Opaque pointers are treated like void pointers. */
4058 is_opaque_pointer = (targetm.vector_opaque_p (type)
4059 || targetm.vector_opaque_p (rhstype))
4060 && TREE_CODE (ttl) == VECTOR_TYPE
4061 && TREE_CODE (ttr) == VECTOR_TYPE;
4062
4063 /* C++ does not allow the implicit conversion void* -> T*. However,
4064 for the purpose of reducing the number of false positives, we
4065 tolerate the special case of
4066
4067 int *p = NULL;
4068
4069 where NULL is typically defined in C to be '(void *) 0'. */
4070 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4071 warning (OPT_Wc___compat, "request for implicit conversion from "
4072 "%qT to %qT not permitted in C++", rhstype, type);
4073
4074 /* Check if the right-hand side has a format attribute but the
4075 left-hand side doesn't. */
4076 if (warn_missing_format_attribute
4077 && check_missing_format_attribute (type, rhstype))
4078 {
4079 switch (errtype)
4080 {
4081 case ic_argpass:
4082 case ic_argpass_nonproto:
4083 warning (OPT_Wmissing_format_attribute,
4084 "argument %d of %qE might be "
4085 "a candidate for a format attribute",
4086 parmnum, rname);
4087 break;
4088 case ic_assign:
4089 warning (OPT_Wmissing_format_attribute,
4090 "assignment left-hand side might be "
4091 "a candidate for a format attribute");
4092 break;
4093 case ic_init:
4094 warning (OPT_Wmissing_format_attribute,
4095 "initialization left-hand side might be "
4096 "a candidate for a format attribute");
4097 break;
4098 case ic_return:
4099 warning (OPT_Wmissing_format_attribute,
4100 "return type might be "
4101 "a candidate for a format attribute");
4102 break;
4103 default:
4104 gcc_unreachable ();
4105 }
4106 }
4107
4108 /* Any non-function converts to a [const][volatile] void *
4109 and vice versa; otherwise, targets must be the same.
4110 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4111 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4112 || (target_cmp = comp_target_types (type, rhstype))
4113 || is_opaque_pointer
4114 || (c_common_unsigned_type (mvl)
4115 == c_common_unsigned_type (mvr)))
4116 {
4117 if (pedantic
4118 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
4119 ||
4120 (VOID_TYPE_P (ttr)
4121 && !null_pointer_constant_p (rhs)
4122 && TREE_CODE (ttl) == FUNCTION_TYPE)))
4123 WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
4124 "%qE between function pointer "
4125 "and %<void *%>"),
4126 G_("ISO C forbids assignment between "
4127 "function pointer and %<void *%>"),
4128 G_("ISO C forbids initialization between "
4129 "function pointer and %<void *%>"),
4130 G_("ISO C forbids return between function "
4131 "pointer and %<void *%>"));
4132 /* Const and volatile mean something different for function types,
4133 so the usual warnings are not appropriate. */
4134 else if (TREE_CODE (ttr) != FUNCTION_TYPE
4135 && TREE_CODE (ttl) != FUNCTION_TYPE)
4136 {
4137 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4138 {
4139 /* Types differing only by the presence of the 'volatile'
4140 qualifier are acceptable if the 'volatile' has been added
4141 in by the Objective-C EH machinery. */
4142 if (!objc_type_quals_match (ttl, ttr))
4143 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
4144 "qualifiers from pointer target type"),
4145 G_("assignment discards qualifiers "
4146 "from pointer target type"),
4147 G_("initialization discards qualifiers "
4148 "from pointer target type"),
4149 G_("return discards qualifiers from "
4150 "pointer target type"));
4151 }
4152 /* If this is not a case of ignoring a mismatch in signedness,
4153 no warning. */
4154 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4155 || target_cmp)
4156 ;
4157 /* If there is a mismatch, do warn. */
4158 else if (warn_pointer_sign)
4159 WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
4160 "%d of %qE differ in signedness"),
4161 G_("pointer targets in assignment "
4162 "differ in signedness"),
4163 G_("pointer targets in initialization "
4164 "differ in signedness"),
4165 G_("pointer targets in return differ "
4166 "in signedness"));
4167 }
4168 else if (TREE_CODE (ttl) == FUNCTION_TYPE
4169 && TREE_CODE (ttr) == FUNCTION_TYPE)
4170 {
4171 /* Because const and volatile on functions are restrictions
4172 that say the function will not do certain things,
4173 it is okay to use a const or volatile function
4174 where an ordinary one is wanted, but not vice-versa. */
4175 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4176 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4177 "qualified function pointer "
4178 "from unqualified"),
4179 G_("assignment makes qualified function "
4180 "pointer from unqualified"),
4181 G_("initialization makes qualified "
4182 "function pointer from unqualified"),
4183 G_("return makes qualified function "
4184 "pointer from unqualified"));
4185 }
4186 }
4187 else
4188 /* Avoid warning about the volatile ObjC EH puts on decls. */
4189 if (!objc_ok)
4190 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
4191 "incompatible pointer type"),
4192 G_("assignment from incompatible pointer type"),
4193 G_("initialization from incompatible "
4194 "pointer type"),
4195 G_("return from incompatible pointer type"));
4196
4197 return convert (type, rhs);
4198 }
4199 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
4200 {
4201 /* ??? This should not be an error when inlining calls to
4202 unprototyped functions. */
4203 error ("invalid use of non-lvalue array");
4204 return error_mark_node;
4205 }
4206 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
4207 {
4208 /* An explicit constant 0 can convert to a pointer,
4209 or one that results from arithmetic, even including
4210 a cast to integer type. */
4211 if (!null_pointer_constant_p (rhs))
4212 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
4213 "pointer from integer without a cast"),
4214 G_("assignment makes pointer from integer "
4215 "without a cast"),
4216 G_("initialization makes pointer from "
4217 "integer without a cast"),
4218 G_("return makes pointer from integer "
4219 "without a cast"));
4220
4221 return convert (type, rhs);
4222 }
4223 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
4224 {
4225 WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
4226 "from pointer without a cast"),
4227 G_("assignment makes integer from pointer "
4228 "without a cast"),
4229 G_("initialization makes integer from pointer "
4230 "without a cast"),
4231 G_("return makes integer from pointer "
4232 "without a cast"));
4233 return convert (type, rhs);
4234 }
4235 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
4236 return convert (type, rhs);
4237
4238 switch (errtype)
4239 {
4240 case ic_argpass:
4241 case ic_argpass_nonproto:
4242 /* ??? This should not be an error when inlining calls to
4243 unprototyped functions. */
4244 error ("incompatible type for argument %d of %qE", parmnum, rname);
4245 break;
4246 case ic_assign:
4247 error ("incompatible types in assignment");
4248 break;
4249 case ic_init:
4250 error ("incompatible types in initialization");
4251 break;
4252 case ic_return:
4253 error ("incompatible types in return");
4254 break;
4255 default:
4256 gcc_unreachable ();
4257 }
4258
4259 return error_mark_node;
4260 }
4261 \f
4262 /* If VALUE is a compound expr all of whose expressions are constant, then
4263 return its value. Otherwise, return error_mark_node.
4264
4265 This is for handling COMPOUND_EXPRs as initializer elements
4266 which is allowed with a warning when -pedantic is specified. */
4267
4268 static tree
4269 valid_compound_expr_initializer (tree value, tree endtype)
4270 {
4271 if (TREE_CODE (value) == COMPOUND_EXPR)
4272 {
4273 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
4274 == error_mark_node)
4275 return error_mark_node;
4276 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
4277 endtype);
4278 }
4279 else if (!initializer_constant_valid_p (value, endtype))
4280 return error_mark_node;
4281 else
4282 return value;
4283 }
4284 \f
4285 /* Perform appropriate conversions on the initial value of a variable,
4286 store it in the declaration DECL,
4287 and print any error messages that are appropriate.
4288 If the init is invalid, store an ERROR_MARK. */
4289
4290 void
4291 store_init_value (tree decl, tree init)
4292 {
4293 tree value, type;
4294
4295 /* If variable's type was invalidly declared, just ignore it. */
4296
4297 type = TREE_TYPE (decl);
4298 if (TREE_CODE (type) == ERROR_MARK)
4299 return;
4300
4301 /* Digest the specified initializer into an expression. */
4302
4303 value = digest_init (type, init, true, TREE_STATIC (decl));
4304
4305 /* Store the expression if valid; else report error. */
4306
4307 if (!in_system_header
4308 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
4309 warning (OPT_Wtraditional, "traditional C rejects automatic "
4310 "aggregate initialization");
4311
4312 DECL_INITIAL (decl) = value;
4313
4314 /* ANSI wants warnings about out-of-range constant initializers. */
4315 STRIP_TYPE_NOPS (value);
4316 if (TREE_STATIC (decl))
4317 constant_expression_warning (value);
4318
4319 /* Check if we need to set array size from compound literal size. */
4320 if (TREE_CODE (type) == ARRAY_TYPE
4321 && TYPE_DOMAIN (type) == 0
4322 && value != error_mark_node)
4323 {
4324 tree inside_init = init;
4325
4326 STRIP_TYPE_NOPS (inside_init);
4327 inside_init = fold (inside_init);
4328
4329 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4330 {
4331 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4332
4333 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
4334 {
4335 /* For int foo[] = (int [3]){1}; we need to set array size
4336 now since later on array initializer will be just the
4337 brace enclosed list of the compound literal. */
4338 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
4339 TREE_TYPE (decl) = type;
4340 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
4341 layout_type (type);
4342 layout_decl (cldecl, 0);
4343 }
4344 }
4345 }
4346 }
4347 \f
4348 /* Methods for storing and printing names for error messages. */
4349
4350 /* Implement a spelling stack that allows components of a name to be pushed
4351 and popped. Each element on the stack is this structure. */
4352
4353 struct spelling
4354 {
4355 int kind;
4356 union
4357 {
4358 unsigned HOST_WIDE_INT i;
4359 const char *s;
4360 } u;
4361 };
4362
4363 #define SPELLING_STRING 1
4364 #define SPELLING_MEMBER 2
4365 #define SPELLING_BOUNDS 3
4366
4367 static struct spelling *spelling; /* Next stack element (unused). */
4368 static struct spelling *spelling_base; /* Spelling stack base. */
4369 static int spelling_size; /* Size of the spelling stack. */
4370
4371 /* Macros to save and restore the spelling stack around push_... functions.
4372 Alternative to SAVE_SPELLING_STACK. */
4373
4374 #define SPELLING_DEPTH() (spelling - spelling_base)
4375 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
4376
4377 /* Push an element on the spelling stack with type KIND and assign VALUE
4378 to MEMBER. */
4379
4380 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4381 { \
4382 int depth = SPELLING_DEPTH (); \
4383 \
4384 if (depth >= spelling_size) \
4385 { \
4386 spelling_size += 10; \
4387 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
4388 spelling_size); \
4389 RESTORE_SPELLING_DEPTH (depth); \
4390 } \
4391 \
4392 spelling->kind = (KIND); \
4393 spelling->MEMBER = (VALUE); \
4394 spelling++; \
4395 }
4396
4397 /* Push STRING on the stack. Printed literally. */
4398
4399 static void
4400 push_string (const char *string)
4401 {
4402 PUSH_SPELLING (SPELLING_STRING, string, u.s);
4403 }
4404
4405 /* Push a member name on the stack. Printed as '.' STRING. */
4406
4407 static void
4408 push_member_name (tree decl)
4409 {
4410 const char *const string
4411 = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
4412 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
4413 }
4414
4415 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4416
4417 static void
4418 push_array_bounds (unsigned HOST_WIDE_INT bounds)
4419 {
4420 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
4421 }
4422
4423 /* Compute the maximum size in bytes of the printed spelling. */
4424
4425 static int
4426 spelling_length (void)
4427 {
4428 int size = 0;
4429 struct spelling *p;
4430
4431 for (p = spelling_base; p < spelling; p++)
4432 {
4433 if (p->kind == SPELLING_BOUNDS)
4434 size += 25;
4435 else
4436 size += strlen (p->u.s) + 1;
4437 }
4438
4439 return size;
4440 }
4441
4442 /* Print the spelling to BUFFER and return it. */
4443
4444 static char *
4445 print_spelling (char *buffer)
4446 {
4447 char *d = buffer;
4448 struct spelling *p;
4449
4450 for (p = spelling_base; p < spelling; p++)
4451 if (p->kind == SPELLING_BOUNDS)
4452 {
4453 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
4454 d += strlen (d);
4455 }
4456 else
4457 {
4458 const char *s;
4459 if (p->kind == SPELLING_MEMBER)
4460 *d++ = '.';
4461 for (s = p->u.s; (*d = *s++); d++)
4462 ;
4463 }
4464 *d++ = '\0';
4465 return buffer;
4466 }
4467
4468 /* Issue an error message for a bad initializer component.
4469 MSGID identifies the message.
4470 The component name is taken from the spelling stack. */
4471
4472 void
4473 error_init (const char *msgid)
4474 {
4475 char *ofwhat;
4476
4477 error ("%s", _(msgid));
4478 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4479 if (*ofwhat)
4480 error ("(near initialization for %qs)", ofwhat);
4481 }
4482
4483 /* Issue a pedantic warning for a bad initializer component.
4484 MSGID identifies the message.
4485 The component name is taken from the spelling stack. */
4486
4487 void
4488 pedwarn_init (const char *msgid)
4489 {
4490 char *ofwhat;
4491
4492 pedwarn ("%s", _(msgid));
4493 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4494 if (*ofwhat)
4495 pedwarn ("(near initialization for %qs)", ofwhat);
4496 }
4497
4498 /* Issue a warning for a bad initializer component.
4499 MSGID identifies the message.
4500 The component name is taken from the spelling stack. */
4501
4502 static void
4503 warning_init (const char *msgid)
4504 {
4505 char *ofwhat;
4506
4507 warning (0, "%s", _(msgid));
4508 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
4509 if (*ofwhat)
4510 warning (0, "(near initialization for %qs)", ofwhat);
4511 }
4512 \f
4513 /* If TYPE is an array type and EXPR is a parenthesized string
4514 constant, warn if pedantic that EXPR is being used to initialize an
4515 object of type TYPE. */
4516
4517 void
4518 maybe_warn_string_init (tree type, struct c_expr expr)
4519 {
4520 if (pedantic
4521 && TREE_CODE (type) == ARRAY_TYPE
4522 && TREE_CODE (expr.value) == STRING_CST
4523 && expr.original_code != STRING_CST)
4524 pedwarn_init ("array initialized from parenthesized string constant");
4525 }
4526
4527 /* Digest the parser output INIT as an initializer for type TYPE.
4528 Return a C expression of type TYPE to represent the initial value.
4529
4530 If INIT is a string constant, STRICT_STRING is true if it is
4531 unparenthesized or we should not warn here for it being parenthesized.
4532 For other types of INIT, STRICT_STRING is not used.
4533
4534 REQUIRE_CONSTANT requests an error if non-constant initializers or
4535 elements are seen. */
4536
4537 static tree
4538 digest_init (tree type, tree init, bool strict_string, int require_constant)
4539 {
4540 enum tree_code code = TREE_CODE (type);
4541 tree inside_init = init;
4542
4543 if (type == error_mark_node
4544 || !init
4545 || init == error_mark_node
4546 || TREE_TYPE (init) == error_mark_node)
4547 return error_mark_node;
4548
4549 STRIP_TYPE_NOPS (inside_init);
4550
4551 inside_init = fold (inside_init);
4552
4553 /* Initialization of an array of chars from a string constant
4554 optionally enclosed in braces. */
4555
4556 if (code == ARRAY_TYPE && inside_init
4557 && TREE_CODE (inside_init) == STRING_CST)
4558 {
4559 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4560 /* Note that an array could be both an array of character type
4561 and an array of wchar_t if wchar_t is signed char or unsigned
4562 char. */
4563 bool char_array = (typ1 == char_type_node
4564 || typ1 == signed_char_type_node
4565 || typ1 == unsigned_char_type_node);
4566 bool wchar_array = !!comptypes (typ1, wchar_type_node);
4567 if (char_array || wchar_array)
4568 {
4569 struct c_expr expr;
4570 bool char_string;
4571 expr.value = inside_init;
4572 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
4573 maybe_warn_string_init (type, expr);
4574
4575 char_string
4576 = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
4577 == char_type_node);
4578
4579 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4580 TYPE_MAIN_VARIANT (type)))
4581 return inside_init;
4582
4583 if (!wchar_array && !char_string)
4584 {
4585 error_init ("char-array initialized from wide string");
4586 return error_mark_node;
4587 }
4588 if (char_string && !char_array)
4589 {
4590 error_init ("wchar_t-array initialized from non-wide string");
4591 return error_mark_node;
4592 }
4593
4594 TREE_TYPE (inside_init) = type;
4595 if (TYPE_DOMAIN (type) != 0
4596 && TYPE_SIZE (type) != 0
4597 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
4598 /* Subtract 1 (or sizeof (wchar_t))
4599 because it's ok to ignore the terminating null char
4600 that is counted in the length of the constant. */
4601 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
4602 TREE_STRING_LENGTH (inside_init)
4603 - ((TYPE_PRECISION (typ1)
4604 != TYPE_PRECISION (char_type_node))
4605 ? (TYPE_PRECISION (wchar_type_node)
4606 / BITS_PER_UNIT)
4607 : 1)))
4608 pedwarn_init ("initializer-string for array of chars is too long");
4609
4610 return inside_init;
4611 }
4612 else if (INTEGRAL_TYPE_P (typ1))
4613 {
4614 error_init ("array of inappropriate type initialized "
4615 "from string constant");
4616 return error_mark_node;
4617 }
4618 }
4619
4620 /* Build a VECTOR_CST from a *constant* vector constructor. If the
4621 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
4622 below and handle as a constructor. */
4623 if (code == VECTOR_TYPE
4624 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
4625 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
4626 && TREE_CONSTANT (inside_init))
4627 {
4628 if (TREE_CODE (inside_init) == VECTOR_CST
4629 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4630 TYPE_MAIN_VARIANT (type)))
4631 return inside_init;
4632
4633 if (TREE_CODE (inside_init) == CONSTRUCTOR)
4634 {
4635 unsigned HOST_WIDE_INT ix;
4636 tree value;
4637 bool constant_p = true;
4638
4639 /* Iterate through elements and check if all constructor
4640 elements are *_CSTs. */
4641 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
4642 if (!CONSTANT_CLASS_P (value))
4643 {
4644 constant_p = false;
4645 break;
4646 }
4647
4648 if (constant_p)
4649 return build_vector_from_ctor (type,
4650 CONSTRUCTOR_ELTS (inside_init));
4651 }
4652 }
4653
4654 /* Any type can be initialized
4655 from an expression of the same type, optionally with braces. */
4656
4657 if (inside_init && TREE_TYPE (inside_init) != 0
4658 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
4659 TYPE_MAIN_VARIANT (type))
4660 || (code == ARRAY_TYPE
4661 && comptypes (TREE_TYPE (inside_init), type))
4662 || (code == VECTOR_TYPE
4663 && comptypes (TREE_TYPE (inside_init), type))
4664 || (code == POINTER_TYPE
4665 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
4666 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
4667 TREE_TYPE (type)))))
4668 {
4669 if (code == POINTER_TYPE)
4670 {
4671 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
4672 {
4673 if (TREE_CODE (inside_init) == STRING_CST
4674 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4675 inside_init = array_to_pointer_conversion (inside_init);
4676 else
4677 {
4678 error_init ("invalid use of non-lvalue array");
4679 return error_mark_node;
4680 }
4681 }
4682 }
4683
4684 if (code == VECTOR_TYPE)
4685 /* Although the types are compatible, we may require a
4686 conversion. */
4687 inside_init = convert (type, inside_init);
4688
4689 if (require_constant
4690 && (code == VECTOR_TYPE || !flag_isoc99)
4691 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
4692 {
4693 /* As an extension, allow initializing objects with static storage
4694 duration with compound literals (which are then treated just as
4695 the brace enclosed list they contain). Also allow this for
4696 vectors, as we can only assign them with compound literals. */
4697 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
4698 inside_init = DECL_INITIAL (decl);
4699 }
4700
4701 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
4702 && TREE_CODE (inside_init) != CONSTRUCTOR)
4703 {
4704 error_init ("array initialized from non-constant array expression");
4705 return error_mark_node;
4706 }
4707
4708 if (optimize && TREE_CODE (inside_init) == VAR_DECL)
4709 inside_init = decl_constant_value_for_broken_optimization (inside_init);
4710
4711 /* Compound expressions can only occur here if -pedantic or
4712 -pedantic-errors is specified. In the later case, we always want
4713 an error. In the former case, we simply want a warning. */
4714 if (require_constant && pedantic
4715 && TREE_CODE (inside_init) == COMPOUND_EXPR)
4716 {
4717 inside_init
4718 = valid_compound_expr_initializer (inside_init,
4719 TREE_TYPE (inside_init));
4720 if (inside_init == error_mark_node)
4721 error_init ("initializer element is not constant");
4722 else
4723 pedwarn_init ("initializer element is not constant");
4724 if (flag_pedantic_errors)
4725 inside_init = error_mark_node;
4726 }
4727 else if (require_constant
4728 && !initializer_constant_valid_p (inside_init,
4729 TREE_TYPE (inside_init)))
4730 {
4731 error_init ("initializer element is not constant");
4732 inside_init = error_mark_node;
4733 }
4734
4735 /* Added to enable additional -Wmissing-format-attribute warnings. */
4736 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
4737 inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
4738 NULL_TREE, 0);
4739 return inside_init;
4740 }
4741
4742 /* Handle scalar types, including conversions. */
4743
4744 if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
4745 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
4746 || code == VECTOR_TYPE)
4747 {
4748 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4749 && (TREE_CODE (init) == STRING_CST
4750 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
4751 init = array_to_pointer_conversion (init);
4752 inside_init
4753 = convert_for_assignment (type, init, ic_init,
4754 NULL_TREE, NULL_TREE, 0);
4755
4756 /* Check to see if we have already given an error message. */
4757 if (inside_init == error_mark_node)
4758 ;
4759 else if (require_constant && !TREE_CONSTANT (inside_init))
4760 {
4761 error_init ("initializer element is not constant");
4762 inside_init = error_mark_node;
4763 }
4764 else if (require_constant
4765 && !initializer_constant_valid_p (inside_init,
4766 TREE_TYPE (inside_init)))
4767 {
4768 error_init ("initializer element is not computable at load time");
4769 inside_init = error_mark_node;
4770 }
4771
4772 return inside_init;
4773 }
4774
4775 /* Come here only for records and arrays. */
4776
4777 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4778 {
4779 error_init ("variable-sized object may not be initialized");
4780 return error_mark_node;
4781 }
4782
4783 error_init ("invalid initializer");
4784 return error_mark_node;
4785 }
4786 \f
4787 /* Handle initializers that use braces. */
4788
4789 /* Type of object we are accumulating a constructor for.
4790 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4791 static tree constructor_type;
4792
4793 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4794 left to fill. */
4795 static tree constructor_fields;
4796
4797 /* For an ARRAY_TYPE, this is the specified index
4798 at which to store the next element we get. */
4799 static tree constructor_index;
4800
4801 /* For an ARRAY_TYPE, this is the maximum index. */
4802 static tree constructor_max_index;
4803
4804 /* For a RECORD_TYPE, this is the first field not yet written out. */
4805 static tree constructor_unfilled_fields;
4806
4807 /* For an ARRAY_TYPE, this is the index of the first element
4808 not yet written out. */
4809 static tree constructor_unfilled_index;
4810
4811 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4812 This is so we can generate gaps between fields, when appropriate. */
4813 static tree constructor_bit_index;
4814
4815 /* If we are saving up the elements rather than allocating them,
4816 this is the list of elements so far (in reverse order,
4817 most recent first). */
4818 static VEC(constructor_elt,gc) *constructor_elements;
4819
4820 /* 1 if constructor should be incrementally stored into a constructor chain,
4821 0 if all the elements should be kept in AVL tree. */
4822 static int constructor_incremental;
4823
4824 /* 1 if so far this constructor's elements are all compile-time constants. */
4825 static int constructor_constant;
4826
4827 /* 1 if so far this constructor's elements are all valid address constants. */
4828 static int constructor_simple;
4829
4830 /* 1 if this constructor is erroneous so far. */
4831 static int constructor_erroneous;
4832
4833 /* Structure for managing pending initializer elements, organized as an
4834 AVL tree. */
4835
4836 struct init_node
4837 {
4838 struct init_node *left, *right;
4839 struct init_node *parent;
4840 int balance;
4841 tree purpose;
4842 tree value;
4843 };
4844
4845 /* Tree of pending elements at this constructor level.
4846 These are elements encountered out of order
4847 which belong at places we haven't reached yet in actually
4848 writing the output.
4849 Will never hold tree nodes across GC runs. */
4850 static struct init_node *constructor_pending_elts;
4851
4852 /* The SPELLING_DEPTH of this constructor. */
4853 static int constructor_depth;
4854
4855 /* DECL node for which an initializer is being read.
4856 0 means we are reading a constructor expression
4857 such as (struct foo) {...}. */
4858 static tree constructor_decl;
4859
4860 /* Nonzero if this is an initializer for a top-level decl. */
4861 static int constructor_top_level;
4862
4863 /* Nonzero if there were any member designators in this initializer. */
4864 static int constructor_designated;
4865
4866 /* Nesting depth of designator list. */
4867 static int designator_depth;
4868
4869 /* Nonzero if there were diagnosed errors in this designator list. */
4870 static int designator_erroneous;
4871
4872 \f
4873 /* This stack has a level for each implicit or explicit level of
4874 structuring in the initializer, including the outermost one. It
4875 saves the values of most of the variables above. */
4876
4877 struct constructor_range_stack;
4878
4879 struct constructor_stack
4880 {
4881 struct constructor_stack *next;
4882 tree type;
4883 tree fields;
4884 tree index;
4885 tree max_index;
4886 tree unfilled_index;
4887 tree unfilled_fields;
4888 tree bit_index;
4889 VEC(constructor_elt,gc) *elements;
4890 struct init_node *pending_elts;
4891 int offset;
4892 int depth;
4893 /* If value nonzero, this value should replace the entire
4894 constructor at this level. */
4895 struct c_expr replacement_value;
4896 struct constructor_range_stack *range_stack;
4897 char constant;
4898 char simple;
4899 char implicit;
4900 char erroneous;
4901 char outer;
4902 char incremental;
4903 char designated;
4904 };
4905
4906 static struct constructor_stack *constructor_stack;
4907
4908 /* This stack represents designators from some range designator up to
4909 the last designator in the list. */
4910
4911 struct constructor_range_stack
4912 {
4913 struct constructor_range_stack *next, *prev;
4914 struct constructor_stack *stack;
4915 tree range_start;
4916 tree index;
4917 tree range_end;
4918 tree fields;
4919 };
4920
4921 static struct constructor_range_stack *constructor_range_stack;
4922
4923 /* This stack records separate initializers that are nested.
4924 Nested initializers can't happen in ANSI C, but GNU C allows them
4925 in cases like { ... (struct foo) { ... } ... }. */
4926
4927 struct initializer_stack
4928 {
4929 struct initializer_stack *next;
4930 tree decl;
4931 struct constructor_stack *constructor_stack;
4932 struct constructor_range_stack *constructor_range_stack;
4933 VEC(constructor_elt,gc) *elements;
4934 struct spelling *spelling;
4935 struct spelling *spelling_base;
4936 int spelling_size;
4937 char top_level;
4938 char require_constant_value;
4939 char require_constant_elements;
4940 };
4941
4942 static struct initializer_stack *initializer_stack;
4943 \f
4944 /* Prepare to parse and output the initializer for variable DECL. */
4945
4946 void
4947 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
4948 {
4949 const char *locus;
4950 struct initializer_stack *p = XNEW (struct initializer_stack);
4951
4952 p->decl = constructor_decl;
4953 p->require_constant_value = require_constant_value;
4954 p->require_constant_elements = require_constant_elements;
4955 p->constructor_stack = constructor_stack;
4956 p->constructor_range_stack = constructor_range_stack;
4957 p->elements = constructor_elements;
4958 p->spelling = spelling;
4959 p->spelling_base = spelling_base;
4960 p->spelling_size = spelling_size;
4961 p->top_level = constructor_top_level;
4962 p->next = initializer_stack;
4963 initializer_stack = p;
4964
4965 constructor_decl = decl;
4966 constructor_designated = 0;
4967 constructor_top_level = top_level;
4968
4969 if (decl != 0 && decl != error_mark_node)
4970 {
4971 require_constant_value = TREE_STATIC (decl);
4972 require_constant_elements
4973 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
4974 /* For a scalar, you can always use any value to initialize,
4975 even within braces. */
4976 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
4977 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
4978 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
4979 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
4980 locus = IDENTIFIER_POINTER (DECL_NAME (decl));
4981 }
4982 else
4983 {
4984 require_constant_value = 0;
4985 require_constant_elements = 0;
4986 locus = "(anonymous)";
4987 }
4988
4989 constructor_stack = 0;
4990 constructor_range_stack = 0;
4991
4992 missing_braces_mentioned = 0;
4993
4994 spelling_base = 0;
4995 spelling_size = 0;
4996 RESTORE_SPELLING_DEPTH (0);
4997
4998 if (locus)
4999 push_string (locus);
5000 }
5001
5002 void
5003 finish_init (void)
5004 {
5005 struct initializer_stack *p = initializer_stack;
5006
5007 /* Free the whole constructor stack of this initializer. */
5008 while (constructor_stack)
5009 {
5010 struct constructor_stack *q = constructor_stack;
5011 constructor_stack = q->next;
5012 free (q);
5013 }
5014
5015 gcc_assert (!constructor_range_stack);
5016
5017 /* Pop back to the data of the outer initializer (if any). */
5018 free (spelling_base);
5019
5020 constructor_decl = p->decl;
5021 require_constant_value = p->require_constant_value;
5022 require_constant_elements = p->require_constant_elements;
5023 constructor_stack = p->constructor_stack;
5024 constructor_range_stack = p->constructor_range_stack;
5025 constructor_elements = p->elements;
5026 spelling = p->spelling;
5027 spelling_base = p->spelling_base;
5028 spelling_size = p->spelling_size;
5029 constructor_top_level = p->top_level;
5030 initializer_stack = p->next;
5031 free (p);
5032 }
5033 \f
5034 /* Call here when we see the initializer is surrounded by braces.
5035 This is instead of a call to push_init_level;
5036 it is matched by a call to pop_init_level.
5037
5038 TYPE is the type to initialize, for a constructor expression.
5039 For an initializer for a decl, TYPE is zero. */
5040
5041 void
5042 really_start_incremental_init (tree type)
5043 {
5044 struct constructor_stack *p = XNEW (struct constructor_stack);
5045
5046 if (type == 0)
5047 type = TREE_TYPE (constructor_decl);
5048
5049 if (targetm.vector_opaque_p (type))
5050 error ("opaque vector types cannot be initialized");
5051
5052 p->type = constructor_type;
5053 p->fields = constructor_fields;
5054 p->index = constructor_index;
5055 p->max_index = constructor_max_index;
5056 p->unfilled_index = constructor_unfilled_index;
5057 p->unfilled_fields = constructor_unfilled_fields;
5058 p->bit_index = constructor_bit_index;
5059 p->elements = constructor_elements;
5060 p->constant = constructor_constant;
5061 p->simple = constructor_simple;
5062 p->erroneous = constructor_erroneous;
5063 p->pending_elts = constructor_pending_elts;
5064 p->depth = constructor_depth;
5065 p->replacement_value.value = 0;
5066 p->replacement_value.original_code = ERROR_MARK;
5067 p->implicit = 0;
5068 p->range_stack = 0;
5069 p->outer = 0;
5070 p->incremental = constructor_incremental;
5071 p->designated = constructor_designated;
5072 p->next = 0;
5073 constructor_stack = p;
5074
5075 constructor_constant = 1;
5076 constructor_simple = 1;
5077 constructor_depth = SPELLING_DEPTH ();
5078 constructor_elements = 0;
5079 constructor_pending_elts = 0;
5080 constructor_type = type;
5081 constructor_incremental = 1;
5082 constructor_designated = 0;
5083 designator_depth = 0;
5084 designator_erroneous = 0;
5085
5086 if (TREE_CODE (constructor_type) == RECORD_TYPE
5087 || TREE_CODE (constructor_type) == UNION_TYPE)
5088 {
5089 constructor_fields = TYPE_FIELDS (constructor_type);
5090 /* Skip any nameless bit fields at the beginning. */
5091 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5092 && DECL_NAME (constructor_fields) == 0)
5093 constructor_fields = TREE_CHAIN (constructor_fields);
5094
5095 constructor_unfilled_fields = constructor_fields;
5096 constructor_bit_index = bitsize_zero_node;
5097 }
5098 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5099 {
5100 if (TYPE_DOMAIN (constructor_type))
5101 {
5102 constructor_max_index
5103 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5104
5105 /* Detect non-empty initializations of zero-length arrays. */
5106 if (constructor_max_index == NULL_TREE
5107 && TYPE_SIZE (constructor_type))
5108 constructor_max_index = build_int_cst (NULL_TREE, -1);
5109
5110 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5111 to initialize VLAs will cause a proper error; avoid tree
5112 checking errors as well by setting a safe value. */
5113 if (constructor_max_index
5114 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5115 constructor_max_index = build_int_cst (NULL_TREE, -1);
5116
5117 constructor_index
5118 = convert (bitsizetype,
5119 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5120 }
5121 else
5122 {
5123 constructor_index = bitsize_zero_node;
5124 constructor_max_index = NULL_TREE;
5125 }
5126
5127 constructor_unfilled_index = constructor_index;
5128 }
5129 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5130 {
5131 /* Vectors are like simple fixed-size arrays. */
5132 constructor_max_index =
5133 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5134 constructor_index = bitsize_zero_node;
5135 constructor_unfilled_index = constructor_index;
5136 }
5137 else
5138 {
5139 /* Handle the case of int x = {5}; */
5140 constructor_fields = constructor_type;
5141 constructor_unfilled_fields = constructor_type;
5142 }
5143 }
5144 \f
5145 /* Push down into a subobject, for initialization.
5146 If this is for an explicit set of braces, IMPLICIT is 0.
5147 If it is because the next element belongs at a lower level,
5148 IMPLICIT is 1 (or 2 if the push is because of designator list). */
5149
5150 void
5151 push_init_level (int implicit)
5152 {
5153 struct constructor_stack *p;
5154 tree value = NULL_TREE;
5155
5156 /* If we've exhausted any levels that didn't have braces,
5157 pop them now. If implicit == 1, this will have been done in
5158 process_init_element; do not repeat it here because in the case
5159 of excess initializers for an empty aggregate this leads to an
5160 infinite cycle of popping a level and immediately recreating
5161 it. */
5162 if (implicit != 1)
5163 {
5164 while (constructor_stack->implicit)
5165 {
5166 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5167 || TREE_CODE (constructor_type) == UNION_TYPE)
5168 && constructor_fields == 0)
5169 process_init_element (pop_init_level (1));
5170 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
5171 && constructor_max_index
5172 && tree_int_cst_lt (constructor_max_index,
5173 constructor_index))
5174 process_init_element (pop_init_level (1));
5175 else
5176 break;
5177 }
5178 }
5179
5180 /* Unless this is an explicit brace, we need to preserve previous
5181 content if any. */
5182 if (implicit)
5183 {
5184 if ((TREE_CODE (constructor_type) == RECORD_TYPE
5185 || TREE_CODE (constructor_type) == UNION_TYPE)
5186 && constructor_fields)
5187 value = find_init_member (constructor_fields);
5188 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5189 value = find_init_member (constructor_index);
5190 }
5191
5192 p = XNEW (struct constructor_stack);
5193 p->type = constructor_type;
5194 p->fields = constructor_fields;
5195 p->index = constructor_index;
5196 p->max_index = constructor_max_index;
5197 p->unfilled_index = constructor_unfilled_index;
5198 p->unfilled_fields = constructor_unfilled_fields;
5199 p->bit_index = constructor_bit_index;
5200 p->elements = constructor_elements;
5201 p->constant = constructor_constant;
5202 p->simple = constructor_simple;
5203 p->erroneous = constructor_erroneous;
5204 p->pending_elts = constructor_pending_elts;
5205 p->depth = constructor_depth;
5206 p->replacement_value.value = 0;
5207 p->replacement_value.original_code = ERROR_MARK;
5208 p->implicit = implicit;
5209 p->outer = 0;
5210 p->incremental = constructor_incremental;
5211 p->designated = constructor_designated;
5212 p->next = constructor_stack;
5213 p->range_stack = 0;
5214 constructor_stack = p;
5215
5216 constructor_constant = 1;
5217 constructor_simple = 1;
5218 constructor_depth = SPELLING_DEPTH ();
5219 constructor_elements = 0;
5220 constructor_incremental = 1;
5221 constructor_designated = 0;
5222 constructor_pending_elts = 0;
5223 if (!implicit)
5224 {
5225 p->range_stack = constructor_range_stack;
5226 constructor_range_stack = 0;
5227 designator_depth = 0;
5228 designator_erroneous = 0;
5229 }
5230
5231 /* Don't die if an entire brace-pair level is superfluous
5232 in the containing level. */
5233 if (constructor_type == 0)
5234 ;
5235 else if (TREE_CODE (constructor_type) == RECORD_TYPE
5236 || TREE_CODE (constructor_type) == UNION_TYPE)
5237 {
5238 /* Don't die if there are extra init elts at the end. */
5239 if (constructor_fields == 0)
5240 constructor_type = 0;
5241 else
5242 {
5243 constructor_type = TREE_TYPE (constructor_fields);
5244 push_member_name (constructor_fields);
5245 constructor_depth++;
5246 }
5247 }
5248 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5249 {
5250 constructor_type = TREE_TYPE (constructor_type);
5251 push_array_bounds (tree_low_cst (constructor_index, 1));
5252 constructor_depth++;
5253 }
5254
5255 if (constructor_type == 0)
5256 {
5257 error_init ("extra brace group at end of initializer");
5258 constructor_fields = 0;
5259 constructor_unfilled_fields = 0;
5260 return;
5261 }
5262
5263 if (value && TREE_CODE (value) == CONSTRUCTOR)
5264 {
5265 constructor_constant = TREE_CONSTANT (value);
5266 constructor_simple = TREE_STATIC (value);
5267 constructor_elements = CONSTRUCTOR_ELTS (value);
5268 if (!VEC_empty (constructor_elt, constructor_elements)
5269 && (TREE_CODE (constructor_type) == RECORD_TYPE
5270 || TREE_CODE (constructor_type) == ARRAY_TYPE))
5271 set_nonincremental_init ();
5272 }
5273
5274 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
5275 {
5276 missing_braces_mentioned = 1;
5277 warning_init ("missing braces around initializer");
5278 }
5279
5280 if (TREE_CODE (constructor_type) == RECORD_TYPE
5281 || TREE_CODE (constructor_type) == UNION_TYPE)
5282 {
5283 constructor_fields = TYPE_FIELDS (constructor_type);
5284 /* Skip any nameless bit fields at the beginning. */
5285 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
5286 && DECL_NAME (constructor_fields) == 0)
5287 constructor_fields = TREE_CHAIN (constructor_fields);
5288
5289 constructor_unfilled_fields = constructor_fields;
5290 constructor_bit_index = bitsize_zero_node;
5291 }
5292 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
5293 {
5294 /* Vectors are like simple fixed-size arrays. */
5295 constructor_max_index =
5296 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
5297 constructor_index = convert (bitsizetype, integer_zero_node);
5298 constructor_unfilled_index = constructor_index;
5299 }
5300 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5301 {
5302 if (TYPE_DOMAIN (constructor_type))
5303 {
5304 constructor_max_index
5305 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
5306
5307 /* Detect non-empty initializations of zero-length arrays. */
5308 if (constructor_max_index == NULL_TREE
5309 && TYPE_SIZE (constructor_type))
5310 constructor_max_index = build_int_cst (NULL_TREE, -1);
5311
5312 /* constructor_max_index needs to be an INTEGER_CST. Attempts
5313 to initialize VLAs will cause a proper error; avoid tree
5314 checking errors as well by setting a safe value. */
5315 if (constructor_max_index
5316 && TREE_CODE (constructor_max_index) != INTEGER_CST)
5317 constructor_max_index = build_int_cst (NULL_TREE, -1);
5318
5319 constructor_index
5320 = convert (bitsizetype,
5321 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5322 }
5323 else
5324 constructor_index = bitsize_zero_node;
5325
5326 constructor_unfilled_index = constructor_index;
5327 if (value && TREE_CODE (value) == STRING_CST)
5328 {
5329 /* We need to split the char/wchar array into individual
5330 characters, so that we don't have to special case it
5331 everywhere. */
5332 set_nonincremental_init_from_string (value);
5333 }
5334 }
5335 else
5336 {
5337 if (constructor_type != error_mark_node)
5338 warning_init ("braces around scalar initializer");
5339 constructor_fields = constructor_type;
5340 constructor_unfilled_fields = constructor_type;
5341 }
5342 }
5343
5344 /* At the end of an implicit or explicit brace level,
5345 finish up that level of constructor. If a single expression
5346 with redundant braces initialized that level, return the
5347 c_expr structure for that expression. Otherwise, the original_code
5348 element is set to ERROR_MARK.
5349 If we were outputting the elements as they are read, return 0 as the value
5350 from inner levels (process_init_element ignores that),
5351 but return error_mark_node as the value from the outermost level
5352 (that's what we want to put in DECL_INITIAL).
5353 Otherwise, return a CONSTRUCTOR expression as the value. */
5354
5355 struct c_expr
5356 pop_init_level (int implicit)
5357 {
5358 struct constructor_stack *p;
5359 struct c_expr ret;
5360 ret.value = 0;
5361 ret.original_code = ERROR_MARK;
5362
5363 if (implicit == 0)
5364 {
5365 /* When we come to an explicit close brace,
5366 pop any inner levels that didn't have explicit braces. */
5367 while (constructor_stack->implicit)
5368 process_init_element (pop_init_level (1));
5369
5370 gcc_assert (!constructor_range_stack);
5371 }
5372
5373 /* Now output all pending elements. */
5374 constructor_incremental = 1;
5375 output_pending_init_elements (1);
5376
5377 p = constructor_stack;
5378
5379 /* Error for initializing a flexible array member, or a zero-length
5380 array member in an inappropriate context. */
5381 if (constructor_type && constructor_fields
5382 && TREE_CODE (constructor_type) == ARRAY_TYPE
5383 && TYPE_DOMAIN (constructor_type)
5384 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
5385 {
5386 /* Silently discard empty initializations. The parser will
5387 already have pedwarned for empty brackets. */
5388 if (integer_zerop (constructor_unfilled_index))
5389 constructor_type = NULL_TREE;
5390 else
5391 {
5392 gcc_assert (!TYPE_SIZE (constructor_type));
5393
5394 if (constructor_depth > 2)
5395 error_init ("initialization of flexible array member in a nested context");
5396 else if (pedantic)
5397 pedwarn_init ("initialization of a flexible array member");
5398
5399 /* We have already issued an error message for the existence
5400 of a flexible array member not at the end of the structure.
5401 Discard the initializer so that we do not die later. */
5402 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
5403 constructor_type = NULL_TREE;
5404 }
5405 }
5406
5407 /* Warn when some struct elements are implicitly initialized to zero. */
5408 if (warn_missing_field_initializers
5409 && constructor_type
5410 && TREE_CODE (constructor_type) == RECORD_TYPE
5411 && constructor_unfilled_fields)
5412 {
5413 /* Do not warn for flexible array members or zero-length arrays. */
5414 while (constructor_unfilled_fields
5415 && (!DECL_SIZE (constructor_unfilled_fields)
5416 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
5417 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5418
5419 /* Do not warn if this level of the initializer uses member
5420 designators; it is likely to be deliberate. */
5421 if (constructor_unfilled_fields && !constructor_designated)
5422 {
5423 push_member_name (constructor_unfilled_fields);
5424 warning_init ("missing initializer");
5425 RESTORE_SPELLING_DEPTH (constructor_depth);
5426 }
5427 }
5428
5429 /* Pad out the end of the structure. */
5430 if (p->replacement_value.value)
5431 /* If this closes a superfluous brace pair,
5432 just pass out the element between them. */
5433 ret = p->replacement_value;
5434 else if (constructor_type == 0)
5435 ;
5436 else if (TREE_CODE (constructor_type) != RECORD_TYPE
5437 && TREE_CODE (constructor_type) != UNION_TYPE
5438 && TREE_CODE (constructor_type) != ARRAY_TYPE
5439 && TREE_CODE (constructor_type) != VECTOR_TYPE)
5440 {
5441 /* A nonincremental scalar initializer--just return
5442 the element, after verifying there is just one. */
5443 if (VEC_empty (constructor_elt,constructor_elements))
5444 {
5445 if (!constructor_erroneous)
5446 error_init ("empty scalar initializer");
5447 ret.value = error_mark_node;
5448 }
5449 else if (VEC_length (constructor_elt,constructor_elements) != 1)
5450 {
5451 error_init ("extra elements in scalar initializer");
5452 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5453 }
5454 else
5455 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
5456 }
5457 else
5458 {
5459 if (constructor_erroneous)
5460 ret.value = error_mark_node;
5461 else
5462 {
5463 ret.value = build_constructor (constructor_type,
5464 constructor_elements);
5465 if (constructor_constant)
5466 TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
5467 if (constructor_constant && constructor_simple)
5468 TREE_STATIC (ret.value) = 1;
5469 }
5470 }
5471
5472 constructor_type = p->type;
5473 constructor_fields = p->fields;
5474 constructor_index = p->index;
5475 constructor_max_index = p->max_index;
5476 constructor_unfilled_index = p->unfilled_index;
5477 constructor_unfilled_fields = p->unfilled_fields;
5478 constructor_bit_index = p->bit_index;
5479 constructor_elements = p->elements;
5480 constructor_constant = p->constant;
5481 constructor_simple = p->simple;
5482 constructor_erroneous = p->erroneous;
5483 constructor_incremental = p->incremental;
5484 constructor_designated = p->designated;
5485 constructor_pending_elts = p->pending_elts;
5486 constructor_depth = p->depth;
5487 if (!p->implicit)
5488 constructor_range_stack = p->range_stack;
5489 RESTORE_SPELLING_DEPTH (constructor_depth);
5490
5491 constructor_stack = p->next;
5492 free (p);
5493
5494 if (ret.value == 0 && constructor_stack == 0)
5495 ret.value = error_mark_node;
5496 return ret;
5497 }
5498
5499 /* Common handling for both array range and field name designators.
5500 ARRAY argument is nonzero for array ranges. Returns zero for success. */
5501
5502 static int
5503 set_designator (int array)
5504 {
5505 tree subtype;
5506 enum tree_code subcode;
5507
5508 /* Don't die if an entire brace-pair level is superfluous
5509 in the containing level. */
5510 if (constructor_type == 0)
5511 return 1;
5512
5513 /* If there were errors in this designator list already, bail out
5514 silently. */
5515 if (designator_erroneous)
5516 return 1;
5517
5518 if (!designator_depth)
5519 {
5520 gcc_assert (!constructor_range_stack);
5521
5522 /* Designator list starts at the level of closest explicit
5523 braces. */
5524 while (constructor_stack->implicit)
5525 process_init_element (pop_init_level (1));
5526 constructor_designated = 1;
5527 return 0;
5528 }
5529
5530 switch (TREE_CODE (constructor_type))
5531 {
5532 case RECORD_TYPE:
5533 case UNION_TYPE:
5534 subtype = TREE_TYPE (constructor_fields);
5535 if (subtype != error_mark_node)
5536 subtype = TYPE_MAIN_VARIANT (subtype);
5537 break;
5538 case ARRAY_TYPE:
5539 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
5540 break;
5541 default:
5542 gcc_unreachable ();
5543 }
5544
5545 subcode = TREE_CODE (subtype);
5546 if (array && subcode != ARRAY_TYPE)
5547 {
5548 error_init ("array index in non-array initializer");
5549 return 1;
5550 }
5551 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
5552 {
5553 error_init ("field name not in record or union initializer");
5554 return 1;
5555 }
5556
5557 constructor_designated = 1;
5558 push_init_level (2);
5559 return 0;
5560 }
5561
5562 /* If there are range designators in designator list, push a new designator
5563 to constructor_range_stack. RANGE_END is end of such stack range or
5564 NULL_TREE if there is no range designator at this level. */
5565
5566 static void
5567 push_range_stack (tree range_end)
5568 {
5569 struct constructor_range_stack *p;
5570
5571 p = GGC_NEW (struct constructor_range_stack);
5572 p->prev = constructor_range_stack;
5573 p->next = 0;
5574 p->fields = constructor_fields;
5575 p->range_start = constructor_index;
5576 p->index = constructor_index;
5577 p->stack = constructor_stack;
5578 p->range_end = range_end;
5579 if (constructor_range_stack)
5580 constructor_range_stack->next = p;
5581 constructor_range_stack = p;
5582 }
5583
5584 /* Within an array initializer, specify the next index to be initialized.
5585 FIRST is that index. If LAST is nonzero, then initialize a range
5586 of indices, running from FIRST through LAST. */
5587
5588 void
5589 set_init_index (tree first, tree last)
5590 {
5591 if (set_designator (1))
5592 return;
5593
5594 designator_erroneous = 1;
5595
5596 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
5597 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
5598 {
5599 error_init ("array index in initializer not of integer type");
5600 return;
5601 }
5602
5603 if (TREE_CODE (first) != INTEGER_CST)
5604 error_init ("nonconstant array index in initializer");
5605 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
5606 error_init ("nonconstant array index in initializer");
5607 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
5608 error_init ("array index in non-array initializer");
5609 else if (tree_int_cst_sgn (first) == -1)
5610 error_init ("array index in initializer exceeds array bounds");
5611 else if (constructor_max_index
5612 && tree_int_cst_lt (constructor_max_index, first))
5613 error_init ("array index in initializer exceeds array bounds");
5614 else
5615 {
5616 constructor_index = convert (bitsizetype, first);
5617
5618 if (last)
5619 {
5620 if (tree_int_cst_equal (first, last))
5621 last = 0;
5622 else if (tree_int_cst_lt (last, first))
5623 {
5624 error_init ("empty index range in initializer");
5625 last = 0;
5626 }
5627 else
5628 {
5629 last = convert (bitsizetype, last);
5630 if (constructor_max_index != 0
5631 && tree_int_cst_lt (constructor_max_index, last))
5632 {
5633 error_init ("array index range in initializer exceeds array bounds");
5634 last = 0;
5635 }
5636 }
5637 }
5638
5639 designator_depth++;
5640 designator_erroneous = 0;
5641 if (constructor_range_stack || last)
5642 push_range_stack (last);
5643 }
5644 }
5645
5646 /* Within a struct initializer, specify the next field to be initialized. */
5647
5648 void
5649 set_init_label (tree fieldname)
5650 {
5651 tree tail;
5652
5653 if (set_designator (0))
5654 return;
5655
5656 designator_erroneous = 1;
5657
5658 if (TREE_CODE (constructor_type) != RECORD_TYPE
5659 && TREE_CODE (constructor_type) != UNION_TYPE)
5660 {
5661 error_init ("field name not in record or union initializer");
5662 return;
5663 }
5664
5665 for (tail = TYPE_FIELDS (constructor_type); tail;
5666 tail = TREE_CHAIN (tail))
5667 {
5668 if (DECL_NAME (tail) == fieldname)
5669 break;
5670 }
5671
5672 if (tail == 0)
5673 error ("unknown field %qE specified in initializer", fieldname);
5674 else
5675 {
5676 constructor_fields = tail;
5677 designator_depth++;
5678 designator_erroneous = 0;
5679 if (constructor_range_stack)
5680 push_range_stack (NULL_TREE);
5681 }
5682 }
5683 \f
5684 /* Add a new initializer to the tree of pending initializers. PURPOSE
5685 identifies the initializer, either array index or field in a structure.
5686 VALUE is the value of that index or field. */
5687
5688 static void
5689 add_pending_init (tree purpose, tree value)
5690 {
5691 struct init_node *p, **q, *r;
5692
5693 q = &constructor_pending_elts;
5694 p = 0;
5695
5696 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5697 {
5698 while (*q != 0)
5699 {
5700 p = *q;
5701 if (tree_int_cst_lt (purpose, p->purpose))
5702 q = &p->left;
5703 else if (tree_int_cst_lt (p->purpose, purpose))
5704 q = &p->right;
5705 else
5706 {
5707 if (TREE_SIDE_EFFECTS (p->value))
5708 warning_init ("initialized field with side-effects overwritten");
5709 else if (warn_override_init)
5710 warning_init ("initialized field overwritten");
5711 p->value = value;
5712 return;
5713 }
5714 }
5715 }
5716 else
5717 {
5718 tree bitpos;
5719
5720 bitpos = bit_position (purpose);
5721 while (*q != NULL)
5722 {
5723 p = *q;
5724 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
5725 q = &p->left;
5726 else if (p->purpose != purpose)
5727 q = &p->right;
5728 else
5729 {
5730 if (TREE_SIDE_EFFECTS (p->value))
5731 warning_init ("initialized field with side-effects overwritten");
5732 else if (warn_override_init)
5733 warning_init ("initialized field overwritten");
5734 p->value = value;
5735 return;
5736 }
5737 }
5738 }
5739
5740 r = GGC_NEW (struct init_node);
5741 r->purpose = purpose;
5742 r->value = value;
5743
5744 *q = r;
5745 r->parent = p;
5746 r->left = 0;
5747 r->right = 0;
5748 r->balance = 0;
5749
5750 while (p)
5751 {
5752 struct init_node *s;
5753
5754 if (r == p->left)
5755 {
5756 if (p->balance == 0)
5757 p->balance = -1;
5758 else if (p->balance < 0)
5759 {
5760 if (r->balance < 0)
5761 {
5762 /* L rotation. */
5763 p->left = r->right;
5764 if (p->left)
5765 p->left->parent = p;
5766 r->right = p;
5767
5768 p->balance = 0;
5769 r->balance = 0;
5770
5771 s = p->parent;
5772 p->parent = r;
5773 r->parent = s;
5774 if (s)
5775 {
5776 if (s->left == p)
5777 s->left = r;
5778 else
5779 s->right = r;
5780 }
5781 else
5782 constructor_pending_elts = r;
5783 }
5784 else
5785 {
5786 /* LR rotation. */
5787 struct init_node *t = r->right;
5788
5789 r->right = t->left;
5790 if (r->right)
5791 r->right->parent = r;
5792 t->left = r;
5793
5794 p->left = t->right;
5795 if (p->left)
5796 p->left->parent = p;
5797 t->right = p;
5798
5799 p->balance = t->balance < 0;
5800 r->balance = -(t->balance > 0);
5801 t->balance = 0;
5802
5803 s = p->parent;
5804 p->parent = t;
5805 r->parent = t;
5806 t->parent = s;
5807 if (s)
5808 {
5809 if (s->left == p)
5810 s->left = t;
5811 else
5812 s->right = t;
5813 }
5814 else
5815 constructor_pending_elts = t;
5816 }
5817 break;
5818 }
5819 else
5820 {
5821 /* p->balance == +1; growth of left side balances the node. */
5822 p->balance = 0;
5823 break;
5824 }
5825 }
5826 else /* r == p->right */
5827 {
5828 if (p->balance == 0)
5829 /* Growth propagation from right side. */
5830 p->balance++;
5831 else if (p->balance > 0)
5832 {
5833 if (r->balance > 0)
5834 {
5835 /* R rotation. */
5836 p->right = r->left;
5837 if (p->right)
5838 p->right->parent = p;
5839 r->left = p;
5840
5841 p->balance = 0;
5842 r->balance = 0;
5843
5844 s = p->parent;
5845 p->parent = r;
5846 r->parent = s;
5847 if (s)
5848 {
5849 if (s->left == p)
5850 s->left = r;
5851 else
5852 s->right = r;
5853 }
5854 else
5855 constructor_pending_elts = r;
5856 }
5857 else /* r->balance == -1 */
5858 {
5859 /* RL rotation */
5860 struct init_node *t = r->left;
5861
5862 r->left = t->right;
5863 if (r->left)
5864 r->left->parent = r;
5865 t->right = r;
5866
5867 p->right = t->left;
5868 if (p->right)
5869 p->right->parent = p;
5870 t->left = p;
5871
5872 r->balance = (t->balance < 0);
5873 p->balance = -(t->balance > 0);
5874 t->balance = 0;
5875
5876 s = p->parent;
5877 p->parent = t;
5878 r->parent = t;
5879 t->parent = s;
5880 if (s)
5881 {
5882 if (s->left == p)
5883 s->left = t;
5884 else
5885 s->right = t;
5886 }
5887 else
5888 constructor_pending_elts = t;
5889 }
5890 break;
5891 }
5892 else
5893 {
5894 /* p->balance == -1; growth of right side balances the node. */
5895 p->balance = 0;
5896 break;
5897 }
5898 }
5899
5900 r = p;
5901 p = p->parent;
5902 }
5903 }
5904
5905 /* Build AVL tree from a sorted chain. */
5906
5907 static void
5908 set_nonincremental_init (void)
5909 {
5910 unsigned HOST_WIDE_INT ix;
5911 tree index, value;
5912
5913 if (TREE_CODE (constructor_type) != RECORD_TYPE
5914 && TREE_CODE (constructor_type) != ARRAY_TYPE)
5915 return;
5916
5917 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
5918 add_pending_init (index, value);
5919 constructor_elements = 0;
5920 if (TREE_CODE (constructor_type) == RECORD_TYPE)
5921 {
5922 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
5923 /* Skip any nameless bit fields at the beginning. */
5924 while (constructor_unfilled_fields != 0
5925 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
5926 && DECL_NAME (constructor_unfilled_fields) == 0)
5927 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
5928
5929 }
5930 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
5931 {
5932 if (TYPE_DOMAIN (constructor_type))
5933 constructor_unfilled_index
5934 = convert (bitsizetype,
5935 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
5936 else
5937 constructor_unfilled_index = bitsize_zero_node;
5938 }
5939 constructor_incremental = 0;
5940 }
5941
5942 /* Build AVL tree from a string constant. */
5943
5944 static void
5945 set_nonincremental_init_from_string (tree str)
5946 {
5947 tree value, purpose, type;
5948 HOST_WIDE_INT val[2];
5949 const char *p, *end;
5950 int byte, wchar_bytes, charwidth, bitpos;
5951
5952 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
5953
5954 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5955 == TYPE_PRECISION (char_type_node))
5956 wchar_bytes = 1;
5957 else
5958 {
5959 gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
5960 == TYPE_PRECISION (wchar_type_node));
5961 wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
5962 }
5963 charwidth = TYPE_PRECISION (char_type_node);
5964 type = TREE_TYPE (constructor_type);
5965 p = TREE_STRING_POINTER (str);
5966 end = p + TREE_STRING_LENGTH (str);
5967
5968 for (purpose = bitsize_zero_node;
5969 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
5970 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
5971 {
5972 if (wchar_bytes == 1)
5973 {
5974 val[1] = (unsigned char) *p++;
5975 val[0] = 0;
5976 }
5977 else
5978 {
5979 val[0] = 0;
5980 val[1] = 0;
5981 for (byte = 0; byte < wchar_bytes; byte++)
5982 {
5983 if (BYTES_BIG_ENDIAN)
5984 bitpos = (wchar_bytes - byte - 1) * charwidth;
5985 else
5986 bitpos = byte * charwidth;
5987 val[bitpos < HOST_BITS_PER_WIDE_INT]
5988 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
5989 << (bitpos % HOST_BITS_PER_WIDE_INT);
5990 }
5991 }
5992
5993 if (!TYPE_UNSIGNED (type))
5994 {
5995 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
5996 if (bitpos < HOST_BITS_PER_WIDE_INT)
5997 {
5998 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
5999 {
6000 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
6001 val[0] = -1;
6002 }
6003 }
6004 else if (bitpos == HOST_BITS_PER_WIDE_INT)
6005 {
6006 if (val[1] < 0)
6007 val[0] = -1;
6008 }
6009 else if (val[0] & (((HOST_WIDE_INT) 1)
6010 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
6011 val[0] |= ((HOST_WIDE_INT) -1)
6012 << (bitpos - HOST_BITS_PER_WIDE_INT);
6013 }
6014
6015 value = build_int_cst_wide (type, val[1], val[0]);
6016 add_pending_init (purpose, value);
6017 }
6018
6019 constructor_incremental = 0;
6020 }
6021
6022 /* Return value of FIELD in pending initializer or zero if the field was
6023 not initialized yet. */
6024
6025 static tree
6026 find_init_member (tree field)
6027 {
6028 struct init_node *p;
6029
6030 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6031 {
6032 if (constructor_incremental
6033 && tree_int_cst_lt (field, constructor_unfilled_index))
6034 set_nonincremental_init ();
6035
6036 p = constructor_pending_elts;
6037 while (p)
6038 {
6039 if (tree_int_cst_lt (field, p->purpose))
6040 p = p->left;
6041 else if (tree_int_cst_lt (p->purpose, field))
6042 p = p->right;
6043 else
6044 return p->value;
6045 }
6046 }
6047 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6048 {
6049 tree bitpos = bit_position (field);
6050
6051 if (constructor_incremental
6052 && (!constructor_unfilled_fields
6053 || tree_int_cst_lt (bitpos,
6054 bit_position (constructor_unfilled_fields))))
6055 set_nonincremental_init ();
6056
6057 p = constructor_pending_elts;
6058 while (p)
6059 {
6060 if (field == p->purpose)
6061 return p->value;
6062 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6063 p = p->left;
6064 else
6065 p = p->right;
6066 }
6067 }
6068 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6069 {
6070 if (!VEC_empty (constructor_elt, constructor_elements)
6071 && (VEC_last (constructor_elt, constructor_elements)->index
6072 == field))
6073 return VEC_last (constructor_elt, constructor_elements)->value;
6074 }
6075 return 0;
6076 }
6077
6078 /* "Output" the next constructor element.
6079 At top level, really output it to assembler code now.
6080 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
6081 TYPE is the data type that the containing data type wants here.
6082 FIELD is the field (a FIELD_DECL) or the index that this element fills.
6083 If VALUE is a string constant, STRICT_STRING is true if it is
6084 unparenthesized or we should not warn here for it being parenthesized.
6085 For other types of VALUE, STRICT_STRING is not used.
6086
6087 PENDING if non-nil means output pending elements that belong
6088 right after this element. (PENDING is normally 1;
6089 it is 0 while outputting pending elements, to avoid recursion.) */
6090
6091 static void
6092 output_init_element (tree value, bool strict_string, tree type, tree field,
6093 int pending)
6094 {
6095 constructor_elt *celt;
6096
6097 if (type == error_mark_node || value == error_mark_node)
6098 {
6099 constructor_erroneous = 1;
6100 return;
6101 }
6102 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
6103 && (TREE_CODE (value) == STRING_CST
6104 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
6105 && !(TREE_CODE (value) == STRING_CST
6106 && TREE_CODE (type) == ARRAY_TYPE
6107 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
6108 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
6109 TYPE_MAIN_VARIANT (type)))
6110 value = array_to_pointer_conversion (value);
6111
6112 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
6113 && require_constant_value && !flag_isoc99 && pending)
6114 {
6115 /* As an extension, allow initializing objects with static storage
6116 duration with compound literals (which are then treated just as
6117 the brace enclosed list they contain). */
6118 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
6119 value = DECL_INITIAL (decl);
6120 }
6121
6122 if (value == error_mark_node)
6123 constructor_erroneous = 1;
6124 else if (!TREE_CONSTANT (value))
6125 constructor_constant = 0;
6126 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
6127 || ((TREE_CODE (constructor_type) == RECORD_TYPE
6128 || TREE_CODE (constructor_type) == UNION_TYPE)
6129 && DECL_C_BIT_FIELD (field)
6130 && TREE_CODE (value) != INTEGER_CST))
6131 constructor_simple = 0;
6132
6133 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
6134 {
6135 if (require_constant_value)
6136 {
6137 error_init ("initializer element is not constant");
6138 value = error_mark_node;
6139 }
6140 else if (require_constant_elements)
6141 pedwarn ("initializer element is not computable at load time");
6142 }
6143
6144 /* If this field is empty (and not at the end of structure),
6145 don't do anything other than checking the initializer. */
6146 if (field
6147 && (TREE_TYPE (field) == error_mark_node
6148 || (COMPLETE_TYPE_P (TREE_TYPE (field))
6149 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
6150 && (TREE_CODE (constructor_type) == ARRAY_TYPE
6151 || TREE_CHAIN (field)))))
6152 return;
6153
6154 value = digest_init (type, value, strict_string, require_constant_value);
6155 if (value == error_mark_node)
6156 {
6157 constructor_erroneous = 1;
6158 return;
6159 }
6160
6161 /* If this element doesn't come next in sequence,
6162 put it on constructor_pending_elts. */
6163 if (TREE_CODE (constructor_type) == ARRAY_TYPE
6164 && (!constructor_incremental
6165 || !tree_int_cst_equal (field, constructor_unfilled_index)))
6166 {
6167 if (constructor_incremental
6168 && tree_int_cst_lt (field, constructor_unfilled_index))
6169 set_nonincremental_init ();
6170
6171 add_pending_init (field, value);
6172 return;
6173 }
6174 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6175 && (!constructor_incremental
6176 || field != constructor_unfilled_fields))
6177 {
6178 /* We do this for records but not for unions. In a union,
6179 no matter which field is specified, it can be initialized
6180 right away since it starts at the beginning of the union. */
6181 if (constructor_incremental)
6182 {
6183 if (!constructor_unfilled_fields)
6184 set_nonincremental_init ();
6185 else
6186 {
6187 tree bitpos, unfillpos;
6188
6189 bitpos = bit_position (field);
6190 unfillpos = bit_position (constructor_unfilled_fields);
6191
6192 if (tree_int_cst_lt (bitpos, unfillpos))
6193 set_nonincremental_init ();
6194 }
6195 }
6196
6197 add_pending_init (field, value);
6198 return;
6199 }
6200 else if (TREE_CODE (constructor_type) == UNION_TYPE
6201 && !VEC_empty (constructor_elt, constructor_elements))
6202 {
6203 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
6204 constructor_elements)->value))
6205 warning_init ("initialized field with side-effects overwritten");
6206 else if (warn_override_init)
6207 warning_init ("initialized field overwritten");
6208
6209 /* We can have just one union field set. */
6210 constructor_elements = 0;
6211 }
6212
6213 /* Otherwise, output this element either to
6214 constructor_elements or to the assembler file. */
6215
6216 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
6217 celt->index = field;
6218 celt->value = value;
6219
6220 /* Advance the variable that indicates sequential elements output. */
6221 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6222 constructor_unfilled_index
6223 = size_binop (PLUS_EXPR, constructor_unfilled_index,
6224 bitsize_one_node);
6225 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
6226 {
6227 constructor_unfilled_fields
6228 = TREE_CHAIN (constructor_unfilled_fields);
6229
6230 /* Skip any nameless bit fields. */
6231 while (constructor_unfilled_fields != 0
6232 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6233 && DECL_NAME (constructor_unfilled_fields) == 0)
6234 constructor_unfilled_fields =
6235 TREE_CHAIN (constructor_unfilled_fields);
6236 }
6237 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6238 constructor_unfilled_fields = 0;
6239
6240 /* Now output any pending elements which have become next. */
6241 if (pending)
6242 output_pending_init_elements (0);
6243 }
6244
6245 /* Output any pending elements which have become next.
6246 As we output elements, constructor_unfilled_{fields,index}
6247 advances, which may cause other elements to become next;
6248 if so, they too are output.
6249
6250 If ALL is 0, we return when there are
6251 no more pending elements to output now.
6252
6253 If ALL is 1, we output space as necessary so that
6254 we can output all the pending elements. */
6255
6256 static void
6257 output_pending_init_elements (int all)
6258 {
6259 struct init_node *elt = constructor_pending_elts;
6260 tree next;
6261
6262 retry:
6263
6264 /* Look through the whole pending tree.
6265 If we find an element that should be output now,
6266 output it. Otherwise, set NEXT to the element
6267 that comes first among those still pending. */
6268
6269 next = 0;
6270 while (elt)
6271 {
6272 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6273 {
6274 if (tree_int_cst_equal (elt->purpose,
6275 constructor_unfilled_index))
6276 output_init_element (elt->value, true,
6277 TREE_TYPE (constructor_type),
6278 constructor_unfilled_index, 0);
6279 else if (tree_int_cst_lt (constructor_unfilled_index,
6280 elt->purpose))
6281 {
6282 /* Advance to the next smaller node. */
6283 if (elt->left)
6284 elt = elt->left;
6285 else
6286 {
6287 /* We have reached the smallest node bigger than the
6288 current unfilled index. Fill the space first. */
6289 next = elt->purpose;
6290 break;
6291 }
6292 }
6293 else
6294 {
6295 /* Advance to the next bigger node. */
6296 if (elt->right)
6297 elt = elt->right;
6298 else
6299 {
6300 /* We have reached the biggest node in a subtree. Find
6301 the parent of it, which is the next bigger node. */
6302 while (elt->parent && elt->parent->right == elt)
6303 elt = elt->parent;
6304 elt = elt->parent;
6305 if (elt && tree_int_cst_lt (constructor_unfilled_index,
6306 elt->purpose))
6307 {
6308 next = elt->purpose;
6309 break;
6310 }
6311 }
6312 }
6313 }
6314 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6315 || TREE_CODE (constructor_type) == UNION_TYPE)
6316 {
6317 tree ctor_unfilled_bitpos, elt_bitpos;
6318
6319 /* If the current record is complete we are done. */
6320 if (constructor_unfilled_fields == 0)
6321 break;
6322
6323 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
6324 elt_bitpos = bit_position (elt->purpose);
6325 /* We can't compare fields here because there might be empty
6326 fields in between. */
6327 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
6328 {
6329 constructor_unfilled_fields = elt->purpose;
6330 output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
6331 elt->purpose, 0);
6332 }
6333 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
6334 {
6335 /* Advance to the next smaller node. */
6336 if (elt->left)
6337 elt = elt->left;
6338 else
6339 {
6340 /* We have reached the smallest node bigger than the
6341 current unfilled field. Fill the space first. */
6342 next = elt->purpose;
6343 break;
6344 }
6345 }
6346 else
6347 {
6348 /* Advance to the next bigger node. */
6349 if (elt->right)
6350 elt = elt->right;
6351 else
6352 {
6353 /* We have reached the biggest node in a subtree. Find
6354 the parent of it, which is the next bigger node. */
6355 while (elt->parent && elt->parent->right == elt)
6356 elt = elt->parent;
6357 elt = elt->parent;
6358 if (elt
6359 && (tree_int_cst_lt (ctor_unfilled_bitpos,
6360 bit_position (elt->purpose))))
6361 {
6362 next = elt->purpose;
6363 break;
6364 }
6365 }
6366 }
6367 }
6368 }
6369
6370 /* Ordinarily return, but not if we want to output all
6371 and there are elements left. */
6372 if (!(all && next != 0))
6373 return;
6374
6375 /* If it's not incremental, just skip over the gap, so that after
6376 jumping to retry we will output the next successive element. */
6377 if (TREE_CODE (constructor_type) == RECORD_TYPE
6378 || TREE_CODE (constructor_type) == UNION_TYPE)
6379 constructor_unfilled_fields = next;
6380 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6381 constructor_unfilled_index = next;
6382
6383 /* ELT now points to the node in the pending tree with the next
6384 initializer to output. */
6385 goto retry;
6386 }
6387 \f
6388 /* Add one non-braced element to the current constructor level.
6389 This adjusts the current position within the constructor's type.
6390 This may also start or terminate implicit levels
6391 to handle a partly-braced initializer.
6392
6393 Once this has found the correct level for the new element,
6394 it calls output_init_element. */
6395
6396 void
6397 process_init_element (struct c_expr value)
6398 {
6399 tree orig_value = value.value;
6400 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
6401 bool strict_string = value.original_code == STRING_CST;
6402
6403 designator_depth = 0;
6404 designator_erroneous = 0;
6405
6406 /* Handle superfluous braces around string cst as in
6407 char x[] = {"foo"}; */
6408 if (string_flag
6409 && constructor_type
6410 && TREE_CODE (constructor_type) == ARRAY_TYPE
6411 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
6412 && integer_zerop (constructor_unfilled_index))
6413 {
6414 if (constructor_stack->replacement_value.value)
6415 error_init ("excess elements in char array initializer");
6416 constructor_stack->replacement_value = value;
6417 return;
6418 }
6419
6420 if (constructor_stack->replacement_value.value != 0)
6421 {
6422 error_init ("excess elements in struct initializer");
6423 return;
6424 }
6425
6426 /* Ignore elements of a brace group if it is entirely superfluous
6427 and has already been diagnosed. */
6428 if (constructor_type == 0)
6429 return;
6430
6431 /* If we've exhausted any levels that didn't have braces,
6432 pop them now. */
6433 while (constructor_stack->implicit)
6434 {
6435 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6436 || TREE_CODE (constructor_type) == UNION_TYPE)
6437 && constructor_fields == 0)
6438 process_init_element (pop_init_level (1));
6439 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6440 && (constructor_max_index == 0
6441 || tree_int_cst_lt (constructor_max_index,
6442 constructor_index)))
6443 process_init_element (pop_init_level (1));
6444 else
6445 break;
6446 }
6447
6448 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
6449 if (constructor_range_stack)
6450 {
6451 /* If value is a compound literal and we'll be just using its
6452 content, don't put it into a SAVE_EXPR. */
6453 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
6454 || !require_constant_value
6455 || flag_isoc99)
6456 value.value = save_expr (value.value);
6457 }
6458
6459 while (1)
6460 {
6461 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6462 {
6463 tree fieldtype;
6464 enum tree_code fieldcode;
6465
6466 if (constructor_fields == 0)
6467 {
6468 pedwarn_init ("excess elements in struct initializer");
6469 break;
6470 }
6471
6472 fieldtype = TREE_TYPE (constructor_fields);
6473 if (fieldtype != error_mark_node)
6474 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6475 fieldcode = TREE_CODE (fieldtype);
6476
6477 /* Error for non-static initialization of a flexible array member. */
6478 if (fieldcode == ARRAY_TYPE
6479 && !require_constant_value
6480 && TYPE_SIZE (fieldtype) == NULL_TREE
6481 && TREE_CHAIN (constructor_fields) == NULL_TREE)
6482 {
6483 error_init ("non-static initialization of a flexible array member");
6484 break;
6485 }
6486
6487 /* Accept a string constant to initialize a subarray. */
6488 if (value.value != 0
6489 && fieldcode == ARRAY_TYPE
6490 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6491 && string_flag)
6492 value.value = orig_value;
6493 /* Otherwise, if we have come to a subaggregate,
6494 and we don't have an element of its type, push into it. */
6495 else if (value.value != 0
6496 && value.value != error_mark_node
6497 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6498 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6499 || fieldcode == UNION_TYPE))
6500 {
6501 push_init_level (1);
6502 continue;
6503 }
6504
6505 if (value.value)
6506 {
6507 push_member_name (constructor_fields);
6508 output_init_element (value.value, strict_string,
6509 fieldtype, constructor_fields, 1);
6510 RESTORE_SPELLING_DEPTH (constructor_depth);
6511 }
6512 else
6513 /* Do the bookkeeping for an element that was
6514 directly output as a constructor. */
6515 {
6516 /* For a record, keep track of end position of last field. */
6517 if (DECL_SIZE (constructor_fields))
6518 constructor_bit_index
6519 = size_binop (PLUS_EXPR,
6520 bit_position (constructor_fields),
6521 DECL_SIZE (constructor_fields));
6522
6523 /* If the current field was the first one not yet written out,
6524 it isn't now, so update. */
6525 if (constructor_unfilled_fields == constructor_fields)
6526 {
6527 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6528 /* Skip any nameless bit fields. */
6529 while (constructor_unfilled_fields != 0
6530 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6531 && DECL_NAME (constructor_unfilled_fields) == 0)
6532 constructor_unfilled_fields =
6533 TREE_CHAIN (constructor_unfilled_fields);
6534 }
6535 }
6536
6537 constructor_fields = TREE_CHAIN (constructor_fields);
6538 /* Skip any nameless bit fields at the beginning. */
6539 while (constructor_fields != 0
6540 && DECL_C_BIT_FIELD (constructor_fields)
6541 && DECL_NAME (constructor_fields) == 0)
6542 constructor_fields = TREE_CHAIN (constructor_fields);
6543 }
6544 else if (TREE_CODE (constructor_type) == UNION_TYPE)
6545 {
6546 tree fieldtype;
6547 enum tree_code fieldcode;
6548
6549 if (constructor_fields == 0)
6550 {
6551 pedwarn_init ("excess elements in union initializer");
6552 break;
6553 }
6554
6555 fieldtype = TREE_TYPE (constructor_fields);
6556 if (fieldtype != error_mark_node)
6557 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
6558 fieldcode = TREE_CODE (fieldtype);
6559
6560 /* Warn that traditional C rejects initialization of unions.
6561 We skip the warning if the value is zero. This is done
6562 under the assumption that the zero initializer in user
6563 code appears conditioned on e.g. __STDC__ to avoid
6564 "missing initializer" warnings and relies on default
6565 initialization to zero in the traditional C case.
6566 We also skip the warning if the initializer is designated,
6567 again on the assumption that this must be conditional on
6568 __STDC__ anyway (and we've already complained about the
6569 member-designator already). */
6570 if (!in_system_header && !constructor_designated
6571 && !(value.value && (integer_zerop (value.value)
6572 || real_zerop (value.value))))
6573 warning (OPT_Wtraditional, "traditional C rejects initialization "
6574 "of unions");
6575
6576 /* Accept a string constant to initialize a subarray. */
6577 if (value.value != 0
6578 && fieldcode == ARRAY_TYPE
6579 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
6580 && string_flag)
6581 value.value = orig_value;
6582 /* Otherwise, if we have come to a subaggregate,
6583 and we don't have an element of its type, push into it. */
6584 else if (value.value != 0
6585 && value.value != error_mark_node
6586 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
6587 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
6588 || fieldcode == UNION_TYPE))
6589 {
6590 push_init_level (1);
6591 continue;
6592 }
6593
6594 if (value.value)
6595 {
6596 push_member_name (constructor_fields);
6597 output_init_element (value.value, strict_string,
6598 fieldtype, constructor_fields, 1);
6599 RESTORE_SPELLING_DEPTH (constructor_depth);
6600 }
6601 else
6602 /* Do the bookkeeping for an element that was
6603 directly output as a constructor. */
6604 {
6605 constructor_bit_index = DECL_SIZE (constructor_fields);
6606 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
6607 }
6608
6609 constructor_fields = 0;
6610 }
6611 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6612 {
6613 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6614 enum tree_code eltcode = TREE_CODE (elttype);
6615
6616 /* Accept a string constant to initialize a subarray. */
6617 if (value.value != 0
6618 && eltcode == ARRAY_TYPE
6619 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
6620 && string_flag)
6621 value.value = orig_value;
6622 /* Otherwise, if we have come to a subaggregate,
6623 and we don't have an element of its type, push into it. */
6624 else if (value.value != 0
6625 && value.value != error_mark_node
6626 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
6627 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
6628 || eltcode == UNION_TYPE))
6629 {
6630 push_init_level (1);
6631 continue;
6632 }
6633
6634 if (constructor_max_index != 0
6635 && (tree_int_cst_lt (constructor_max_index, constructor_index)
6636 || integer_all_onesp (constructor_max_index)))
6637 {
6638 pedwarn_init ("excess elements in array initializer");
6639 break;
6640 }
6641
6642 /* Now output the actual element. */
6643 if (value.value)
6644 {
6645 push_array_bounds (tree_low_cst (constructor_index, 1));
6646 output_init_element (value.value, strict_string,
6647 elttype, constructor_index, 1);
6648 RESTORE_SPELLING_DEPTH (constructor_depth);
6649 }
6650
6651 constructor_index
6652 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6653
6654 if (!value.value)
6655 /* If we are doing the bookkeeping for an element that was
6656 directly output as a constructor, we must update
6657 constructor_unfilled_index. */
6658 constructor_unfilled_index = constructor_index;
6659 }
6660 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6661 {
6662 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6663
6664 /* Do a basic check of initializer size. Note that vectors
6665 always have a fixed size derived from their type. */
6666 if (tree_int_cst_lt (constructor_max_index, constructor_index))
6667 {
6668 pedwarn_init ("excess elements in vector initializer");
6669 break;
6670 }
6671
6672 /* Now output the actual element. */
6673 if (value.value)
6674 output_init_element (value.value, strict_string,
6675 elttype, constructor_index, 1);
6676
6677 constructor_index
6678 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
6679
6680 if (!value.value)
6681 /* If we are doing the bookkeeping for an element that was
6682 directly output as a constructor, we must update
6683 constructor_unfilled_index. */
6684 constructor_unfilled_index = constructor_index;
6685 }
6686
6687 /* Handle the sole element allowed in a braced initializer
6688 for a scalar variable. */
6689 else if (constructor_type != error_mark_node
6690 && constructor_fields == 0)
6691 {
6692 pedwarn_init ("excess elements in scalar initializer");
6693 break;
6694 }
6695 else
6696 {
6697 if (value.value)
6698 output_init_element (value.value, strict_string,
6699 constructor_type, NULL_TREE, 1);
6700 constructor_fields = 0;
6701 }
6702
6703 /* Handle range initializers either at this level or anywhere higher
6704 in the designator stack. */
6705 if (constructor_range_stack)
6706 {
6707 struct constructor_range_stack *p, *range_stack;
6708 int finish = 0;
6709
6710 range_stack = constructor_range_stack;
6711 constructor_range_stack = 0;
6712 while (constructor_stack != range_stack->stack)
6713 {
6714 gcc_assert (constructor_stack->implicit);
6715 process_init_element (pop_init_level (1));
6716 }
6717 for (p = range_stack;
6718 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
6719 p = p->prev)
6720 {
6721 gcc_assert (constructor_stack->implicit);
6722 process_init_element (pop_init_level (1));
6723 }
6724
6725 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
6726 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
6727 finish = 1;
6728
6729 while (1)
6730 {
6731 constructor_index = p->index;
6732 constructor_fields = p->fields;
6733 if (finish && p->range_end && p->index == p->range_start)
6734 {
6735 finish = 0;
6736 p->prev = 0;
6737 }
6738 p = p->next;
6739 if (!p)
6740 break;
6741 push_init_level (2);
6742 p->stack = constructor_stack;
6743 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
6744 p->index = p->range_start;
6745 }
6746
6747 if (!finish)
6748 constructor_range_stack = range_stack;
6749 continue;
6750 }
6751
6752 break;
6753 }
6754
6755 constructor_range_stack = 0;
6756 }
6757 \f
6758 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
6759 (guaranteed to be 'volatile' or null) and ARGS (represented using
6760 an ASM_EXPR node). */
6761 tree
6762 build_asm_stmt (tree cv_qualifier, tree args)
6763 {
6764 if (!ASM_VOLATILE_P (args) && cv_qualifier)
6765 ASM_VOLATILE_P (args) = 1;
6766 return add_stmt (args);
6767 }
6768
6769 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
6770 some INPUTS, and some CLOBBERS. The latter three may be NULL.
6771 SIMPLE indicates whether there was anything at all after the
6772 string in the asm expression -- asm("blah") and asm("blah" : )
6773 are subtly different. We use a ASM_EXPR node to represent this. */
6774 tree
6775 build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
6776 bool simple)
6777 {
6778 tree tail;
6779 tree args;
6780 int i;
6781 const char *constraint;
6782 const char **oconstraints;
6783 bool allows_mem, allows_reg, is_inout;
6784 int ninputs, noutputs;
6785
6786 ninputs = list_length (inputs);
6787 noutputs = list_length (outputs);
6788 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
6789
6790 string = resolve_asm_operand_names (string, outputs, inputs);
6791
6792 /* Remove output conversions that change the type but not the mode. */
6793 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
6794 {
6795 tree output = TREE_VALUE (tail);
6796
6797 /* ??? Really, this should not be here. Users should be using a
6798 proper lvalue, dammit. But there's a long history of using casts
6799 in the output operands. In cases like longlong.h, this becomes a
6800 primitive form of typechecking -- if the cast can be removed, then
6801 the output operand had a type of the proper width; otherwise we'll
6802 get an error. Gross, but ... */
6803 STRIP_NOPS (output);
6804
6805 if (!lvalue_or_else (output, lv_asm))
6806 output = error_mark_node;
6807
6808 if (output != error_mark_node
6809 && (TREE_READONLY (output)
6810 || TYPE_READONLY (TREE_TYPE (output))
6811 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
6812 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
6813 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
6814 readonly_error (output, lv_asm);
6815
6816 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6817 oconstraints[i] = constraint;
6818
6819 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
6820 &allows_mem, &allows_reg, &is_inout))
6821 {
6822 /* If the operand is going to end up in memory,
6823 mark it addressable. */
6824 if (!allows_reg && !c_mark_addressable (output))
6825 output = error_mark_node;
6826 }
6827 else
6828 output = error_mark_node;
6829
6830 TREE_VALUE (tail) = output;
6831 }
6832
6833 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
6834 {
6835 tree input;
6836
6837 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
6838 input = TREE_VALUE (tail);
6839
6840 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
6841 oconstraints, &allows_mem, &allows_reg))
6842 {
6843 /* If the operand is going to end up in memory,
6844 mark it addressable. */
6845 if (!allows_reg && allows_mem)
6846 {
6847 /* Strip the nops as we allow this case. FIXME, this really
6848 should be rejected or made deprecated. */
6849 STRIP_NOPS (input);
6850 if (!c_mark_addressable (input))
6851 input = error_mark_node;
6852 }
6853 }
6854 else
6855 input = error_mark_node;
6856
6857 TREE_VALUE (tail) = input;
6858 }
6859
6860 args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
6861
6862 /* asm statements without outputs, including simple ones, are treated
6863 as volatile. */
6864 ASM_INPUT_P (args) = simple;
6865 ASM_VOLATILE_P (args) = (noutputs == 0);
6866
6867 return args;
6868 }
6869 \f
6870 /* Generate a goto statement to LABEL. */
6871
6872 tree
6873 c_finish_goto_label (tree label)
6874 {
6875 tree decl = lookup_label (label);
6876 if (!decl)
6877 return NULL_TREE;
6878
6879 if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
6880 {
6881 error ("jump into statement expression");
6882 return NULL_TREE;
6883 }
6884
6885 if (C_DECL_UNJUMPABLE_VM (decl))
6886 {
6887 error ("jump into scope of identifier with variably modified type");
6888 return NULL_TREE;
6889 }
6890
6891 if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
6892 {
6893 /* No jump from outside this statement expression context, so
6894 record that there is a jump from within this context. */
6895 struct c_label_list *nlist;
6896 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6897 nlist->next = label_context_stack_se->labels_used;
6898 nlist->label = decl;
6899 label_context_stack_se->labels_used = nlist;
6900 }
6901
6902 if (!C_DECL_UNDEFINABLE_VM (decl))
6903 {
6904 /* No jump from outside this context context of identifiers with
6905 variably modified type, so record that there is a jump from
6906 within this context. */
6907 struct c_label_list *nlist;
6908 nlist = XOBNEW (&parser_obstack, struct c_label_list);
6909 nlist->next = label_context_stack_vm->labels_used;
6910 nlist->label = decl;
6911 label_context_stack_vm->labels_used = nlist;
6912 }
6913
6914 TREE_USED (decl) = 1;
6915 return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
6916 }
6917
6918 /* Generate a computed goto statement to EXPR. */
6919
6920 tree
6921 c_finish_goto_ptr (tree expr)
6922 {
6923 if (pedantic)
6924 pedwarn ("ISO C forbids %<goto *expr;%>");
6925 expr = convert (ptr_type_node, expr);
6926 return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
6927 }
6928
6929 /* Generate a C `return' statement. RETVAL is the expression for what
6930 to return, or a null pointer for `return;' with no value. */
6931
6932 tree
6933 c_finish_return (tree retval)
6934 {
6935 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
6936 bool no_warning = false;
6937
6938 if (TREE_THIS_VOLATILE (current_function_decl))
6939 warning (0, "function declared %<noreturn%> has a %<return%> statement");
6940
6941 if (!retval)
6942 {
6943 current_function_returns_null = 1;
6944 if ((warn_return_type || flag_isoc99)
6945 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
6946 {
6947 pedwarn_c99 ("%<return%> with no value, in "
6948 "function returning non-void");
6949 no_warning = true;
6950 }
6951 }
6952 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
6953 {
6954 current_function_returns_null = 1;
6955 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
6956 pedwarn ("%<return%> with a value, in function returning void");
6957 else if (pedantic)
6958 pedwarn ("ISO C forbids %<return%> with expression, in function returning void");
6959 }
6960 else
6961 {
6962 tree t = convert_for_assignment (valtype, retval, ic_return,
6963 NULL_TREE, NULL_TREE, 0);
6964 tree res = DECL_RESULT (current_function_decl);
6965 tree inner;
6966
6967 current_function_returns_value = 1;
6968 if (t == error_mark_node)
6969 return NULL_TREE;
6970
6971 inner = t = convert (TREE_TYPE (res), t);
6972
6973 /* Strip any conversions, additions, and subtractions, and see if
6974 we are returning the address of a local variable. Warn if so. */
6975 while (1)
6976 {
6977 switch (TREE_CODE (inner))
6978 {
6979 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
6980 case PLUS_EXPR:
6981 inner = TREE_OPERAND (inner, 0);
6982 continue;
6983
6984 case MINUS_EXPR:
6985 /* If the second operand of the MINUS_EXPR has a pointer
6986 type (or is converted from it), this may be valid, so
6987 don't give a warning. */
6988 {
6989 tree op1 = TREE_OPERAND (inner, 1);
6990
6991 while (!POINTER_TYPE_P (TREE_TYPE (op1))
6992 && (TREE_CODE (op1) == NOP_EXPR
6993 || TREE_CODE (op1) == NON_LVALUE_EXPR
6994 || TREE_CODE (op1) == CONVERT_EXPR))
6995 op1 = TREE_OPERAND (op1, 0);
6996
6997 if (POINTER_TYPE_P (TREE_TYPE (op1)))
6998 break;
6999
7000 inner = TREE_OPERAND (inner, 0);
7001 continue;
7002 }
7003
7004 case ADDR_EXPR:
7005 inner = TREE_OPERAND (inner, 0);
7006
7007 while (REFERENCE_CLASS_P (inner)
7008 && TREE_CODE (inner) != INDIRECT_REF)
7009 inner = TREE_OPERAND (inner, 0);
7010
7011 if (DECL_P (inner)
7012 && !DECL_EXTERNAL (inner)
7013 && !TREE_STATIC (inner)
7014 && DECL_CONTEXT (inner) == current_function_decl)
7015 warning (0, "function returns address of local variable");
7016 break;
7017
7018 default:
7019 break;
7020 }
7021
7022 break;
7023 }
7024
7025 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
7026 }
7027
7028 ret_stmt = build_stmt (RETURN_EXPR, retval);
7029 TREE_NO_WARNING (ret_stmt) |= no_warning;
7030 return add_stmt (ret_stmt);
7031 }
7032 \f
7033 struct c_switch {
7034 /* The SWITCH_EXPR being built. */
7035 tree switch_expr;
7036
7037 /* The original type of the testing expression, i.e. before the
7038 default conversion is applied. */
7039 tree orig_type;
7040
7041 /* A splay-tree mapping the low element of a case range to the high
7042 element, or NULL_TREE if there is no high element. Used to
7043 determine whether or not a new case label duplicates an old case
7044 label. We need a tree, rather than simply a hash table, because
7045 of the GNU case range extension. */
7046 splay_tree cases;
7047
7048 /* Number of nested statement expressions within this switch
7049 statement; if nonzero, case and default labels may not
7050 appear. */
7051 unsigned int blocked_stmt_expr;
7052
7053 /* Scope of outermost declarations of identifiers with variably
7054 modified type within this switch statement; if nonzero, case and
7055 default labels may not appear. */
7056 unsigned int blocked_vm;
7057
7058 /* The next node on the stack. */
7059 struct c_switch *next;
7060 };
7061
7062 /* A stack of the currently active switch statements. The innermost
7063 switch statement is on the top of the stack. There is no need to
7064 mark the stack for garbage collection because it is only active
7065 during the processing of the body of a function, and we never
7066 collect at that point. */
7067
7068 struct c_switch *c_switch_stack;
7069
7070 /* Start a C switch statement, testing expression EXP. Return the new
7071 SWITCH_EXPR. */
7072
7073 tree
7074 c_start_case (tree exp)
7075 {
7076 tree orig_type = error_mark_node;
7077 struct c_switch *cs;
7078
7079 if (exp != error_mark_node)
7080 {
7081 orig_type = TREE_TYPE (exp);
7082
7083 if (!INTEGRAL_TYPE_P (orig_type))
7084 {
7085 if (orig_type != error_mark_node)
7086 {
7087 error ("switch quantity not an integer");
7088 orig_type = error_mark_node;
7089 }
7090 exp = integer_zero_node;
7091 }
7092 else
7093 {
7094 tree type = TYPE_MAIN_VARIANT (orig_type);
7095
7096 if (!in_system_header
7097 && (type == long_integer_type_node
7098 || type == long_unsigned_type_node))
7099 warning (OPT_Wtraditional, "%<long%> switch expression not "
7100 "converted to %<int%> in ISO C");
7101
7102 exp = default_conversion (exp);
7103 }
7104 }
7105
7106 /* Add this new SWITCH_EXPR to the stack. */
7107 cs = XNEW (struct c_switch);
7108 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
7109 cs->orig_type = orig_type;
7110 cs->cases = splay_tree_new (case_compare, NULL, NULL);
7111 cs->blocked_stmt_expr = 0;
7112 cs->blocked_vm = 0;
7113 cs->next = c_switch_stack;
7114 c_switch_stack = cs;
7115
7116 return add_stmt (cs->switch_expr);
7117 }
7118
7119 /* Process a case label. */
7120
7121 tree
7122 do_case (tree low_value, tree high_value)
7123 {
7124 tree label = NULL_TREE;
7125
7126 if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
7127 && !c_switch_stack->blocked_vm)
7128 {
7129 label = c_add_case_label (c_switch_stack->cases,
7130 SWITCH_COND (c_switch_stack->switch_expr),
7131 c_switch_stack->orig_type,
7132 low_value, high_value);
7133 if (label == error_mark_node)
7134 label = NULL_TREE;
7135 }
7136 else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
7137 {
7138 if (low_value)
7139 error ("case label in statement expression not containing "
7140 "enclosing switch statement");
7141 else
7142 error ("%<default%> label in statement expression not containing "
7143 "enclosing switch statement");
7144 }
7145 else if (c_switch_stack && c_switch_stack->blocked_vm)
7146 {
7147 if (low_value)
7148 error ("case label in scope of identifier with variably modified "
7149 "type not containing enclosing switch statement");
7150 else
7151 error ("%<default%> label in scope of identifier with variably "
7152 "modified type not containing enclosing switch statement");
7153 }
7154 else if (low_value)
7155 error ("case label not within a switch statement");
7156 else
7157 error ("%<default%> label not within a switch statement");
7158
7159 return label;
7160 }
7161
7162 /* Finish the switch statement. */
7163
7164 void
7165 c_finish_case (tree body)
7166 {
7167 struct c_switch *cs = c_switch_stack;
7168 location_t switch_location;
7169
7170 SWITCH_BODY (cs->switch_expr) = body;
7171
7172 /* We must not be within a statement expression nested in the switch
7173 at this point; we might, however, be within the scope of an
7174 identifier with variably modified type nested in the switch. */
7175 gcc_assert (!cs->blocked_stmt_expr);
7176
7177 /* Emit warnings as needed. */
7178 if (EXPR_HAS_LOCATION (cs->switch_expr))
7179 switch_location = EXPR_LOCATION (cs->switch_expr);
7180 else
7181 switch_location = input_location;
7182 c_do_switch_warnings (cs->cases, switch_location,
7183 TREE_TYPE (cs->switch_expr),
7184 SWITCH_COND (cs->switch_expr));
7185
7186 /* Pop the stack. */
7187 c_switch_stack = cs->next;
7188 splay_tree_delete (cs->cases);
7189 XDELETE (cs);
7190 }
7191 \f
7192 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
7193 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
7194 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
7195 statement, and was not surrounded with parenthesis. */
7196
7197 void
7198 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
7199 tree else_block, bool nested_if)
7200 {
7201 tree stmt;
7202
7203 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
7204 if (warn_parentheses && nested_if && else_block == NULL)
7205 {
7206 tree inner_if = then_block;
7207
7208 /* We know from the grammar productions that there is an IF nested
7209 within THEN_BLOCK. Due to labels and c99 conditional declarations,
7210 it might not be exactly THEN_BLOCK, but should be the last
7211 non-container statement within. */
7212 while (1)
7213 switch (TREE_CODE (inner_if))
7214 {
7215 case COND_EXPR:
7216 goto found;
7217 case BIND_EXPR:
7218 inner_if = BIND_EXPR_BODY (inner_if);
7219 break;
7220 case STATEMENT_LIST:
7221 inner_if = expr_last (then_block);
7222 break;
7223 case TRY_FINALLY_EXPR:
7224 case TRY_CATCH_EXPR:
7225 inner_if = TREE_OPERAND (inner_if, 0);
7226 break;
7227 default:
7228 gcc_unreachable ();
7229 }
7230 found:
7231
7232 if (COND_EXPR_ELSE (inner_if))
7233 warning (OPT_Wparentheses,
7234 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
7235 &if_locus);
7236 }
7237
7238 empty_if_body_warning (then_block, else_block);
7239
7240 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
7241 SET_EXPR_LOCATION (stmt, if_locus);
7242 add_stmt (stmt);
7243 }
7244
7245 /* Emit a general-purpose loop construct. START_LOCUS is the location of
7246 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
7247 is false for DO loops. INCR is the FOR increment expression. BODY is
7248 the statement controlled by the loop. BLAB is the break label. CLAB is
7249 the continue label. Everything is allowed to be NULL. */
7250
7251 void
7252 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
7253 tree blab, tree clab, bool cond_is_first)
7254 {
7255 tree entry = NULL, exit = NULL, t;
7256
7257 /* If the condition is zero don't generate a loop construct. */
7258 if (cond && integer_zerop (cond))
7259 {
7260 if (cond_is_first)
7261 {
7262 t = build_and_jump (&blab);
7263 SET_EXPR_LOCATION (t, start_locus);
7264 add_stmt (t);
7265 }
7266 }
7267 else
7268 {
7269 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7270
7271 /* If we have an exit condition, then we build an IF with gotos either
7272 out of the loop, or to the top of it. If there's no exit condition,
7273 then we just build a jump back to the top. */
7274 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
7275
7276 if (cond && !integer_nonzerop (cond))
7277 {
7278 /* Canonicalize the loop condition to the end. This means
7279 generating a branch to the loop condition. Reuse the
7280 continue label, if possible. */
7281 if (cond_is_first)
7282 {
7283 if (incr || !clab)
7284 {
7285 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
7286 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
7287 }
7288 else
7289 t = build1 (GOTO_EXPR, void_type_node, clab);
7290 SET_EXPR_LOCATION (t, start_locus);
7291 add_stmt (t);
7292 }
7293
7294 t = build_and_jump (&blab);
7295 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
7296 if (cond_is_first)
7297 SET_EXPR_LOCATION (exit, start_locus);
7298 else
7299 SET_EXPR_LOCATION (exit, input_location);
7300 }
7301
7302 add_stmt (top);
7303 }
7304
7305 if (body)
7306 add_stmt (body);
7307 if (clab)
7308 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
7309 if (incr)
7310 add_stmt (incr);
7311 if (entry)
7312 add_stmt (entry);
7313 if (exit)
7314 add_stmt (exit);
7315 if (blab)
7316 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
7317 }
7318
7319 tree
7320 c_finish_bc_stmt (tree *label_p, bool is_break)
7321 {
7322 bool skip;
7323 tree label = *label_p;
7324
7325 /* In switch statements break is sometimes stylistically used after
7326 a return statement. This can lead to spurious warnings about
7327 control reaching the end of a non-void function when it is
7328 inlined. Note that we are calling block_may_fallthru with
7329 language specific tree nodes; this works because
7330 block_may_fallthru returns true when given something it does not
7331 understand. */
7332 skip = !block_may_fallthru (cur_stmt_list);
7333
7334 if (!label)
7335 {
7336 if (!skip)
7337 *label_p = label = create_artificial_label ();
7338 }
7339 else if (TREE_CODE (label) == LABEL_DECL)
7340 ;
7341 else switch (TREE_INT_CST_LOW (label))
7342 {
7343 case 0:
7344 if (is_break)
7345 error ("break statement not within loop or switch");
7346 else
7347 error ("continue statement not within a loop");
7348 return NULL_TREE;
7349
7350 case 1:
7351 gcc_assert (is_break);
7352 error ("break statement used with OpenMP for loop");
7353 return NULL_TREE;
7354
7355 default:
7356 gcc_unreachable ();
7357 }
7358
7359 if (skip)
7360 return NULL_TREE;
7361
7362 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
7363 }
7364
7365 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
7366
7367 static void
7368 emit_side_effect_warnings (tree expr)
7369 {
7370 if (expr == error_mark_node)
7371 ;
7372 else if (!TREE_SIDE_EFFECTS (expr))
7373 {
7374 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
7375 warning (OPT_Wunused_value, "%Hstatement with no effect",
7376 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
7377 }
7378 else
7379 warn_if_unused_value (expr, input_location);
7380 }
7381
7382 /* Process an expression as if it were a complete statement. Emit
7383 diagnostics, but do not call ADD_STMT. */
7384
7385 tree
7386 c_process_expr_stmt (tree expr)
7387 {
7388 if (!expr)
7389 return NULL_TREE;
7390
7391 if (warn_sequence_point)
7392 verify_sequence_points (expr);
7393
7394 if (TREE_TYPE (expr) != error_mark_node
7395 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
7396 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
7397 error ("expression statement has incomplete type");
7398
7399 /* If we're not processing a statement expression, warn about unused values.
7400 Warnings for statement expressions will be emitted later, once we figure
7401 out which is the result. */
7402 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7403 && warn_unused_value)
7404 emit_side_effect_warnings (expr);
7405
7406 /* If the expression is not of a type to which we cannot assign a line
7407 number, wrap the thing in a no-op NOP_EXPR. */
7408 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
7409 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
7410
7411 if (CAN_HAVE_LOCATION_P (expr))
7412 SET_EXPR_LOCATION (expr, input_location);
7413
7414 return expr;
7415 }
7416
7417 /* Emit an expression as a statement. */
7418
7419 tree
7420 c_finish_expr_stmt (tree expr)
7421 {
7422 if (expr)
7423 return add_stmt (c_process_expr_stmt (expr));
7424 else
7425 return NULL;
7426 }
7427
7428 /* Do the opposite and emit a statement as an expression. To begin,
7429 create a new binding level and return it. */
7430
7431 tree
7432 c_begin_stmt_expr (void)
7433 {
7434 tree ret;
7435 struct c_label_context_se *nstack;
7436 struct c_label_list *glist;
7437
7438 /* We must force a BLOCK for this level so that, if it is not expanded
7439 later, there is a way to turn off the entire subtree of blocks that
7440 are contained in it. */
7441 keep_next_level ();
7442 ret = c_begin_compound_stmt (true);
7443 if (c_switch_stack)
7444 {
7445 c_switch_stack->blocked_stmt_expr++;
7446 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7447 }
7448 for (glist = label_context_stack_se->labels_used;
7449 glist != NULL;
7450 glist = glist->next)
7451 {
7452 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
7453 }
7454 nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
7455 nstack->labels_def = NULL;
7456 nstack->labels_used = NULL;
7457 nstack->next = label_context_stack_se;
7458 label_context_stack_se = nstack;
7459
7460 /* Mark the current statement list as belonging to a statement list. */
7461 STATEMENT_LIST_STMT_EXPR (ret) = 1;
7462
7463 return ret;
7464 }
7465
7466 tree
7467 c_finish_stmt_expr (tree body)
7468 {
7469 tree last, type, tmp, val;
7470 tree *last_p;
7471 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7472
7473 body = c_end_compound_stmt (body, true);
7474 if (c_switch_stack)
7475 {
7476 gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
7477 c_switch_stack->blocked_stmt_expr--;
7478 }
7479 /* It is no longer possible to jump to labels defined within this
7480 statement expression. */
7481 for (dlist = label_context_stack_se->labels_def;
7482 dlist != NULL;
7483 dlist = dlist->next)
7484 {
7485 C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
7486 }
7487 /* It is again possible to define labels with a goto just outside
7488 this statement expression. */
7489 for (glist = label_context_stack_se->next->labels_used;
7490 glist != NULL;
7491 glist = glist->next)
7492 {
7493 C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
7494 glist_prev = glist;
7495 }
7496 if (glist_prev != NULL)
7497 glist_prev->next = label_context_stack_se->labels_used;
7498 else
7499 label_context_stack_se->next->labels_used
7500 = label_context_stack_se->labels_used;
7501 label_context_stack_se = label_context_stack_se->next;
7502
7503 /* Locate the last statement in BODY. See c_end_compound_stmt
7504 about always returning a BIND_EXPR. */
7505 last_p = &BIND_EXPR_BODY (body);
7506 last = BIND_EXPR_BODY (body);
7507
7508 continue_searching:
7509 if (TREE_CODE (last) == STATEMENT_LIST)
7510 {
7511 tree_stmt_iterator i;
7512
7513 /* This can happen with degenerate cases like ({ }). No value. */
7514 if (!TREE_SIDE_EFFECTS (last))
7515 return body;
7516
7517 /* If we're supposed to generate side effects warnings, process
7518 all of the statements except the last. */
7519 if (warn_unused_value)
7520 {
7521 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
7522 emit_side_effect_warnings (tsi_stmt (i));
7523 }
7524 else
7525 i = tsi_last (last);
7526 last_p = tsi_stmt_ptr (i);
7527 last = *last_p;
7528 }
7529
7530 /* If the end of the list is exception related, then the list was split
7531 by a call to push_cleanup. Continue searching. */
7532 if (TREE_CODE (last) == TRY_FINALLY_EXPR
7533 || TREE_CODE (last) == TRY_CATCH_EXPR)
7534 {
7535 last_p = &TREE_OPERAND (last, 0);
7536 last = *last_p;
7537 goto continue_searching;
7538 }
7539
7540 /* In the case that the BIND_EXPR is not necessary, return the
7541 expression out from inside it. */
7542 if (last == error_mark_node
7543 || (last == BIND_EXPR_BODY (body)
7544 && BIND_EXPR_VARS (body) == NULL))
7545 {
7546 /* Do not warn if the return value of a statement expression is
7547 unused. */
7548 if (CAN_HAVE_LOCATION_P (last))
7549 TREE_NO_WARNING (last) = 1;
7550 return last;
7551 }
7552
7553 /* Extract the type of said expression. */
7554 type = TREE_TYPE (last);
7555
7556 /* If we're not returning a value at all, then the BIND_EXPR that
7557 we already have is a fine expression to return. */
7558 if (!type || VOID_TYPE_P (type))
7559 return body;
7560
7561 /* Now that we've located the expression containing the value, it seems
7562 silly to make voidify_wrapper_expr repeat the process. Create a
7563 temporary of the appropriate type and stick it in a TARGET_EXPR. */
7564 tmp = create_tmp_var_raw (type, NULL);
7565
7566 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
7567 tree_expr_nonnegative_p giving up immediately. */
7568 val = last;
7569 if (TREE_CODE (val) == NOP_EXPR
7570 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
7571 val = TREE_OPERAND (val, 0);
7572
7573 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
7574 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
7575
7576 return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
7577 }
7578
7579 /* Begin the scope of an identifier of variably modified type, scope
7580 number SCOPE. Jumping from outside this scope to inside it is not
7581 permitted. */
7582
7583 void
7584 c_begin_vm_scope (unsigned int scope)
7585 {
7586 struct c_label_context_vm *nstack;
7587 struct c_label_list *glist;
7588
7589 gcc_assert (scope > 0);
7590
7591 /* At file_scope, we don't have to do any processing. */
7592 if (label_context_stack_vm == NULL)
7593 return;
7594
7595 if (c_switch_stack && !c_switch_stack->blocked_vm)
7596 c_switch_stack->blocked_vm = scope;
7597 for (glist = label_context_stack_vm->labels_used;
7598 glist != NULL;
7599 glist = glist->next)
7600 {
7601 C_DECL_UNDEFINABLE_VM (glist->label) = 1;
7602 }
7603 nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
7604 nstack->labels_def = NULL;
7605 nstack->labels_used = NULL;
7606 nstack->scope = scope;
7607 nstack->next = label_context_stack_vm;
7608 label_context_stack_vm = nstack;
7609 }
7610
7611 /* End a scope which may contain identifiers of variably modified
7612 type, scope number SCOPE. */
7613
7614 void
7615 c_end_vm_scope (unsigned int scope)
7616 {
7617 if (label_context_stack_vm == NULL)
7618 return;
7619 if (c_switch_stack && c_switch_stack->blocked_vm == scope)
7620 c_switch_stack->blocked_vm = 0;
7621 /* We may have a number of nested scopes of identifiers with
7622 variably modified type, all at this depth. Pop each in turn. */
7623 while (label_context_stack_vm->scope == scope)
7624 {
7625 struct c_label_list *dlist, *glist, *glist_prev = NULL;
7626
7627 /* It is no longer possible to jump to labels defined within this
7628 scope. */
7629 for (dlist = label_context_stack_vm->labels_def;
7630 dlist != NULL;
7631 dlist = dlist->next)
7632 {
7633 C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
7634 }
7635 /* It is again possible to define labels with a goto just outside
7636 this scope. */
7637 for (glist = label_context_stack_vm->next->labels_used;
7638 glist != NULL;
7639 glist = glist->next)
7640 {
7641 C_DECL_UNDEFINABLE_VM (glist->label) = 0;
7642 glist_prev = glist;
7643 }
7644 if (glist_prev != NULL)
7645 glist_prev->next = label_context_stack_vm->labels_used;
7646 else
7647 label_context_stack_vm->next->labels_used
7648 = label_context_stack_vm->labels_used;
7649 label_context_stack_vm = label_context_stack_vm->next;
7650 }
7651 }
7652 \f
7653 /* Begin and end compound statements. This is as simple as pushing
7654 and popping new statement lists from the tree. */
7655
7656 tree
7657 c_begin_compound_stmt (bool do_scope)
7658 {
7659 tree stmt = push_stmt_list ();
7660 if (do_scope)
7661 push_scope ();
7662 return stmt;
7663 }
7664
7665 tree
7666 c_end_compound_stmt (tree stmt, bool do_scope)
7667 {
7668 tree block = NULL;
7669
7670 if (do_scope)
7671 {
7672 if (c_dialect_objc ())
7673 objc_clear_super_receiver ();
7674 block = pop_scope ();
7675 }
7676
7677 stmt = pop_stmt_list (stmt);
7678 stmt = c_build_bind_expr (block, stmt);
7679
7680 /* If this compound statement is nested immediately inside a statement
7681 expression, then force a BIND_EXPR to be created. Otherwise we'll
7682 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
7683 STATEMENT_LISTs merge, and thus we can lose track of what statement
7684 was really last. */
7685 if (cur_stmt_list
7686 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
7687 && TREE_CODE (stmt) != BIND_EXPR)
7688 {
7689 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
7690 TREE_SIDE_EFFECTS (stmt) = 1;
7691 }
7692
7693 return stmt;
7694 }
7695
7696 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
7697 when the current scope is exited. EH_ONLY is true when this is not
7698 meant to apply to normal control flow transfer. */
7699
7700 void
7701 push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
7702 {
7703 enum tree_code code;
7704 tree stmt, list;
7705 bool stmt_expr;
7706
7707 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
7708 stmt = build_stmt (code, NULL, cleanup);
7709 add_stmt (stmt);
7710 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
7711 list = push_stmt_list ();
7712 TREE_OPERAND (stmt, 0) = list;
7713 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
7714 }
7715 \f
7716 /* Build a binary-operation expression without default conversions.
7717 CODE is the kind of expression to build.
7718 This function differs from `build' in several ways:
7719 the data type of the result is computed and recorded in it,
7720 warnings are generated if arg data types are invalid,
7721 special handling for addition and subtraction of pointers is known,
7722 and some optimization is done (operations on narrow ints
7723 are done in the narrower type when that gives the same result).
7724 Constant folding is also done before the result is returned.
7725
7726 Note that the operands will never have enumeral types, or function
7727 or array types, because either they will have the default conversions
7728 performed or they have both just been converted to some other type in which
7729 the arithmetic is to be done. */
7730
7731 tree
7732 build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
7733 int convert_p)
7734 {
7735 tree type0, type1;
7736 enum tree_code code0, code1;
7737 tree op0, op1;
7738 const char *invalid_op_diag;
7739
7740 /* Expression code to give to the expression when it is built.
7741 Normally this is CODE, which is what the caller asked for,
7742 but in some special cases we change it. */
7743 enum tree_code resultcode = code;
7744
7745 /* Data type in which the computation is to be performed.
7746 In the simplest cases this is the common type of the arguments. */
7747 tree result_type = NULL;
7748
7749 /* Nonzero means operands have already been type-converted
7750 in whatever way is necessary.
7751 Zero means they need to be converted to RESULT_TYPE. */
7752 int converted = 0;
7753
7754 /* Nonzero means create the expression with this type, rather than
7755 RESULT_TYPE. */
7756 tree build_type = 0;
7757
7758 /* Nonzero means after finally constructing the expression
7759 convert it to this type. */
7760 tree final_type = 0;
7761
7762 /* Nonzero if this is an operation like MIN or MAX which can
7763 safely be computed in short if both args are promoted shorts.
7764 Also implies COMMON.
7765 -1 indicates a bitwise operation; this makes a difference
7766 in the exact conditions for when it is safe to do the operation
7767 in a narrower mode. */
7768 int shorten = 0;
7769
7770 /* Nonzero if this is a comparison operation;
7771 if both args are promoted shorts, compare the original shorts.
7772 Also implies COMMON. */
7773 int short_compare = 0;
7774
7775 /* Nonzero if this is a right-shift operation, which can be computed on the
7776 original short and then promoted if the operand is a promoted short. */
7777 int short_shift = 0;
7778
7779 /* Nonzero means set RESULT_TYPE to the common type of the args. */
7780 int common = 0;
7781
7782 /* True means types are compatible as far as ObjC is concerned. */
7783 bool objc_ok;
7784
7785 if (convert_p)
7786 {
7787 op0 = default_conversion (orig_op0);
7788 op1 = default_conversion (orig_op1);
7789 }
7790 else
7791 {
7792 op0 = orig_op0;
7793 op1 = orig_op1;
7794 }
7795
7796 type0 = TREE_TYPE (op0);
7797 type1 = TREE_TYPE (op1);
7798
7799 /* The expression codes of the data types of the arguments tell us
7800 whether the arguments are integers, floating, pointers, etc. */
7801 code0 = TREE_CODE (type0);
7802 code1 = TREE_CODE (type1);
7803
7804 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
7805 STRIP_TYPE_NOPS (op0);
7806 STRIP_TYPE_NOPS (op1);
7807
7808 /* If an error was already reported for one of the arguments,
7809 avoid reporting another error. */
7810
7811 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
7812 return error_mark_node;
7813
7814 if ((invalid_op_diag
7815 = targetm.invalid_binary_op (code, type0, type1)))
7816 {
7817 error (invalid_op_diag);
7818 return error_mark_node;
7819 }
7820
7821 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
7822
7823 switch (code)
7824 {
7825 case PLUS_EXPR:
7826 /* Handle the pointer + int case. */
7827 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7828 return pointer_int_sum (PLUS_EXPR, op0, op1);
7829 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
7830 return pointer_int_sum (PLUS_EXPR, op1, op0);
7831 else
7832 common = 1;
7833 break;
7834
7835 case MINUS_EXPR:
7836 /* Subtraction of two similar pointers.
7837 We must subtract them as integers, then divide by object size. */
7838 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
7839 && comp_target_types (type0, type1))
7840 return pointer_diff (op0, op1);
7841 /* Handle pointer minus int. Just like pointer plus int. */
7842 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
7843 return pointer_int_sum (MINUS_EXPR, op0, op1);
7844 else
7845 common = 1;
7846 break;
7847
7848 case MULT_EXPR:
7849 common = 1;
7850 break;
7851
7852 case TRUNC_DIV_EXPR:
7853 case CEIL_DIV_EXPR:
7854 case FLOOR_DIV_EXPR:
7855 case ROUND_DIV_EXPR:
7856 case EXACT_DIV_EXPR:
7857 warn_for_div_by_zero (op1);
7858
7859 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7860 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7861 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7862 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
7863 {
7864 enum tree_code tcode0 = code0, tcode1 = code1;
7865
7866 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
7867 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
7868 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
7869 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
7870
7871 if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
7872 resultcode = RDIV_EXPR;
7873 else
7874 /* Although it would be tempting to shorten always here, that
7875 loses on some targets, since the modulo instruction is
7876 undefined if the quotient can't be represented in the
7877 computation mode. We shorten only if unsigned or if
7878 dividing by something we know != -1. */
7879 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7880 || (TREE_CODE (op1) == INTEGER_CST
7881 && !integer_all_onesp (op1)));
7882 common = 1;
7883 }
7884 break;
7885
7886 case BIT_AND_EXPR:
7887 case BIT_IOR_EXPR:
7888 case BIT_XOR_EXPR:
7889 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7890 shorten = -1;
7891 else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
7892 common = 1;
7893 break;
7894
7895 case TRUNC_MOD_EXPR:
7896 case FLOOR_MOD_EXPR:
7897 warn_for_div_by_zero (op1);
7898
7899 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7900 {
7901 /* Although it would be tempting to shorten always here, that loses
7902 on some targets, since the modulo instruction is undefined if the
7903 quotient can't be represented in the computation mode. We shorten
7904 only if unsigned or if dividing by something we know != -1. */
7905 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
7906 || (TREE_CODE (op1) == INTEGER_CST
7907 && !integer_all_onesp (op1)));
7908 common = 1;
7909 }
7910 break;
7911
7912 case TRUTH_ANDIF_EXPR:
7913 case TRUTH_ORIF_EXPR:
7914 case TRUTH_AND_EXPR:
7915 case TRUTH_OR_EXPR:
7916 case TRUTH_XOR_EXPR:
7917 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
7918 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
7919 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
7920 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
7921 {
7922 /* Result of these operations is always an int,
7923 but that does not mean the operands should be
7924 converted to ints! */
7925 result_type = integer_type_node;
7926 op0 = c_common_truthvalue_conversion (op0);
7927 op1 = c_common_truthvalue_conversion (op1);
7928 converted = 1;
7929 }
7930 break;
7931
7932 /* Shift operations: result has same type as first operand;
7933 always convert second operand to int.
7934 Also set SHORT_SHIFT if shifting rightward. */
7935
7936 case RSHIFT_EXPR:
7937 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7938 {
7939 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7940 {
7941 if (tree_int_cst_sgn (op1) < 0)
7942 warning (0, "right shift count is negative");
7943 else
7944 {
7945 if (!integer_zerop (op1))
7946 short_shift = 1;
7947
7948 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7949 warning (0, "right shift count >= width of type");
7950 }
7951 }
7952
7953 /* Use the type of the value to be shifted. */
7954 result_type = type0;
7955 /* Convert the shift-count to an integer, regardless of size
7956 of value being shifted. */
7957 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7958 op1 = convert (integer_type_node, op1);
7959 /* Avoid converting op1 to result_type later. */
7960 converted = 1;
7961 }
7962 break;
7963
7964 case LSHIFT_EXPR:
7965 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
7966 {
7967 if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
7968 {
7969 if (tree_int_cst_sgn (op1) < 0)
7970 warning (0, "left shift count is negative");
7971
7972 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
7973 warning (0, "left shift count >= width of type");
7974 }
7975
7976 /* Use the type of the value to be shifted. */
7977 result_type = type0;
7978 /* Convert the shift-count to an integer, regardless of size
7979 of value being shifted. */
7980 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
7981 op1 = convert (integer_type_node, op1);
7982 /* Avoid converting op1 to result_type later. */
7983 converted = 1;
7984 }
7985 break;
7986
7987 case EQ_EXPR:
7988 case NE_EXPR:
7989 if (code0 == REAL_TYPE || code1 == REAL_TYPE)
7990 warning (OPT_Wfloat_equal,
7991 "comparing floating point with == or != is unsafe");
7992 /* Result of comparison is always int,
7993 but don't convert the args to int! */
7994 build_type = integer_type_node;
7995 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
7996 || code0 == COMPLEX_TYPE)
7997 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
7998 || code1 == COMPLEX_TYPE))
7999 short_compare = 1;
8000 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8001 {
8002 tree tt0 = TREE_TYPE (type0);
8003 tree tt1 = TREE_TYPE (type1);
8004 /* Anything compares with void *. void * compares with anything.
8005 Otherwise, the targets must be compatible
8006 and both must be object or both incomplete. */
8007 if (comp_target_types (type0, type1))
8008 result_type = common_pointer_type (type0, type1);
8009 else if (VOID_TYPE_P (tt0))
8010 {
8011 /* op0 != orig_op0 detects the case of something
8012 whose value is 0 but which isn't a valid null ptr const. */
8013 if (pedantic && !null_pointer_constant_p (orig_op0)
8014 && TREE_CODE (tt1) == FUNCTION_TYPE)
8015 pedwarn ("ISO C forbids comparison of %<void *%>"
8016 " with function pointer");
8017 }
8018 else if (VOID_TYPE_P (tt1))
8019 {
8020 if (pedantic && !null_pointer_constant_p (orig_op1)
8021 && TREE_CODE (tt0) == FUNCTION_TYPE)
8022 pedwarn ("ISO C forbids comparison of %<void *%>"
8023 " with function pointer");
8024 }
8025 else
8026 /* Avoid warning about the volatile ObjC EH puts on decls. */
8027 if (!objc_ok)
8028 pedwarn ("comparison of distinct pointer types lacks a cast");
8029
8030 if (result_type == NULL_TREE)
8031 result_type = ptr_type_node;
8032 }
8033 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8034 {
8035 if (TREE_CODE (op0) == ADDR_EXPR
8036 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
8037 warning (OPT_Waddress, "the address of %qD will never be NULL",
8038 TREE_OPERAND (op0, 0));
8039 result_type = type0;
8040 }
8041 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8042 {
8043 if (TREE_CODE (op1) == ADDR_EXPR
8044 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
8045 warning (OPT_Waddress, "the address of %qD will never be NULL",
8046 TREE_OPERAND (op1, 0));
8047 result_type = type1;
8048 }
8049 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8050 {
8051 result_type = type0;
8052 pedwarn ("comparison between pointer and integer");
8053 }
8054 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8055 {
8056 result_type = type1;
8057 pedwarn ("comparison between pointer and integer");
8058 }
8059 break;
8060
8061 case LE_EXPR:
8062 case GE_EXPR:
8063 case LT_EXPR:
8064 case GT_EXPR:
8065 build_type = integer_type_node;
8066 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
8067 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
8068 short_compare = 1;
8069 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
8070 {
8071 if (comp_target_types (type0, type1))
8072 {
8073 result_type = common_pointer_type (type0, type1);
8074 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
8075 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
8076 pedwarn ("comparison of complete and incomplete pointers");
8077 else if (pedantic
8078 && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
8079 pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
8080 }
8081 else
8082 {
8083 result_type = ptr_type_node;
8084 pedwarn ("comparison of distinct pointer types lacks a cast");
8085 }
8086 }
8087 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
8088 {
8089 result_type = type0;
8090 if (pedantic || extra_warnings)
8091 pedwarn ("ordered comparison of pointer with integer zero");
8092 }
8093 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
8094 {
8095 result_type = type1;
8096 if (pedantic)
8097 pedwarn ("ordered comparison of pointer with integer zero");
8098 }
8099 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8100 {
8101 result_type = type0;
8102 pedwarn ("comparison between pointer and integer");
8103 }
8104 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
8105 {
8106 result_type = type1;
8107 pedwarn ("comparison between pointer and integer");
8108 }
8109 break;
8110
8111 default:
8112 gcc_unreachable ();
8113 }
8114
8115 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8116 return error_mark_node;
8117
8118 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
8119 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
8120 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
8121 TREE_TYPE (type1))))
8122 {
8123 binary_op_error (code, type0, type1);
8124 return error_mark_node;
8125 }
8126
8127 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
8128 || code0 == VECTOR_TYPE)
8129 &&
8130 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
8131 || code1 == VECTOR_TYPE))
8132 {
8133 int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
8134
8135 if (shorten || common || short_compare)
8136 {
8137 result_type = c_common_type (type0, type1);
8138 if (result_type == error_mark_node)
8139 return error_mark_node;
8140 }
8141
8142 /* For certain operations (which identify themselves by shorten != 0)
8143 if both args were extended from the same smaller type,
8144 do the arithmetic in that type and then extend.
8145
8146 shorten !=0 and !=1 indicates a bitwise operation.
8147 For them, this optimization is safe only if
8148 both args are zero-extended or both are sign-extended.
8149 Otherwise, we might change the result.
8150 Eg, (short)-1 | (unsigned short)-1 is (int)-1
8151 but calculated in (unsigned short) it would be (unsigned short)-1. */
8152
8153 if (shorten && none_complex)
8154 {
8155 int unsigned0, unsigned1;
8156 tree arg0, arg1;
8157 int uns;
8158 tree type;
8159
8160 /* Cast OP0 and OP1 to RESULT_TYPE. Doing so prevents
8161 excessive narrowing when we call get_narrower below. For
8162 example, suppose that OP0 is of unsigned int extended
8163 from signed char and that RESULT_TYPE is long long int.
8164 If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
8165 like
8166
8167 (long long int) (unsigned int) signed_char
8168
8169 which get_narrower would narrow down to
8170
8171 (unsigned int) signed char
8172
8173 If we do not cast OP0 first, get_narrower would return
8174 signed_char, which is inconsistent with the case of the
8175 explicit cast. */
8176 op0 = convert (result_type, op0);
8177 op1 = convert (result_type, op1);
8178
8179 arg0 = get_narrower (op0, &unsigned0);
8180 arg1 = get_narrower (op1, &unsigned1);
8181
8182 /* UNS is 1 if the operation to be done is an unsigned one. */
8183 uns = TYPE_UNSIGNED (result_type);
8184
8185 final_type = result_type;
8186
8187 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
8188 but it *requires* conversion to FINAL_TYPE. */
8189
8190 if ((TYPE_PRECISION (TREE_TYPE (op0))
8191 == TYPE_PRECISION (TREE_TYPE (arg0)))
8192 && TREE_TYPE (op0) != final_type)
8193 unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
8194 if ((TYPE_PRECISION (TREE_TYPE (op1))
8195 == TYPE_PRECISION (TREE_TYPE (arg1)))
8196 && TREE_TYPE (op1) != final_type)
8197 unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
8198
8199 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
8200
8201 /* For bitwise operations, signedness of nominal type
8202 does not matter. Consider only how operands were extended. */
8203 if (shorten == -1)
8204 uns = unsigned0;
8205
8206 /* Note that in all three cases below we refrain from optimizing
8207 an unsigned operation on sign-extended args.
8208 That would not be valid. */
8209
8210 /* Both args variable: if both extended in same way
8211 from same width, do it in that width.
8212 Do it unsigned if args were zero-extended. */
8213 if ((TYPE_PRECISION (TREE_TYPE (arg0))
8214 < TYPE_PRECISION (result_type))
8215 && (TYPE_PRECISION (TREE_TYPE (arg1))
8216 == TYPE_PRECISION (TREE_TYPE (arg0)))
8217 && unsigned0 == unsigned1
8218 && (unsigned0 || !uns))
8219 result_type
8220 = c_common_signed_or_unsigned_type
8221 (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
8222 else if (TREE_CODE (arg0) == INTEGER_CST
8223 && (unsigned1 || !uns)
8224 && (TYPE_PRECISION (TREE_TYPE (arg1))
8225 < TYPE_PRECISION (result_type))
8226 && (type
8227 = c_common_signed_or_unsigned_type (unsigned1,
8228 TREE_TYPE (arg1)),
8229 int_fits_type_p (arg0, type)))
8230 result_type = type;
8231 else if (TREE_CODE (arg1) == INTEGER_CST
8232 && (unsigned0 || !uns)
8233 && (TYPE_PRECISION (TREE_TYPE (arg0))
8234 < TYPE_PRECISION (result_type))
8235 && (type
8236 = c_common_signed_or_unsigned_type (unsigned0,
8237 TREE_TYPE (arg0)),
8238 int_fits_type_p (arg1, type)))
8239 result_type = type;
8240 }
8241
8242 /* Shifts can be shortened if shifting right. */
8243
8244 if (short_shift)
8245 {
8246 int unsigned_arg;
8247 tree arg0 = get_narrower (op0, &unsigned_arg);
8248
8249 final_type = result_type;
8250
8251 if (arg0 == op0 && final_type == TREE_TYPE (op0))
8252 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
8253
8254 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
8255 /* We can shorten only if the shift count is less than the
8256 number of bits in the smaller type size. */
8257 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
8258 /* We cannot drop an unsigned shift after sign-extension. */
8259 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
8260 {
8261 /* Do an unsigned shift if the operand was zero-extended. */
8262 result_type
8263 = c_common_signed_or_unsigned_type (unsigned_arg,
8264 TREE_TYPE (arg0));
8265 /* Convert value-to-be-shifted to that type. */
8266 if (TREE_TYPE (op0) != result_type)
8267 op0 = convert (result_type, op0);
8268 converted = 1;
8269 }
8270 }
8271
8272 /* Comparison operations are shortened too but differently.
8273 They identify themselves by setting short_compare = 1. */
8274
8275 if (short_compare)
8276 {
8277 /* Don't write &op0, etc., because that would prevent op0
8278 from being kept in a register.
8279 Instead, make copies of the our local variables and
8280 pass the copies by reference, then copy them back afterward. */
8281 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
8282 enum tree_code xresultcode = resultcode;
8283 tree val
8284 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
8285
8286 if (val != 0)
8287 return val;
8288
8289 op0 = xop0, op1 = xop1;
8290 converted = 1;
8291 resultcode = xresultcode;
8292
8293 if (warn_sign_compare && skip_evaluation == 0)
8294 {
8295 int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
8296 int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
8297 int unsignedp0, unsignedp1;
8298 tree primop0 = get_narrower (op0, &unsignedp0);
8299 tree primop1 = get_narrower (op1, &unsignedp1);
8300
8301 xop0 = orig_op0;
8302 xop1 = orig_op1;
8303 STRIP_TYPE_NOPS (xop0);
8304 STRIP_TYPE_NOPS (xop1);
8305
8306 /* Give warnings for comparisons between signed and unsigned
8307 quantities that may fail.
8308
8309 Do the checking based on the original operand trees, so that
8310 casts will be considered, but default promotions won't be.
8311
8312 Do not warn if the comparison is being done in a signed type,
8313 since the signed type will only be chosen if it can represent
8314 all the values of the unsigned type. */
8315 if (!TYPE_UNSIGNED (result_type))
8316 /* OK */;
8317 /* Do not warn if both operands are the same signedness. */
8318 else if (op0_signed == op1_signed)
8319 /* OK */;
8320 else
8321 {
8322 tree sop, uop;
8323 bool ovf;
8324
8325 if (op0_signed)
8326 sop = xop0, uop = xop1;
8327 else
8328 sop = xop1, uop = xop0;
8329
8330 /* Do not warn if the signed quantity is an
8331 unsuffixed integer literal (or some static
8332 constant expression involving such literals or a
8333 conditional expression involving such literals)
8334 and it is non-negative. */
8335 if (tree_expr_nonnegative_warnv_p (sop, &ovf))
8336 /* OK */;
8337 /* Do not warn if the comparison is an equality operation,
8338 the unsigned quantity is an integral constant, and it
8339 would fit in the result if the result were signed. */
8340 else if (TREE_CODE (uop) == INTEGER_CST
8341 && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
8342 && int_fits_type_p
8343 (uop, c_common_signed_type (result_type)))
8344 /* OK */;
8345 /* Do not warn if the unsigned quantity is an enumeration
8346 constant and its maximum value would fit in the result
8347 if the result were signed. */
8348 else if (TREE_CODE (uop) == INTEGER_CST
8349 && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
8350 && int_fits_type_p
8351 (TYPE_MAX_VALUE (TREE_TYPE (uop)),
8352 c_common_signed_type (result_type)))
8353 /* OK */;
8354 else
8355 warning (0, "comparison between signed and unsigned");
8356 }
8357
8358 /* Warn if two unsigned values are being compared in a size
8359 larger than their original size, and one (and only one) is the
8360 result of a `~' operator. This comparison will always fail.
8361
8362 Also warn if one operand is a constant, and the constant
8363 does not have all bits set that are set in the ~ operand
8364 when it is extended. */
8365
8366 if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
8367 != (TREE_CODE (primop1) == BIT_NOT_EXPR))
8368 {
8369 if (TREE_CODE (primop0) == BIT_NOT_EXPR)
8370 primop0 = get_narrower (TREE_OPERAND (primop0, 0),
8371 &unsignedp0);
8372 else
8373 primop1 = get_narrower (TREE_OPERAND (primop1, 0),
8374 &unsignedp1);
8375
8376 if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
8377 {
8378 tree primop;
8379 HOST_WIDE_INT constant, mask;
8380 int unsignedp, bits;
8381
8382 if (host_integerp (primop0, 0))
8383 {
8384 primop = primop1;
8385 unsignedp = unsignedp1;
8386 constant = tree_low_cst (primop0, 0);
8387 }
8388 else
8389 {
8390 primop = primop0;
8391 unsignedp = unsignedp0;
8392 constant = tree_low_cst (primop1, 0);
8393 }
8394
8395 bits = TYPE_PRECISION (TREE_TYPE (primop));
8396 if (bits < TYPE_PRECISION (result_type)
8397 && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
8398 {
8399 mask = (~(HOST_WIDE_INT) 0) << bits;
8400 if ((mask & constant) != mask)
8401 warning (0, "comparison of promoted ~unsigned with constant");
8402 }
8403 }
8404 else if (unsignedp0 && unsignedp1
8405 && (TYPE_PRECISION (TREE_TYPE (primop0))
8406 < TYPE_PRECISION (result_type))
8407 && (TYPE_PRECISION (TREE_TYPE (primop1))
8408 < TYPE_PRECISION (result_type)))
8409 warning (0, "comparison of promoted ~unsigned with unsigned");
8410 }
8411 }
8412 }
8413 }
8414
8415 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
8416 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
8417 Then the expression will be built.
8418 It will be given type FINAL_TYPE if that is nonzero;
8419 otherwise, it will be given type RESULT_TYPE. */
8420
8421 if (!result_type)
8422 {
8423 binary_op_error (code, TREE_TYPE (op0), TREE_TYPE (op1));
8424 return error_mark_node;
8425 }
8426
8427 if (!converted)
8428 {
8429 if (TREE_TYPE (op0) != result_type)
8430 op0 = convert_and_check (result_type, op0);
8431 if (TREE_TYPE (op1) != result_type)
8432 op1 = convert_and_check (result_type, op1);
8433
8434 /* This can happen if one operand has a vector type, and the other
8435 has a different type. */
8436 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
8437 return error_mark_node;
8438 }
8439
8440 if (build_type == NULL_TREE)
8441 build_type = result_type;
8442
8443 {
8444 /* Treat expressions in initializers specially as they can't trap. */
8445 tree result = require_constant_value ? fold_build2_initializer (resultcode,
8446 build_type,
8447 op0, op1)
8448 : fold_build2 (resultcode, build_type,
8449 op0, op1);
8450
8451 if (final_type != 0)
8452 result = convert (final_type, result);
8453 return result;
8454 }
8455 }
8456
8457
8458 /* Convert EXPR to be a truth-value, validating its type for this
8459 purpose. */
8460
8461 tree
8462 c_objc_common_truthvalue_conversion (tree expr)
8463 {
8464 switch (TREE_CODE (TREE_TYPE (expr)))
8465 {
8466 case ARRAY_TYPE:
8467 error ("used array that cannot be converted to pointer where scalar is required");
8468 return error_mark_node;
8469
8470 case RECORD_TYPE:
8471 error ("used struct type value where scalar is required");
8472 return error_mark_node;
8473
8474 case UNION_TYPE:
8475 error ("used union type value where scalar is required");
8476 return error_mark_node;
8477
8478 case FUNCTION_TYPE:
8479 gcc_unreachable ();
8480
8481 default:
8482 break;
8483 }
8484
8485 /* ??? Should we also give an error for void and vectors rather than
8486 leaving those to give errors later? */
8487 return c_common_truthvalue_conversion (expr);
8488 }
8489 \f
8490
8491 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
8492 required. */
8493
8494 tree
8495 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
8496 bool *ti ATTRIBUTE_UNUSED, bool *se)
8497 {
8498 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
8499 {
8500 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
8501 /* Executing a compound literal inside a function reinitializes
8502 it. */
8503 if (!TREE_STATIC (decl))
8504 *se = true;
8505 return decl;
8506 }
8507 else
8508 return expr;
8509 }
8510 \f
8511 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
8512
8513 tree
8514 c_begin_omp_parallel (void)
8515 {
8516 tree block;
8517
8518 keep_next_level ();
8519 block = c_begin_compound_stmt (true);
8520
8521 return block;
8522 }
8523
8524 tree
8525 c_finish_omp_parallel (tree clauses, tree block)
8526 {
8527 tree stmt;
8528
8529 block = c_end_compound_stmt (block, true);
8530
8531 stmt = make_node (OMP_PARALLEL);
8532 TREE_TYPE (stmt) = void_type_node;
8533 OMP_PARALLEL_CLAUSES (stmt) = clauses;
8534 OMP_PARALLEL_BODY (stmt) = block;
8535
8536 return add_stmt (stmt);
8537 }
8538
8539 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
8540 Remove any elements from the list that are invalid. */
8541
8542 tree
8543 c_finish_omp_clauses (tree clauses)
8544 {
8545 bitmap_head generic_head, firstprivate_head, lastprivate_head;
8546 tree c, t, *pc = &clauses;
8547 const char *name;
8548
8549 bitmap_obstack_initialize (NULL);
8550 bitmap_initialize (&generic_head, &bitmap_default_obstack);
8551 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
8552 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
8553
8554 for (pc = &clauses, c = clauses; c ; c = *pc)
8555 {
8556 bool remove = false;
8557 bool need_complete = false;
8558 bool need_implicitly_determined = false;
8559
8560 switch (OMP_CLAUSE_CODE (c))
8561 {
8562 case OMP_CLAUSE_SHARED:
8563 name = "shared";
8564 need_implicitly_determined = true;
8565 goto check_dup_generic;
8566
8567 case OMP_CLAUSE_PRIVATE:
8568 name = "private";
8569 need_complete = true;
8570 need_implicitly_determined = true;
8571 goto check_dup_generic;
8572
8573 case OMP_CLAUSE_REDUCTION:
8574 name = "reduction";
8575 need_implicitly_determined = true;
8576 t = OMP_CLAUSE_DECL (c);
8577 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
8578 || POINTER_TYPE_P (TREE_TYPE (t)))
8579 {
8580 error ("%qE has invalid type for %<reduction%>", t);
8581 remove = true;
8582 }
8583 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
8584 {
8585 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
8586 const char *r_name = NULL;
8587
8588 switch (r_code)
8589 {
8590 case PLUS_EXPR:
8591 case MULT_EXPR:
8592 case MINUS_EXPR:
8593 break;
8594 case BIT_AND_EXPR:
8595 r_name = "&";
8596 break;
8597 case BIT_XOR_EXPR:
8598 r_name = "^";
8599 break;
8600 case BIT_IOR_EXPR:
8601 r_name = "|";
8602 break;
8603 case TRUTH_ANDIF_EXPR:
8604 r_name = "&&";
8605 break;
8606 case TRUTH_ORIF_EXPR:
8607 r_name = "||";
8608 break;
8609 default:
8610 gcc_unreachable ();
8611 }
8612 if (r_name)
8613 {
8614 error ("%qE has invalid type for %<reduction(%s)%>",
8615 t, r_name);
8616 remove = true;
8617 }
8618 }
8619 goto check_dup_generic;
8620
8621 case OMP_CLAUSE_COPYPRIVATE:
8622 name = "copyprivate";
8623 goto check_dup_generic;
8624
8625 case OMP_CLAUSE_COPYIN:
8626 name = "copyin";
8627 t = OMP_CLAUSE_DECL (c);
8628 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
8629 {
8630 error ("%qE must be %<threadprivate%> for %<copyin%>", t);
8631 remove = true;
8632 }
8633 goto check_dup_generic;
8634
8635 check_dup_generic:
8636 t = OMP_CLAUSE_DECL (c);
8637 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8638 {
8639 error ("%qE is not a variable in clause %qs", t, name);
8640 remove = true;
8641 }
8642 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8643 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
8644 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8645 {
8646 error ("%qE appears more than once in data clauses", t);
8647 remove = true;
8648 }
8649 else
8650 bitmap_set_bit (&generic_head, DECL_UID (t));
8651 break;
8652
8653 case OMP_CLAUSE_FIRSTPRIVATE:
8654 name = "firstprivate";
8655 t = OMP_CLAUSE_DECL (c);
8656 need_complete = true;
8657 need_implicitly_determined = true;
8658 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8659 {
8660 error ("%qE is not a variable in clause %<firstprivate%>", t);
8661 remove = true;
8662 }
8663 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8664 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
8665 {
8666 error ("%qE appears more than once in data clauses", t);
8667 remove = true;
8668 }
8669 else
8670 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
8671 break;
8672
8673 case OMP_CLAUSE_LASTPRIVATE:
8674 name = "lastprivate";
8675 t = OMP_CLAUSE_DECL (c);
8676 need_complete = true;
8677 need_implicitly_determined = true;
8678 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
8679 {
8680 error ("%qE is not a variable in clause %<lastprivate%>", t);
8681 remove = true;
8682 }
8683 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
8684 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
8685 {
8686 error ("%qE appears more than once in data clauses", t);
8687 remove = true;
8688 }
8689 else
8690 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
8691 break;
8692
8693 case OMP_CLAUSE_IF:
8694 case OMP_CLAUSE_NUM_THREADS:
8695 case OMP_CLAUSE_SCHEDULE:
8696 case OMP_CLAUSE_NOWAIT:
8697 case OMP_CLAUSE_ORDERED:
8698 case OMP_CLAUSE_DEFAULT:
8699 pc = &OMP_CLAUSE_CHAIN (c);
8700 continue;
8701
8702 default:
8703 gcc_unreachable ();
8704 }
8705
8706 if (!remove)
8707 {
8708 t = OMP_CLAUSE_DECL (c);
8709
8710 if (need_complete)
8711 {
8712 t = require_complete_type (t);
8713 if (t == error_mark_node)
8714 remove = true;
8715 }
8716
8717 if (need_implicitly_determined)
8718 {
8719 const char *share_name = NULL;
8720
8721 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
8722 share_name = "threadprivate";
8723 else switch (c_omp_predetermined_sharing (t))
8724 {
8725 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
8726 break;
8727 case OMP_CLAUSE_DEFAULT_SHARED:
8728 share_name = "shared";
8729 break;
8730 case OMP_CLAUSE_DEFAULT_PRIVATE:
8731 share_name = "private";
8732 break;
8733 default:
8734 gcc_unreachable ();
8735 }
8736 if (share_name)
8737 {
8738 error ("%qE is predetermined %qs for %qs",
8739 t, share_name, name);
8740 remove = true;
8741 }
8742 }
8743 }
8744
8745 if (remove)
8746 *pc = OMP_CLAUSE_CHAIN (c);
8747 else
8748 pc = &OMP_CLAUSE_CHAIN (c);
8749 }
8750
8751 bitmap_obstack_release (NULL);
8752 return clauses;
8753 }
This page took 0.406807 seconds and 4 git commands to generate.