]> gcc.gnu.org Git - gcc.git/blob - gcc/c-typeck.c
c-common.c (skip_evaluation): Don't define.
[gcc.git] / gcc / c-typeck.c
1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* This file is part of the C front end.
24 It contains routines to build C expressions given their operands,
25 including computing the types of the result, C-specific error checks,
26 and some optimization. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "langhooks.h"
35 #include "c-tree.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "output.h"
39 #include "expr.h"
40 #include "toplev.h"
41 #include "intl.h"
42 #include "ggc.h"
43 #include "target.h"
44 #include "tree-iterator.h"
45 #include "gimple.h"
46 #include "tree-flow.h"
47
48 /* Possible cases of implicit bad conversions. Used to select
49 diagnostic messages in convert_for_assignment. */
50 enum impl_conv {
51 ic_argpass,
52 ic_assign,
53 ic_init,
54 ic_return
55 };
56
57 /* Whether we are building a boolean conversion inside
58 convert_for_assignment, or some other late binary operation. If
59 build_binary_op is called (from code shared with C++) in this case,
60 then the operands have already been folded and the result will not
61 be folded again, so C_MAYBE_CONST_EXPR should not be generated. */
62 bool in_late_binary_op;
63
64 /* The level of nesting inside "__alignof__". */
65 int in_alignof;
66
67 /* The level of nesting inside "sizeof". */
68 int in_sizeof;
69
70 /* The level of nesting inside "typeof". */
71 int in_typeof;
72
73 /* Nonzero if we've already printed a "missing braces around initializer"
74 message within this initializer. */
75 static int missing_braces_mentioned;
76
77 static int require_constant_value;
78 static int require_constant_elements;
79
80 static bool null_pointer_constant_p (const_tree);
81 static tree qualify_type (tree, tree);
82 static int tagged_types_tu_compatible_p (const_tree, const_tree, bool *);
83 static int comp_target_types (location_t, tree, tree);
84 static int function_types_compatible_p (const_tree, const_tree, bool *);
85 static int type_lists_compatible_p (const_tree, const_tree, bool *);
86 static tree lookup_field (tree, tree);
87 static int convert_arguments (tree, VEC(tree,gc) *, VEC(tree,gc) *, tree,
88 tree);
89 static tree pointer_diff (tree, tree);
90 static tree convert_for_assignment (location_t, tree, tree, tree,
91 enum impl_conv, bool, tree, tree, int);
92 static tree valid_compound_expr_initializer (tree, tree);
93 static void push_string (const char *);
94 static void push_member_name (tree);
95 static int spelling_length (void);
96 static char *print_spelling (char *);
97 static void warning_init (int, const char *);
98 static tree digest_init (location_t, tree, tree, tree, bool, bool, int);
99 static void output_init_element (tree, tree, bool, tree, tree, int, bool);
100 static void output_pending_init_elements (int);
101 static int set_designator (int);
102 static void push_range_stack (tree);
103 static void add_pending_init (tree, tree, tree, bool);
104 static void set_nonincremental_init (void);
105 static void set_nonincremental_init_from_string (tree);
106 static tree find_init_member (tree);
107 static void readonly_error (tree, enum lvalue_use);
108 static void readonly_warning (tree, enum lvalue_use);
109 static int lvalue_or_else (const_tree, enum lvalue_use);
110 static void record_maybe_used_decl (tree);
111 static int comptypes_internal (const_tree, const_tree, bool *);
112 \f
113 /* Return true if EXP is a null pointer constant, false otherwise. */
114
115 static bool
116 null_pointer_constant_p (const_tree expr)
117 {
118 /* This should really operate on c_expr structures, but they aren't
119 yet available everywhere required. */
120 tree type = TREE_TYPE (expr);
121 return (TREE_CODE (expr) == INTEGER_CST
122 && !TREE_OVERFLOW (expr)
123 && integer_zerop (expr)
124 && (INTEGRAL_TYPE_P (type)
125 || (TREE_CODE (type) == POINTER_TYPE
126 && VOID_TYPE_P (TREE_TYPE (type))
127 && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
128 }
129
130 /* EXPR may appear in an unevaluated part of an integer constant
131 expression, but not in an evaluated part. Wrap it in a
132 C_MAYBE_CONST_EXPR, or mark it with TREE_OVERFLOW if it is just an
133 INTEGER_CST and we cannot create a C_MAYBE_CONST_EXPR. */
134
135 static tree
136 note_integer_operands (tree expr)
137 {
138 tree ret;
139 if (TREE_CODE (expr) == INTEGER_CST && in_late_binary_op)
140 {
141 ret = copy_node (expr);
142 TREE_OVERFLOW (ret) = 1;
143 }
144 else
145 {
146 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL_TREE, expr);
147 C_MAYBE_CONST_EXPR_INT_OPERANDS (ret) = 1;
148 }
149 return ret;
150 }
151
152 /* Having checked whether EXPR may appear in an unevaluated part of an
153 integer constant expression and found that it may, remove any
154 C_MAYBE_CONST_EXPR noting this fact and return the resulting
155 expression. */
156
157 static inline tree
158 remove_c_maybe_const_expr (tree expr)
159 {
160 if (TREE_CODE (expr) == C_MAYBE_CONST_EXPR)
161 return C_MAYBE_CONST_EXPR_EXPR (expr);
162 else
163 return expr;
164 }
165
166 \f/* This is a cache to hold if two types are compatible or not. */
167
168 struct tagged_tu_seen_cache {
169 const struct tagged_tu_seen_cache * next;
170 const_tree t1;
171 const_tree t2;
172 /* The return value of tagged_types_tu_compatible_p if we had seen
173 these two types already. */
174 int val;
175 };
176
177 static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
178 static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
179
180 /* Do `exp = require_complete_type (exp);' to make sure exp
181 does not have an incomplete type. (That includes void types.) */
182
183 tree
184 require_complete_type (tree value)
185 {
186 tree type = TREE_TYPE (value);
187
188 if (value == error_mark_node || type == error_mark_node)
189 return error_mark_node;
190
191 /* First, detect a valid value with a complete type. */
192 if (COMPLETE_TYPE_P (type))
193 return value;
194
195 c_incomplete_type_error (value, type);
196 return error_mark_node;
197 }
198
199 /* Print an error message for invalid use of an incomplete type.
200 VALUE is the expression that was used (or 0 if that isn't known)
201 and TYPE is the type that was invalid. */
202
203 void
204 c_incomplete_type_error (const_tree value, const_tree type)
205 {
206 const char *type_code_string;
207
208 /* Avoid duplicate error message. */
209 if (TREE_CODE (type) == ERROR_MARK)
210 return;
211
212 if (value != 0 && (TREE_CODE (value) == VAR_DECL
213 || TREE_CODE (value) == PARM_DECL))
214 error ("%qD has an incomplete type", value);
215 else
216 {
217 retry:
218 /* We must print an error message. Be clever about what it says. */
219
220 switch (TREE_CODE (type))
221 {
222 case RECORD_TYPE:
223 type_code_string = "struct";
224 break;
225
226 case UNION_TYPE:
227 type_code_string = "union";
228 break;
229
230 case ENUMERAL_TYPE:
231 type_code_string = "enum";
232 break;
233
234 case VOID_TYPE:
235 error ("invalid use of void expression");
236 return;
237
238 case ARRAY_TYPE:
239 if (TYPE_DOMAIN (type))
240 {
241 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
242 {
243 error ("invalid use of flexible array member");
244 return;
245 }
246 type = TREE_TYPE (type);
247 goto retry;
248 }
249 error ("invalid use of array with unspecified bounds");
250 return;
251
252 default:
253 gcc_unreachable ();
254 }
255
256 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
257 error ("invalid use of undefined type %<%s %E%>",
258 type_code_string, TYPE_NAME (type));
259 else
260 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
261 error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
262 }
263 }
264
265 /* Given a type, apply default promotions wrt unnamed function
266 arguments and return the new type. */
267
268 tree
269 c_type_promotes_to (tree type)
270 {
271 if (TYPE_MAIN_VARIANT (type) == float_type_node)
272 return double_type_node;
273
274 if (c_promoting_integer_type_p (type))
275 {
276 /* Preserve unsignedness if not really getting any wider. */
277 if (TYPE_UNSIGNED (type)
278 && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
279 return unsigned_type_node;
280 return integer_type_node;
281 }
282
283 return type;
284 }
285
286 /* Return a variant of TYPE which has all the type qualifiers of LIKE
287 as well as those of TYPE. */
288
289 static tree
290 qualify_type (tree type, tree like)
291 {
292 return c_build_qualified_type (type,
293 TYPE_QUALS (type) | TYPE_QUALS (like));
294 }
295
296 /* Return true iff the given tree T is a variable length array. */
297
298 bool
299 c_vla_type_p (const_tree t)
300 {
301 if (TREE_CODE (t) == ARRAY_TYPE
302 && C_TYPE_VARIABLE_SIZE (t))
303 return true;
304 return false;
305 }
306 \f
307 /* Return the composite type of two compatible types.
308
309 We assume that comptypes has already been done and returned
310 nonzero; if that isn't so, this may crash. In particular, we
311 assume that qualifiers match. */
312
313 tree
314 composite_type (tree t1, tree t2)
315 {
316 enum tree_code code1;
317 enum tree_code code2;
318 tree attributes;
319
320 /* Save time if the two types are the same. */
321
322 if (t1 == t2) return t1;
323
324 /* If one type is nonsense, use the other. */
325 if (t1 == error_mark_node)
326 return t2;
327 if (t2 == error_mark_node)
328 return t1;
329
330 code1 = TREE_CODE (t1);
331 code2 = TREE_CODE (t2);
332
333 /* Merge the attributes. */
334 attributes = targetm.merge_type_attributes (t1, t2);
335
336 /* If one is an enumerated type and the other is the compatible
337 integer type, the composite type might be either of the two
338 (DR#013 question 3). For consistency, use the enumerated type as
339 the composite type. */
340
341 if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
342 return t1;
343 if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
344 return t2;
345
346 gcc_assert (code1 == code2);
347
348 switch (code1)
349 {
350 case POINTER_TYPE:
351 /* For two pointers, do this recursively on the target type. */
352 {
353 tree pointed_to_1 = TREE_TYPE (t1);
354 tree pointed_to_2 = TREE_TYPE (t2);
355 tree target = composite_type (pointed_to_1, pointed_to_2);
356 t1 = build_pointer_type (target);
357 t1 = build_type_attribute_variant (t1, attributes);
358 return qualify_type (t1, t2);
359 }
360
361 case ARRAY_TYPE:
362 {
363 tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
364 int quals;
365 tree unqual_elt;
366 tree d1 = TYPE_DOMAIN (t1);
367 tree d2 = TYPE_DOMAIN (t2);
368 bool d1_variable, d2_variable;
369 bool d1_zero, d2_zero;
370 bool t1_complete, t2_complete;
371
372 /* We should not have any type quals on arrays at all. */
373 gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
374
375 t1_complete = COMPLETE_TYPE_P (t1);
376 t2_complete = COMPLETE_TYPE_P (t2);
377
378 d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
379 d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
380
381 d1_variable = (!d1_zero
382 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
383 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
384 d2_variable = (!d2_zero
385 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
386 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
387 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
388 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
389
390 /* Save space: see if the result is identical to one of the args. */
391 if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
392 && (d2_variable || d2_zero || !d1_variable))
393 return build_type_attribute_variant (t1, attributes);
394 if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
395 && (d1_variable || d1_zero || !d2_variable))
396 return build_type_attribute_variant (t2, attributes);
397
398 if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
399 return build_type_attribute_variant (t1, attributes);
400 if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
401 return build_type_attribute_variant (t2, attributes);
402
403 /* Merge the element types, and have a size if either arg has
404 one. We may have qualifiers on the element types. To set
405 up TYPE_MAIN_VARIANT correctly, we need to form the
406 composite of the unqualified types and add the qualifiers
407 back at the end. */
408 quals = TYPE_QUALS (strip_array_types (elt));
409 unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
410 t1 = build_array_type (unqual_elt,
411 TYPE_DOMAIN ((TYPE_DOMAIN (t1)
412 && (d2_variable
413 || d2_zero
414 || !d1_variable))
415 ? t1
416 : t2));
417 /* Ensure a composite type involving a zero-length array type
418 is a zero-length type not an incomplete type. */
419 if (d1_zero && d2_zero
420 && (t1_complete || t2_complete)
421 && !COMPLETE_TYPE_P (t1))
422 {
423 TYPE_SIZE (t1) = bitsize_zero_node;
424 TYPE_SIZE_UNIT (t1) = size_zero_node;
425 }
426 t1 = c_build_qualified_type (t1, quals);
427 return build_type_attribute_variant (t1, attributes);
428 }
429
430 case ENUMERAL_TYPE:
431 case RECORD_TYPE:
432 case UNION_TYPE:
433 if (attributes != NULL)
434 {
435 /* Try harder not to create a new aggregate type. */
436 if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
437 return t1;
438 if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
439 return t2;
440 }
441 return build_type_attribute_variant (t1, attributes);
442
443 case FUNCTION_TYPE:
444 /* Function types: prefer the one that specified arg types.
445 If both do, merge the arg types. Also merge the return types. */
446 {
447 tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
448 tree p1 = TYPE_ARG_TYPES (t1);
449 tree p2 = TYPE_ARG_TYPES (t2);
450 int len;
451 tree newargs, n;
452 int i;
453
454 /* Save space: see if the result is identical to one of the args. */
455 if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
456 return build_type_attribute_variant (t1, attributes);
457 if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
458 return build_type_attribute_variant (t2, attributes);
459
460 /* Simple way if one arg fails to specify argument types. */
461 if (TYPE_ARG_TYPES (t1) == 0)
462 {
463 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
464 t1 = build_type_attribute_variant (t1, attributes);
465 return qualify_type (t1, t2);
466 }
467 if (TYPE_ARG_TYPES (t2) == 0)
468 {
469 t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
470 t1 = build_type_attribute_variant (t1, attributes);
471 return qualify_type (t1, t2);
472 }
473
474 /* If both args specify argument types, we must merge the two
475 lists, argument by argument. */
476 /* Tell global_bindings_p to return false so that variable_size
477 doesn't die on VLAs in parameter types. */
478 c_override_global_bindings_to_false = true;
479
480 len = list_length (p1);
481 newargs = 0;
482
483 for (i = 0; i < len; i++)
484 newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
485
486 n = newargs;
487
488 for (; p1;
489 p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
490 {
491 /* A null type means arg type is not specified.
492 Take whatever the other function type has. */
493 if (TREE_VALUE (p1) == 0)
494 {
495 TREE_VALUE (n) = TREE_VALUE (p2);
496 goto parm_done;
497 }
498 if (TREE_VALUE (p2) == 0)
499 {
500 TREE_VALUE (n) = TREE_VALUE (p1);
501 goto parm_done;
502 }
503
504 /* Given wait (union {union wait *u; int *i} *)
505 and wait (union wait *),
506 prefer union wait * as type of parm. */
507 if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
508 && TREE_VALUE (p1) != TREE_VALUE (p2))
509 {
510 tree memb;
511 tree mv2 = TREE_VALUE (p2);
512 if (mv2 && mv2 != error_mark_node
513 && TREE_CODE (mv2) != ARRAY_TYPE)
514 mv2 = TYPE_MAIN_VARIANT (mv2);
515 for (memb = TYPE_FIELDS (TREE_VALUE (p1));
516 memb; memb = TREE_CHAIN (memb))
517 {
518 tree mv3 = TREE_TYPE (memb);
519 if (mv3 && mv3 != error_mark_node
520 && TREE_CODE (mv3) != ARRAY_TYPE)
521 mv3 = TYPE_MAIN_VARIANT (mv3);
522 if (comptypes (mv3, mv2))
523 {
524 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
525 TREE_VALUE (p2));
526 pedwarn (input_location, OPT_pedantic,
527 "function types not truly compatible in ISO C");
528 goto parm_done;
529 }
530 }
531 }
532 if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
533 && TREE_VALUE (p2) != TREE_VALUE (p1))
534 {
535 tree memb;
536 tree mv1 = TREE_VALUE (p1);
537 if (mv1 && mv1 != error_mark_node
538 && TREE_CODE (mv1) != ARRAY_TYPE)
539 mv1 = TYPE_MAIN_VARIANT (mv1);
540 for (memb = TYPE_FIELDS (TREE_VALUE (p2));
541 memb; memb = TREE_CHAIN (memb))
542 {
543 tree mv3 = TREE_TYPE (memb);
544 if (mv3 && mv3 != error_mark_node
545 && TREE_CODE (mv3) != ARRAY_TYPE)
546 mv3 = TYPE_MAIN_VARIANT (mv3);
547 if (comptypes (mv3, mv1))
548 {
549 TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
550 TREE_VALUE (p1));
551 pedwarn (input_location, OPT_pedantic,
552 "function types not truly compatible in ISO C");
553 goto parm_done;
554 }
555 }
556 }
557 TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
558 parm_done: ;
559 }
560
561 c_override_global_bindings_to_false = false;
562 t1 = build_function_type (valtype, newargs);
563 t1 = qualify_type (t1, t2);
564 /* ... falls through ... */
565 }
566
567 default:
568 return build_type_attribute_variant (t1, attributes);
569 }
570
571 }
572
573 /* Return the type of a conditional expression between pointers to
574 possibly differently qualified versions of compatible types.
575
576 We assume that comp_target_types has already been done and returned
577 nonzero; if that isn't so, this may crash. */
578
579 static tree
580 common_pointer_type (tree t1, tree t2)
581 {
582 tree attributes;
583 tree pointed_to_1, mv1;
584 tree pointed_to_2, mv2;
585 tree target;
586 unsigned target_quals;
587
588 /* Save time if the two types are the same. */
589
590 if (t1 == t2) return t1;
591
592 /* If one type is nonsense, use the other. */
593 if (t1 == error_mark_node)
594 return t2;
595 if (t2 == error_mark_node)
596 return t1;
597
598 gcc_assert (TREE_CODE (t1) == POINTER_TYPE
599 && TREE_CODE (t2) == POINTER_TYPE);
600
601 /* Merge the attributes. */
602 attributes = targetm.merge_type_attributes (t1, t2);
603
604 /* Find the composite type of the target types, and combine the
605 qualifiers of the two types' targets. Do not lose qualifiers on
606 array element types by taking the TYPE_MAIN_VARIANT. */
607 mv1 = pointed_to_1 = TREE_TYPE (t1);
608 mv2 = pointed_to_2 = TREE_TYPE (t2);
609 if (TREE_CODE (mv1) != ARRAY_TYPE)
610 mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
611 if (TREE_CODE (mv2) != ARRAY_TYPE)
612 mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
613 target = composite_type (mv1, mv2);
614
615 /* For function types do not merge const qualifiers, but drop them
616 if used inconsistently. The middle-end uses these to mark const
617 and noreturn functions. */
618 if (TREE_CODE (pointed_to_1) == FUNCTION_TYPE)
619 target_quals = TYPE_QUALS (pointed_to_1) & TYPE_QUALS (pointed_to_2);
620 else
621 target_quals = TYPE_QUALS (pointed_to_1) | TYPE_QUALS (pointed_to_2);
622 t1 = build_pointer_type (c_build_qualified_type (target, target_quals));
623 return build_type_attribute_variant (t1, attributes);
624 }
625
626 /* Return the common type for two arithmetic types under the usual
627 arithmetic conversions. The default conversions have already been
628 applied, and enumerated types converted to their compatible integer
629 types. The resulting type is unqualified and has no attributes.
630
631 This is the type for the result of most arithmetic operations
632 if the operands have the given two types. */
633
634 static tree
635 c_common_type (tree t1, tree t2)
636 {
637 enum tree_code code1;
638 enum tree_code code2;
639
640 /* If one type is nonsense, use the other. */
641 if (t1 == error_mark_node)
642 return t2;
643 if (t2 == error_mark_node)
644 return t1;
645
646 if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
647 t1 = TYPE_MAIN_VARIANT (t1);
648
649 if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
650 t2 = TYPE_MAIN_VARIANT (t2);
651
652 if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
653 t1 = build_type_attribute_variant (t1, NULL_TREE);
654
655 if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
656 t2 = build_type_attribute_variant (t2, NULL_TREE);
657
658 /* Save time if the two types are the same. */
659
660 if (t1 == t2) return t1;
661
662 code1 = TREE_CODE (t1);
663 code2 = TREE_CODE (t2);
664
665 gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
666 || code1 == FIXED_POINT_TYPE || code1 == REAL_TYPE
667 || code1 == INTEGER_TYPE);
668 gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
669 || code2 == FIXED_POINT_TYPE || code2 == REAL_TYPE
670 || code2 == INTEGER_TYPE);
671
672 /* When one operand is a decimal float type, the other operand cannot be
673 a generic float type or a complex type. We also disallow vector types
674 here. */
675 if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
676 && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
677 {
678 if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
679 {
680 error ("can%'t mix operands of decimal float and vector types");
681 return error_mark_node;
682 }
683 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
684 {
685 error ("can%'t mix operands of decimal float and complex types");
686 return error_mark_node;
687 }
688 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
689 {
690 error ("can%'t mix operands of decimal float and other float types");
691 return error_mark_node;
692 }
693 }
694
695 /* If one type is a vector type, return that type. (How the usual
696 arithmetic conversions apply to the vector types extension is not
697 precisely specified.) */
698 if (code1 == VECTOR_TYPE)
699 return t1;
700
701 if (code2 == VECTOR_TYPE)
702 return t2;
703
704 /* If one type is complex, form the common type of the non-complex
705 components, then make that complex. Use T1 or T2 if it is the
706 required type. */
707 if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
708 {
709 tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
710 tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
711 tree subtype = c_common_type (subtype1, subtype2);
712
713 if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
714 return t1;
715 else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
716 return t2;
717 else
718 return build_complex_type (subtype);
719 }
720
721 /* If only one is real, use it as the result. */
722
723 if (code1 == REAL_TYPE && code2 != REAL_TYPE)
724 return t1;
725
726 if (code2 == REAL_TYPE && code1 != REAL_TYPE)
727 return t2;
728
729 /* If both are real and either are decimal floating point types, use
730 the decimal floating point type with the greater precision. */
731
732 if (code1 == REAL_TYPE && code2 == REAL_TYPE)
733 {
734 if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
735 || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
736 return dfloat128_type_node;
737 else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
738 || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
739 return dfloat64_type_node;
740 else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
741 || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
742 return dfloat32_type_node;
743 }
744
745 /* Deal with fixed-point types. */
746 if (code1 == FIXED_POINT_TYPE || code2 == FIXED_POINT_TYPE)
747 {
748 unsigned int unsignedp = 0, satp = 0;
749 enum machine_mode m1, m2;
750 unsigned int fbit1, ibit1, fbit2, ibit2, max_fbit, max_ibit;
751
752 m1 = TYPE_MODE (t1);
753 m2 = TYPE_MODE (t2);
754
755 /* If one input type is saturating, the result type is saturating. */
756 if (TYPE_SATURATING (t1) || TYPE_SATURATING (t2))
757 satp = 1;
758
759 /* If both fixed-point types are unsigned, the result type is unsigned.
760 When mixing fixed-point and integer types, follow the sign of the
761 fixed-point type.
762 Otherwise, the result type is signed. */
763 if ((TYPE_UNSIGNED (t1) && TYPE_UNSIGNED (t2)
764 && code1 == FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE)
765 || (code1 == FIXED_POINT_TYPE && code2 != FIXED_POINT_TYPE
766 && TYPE_UNSIGNED (t1))
767 || (code1 != FIXED_POINT_TYPE && code2 == FIXED_POINT_TYPE
768 && TYPE_UNSIGNED (t2)))
769 unsignedp = 1;
770
771 /* The result type is signed. */
772 if (unsignedp == 0)
773 {
774 /* If the input type is unsigned, we need to convert to the
775 signed type. */
776 if (code1 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t1))
777 {
778 enum mode_class mclass = (enum mode_class) 0;
779 if (GET_MODE_CLASS (m1) == MODE_UFRACT)
780 mclass = MODE_FRACT;
781 else if (GET_MODE_CLASS (m1) == MODE_UACCUM)
782 mclass = MODE_ACCUM;
783 else
784 gcc_unreachable ();
785 m1 = mode_for_size (GET_MODE_PRECISION (m1), mclass, 0);
786 }
787 if (code2 == FIXED_POINT_TYPE && TYPE_UNSIGNED (t2))
788 {
789 enum mode_class mclass = (enum mode_class) 0;
790 if (GET_MODE_CLASS (m2) == MODE_UFRACT)
791 mclass = MODE_FRACT;
792 else if (GET_MODE_CLASS (m2) == MODE_UACCUM)
793 mclass = MODE_ACCUM;
794 else
795 gcc_unreachable ();
796 m2 = mode_for_size (GET_MODE_PRECISION (m2), mclass, 0);
797 }
798 }
799
800 if (code1 == FIXED_POINT_TYPE)
801 {
802 fbit1 = GET_MODE_FBIT (m1);
803 ibit1 = GET_MODE_IBIT (m1);
804 }
805 else
806 {
807 fbit1 = 0;
808 /* Signed integers need to subtract one sign bit. */
809 ibit1 = TYPE_PRECISION (t1) - (!TYPE_UNSIGNED (t1));
810 }
811
812 if (code2 == FIXED_POINT_TYPE)
813 {
814 fbit2 = GET_MODE_FBIT (m2);
815 ibit2 = GET_MODE_IBIT (m2);
816 }
817 else
818 {
819 fbit2 = 0;
820 /* Signed integers need to subtract one sign bit. */
821 ibit2 = TYPE_PRECISION (t2) - (!TYPE_UNSIGNED (t2));
822 }
823
824 max_ibit = ibit1 >= ibit2 ? ibit1 : ibit2;
825 max_fbit = fbit1 >= fbit2 ? fbit1 : fbit2;
826 return c_common_fixed_point_type_for_size (max_ibit, max_fbit, unsignedp,
827 satp);
828 }
829
830 /* Both real or both integers; use the one with greater precision. */
831
832 if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
833 return t1;
834 else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
835 return t2;
836
837 /* Same precision. Prefer long longs to longs to ints when the
838 same precision, following the C99 rules on integer type rank
839 (which are equivalent to the C90 rules for C90 types). */
840
841 if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
842 || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
843 return long_long_unsigned_type_node;
844
845 if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
846 || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
847 {
848 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
849 return long_long_unsigned_type_node;
850 else
851 return long_long_integer_type_node;
852 }
853
854 if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
855 || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
856 return long_unsigned_type_node;
857
858 if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
859 || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
860 {
861 /* But preserve unsignedness from the other type,
862 since long cannot hold all the values of an unsigned int. */
863 if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
864 return long_unsigned_type_node;
865 else
866 return long_integer_type_node;
867 }
868
869 /* Likewise, prefer long double to double even if same size. */
870 if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
871 || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
872 return long_double_type_node;
873
874 /* Otherwise prefer the unsigned one. */
875
876 if (TYPE_UNSIGNED (t1))
877 return t1;
878 else
879 return t2;
880 }
881 \f
882 /* Wrapper around c_common_type that is used by c-common.c and other
883 front end optimizations that remove promotions. ENUMERAL_TYPEs
884 are allowed here and are converted to their compatible integer types.
885 BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
886 preferably a non-Boolean type as the common type. */
887 tree
888 common_type (tree t1, tree t2)
889 {
890 if (TREE_CODE (t1) == ENUMERAL_TYPE)
891 t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
892 if (TREE_CODE (t2) == ENUMERAL_TYPE)
893 t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
894
895 /* If both types are BOOLEAN_TYPE, then return boolean_type_node. */
896 if (TREE_CODE (t1) == BOOLEAN_TYPE
897 && TREE_CODE (t2) == BOOLEAN_TYPE)
898 return boolean_type_node;
899
900 /* If either type is BOOLEAN_TYPE, then return the other. */
901 if (TREE_CODE (t1) == BOOLEAN_TYPE)
902 return t2;
903 if (TREE_CODE (t2) == BOOLEAN_TYPE)
904 return t1;
905
906 return c_common_type (t1, t2);
907 }
908
909 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
910 or various other operations. Return 2 if they are compatible
911 but a warning may be needed if you use them together. */
912
913 int
914 comptypes (tree type1, tree type2)
915 {
916 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
917 int val;
918
919 val = comptypes_internal (type1, type2, NULL);
920 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
921
922 return val;
923 }
924
925 /* Like comptypes, but if it returns non-zero because enum and int are
926 compatible, it sets *ENUM_AND_INT_P to true. */
927
928 static int
929 comptypes_check_enum_int (tree type1, tree type2, bool *enum_and_int_p)
930 {
931 const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
932 int val;
933
934 val = comptypes_internal (type1, type2, enum_and_int_p);
935 free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
936
937 return val;
938 }
939 \f
940 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
941 or various other operations. Return 2 if they are compatible
942 but a warning may be needed if you use them together. If
943 ENUM_AND_INT_P is not NULL, and one type is an enum and the other a
944 compatible integer type, then this sets *ENUM_AND_INT_P to true;
945 *ENUM_AND_INT_P is never set to false. This differs from
946 comptypes, in that we don't free the seen types. */
947
948 static int
949 comptypes_internal (const_tree type1, const_tree type2, bool *enum_and_int_p)
950 {
951 const_tree t1 = type1;
952 const_tree t2 = type2;
953 int attrval, val;
954
955 /* Suppress errors caused by previously reported errors. */
956
957 if (t1 == t2 || !t1 || !t2
958 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
959 return 1;
960
961 /* If either type is the internal version of sizetype, return the
962 language version. */
963 if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
964 && TYPE_ORIG_SIZE_TYPE (t1))
965 t1 = TYPE_ORIG_SIZE_TYPE (t1);
966
967 if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
968 && TYPE_ORIG_SIZE_TYPE (t2))
969 t2 = TYPE_ORIG_SIZE_TYPE (t2);
970
971
972 /* Enumerated types are compatible with integer types, but this is
973 not transitive: two enumerated types in the same translation unit
974 are compatible with each other only if they are the same type. */
975
976 if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
977 {
978 t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
979 if (enum_and_int_p != NULL && TREE_CODE (t2) != VOID_TYPE)
980 *enum_and_int_p = true;
981 }
982 else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
983 {
984 t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
985 if (enum_and_int_p != NULL && TREE_CODE (t1) != VOID_TYPE)
986 *enum_and_int_p = true;
987 }
988
989 if (t1 == t2)
990 return 1;
991
992 /* Different classes of types can't be compatible. */
993
994 if (TREE_CODE (t1) != TREE_CODE (t2))
995 return 0;
996
997 /* Qualifiers must match. C99 6.7.3p9 */
998
999 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
1000 return 0;
1001
1002 /* Allow for two different type nodes which have essentially the same
1003 definition. Note that we already checked for equality of the type
1004 qualifiers (just above). */
1005
1006 if (TREE_CODE (t1) != ARRAY_TYPE
1007 && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
1008 return 1;
1009
1010 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1011 if (!(attrval = targetm.comp_type_attributes (t1, t2)))
1012 return 0;
1013
1014 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1015 val = 0;
1016
1017 switch (TREE_CODE (t1))
1018 {
1019 case POINTER_TYPE:
1020 /* Do not remove mode or aliasing information. */
1021 if (TYPE_MODE (t1) != TYPE_MODE (t2)
1022 || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
1023 break;
1024 val = (TREE_TYPE (t1) == TREE_TYPE (t2)
1025 ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1026 enum_and_int_p));
1027 break;
1028
1029 case FUNCTION_TYPE:
1030 val = function_types_compatible_p (t1, t2, enum_and_int_p);
1031 break;
1032
1033 case ARRAY_TYPE:
1034 {
1035 tree d1 = TYPE_DOMAIN (t1);
1036 tree d2 = TYPE_DOMAIN (t2);
1037 bool d1_variable, d2_variable;
1038 bool d1_zero, d2_zero;
1039 val = 1;
1040
1041 /* Target types must match incl. qualifiers. */
1042 if (TREE_TYPE (t1) != TREE_TYPE (t2)
1043 && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1044 enum_and_int_p)))
1045 return 0;
1046
1047 /* Sizes must match unless one is missing or variable. */
1048 if (d1 == 0 || d2 == 0 || d1 == d2)
1049 break;
1050
1051 d1_zero = !TYPE_MAX_VALUE (d1);
1052 d2_zero = !TYPE_MAX_VALUE (d2);
1053
1054 d1_variable = (!d1_zero
1055 && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
1056 || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
1057 d2_variable = (!d2_zero
1058 && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
1059 || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
1060 d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
1061 d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
1062
1063 if (d1_variable || d2_variable)
1064 break;
1065 if (d1_zero && d2_zero)
1066 break;
1067 if (d1_zero || d2_zero
1068 || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
1069 || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
1070 val = 0;
1071
1072 break;
1073 }
1074
1075 case ENUMERAL_TYPE:
1076 case RECORD_TYPE:
1077 case UNION_TYPE:
1078 if (val != 1 && !same_translation_unit_p (t1, t2))
1079 {
1080 tree a1 = TYPE_ATTRIBUTES (t1);
1081 tree a2 = TYPE_ATTRIBUTES (t2);
1082
1083 if (! attribute_list_contained (a1, a2)
1084 && ! attribute_list_contained (a2, a1))
1085 break;
1086
1087 if (attrval != 2)
1088 return tagged_types_tu_compatible_p (t1, t2, enum_and_int_p);
1089 val = tagged_types_tu_compatible_p (t1, t2, enum_and_int_p);
1090 }
1091 break;
1092
1093 case VECTOR_TYPE:
1094 val = (TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
1095 && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2),
1096 enum_and_int_p));
1097 break;
1098
1099 default:
1100 break;
1101 }
1102 return attrval == 2 && val == 1 ? 2 : val;
1103 }
1104
1105 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
1106 ignoring their qualifiers. */
1107
1108 static int
1109 comp_target_types (location_t location, tree ttl, tree ttr)
1110 {
1111 int val;
1112 tree mvl, mvr;
1113 bool enum_and_int_p;
1114
1115 /* Do not lose qualifiers on element types of array types that are
1116 pointer targets by taking their TYPE_MAIN_VARIANT. */
1117 mvl = TREE_TYPE (ttl);
1118 mvr = TREE_TYPE (ttr);
1119 if (TREE_CODE (mvl) != ARRAY_TYPE)
1120 mvl = TYPE_MAIN_VARIANT (mvl);
1121 if (TREE_CODE (mvr) != ARRAY_TYPE)
1122 mvr = TYPE_MAIN_VARIANT (mvr);
1123 enum_and_int_p = false;
1124 val = comptypes_check_enum_int (mvl, mvr, &enum_and_int_p);
1125
1126 if (val == 2)
1127 pedwarn (location, OPT_pedantic, "types are not quite compatible");
1128
1129 if (val == 1 && enum_and_int_p && warn_cxx_compat)
1130 warning_at (location, OPT_Wc___compat,
1131 "pointer target types incompatible in C++");
1132
1133 return val;
1134 }
1135 \f
1136 /* Subroutines of `comptypes'. */
1137
1138 /* Determine whether two trees derive from the same translation unit.
1139 If the CONTEXT chain ends in a null, that tree's context is still
1140 being parsed, so if two trees have context chains ending in null,
1141 they're in the same translation unit. */
1142 int
1143 same_translation_unit_p (const_tree t1, const_tree t2)
1144 {
1145 while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
1146 switch (TREE_CODE_CLASS (TREE_CODE (t1)))
1147 {
1148 case tcc_declaration:
1149 t1 = DECL_CONTEXT (t1); break;
1150 case tcc_type:
1151 t1 = TYPE_CONTEXT (t1); break;
1152 case tcc_exceptional:
1153 t1 = BLOCK_SUPERCONTEXT (t1); break; /* assume block */
1154 default: gcc_unreachable ();
1155 }
1156
1157 while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
1158 switch (TREE_CODE_CLASS (TREE_CODE (t2)))
1159 {
1160 case tcc_declaration:
1161 t2 = DECL_CONTEXT (t2); break;
1162 case tcc_type:
1163 t2 = TYPE_CONTEXT (t2); break;
1164 case tcc_exceptional:
1165 t2 = BLOCK_SUPERCONTEXT (t2); break; /* assume block */
1166 default: gcc_unreachable ();
1167 }
1168
1169 return t1 == t2;
1170 }
1171
1172 /* Allocate the seen two types, assuming that they are compatible. */
1173
1174 static struct tagged_tu_seen_cache *
1175 alloc_tagged_tu_seen_cache (const_tree t1, const_tree t2)
1176 {
1177 struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
1178 tu->next = tagged_tu_seen_base;
1179 tu->t1 = t1;
1180 tu->t2 = t2;
1181
1182 tagged_tu_seen_base = tu;
1183
1184 /* The C standard says that two structures in different translation
1185 units are compatible with each other only if the types of their
1186 fields are compatible (among other things). We assume that they
1187 are compatible until proven otherwise when building the cache.
1188 An example where this can occur is:
1189 struct a
1190 {
1191 struct a *next;
1192 };
1193 If we are comparing this against a similar struct in another TU,
1194 and did not assume they were compatible, we end up with an infinite
1195 loop. */
1196 tu->val = 1;
1197 return tu;
1198 }
1199
1200 /* Free the seen types until we get to TU_TIL. */
1201
1202 static void
1203 free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
1204 {
1205 const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
1206 while (tu != tu_til)
1207 {
1208 const struct tagged_tu_seen_cache *const tu1
1209 = (const struct tagged_tu_seen_cache *) tu;
1210 tu = tu1->next;
1211 free (CONST_CAST (struct tagged_tu_seen_cache *, tu1));
1212 }
1213 tagged_tu_seen_base = tu_til;
1214 }
1215
1216 /* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
1217 compatible. If the two types are not the same (which has been
1218 checked earlier), this can only happen when multiple translation
1219 units are being compiled. See C99 6.2.7 paragraph 1 for the exact
1220 rules. ENUM_AND_INT_P is as in comptypes_internal. */
1221
1222 static int
1223 tagged_types_tu_compatible_p (const_tree t1, const_tree t2,
1224 bool *enum_and_int_p)
1225 {
1226 tree s1, s2;
1227 bool needs_warning = false;
1228
1229 /* We have to verify that the tags of the types are the same. This
1230 is harder than it looks because this may be a typedef, so we have
1231 to go look at the original type. It may even be a typedef of a
1232 typedef...
1233 In the case of compiler-created builtin structs the TYPE_DECL
1234 may be a dummy, with no DECL_ORIGINAL_TYPE. Don't fault. */
1235 while (TYPE_NAME (t1)
1236 && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
1237 && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
1238 t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
1239
1240 while (TYPE_NAME (t2)
1241 && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
1242 && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
1243 t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
1244
1245 /* C90 didn't have the requirement that the two tags be the same. */
1246 if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
1247 return 0;
1248
1249 /* C90 didn't say what happened if one or both of the types were
1250 incomplete; we choose to follow C99 rules here, which is that they
1251 are compatible. */
1252 if (TYPE_SIZE (t1) == NULL
1253 || TYPE_SIZE (t2) == NULL)
1254 return 1;
1255
1256 {
1257 const struct tagged_tu_seen_cache * tts_i;
1258 for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
1259 if (tts_i->t1 == t1 && tts_i->t2 == t2)
1260 return tts_i->val;
1261 }
1262
1263 switch (TREE_CODE (t1))
1264 {
1265 case ENUMERAL_TYPE:
1266 {
1267 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1268 /* Speed up the case where the type values are in the same order. */
1269 tree tv1 = TYPE_VALUES (t1);
1270 tree tv2 = TYPE_VALUES (t2);
1271
1272 if (tv1 == tv2)
1273 {
1274 return 1;
1275 }
1276
1277 for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
1278 {
1279 if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
1280 break;
1281 if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
1282 {
1283 tu->val = 0;
1284 return 0;
1285 }
1286 }
1287
1288 if (tv1 == NULL_TREE && tv2 == NULL_TREE)
1289 {
1290 return 1;
1291 }
1292 if (tv1 == NULL_TREE || tv2 == NULL_TREE)
1293 {
1294 tu->val = 0;
1295 return 0;
1296 }
1297
1298 if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
1299 {
1300 tu->val = 0;
1301 return 0;
1302 }
1303
1304 for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
1305 {
1306 s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
1307 if (s2 == NULL
1308 || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
1309 {
1310 tu->val = 0;
1311 return 0;
1312 }
1313 }
1314 return 1;
1315 }
1316
1317 case UNION_TYPE:
1318 {
1319 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1320 if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
1321 {
1322 tu->val = 0;
1323 return 0;
1324 }
1325
1326 /* Speed up the common case where the fields are in the same order. */
1327 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
1328 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1329 {
1330 int result;
1331
1332 if (DECL_NAME (s1) != DECL_NAME (s2))
1333 break;
1334 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1335 enum_and_int_p);
1336
1337 if (result != 1 && !DECL_NAME (s1))
1338 break;
1339 if (result == 0)
1340 {
1341 tu->val = 0;
1342 return 0;
1343 }
1344 if (result == 2)
1345 needs_warning = true;
1346
1347 if (TREE_CODE (s1) == FIELD_DECL
1348 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1349 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1350 {
1351 tu->val = 0;
1352 return 0;
1353 }
1354 }
1355 if (!s1 && !s2)
1356 {
1357 tu->val = needs_warning ? 2 : 1;
1358 return tu->val;
1359 }
1360
1361 for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
1362 {
1363 bool ok = false;
1364
1365 for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
1366 if (DECL_NAME (s1) == DECL_NAME (s2))
1367 {
1368 int result;
1369
1370 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1371 enum_and_int_p);
1372
1373 if (result != 1 && !DECL_NAME (s1))
1374 continue;
1375 if (result == 0)
1376 {
1377 tu->val = 0;
1378 return 0;
1379 }
1380 if (result == 2)
1381 needs_warning = true;
1382
1383 if (TREE_CODE (s1) == FIELD_DECL
1384 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1385 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1386 break;
1387
1388 ok = true;
1389 break;
1390 }
1391 if (!ok)
1392 {
1393 tu->val = 0;
1394 return 0;
1395 }
1396 }
1397 tu->val = needs_warning ? 2 : 10;
1398 return tu->val;
1399 }
1400
1401 case RECORD_TYPE:
1402 {
1403 struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
1404
1405 for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
1406 s1 && s2;
1407 s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
1408 {
1409 int result;
1410 if (TREE_CODE (s1) != TREE_CODE (s2)
1411 || DECL_NAME (s1) != DECL_NAME (s2))
1412 break;
1413 result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2),
1414 enum_and_int_p);
1415 if (result == 0)
1416 break;
1417 if (result == 2)
1418 needs_warning = true;
1419
1420 if (TREE_CODE (s1) == FIELD_DECL
1421 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
1422 DECL_FIELD_BIT_OFFSET (s2)) != 1)
1423 break;
1424 }
1425 if (s1 && s2)
1426 tu->val = 0;
1427 else
1428 tu->val = needs_warning ? 2 : 1;
1429 return tu->val;
1430 }
1431
1432 default:
1433 gcc_unreachable ();
1434 }
1435 }
1436
1437 /* Return 1 if two function types F1 and F2 are compatible.
1438 If either type specifies no argument types,
1439 the other must specify a fixed number of self-promoting arg types.
1440 Otherwise, if one type specifies only the number of arguments,
1441 the other must specify that number of self-promoting arg types.
1442 Otherwise, the argument types must match.
1443 ENUM_AND_INT_P is as in comptypes_internal. */
1444
1445 static int
1446 function_types_compatible_p (const_tree f1, const_tree f2,
1447 bool *enum_and_int_p)
1448 {
1449 tree args1, args2;
1450 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1451 int val = 1;
1452 int val1;
1453 tree ret1, ret2;
1454
1455 ret1 = TREE_TYPE (f1);
1456 ret2 = TREE_TYPE (f2);
1457
1458 /* 'volatile' qualifiers on a function's return type used to mean
1459 the function is noreturn. */
1460 if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
1461 pedwarn (input_location, 0, "function return types not compatible due to %<volatile%>");
1462 if (TYPE_VOLATILE (ret1))
1463 ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
1464 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
1465 if (TYPE_VOLATILE (ret2))
1466 ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
1467 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
1468 val = comptypes_internal (ret1, ret2, enum_and_int_p);
1469 if (val == 0)
1470 return 0;
1471
1472 args1 = TYPE_ARG_TYPES (f1);
1473 args2 = TYPE_ARG_TYPES (f2);
1474
1475 /* An unspecified parmlist matches any specified parmlist
1476 whose argument types don't need default promotions. */
1477
1478 if (args1 == 0)
1479 {
1480 if (!self_promoting_args_p (args2))
1481 return 0;
1482 /* If one of these types comes from a non-prototype fn definition,
1483 compare that with the other type's arglist.
1484 If they don't match, ask for a warning (but no error). */
1485 if (TYPE_ACTUAL_ARG_TYPES (f1)
1486 && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1),
1487 enum_and_int_p))
1488 val = 2;
1489 return val;
1490 }
1491 if (args2 == 0)
1492 {
1493 if (!self_promoting_args_p (args1))
1494 return 0;
1495 if (TYPE_ACTUAL_ARG_TYPES (f2)
1496 && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2),
1497 enum_and_int_p))
1498 val = 2;
1499 return val;
1500 }
1501
1502 /* Both types have argument lists: compare them and propagate results. */
1503 val1 = type_lists_compatible_p (args1, args2, enum_and_int_p);
1504 return val1 != 1 ? val1 : val;
1505 }
1506
1507 /* Check two lists of types for compatibility, returning 0 for
1508 incompatible, 1 for compatible, or 2 for compatible with
1509 warning. ENUM_AND_INT_P is as in comptypes_internal. */
1510
1511 static int
1512 type_lists_compatible_p (const_tree args1, const_tree args2,
1513 bool *enum_and_int_p)
1514 {
1515 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
1516 int val = 1;
1517 int newval = 0;
1518
1519 while (1)
1520 {
1521 tree a1, mv1, a2, mv2;
1522 if (args1 == 0 && args2 == 0)
1523 return val;
1524 /* If one list is shorter than the other,
1525 they fail to match. */
1526 if (args1 == 0 || args2 == 0)
1527 return 0;
1528 mv1 = a1 = TREE_VALUE (args1);
1529 mv2 = a2 = TREE_VALUE (args2);
1530 if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
1531 mv1 = TYPE_MAIN_VARIANT (mv1);
1532 if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
1533 mv2 = TYPE_MAIN_VARIANT (mv2);
1534 /* A null pointer instead of a type
1535 means there is supposed to be an argument
1536 but nothing is specified about what type it has.
1537 So match anything that self-promotes. */
1538 if (a1 == 0)
1539 {
1540 if (c_type_promotes_to (a2) != a2)
1541 return 0;
1542 }
1543 else if (a2 == 0)
1544 {
1545 if (c_type_promotes_to (a1) != a1)
1546 return 0;
1547 }
1548 /* If one of the lists has an error marker, ignore this arg. */
1549 else if (TREE_CODE (a1) == ERROR_MARK
1550 || TREE_CODE (a2) == ERROR_MARK)
1551 ;
1552 else if (!(newval = comptypes_internal (mv1, mv2, enum_and_int_p)))
1553 {
1554 /* Allow wait (union {union wait *u; int *i} *)
1555 and wait (union wait *) to be compatible. */
1556 if (TREE_CODE (a1) == UNION_TYPE
1557 && (TYPE_NAME (a1) == 0
1558 || TYPE_TRANSPARENT_UNION (a1))
1559 && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
1560 && tree_int_cst_equal (TYPE_SIZE (a1),
1561 TYPE_SIZE (a2)))
1562 {
1563 tree memb;
1564 for (memb = TYPE_FIELDS (a1);
1565 memb; memb = TREE_CHAIN (memb))
1566 {
1567 tree mv3 = TREE_TYPE (memb);
1568 if (mv3 && mv3 != error_mark_node
1569 && TREE_CODE (mv3) != ARRAY_TYPE)
1570 mv3 = TYPE_MAIN_VARIANT (mv3);
1571 if (comptypes_internal (mv3, mv2, enum_and_int_p))
1572 break;
1573 }
1574 if (memb == 0)
1575 return 0;
1576 }
1577 else if (TREE_CODE (a2) == UNION_TYPE
1578 && (TYPE_NAME (a2) == 0
1579 || TYPE_TRANSPARENT_UNION (a2))
1580 && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
1581 && tree_int_cst_equal (TYPE_SIZE (a2),
1582 TYPE_SIZE (a1)))
1583 {
1584 tree memb;
1585 for (memb = TYPE_FIELDS (a2);
1586 memb; memb = TREE_CHAIN (memb))
1587 {
1588 tree mv3 = TREE_TYPE (memb);
1589 if (mv3 && mv3 != error_mark_node
1590 && TREE_CODE (mv3) != ARRAY_TYPE)
1591 mv3 = TYPE_MAIN_VARIANT (mv3);
1592 if (comptypes_internal (mv3, mv1, enum_and_int_p))
1593 break;
1594 }
1595 if (memb == 0)
1596 return 0;
1597 }
1598 else
1599 return 0;
1600 }
1601
1602 /* comptypes said ok, but record if it said to warn. */
1603 if (newval > val)
1604 val = newval;
1605
1606 args1 = TREE_CHAIN (args1);
1607 args2 = TREE_CHAIN (args2);
1608 }
1609 }
1610 \f
1611 /* Compute the size to increment a pointer by. */
1612
1613 static tree
1614 c_size_in_bytes (const_tree type)
1615 {
1616 enum tree_code code = TREE_CODE (type);
1617
1618 if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
1619 return size_one_node;
1620
1621 if (!COMPLETE_OR_VOID_TYPE_P (type))
1622 {
1623 error ("arithmetic on pointer to an incomplete type");
1624 return size_one_node;
1625 }
1626
1627 /* Convert in case a char is more than one unit. */
1628 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
1629 size_int (TYPE_PRECISION (char_type_node)
1630 / BITS_PER_UNIT));
1631 }
1632 \f
1633 /* Return either DECL or its known constant value (if it has one). */
1634
1635 tree
1636 decl_constant_value (tree decl)
1637 {
1638 if (/* Don't change a variable array bound or initial value to a constant
1639 in a place where a variable is invalid. Note that DECL_INITIAL
1640 isn't valid for a PARM_DECL. */
1641 current_function_decl != 0
1642 && TREE_CODE (decl) != PARM_DECL
1643 && !TREE_THIS_VOLATILE (decl)
1644 && TREE_READONLY (decl)
1645 && DECL_INITIAL (decl) != 0
1646 && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
1647 /* This is invalid if initial value is not constant.
1648 If it has either a function call, a memory reference,
1649 or a variable, then re-evaluating it could give different results. */
1650 && TREE_CONSTANT (DECL_INITIAL (decl))
1651 /* Check for cases where this is sub-optimal, even though valid. */
1652 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1653 return DECL_INITIAL (decl);
1654 return decl;
1655 }
1656
1657 /* Convert the array expression EXP to a pointer. */
1658 static tree
1659 array_to_pointer_conversion (location_t loc, tree exp)
1660 {
1661 tree orig_exp = exp;
1662 tree type = TREE_TYPE (exp);
1663 tree adr;
1664 tree restype = TREE_TYPE (type);
1665 tree ptrtype;
1666
1667 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1668
1669 STRIP_TYPE_NOPS (exp);
1670
1671 if (TREE_NO_WARNING (orig_exp))
1672 TREE_NO_WARNING (exp) = 1;
1673
1674 ptrtype = build_pointer_type (restype);
1675
1676 if (TREE_CODE (exp) == INDIRECT_REF)
1677 return convert (ptrtype, TREE_OPERAND (exp, 0));
1678
1679 adr = build_unary_op (loc, ADDR_EXPR, exp, 1);
1680 return convert (ptrtype, adr);
1681 }
1682
1683 /* Convert the function expression EXP to a pointer. */
1684 static tree
1685 function_to_pointer_conversion (location_t loc, tree exp)
1686 {
1687 tree orig_exp = exp;
1688
1689 gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
1690
1691 STRIP_TYPE_NOPS (exp);
1692
1693 if (TREE_NO_WARNING (orig_exp))
1694 TREE_NO_WARNING (exp) = 1;
1695
1696 return build_unary_op (loc, ADDR_EXPR, exp, 0);
1697 }
1698
1699 /* Perform the default conversion of arrays and functions to pointers.
1700 Return the result of converting EXP. For any other expression, just
1701 return EXP.
1702
1703 LOC is the location of the expression. */
1704
1705 struct c_expr
1706 default_function_array_conversion (location_t loc, struct c_expr exp)
1707 {
1708 tree orig_exp = exp.value;
1709 tree type = TREE_TYPE (exp.value);
1710 enum tree_code code = TREE_CODE (type);
1711
1712 switch (code)
1713 {
1714 case ARRAY_TYPE:
1715 {
1716 bool not_lvalue = false;
1717 bool lvalue_array_p;
1718
1719 while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
1720 || CONVERT_EXPR_P (exp.value))
1721 && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
1722 {
1723 if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
1724 not_lvalue = true;
1725 exp.value = TREE_OPERAND (exp.value, 0);
1726 }
1727
1728 if (TREE_NO_WARNING (orig_exp))
1729 TREE_NO_WARNING (exp.value) = 1;
1730
1731 lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
1732 if (!flag_isoc99 && !lvalue_array_p)
1733 {
1734 /* Before C99, non-lvalue arrays do not decay to pointers.
1735 Normally, using such an array would be invalid; but it can
1736 be used correctly inside sizeof or as a statement expression.
1737 Thus, do not give an error here; an error will result later. */
1738 return exp;
1739 }
1740
1741 exp.value = array_to_pointer_conversion (loc, exp.value);
1742 }
1743 break;
1744 case FUNCTION_TYPE:
1745 exp.value = function_to_pointer_conversion (loc, exp.value);
1746 break;
1747 default:
1748 break;
1749 }
1750
1751 return exp;
1752 }
1753
1754
1755 /* EXP is an expression of integer type. Apply the integer promotions
1756 to it and return the promoted value. */
1757
1758 tree
1759 perform_integral_promotions (tree exp)
1760 {
1761 tree type = TREE_TYPE (exp);
1762 enum tree_code code = TREE_CODE (type);
1763
1764 gcc_assert (INTEGRAL_TYPE_P (type));
1765
1766 /* Normally convert enums to int,
1767 but convert wide enums to something wider. */
1768 if (code == ENUMERAL_TYPE)
1769 {
1770 type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
1771 TYPE_PRECISION (integer_type_node)),
1772 ((TYPE_PRECISION (type)
1773 >= TYPE_PRECISION (integer_type_node))
1774 && TYPE_UNSIGNED (type)));
1775
1776 return convert (type, exp);
1777 }
1778
1779 /* ??? This should no longer be needed now bit-fields have their
1780 proper types. */
1781 if (TREE_CODE (exp) == COMPONENT_REF
1782 && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
1783 /* If it's thinner than an int, promote it like a
1784 c_promoting_integer_type_p, otherwise leave it alone. */
1785 && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
1786 TYPE_PRECISION (integer_type_node)))
1787 return convert (integer_type_node, exp);
1788
1789 if (c_promoting_integer_type_p (type))
1790 {
1791 /* Preserve unsignedness if not really getting any wider. */
1792 if (TYPE_UNSIGNED (type)
1793 && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
1794 return convert (unsigned_type_node, exp);
1795
1796 return convert (integer_type_node, exp);
1797 }
1798
1799 return exp;
1800 }
1801
1802
1803 /* Perform default promotions for C data used in expressions.
1804 Enumeral types or short or char are converted to int.
1805 In addition, manifest constants symbols are replaced by their values. */
1806
1807 tree
1808 default_conversion (tree exp)
1809 {
1810 tree orig_exp;
1811 tree type = TREE_TYPE (exp);
1812 enum tree_code code = TREE_CODE (type);
1813 tree promoted_type;
1814
1815 /* Functions and arrays have been converted during parsing. */
1816 gcc_assert (code != FUNCTION_TYPE);
1817 if (code == ARRAY_TYPE)
1818 return exp;
1819
1820 /* Constants can be used directly unless they're not loadable. */
1821 if (TREE_CODE (exp) == CONST_DECL)
1822 exp = DECL_INITIAL (exp);
1823
1824 /* Strip no-op conversions. */
1825 orig_exp = exp;
1826 STRIP_TYPE_NOPS (exp);
1827
1828 if (TREE_NO_WARNING (orig_exp))
1829 TREE_NO_WARNING (exp) = 1;
1830
1831 if (code == VOID_TYPE)
1832 {
1833 error ("void value not ignored as it ought to be");
1834 return error_mark_node;
1835 }
1836
1837 exp = require_complete_type (exp);
1838 if (exp == error_mark_node)
1839 return error_mark_node;
1840
1841 promoted_type = targetm.promoted_type (type);
1842 if (promoted_type)
1843 return convert (promoted_type, exp);
1844
1845 if (INTEGRAL_TYPE_P (type))
1846 return perform_integral_promotions (exp);
1847
1848 return exp;
1849 }
1850 \f
1851 /* Look up COMPONENT in a structure or union DECL.
1852
1853 If the component name is not found, returns NULL_TREE. Otherwise,
1854 the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
1855 stepping down the chain to the component, which is in the last
1856 TREE_VALUE of the list. Normally the list is of length one, but if
1857 the component is embedded within (nested) anonymous structures or
1858 unions, the list steps down the chain to the component. */
1859
1860 static tree
1861 lookup_field (tree decl, tree component)
1862 {
1863 tree type = TREE_TYPE (decl);
1864 tree field;
1865
1866 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1867 to the field elements. Use a binary search on this array to quickly
1868 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1869 will always be set for structures which have many elements. */
1870
1871 if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
1872 {
1873 int bot, top, half;
1874 tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
1875
1876 field = TYPE_FIELDS (type);
1877 bot = 0;
1878 top = TYPE_LANG_SPECIFIC (type)->s->len;
1879 while (top - bot > 1)
1880 {
1881 half = (top - bot + 1) >> 1;
1882 field = field_array[bot+half];
1883
1884 if (DECL_NAME (field) == NULL_TREE)
1885 {
1886 /* Step through all anon unions in linear fashion. */
1887 while (DECL_NAME (field_array[bot]) == NULL_TREE)
1888 {
1889 field = field_array[bot++];
1890 if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1891 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
1892 {
1893 tree anon = lookup_field (field, component);
1894
1895 if (anon)
1896 return tree_cons (NULL_TREE, field, anon);
1897 }
1898 }
1899
1900 /* Entire record is only anon unions. */
1901 if (bot > top)
1902 return NULL_TREE;
1903
1904 /* Restart the binary search, with new lower bound. */
1905 continue;
1906 }
1907
1908 if (DECL_NAME (field) == component)
1909 break;
1910 if (DECL_NAME (field) < component)
1911 bot += half;
1912 else
1913 top = bot + half;
1914 }
1915
1916 if (DECL_NAME (field_array[bot]) == component)
1917 field = field_array[bot];
1918 else if (DECL_NAME (field) != component)
1919 return NULL_TREE;
1920 }
1921 else
1922 {
1923 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1924 {
1925 if (DECL_NAME (field) == NULL_TREE
1926 && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
1927 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
1928 {
1929 tree anon = lookup_field (field, component);
1930
1931 if (anon)
1932 return tree_cons (NULL_TREE, field, anon);
1933 }
1934
1935 if (DECL_NAME (field) == component)
1936 break;
1937 }
1938
1939 if (field == NULL_TREE)
1940 return NULL_TREE;
1941 }
1942
1943 return tree_cons (NULL_TREE, field, NULL_TREE);
1944 }
1945
1946 /* Make an expression to refer to the COMPONENT field of structure or
1947 union value DATUM. COMPONENT is an IDENTIFIER_NODE. LOC is the
1948 location of the COMPONENT_REF. */
1949
1950 tree
1951 build_component_ref (location_t loc, tree datum, tree component)
1952 {
1953 tree type = TREE_TYPE (datum);
1954 enum tree_code code = TREE_CODE (type);
1955 tree field = NULL;
1956 tree ref;
1957 bool datum_lvalue = lvalue_p (datum);
1958
1959 if (!objc_is_public (datum, component))
1960 return error_mark_node;
1961
1962 /* See if there is a field or component with name COMPONENT. */
1963
1964 if (code == RECORD_TYPE || code == UNION_TYPE)
1965 {
1966 if (!COMPLETE_TYPE_P (type))
1967 {
1968 c_incomplete_type_error (NULL_TREE, type);
1969 return error_mark_node;
1970 }
1971
1972 field = lookup_field (datum, component);
1973
1974 if (!field)
1975 {
1976 error_at (loc, "%qT has no member named %qE", type, component);
1977 return error_mark_node;
1978 }
1979
1980 /* Chain the COMPONENT_REFs if necessary down to the FIELD.
1981 This might be better solved in future the way the C++ front
1982 end does it - by giving the anonymous entities each a
1983 separate name and type, and then have build_component_ref
1984 recursively call itself. We can't do that here. */
1985 do
1986 {
1987 tree subdatum = TREE_VALUE (field);
1988 int quals;
1989 tree subtype;
1990 bool use_datum_quals;
1991
1992 if (TREE_TYPE (subdatum) == error_mark_node)
1993 return error_mark_node;
1994
1995 /* If this is an rvalue, it does not have qualifiers in C
1996 standard terms and we must avoid propagating such
1997 qualifiers down to a non-lvalue array that is then
1998 converted to a pointer. */
1999 use_datum_quals = (datum_lvalue
2000 || TREE_CODE (TREE_TYPE (subdatum)) != ARRAY_TYPE);
2001
2002 quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
2003 if (use_datum_quals)
2004 quals |= TYPE_QUALS (TREE_TYPE (datum));
2005 subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
2006
2007 ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
2008 NULL_TREE);
2009 SET_EXPR_LOCATION (ref, loc);
2010 if (TREE_READONLY (subdatum)
2011 || (use_datum_quals && TREE_READONLY (datum)))
2012 TREE_READONLY (ref) = 1;
2013 if (TREE_THIS_VOLATILE (subdatum)
2014 || (use_datum_quals && TREE_THIS_VOLATILE (datum)))
2015 TREE_THIS_VOLATILE (ref) = 1;
2016
2017 if (TREE_DEPRECATED (subdatum))
2018 warn_deprecated_use (subdatum, NULL_TREE);
2019
2020 datum = ref;
2021
2022 field = TREE_CHAIN (field);
2023 }
2024 while (field);
2025
2026 return ref;
2027 }
2028 else if (code != ERROR_MARK)
2029 error_at (loc,
2030 "request for member %qE in something not a structure or union",
2031 component);
2032
2033 return error_mark_node;
2034 }
2035 \f
2036 /* Given an expression PTR for a pointer, return an expression
2037 for the value pointed to.
2038 ERRORSTRING is the name of the operator to appear in error messages.
2039
2040 LOC is the location to use for the generated tree. */
2041
2042 tree
2043 build_indirect_ref (location_t loc, tree ptr, const char *errorstring)
2044 {
2045 tree pointer = default_conversion (ptr);
2046 tree type = TREE_TYPE (pointer);
2047 tree ref;
2048
2049 if (TREE_CODE (type) == POINTER_TYPE)
2050 {
2051 if (CONVERT_EXPR_P (pointer)
2052 || TREE_CODE (pointer) == VIEW_CONVERT_EXPR)
2053 {
2054 /* If a warning is issued, mark it to avoid duplicates from
2055 the backend. This only needs to be done at
2056 warn_strict_aliasing > 2. */
2057 if (warn_strict_aliasing > 2)
2058 if (strict_aliasing_warning (TREE_TYPE (TREE_OPERAND (pointer, 0)),
2059 type, TREE_OPERAND (pointer, 0)))
2060 TREE_NO_WARNING (pointer) = 1;
2061 }
2062
2063 if (TREE_CODE (pointer) == ADDR_EXPR
2064 && (TREE_TYPE (TREE_OPERAND (pointer, 0))
2065 == TREE_TYPE (type)))
2066 {
2067 ref = TREE_OPERAND (pointer, 0);
2068 protected_set_expr_location (ref, loc);
2069 return ref;
2070 }
2071 else
2072 {
2073 tree t = TREE_TYPE (type);
2074
2075 ref = build1 (INDIRECT_REF, t, pointer);
2076
2077 if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
2078 {
2079 error_at (loc, "dereferencing pointer to incomplete type");
2080 return error_mark_node;
2081 }
2082 if (VOID_TYPE_P (t) && c_inhibit_evaluation_warnings == 0)
2083 warning_at (loc, 0, "dereferencing %<void *%> pointer");
2084
2085 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
2086 so that we get the proper error message if the result is used
2087 to assign to. Also, &* is supposed to be a no-op.
2088 And ANSI C seems to specify that the type of the result
2089 should be the const type. */
2090 /* A de-reference of a pointer to const is not a const. It is valid
2091 to change it via some other pointer. */
2092 TREE_READONLY (ref) = TYPE_READONLY (t);
2093 TREE_SIDE_EFFECTS (ref)
2094 = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
2095 TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
2096 protected_set_expr_location (ref, loc);
2097 return ref;
2098 }
2099 }
2100 else if (TREE_CODE (pointer) != ERROR_MARK)
2101 error_at (loc,
2102 "invalid type argument of %qs (have %qT)", errorstring, type);
2103 return error_mark_node;
2104 }
2105
2106 /* This handles expressions of the form "a[i]", which denotes
2107 an array reference.
2108
2109 This is logically equivalent in C to *(a+i), but we may do it differently.
2110 If A is a variable or a member, we generate a primitive ARRAY_REF.
2111 This avoids forcing the array out of registers, and can work on
2112 arrays that are not lvalues (for example, members of structures returned
2113 by functions).
2114
2115 LOC is the location to use for the returned expression. */
2116
2117 tree
2118 build_array_ref (location_t loc, tree array, tree index)
2119 {
2120 tree ret;
2121 bool swapped = false;
2122 if (TREE_TYPE (array) == error_mark_node
2123 || TREE_TYPE (index) == error_mark_node)
2124 return error_mark_node;
2125
2126 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
2127 && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
2128 {
2129 tree temp;
2130 if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
2131 && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
2132 {
2133 error_at (loc, "subscripted value is neither array nor pointer");
2134 return error_mark_node;
2135 }
2136 temp = array;
2137 array = index;
2138 index = temp;
2139 swapped = true;
2140 }
2141
2142 if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
2143 {
2144 error_at (loc, "array subscript is not an integer");
2145 return error_mark_node;
2146 }
2147
2148 if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
2149 {
2150 error_at (loc, "subscripted value is pointer to function");
2151 return error_mark_node;
2152 }
2153
2154 /* ??? Existing practice has been to warn only when the char
2155 index is syntactically the index, not for char[array]. */
2156 if (!swapped)
2157 warn_array_subscript_with_type_char (index);
2158
2159 /* Apply default promotions *after* noticing character types. */
2160 index = default_conversion (index);
2161
2162 gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
2163
2164 if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
2165 {
2166 tree rval, type;
2167
2168 /* An array that is indexed by a non-constant
2169 cannot be stored in a register; we must be able to do
2170 address arithmetic on its address.
2171 Likewise an array of elements of variable size. */
2172 if (TREE_CODE (index) != INTEGER_CST
2173 || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
2174 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
2175 {
2176 if (!c_mark_addressable (array))
2177 return error_mark_node;
2178 }
2179 /* An array that is indexed by a constant value which is not within
2180 the array bounds cannot be stored in a register either; because we
2181 would get a crash in store_bit_field/extract_bit_field when trying
2182 to access a non-existent part of the register. */
2183 if (TREE_CODE (index) == INTEGER_CST
2184 && TYPE_DOMAIN (TREE_TYPE (array))
2185 && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
2186 {
2187 if (!c_mark_addressable (array))
2188 return error_mark_node;
2189 }
2190
2191 if (pedantic)
2192 {
2193 tree foo = array;
2194 while (TREE_CODE (foo) == COMPONENT_REF)
2195 foo = TREE_OPERAND (foo, 0);
2196 if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
2197 pedwarn (loc, OPT_pedantic,
2198 "ISO C forbids subscripting %<register%> array");
2199 else if (!flag_isoc99 && !lvalue_p (foo))
2200 pedwarn (loc, OPT_pedantic,
2201 "ISO C90 forbids subscripting non-lvalue array");
2202 }
2203
2204 type = TREE_TYPE (TREE_TYPE (array));
2205 rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
2206 /* Array ref is const/volatile if the array elements are
2207 or if the array is. */
2208 TREE_READONLY (rval)
2209 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
2210 | TREE_READONLY (array));
2211 TREE_SIDE_EFFECTS (rval)
2212 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2213 | TREE_SIDE_EFFECTS (array));
2214 TREE_THIS_VOLATILE (rval)
2215 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
2216 /* This was added by rms on 16 Nov 91.
2217 It fixes vol struct foo *a; a->elts[1]
2218 in an inline function.
2219 Hope it doesn't break something else. */
2220 | TREE_THIS_VOLATILE (array));
2221 ret = require_complete_type (rval);
2222 protected_set_expr_location (ret, loc);
2223 return ret;
2224 }
2225 else
2226 {
2227 tree ar = default_conversion (array);
2228
2229 if (ar == error_mark_node)
2230 return ar;
2231
2232 gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
2233 gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
2234
2235 return build_indirect_ref
2236 (loc, build_binary_op (loc, PLUS_EXPR, ar, index, 0),
2237 "array indexing");
2238 }
2239 }
2240 \f
2241 /* Build an external reference to identifier ID. FUN indicates
2242 whether this will be used for a function call. LOC is the source
2243 location of the identifier. This sets *TYPE to the type of the
2244 identifier, which is not the same as the type of the returned value
2245 for CONST_DECLs defined as enum constants. If the type of the
2246 identifier is not available, *TYPE is set to NULL. */
2247 tree
2248 build_external_ref (location_t loc, tree id, int fun, tree *type)
2249 {
2250 tree ref;
2251 tree decl = lookup_name (id);
2252
2253 /* In Objective-C, an instance variable (ivar) may be preferred to
2254 whatever lookup_name() found. */
2255 decl = objc_lookup_ivar (decl, id);
2256
2257 *type = NULL;
2258 if (decl && decl != error_mark_node)
2259 {
2260 ref = decl;
2261 *type = TREE_TYPE (ref);
2262 }
2263 else if (fun)
2264 /* Implicit function declaration. */
2265 ref = implicitly_declare (loc, id);
2266 else if (decl == error_mark_node)
2267 /* Don't complain about something that's already been
2268 complained about. */
2269 return error_mark_node;
2270 else
2271 {
2272 undeclared_variable (loc, id);
2273 return error_mark_node;
2274 }
2275
2276 if (TREE_TYPE (ref) == error_mark_node)
2277 return error_mark_node;
2278
2279 if (TREE_DEPRECATED (ref))
2280 warn_deprecated_use (ref, NULL_TREE);
2281
2282 /* Recursive call does not count as usage. */
2283 if (ref != current_function_decl)
2284 {
2285 TREE_USED (ref) = 1;
2286 }
2287
2288 if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
2289 {
2290 if (!in_sizeof && !in_typeof)
2291 C_DECL_USED (ref) = 1;
2292 else if (DECL_INITIAL (ref) == 0
2293 && DECL_EXTERNAL (ref)
2294 && !TREE_PUBLIC (ref))
2295 record_maybe_used_decl (ref);
2296 }
2297
2298 if (TREE_CODE (ref) == CONST_DECL)
2299 {
2300 used_types_insert (TREE_TYPE (ref));
2301
2302 if (warn_cxx_compat
2303 && TREE_CODE (TREE_TYPE (ref)) == ENUMERAL_TYPE
2304 && C_TYPE_DEFINED_IN_STRUCT (TREE_TYPE (ref)))
2305 {
2306 warning_at (loc, OPT_Wc___compat,
2307 ("enum constant defined in struct or union "
2308 "is not visible in C++"));
2309 inform (DECL_SOURCE_LOCATION (ref), "enum constant defined here");
2310 }
2311
2312 ref = DECL_INITIAL (ref);
2313 TREE_CONSTANT (ref) = 1;
2314 }
2315 else if (current_function_decl != 0
2316 && !DECL_FILE_SCOPE_P (current_function_decl)
2317 && (TREE_CODE (ref) == VAR_DECL
2318 || TREE_CODE (ref) == PARM_DECL
2319 || TREE_CODE (ref) == FUNCTION_DECL))
2320 {
2321 tree context = decl_function_context (ref);
2322
2323 if (context != 0 && context != current_function_decl)
2324 DECL_NONLOCAL (ref) = 1;
2325 }
2326 /* C99 6.7.4p3: An inline definition of a function with external
2327 linkage ... shall not contain a reference to an identifier with
2328 internal linkage. */
2329 else if (current_function_decl != 0
2330 && DECL_DECLARED_INLINE_P (current_function_decl)
2331 && DECL_EXTERNAL (current_function_decl)
2332 && VAR_OR_FUNCTION_DECL_P (ref)
2333 && (TREE_CODE (ref) != VAR_DECL || TREE_STATIC (ref))
2334 && ! TREE_PUBLIC (ref)
2335 && DECL_CONTEXT (ref) != current_function_decl)
2336 record_inline_static (loc, current_function_decl, ref,
2337 csi_internal);
2338
2339 return ref;
2340 }
2341
2342 /* Record details of decls possibly used inside sizeof or typeof. */
2343 struct maybe_used_decl
2344 {
2345 /* The decl. */
2346 tree decl;
2347 /* The level seen at (in_sizeof + in_typeof). */
2348 int level;
2349 /* The next one at this level or above, or NULL. */
2350 struct maybe_used_decl *next;
2351 };
2352
2353 static struct maybe_used_decl *maybe_used_decls;
2354
2355 /* Record that DECL, an undefined static function reference seen
2356 inside sizeof or typeof, might be used if the operand of sizeof is
2357 a VLA type or the operand of typeof is a variably modified
2358 type. */
2359
2360 static void
2361 record_maybe_used_decl (tree decl)
2362 {
2363 struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
2364 t->decl = decl;
2365 t->level = in_sizeof + in_typeof;
2366 t->next = maybe_used_decls;
2367 maybe_used_decls = t;
2368 }
2369
2370 /* Pop the stack of decls possibly used inside sizeof or typeof. If
2371 USED is false, just discard them. If it is true, mark them used
2372 (if no longer inside sizeof or typeof) or move them to the next
2373 level up (if still inside sizeof or typeof). */
2374
2375 void
2376 pop_maybe_used (bool used)
2377 {
2378 struct maybe_used_decl *p = maybe_used_decls;
2379 int cur_level = in_sizeof + in_typeof;
2380 while (p && p->level > cur_level)
2381 {
2382 if (used)
2383 {
2384 if (cur_level == 0)
2385 C_DECL_USED (p->decl) = 1;
2386 else
2387 p->level = cur_level;
2388 }
2389 p = p->next;
2390 }
2391 if (!used || cur_level == 0)
2392 maybe_used_decls = p;
2393 }
2394
2395 /* Return the result of sizeof applied to EXPR. */
2396
2397 struct c_expr
2398 c_expr_sizeof_expr (location_t loc, struct c_expr expr)
2399 {
2400 struct c_expr ret;
2401 if (expr.value == error_mark_node)
2402 {
2403 ret.value = error_mark_node;
2404 ret.original_code = ERROR_MARK;
2405 ret.original_type = NULL;
2406 pop_maybe_used (false);
2407 }
2408 else
2409 {
2410 bool expr_const_operands = true;
2411 tree folded_expr = c_fully_fold (expr.value, require_constant_value,
2412 &expr_const_operands);
2413 ret.value = c_sizeof (loc, TREE_TYPE (folded_expr));
2414 ret.original_code = ERROR_MARK;
2415 ret.original_type = NULL;
2416 if (c_vla_type_p (TREE_TYPE (folded_expr)))
2417 {
2418 /* sizeof is evaluated when given a vla (C99 6.5.3.4p2). */
2419 ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value),
2420 folded_expr, ret.value);
2421 C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !expr_const_operands;
2422 SET_EXPR_LOCATION (ret.value, loc);
2423 }
2424 pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (folded_expr)));
2425 }
2426 return ret;
2427 }
2428
2429 /* Return the result of sizeof applied to T, a structure for the type
2430 name passed to sizeof (rather than the type itself). LOC is the
2431 location of the original expression. */
2432
2433 struct c_expr
2434 c_expr_sizeof_type (location_t loc, struct c_type_name *t)
2435 {
2436 tree type;
2437 struct c_expr ret;
2438 tree type_expr = NULL_TREE;
2439 bool type_expr_const = true;
2440 type = groktypename (t, &type_expr, &type_expr_const);
2441 ret.value = c_sizeof (loc, type);
2442 ret.original_code = ERROR_MARK;
2443 ret.original_type = NULL;
2444 if ((type_expr || TREE_CODE (ret.value) == INTEGER_CST)
2445 && c_vla_type_p (type))
2446 {
2447 /* If the type is a [*] array, it is a VLA but is represented as
2448 having a size of zero. In such a case we must ensure that
2449 the result of sizeof does not get folded to a constant by
2450 c_fully_fold, because if the size is evaluated the result is
2451 not constant and so constraints on zero or negative size
2452 arrays must not be applied when this sizeof call is inside
2453 another array declarator. */
2454 if (!type_expr)
2455 type_expr = integer_zero_node;
2456 ret.value = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret.value),
2457 type_expr, ret.value);
2458 C_MAYBE_CONST_EXPR_NON_CONST (ret.value) = !type_expr_const;
2459 }
2460 pop_maybe_used (type != error_mark_node
2461 ? C_TYPE_VARIABLE_SIZE (type) : false);
2462 return ret;
2463 }
2464
2465 /* Build a function call to function FUNCTION with parameters PARAMS.
2466 The function call is at LOC.
2467 PARAMS is a list--a chain of TREE_LIST nodes--in which the
2468 TREE_VALUE of each node is a parameter-expression.
2469 FUNCTION's data type may be a function type or a pointer-to-function. */
2470
2471 tree
2472 build_function_call (location_t loc, tree function, tree params)
2473 {
2474 VEC(tree,gc) *vec;
2475 tree ret;
2476
2477 vec = VEC_alloc (tree, gc, list_length (params));
2478 for (; params; params = TREE_CHAIN (params))
2479 VEC_quick_push (tree, vec, TREE_VALUE (params));
2480 ret = build_function_call_vec (loc, function, vec, NULL);
2481 VEC_free (tree, gc, vec);
2482 return ret;
2483 }
2484
2485 /* Build a function call to function FUNCTION with parameters PARAMS.
2486 ORIGTYPES, if not NULL, is a vector of types; each element is
2487 either NULL or the original type of the corresponding element in
2488 PARAMS. The original type may differ from TREE_TYPE of the
2489 parameter for enums. FUNCTION's data type may be a function type
2490 or pointer-to-function. This function changes the elements of
2491 PARAMS. */
2492
2493 tree
2494 build_function_call_vec (location_t loc, tree function, VEC(tree,gc) *params,
2495 VEC(tree,gc) *origtypes)
2496 {
2497 tree fntype, fundecl = 0;
2498 tree name = NULL_TREE, result;
2499 tree tem;
2500 int nargs;
2501 tree *argarray;
2502
2503
2504 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
2505 STRIP_TYPE_NOPS (function);
2506
2507 /* Convert anything with function type to a pointer-to-function. */
2508 if (TREE_CODE (function) == FUNCTION_DECL)
2509 {
2510 /* Implement type-directed function overloading for builtins.
2511 resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
2512 handle all the type checking. The result is a complete expression
2513 that implements this function call. */
2514 tem = resolve_overloaded_builtin (loc, function, params);
2515 if (tem)
2516 return tem;
2517
2518 name = DECL_NAME (function);
2519 fundecl = function;
2520 }
2521 if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
2522 function = function_to_pointer_conversion (loc, function);
2523
2524 /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
2525 expressions, like those used for ObjC messenger dispatches. */
2526 if (!VEC_empty (tree, params))
2527 function = objc_rewrite_function_call (function,
2528 VEC_index (tree, params, 0));
2529
2530 function = c_fully_fold (function, false, NULL);
2531
2532 fntype = TREE_TYPE (function);
2533
2534 if (TREE_CODE (fntype) == ERROR_MARK)
2535 return error_mark_node;
2536
2537 if (!(TREE_CODE (fntype) == POINTER_TYPE
2538 && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
2539 {
2540 error_at (loc, "called object %qE is not a function", function);
2541 return error_mark_node;
2542 }
2543
2544 if (fundecl && TREE_THIS_VOLATILE (fundecl))
2545 current_function_returns_abnormally = 1;
2546
2547 /* fntype now gets the type of function pointed to. */
2548 fntype = TREE_TYPE (fntype);
2549
2550 /* Convert the parameters to the types declared in the
2551 function prototype, or apply default promotions. */
2552
2553 nargs = convert_arguments (TYPE_ARG_TYPES (fntype), params, origtypes,
2554 function, fundecl);
2555 if (nargs < 0)
2556 return error_mark_node;
2557
2558 /* Check that the function is called through a compatible prototype.
2559 If it is not, replace the call by a trap, wrapped up in a compound
2560 expression if necessary. This has the nice side-effect to prevent
2561 the tree-inliner from generating invalid assignment trees which may
2562 blow up in the RTL expander later. */
2563 if (CONVERT_EXPR_P (function)
2564 && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
2565 && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
2566 && !comptypes (fntype, TREE_TYPE (tem)))
2567 {
2568 tree return_type = TREE_TYPE (fntype);
2569 tree trap = build_function_call (loc, built_in_decls[BUILT_IN_TRAP],
2570 NULL_TREE);
2571 int i;
2572
2573 /* This situation leads to run-time undefined behavior. We can't,
2574 therefore, simply error unless we can prove that all possible
2575 executions of the program must execute the code. */
2576 if (warning_at (loc, 0, "function called through a non-compatible type"))
2577 /* We can, however, treat "undefined" any way we please.
2578 Call abort to encourage the user to fix the program. */
2579 inform (loc, "if this code is reached, the program will abort");
2580 /* Before the abort, allow the function arguments to exit or
2581 call longjmp. */
2582 for (i = 0; i < nargs; i++)
2583 trap = build2 (COMPOUND_EXPR, void_type_node,
2584 VEC_index (tree, params, i), trap);
2585
2586 if (VOID_TYPE_P (return_type))
2587 {
2588 if (TYPE_QUALS (return_type) != TYPE_UNQUALIFIED)
2589 pedwarn (input_location, 0,
2590 "function with qualified void return type called");
2591 return trap;
2592 }
2593 else
2594 {
2595 tree rhs;
2596
2597 if (AGGREGATE_TYPE_P (return_type))
2598 rhs = build_compound_literal (loc, return_type,
2599 build_constructor (return_type, 0),
2600 false);
2601 else
2602 rhs = fold_convert (return_type, integer_zero_node);
2603
2604 return require_complete_type (build2 (COMPOUND_EXPR, return_type,
2605 trap, rhs));
2606 }
2607 }
2608
2609 argarray = VEC_address (tree, params);
2610
2611 /* Check that arguments to builtin functions match the expectations. */
2612 if (fundecl
2613 && DECL_BUILT_IN (fundecl)
2614 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL
2615 && !check_builtin_function_arguments (fundecl, nargs, argarray))
2616 return error_mark_node;
2617
2618 /* Check that the arguments to the function are valid. */
2619 check_function_arguments (TYPE_ATTRIBUTES (fntype), nargs, argarray,
2620 TYPE_ARG_TYPES (fntype));
2621
2622 if (name != NULL_TREE
2623 && !strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10))
2624 {
2625 if (require_constant_value)
2626 result = fold_build_call_array_initializer (TREE_TYPE (fntype),
2627 function, nargs, argarray);
2628 else
2629 result = fold_build_call_array (TREE_TYPE (fntype),
2630 function, nargs, argarray);
2631 if (TREE_CODE (result) == NOP_EXPR
2632 && TREE_CODE (TREE_OPERAND (result, 0)) == INTEGER_CST)
2633 STRIP_TYPE_NOPS (result);
2634 }
2635 else
2636 result = build_call_array (TREE_TYPE (fntype),
2637 function, nargs, argarray);
2638
2639 if (VOID_TYPE_P (TREE_TYPE (result)))
2640 {
2641 if (TYPE_QUALS (TREE_TYPE (result)) != TYPE_UNQUALIFIED)
2642 pedwarn (input_location, 0,
2643 "function with qualified void return type called");
2644 return result;
2645 }
2646 return require_complete_type (result);
2647 }
2648 \f
2649 /* Convert the argument expressions in the vector VALUES
2650 to the types in the list TYPELIST.
2651
2652 If TYPELIST is exhausted, or when an element has NULL as its type,
2653 perform the default conversions.
2654
2655 ORIGTYPES is the original types of the expressions in VALUES. This
2656 holds the type of enum values which have been converted to integral
2657 types. It may be NULL.
2658
2659 FUNCTION is a tree for the called function. It is used only for
2660 error messages, where it is formatted with %qE.
2661
2662 This is also where warnings about wrong number of args are generated.
2663
2664 Returns the actual number of arguments processed (which may be less
2665 than the length of VALUES in some error situations), or -1 on
2666 failure. */
2667
2668 static int
2669 convert_arguments (tree typelist, VEC(tree,gc) *values,
2670 VEC(tree,gc) *origtypes, tree function, tree fundecl)
2671 {
2672 tree typetail, val;
2673 unsigned int parmnum;
2674 const bool type_generic = fundecl
2675 && lookup_attribute ("type generic", TYPE_ATTRIBUTES(TREE_TYPE (fundecl)));
2676 bool type_generic_remove_excess_precision = false;
2677 tree selector;
2678
2679 /* Change pointer to function to the function itself for
2680 diagnostics. */
2681 if (TREE_CODE (function) == ADDR_EXPR
2682 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
2683 function = TREE_OPERAND (function, 0);
2684
2685 /* Handle an ObjC selector specially for diagnostics. */
2686 selector = objc_message_selector ();
2687
2688 /* For type-generic built-in functions, determine whether excess
2689 precision should be removed (classification) or not
2690 (comparison). */
2691 if (type_generic
2692 && DECL_BUILT_IN (fundecl)
2693 && DECL_BUILT_IN_CLASS (fundecl) == BUILT_IN_NORMAL)
2694 {
2695 switch (DECL_FUNCTION_CODE (fundecl))
2696 {
2697 case BUILT_IN_ISFINITE:
2698 case BUILT_IN_ISINF:
2699 case BUILT_IN_ISINF_SIGN:
2700 case BUILT_IN_ISNAN:
2701 case BUILT_IN_ISNORMAL:
2702 case BUILT_IN_FPCLASSIFY:
2703 type_generic_remove_excess_precision = true;
2704 break;
2705
2706 default:
2707 type_generic_remove_excess_precision = false;
2708 break;
2709 }
2710 }
2711
2712 /* Scan the given expressions and types, producing individual
2713 converted arguments. */
2714
2715 for (typetail = typelist, parmnum = 0;
2716 VEC_iterate (tree, values, parmnum, val);
2717 ++parmnum)
2718 {
2719 tree type = typetail ? TREE_VALUE (typetail) : 0;
2720 tree valtype = TREE_TYPE (val);
2721 tree rname = function;
2722 int argnum = parmnum + 1;
2723 const char *invalid_func_diag;
2724 bool excess_precision = false;
2725 bool npc;
2726 tree parmval;
2727
2728 if (type == void_type_node)
2729 {
2730 error ("too many arguments to function %qE", function);
2731 return parmnum;
2732 }
2733
2734 if (selector && argnum > 2)
2735 {
2736 rname = selector;
2737 argnum -= 2;
2738 }
2739
2740 npc = null_pointer_constant_p (val);
2741
2742 /* If there is excess precision and a prototype, convert once to
2743 the required type rather than converting via the semantic
2744 type. Likewise without a prototype a float value represented
2745 as long double should be converted once to double. But for
2746 type-generic classification functions excess precision must
2747 be removed here. */
2748 if (TREE_CODE (val) == EXCESS_PRECISION_EXPR
2749 && (type || !type_generic || !type_generic_remove_excess_precision))
2750 {
2751 val = TREE_OPERAND (val, 0);
2752 excess_precision = true;
2753 }
2754 val = c_fully_fold (val, false, NULL);
2755 STRIP_TYPE_NOPS (val);
2756
2757 val = require_complete_type (val);
2758
2759 if (type != 0)
2760 {
2761 /* Formal parm type is specified by a function prototype. */
2762
2763 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
2764 {
2765 error ("type of formal parameter %d is incomplete", parmnum + 1);
2766 parmval = val;
2767 }
2768 else
2769 {
2770 tree origtype;
2771
2772 /* Optionally warn about conversions that
2773 differ from the default conversions. */
2774 if (warn_traditional_conversion || warn_traditional)
2775 {
2776 unsigned int formal_prec = TYPE_PRECISION (type);
2777
2778 if (INTEGRAL_TYPE_P (type)
2779 && TREE_CODE (valtype) == REAL_TYPE)
2780 warning (0, "passing argument %d of %qE as integer "
2781 "rather than floating due to prototype",
2782 argnum, rname);
2783 if (INTEGRAL_TYPE_P (type)
2784 && TREE_CODE (valtype) == COMPLEX_TYPE)
2785 warning (0, "passing argument %d of %qE as integer "
2786 "rather than complex due to prototype",
2787 argnum, rname);
2788 else if (TREE_CODE (type) == COMPLEX_TYPE
2789 && TREE_CODE (valtype) == REAL_TYPE)
2790 warning (0, "passing argument %d of %qE as complex "
2791 "rather than floating due to prototype",
2792 argnum, rname);
2793 else if (TREE_CODE (type) == REAL_TYPE
2794 && INTEGRAL_TYPE_P (valtype))
2795 warning (0, "passing argument %d of %qE as floating "
2796 "rather than integer due to prototype",
2797 argnum, rname);
2798 else if (TREE_CODE (type) == COMPLEX_TYPE
2799 && INTEGRAL_TYPE_P (valtype))
2800 warning (0, "passing argument %d of %qE as complex "
2801 "rather than integer due to prototype",
2802 argnum, rname);
2803 else if (TREE_CODE (type) == REAL_TYPE
2804 && TREE_CODE (valtype) == COMPLEX_TYPE)
2805 warning (0, "passing argument %d of %qE as floating "
2806 "rather than complex due to prototype",
2807 argnum, rname);
2808 /* ??? At some point, messages should be written about
2809 conversions between complex types, but that's too messy
2810 to do now. */
2811 else if (TREE_CODE (type) == REAL_TYPE
2812 && TREE_CODE (valtype) == REAL_TYPE)
2813 {
2814 /* Warn if any argument is passed as `float',
2815 since without a prototype it would be `double'. */
2816 if (formal_prec == TYPE_PRECISION (float_type_node)
2817 && type != dfloat32_type_node)
2818 warning (0, "passing argument %d of %qE as %<float%> "
2819 "rather than %<double%> due to prototype",
2820 argnum, rname);
2821
2822 /* Warn if mismatch between argument and prototype
2823 for decimal float types. Warn of conversions with
2824 binary float types and of precision narrowing due to
2825 prototype. */
2826 else if (type != valtype
2827 && (type == dfloat32_type_node
2828 || type == dfloat64_type_node
2829 || type == dfloat128_type_node
2830 || valtype == dfloat32_type_node
2831 || valtype == dfloat64_type_node
2832 || valtype == dfloat128_type_node)
2833 && (formal_prec
2834 <= TYPE_PRECISION (valtype)
2835 || (type == dfloat128_type_node
2836 && (valtype
2837 != dfloat64_type_node
2838 && (valtype
2839 != dfloat32_type_node)))
2840 || (type == dfloat64_type_node
2841 && (valtype
2842 != dfloat32_type_node))))
2843 warning (0, "passing argument %d of %qE as %qT "
2844 "rather than %qT due to prototype",
2845 argnum, rname, type, valtype);
2846
2847 }
2848 /* Detect integer changing in width or signedness.
2849 These warnings are only activated with
2850 -Wtraditional-conversion, not with -Wtraditional. */
2851 else if (warn_traditional_conversion && INTEGRAL_TYPE_P (type)
2852 && INTEGRAL_TYPE_P (valtype))
2853 {
2854 tree would_have_been = default_conversion (val);
2855 tree type1 = TREE_TYPE (would_have_been);
2856
2857 if (TREE_CODE (type) == ENUMERAL_TYPE
2858 && (TYPE_MAIN_VARIANT (type)
2859 == TYPE_MAIN_VARIANT (valtype)))
2860 /* No warning if function asks for enum
2861 and the actual arg is that enum type. */
2862 ;
2863 else if (formal_prec != TYPE_PRECISION (type1))
2864 warning (OPT_Wtraditional_conversion,
2865 "passing argument %d of %qE "
2866 "with different width due to prototype",
2867 argnum, rname);
2868 else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
2869 ;
2870 /* Don't complain if the formal parameter type
2871 is an enum, because we can't tell now whether
2872 the value was an enum--even the same enum. */
2873 else if (TREE_CODE (type) == ENUMERAL_TYPE)
2874 ;
2875 else if (TREE_CODE (val) == INTEGER_CST
2876 && int_fits_type_p (val, type))
2877 /* Change in signedness doesn't matter
2878 if a constant value is unaffected. */
2879 ;
2880 /* If the value is extended from a narrower
2881 unsigned type, it doesn't matter whether we
2882 pass it as signed or unsigned; the value
2883 certainly is the same either way. */
2884 else if (TYPE_PRECISION (valtype) < TYPE_PRECISION (type)
2885 && TYPE_UNSIGNED (valtype))
2886 ;
2887 else if (TYPE_UNSIGNED (type))
2888 warning (OPT_Wtraditional_conversion,
2889 "passing argument %d of %qE "
2890 "as unsigned due to prototype",
2891 argnum, rname);
2892 else
2893 warning (OPT_Wtraditional_conversion,
2894 "passing argument %d of %qE "
2895 "as signed due to prototype", argnum, rname);
2896 }
2897 }
2898
2899 /* Possibly restore an EXCESS_PRECISION_EXPR for the
2900 sake of better warnings from convert_and_check. */
2901 if (excess_precision)
2902 val = build1 (EXCESS_PRECISION_EXPR, valtype, val);
2903 origtype = (origtypes == NULL
2904 ? NULL_TREE
2905 : VEC_index (tree, origtypes, parmnum));
2906 parmval = convert_for_assignment (input_location, type, val,
2907 origtype, ic_argpass, npc,
2908 fundecl, function,
2909 parmnum + 1);
2910
2911 if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
2912 && INTEGRAL_TYPE_P (type)
2913 && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
2914 parmval = default_conversion (parmval);
2915 }
2916 }
2917 else if (TREE_CODE (valtype) == REAL_TYPE
2918 && (TYPE_PRECISION (valtype)
2919 < TYPE_PRECISION (double_type_node))
2920 && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (valtype)))
2921 {
2922 if (type_generic)
2923 parmval = val;
2924 else
2925 /* Convert `float' to `double'. */
2926 parmval = convert (double_type_node, val);
2927 }
2928 else if (excess_precision && !type_generic)
2929 /* A "double" argument with excess precision being passed
2930 without a prototype or in variable arguments. */
2931 parmval = convert (valtype, val);
2932 else if ((invalid_func_diag =
2933 targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
2934 {
2935 error (invalid_func_diag);
2936 return -1;
2937 }
2938 else
2939 /* Convert `short' and `char' to full-size `int'. */
2940 parmval = default_conversion (val);
2941
2942 VEC_replace (tree, values, parmnum, parmval);
2943
2944 if (typetail)
2945 typetail = TREE_CHAIN (typetail);
2946 }
2947
2948 gcc_assert (parmnum == VEC_length (tree, values));
2949
2950 if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
2951 {
2952 error ("too few arguments to function %qE", function);
2953 return -1;
2954 }
2955
2956 return parmnum;
2957 }
2958 \f
2959 /* This is the entry point used by the parser to build unary operators
2960 in the input. CODE, a tree_code, specifies the unary operator, and
2961 ARG is the operand. For unary plus, the C parser currently uses
2962 CONVERT_EXPR for code.
2963
2964 LOC is the location to use for the tree generated.
2965 */
2966
2967 struct c_expr
2968 parser_build_unary_op (location_t loc, enum tree_code code, struct c_expr arg)
2969 {
2970 struct c_expr result;
2971
2972 result.value = build_unary_op (loc, code, arg.value, 0);
2973 result.original_code = code;
2974 result.original_type = NULL;
2975
2976 if (TREE_OVERFLOW_P (result.value) && !TREE_OVERFLOW_P (arg.value))
2977 overflow_warning (loc, result.value);
2978
2979 return result;
2980 }
2981
2982 /* This is the entry point used by the parser to build binary operators
2983 in the input. CODE, a tree_code, specifies the binary operator, and
2984 ARG1 and ARG2 are the operands. In addition to constructing the
2985 expression, we check for operands that were written with other binary
2986 operators in a way that is likely to confuse the user.
2987
2988 LOCATION is the location of the binary operator. */
2989
2990 struct c_expr
2991 parser_build_binary_op (location_t location, enum tree_code code,
2992 struct c_expr arg1, struct c_expr arg2)
2993 {
2994 struct c_expr result;
2995
2996 enum tree_code code1 = arg1.original_code;
2997 enum tree_code code2 = arg2.original_code;
2998 tree type1 = (arg1.original_type
2999 ? arg1.original_type
3000 : TREE_TYPE (arg1.value));
3001 tree type2 = (arg2.original_type
3002 ? arg2.original_type
3003 : TREE_TYPE (arg2.value));
3004
3005 result.value = build_binary_op (location, code,
3006 arg1.value, arg2.value, 1);
3007 result.original_code = code;
3008 result.original_type = NULL;
3009
3010 if (TREE_CODE (result.value) == ERROR_MARK)
3011 return result;
3012
3013 if (location != UNKNOWN_LOCATION)
3014 protected_set_expr_location (result.value, location);
3015
3016 /* Check for cases such as x+y<<z which users are likely
3017 to misinterpret. */
3018 if (warn_parentheses)
3019 warn_about_parentheses (code, code1, arg1.value, code2, arg2.value);
3020
3021 if (warn_logical_op)
3022 warn_logical_operator (input_location, code, TREE_TYPE (result.value),
3023 code1, arg1.value, code2, arg2.value);
3024
3025 /* Warn about comparisons against string literals, with the exception
3026 of testing for equality or inequality of a string literal with NULL. */
3027 if (code == EQ_EXPR || code == NE_EXPR)
3028 {
3029 if ((code1 == STRING_CST && !integer_zerop (arg2.value))
3030 || (code2 == STRING_CST && !integer_zerop (arg1.value)))
3031 warning_at (location, OPT_Waddress,
3032 "comparison with string literal results in unspecified behavior");
3033 }
3034 else if (TREE_CODE_CLASS (code) == tcc_comparison
3035 && (code1 == STRING_CST || code2 == STRING_CST))
3036 warning_at (location, OPT_Waddress,
3037 "comparison with string literal results in unspecified behavior");
3038
3039 if (TREE_OVERFLOW_P (result.value)
3040 && !TREE_OVERFLOW_P (arg1.value)
3041 && !TREE_OVERFLOW_P (arg2.value))
3042 overflow_warning (location, result.value);
3043
3044 /* Warn about comparisons of different enum types. */
3045 if (warn_enum_compare
3046 && TREE_CODE_CLASS (code) == tcc_comparison
3047 && TREE_CODE (type1) == ENUMERAL_TYPE
3048 && TREE_CODE (type2) == ENUMERAL_TYPE
3049 && TYPE_MAIN_VARIANT (type1) != TYPE_MAIN_VARIANT (type2))
3050 warning_at (location, OPT_Wenum_compare,
3051 "comparison between %qT and %qT",
3052 type1, type2);
3053
3054 return result;
3055 }
3056 \f
3057 /* Return a tree for the difference of pointers OP0 and OP1.
3058 The resulting tree has type int. */
3059
3060 static tree
3061 pointer_diff (tree op0, tree op1)
3062 {
3063 tree restype = ptrdiff_type_node;
3064
3065 tree target_type = TREE_TYPE (TREE_TYPE (op0));
3066 tree con0, con1, lit0, lit1;
3067 tree orig_op1 = op1;
3068
3069 if (TREE_CODE (target_type) == VOID_TYPE)
3070 pedwarn (input_location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3071 "pointer of type %<void *%> used in subtraction");
3072 if (TREE_CODE (target_type) == FUNCTION_TYPE)
3073 pedwarn (input_location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3074 "pointer to a function used in subtraction");
3075
3076 /* If the conversion to ptrdiff_type does anything like widening or
3077 converting a partial to an integral mode, we get a convert_expression
3078 that is in the way to do any simplifications.
3079 (fold-const.c doesn't know that the extra bits won't be needed.
3080 split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
3081 different mode in place.)
3082 So first try to find a common term here 'by hand'; we want to cover
3083 at least the cases that occur in legal static initializers. */
3084 if (CONVERT_EXPR_P (op0)
3085 && (TYPE_PRECISION (TREE_TYPE (op0))
3086 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
3087 con0 = TREE_OPERAND (op0, 0);
3088 else
3089 con0 = op0;
3090 if (CONVERT_EXPR_P (op1)
3091 && (TYPE_PRECISION (TREE_TYPE (op1))
3092 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
3093 con1 = TREE_OPERAND (op1, 0);
3094 else
3095 con1 = op1;
3096
3097 if (TREE_CODE (con0) == PLUS_EXPR)
3098 {
3099 lit0 = TREE_OPERAND (con0, 1);
3100 con0 = TREE_OPERAND (con0, 0);
3101 }
3102 else
3103 lit0 = integer_zero_node;
3104
3105 if (TREE_CODE (con1) == PLUS_EXPR)
3106 {
3107 lit1 = TREE_OPERAND (con1, 1);
3108 con1 = TREE_OPERAND (con1, 0);
3109 }
3110 else
3111 lit1 = integer_zero_node;
3112
3113 if (operand_equal_p (con0, con1, 0))
3114 {
3115 op0 = lit0;
3116 op1 = lit1;
3117 }
3118
3119
3120 /* First do the subtraction as integers;
3121 then drop through to build the divide operator.
3122 Do not do default conversions on the minus operator
3123 in case restype is a short type. */
3124
3125 op0 = build_binary_op (input_location,
3126 MINUS_EXPR, convert (restype, op0),
3127 convert (restype, op1), 0);
3128 /* This generates an error if op1 is pointer to incomplete type. */
3129 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
3130 error ("arithmetic on pointer to an incomplete type");
3131
3132 /* This generates an error if op0 is pointer to incomplete type. */
3133 op1 = c_size_in_bytes (target_type);
3134
3135 /* Divide by the size, in easiest possible way. */
3136 return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
3137 }
3138 \f
3139 /* Construct and perhaps optimize a tree representation
3140 for a unary operation. CODE, a tree_code, specifies the operation
3141 and XARG is the operand.
3142 For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
3143 the default promotions (such as from short to int).
3144 For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
3145 allows non-lvalues; this is only used to handle conversion of non-lvalue
3146 arrays to pointers in C99.
3147
3148 LOCATION is the location of the operator. */
3149
3150 tree
3151 build_unary_op (location_t location,
3152 enum tree_code code, tree xarg, int flag)
3153 {
3154 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
3155 tree arg = xarg;
3156 tree argtype = 0;
3157 enum tree_code typecode;
3158 tree val;
3159 tree ret = error_mark_node;
3160 tree eptype = NULL_TREE;
3161 int noconvert = flag;
3162 const char *invalid_op_diag;
3163 bool int_operands;
3164
3165 int_operands = EXPR_INT_CONST_OPERANDS (xarg);
3166 if (int_operands)
3167 arg = remove_c_maybe_const_expr (arg);
3168
3169 if (code != ADDR_EXPR)
3170 arg = require_complete_type (arg);
3171
3172 typecode = TREE_CODE (TREE_TYPE (arg));
3173 if (typecode == ERROR_MARK)
3174 return error_mark_node;
3175 if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
3176 typecode = INTEGER_TYPE;
3177
3178 if ((invalid_op_diag
3179 = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
3180 {
3181 error_at (location, invalid_op_diag);
3182 return error_mark_node;
3183 }
3184
3185 if (TREE_CODE (arg) == EXCESS_PRECISION_EXPR)
3186 {
3187 eptype = TREE_TYPE (arg);
3188 arg = TREE_OPERAND (arg, 0);
3189 }
3190
3191 switch (code)
3192 {
3193 case CONVERT_EXPR:
3194 /* This is used for unary plus, because a CONVERT_EXPR
3195 is enough to prevent anybody from looking inside for
3196 associativity, but won't generate any code. */
3197 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3198 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
3199 || typecode == VECTOR_TYPE))
3200 {
3201 error_at (location, "wrong type argument to unary plus");
3202 return error_mark_node;
3203 }
3204 else if (!noconvert)
3205 arg = default_conversion (arg);
3206 arg = non_lvalue (arg);
3207 break;
3208
3209 case NEGATE_EXPR:
3210 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3211 || typecode == FIXED_POINT_TYPE || typecode == COMPLEX_TYPE
3212 || typecode == VECTOR_TYPE))
3213 {
3214 error_at (location, "wrong type argument to unary minus");
3215 return error_mark_node;
3216 }
3217 else if (!noconvert)
3218 arg = default_conversion (arg);
3219 break;
3220
3221 case BIT_NOT_EXPR:
3222 /* ~ works on integer types and non float vectors. */
3223 if (typecode == INTEGER_TYPE
3224 || (typecode == VECTOR_TYPE
3225 && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (arg))))
3226 {
3227 if (!noconvert)
3228 arg = default_conversion (arg);
3229 }
3230 else if (typecode == COMPLEX_TYPE)
3231 {
3232 code = CONJ_EXPR;
3233 pedwarn (location, OPT_pedantic,
3234 "ISO C does not support %<~%> for complex conjugation");
3235 if (!noconvert)
3236 arg = default_conversion (arg);
3237 }
3238 else
3239 {
3240 error_at (location, "wrong type argument to bit-complement");
3241 return error_mark_node;
3242 }
3243 break;
3244
3245 case ABS_EXPR:
3246 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
3247 {
3248 error_at (location, "wrong type argument to abs");
3249 return error_mark_node;
3250 }
3251 else if (!noconvert)
3252 arg = default_conversion (arg);
3253 break;
3254
3255 case CONJ_EXPR:
3256 /* Conjugating a real value is a no-op, but allow it anyway. */
3257 if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
3258 || typecode == COMPLEX_TYPE))
3259 {
3260 error_at (location, "wrong type argument to conjugation");
3261 return error_mark_node;
3262 }
3263 else if (!noconvert)
3264 arg = default_conversion (arg);
3265 break;
3266
3267 case TRUTH_NOT_EXPR:
3268 if (typecode != INTEGER_TYPE && typecode != FIXED_POINT_TYPE
3269 && typecode != REAL_TYPE && typecode != POINTER_TYPE
3270 && typecode != COMPLEX_TYPE)
3271 {
3272 error_at (location,
3273 "wrong type argument to unary exclamation mark");
3274 return error_mark_node;
3275 }
3276 arg = c_objc_common_truthvalue_conversion (location, arg);
3277 ret = invert_truthvalue (arg);
3278 /* If the TRUTH_NOT_EXPR has been folded, reset the location. */
3279 if (EXPR_P (ret) && EXPR_HAS_LOCATION (ret))
3280 location = EXPR_LOCATION (ret);
3281 goto return_build_unary_op;
3282
3283 case REALPART_EXPR:
3284 if (TREE_CODE (arg) == COMPLEX_CST)
3285 ret = TREE_REALPART (arg);
3286 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3287 ret = fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3288 else
3289 ret = arg;
3290 if (eptype && TREE_CODE (eptype) == COMPLEX_TYPE)
3291 eptype = TREE_TYPE (eptype);
3292 goto return_build_unary_op;
3293
3294 case IMAGPART_EXPR:
3295 if (TREE_CODE (arg) == COMPLEX_CST)
3296 ret = TREE_IMAGPART (arg);
3297 else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
3298 ret = fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
3299 else
3300 ret = omit_one_operand (TREE_TYPE (arg), integer_zero_node, arg);
3301 if (eptype && TREE_CODE (eptype) == COMPLEX_TYPE)
3302 eptype = TREE_TYPE (eptype);
3303 goto return_build_unary_op;
3304
3305 case PREINCREMENT_EXPR:
3306 case POSTINCREMENT_EXPR:
3307 case PREDECREMENT_EXPR:
3308 case POSTDECREMENT_EXPR:
3309
3310 if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR)
3311 {
3312 tree inner = build_unary_op (location, code,
3313 C_MAYBE_CONST_EXPR_EXPR (arg), flag);
3314 if (inner == error_mark_node)
3315 return error_mark_node;
3316 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
3317 C_MAYBE_CONST_EXPR_PRE (arg), inner);
3318 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg));
3319 C_MAYBE_CONST_EXPR_NON_CONST (ret) = 1;
3320 goto return_build_unary_op;
3321 }
3322
3323 /* Complain about anything that is not a true lvalue. */
3324 if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
3325 || code == POSTINCREMENT_EXPR)
3326 ? lv_increment
3327 : lv_decrement)))
3328 return error_mark_node;
3329
3330 if (warn_cxx_compat && TREE_CODE (TREE_TYPE (arg)) == ENUMERAL_TYPE)
3331 {
3332 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3333 warning_at (location, OPT_Wc___compat,
3334 "increment of enumeration value is invalid in C++");
3335 else
3336 warning_at (location, OPT_Wc___compat,
3337 "decrement of enumeration value is invalid in C++");
3338 }
3339
3340 /* Ensure the argument is fully folded inside any SAVE_EXPR. */
3341 arg = c_fully_fold (arg, false, NULL);
3342
3343 /* Increment or decrement the real part of the value,
3344 and don't change the imaginary part. */
3345 if (typecode == COMPLEX_TYPE)
3346 {
3347 tree real, imag;
3348
3349 pedwarn (location, OPT_pedantic,
3350 "ISO C does not support %<++%> and %<--%> on complex types");
3351
3352 arg = stabilize_reference (arg);
3353 real = build_unary_op (EXPR_LOCATION (arg), REALPART_EXPR, arg, 1);
3354 imag = build_unary_op (EXPR_LOCATION (arg), IMAGPART_EXPR, arg, 1);
3355 real = build_unary_op (EXPR_LOCATION (arg), code, real, 1);
3356 if (real == error_mark_node || imag == error_mark_node)
3357 return error_mark_node;
3358 ret = build2 (COMPLEX_EXPR, TREE_TYPE (arg),
3359 real, imag);
3360 goto return_build_unary_op;
3361 }
3362
3363 /* Report invalid types. */
3364
3365 if (typecode != POINTER_TYPE && typecode != FIXED_POINT_TYPE
3366 && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
3367 {
3368 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3369 error_at (location, "wrong type argument to increment");
3370 else
3371 error_at (location, "wrong type argument to decrement");
3372
3373 return error_mark_node;
3374 }
3375
3376 {
3377 tree inc;
3378
3379 argtype = TREE_TYPE (arg);
3380
3381 /* Compute the increment. */
3382
3383 if (typecode == POINTER_TYPE)
3384 {
3385 /* If pointer target is an undefined struct,
3386 we just cannot know how to do the arithmetic. */
3387 if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (argtype)))
3388 {
3389 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3390 error_at (location,
3391 "increment of pointer to unknown structure");
3392 else
3393 error_at (location,
3394 "decrement of pointer to unknown structure");
3395 }
3396 else if (TREE_CODE (TREE_TYPE (argtype)) == FUNCTION_TYPE
3397 || TREE_CODE (TREE_TYPE (argtype)) == VOID_TYPE)
3398 {
3399 if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
3400 pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3401 "wrong type argument to increment");
3402 else
3403 pedwarn (location, pedantic ? OPT_pedantic : OPT_Wpointer_arith,
3404 "wrong type argument to decrement");
3405 }
3406
3407 inc = c_size_in_bytes (TREE_TYPE (argtype));
3408 inc = fold_convert (sizetype, inc);
3409 }
3410 else if (FRACT_MODE_P (TYPE_MODE (argtype)))
3411 {
3412 /* For signed fract types, we invert ++ to -- or
3413 -- to ++, and change inc from 1 to -1, because
3414 it is not possible to represent 1 in signed fract constants.
3415 For unsigned fract types, the result always overflows and
3416 we get an undefined (original) or the maximum value. */
3417 if (code == PREINCREMENT_EXPR)
3418 code = PREDECREMENT_EXPR;
3419 else if (code == PREDECREMENT_EXPR)
3420 code = PREINCREMENT_EXPR;
3421 else if (code == POSTINCREMENT_EXPR)
3422 code = POSTDECREMENT_EXPR;
3423 else /* code == POSTDECREMENT_EXPR */
3424 code = POSTINCREMENT_EXPR;
3425
3426 inc = integer_minus_one_node;
3427 inc = convert (argtype, inc);
3428 }
3429 else
3430 {
3431 inc = integer_one_node;
3432 inc = convert (argtype, inc);
3433 }
3434
3435 /* Report a read-only lvalue. */
3436 if (TYPE_READONLY (argtype))
3437 {
3438 readonly_error (arg,
3439 ((code == PREINCREMENT_EXPR
3440 || code == POSTINCREMENT_EXPR)
3441 ? lv_increment : lv_decrement));
3442 return error_mark_node;
3443 }
3444 else if (TREE_READONLY (arg))
3445 readonly_warning (arg,
3446 ((code == PREINCREMENT_EXPR
3447 || code == POSTINCREMENT_EXPR)
3448 ? lv_increment : lv_decrement));
3449
3450 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3451 val = boolean_increment (code, arg);
3452 else
3453 val = build2 (code, TREE_TYPE (arg), arg, inc);
3454 TREE_SIDE_EFFECTS (val) = 1;
3455 if (TREE_CODE (val) != code)
3456 TREE_NO_WARNING (val) = 1;
3457 ret = val;
3458 goto return_build_unary_op;
3459 }
3460
3461 case ADDR_EXPR:
3462 /* Note that this operation never does default_conversion. */
3463
3464 /* The operand of unary '&' must be an lvalue (which excludes
3465 expressions of type void), or, in C99, the result of a [] or
3466 unary '*' operator. */
3467 if (VOID_TYPE_P (TREE_TYPE (arg))
3468 && TYPE_QUALS (TREE_TYPE (arg)) == TYPE_UNQUALIFIED
3469 && (TREE_CODE (arg) != INDIRECT_REF
3470 || !flag_isoc99))
3471 pedwarn (location, 0, "taking address of expression of type %<void%>");
3472
3473 /* Let &* cancel out to simplify resulting code. */
3474 if (TREE_CODE (arg) == INDIRECT_REF)
3475 {
3476 /* Don't let this be an lvalue. */
3477 if (lvalue_p (TREE_OPERAND (arg, 0)))
3478 return non_lvalue (TREE_OPERAND (arg, 0));
3479 ret = TREE_OPERAND (arg, 0);
3480 goto return_build_unary_op;
3481 }
3482
3483 /* For &x[y], return x+y */
3484 if (TREE_CODE (arg) == ARRAY_REF)
3485 {
3486 tree op0 = TREE_OPERAND (arg, 0);
3487 if (!c_mark_addressable (op0))
3488 return error_mark_node;
3489 return build_binary_op (location, PLUS_EXPR,
3490 (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
3491 ? array_to_pointer_conversion (location,
3492 op0)
3493 : op0),
3494 TREE_OPERAND (arg, 1), 1);
3495 }
3496
3497 /* Anything not already handled and not a true memory reference
3498 or a non-lvalue array is an error. */
3499 else if (typecode != FUNCTION_TYPE && !flag
3500 && !lvalue_or_else (arg, lv_addressof))
3501 return error_mark_node;
3502
3503 /* Move address operations inside C_MAYBE_CONST_EXPR to simplify
3504 folding later. */
3505 if (TREE_CODE (arg) == C_MAYBE_CONST_EXPR)
3506 {
3507 tree inner = build_unary_op (location, code,
3508 C_MAYBE_CONST_EXPR_EXPR (arg), flag);
3509 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
3510 C_MAYBE_CONST_EXPR_PRE (arg), inner);
3511 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (arg));
3512 C_MAYBE_CONST_EXPR_NON_CONST (ret)
3513 = C_MAYBE_CONST_EXPR_NON_CONST (arg);
3514 goto return_build_unary_op;
3515 }
3516
3517 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3518 argtype = TREE_TYPE (arg);
3519
3520 /* If the lvalue is const or volatile, merge that into the type
3521 to which the address will point. Note that you can't get a
3522 restricted pointer by taking the address of something, so we
3523 only have to deal with `const' and `volatile' here. */
3524 if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
3525 && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
3526 argtype = c_build_type_variant (argtype,
3527 TREE_READONLY (arg),
3528 TREE_THIS_VOLATILE (arg));
3529
3530 if (!c_mark_addressable (arg))
3531 return error_mark_node;
3532
3533 gcc_assert (TREE_CODE (arg) != COMPONENT_REF
3534 || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
3535
3536 argtype = build_pointer_type (argtype);
3537
3538 /* ??? Cope with user tricks that amount to offsetof. Delete this
3539 when we have proper support for integer constant expressions. */
3540 val = get_base_address (arg);
3541 if (val && TREE_CODE (val) == INDIRECT_REF
3542 && TREE_CONSTANT (TREE_OPERAND (val, 0)))
3543 {
3544 tree op0 = fold_convert (sizetype, fold_offsetof (arg, val)), op1;
3545
3546 op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
3547 ret = fold_build2 (POINTER_PLUS_EXPR, argtype, op1, op0);
3548 goto return_build_unary_op;
3549 }
3550
3551 val = build1 (ADDR_EXPR, argtype, arg);
3552
3553 ret = val;
3554 goto return_build_unary_op;
3555
3556 default:
3557 gcc_unreachable ();
3558 }
3559
3560 if (argtype == 0)
3561 argtype = TREE_TYPE (arg);
3562 if (TREE_CODE (arg) == INTEGER_CST)
3563 ret = (require_constant_value
3564 ? fold_build1_initializer (code, argtype, arg)
3565 : fold_build1 (code, argtype, arg));
3566 else
3567 ret = build1 (code, argtype, arg);
3568 return_build_unary_op:
3569 gcc_assert (ret != error_mark_node);
3570 if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret)
3571 && !(TREE_CODE (xarg) == INTEGER_CST && !TREE_OVERFLOW (xarg)))
3572 ret = build1 (NOP_EXPR, TREE_TYPE (ret), ret);
3573 else if (TREE_CODE (ret) != INTEGER_CST && int_operands)
3574 ret = note_integer_operands (ret);
3575 if (eptype)
3576 ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret);
3577 protected_set_expr_location (ret, location);
3578 return ret;
3579 }
3580
3581 /* Return nonzero if REF is an lvalue valid for this language.
3582 Lvalues can be assigned, unless their type has TYPE_READONLY.
3583 Lvalues can have their address taken, unless they have C_DECL_REGISTER. */
3584
3585 bool
3586 lvalue_p (const_tree ref)
3587 {
3588 const enum tree_code code = TREE_CODE (ref);
3589
3590 switch (code)
3591 {
3592 case REALPART_EXPR:
3593 case IMAGPART_EXPR:
3594 case COMPONENT_REF:
3595 return lvalue_p (TREE_OPERAND (ref, 0));
3596
3597 case C_MAYBE_CONST_EXPR:
3598 return lvalue_p (TREE_OPERAND (ref, 1));
3599
3600 case COMPOUND_LITERAL_EXPR:
3601 case STRING_CST:
3602 return 1;
3603
3604 case INDIRECT_REF:
3605 case ARRAY_REF:
3606 case VAR_DECL:
3607 case PARM_DECL:
3608 case RESULT_DECL:
3609 case ERROR_MARK:
3610 return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
3611 && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
3612
3613 case BIND_EXPR:
3614 return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
3615
3616 default:
3617 return 0;
3618 }
3619 }
3620 \f
3621 /* Give an error for storing in something that is 'const'. */
3622
3623 static void
3624 readonly_error (tree arg, enum lvalue_use use)
3625 {
3626 gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
3627 || use == lv_asm);
3628 /* Using this macro rather than (for example) arrays of messages
3629 ensures that all the format strings are checked at compile
3630 time. */
3631 #define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A) \
3632 : (use == lv_increment ? (I) \
3633 : (use == lv_decrement ? (D) : (AS))))
3634 if (TREE_CODE (arg) == COMPONENT_REF)
3635 {
3636 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
3637 readonly_error (TREE_OPERAND (arg, 0), use);
3638 else
3639 error (READONLY_MSG (G_("assignment of read-only member %qD"),
3640 G_("increment of read-only member %qD"),
3641 G_("decrement of read-only member %qD"),
3642 G_("read-only member %qD used as %<asm%> output")),
3643 TREE_OPERAND (arg, 1));
3644 }
3645 else if (TREE_CODE (arg) == VAR_DECL)
3646 error (READONLY_MSG (G_("assignment of read-only variable %qD"),
3647 G_("increment of read-only variable %qD"),
3648 G_("decrement of read-only variable %qD"),
3649 G_("read-only variable %qD used as %<asm%> output")),
3650 arg);
3651 else
3652 error (READONLY_MSG (G_("assignment of read-only location %qE"),
3653 G_("increment of read-only location %qE"),
3654 G_("decrement of read-only location %qE"),
3655 G_("read-only location %qE used as %<asm%> output")),
3656 arg);
3657 }
3658
3659 /* Give a warning for storing in something that is read-only in GCC
3660 terms but not const in ISO C terms. */
3661
3662 static void
3663 readonly_warning (tree arg, enum lvalue_use use)
3664 {
3665 switch (use)
3666 {
3667 case lv_assign:
3668 warning (0, "assignment of read-only location %qE", arg);
3669 break;
3670 case lv_increment:
3671 warning (0, "increment of read-only location %qE", arg);
3672 break;
3673 case lv_decrement:
3674 warning (0, "decrement of read-only location %qE", arg);
3675 break;
3676 default:
3677 gcc_unreachable ();
3678 }
3679 return;
3680 }
3681
3682
3683 /* Return nonzero if REF is an lvalue valid for this language;
3684 otherwise, print an error message and return zero. USE says
3685 how the lvalue is being used and so selects the error message. */
3686
3687 static int
3688 lvalue_or_else (const_tree ref, enum lvalue_use use)
3689 {
3690 int win = lvalue_p (ref);
3691
3692 if (!win)
3693 lvalue_error (use);
3694
3695 return win;
3696 }
3697 \f
3698 /* Mark EXP saying that we need to be able to take the
3699 address of it; it should not be allocated in a register.
3700 Returns true if successful. */
3701
3702 bool
3703 c_mark_addressable (tree exp)
3704 {
3705 tree x = exp;
3706
3707 while (1)
3708 switch (TREE_CODE (x))
3709 {
3710 case COMPONENT_REF:
3711 if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
3712 {
3713 error
3714 ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
3715 return false;
3716 }
3717
3718 /* ... fall through ... */
3719
3720 case ADDR_EXPR:
3721 case ARRAY_REF:
3722 case REALPART_EXPR:
3723 case IMAGPART_EXPR:
3724 x = TREE_OPERAND (x, 0);
3725 break;
3726
3727 case COMPOUND_LITERAL_EXPR:
3728 case CONSTRUCTOR:
3729 TREE_ADDRESSABLE (x) = 1;
3730 return true;
3731
3732 case VAR_DECL:
3733 case CONST_DECL:
3734 case PARM_DECL:
3735 case RESULT_DECL:
3736 if (C_DECL_REGISTER (x)
3737 && DECL_NONLOCAL (x))
3738 {
3739 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3740 {
3741 error
3742 ("global register variable %qD used in nested function", x);
3743 return false;
3744 }
3745 pedwarn (input_location, 0, "register variable %qD used in nested function", x);
3746 }
3747 else if (C_DECL_REGISTER (x))
3748 {
3749 if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
3750 error ("address of global register variable %qD requested", x);
3751 else
3752 error ("address of register variable %qD requested", x);
3753 return false;
3754 }
3755
3756 /* drops in */
3757 case FUNCTION_DECL:
3758 TREE_ADDRESSABLE (x) = 1;
3759 /* drops out */
3760 default:
3761 return true;
3762 }
3763 }
3764 \f
3765 /* Build and return a conditional expression IFEXP ? OP1 : OP2. If
3766 IFEXP_BCP then the condition is a call to __builtin_constant_p, and
3767 if folded to an integer constant then the unselected half may
3768 contain arbitrary operations not normally permitted in constant
3769 expressions. Set the location of the expression to LOC. */
3770
3771 tree
3772 build_conditional_expr (location_t colon_loc, tree ifexp, bool ifexp_bcp,
3773 tree op1, tree op2)
3774 {
3775 tree type1;
3776 tree type2;
3777 enum tree_code code1;
3778 enum tree_code code2;
3779 tree result_type = NULL;
3780 tree ep_result_type = NULL;
3781 tree orig_op1 = op1, orig_op2 = op2;
3782 bool int_const, op1_int_operands, op2_int_operands, int_operands;
3783 bool ifexp_int_operands;
3784 tree ret;
3785 bool objc_ok;
3786
3787 op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1);
3788 if (op1_int_operands)
3789 op1 = remove_c_maybe_const_expr (op1);
3790 op2_int_operands = EXPR_INT_CONST_OPERANDS (orig_op2);
3791 if (op2_int_operands)
3792 op2 = remove_c_maybe_const_expr (op2);
3793 ifexp_int_operands = EXPR_INT_CONST_OPERANDS (ifexp);
3794 if (ifexp_int_operands)
3795 ifexp = remove_c_maybe_const_expr (ifexp);
3796
3797 /* Promote both alternatives. */
3798
3799 if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
3800 op1 = default_conversion (op1);
3801 if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
3802 op2 = default_conversion (op2);
3803
3804 if (TREE_CODE (ifexp) == ERROR_MARK
3805 || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
3806 || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
3807 return error_mark_node;
3808
3809 type1 = TREE_TYPE (op1);
3810 code1 = TREE_CODE (type1);
3811 type2 = TREE_TYPE (op2);
3812 code2 = TREE_CODE (type2);
3813
3814 /* C90 does not permit non-lvalue arrays in conditional expressions.
3815 In C99 they will be pointers by now. */
3816 if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
3817 {
3818 error_at (colon_loc, "non-lvalue array in conditional expression");
3819 return error_mark_node;
3820 }
3821
3822 objc_ok = objc_compare_types (type1, type2, -3, NULL_TREE);
3823
3824 if ((TREE_CODE (op1) == EXCESS_PRECISION_EXPR
3825 || TREE_CODE (op2) == EXCESS_PRECISION_EXPR)
3826 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
3827 || code1 == COMPLEX_TYPE)
3828 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3829 || code2 == COMPLEX_TYPE))
3830 {
3831 ep_result_type = c_common_type (type1, type2);
3832 if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR)
3833 {
3834 op1 = TREE_OPERAND (op1, 0);
3835 type1 = TREE_TYPE (op1);
3836 gcc_assert (TREE_CODE (type1) == code1);
3837 }
3838 if (TREE_CODE (op2) == EXCESS_PRECISION_EXPR)
3839 {
3840 op2 = TREE_OPERAND (op2, 0);
3841 type2 = TREE_TYPE (op2);
3842 gcc_assert (TREE_CODE (type2) == code2);
3843 }
3844 }
3845
3846 /* Quickly detect the usual case where op1 and op2 have the same type
3847 after promotion. */
3848 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
3849 {
3850 if (type1 == type2)
3851 result_type = type1;
3852 else
3853 result_type = TYPE_MAIN_VARIANT (type1);
3854 }
3855 else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
3856 || code1 == COMPLEX_TYPE)
3857 && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
3858 || code2 == COMPLEX_TYPE))
3859 {
3860 result_type = c_common_type (type1, type2);
3861
3862 /* If -Wsign-compare, warn here if type1 and type2 have
3863 different signedness. We'll promote the signed to unsigned
3864 and later code won't know it used to be different.
3865 Do this check on the original types, so that explicit casts
3866 will be considered, but default promotions won't. */
3867 if (c_inhibit_evaluation_warnings == 0)
3868 {
3869 int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
3870 int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
3871
3872 if (unsigned_op1 ^ unsigned_op2)
3873 {
3874 bool ovf;
3875
3876 /* Do not warn if the result type is signed, since the
3877 signed type will only be chosen if it can represent
3878 all the values of the unsigned type. */
3879 if (!TYPE_UNSIGNED (result_type))
3880 /* OK */;
3881 else
3882 {
3883 bool op1_maybe_const = true;
3884 bool op2_maybe_const = true;
3885
3886 /* Do not warn if the signed quantity is an
3887 unsuffixed integer literal (or some static
3888 constant expression involving such literals) and
3889 it is non-negative. This warning requires the
3890 operands to be folded for best results, so do
3891 that folding in this case even without
3892 warn_sign_compare to avoid warning options
3893 possibly affecting code generation. */
3894 op1 = c_fully_fold (op1, require_constant_value,
3895 &op1_maybe_const);
3896 op2 = c_fully_fold (op2, require_constant_value,
3897 &op2_maybe_const);
3898
3899 if (warn_sign_compare)
3900 {
3901 if ((unsigned_op2
3902 && tree_expr_nonnegative_warnv_p (op1, &ovf))
3903 || (unsigned_op1
3904 && tree_expr_nonnegative_warnv_p (op2, &ovf)))
3905 /* OK */;
3906 else
3907 warning_at (colon_loc, OPT_Wsign_compare,
3908 ("signed and unsigned type in "
3909 "conditional expression"));
3910 }
3911 if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST)
3912 {
3913 op1 = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (op1),
3914 NULL, op1);
3915 C_MAYBE_CONST_EXPR_NON_CONST (op1) = !op1_maybe_const;
3916 }
3917 if (!op2_maybe_const || TREE_CODE (op2) != INTEGER_CST)
3918 {
3919 op2 = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (op2),
3920 NULL, op2);
3921 C_MAYBE_CONST_EXPR_NON_CONST (op2) = !op2_maybe_const;
3922 }
3923 }
3924 }
3925 }
3926 }
3927 else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
3928 {
3929 if (code1 != VOID_TYPE || code2 != VOID_TYPE)
3930 pedwarn (colon_loc, OPT_pedantic,
3931 "ISO C forbids conditional expr with only one void side");
3932 result_type = void_type_node;
3933 }
3934 else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
3935 {
3936 if (comp_target_types (colon_loc, type1, type2))
3937 result_type = common_pointer_type (type1, type2);
3938 else if (null_pointer_constant_p (orig_op1))
3939 result_type = qualify_type (type2, type1);
3940 else if (null_pointer_constant_p (orig_op2))
3941 result_type = qualify_type (type1, type2);
3942 else if (VOID_TYPE_P (TREE_TYPE (type1)))
3943 {
3944 if (TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
3945 pedwarn (colon_loc, OPT_pedantic,
3946 "ISO C forbids conditional expr between "
3947 "%<void *%> and function pointer");
3948 result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
3949 TREE_TYPE (type2)));
3950 }
3951 else if (VOID_TYPE_P (TREE_TYPE (type2)))
3952 {
3953 if (TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
3954 pedwarn (colon_loc, OPT_pedantic,
3955 "ISO C forbids conditional expr between "
3956 "%<void *%> and function pointer");
3957 result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
3958 TREE_TYPE (type1)));
3959 }
3960 else
3961 {
3962 if (!objc_ok)
3963 pedwarn (colon_loc, 0,
3964 "pointer type mismatch in conditional expression");
3965 result_type = build_pointer_type (void_type_node);
3966 }
3967 }
3968 else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
3969 {
3970 if (!null_pointer_constant_p (orig_op2))
3971 pedwarn (colon_loc, 0,
3972 "pointer/integer type mismatch in conditional expression");
3973 else
3974 {
3975 op2 = null_pointer_node;
3976 }
3977 result_type = type1;
3978 }
3979 else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
3980 {
3981 if (!null_pointer_constant_p (orig_op1))
3982 pedwarn (colon_loc, 0,
3983 "pointer/integer type mismatch in conditional expression");
3984 else
3985 {
3986 op1 = null_pointer_node;
3987 }
3988 result_type = type2;
3989 }
3990
3991 if (!result_type)
3992 {
3993 if (flag_cond_mismatch)
3994 result_type = void_type_node;
3995 else
3996 {
3997 error_at (colon_loc, "type mismatch in conditional expression");
3998 return error_mark_node;
3999 }
4000 }
4001
4002 /* Merge const and volatile flags of the incoming types. */
4003 result_type
4004 = build_type_variant (result_type,
4005 TREE_READONLY (op1) || TREE_READONLY (op2),
4006 TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
4007
4008 if (result_type != TREE_TYPE (op1))
4009 op1 = convert_and_check (result_type, op1);
4010 if (result_type != TREE_TYPE (op2))
4011 op2 = convert_and_check (result_type, op2);
4012
4013 if (ifexp_bcp && ifexp == truthvalue_true_node)
4014 {
4015 op2_int_operands = true;
4016 op1 = c_fully_fold (op1, require_constant_value, NULL);
4017 }
4018 if (ifexp_bcp && ifexp == truthvalue_false_node)
4019 {
4020 op1_int_operands = true;
4021 op2 = c_fully_fold (op2, require_constant_value, NULL);
4022 }
4023 int_const = int_operands = (ifexp_int_operands
4024 && op1_int_operands
4025 && op2_int_operands);
4026 if (int_operands)
4027 {
4028 int_const = ((ifexp == truthvalue_true_node
4029 && TREE_CODE (orig_op1) == INTEGER_CST
4030 && !TREE_OVERFLOW (orig_op1))
4031 || (ifexp == truthvalue_false_node
4032 && TREE_CODE (orig_op2) == INTEGER_CST
4033 && !TREE_OVERFLOW (orig_op2)));
4034 }
4035 if (int_const || (ifexp_bcp && TREE_CODE (ifexp) == INTEGER_CST))
4036 ret = fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
4037 else
4038 {
4039 ret = build3 (COND_EXPR, result_type, ifexp, op1, op2);
4040 if (int_operands)
4041 ret = note_integer_operands (ret);
4042 }
4043 if (ep_result_type)
4044 ret = build1 (EXCESS_PRECISION_EXPR, ep_result_type, ret);
4045
4046 protected_set_expr_location (ret, colon_loc);
4047 return ret;
4048 }
4049 \f
4050 /* Return a compound expression that performs two expressions and
4051 returns the value of the second of them.
4052
4053 LOC is the location of the COMPOUND_EXPR. */
4054
4055 tree
4056 build_compound_expr (location_t loc, tree expr1, tree expr2)
4057 {
4058 bool expr1_int_operands, expr2_int_operands;
4059 tree eptype = NULL_TREE;
4060 tree ret;
4061
4062 expr1_int_operands = EXPR_INT_CONST_OPERANDS (expr1);
4063 if (expr1_int_operands)
4064 expr1 = remove_c_maybe_const_expr (expr1);
4065 expr2_int_operands = EXPR_INT_CONST_OPERANDS (expr2);
4066 if (expr2_int_operands)
4067 expr2 = remove_c_maybe_const_expr (expr2);
4068
4069 if (TREE_CODE (expr1) == EXCESS_PRECISION_EXPR)
4070 expr1 = TREE_OPERAND (expr1, 0);
4071 if (TREE_CODE (expr2) == EXCESS_PRECISION_EXPR)
4072 {
4073 eptype = TREE_TYPE (expr2);
4074 expr2 = TREE_OPERAND (expr2, 0);
4075 }
4076
4077 if (!TREE_SIDE_EFFECTS (expr1))
4078 {
4079 /* The left-hand operand of a comma expression is like an expression
4080 statement: with -Wunused, we should warn if it doesn't have
4081 any side-effects, unless it was explicitly cast to (void). */
4082 if (warn_unused_value)
4083 {
4084 if (VOID_TYPE_P (TREE_TYPE (expr1))
4085 && CONVERT_EXPR_P (expr1))
4086 ; /* (void) a, b */
4087 else if (VOID_TYPE_P (TREE_TYPE (expr1))
4088 && TREE_CODE (expr1) == COMPOUND_EXPR
4089 && CONVERT_EXPR_P (TREE_OPERAND (expr1, 1)))
4090 ; /* (void) a, (void) b, c */
4091 else
4092 warning_at (loc, OPT_Wunused_value,
4093 "left-hand operand of comma expression has no effect");
4094 }
4095 }
4096
4097 /* With -Wunused, we should also warn if the left-hand operand does have
4098 side-effects, but computes a value which is not used. For example, in
4099 `foo() + bar(), baz()' the result of the `+' operator is not used,
4100 so we should issue a warning. */
4101 else if (warn_unused_value)
4102 warn_if_unused_value (expr1, loc);
4103
4104 if (expr2 == error_mark_node)
4105 return error_mark_node;
4106
4107 ret = build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
4108
4109 if (flag_isoc99
4110 && expr1_int_operands
4111 && expr2_int_operands)
4112 ret = note_integer_operands (ret);
4113
4114 if (eptype)
4115 ret = build1 (EXCESS_PRECISION_EXPR, eptype, ret);
4116
4117 protected_set_expr_location (ret, loc);
4118 return ret;
4119 }
4120
4121 /* Issue -Wcast-qual warnings when appropriate. TYPE is the type to
4122 which we are casting. OTYPE is the type of the expression being
4123 cast. Both TYPE and OTYPE are pointer types. -Wcast-qual appeared
4124 on the command line. */
4125
4126 static void
4127 handle_warn_cast_qual (tree type, tree otype)
4128 {
4129 tree in_type = type;
4130 tree in_otype = otype;
4131 int added = 0;
4132 int discarded = 0;
4133 bool is_const;
4134
4135 /* Check that the qualifiers on IN_TYPE are a superset of the
4136 qualifiers of IN_OTYPE. The outermost level of POINTER_TYPE
4137 nodes is uninteresting and we stop as soon as we hit a
4138 non-POINTER_TYPE node on either type. */
4139 do
4140 {
4141 in_otype = TREE_TYPE (in_otype);
4142 in_type = TREE_TYPE (in_type);
4143
4144 /* GNU C allows cv-qualified function types. 'const' means the
4145 function is very pure, 'volatile' means it can't return. We
4146 need to warn when such qualifiers are added, not when they're
4147 taken away. */
4148 if (TREE_CODE (in_otype) == FUNCTION_TYPE
4149 && TREE_CODE (in_type) == FUNCTION_TYPE)
4150 added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
4151 else
4152 discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
4153 }
4154 while (TREE_CODE (in_type) == POINTER_TYPE
4155 && TREE_CODE (in_otype) == POINTER_TYPE);
4156
4157 if (added)
4158 warning (OPT_Wcast_qual, "cast adds new qualifiers to function type");
4159
4160 if (discarded)
4161 /* There are qualifiers present in IN_OTYPE that are not present
4162 in IN_TYPE. */
4163 warning (OPT_Wcast_qual,
4164 "cast discards qualifiers from pointer target type");
4165
4166 if (added || discarded)
4167 return;
4168
4169 /* A cast from **T to const **T is unsafe, because it can cause a
4170 const value to be changed with no additional warning. We only
4171 issue this warning if T is the same on both sides, and we only
4172 issue the warning if there are the same number of pointers on
4173 both sides, as otherwise the cast is clearly unsafe anyhow. A
4174 cast is unsafe when a qualifier is added at one level and const
4175 is not present at all outer levels.
4176
4177 To issue this warning, we check at each level whether the cast
4178 adds new qualifiers not already seen. We don't need to special
4179 case function types, as they won't have the same
4180 TYPE_MAIN_VARIANT. */
4181
4182 if (TYPE_MAIN_VARIANT (in_type) != TYPE_MAIN_VARIANT (in_otype))
4183 return;
4184 if (TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE)
4185 return;
4186
4187 in_type = type;
4188 in_otype = otype;
4189 is_const = TYPE_READONLY (TREE_TYPE (in_type));
4190 do
4191 {
4192 in_type = TREE_TYPE (in_type);
4193 in_otype = TREE_TYPE (in_otype);
4194 if ((TYPE_QUALS (in_type) &~ TYPE_QUALS (in_otype)) != 0
4195 && !is_const)
4196 {
4197 warning (OPT_Wcast_qual,
4198 ("new qualifiers in middle of multi-level non-const cast "
4199 "are unsafe"));
4200 break;
4201 }
4202 if (is_const)
4203 is_const = TYPE_READONLY (in_type);
4204 }
4205 while (TREE_CODE (in_type) == POINTER_TYPE);
4206 }
4207
4208 /* Build an expression representing a cast to type TYPE of expression EXPR.
4209 LOC is the location of the cast-- typically the open paren of the cast. */
4210
4211 tree
4212 build_c_cast (location_t loc, tree type, tree expr)
4213 {
4214 tree value;
4215
4216 if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR)
4217 expr = TREE_OPERAND (expr, 0);
4218
4219 value = expr;
4220
4221 if (type == error_mark_node || expr == error_mark_node)
4222 return error_mark_node;
4223
4224 /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
4225 only in <protocol> qualifications. But when constructing cast expressions,
4226 the protocols do matter and must be kept around. */
4227 if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
4228 return build1 (NOP_EXPR, type, expr);
4229
4230 type = TYPE_MAIN_VARIANT (type);
4231
4232 if (TREE_CODE (type) == ARRAY_TYPE)
4233 {
4234 error_at (loc, "cast specifies array type");
4235 return error_mark_node;
4236 }
4237
4238 if (TREE_CODE (type) == FUNCTION_TYPE)
4239 {
4240 error_at (loc, "cast specifies function type");
4241 return error_mark_node;
4242 }
4243
4244 if (!VOID_TYPE_P (type))
4245 {
4246 value = require_complete_type (value);
4247 if (value == error_mark_node)
4248 return error_mark_node;
4249 }
4250
4251 if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
4252 {
4253 if (TREE_CODE (type) == RECORD_TYPE
4254 || TREE_CODE (type) == UNION_TYPE)
4255 pedwarn (loc, OPT_pedantic,
4256 "ISO C forbids casting nonscalar to the same type");
4257 }
4258 else if (TREE_CODE (type) == UNION_TYPE)
4259 {
4260 tree field;
4261
4262 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4263 if (TREE_TYPE (field) != error_mark_node
4264 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
4265 TYPE_MAIN_VARIANT (TREE_TYPE (value))))
4266 break;
4267
4268 if (field)
4269 {
4270 tree t;
4271
4272 pedwarn (loc, OPT_pedantic, "ISO C forbids casts to union type");
4273 t = digest_init (loc, type,
4274 build_constructor_single (type, field, value),
4275 NULL_TREE, false, true, 0);
4276 TREE_CONSTANT (t) = TREE_CONSTANT (value);
4277 return t;
4278 }
4279 error_at (loc, "cast to union type from type not present in union");
4280 return error_mark_node;
4281 }
4282 else
4283 {
4284 tree otype, ovalue;
4285
4286 if (type == void_type_node)
4287 {
4288 tree t = build1 (CONVERT_EXPR, type, value);
4289 SET_EXPR_LOCATION (t, loc);
4290 return t;
4291 }
4292
4293 otype = TREE_TYPE (value);
4294
4295 /* Optionally warn about potentially worrisome casts. */
4296 if (warn_cast_qual
4297 && TREE_CODE (type) == POINTER_TYPE
4298 && TREE_CODE (otype) == POINTER_TYPE)
4299 handle_warn_cast_qual (type, otype);
4300
4301 /* Warn about possible alignment problems. */
4302 if (STRICT_ALIGNMENT
4303 && TREE_CODE (type) == POINTER_TYPE
4304 && TREE_CODE (otype) == POINTER_TYPE
4305 && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
4306 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
4307 /* Don't warn about opaque types, where the actual alignment
4308 restriction is unknown. */
4309 && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
4310 || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
4311 && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
4312 && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
4313 warning_at (loc, OPT_Wcast_align,
4314 "cast increases required alignment of target type");
4315
4316 if (TREE_CODE (type) == INTEGER_TYPE
4317 && TREE_CODE (otype) == POINTER_TYPE
4318 && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
4319 /* Unlike conversion of integers to pointers, where the
4320 warning is disabled for converting constants because
4321 of cases such as SIG_*, warn about converting constant
4322 pointers to integers. In some cases it may cause unwanted
4323 sign extension, and a warning is appropriate. */
4324 warning_at (loc, OPT_Wpointer_to_int_cast,
4325 "cast from pointer to integer of different size");
4326
4327 if (TREE_CODE (value) == CALL_EXPR
4328 && TREE_CODE (type) != TREE_CODE (otype))
4329 warning_at (loc, OPT_Wbad_function_cast,
4330 "cast from function call of type %qT "
4331 "to non-matching type %qT", otype, type);
4332
4333 if (TREE_CODE (type) == POINTER_TYPE
4334 && TREE_CODE (otype) == INTEGER_TYPE
4335 && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
4336 /* Don't warn about converting any constant. */
4337 && !TREE_CONSTANT (value))
4338 warning_at (loc,
4339 OPT_Wint_to_pointer_cast, "cast to pointer from integer "
4340 "of different size");
4341
4342 if (warn_strict_aliasing <= 2)
4343 strict_aliasing_warning (otype, type, expr);
4344
4345 /* If pedantic, warn for conversions between function and object
4346 pointer types, except for converting a null pointer constant
4347 to function pointer type. */
4348 if (pedantic
4349 && TREE_CODE (type) == POINTER_TYPE
4350 && TREE_CODE (otype) == POINTER_TYPE
4351 && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
4352 && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
4353 pedwarn (loc, OPT_pedantic, "ISO C forbids "
4354 "conversion of function pointer to object pointer type");
4355
4356 if (pedantic
4357 && TREE_CODE (type) == POINTER_TYPE
4358 && TREE_CODE (otype) == POINTER_TYPE
4359 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
4360 && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
4361 && !null_pointer_constant_p (value))
4362 pedwarn (loc, OPT_pedantic, "ISO C forbids "
4363 "conversion of object pointer to function pointer type");
4364
4365 ovalue = value;
4366 value = convert (type, value);
4367
4368 /* Ignore any integer overflow caused by the cast. */
4369 if (TREE_CODE (value) == INTEGER_CST && !FLOAT_TYPE_P (otype))
4370 {
4371 if (CONSTANT_CLASS_P (ovalue) && TREE_OVERFLOW (ovalue))
4372 {
4373 if (!TREE_OVERFLOW (value))
4374 {
4375 /* Avoid clobbering a shared constant. */
4376 value = copy_node (value);
4377 TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
4378 }
4379 }
4380 else if (TREE_OVERFLOW (value))
4381 /* Reset VALUE's overflow flags, ensuring constant sharing. */
4382 value = build_int_cst_wide (TREE_TYPE (value),
4383 TREE_INT_CST_LOW (value),
4384 TREE_INT_CST_HIGH (value));
4385 }
4386 }
4387
4388 /* Don't let a cast be an lvalue. */
4389 if (value == expr)
4390 value = non_lvalue (value);
4391
4392 /* Don't allow the results of casting to floating-point or complex
4393 types be confused with actual constants, or casts involving
4394 integer and pointer types other than direct integer-to-integer
4395 and integer-to-pointer be confused with integer constant
4396 expressions and null pointer constants. */
4397 if (TREE_CODE (value) == REAL_CST
4398 || TREE_CODE (value) == COMPLEX_CST
4399 || (TREE_CODE (value) == INTEGER_CST
4400 && !((TREE_CODE (expr) == INTEGER_CST
4401 && INTEGRAL_TYPE_P (TREE_TYPE (expr)))
4402 || TREE_CODE (expr) == REAL_CST
4403 || TREE_CODE (expr) == COMPLEX_CST)))
4404 value = build1 (NOP_EXPR, type, value);
4405
4406 if (CAN_HAVE_LOCATION_P (value))
4407 SET_EXPR_LOCATION (value, loc);
4408 return value;
4409 }
4410
4411 /* Interpret a cast of expression EXPR to type TYPE. LOC is the
4412 location of the open paren of the cast, or the position of the cast
4413 expr. */
4414 tree
4415 c_cast_expr (location_t loc, struct c_type_name *type_name, tree expr)
4416 {
4417 tree type;
4418 tree type_expr = NULL_TREE;
4419 bool type_expr_const = true;
4420 tree ret;
4421 int saved_wsp = warn_strict_prototypes;
4422
4423 /* This avoids warnings about unprototyped casts on
4424 integers. E.g. "#define SIG_DFL (void(*)())0". */
4425 if (TREE_CODE (expr) == INTEGER_CST)
4426 warn_strict_prototypes = 0;
4427 type = groktypename (type_name, &type_expr, &type_expr_const);
4428 warn_strict_prototypes = saved_wsp;
4429
4430 ret = build_c_cast (loc, type, expr);
4431 if (type_expr)
4432 {
4433 ret = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (ret), type_expr, ret);
4434 C_MAYBE_CONST_EXPR_NON_CONST (ret) = !type_expr_const;
4435 SET_EXPR_LOCATION (ret, loc);
4436 }
4437
4438 if (CAN_HAVE_LOCATION_P (ret) && !EXPR_HAS_LOCATION (ret))
4439 SET_EXPR_LOCATION (ret, loc);
4440
4441 /* C++ does not permits types to be defined in a cast. */
4442 if (warn_cxx_compat && type_name->specs->tag_defined_p)
4443 warning_at (loc, OPT_Wc___compat,
4444 "defining a type in a cast is invalid in C++");
4445
4446 return ret;
4447 }
4448 \f
4449 /* Build an assignment expression of lvalue LHS from value RHS.
4450 If LHS_ORIGTYPE is not NULL, it is the original type of LHS, which
4451 may differ from TREE_TYPE (LHS) for an enum bitfield.
4452 MODIFYCODE is the code for a binary operator that we use
4453 to combine the old value of LHS with RHS to get the new value.
4454 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.
4455 If RHS_ORIGTYPE is not NULL_TREE, it is the original type of RHS,
4456 which may differ from TREE_TYPE (RHS) for an enum value.
4457
4458 LOCATION is the location of the MODIFYCODE operator.
4459 RHS_LOC is the location of the RHS. */
4460
4461 tree
4462 build_modify_expr (location_t location, tree lhs, tree lhs_origtype,
4463 enum tree_code modifycode,
4464 location_t rhs_loc, tree rhs, tree rhs_origtype)
4465 {
4466 tree result;
4467 tree newrhs;
4468 tree rhs_semantic_type = NULL_TREE;
4469 tree lhstype = TREE_TYPE (lhs);
4470 tree olhstype = lhstype;
4471 bool npc;
4472
4473 /* Types that aren't fully specified cannot be used in assignments. */
4474 lhs = require_complete_type (lhs);
4475
4476 /* Avoid duplicate error messages from operands that had errors. */
4477 if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
4478 return error_mark_node;
4479
4480 if (!lvalue_or_else (lhs, lv_assign))
4481 return error_mark_node;
4482
4483 if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR)
4484 {
4485 rhs_semantic_type = TREE_TYPE (rhs);
4486 rhs = TREE_OPERAND (rhs, 0);
4487 }
4488
4489 newrhs = rhs;
4490
4491 if (TREE_CODE (lhs) == C_MAYBE_CONST_EXPR)
4492 {
4493 tree inner = build_modify_expr (location, C_MAYBE_CONST_EXPR_EXPR (lhs),
4494 lhs_origtype, modifycode, rhs_loc, rhs,
4495 rhs_origtype);
4496 if (inner == error_mark_node)
4497 return error_mark_node;
4498 result = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (inner),
4499 C_MAYBE_CONST_EXPR_PRE (lhs), inner);
4500 gcc_assert (!C_MAYBE_CONST_EXPR_INT_OPERANDS (lhs));
4501 C_MAYBE_CONST_EXPR_NON_CONST (result) = 1;
4502 protected_set_expr_location (result, location);
4503 return result;
4504 }
4505
4506 /* If a binary op has been requested, combine the old LHS value with the RHS
4507 producing the value we should actually store into the LHS. */
4508
4509 if (modifycode != NOP_EXPR)
4510 {
4511 lhs = c_fully_fold (lhs, false, NULL);
4512 lhs = stabilize_reference (lhs);
4513 newrhs = build_binary_op (location,
4514 modifycode, lhs, rhs, 1);
4515
4516 /* The original type of the right hand side is no longer
4517 meaningful. */
4518 rhs_origtype = NULL_TREE;
4519 }
4520
4521 /* Give an error for storing in something that is 'const'. */
4522
4523 if (TYPE_READONLY (lhstype)
4524 || ((TREE_CODE (lhstype) == RECORD_TYPE
4525 || TREE_CODE (lhstype) == UNION_TYPE)
4526 && C_TYPE_FIELDS_READONLY (lhstype)))
4527 {
4528 readonly_error (lhs, lv_assign);
4529 return error_mark_node;
4530 }
4531 else if (TREE_READONLY (lhs))
4532 readonly_warning (lhs, lv_assign);
4533
4534 /* If storing into a structure or union member,
4535 it has probably been given type `int'.
4536 Compute the type that would go with
4537 the actual amount of storage the member occupies. */
4538
4539 if (TREE_CODE (lhs) == COMPONENT_REF
4540 && (TREE_CODE (lhstype) == INTEGER_TYPE
4541 || TREE_CODE (lhstype) == BOOLEAN_TYPE
4542 || TREE_CODE (lhstype) == REAL_TYPE
4543 || TREE_CODE (lhstype) == ENUMERAL_TYPE))
4544 lhstype = TREE_TYPE (get_unwidened (lhs, 0));
4545
4546 /* If storing in a field that is in actuality a short or narrower than one,
4547 we must store in the field in its actual type. */
4548
4549 if (lhstype != TREE_TYPE (lhs))
4550 {
4551 lhs = copy_node (lhs);
4552 TREE_TYPE (lhs) = lhstype;
4553 }
4554
4555 /* Issue -Wc++-compat warnings about an assignment to an enum type
4556 when LHS does not have its original type. This happens for,
4557 e.g., an enum bitfield in a struct. */
4558 if (warn_cxx_compat
4559 && lhs_origtype != NULL_TREE
4560 && lhs_origtype != lhstype
4561 && TREE_CODE (lhs_origtype) == ENUMERAL_TYPE)
4562 {
4563 tree checktype = (rhs_origtype != NULL_TREE
4564 ? rhs_origtype
4565 : TREE_TYPE (rhs));
4566 if (checktype != error_mark_node
4567 && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (lhs_origtype))
4568 warning_at (location, OPT_Wc___compat,
4569 "enum conversion in assignment is invalid in C++");
4570 }
4571
4572 /* Convert new value to destination type. Fold it first, then
4573 restore any excess precision information, for the sake of
4574 conversion warnings. */
4575
4576 npc = null_pointer_constant_p (newrhs);
4577 newrhs = c_fully_fold (newrhs, false, NULL);
4578 if (rhs_semantic_type)
4579 newrhs = build1 (EXCESS_PRECISION_EXPR, rhs_semantic_type, newrhs);
4580 newrhs = convert_for_assignment (location, lhstype, newrhs, rhs_origtype,
4581 ic_assign, npc, NULL_TREE, NULL_TREE, 0);
4582 if (TREE_CODE (newrhs) == ERROR_MARK)
4583 return error_mark_node;
4584
4585 /* Emit ObjC write barrier, if necessary. */
4586 if (c_dialect_objc () && flag_objc_gc)
4587 {
4588 result = objc_generate_write_barrier (lhs, modifycode, newrhs);
4589 if (result)
4590 {
4591 protected_set_expr_location (result, location);
4592 return result;
4593 }
4594 }
4595
4596 /* Scan operands. */
4597
4598 result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
4599 TREE_SIDE_EFFECTS (result) = 1;
4600 protected_set_expr_location (result, location);
4601
4602 /* If we got the LHS in a different type for storing in,
4603 convert the result back to the nominal type of LHS
4604 so that the value we return always has the same type
4605 as the LHS argument. */
4606
4607 if (olhstype == TREE_TYPE (result))
4608 return result;
4609
4610 result = convert_for_assignment (location, olhstype, result, rhs_origtype,
4611 ic_assign, false, NULL_TREE, NULL_TREE, 0);
4612 protected_set_expr_location (result, location);
4613 return result;
4614 }
4615 \f
4616 /* Convert value RHS to type TYPE as preparation for an assignment to
4617 an lvalue of type TYPE. If ORIGTYPE is not NULL_TREE, it is the
4618 original type of RHS; this differs from TREE_TYPE (RHS) for enum
4619 types. NULL_POINTER_CONSTANT says whether RHS was a null pointer
4620 constant before any folding.
4621 The real work of conversion is done by `convert'.
4622 The purpose of this function is to generate error messages
4623 for assignments that are not allowed in C.
4624 ERRTYPE says whether it is argument passing, assignment,
4625 initialization or return.
4626
4627 LOCATION is the location of the RHS.
4628 FUNCTION is a tree for the function being called.
4629 PARMNUM is the number of the argument, for printing in error messages. */
4630
4631 static tree
4632 convert_for_assignment (location_t location, tree type, tree rhs,
4633 tree origtype, enum impl_conv errtype,
4634 bool null_pointer_constant, tree fundecl,
4635 tree function, int parmnum)
4636 {
4637 enum tree_code codel = TREE_CODE (type);
4638 tree orig_rhs = rhs;
4639 tree rhstype;
4640 enum tree_code coder;
4641 tree rname = NULL_TREE;
4642 bool objc_ok = false;
4643
4644 if (errtype == ic_argpass)
4645 {
4646 tree selector;
4647 /* Change pointer to function to the function itself for
4648 diagnostics. */
4649 if (TREE_CODE (function) == ADDR_EXPR
4650 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
4651 function = TREE_OPERAND (function, 0);
4652
4653 /* Handle an ObjC selector specially for diagnostics. */
4654 selector = objc_message_selector ();
4655 rname = function;
4656 if (selector && parmnum > 2)
4657 {
4658 rname = selector;
4659 parmnum -= 2;
4660 }
4661 }
4662
4663 /* This macro is used to emit diagnostics to ensure that all format
4664 strings are complete sentences, visible to gettext and checked at
4665 compile time. */
4666 #define WARN_FOR_ASSIGNMENT(LOCATION, OPT, AR, AS, IN, RE) \
4667 do { \
4668 switch (errtype) \
4669 { \
4670 case ic_argpass: \
4671 if (pedwarn (LOCATION, OPT, AR, parmnum, rname)) \
4672 inform ((fundecl && !DECL_IS_BUILTIN (fundecl)) \
4673 ? DECL_SOURCE_LOCATION (fundecl) : LOCATION, \
4674 "expected %qT but argument is of type %qT", \
4675 type, rhstype); \
4676 break; \
4677 case ic_assign: \
4678 pedwarn (LOCATION, OPT, AS); \
4679 break; \
4680 case ic_init: \
4681 pedwarn (LOCATION, OPT, IN); \
4682 break; \
4683 case ic_return: \
4684 pedwarn (LOCATION, OPT, RE); \
4685 break; \
4686 default: \
4687 gcc_unreachable (); \
4688 } \
4689 } while (0)
4690
4691 if (TREE_CODE (rhs) == EXCESS_PRECISION_EXPR)
4692 rhs = TREE_OPERAND (rhs, 0);
4693
4694 rhstype = TREE_TYPE (rhs);
4695 coder = TREE_CODE (rhstype);
4696
4697 if (coder == ERROR_MARK)
4698 return error_mark_node;
4699
4700 if (c_dialect_objc ())
4701 {
4702 int parmno;
4703
4704 switch (errtype)
4705 {
4706 case ic_return:
4707 parmno = 0;
4708 break;
4709
4710 case ic_assign:
4711 parmno = -1;
4712 break;
4713
4714 case ic_init:
4715 parmno = -2;
4716 break;
4717
4718 default:
4719 parmno = parmnum;
4720 break;
4721 }
4722
4723 objc_ok = objc_compare_types (type, rhstype, parmno, rname);
4724 }
4725
4726 if (warn_cxx_compat)
4727 {
4728 tree checktype = origtype != NULL_TREE ? origtype : rhstype;
4729 if (checktype != error_mark_node
4730 && TREE_CODE (type) == ENUMERAL_TYPE
4731 && TYPE_MAIN_VARIANT (checktype) != TYPE_MAIN_VARIANT (type))
4732 {
4733 WARN_FOR_ASSIGNMENT (input_location, OPT_Wc___compat,
4734 G_("enum conversion when passing argument "
4735 "%d of %qE is invalid in C++"),
4736 G_("enum conversion in assignment is "
4737 "invalid in C++"),
4738 G_("enum conversion in initialization is "
4739 "invalid in C++"),
4740 G_("enum conversion in return is "
4741 "invalid in C++"));
4742 }
4743 }
4744
4745 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
4746 return rhs;
4747
4748 if (coder == VOID_TYPE)
4749 {
4750 /* Except for passing an argument to an unprototyped function,
4751 this is a constraint violation. When passing an argument to
4752 an unprototyped function, it is compile-time undefined;
4753 making it a constraint in that case was rejected in
4754 DR#252. */
4755 error_at (location, "void value not ignored as it ought to be");
4756 return error_mark_node;
4757 }
4758 rhs = require_complete_type (rhs);
4759 if (rhs == error_mark_node)
4760 return error_mark_node;
4761 /* A type converts to a reference to it.
4762 This code doesn't fully support references, it's just for the
4763 special case of va_start and va_copy. */
4764 if (codel == REFERENCE_TYPE
4765 && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
4766 {
4767 if (!lvalue_p (rhs))
4768 {
4769 error_at (location, "cannot pass rvalue to reference parameter");
4770 return error_mark_node;
4771 }
4772 if (!c_mark_addressable (rhs))
4773 return error_mark_node;
4774 rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
4775 SET_EXPR_LOCATION (rhs, location);
4776
4777 /* We already know that these two types are compatible, but they
4778 may not be exactly identical. In fact, `TREE_TYPE (type)' is
4779 likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
4780 likely to be va_list, a typedef to __builtin_va_list, which
4781 is different enough that it will cause problems later. */
4782 if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
4783 {
4784 rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
4785 SET_EXPR_LOCATION (rhs, location);
4786 }
4787
4788 rhs = build1 (NOP_EXPR, type, rhs);
4789 SET_EXPR_LOCATION (rhs, location);
4790 return rhs;
4791 }
4792 /* Some types can interconvert without explicit casts. */
4793 else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
4794 && vector_types_convertible_p (type, TREE_TYPE (rhs), true))
4795 return convert (type, rhs);
4796 /* Arithmetic types all interconvert, and enum is treated like int. */
4797 else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
4798 || codel == FIXED_POINT_TYPE
4799 || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
4800 || codel == BOOLEAN_TYPE)
4801 && (coder == INTEGER_TYPE || coder == REAL_TYPE
4802 || coder == FIXED_POINT_TYPE
4803 || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
4804 || coder == BOOLEAN_TYPE))
4805 {
4806 tree ret;
4807 bool save = in_late_binary_op;
4808 if (codel == BOOLEAN_TYPE)
4809 in_late_binary_op = true;
4810 ret = convert_and_check (type, orig_rhs);
4811 if (codel == BOOLEAN_TYPE)
4812 in_late_binary_op = save;
4813 return ret;
4814 }
4815
4816 /* Aggregates in different TUs might need conversion. */
4817 if ((codel == RECORD_TYPE || codel == UNION_TYPE)
4818 && codel == coder
4819 && comptypes (type, rhstype))
4820 return convert_and_check (type, rhs);
4821
4822 /* Conversion to a transparent union from its member types.
4823 This applies only to function arguments. */
4824 if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
4825 && errtype == ic_argpass)
4826 {
4827 tree memb, marginal_memb = NULL_TREE;
4828
4829 for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
4830 {
4831 tree memb_type = TREE_TYPE (memb);
4832
4833 if (comptypes (TYPE_MAIN_VARIANT (memb_type),
4834 TYPE_MAIN_VARIANT (rhstype)))
4835 break;
4836
4837 if (TREE_CODE (memb_type) != POINTER_TYPE)
4838 continue;
4839
4840 if (coder == POINTER_TYPE)
4841 {
4842 tree ttl = TREE_TYPE (memb_type);
4843 tree ttr = TREE_TYPE (rhstype);
4844
4845 /* Any non-function converts to a [const][volatile] void *
4846 and vice versa; otherwise, targets must be the same.
4847 Meanwhile, the lhs target must have all the qualifiers of
4848 the rhs. */
4849 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4850 || comp_target_types (location, memb_type, rhstype))
4851 {
4852 /* If this type won't generate any warnings, use it. */
4853 if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
4854 || ((TREE_CODE (ttr) == FUNCTION_TYPE
4855 && TREE_CODE (ttl) == FUNCTION_TYPE)
4856 ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4857 == TYPE_QUALS (ttr))
4858 : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
4859 == TYPE_QUALS (ttl))))
4860 break;
4861
4862 /* Keep looking for a better type, but remember this one. */
4863 if (!marginal_memb)
4864 marginal_memb = memb;
4865 }
4866 }
4867
4868 /* Can convert integer zero to any pointer type. */
4869 if (null_pointer_constant)
4870 {
4871 rhs = null_pointer_node;
4872 break;
4873 }
4874 }
4875
4876 if (memb || marginal_memb)
4877 {
4878 if (!memb)
4879 {
4880 /* We have only a marginally acceptable member type;
4881 it needs a warning. */
4882 tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
4883 tree ttr = TREE_TYPE (rhstype);
4884
4885 /* Const and volatile mean something different for function
4886 types, so the usual warnings are not appropriate. */
4887 if (TREE_CODE (ttr) == FUNCTION_TYPE
4888 && TREE_CODE (ttl) == FUNCTION_TYPE)
4889 {
4890 /* Because const and volatile on functions are
4891 restrictions that say the function will not do
4892 certain things, it is okay to use a const or volatile
4893 function where an ordinary one is wanted, but not
4894 vice-versa. */
4895 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
4896 WARN_FOR_ASSIGNMENT (location, 0,
4897 G_("passing argument %d of %qE "
4898 "makes qualified function "
4899 "pointer from unqualified"),
4900 G_("assignment makes qualified "
4901 "function pointer from "
4902 "unqualified"),
4903 G_("initialization makes qualified "
4904 "function pointer from "
4905 "unqualified"),
4906 G_("return makes qualified function "
4907 "pointer from unqualified"));
4908 }
4909 else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
4910 WARN_FOR_ASSIGNMENT (location, 0,
4911 G_("passing argument %d of %qE discards "
4912 "qualifiers from pointer target type"),
4913 G_("assignment discards qualifiers "
4914 "from pointer target type"),
4915 G_("initialization discards qualifiers "
4916 "from pointer target type"),
4917 G_("return discards qualifiers from "
4918 "pointer target type"));
4919
4920 memb = marginal_memb;
4921 }
4922
4923 if (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl))
4924 pedwarn (location, OPT_pedantic,
4925 "ISO C prohibits argument conversion to union type");
4926
4927 rhs = fold_convert (TREE_TYPE (memb), rhs);
4928 return build_constructor_single (type, memb, rhs);
4929 }
4930 }
4931
4932 /* Conversions among pointers */
4933 else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4934 && (coder == codel))
4935 {
4936 tree ttl = TREE_TYPE (type);
4937 tree ttr = TREE_TYPE (rhstype);
4938 tree mvl = ttl;
4939 tree mvr = ttr;
4940 bool is_opaque_pointer;
4941 int target_cmp = 0; /* Cache comp_target_types () result. */
4942
4943 if (TREE_CODE (mvl) != ARRAY_TYPE)
4944 mvl = TYPE_MAIN_VARIANT (mvl);
4945 if (TREE_CODE (mvr) != ARRAY_TYPE)
4946 mvr = TYPE_MAIN_VARIANT (mvr);
4947 /* Opaque pointers are treated like void pointers. */
4948 is_opaque_pointer = vector_targets_convertible_p (ttl, ttr);
4949
4950 /* C++ does not allow the implicit conversion void* -> T*. However,
4951 for the purpose of reducing the number of false positives, we
4952 tolerate the special case of
4953
4954 int *p = NULL;
4955
4956 where NULL is typically defined in C to be '(void *) 0'. */
4957 if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
4958 warning_at (location, OPT_Wc___compat,
4959 "request for implicit conversion "
4960 "from %qT to %qT not permitted in C++", rhstype, type);
4961
4962 /* Check if the right-hand side has a format attribute but the
4963 left-hand side doesn't. */
4964 if (warn_missing_format_attribute
4965 && check_missing_format_attribute (type, rhstype))
4966 {
4967 switch (errtype)
4968 {
4969 case ic_argpass:
4970 warning_at (location, OPT_Wmissing_format_attribute,
4971 "argument %d of %qE might be "
4972 "a candidate for a format attribute",
4973 parmnum, rname);
4974 break;
4975 case ic_assign:
4976 warning_at (location, OPT_Wmissing_format_attribute,
4977 "assignment left-hand side might be "
4978 "a candidate for a format attribute");
4979 break;
4980 case ic_init:
4981 warning_at (location, OPT_Wmissing_format_attribute,
4982 "initialization left-hand side might be "
4983 "a candidate for a format attribute");
4984 break;
4985 case ic_return:
4986 warning_at (location, OPT_Wmissing_format_attribute,
4987 "return type might be "
4988 "a candidate for a format attribute");
4989 break;
4990 default:
4991 gcc_unreachable ();
4992 }
4993 }
4994
4995 /* Any non-function converts to a [const][volatile] void *
4996 and vice versa; otherwise, targets must be the same.
4997 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4998 if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
4999 || (target_cmp = comp_target_types (location, type, rhstype))
5000 || is_opaque_pointer
5001 || (c_common_unsigned_type (mvl)
5002 == c_common_unsigned_type (mvr)))
5003 {
5004 if (pedantic
5005 && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
5006 ||
5007 (VOID_TYPE_P (ttr)
5008 && !null_pointer_constant
5009 && TREE_CODE (ttl) == FUNCTION_TYPE)))
5010 WARN_FOR_ASSIGNMENT (location, OPT_pedantic,
5011 G_("ISO C forbids passing argument %d of "
5012 "%qE between function pointer "
5013 "and %<void *%>"),
5014 G_("ISO C forbids assignment between "
5015 "function pointer and %<void *%>"),
5016 G_("ISO C forbids initialization between "
5017 "function pointer and %<void *%>"),
5018 G_("ISO C forbids return between function "
5019 "pointer and %<void *%>"));
5020 /* Const and volatile mean something different for function types,
5021 so the usual warnings are not appropriate. */
5022 else if (TREE_CODE (ttr) != FUNCTION_TYPE
5023 && TREE_CODE (ttl) != FUNCTION_TYPE)
5024 {
5025 if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
5026 {
5027 /* Types differing only by the presence of the 'volatile'
5028 qualifier are acceptable if the 'volatile' has been added
5029 in by the Objective-C EH machinery. */
5030 if (!objc_type_quals_match (ttl, ttr))
5031 WARN_FOR_ASSIGNMENT (location, 0,
5032 G_("passing argument %d of %qE discards "
5033 "qualifiers from pointer target type"),
5034 G_("assignment discards qualifiers "
5035 "from pointer target type"),
5036 G_("initialization discards qualifiers "
5037 "from pointer target type"),
5038 G_("return discards qualifiers from "
5039 "pointer target type"));
5040 }
5041 /* If this is not a case of ignoring a mismatch in signedness,
5042 no warning. */
5043 else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
5044 || target_cmp)
5045 ;
5046 /* If there is a mismatch, do warn. */
5047 else if (warn_pointer_sign)
5048 WARN_FOR_ASSIGNMENT (location, OPT_Wpointer_sign,
5049 G_("pointer targets in passing argument "
5050 "%d of %qE differ in signedness"),
5051 G_("pointer targets in assignment "
5052 "differ in signedness"),
5053 G_("pointer targets in initialization "
5054 "differ in signedness"),
5055 G_("pointer targets in return differ "
5056 "in signedness"));
5057 }
5058 else if (TREE_CODE (ttl) == FUNCTION_TYPE
5059 && TREE_CODE (ttr) == FUNCTION_TYPE)
5060 {
5061 /* Because const and volatile on functions are restrictions
5062 that say the function will not do certain things,
5063 it is okay to use a const or volatile function
5064 where an ordinary one is wanted, but not vice-versa. */
5065 if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
5066 WARN_FOR_ASSIGNMENT (location, 0,
5067 G_("passing argument %d of %qE makes "
5068 "qualified function pointer "
5069 "from unqualified"),
5070 G_("assignment makes qualified function "
5071 "pointer from unqualified"),
5072 G_("initialization makes qualified "
5073 "function pointer from unqualified"),
5074 G_("return makes qualified function "
5075 "pointer from unqualified"));
5076 }
5077 }
5078 else
5079 /* Avoid warning about the volatile ObjC EH puts on decls. */
5080 if (!objc_ok)
5081 WARN_FOR_ASSIGNMENT (location, 0,
5082 G_("passing argument %d of %qE from "
5083 "incompatible pointer type"),
5084 G_("assignment from incompatible pointer type"),
5085 G_("initialization from incompatible "
5086 "pointer type"),
5087 G_("return from incompatible pointer type"));
5088
5089 return convert (type, rhs);
5090 }
5091 else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
5092 {
5093 /* ??? This should not be an error when inlining calls to
5094 unprototyped functions. */
5095 error_at (location, "invalid use of non-lvalue array");
5096 return error_mark_node;
5097 }
5098 else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
5099 {
5100 /* An explicit constant 0 can convert to a pointer,
5101 or one that results from arithmetic, even including
5102 a cast to integer type. */
5103 if (!null_pointer_constant)
5104 WARN_FOR_ASSIGNMENT (location, 0,
5105 G_("passing argument %d of %qE makes "
5106 "pointer from integer without a cast"),
5107 G_("assignment makes pointer from integer "
5108 "without a cast"),
5109 G_("initialization makes pointer from "
5110 "integer without a cast"),
5111 G_("return makes pointer from integer "
5112 "without a cast"));
5113
5114 return convert (type, rhs);
5115 }
5116 else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
5117 {
5118 WARN_FOR_ASSIGNMENT (location, 0,
5119 G_("passing argument %d of %qE makes integer "
5120 "from pointer without a cast"),
5121 G_("assignment makes integer from pointer "
5122 "without a cast"),
5123 G_("initialization makes integer from pointer "
5124 "without a cast"),
5125 G_("return makes integer from pointer "
5126 "without a cast"));
5127 return convert (type, rhs);
5128 }
5129 else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
5130 {
5131 tree ret;
5132 bool save = in_late_binary_op;
5133 in_late_binary_op = true;
5134 ret = convert (type, rhs);
5135 in_late_binary_op = save;
5136 return ret;
5137 }
5138
5139 switch (errtype)
5140 {
5141 case ic_argpass:
5142 error_at (location, "incompatible type for argument %d of %qE", parmnum, rname);
5143 inform ((fundecl && !DECL_IS_BUILTIN (fundecl))
5144 ? DECL_SOURCE_LOCATION (fundecl) : input_location,
5145 "expected %qT but argument is of type %qT", type, rhstype);
5146 break;
5147 case ic_assign:
5148 error_at (location, "incompatible types when assigning to type %qT from "
5149 "type %qT", type, rhstype);
5150 break;
5151 case ic_init:
5152 error_at (location,
5153 "incompatible types when initializing type %qT using type %qT",
5154 type, rhstype);
5155 break;
5156 case ic_return:
5157 error_at (location,
5158 "incompatible types when returning type %qT but %qT was "
5159 "expected", rhstype, type);
5160 break;
5161 default:
5162 gcc_unreachable ();
5163 }
5164
5165 return error_mark_node;
5166 }
5167 \f
5168 /* If VALUE is a compound expr all of whose expressions are constant, then
5169 return its value. Otherwise, return error_mark_node.
5170
5171 This is for handling COMPOUND_EXPRs as initializer elements
5172 which is allowed with a warning when -pedantic is specified. */
5173
5174 static tree
5175 valid_compound_expr_initializer (tree value, tree endtype)
5176 {
5177 if (TREE_CODE (value) == COMPOUND_EXPR)
5178 {
5179 if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
5180 == error_mark_node)
5181 return error_mark_node;
5182 return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
5183 endtype);
5184 }
5185 else if (!initializer_constant_valid_p (value, endtype))
5186 return error_mark_node;
5187 else
5188 return value;
5189 }
5190 \f
5191 /* Perform appropriate conversions on the initial value of a variable,
5192 store it in the declaration DECL,
5193 and print any error messages that are appropriate.
5194 If ORIGTYPE is not NULL_TREE, it is the original type of INIT.
5195 If the init is invalid, store an ERROR_MARK.
5196
5197 INIT_LOC is the location of the initial value. */
5198
5199 void
5200 store_init_value (location_t init_loc, tree decl, tree init, tree origtype)
5201 {
5202 tree value, type;
5203 bool npc = false;
5204
5205 /* If variable's type was invalidly declared, just ignore it. */
5206
5207 type = TREE_TYPE (decl);
5208 if (TREE_CODE (type) == ERROR_MARK)
5209 return;
5210
5211 /* Digest the specified initializer into an expression. */
5212
5213 if (init)
5214 npc = null_pointer_constant_p (init);
5215 value = digest_init (init_loc, type, init, origtype, npc,
5216 true, TREE_STATIC (decl));
5217
5218 /* Store the expression if valid; else report error. */
5219
5220 if (!in_system_header
5221 && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
5222 warning (OPT_Wtraditional, "traditional C rejects automatic "
5223 "aggregate initialization");
5224
5225 DECL_INITIAL (decl) = value;
5226
5227 /* ANSI wants warnings about out-of-range constant initializers. */
5228 STRIP_TYPE_NOPS (value);
5229 if (TREE_STATIC (decl))
5230 constant_expression_warning (value);
5231
5232 /* Check if we need to set array size from compound literal size. */
5233 if (TREE_CODE (type) == ARRAY_TYPE
5234 && TYPE_DOMAIN (type) == 0
5235 && value != error_mark_node)
5236 {
5237 tree inside_init = init;
5238
5239 STRIP_TYPE_NOPS (inside_init);
5240 inside_init = fold (inside_init);
5241
5242 if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
5243 {
5244 tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
5245
5246 if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
5247 {
5248 /* For int foo[] = (int [3]){1}; we need to set array size
5249 now since later on array initializer will be just the
5250 brace enclosed list of the compound literal. */
5251 type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
5252 TREE_TYPE (decl) = type;
5253 TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
5254 layout_type (type);
5255 layout_decl (cldecl, 0);
5256 }
5257 }
5258 }
5259 }
5260 \f
5261 /* Methods for storing and printing names for error messages. */
5262
5263 /* Implement a spelling stack that allows components of a name to be pushed
5264 and popped. Each element on the stack is this structure. */
5265
5266 struct spelling
5267 {
5268 int kind;
5269 union
5270 {
5271 unsigned HOST_WIDE_INT i;
5272 const char *s;
5273 } u;
5274 };
5275
5276 #define SPELLING_STRING 1
5277 #define SPELLING_MEMBER 2
5278 #define SPELLING_BOUNDS 3
5279
5280 static struct spelling *spelling; /* Next stack element (unused). */
5281 static struct spelling *spelling_base; /* Spelling stack base. */
5282 static int spelling_size; /* Size of the spelling stack. */
5283
5284 /* Macros to save and restore the spelling stack around push_... functions.
5285 Alternative to SAVE_SPELLING_STACK. */
5286
5287 #define SPELLING_DEPTH() (spelling - spelling_base)
5288 #define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
5289
5290 /* Push an element on the spelling stack with type KIND and assign VALUE
5291 to MEMBER. */
5292
5293 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
5294 { \
5295 int depth = SPELLING_DEPTH (); \
5296 \
5297 if (depth >= spelling_size) \
5298 { \
5299 spelling_size += 10; \
5300 spelling_base = XRESIZEVEC (struct spelling, spelling_base, \
5301 spelling_size); \
5302 RESTORE_SPELLING_DEPTH (depth); \
5303 } \
5304 \
5305 spelling->kind = (KIND); \
5306 spelling->MEMBER = (VALUE); \
5307 spelling++; \
5308 }
5309
5310 /* Push STRING on the stack. Printed literally. */
5311
5312 static void
5313 push_string (const char *string)
5314 {
5315 PUSH_SPELLING (SPELLING_STRING, string, u.s);
5316 }
5317
5318 /* Push a member name on the stack. Printed as '.' STRING. */
5319
5320 static void
5321 push_member_name (tree decl)
5322 {
5323 const char *const string
5324 = (DECL_NAME (decl)
5325 ? identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl)))
5326 : _("<anonymous>"));
5327 PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
5328 }
5329
5330 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
5331
5332 static void
5333 push_array_bounds (unsigned HOST_WIDE_INT bounds)
5334 {
5335 PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
5336 }
5337
5338 /* Compute the maximum size in bytes of the printed spelling. */
5339
5340 static int
5341 spelling_length (void)
5342 {
5343 int size = 0;
5344 struct spelling *p;
5345
5346 for (p = spelling_base; p < spelling; p++)
5347 {
5348 if (p->kind == SPELLING_BOUNDS)
5349 size += 25;
5350 else
5351 size += strlen (p->u.s) + 1;
5352 }
5353
5354 return size;
5355 }
5356
5357 /* Print the spelling to BUFFER and return it. */
5358
5359 static char *
5360 print_spelling (char *buffer)
5361 {
5362 char *d = buffer;
5363 struct spelling *p;
5364
5365 for (p = spelling_base; p < spelling; p++)
5366 if (p->kind == SPELLING_BOUNDS)
5367 {
5368 sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
5369 d += strlen (d);
5370 }
5371 else
5372 {
5373 const char *s;
5374 if (p->kind == SPELLING_MEMBER)
5375 *d++ = '.';
5376 for (s = p->u.s; (*d = *s++); d++)
5377 ;
5378 }
5379 *d++ = '\0';
5380 return buffer;
5381 }
5382
5383 /* Issue an error message for a bad initializer component.
5384 MSGID identifies the message.
5385 The component name is taken from the spelling stack. */
5386
5387 void
5388 error_init (const char *msgid)
5389 {
5390 char *ofwhat;
5391
5392 error ("%s", _(msgid));
5393 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
5394 if (*ofwhat)
5395 error ("(near initialization for %qs)", ofwhat);
5396 }
5397
5398 /* Issue a pedantic warning for a bad initializer component. OPT is
5399 the option OPT_* (from options.h) controlling this warning or 0 if
5400 it is unconditionally given. MSGID identifies the message. The
5401 component name is taken from the spelling stack. */
5402
5403 void
5404 pedwarn_init (location_t location, int opt, const char *msgid)
5405 {
5406 char *ofwhat;
5407
5408 pedwarn (location, opt, "%s", _(msgid));
5409 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
5410 if (*ofwhat)
5411 pedwarn (location, opt, "(near initialization for %qs)", ofwhat);
5412 }
5413
5414 /* Issue a warning for a bad initializer component.
5415
5416 OPT is the OPT_W* value corresponding to the warning option that
5417 controls this warning. MSGID identifies the message. The
5418 component name is taken from the spelling stack. */
5419
5420 static void
5421 warning_init (int opt, const char *msgid)
5422 {
5423 char *ofwhat;
5424
5425 warning (opt, "%s", _(msgid));
5426 ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
5427 if (*ofwhat)
5428 warning (opt, "(near initialization for %qs)", ofwhat);
5429 }
5430 \f
5431 /* If TYPE is an array type and EXPR is a parenthesized string
5432 constant, warn if pedantic that EXPR is being used to initialize an
5433 object of type TYPE. */
5434
5435 void
5436 maybe_warn_string_init (tree type, struct c_expr expr)
5437 {
5438 if (pedantic
5439 && TREE_CODE (type) == ARRAY_TYPE
5440 && TREE_CODE (expr.value) == STRING_CST
5441 && expr.original_code != STRING_CST)
5442 pedwarn_init (input_location, OPT_pedantic,
5443 "array initialized from parenthesized string constant");
5444 }
5445
5446 /* Digest the parser output INIT as an initializer for type TYPE.
5447 Return a C expression of type TYPE to represent the initial value.
5448
5449 If ORIGTYPE is not NULL_TREE, it is the original type of INIT.
5450
5451 NULL_POINTER_CONSTANT is true if INIT is a null pointer constant.
5452
5453 If INIT is a string constant, STRICT_STRING is true if it is
5454 unparenthesized or we should not warn here for it being parenthesized.
5455 For other types of INIT, STRICT_STRING is not used.
5456
5457 INIT_LOC is the location of the INIT.
5458
5459 REQUIRE_CONSTANT requests an error if non-constant initializers or
5460 elements are seen. */
5461
5462 static tree
5463 digest_init (location_t init_loc, tree type, tree init, tree origtype,
5464 bool null_pointer_constant, bool strict_string,
5465 int require_constant)
5466 {
5467 enum tree_code code = TREE_CODE (type);
5468 tree inside_init = init;
5469 tree semantic_type = NULL_TREE;
5470 bool maybe_const = true;
5471
5472 if (type == error_mark_node
5473 || !init
5474 || init == error_mark_node
5475 || TREE_TYPE (init) == error_mark_node)
5476 return error_mark_node;
5477
5478 STRIP_TYPE_NOPS (inside_init);
5479
5480 if (TREE_CODE (inside_init) == EXCESS_PRECISION_EXPR)
5481 {
5482 semantic_type = TREE_TYPE (inside_init);
5483 inside_init = TREE_OPERAND (inside_init, 0);
5484 }
5485 inside_init = c_fully_fold (inside_init, require_constant, &maybe_const);
5486 inside_init = decl_constant_value_for_optimization (inside_init);
5487
5488 /* Initialization of an array of chars from a string constant
5489 optionally enclosed in braces. */
5490
5491 if (code == ARRAY_TYPE && inside_init
5492 && TREE_CODE (inside_init) == STRING_CST)
5493 {
5494 tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
5495 /* Note that an array could be both an array of character type
5496 and an array of wchar_t if wchar_t is signed char or unsigned
5497 char. */
5498 bool char_array = (typ1 == char_type_node
5499 || typ1 == signed_char_type_node
5500 || typ1 == unsigned_char_type_node);
5501 bool wchar_array = !!comptypes (typ1, wchar_type_node);
5502 bool char16_array = !!comptypes (typ1, char16_type_node);
5503 bool char32_array = !!comptypes (typ1, char32_type_node);
5504
5505 if (char_array || wchar_array || char16_array || char32_array)
5506 {
5507 struct c_expr expr;
5508 tree typ2 = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)));
5509 expr.value = inside_init;
5510 expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
5511 expr.original_type = NULL;
5512 maybe_warn_string_init (type, expr);
5513
5514 if (TYPE_DOMAIN (type) && !TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
5515 pedwarn_init (init_loc, OPT_pedantic,
5516 "initialization of a flexible array member");
5517
5518 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
5519 TYPE_MAIN_VARIANT (type)))
5520 return inside_init;
5521
5522 if (char_array)
5523 {
5524 if (typ2 != char_type_node)
5525 {
5526 error_init ("char-array initialized from wide string");
5527 return error_mark_node;
5528 }
5529 }
5530 else
5531 {
5532 if (typ2 == char_type_node)
5533 {
5534 error_init ("wide character array initialized from non-wide "
5535 "string");
5536 return error_mark_node;
5537 }
5538 else if (!comptypes(typ1, typ2))
5539 {
5540 error_init ("wide character array initialized from "
5541 "incompatible wide string");
5542 return error_mark_node;
5543 }
5544 }
5545
5546 TREE_TYPE (inside_init) = type;
5547 if (TYPE_DOMAIN (type) != 0
5548 && TYPE_SIZE (type) != 0
5549 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
5550 /* Subtract the size of a single (possibly wide) character
5551 because it's ok to ignore the terminating null char
5552 that is counted in the length of the constant. */
5553 && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
5554 TREE_STRING_LENGTH (inside_init)
5555 - (TYPE_PRECISION (typ1)
5556 / BITS_PER_UNIT)))
5557 pedwarn_init (init_loc, 0,
5558 "initializer-string for array of chars is too long");
5559
5560 return inside_init;
5561 }
5562 else if (INTEGRAL_TYPE_P (typ1))
5563 {
5564 error_init ("array of inappropriate type initialized "
5565 "from string constant");
5566 return error_mark_node;
5567 }
5568 }
5569
5570 /* Build a VECTOR_CST from a *constant* vector constructor. If the
5571 vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
5572 below and handle as a constructor. */
5573 if (code == VECTOR_TYPE
5574 && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
5575 && vector_types_convertible_p (TREE_TYPE (inside_init), type, true)
5576 && TREE_CONSTANT (inside_init))
5577 {
5578 if (TREE_CODE (inside_init) == VECTOR_CST
5579 && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
5580 TYPE_MAIN_VARIANT (type)))
5581 return inside_init;
5582
5583 if (TREE_CODE (inside_init) == CONSTRUCTOR)
5584 {
5585 unsigned HOST_WIDE_INT ix;
5586 tree value;
5587 bool constant_p = true;
5588
5589 /* Iterate through elements and check if all constructor
5590 elements are *_CSTs. */
5591 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
5592 if (!CONSTANT_CLASS_P (value))
5593 {
5594 constant_p = false;
5595 break;
5596 }
5597
5598 if (constant_p)
5599 return build_vector_from_ctor (type,
5600 CONSTRUCTOR_ELTS (inside_init));
5601 }
5602 }
5603
5604 if (warn_sequence_point)
5605 verify_sequence_points (inside_init);
5606
5607 /* Any type can be initialized
5608 from an expression of the same type, optionally with braces. */
5609
5610 if (inside_init && TREE_TYPE (inside_init) != 0
5611 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
5612 TYPE_MAIN_VARIANT (type))
5613 || (code == ARRAY_TYPE
5614 && comptypes (TREE_TYPE (inside_init), type))
5615 || (code == VECTOR_TYPE
5616 && comptypes (TREE_TYPE (inside_init), type))
5617 || (code == POINTER_TYPE
5618 && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
5619 && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
5620 TREE_TYPE (type)))))
5621 {
5622 if (code == POINTER_TYPE)
5623 {
5624 if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
5625 {
5626 if (TREE_CODE (inside_init) == STRING_CST
5627 || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
5628 inside_init = array_to_pointer_conversion
5629 (init_loc, inside_init);
5630 else
5631 {
5632 error_init ("invalid use of non-lvalue array");
5633 return error_mark_node;
5634 }
5635 }
5636 }
5637
5638 if (code == VECTOR_TYPE)
5639 /* Although the types are compatible, we may require a
5640 conversion. */
5641 inside_init = convert (type, inside_init);
5642
5643 if (require_constant
5644 && (code == VECTOR_TYPE || !flag_isoc99)
5645 && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
5646 {
5647 /* As an extension, allow initializing objects with static storage
5648 duration with compound literals (which are then treated just as
5649 the brace enclosed list they contain). Also allow this for
5650 vectors, as we can only assign them with compound literals. */
5651 tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
5652 inside_init = DECL_INITIAL (decl);
5653 }
5654
5655 if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
5656 && TREE_CODE (inside_init) != CONSTRUCTOR)
5657 {
5658 error_init ("array initialized from non-constant array expression");
5659 return error_mark_node;
5660 }
5661
5662 /* Compound expressions can only occur here if -pedantic or
5663 -pedantic-errors is specified. In the later case, we always want
5664 an error. In the former case, we simply want a warning. */
5665 if (require_constant && pedantic
5666 && TREE_CODE (inside_init) == COMPOUND_EXPR)
5667 {
5668 inside_init
5669 = valid_compound_expr_initializer (inside_init,
5670 TREE_TYPE (inside_init));
5671 if (inside_init == error_mark_node)
5672 error_init ("initializer element is not constant");
5673 else
5674 pedwarn_init (init_loc, OPT_pedantic,
5675 "initializer element is not constant");
5676 if (flag_pedantic_errors)
5677 inside_init = error_mark_node;
5678 }
5679 else if (require_constant
5680 && !initializer_constant_valid_p (inside_init,
5681 TREE_TYPE (inside_init)))
5682 {
5683 error_init ("initializer element is not constant");
5684 inside_init = error_mark_node;
5685 }
5686 else if (require_constant && !maybe_const)
5687 pedwarn_init (init_loc, 0,
5688 "initializer element is not a constant expression");
5689
5690 /* Added to enable additional -Wmissing-format-attribute warnings. */
5691 if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
5692 inside_init = convert_for_assignment (init_loc, type, inside_init,
5693 origtype,
5694 ic_init, null_pointer_constant,
5695 NULL_TREE, NULL_TREE, 0);
5696 return inside_init;
5697 }
5698
5699 /* Handle scalar types, including conversions. */
5700
5701 if (code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE
5702 || code == POINTER_TYPE || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
5703 || code == COMPLEX_TYPE || code == VECTOR_TYPE)
5704 {
5705 if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
5706 && (TREE_CODE (init) == STRING_CST
5707 || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
5708 inside_init = init = array_to_pointer_conversion (init_loc, init);
5709 if (semantic_type)
5710 inside_init = build1 (EXCESS_PRECISION_EXPR, semantic_type,
5711 inside_init);
5712 inside_init
5713 = convert_for_assignment (init_loc, type, inside_init, origtype,
5714 ic_init, null_pointer_constant,
5715 NULL_TREE, NULL_TREE, 0);
5716
5717 /* Check to see if we have already given an error message. */
5718 if (inside_init == error_mark_node)
5719 ;
5720 else if (require_constant && !TREE_CONSTANT (inside_init))
5721 {
5722 error_init ("initializer element is not constant");
5723 inside_init = error_mark_node;
5724 }
5725 else if (require_constant
5726 && !initializer_constant_valid_p (inside_init,
5727 TREE_TYPE (inside_init)))
5728 {
5729 error_init ("initializer element is not computable at load time");
5730 inside_init = error_mark_node;
5731 }
5732 else if (require_constant && !maybe_const)
5733 pedwarn_init (init_loc, 0,
5734 "initializer element is not a constant expression");
5735
5736 return inside_init;
5737 }
5738
5739 /* Come here only for records and arrays. */
5740
5741 if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
5742 {
5743 error_init ("variable-sized object may not be initialized");
5744 return error_mark_node;
5745 }
5746
5747 error_init ("invalid initializer");
5748 return error_mark_node;
5749 }
5750 \f
5751 /* Handle initializers that use braces. */
5752
5753 /* Type of object we are accumulating a constructor for.
5754 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
5755 static tree constructor_type;
5756
5757 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
5758 left to fill. */
5759 static tree constructor_fields;
5760
5761 /* For an ARRAY_TYPE, this is the specified index
5762 at which to store the next element we get. */
5763 static tree constructor_index;
5764
5765 /* For an ARRAY_TYPE, this is the maximum index. */
5766 static tree constructor_max_index;
5767
5768 /* For a RECORD_TYPE, this is the first field not yet written out. */
5769 static tree constructor_unfilled_fields;
5770
5771 /* For an ARRAY_TYPE, this is the index of the first element
5772 not yet written out. */
5773 static tree constructor_unfilled_index;
5774
5775 /* In a RECORD_TYPE, the byte index of the next consecutive field.
5776 This is so we can generate gaps between fields, when appropriate. */
5777 static tree constructor_bit_index;
5778
5779 /* If we are saving up the elements rather than allocating them,
5780 this is the list of elements so far (in reverse order,
5781 most recent first). */
5782 static VEC(constructor_elt,gc) *constructor_elements;
5783
5784 /* 1 if constructor should be incrementally stored into a constructor chain,
5785 0 if all the elements should be kept in AVL tree. */
5786 static int constructor_incremental;
5787
5788 /* 1 if so far this constructor's elements are all compile-time constants. */
5789 static int constructor_constant;
5790
5791 /* 1 if so far this constructor's elements are all valid address constants. */
5792 static int constructor_simple;
5793
5794 /* 1 if this constructor has an element that cannot be part of a
5795 constant expression. */
5796 static int constructor_nonconst;
5797
5798 /* 1 if this constructor is erroneous so far. */
5799 static int constructor_erroneous;
5800
5801 /* Structure for managing pending initializer elements, organized as an
5802 AVL tree. */
5803
5804 struct init_node
5805 {
5806 struct init_node *left, *right;
5807 struct init_node *parent;
5808 int balance;
5809 tree purpose;
5810 tree value;
5811 tree origtype;
5812 };
5813
5814 /* Tree of pending elements at this constructor level.
5815 These are elements encountered out of order
5816 which belong at places we haven't reached yet in actually
5817 writing the output.
5818 Will never hold tree nodes across GC runs. */
5819 static struct init_node *constructor_pending_elts;
5820
5821 /* The SPELLING_DEPTH of this constructor. */
5822 static int constructor_depth;
5823
5824 /* DECL node for which an initializer is being read.
5825 0 means we are reading a constructor expression
5826 such as (struct foo) {...}. */
5827 static tree constructor_decl;
5828
5829 /* Nonzero if this is an initializer for a top-level decl. */
5830 static int constructor_top_level;
5831
5832 /* Nonzero if there were any member designators in this initializer. */
5833 static int constructor_designated;
5834
5835 /* Nesting depth of designator list. */
5836 static int designator_depth;
5837
5838 /* Nonzero if there were diagnosed errors in this designator list. */
5839 static int designator_erroneous;
5840
5841 \f
5842 /* This stack has a level for each implicit or explicit level of
5843 structuring in the initializer, including the outermost one. It
5844 saves the values of most of the variables above. */
5845
5846 struct constructor_range_stack;
5847
5848 struct constructor_stack
5849 {
5850 struct constructor_stack *next;
5851 tree type;
5852 tree fields;
5853 tree index;
5854 tree max_index;
5855 tree unfilled_index;
5856 tree unfilled_fields;
5857 tree bit_index;
5858 VEC(constructor_elt,gc) *elements;
5859 struct init_node *pending_elts;
5860 int offset;
5861 int depth;
5862 /* If value nonzero, this value should replace the entire
5863 constructor at this level. */
5864 struct c_expr replacement_value;
5865 struct constructor_range_stack *range_stack;
5866 char constant;
5867 char simple;
5868 char nonconst;
5869 char implicit;
5870 char erroneous;
5871 char outer;
5872 char incremental;
5873 char designated;
5874 };
5875
5876 static struct constructor_stack *constructor_stack;
5877
5878 /* This stack represents designators from some range designator up to
5879 the last designator in the list. */
5880
5881 struct constructor_range_stack
5882 {
5883 struct constructor_range_stack *next, *prev;
5884 struct constructor_stack *stack;
5885 tree range_start;
5886 tree index;
5887 tree range_end;
5888 tree fields;
5889 };
5890
5891 static struct constructor_range_stack *constructor_range_stack;
5892
5893 /* This stack records separate initializers that are nested.
5894 Nested initializers can't happen in ANSI C, but GNU C allows them
5895 in cases like { ... (struct foo) { ... } ... }. */
5896
5897 struct initializer_stack
5898 {
5899 struct initializer_stack *next;
5900 tree decl;
5901 struct constructor_stack *constructor_stack;
5902 struct constructor_range_stack *constructor_range_stack;
5903 VEC(constructor_elt,gc) *elements;
5904 struct spelling *spelling;
5905 struct spelling *spelling_base;
5906 int spelling_size;
5907 char top_level;
5908 char require_constant_value;
5909 char require_constant_elements;
5910 };
5911
5912 static struct initializer_stack *initializer_stack;
5913 \f
5914 /* Prepare to parse and output the initializer for variable DECL. */
5915
5916 void
5917 start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
5918 {
5919 const char *locus;
5920 struct initializer_stack *p = XNEW (struct initializer_stack);
5921
5922 p->decl = constructor_decl;
5923 p->require_constant_value = require_constant_value;
5924 p->require_constant_elements = require_constant_elements;
5925 p->constructor_stack = constructor_stack;
5926 p->constructor_range_stack = constructor_range_stack;
5927 p->elements = constructor_elements;
5928 p->spelling = spelling;
5929 p->spelling_base = spelling_base;
5930 p->spelling_size = spelling_size;
5931 p->top_level = constructor_top_level;
5932 p->next = initializer_stack;
5933 initializer_stack = p;
5934
5935 constructor_decl = decl;
5936 constructor_designated = 0;
5937 constructor_top_level = top_level;
5938
5939 if (decl != 0 && decl != error_mark_node)
5940 {
5941 require_constant_value = TREE_STATIC (decl);
5942 require_constant_elements
5943 = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
5944 /* For a scalar, you can always use any value to initialize,
5945 even within braces. */
5946 && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
5947 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
5948 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
5949 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
5950 locus = identifier_to_locale (IDENTIFIER_POINTER (DECL_NAME (decl)));
5951 }
5952 else
5953 {
5954 require_constant_value = 0;
5955 require_constant_elements = 0;
5956 locus = _("(anonymous)");
5957 }
5958
5959 constructor_stack = 0;
5960 constructor_range_stack = 0;
5961
5962 missing_braces_mentioned = 0;
5963
5964 spelling_base = 0;
5965 spelling_size = 0;
5966 RESTORE_SPELLING_DEPTH (0);
5967
5968 if (locus)
5969 push_string (locus);
5970 }
5971
5972 void
5973 finish_init (void)
5974 {
5975 struct initializer_stack *p = initializer_stack;
5976
5977 /* Free the whole constructor stack of this initializer. */
5978 while (constructor_stack)
5979 {
5980 struct constructor_stack *q = constructor_stack;
5981 constructor_stack = q->next;
5982 free (q);
5983 }
5984
5985 gcc_assert (!constructor_range_stack);
5986
5987 /* Pop back to the data of the outer initializer (if any). */
5988 free (spelling_base);
5989
5990 constructor_decl = p->decl;
5991 require_constant_value = p->require_constant_value;
5992 require_constant_elements = p->require_constant_elements;
5993 constructor_stack = p->constructor_stack;
5994 constructor_range_stack = p->constructor_range_stack;
5995 constructor_elements = p->elements;
5996 spelling = p->spelling;
5997 spelling_base = p->spelling_base;
5998 spelling_size = p->spelling_size;
5999 constructor_top_level = p->top_level;
6000 initializer_stack = p->next;
6001 free (p);
6002 }
6003 \f
6004 /* Call here when we see the initializer is surrounded by braces.
6005 This is instead of a call to push_init_level;
6006 it is matched by a call to pop_init_level.
6007
6008 TYPE is the type to initialize, for a constructor expression.
6009 For an initializer for a decl, TYPE is zero. */
6010
6011 void
6012 really_start_incremental_init (tree type)
6013 {
6014 struct constructor_stack *p = XNEW (struct constructor_stack);
6015
6016 if (type == 0)
6017 type = TREE_TYPE (constructor_decl);
6018
6019 if (TREE_CODE (type) == VECTOR_TYPE
6020 && TYPE_VECTOR_OPAQUE (type))
6021 error ("opaque vector types cannot be initialized");
6022
6023 p->type = constructor_type;
6024 p->fields = constructor_fields;
6025 p->index = constructor_index;
6026 p->max_index = constructor_max_index;
6027 p->unfilled_index = constructor_unfilled_index;
6028 p->unfilled_fields = constructor_unfilled_fields;
6029 p->bit_index = constructor_bit_index;
6030 p->elements = constructor_elements;
6031 p->constant = constructor_constant;
6032 p->simple = constructor_simple;
6033 p->nonconst = constructor_nonconst;
6034 p->erroneous = constructor_erroneous;
6035 p->pending_elts = constructor_pending_elts;
6036 p->depth = constructor_depth;
6037 p->replacement_value.value = 0;
6038 p->replacement_value.original_code = ERROR_MARK;
6039 p->replacement_value.original_type = NULL;
6040 p->implicit = 0;
6041 p->range_stack = 0;
6042 p->outer = 0;
6043 p->incremental = constructor_incremental;
6044 p->designated = constructor_designated;
6045 p->next = 0;
6046 constructor_stack = p;
6047
6048 constructor_constant = 1;
6049 constructor_simple = 1;
6050 constructor_nonconst = 0;
6051 constructor_depth = SPELLING_DEPTH ();
6052 constructor_elements = 0;
6053 constructor_pending_elts = 0;
6054 constructor_type = type;
6055 constructor_incremental = 1;
6056 constructor_designated = 0;
6057 designator_depth = 0;
6058 designator_erroneous = 0;
6059
6060 if (TREE_CODE (constructor_type) == RECORD_TYPE
6061 || TREE_CODE (constructor_type) == UNION_TYPE)
6062 {
6063 constructor_fields = TYPE_FIELDS (constructor_type);
6064 /* Skip any nameless bit fields at the beginning. */
6065 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
6066 && DECL_NAME (constructor_fields) == 0)
6067 constructor_fields = TREE_CHAIN (constructor_fields);
6068
6069 constructor_unfilled_fields = constructor_fields;
6070 constructor_bit_index = bitsize_zero_node;
6071 }
6072 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6073 {
6074 if (TYPE_DOMAIN (constructor_type))
6075 {
6076 constructor_max_index
6077 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
6078
6079 /* Detect non-empty initializations of zero-length arrays. */
6080 if (constructor_max_index == NULL_TREE
6081 && TYPE_SIZE (constructor_type))
6082 constructor_max_index = build_int_cst (NULL_TREE, -1);
6083
6084 /* constructor_max_index needs to be an INTEGER_CST. Attempts
6085 to initialize VLAs will cause a proper error; avoid tree
6086 checking errors as well by setting a safe value. */
6087 if (constructor_max_index
6088 && TREE_CODE (constructor_max_index) != INTEGER_CST)
6089 constructor_max_index = build_int_cst (NULL_TREE, -1);
6090
6091 constructor_index
6092 = convert (bitsizetype,
6093 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6094 }
6095 else
6096 {
6097 constructor_index = bitsize_zero_node;
6098 constructor_max_index = NULL_TREE;
6099 }
6100
6101 constructor_unfilled_index = constructor_index;
6102 }
6103 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6104 {
6105 /* Vectors are like simple fixed-size arrays. */
6106 constructor_max_index =
6107 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
6108 constructor_index = bitsize_zero_node;
6109 constructor_unfilled_index = constructor_index;
6110 }
6111 else
6112 {
6113 /* Handle the case of int x = {5}; */
6114 constructor_fields = constructor_type;
6115 constructor_unfilled_fields = constructor_type;
6116 }
6117 }
6118 \f
6119 /* Push down into a subobject, for initialization.
6120 If this is for an explicit set of braces, IMPLICIT is 0.
6121 If it is because the next element belongs at a lower level,
6122 IMPLICIT is 1 (or 2 if the push is because of designator list). */
6123
6124 void
6125 push_init_level (int implicit)
6126 {
6127 struct constructor_stack *p;
6128 tree value = NULL_TREE;
6129
6130 /* If we've exhausted any levels that didn't have braces,
6131 pop them now. If implicit == 1, this will have been done in
6132 process_init_element; do not repeat it here because in the case
6133 of excess initializers for an empty aggregate this leads to an
6134 infinite cycle of popping a level and immediately recreating
6135 it. */
6136 if (implicit != 1)
6137 {
6138 while (constructor_stack->implicit)
6139 {
6140 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6141 || TREE_CODE (constructor_type) == UNION_TYPE)
6142 && constructor_fields == 0)
6143 process_init_element (pop_init_level (1), true);
6144 else if (TREE_CODE (constructor_type) == ARRAY_TYPE
6145 && constructor_max_index
6146 && tree_int_cst_lt (constructor_max_index,
6147 constructor_index))
6148 process_init_element (pop_init_level (1), true);
6149 else
6150 break;
6151 }
6152 }
6153
6154 /* Unless this is an explicit brace, we need to preserve previous
6155 content if any. */
6156 if (implicit)
6157 {
6158 if ((TREE_CODE (constructor_type) == RECORD_TYPE
6159 || TREE_CODE (constructor_type) == UNION_TYPE)
6160 && constructor_fields)
6161 value = find_init_member (constructor_fields);
6162 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6163 value = find_init_member (constructor_index);
6164 }
6165
6166 p = XNEW (struct constructor_stack);
6167 p->type = constructor_type;
6168 p->fields = constructor_fields;
6169 p->index = constructor_index;
6170 p->max_index = constructor_max_index;
6171 p->unfilled_index = constructor_unfilled_index;
6172 p->unfilled_fields = constructor_unfilled_fields;
6173 p->bit_index = constructor_bit_index;
6174 p->elements = constructor_elements;
6175 p->constant = constructor_constant;
6176 p->simple = constructor_simple;
6177 p->nonconst = constructor_nonconst;
6178 p->erroneous = constructor_erroneous;
6179 p->pending_elts = constructor_pending_elts;
6180 p->depth = constructor_depth;
6181 p->replacement_value.value = 0;
6182 p->replacement_value.original_code = ERROR_MARK;
6183 p->replacement_value.original_type = NULL;
6184 p->implicit = implicit;
6185 p->outer = 0;
6186 p->incremental = constructor_incremental;
6187 p->designated = constructor_designated;
6188 p->next = constructor_stack;
6189 p->range_stack = 0;
6190 constructor_stack = p;
6191
6192 constructor_constant = 1;
6193 constructor_simple = 1;
6194 constructor_nonconst = 0;
6195 constructor_depth = SPELLING_DEPTH ();
6196 constructor_elements = 0;
6197 constructor_incremental = 1;
6198 constructor_designated = 0;
6199 constructor_pending_elts = 0;
6200 if (!implicit)
6201 {
6202 p->range_stack = constructor_range_stack;
6203 constructor_range_stack = 0;
6204 designator_depth = 0;
6205 designator_erroneous = 0;
6206 }
6207
6208 /* Don't die if an entire brace-pair level is superfluous
6209 in the containing level. */
6210 if (constructor_type == 0)
6211 ;
6212 else if (TREE_CODE (constructor_type) == RECORD_TYPE
6213 || TREE_CODE (constructor_type) == UNION_TYPE)
6214 {
6215 /* Don't die if there are extra init elts at the end. */
6216 if (constructor_fields == 0)
6217 constructor_type = 0;
6218 else
6219 {
6220 constructor_type = TREE_TYPE (constructor_fields);
6221 push_member_name (constructor_fields);
6222 constructor_depth++;
6223 }
6224 }
6225 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6226 {
6227 constructor_type = TREE_TYPE (constructor_type);
6228 push_array_bounds (tree_low_cst (constructor_index, 1));
6229 constructor_depth++;
6230 }
6231
6232 if (constructor_type == 0)
6233 {
6234 error_init ("extra brace group at end of initializer");
6235 constructor_fields = 0;
6236 constructor_unfilled_fields = 0;
6237 return;
6238 }
6239
6240 if (value && TREE_CODE (value) == CONSTRUCTOR)
6241 {
6242 constructor_constant = TREE_CONSTANT (value);
6243 constructor_simple = TREE_STATIC (value);
6244 constructor_nonconst = CONSTRUCTOR_NON_CONST (value);
6245 constructor_elements = CONSTRUCTOR_ELTS (value);
6246 if (!VEC_empty (constructor_elt, constructor_elements)
6247 && (TREE_CODE (constructor_type) == RECORD_TYPE
6248 || TREE_CODE (constructor_type) == ARRAY_TYPE))
6249 set_nonincremental_init ();
6250 }
6251
6252 if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
6253 {
6254 missing_braces_mentioned = 1;
6255 warning_init (OPT_Wmissing_braces, "missing braces around initializer");
6256 }
6257
6258 if (TREE_CODE (constructor_type) == RECORD_TYPE
6259 || TREE_CODE (constructor_type) == UNION_TYPE)
6260 {
6261 constructor_fields = TYPE_FIELDS (constructor_type);
6262 /* Skip any nameless bit fields at the beginning. */
6263 while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
6264 && DECL_NAME (constructor_fields) == 0)
6265 constructor_fields = TREE_CHAIN (constructor_fields);
6266
6267 constructor_unfilled_fields = constructor_fields;
6268 constructor_bit_index = bitsize_zero_node;
6269 }
6270 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
6271 {
6272 /* Vectors are like simple fixed-size arrays. */
6273 constructor_max_index =
6274 build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
6275 constructor_index = convert (bitsizetype, integer_zero_node);
6276 constructor_unfilled_index = constructor_index;
6277 }
6278 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6279 {
6280 if (TYPE_DOMAIN (constructor_type))
6281 {
6282 constructor_max_index
6283 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
6284
6285 /* Detect non-empty initializations of zero-length arrays. */
6286 if (constructor_max_index == NULL_TREE
6287 && TYPE_SIZE (constructor_type))
6288 constructor_max_index = build_int_cst (NULL_TREE, -1);
6289
6290 /* constructor_max_index needs to be an INTEGER_CST. Attempts
6291 to initialize VLAs will cause a proper error; avoid tree
6292 checking errors as well by setting a safe value. */
6293 if (constructor_max_index
6294 && TREE_CODE (constructor_max_index) != INTEGER_CST)
6295 constructor_max_index = build_int_cst (NULL_TREE, -1);
6296
6297 constructor_index
6298 = convert (bitsizetype,
6299 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6300 }
6301 else
6302 constructor_index = bitsize_zero_node;
6303
6304 constructor_unfilled_index = constructor_index;
6305 if (value && TREE_CODE (value) == STRING_CST)
6306 {
6307 /* We need to split the char/wchar array into individual
6308 characters, so that we don't have to special case it
6309 everywhere. */
6310 set_nonincremental_init_from_string (value);
6311 }
6312 }
6313 else
6314 {
6315 if (constructor_type != error_mark_node)
6316 warning_init (0, "braces around scalar initializer");
6317 constructor_fields = constructor_type;
6318 constructor_unfilled_fields = constructor_type;
6319 }
6320 }
6321
6322 /* At the end of an implicit or explicit brace level,
6323 finish up that level of constructor. If a single expression
6324 with redundant braces initialized that level, return the
6325 c_expr structure for that expression. Otherwise, the original_code
6326 element is set to ERROR_MARK.
6327 If we were outputting the elements as they are read, return 0 as the value
6328 from inner levels (process_init_element ignores that),
6329 but return error_mark_node as the value from the outermost level
6330 (that's what we want to put in DECL_INITIAL).
6331 Otherwise, return a CONSTRUCTOR expression as the value. */
6332
6333 struct c_expr
6334 pop_init_level (int implicit)
6335 {
6336 struct constructor_stack *p;
6337 struct c_expr ret;
6338 ret.value = 0;
6339 ret.original_code = ERROR_MARK;
6340 ret.original_type = NULL;
6341
6342 if (implicit == 0)
6343 {
6344 /* When we come to an explicit close brace,
6345 pop any inner levels that didn't have explicit braces. */
6346 while (constructor_stack->implicit)
6347 process_init_element (pop_init_level (1), true);
6348
6349 gcc_assert (!constructor_range_stack);
6350 }
6351
6352 /* Now output all pending elements. */
6353 constructor_incremental = 1;
6354 output_pending_init_elements (1);
6355
6356 p = constructor_stack;
6357
6358 /* Error for initializing a flexible array member, or a zero-length
6359 array member in an inappropriate context. */
6360 if (constructor_type && constructor_fields
6361 && TREE_CODE (constructor_type) == ARRAY_TYPE
6362 && TYPE_DOMAIN (constructor_type)
6363 && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
6364 {
6365 /* Silently discard empty initializations. The parser will
6366 already have pedwarned for empty brackets. */
6367 if (integer_zerop (constructor_unfilled_index))
6368 constructor_type = NULL_TREE;
6369 else
6370 {
6371 gcc_assert (!TYPE_SIZE (constructor_type));
6372
6373 if (constructor_depth > 2)
6374 error_init ("initialization of flexible array member in a nested context");
6375 else
6376 pedwarn_init (input_location, OPT_pedantic,
6377 "initialization of a flexible array member");
6378
6379 /* We have already issued an error message for the existence
6380 of a flexible array member not at the end of the structure.
6381 Discard the initializer so that we do not die later. */
6382 if (TREE_CHAIN (constructor_fields) != NULL_TREE)
6383 constructor_type = NULL_TREE;
6384 }
6385 }
6386
6387 /* Warn when some struct elements are implicitly initialized to zero. */
6388 if (warn_missing_field_initializers
6389 && constructor_type
6390 && TREE_CODE (constructor_type) == RECORD_TYPE
6391 && constructor_unfilled_fields)
6392 {
6393 /* Do not warn for flexible array members or zero-length arrays. */
6394 while (constructor_unfilled_fields
6395 && (!DECL_SIZE (constructor_unfilled_fields)
6396 || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
6397 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6398
6399 /* Do not warn if this level of the initializer uses member
6400 designators; it is likely to be deliberate. */
6401 if (constructor_unfilled_fields && !constructor_designated)
6402 {
6403 push_member_name (constructor_unfilled_fields);
6404 warning_init (OPT_Wmissing_field_initializers,
6405 "missing initializer");
6406 RESTORE_SPELLING_DEPTH (constructor_depth);
6407 }
6408 }
6409
6410 /* Pad out the end of the structure. */
6411 if (p->replacement_value.value)
6412 /* If this closes a superfluous brace pair,
6413 just pass out the element between them. */
6414 ret = p->replacement_value;
6415 else if (constructor_type == 0)
6416 ;
6417 else if (TREE_CODE (constructor_type) != RECORD_TYPE
6418 && TREE_CODE (constructor_type) != UNION_TYPE
6419 && TREE_CODE (constructor_type) != ARRAY_TYPE
6420 && TREE_CODE (constructor_type) != VECTOR_TYPE)
6421 {
6422 /* A nonincremental scalar initializer--just return
6423 the element, after verifying there is just one. */
6424 if (VEC_empty (constructor_elt,constructor_elements))
6425 {
6426 if (!constructor_erroneous)
6427 error_init ("empty scalar initializer");
6428 ret.value = error_mark_node;
6429 }
6430 else if (VEC_length (constructor_elt,constructor_elements) != 1)
6431 {
6432 error_init ("extra elements in scalar initializer");
6433 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
6434 }
6435 else
6436 ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
6437 }
6438 else
6439 {
6440 if (constructor_erroneous)
6441 ret.value = error_mark_node;
6442 else
6443 {
6444 ret.value = build_constructor (constructor_type,
6445 constructor_elements);
6446 if (constructor_constant)
6447 TREE_CONSTANT (ret.value) = 1;
6448 if (constructor_constant && constructor_simple)
6449 TREE_STATIC (ret.value) = 1;
6450 if (constructor_nonconst)
6451 CONSTRUCTOR_NON_CONST (ret.value) = 1;
6452 }
6453 }
6454
6455 if (ret.value && TREE_CODE (ret.value) != CONSTRUCTOR)
6456 {
6457 if (constructor_nonconst)
6458 ret.original_code = C_MAYBE_CONST_EXPR;
6459 else if (ret.original_code == C_MAYBE_CONST_EXPR)
6460 ret.original_code = ERROR_MARK;
6461 }
6462
6463 constructor_type = p->type;
6464 constructor_fields = p->fields;
6465 constructor_index = p->index;
6466 constructor_max_index = p->max_index;
6467 constructor_unfilled_index = p->unfilled_index;
6468 constructor_unfilled_fields = p->unfilled_fields;
6469 constructor_bit_index = p->bit_index;
6470 constructor_elements = p->elements;
6471 constructor_constant = p->constant;
6472 constructor_simple = p->simple;
6473 constructor_nonconst = p->nonconst;
6474 constructor_erroneous = p->erroneous;
6475 constructor_incremental = p->incremental;
6476 constructor_designated = p->designated;
6477 constructor_pending_elts = p->pending_elts;
6478 constructor_depth = p->depth;
6479 if (!p->implicit)
6480 constructor_range_stack = p->range_stack;
6481 RESTORE_SPELLING_DEPTH (constructor_depth);
6482
6483 constructor_stack = p->next;
6484 free (p);
6485
6486 if (ret.value == 0 && constructor_stack == 0)
6487 ret.value = error_mark_node;
6488 return ret;
6489 }
6490
6491 /* Common handling for both array range and field name designators.
6492 ARRAY argument is nonzero for array ranges. Returns zero for success. */
6493
6494 static int
6495 set_designator (int array)
6496 {
6497 tree subtype;
6498 enum tree_code subcode;
6499
6500 /* Don't die if an entire brace-pair level is superfluous
6501 in the containing level. */
6502 if (constructor_type == 0)
6503 return 1;
6504
6505 /* If there were errors in this designator list already, bail out
6506 silently. */
6507 if (designator_erroneous)
6508 return 1;
6509
6510 if (!designator_depth)
6511 {
6512 gcc_assert (!constructor_range_stack);
6513
6514 /* Designator list starts at the level of closest explicit
6515 braces. */
6516 while (constructor_stack->implicit)
6517 process_init_element (pop_init_level (1), true);
6518 constructor_designated = 1;
6519 return 0;
6520 }
6521
6522 switch (TREE_CODE (constructor_type))
6523 {
6524 case RECORD_TYPE:
6525 case UNION_TYPE:
6526 subtype = TREE_TYPE (constructor_fields);
6527 if (subtype != error_mark_node)
6528 subtype = TYPE_MAIN_VARIANT (subtype);
6529 break;
6530 case ARRAY_TYPE:
6531 subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
6532 break;
6533 default:
6534 gcc_unreachable ();
6535 }
6536
6537 subcode = TREE_CODE (subtype);
6538 if (array && subcode != ARRAY_TYPE)
6539 {
6540 error_init ("array index in non-array initializer");
6541 return 1;
6542 }
6543 else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
6544 {
6545 error_init ("field name not in record or union initializer");
6546 return 1;
6547 }
6548
6549 constructor_designated = 1;
6550 push_init_level (2);
6551 return 0;
6552 }
6553
6554 /* If there are range designators in designator list, push a new designator
6555 to constructor_range_stack. RANGE_END is end of such stack range or
6556 NULL_TREE if there is no range designator at this level. */
6557
6558 static void
6559 push_range_stack (tree range_end)
6560 {
6561 struct constructor_range_stack *p;
6562
6563 p = GGC_NEW (struct constructor_range_stack);
6564 p->prev = constructor_range_stack;
6565 p->next = 0;
6566 p->fields = constructor_fields;
6567 p->range_start = constructor_index;
6568 p->index = constructor_index;
6569 p->stack = constructor_stack;
6570 p->range_end = range_end;
6571 if (constructor_range_stack)
6572 constructor_range_stack->next = p;
6573 constructor_range_stack = p;
6574 }
6575
6576 /* Within an array initializer, specify the next index to be initialized.
6577 FIRST is that index. If LAST is nonzero, then initialize a range
6578 of indices, running from FIRST through LAST. */
6579
6580 void
6581 set_init_index (tree first, tree last)
6582 {
6583 if (set_designator (1))
6584 return;
6585
6586 designator_erroneous = 1;
6587
6588 if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
6589 || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
6590 {
6591 error_init ("array index in initializer not of integer type");
6592 return;
6593 }
6594
6595 if (TREE_CODE (first) != INTEGER_CST)
6596 {
6597 first = c_fully_fold (first, false, NULL);
6598 if (TREE_CODE (first) == INTEGER_CST)
6599 pedwarn_init (input_location, OPT_pedantic,
6600 "array index in initializer is not "
6601 "an integer constant expression");
6602 }
6603
6604 if (last && TREE_CODE (last) != INTEGER_CST)
6605 {
6606 last = c_fully_fold (last, false, NULL);
6607 if (TREE_CODE (last) == INTEGER_CST)
6608 pedwarn_init (input_location, OPT_pedantic,
6609 "array index in initializer is not "
6610 "an integer constant expression");
6611 }
6612
6613 if (TREE_CODE (first) != INTEGER_CST)
6614 error_init ("nonconstant array index in initializer");
6615 else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
6616 error_init ("nonconstant array index in initializer");
6617 else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
6618 error_init ("array index in non-array initializer");
6619 else if (tree_int_cst_sgn (first) == -1)
6620 error_init ("array index in initializer exceeds array bounds");
6621 else if (constructor_max_index
6622 && tree_int_cst_lt (constructor_max_index, first))
6623 error_init ("array index in initializer exceeds array bounds");
6624 else
6625 {
6626 constant_expression_warning (first);
6627 if (last)
6628 constant_expression_warning (last);
6629 constructor_index = convert (bitsizetype, first);
6630
6631 if (last)
6632 {
6633 if (tree_int_cst_equal (first, last))
6634 last = 0;
6635 else if (tree_int_cst_lt (last, first))
6636 {
6637 error_init ("empty index range in initializer");
6638 last = 0;
6639 }
6640 else
6641 {
6642 last = convert (bitsizetype, last);
6643 if (constructor_max_index != 0
6644 && tree_int_cst_lt (constructor_max_index, last))
6645 {
6646 error_init ("array index range in initializer exceeds array bounds");
6647 last = 0;
6648 }
6649 }
6650 }
6651
6652 designator_depth++;
6653 designator_erroneous = 0;
6654 if (constructor_range_stack || last)
6655 push_range_stack (last);
6656 }
6657 }
6658
6659 /* Within a struct initializer, specify the next field to be initialized. */
6660
6661 void
6662 set_init_label (tree fieldname)
6663 {
6664 tree tail;
6665
6666 if (set_designator (0))
6667 return;
6668
6669 designator_erroneous = 1;
6670
6671 if (TREE_CODE (constructor_type) != RECORD_TYPE
6672 && TREE_CODE (constructor_type) != UNION_TYPE)
6673 {
6674 error_init ("field name not in record or union initializer");
6675 return;
6676 }
6677
6678 for (tail = TYPE_FIELDS (constructor_type); tail;
6679 tail = TREE_CHAIN (tail))
6680 {
6681 if (DECL_NAME (tail) == fieldname)
6682 break;
6683 }
6684
6685 if (tail == 0)
6686 error ("unknown field %qE specified in initializer", fieldname);
6687 else
6688 {
6689 constructor_fields = tail;
6690 designator_depth++;
6691 designator_erroneous = 0;
6692 if (constructor_range_stack)
6693 push_range_stack (NULL_TREE);
6694 }
6695 }
6696 \f
6697 /* Add a new initializer to the tree of pending initializers. PURPOSE
6698 identifies the initializer, either array index or field in a structure.
6699 VALUE is the value of that index or field. If ORIGTYPE is not
6700 NULL_TREE, it is the original type of VALUE.
6701
6702 IMPLICIT is true if value comes from pop_init_level (1),
6703 the new initializer has been merged with the existing one
6704 and thus no warnings should be emitted about overriding an
6705 existing initializer. */
6706
6707 static void
6708 add_pending_init (tree purpose, tree value, tree origtype, bool implicit)
6709 {
6710 struct init_node *p, **q, *r;
6711
6712 q = &constructor_pending_elts;
6713 p = 0;
6714
6715 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6716 {
6717 while (*q != 0)
6718 {
6719 p = *q;
6720 if (tree_int_cst_lt (purpose, p->purpose))
6721 q = &p->left;
6722 else if (tree_int_cst_lt (p->purpose, purpose))
6723 q = &p->right;
6724 else
6725 {
6726 if (!implicit)
6727 {
6728 if (TREE_SIDE_EFFECTS (p->value))
6729 warning_init (0, "initialized field with side-effects overwritten");
6730 else if (warn_override_init)
6731 warning_init (OPT_Woverride_init, "initialized field overwritten");
6732 }
6733 p->value = value;
6734 p->origtype = origtype;
6735 return;
6736 }
6737 }
6738 }
6739 else
6740 {
6741 tree bitpos;
6742
6743 bitpos = bit_position (purpose);
6744 while (*q != NULL)
6745 {
6746 p = *q;
6747 if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
6748 q = &p->left;
6749 else if (p->purpose != purpose)
6750 q = &p->right;
6751 else
6752 {
6753 if (!implicit)
6754 {
6755 if (TREE_SIDE_EFFECTS (p->value))
6756 warning_init (0, "initialized field with side-effects overwritten");
6757 else if (warn_override_init)
6758 warning_init (OPT_Woverride_init, "initialized field overwritten");
6759 }
6760 p->value = value;
6761 p->origtype = origtype;
6762 return;
6763 }
6764 }
6765 }
6766
6767 r = GGC_NEW (struct init_node);
6768 r->purpose = purpose;
6769 r->value = value;
6770 r->origtype = origtype;
6771
6772 *q = r;
6773 r->parent = p;
6774 r->left = 0;
6775 r->right = 0;
6776 r->balance = 0;
6777
6778 while (p)
6779 {
6780 struct init_node *s;
6781
6782 if (r == p->left)
6783 {
6784 if (p->balance == 0)
6785 p->balance = -1;
6786 else if (p->balance < 0)
6787 {
6788 if (r->balance < 0)
6789 {
6790 /* L rotation. */
6791 p->left = r->right;
6792 if (p->left)
6793 p->left->parent = p;
6794 r->right = p;
6795
6796 p->balance = 0;
6797 r->balance = 0;
6798
6799 s = p->parent;
6800 p->parent = r;
6801 r->parent = s;
6802 if (s)
6803 {
6804 if (s->left == p)
6805 s->left = r;
6806 else
6807 s->right = r;
6808 }
6809 else
6810 constructor_pending_elts = r;
6811 }
6812 else
6813 {
6814 /* LR rotation. */
6815 struct init_node *t = r->right;
6816
6817 r->right = t->left;
6818 if (r->right)
6819 r->right->parent = r;
6820 t->left = r;
6821
6822 p->left = t->right;
6823 if (p->left)
6824 p->left->parent = p;
6825 t->right = p;
6826
6827 p->balance = t->balance < 0;
6828 r->balance = -(t->balance > 0);
6829 t->balance = 0;
6830
6831 s = p->parent;
6832 p->parent = t;
6833 r->parent = t;
6834 t->parent = s;
6835 if (s)
6836 {
6837 if (s->left == p)
6838 s->left = t;
6839 else
6840 s->right = t;
6841 }
6842 else
6843 constructor_pending_elts = t;
6844 }
6845 break;
6846 }
6847 else
6848 {
6849 /* p->balance == +1; growth of left side balances the node. */
6850 p->balance = 0;
6851 break;
6852 }
6853 }
6854 else /* r == p->right */
6855 {
6856 if (p->balance == 0)
6857 /* Growth propagation from right side. */
6858 p->balance++;
6859 else if (p->balance > 0)
6860 {
6861 if (r->balance > 0)
6862 {
6863 /* R rotation. */
6864 p->right = r->left;
6865 if (p->right)
6866 p->right->parent = p;
6867 r->left = p;
6868
6869 p->balance = 0;
6870 r->balance = 0;
6871
6872 s = p->parent;
6873 p->parent = r;
6874 r->parent = s;
6875 if (s)
6876 {
6877 if (s->left == p)
6878 s->left = r;
6879 else
6880 s->right = r;
6881 }
6882 else
6883 constructor_pending_elts = r;
6884 }
6885 else /* r->balance == -1 */
6886 {
6887 /* RL rotation */
6888 struct init_node *t = r->left;
6889
6890 r->left = t->right;
6891 if (r->left)
6892 r->left->parent = r;
6893 t->right = r;
6894
6895 p->right = t->left;
6896 if (p->right)
6897 p->right->parent = p;
6898 t->left = p;
6899
6900 r->balance = (t->balance < 0);
6901 p->balance = -(t->balance > 0);
6902 t->balance = 0;
6903
6904 s = p->parent;
6905 p->parent = t;
6906 r->parent = t;
6907 t->parent = s;
6908 if (s)
6909 {
6910 if (s->left == p)
6911 s->left = t;
6912 else
6913 s->right = t;
6914 }
6915 else
6916 constructor_pending_elts = t;
6917 }
6918 break;
6919 }
6920 else
6921 {
6922 /* p->balance == -1; growth of right side balances the node. */
6923 p->balance = 0;
6924 break;
6925 }
6926 }
6927
6928 r = p;
6929 p = p->parent;
6930 }
6931 }
6932
6933 /* Build AVL tree from a sorted chain. */
6934
6935 static void
6936 set_nonincremental_init (void)
6937 {
6938 unsigned HOST_WIDE_INT ix;
6939 tree index, value;
6940
6941 if (TREE_CODE (constructor_type) != RECORD_TYPE
6942 && TREE_CODE (constructor_type) != ARRAY_TYPE)
6943 return;
6944
6945 FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
6946 add_pending_init (index, value, NULL_TREE, false);
6947 constructor_elements = 0;
6948 if (TREE_CODE (constructor_type) == RECORD_TYPE)
6949 {
6950 constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
6951 /* Skip any nameless bit fields at the beginning. */
6952 while (constructor_unfilled_fields != 0
6953 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
6954 && DECL_NAME (constructor_unfilled_fields) == 0)
6955 constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
6956
6957 }
6958 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
6959 {
6960 if (TYPE_DOMAIN (constructor_type))
6961 constructor_unfilled_index
6962 = convert (bitsizetype,
6963 TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
6964 else
6965 constructor_unfilled_index = bitsize_zero_node;
6966 }
6967 constructor_incremental = 0;
6968 }
6969
6970 /* Build AVL tree from a string constant. */
6971
6972 static void
6973 set_nonincremental_init_from_string (tree str)
6974 {
6975 tree value, purpose, type;
6976 HOST_WIDE_INT val[2];
6977 const char *p, *end;
6978 int byte, wchar_bytes, charwidth, bitpos;
6979
6980 gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
6981
6982 wchar_bytes = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str))) / BITS_PER_UNIT;
6983 charwidth = TYPE_PRECISION (char_type_node);
6984 type = TREE_TYPE (constructor_type);
6985 p = TREE_STRING_POINTER (str);
6986 end = p + TREE_STRING_LENGTH (str);
6987
6988 for (purpose = bitsize_zero_node;
6989 p < end && !tree_int_cst_lt (constructor_max_index, purpose);
6990 purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
6991 {
6992 if (wchar_bytes == 1)
6993 {
6994 val[1] = (unsigned char) *p++;
6995 val[0] = 0;
6996 }
6997 else
6998 {
6999 val[0] = 0;
7000 val[1] = 0;
7001 for (byte = 0; byte < wchar_bytes; byte++)
7002 {
7003 if (BYTES_BIG_ENDIAN)
7004 bitpos = (wchar_bytes - byte - 1) * charwidth;
7005 else
7006 bitpos = byte * charwidth;
7007 val[bitpos < HOST_BITS_PER_WIDE_INT]
7008 |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
7009 << (bitpos % HOST_BITS_PER_WIDE_INT);
7010 }
7011 }
7012
7013 if (!TYPE_UNSIGNED (type))
7014 {
7015 bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
7016 if (bitpos < HOST_BITS_PER_WIDE_INT)
7017 {
7018 if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
7019 {
7020 val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
7021 val[0] = -1;
7022 }
7023 }
7024 else if (bitpos == HOST_BITS_PER_WIDE_INT)
7025 {
7026 if (val[1] < 0)
7027 val[0] = -1;
7028 }
7029 else if (val[0] & (((HOST_WIDE_INT) 1)
7030 << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
7031 val[0] |= ((HOST_WIDE_INT) -1)
7032 << (bitpos - HOST_BITS_PER_WIDE_INT);
7033 }
7034
7035 value = build_int_cst_wide (type, val[1], val[0]);
7036 add_pending_init (purpose, value, NULL_TREE, false);
7037 }
7038
7039 constructor_incremental = 0;
7040 }
7041
7042 /* Return value of FIELD in pending initializer or zero if the field was
7043 not initialized yet. */
7044
7045 static tree
7046 find_init_member (tree field)
7047 {
7048 struct init_node *p;
7049
7050 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7051 {
7052 if (constructor_incremental
7053 && tree_int_cst_lt (field, constructor_unfilled_index))
7054 set_nonincremental_init ();
7055
7056 p = constructor_pending_elts;
7057 while (p)
7058 {
7059 if (tree_int_cst_lt (field, p->purpose))
7060 p = p->left;
7061 else if (tree_int_cst_lt (p->purpose, field))
7062 p = p->right;
7063 else
7064 return p->value;
7065 }
7066 }
7067 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
7068 {
7069 tree bitpos = bit_position (field);
7070
7071 if (constructor_incremental
7072 && (!constructor_unfilled_fields
7073 || tree_int_cst_lt (bitpos,
7074 bit_position (constructor_unfilled_fields))))
7075 set_nonincremental_init ();
7076
7077 p = constructor_pending_elts;
7078 while (p)
7079 {
7080 if (field == p->purpose)
7081 return p->value;
7082 else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
7083 p = p->left;
7084 else
7085 p = p->right;
7086 }
7087 }
7088 else if (TREE_CODE (constructor_type) == UNION_TYPE)
7089 {
7090 if (!VEC_empty (constructor_elt, constructor_elements)
7091 && (VEC_last (constructor_elt, constructor_elements)->index
7092 == field))
7093 return VEC_last (constructor_elt, constructor_elements)->value;
7094 }
7095 return 0;
7096 }
7097
7098 /* "Output" the next constructor element.
7099 At top level, really output it to assembler code now.
7100 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
7101 If ORIGTYPE is not NULL_TREE, it is the original type of VALUE.
7102 TYPE is the data type that the containing data type wants here.
7103 FIELD is the field (a FIELD_DECL) or the index that this element fills.
7104 If VALUE is a string constant, STRICT_STRING is true if it is
7105 unparenthesized or we should not warn here for it being parenthesized.
7106 For other types of VALUE, STRICT_STRING is not used.
7107
7108 PENDING if non-nil means output pending elements that belong
7109 right after this element. (PENDING is normally 1;
7110 it is 0 while outputting pending elements, to avoid recursion.)
7111
7112 IMPLICIT is true if value comes from pop_init_level (1),
7113 the new initializer has been merged with the existing one
7114 and thus no warnings should be emitted about overriding an
7115 existing initializer. */
7116
7117 static void
7118 output_init_element (tree value, tree origtype, bool strict_string, tree type,
7119 tree field, int pending, bool implicit)
7120 {
7121 tree semantic_type = NULL_TREE;
7122 constructor_elt *celt;
7123 bool maybe_const = true;
7124 bool npc;
7125
7126 if (type == error_mark_node || value == error_mark_node)
7127 {
7128 constructor_erroneous = 1;
7129 return;
7130 }
7131 if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
7132 && (TREE_CODE (value) == STRING_CST
7133 || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
7134 && !(TREE_CODE (value) == STRING_CST
7135 && TREE_CODE (type) == ARRAY_TYPE
7136 && INTEGRAL_TYPE_P (TREE_TYPE (type)))
7137 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
7138 TYPE_MAIN_VARIANT (type)))
7139 value = array_to_pointer_conversion (input_location, value);
7140
7141 if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
7142 && require_constant_value && !flag_isoc99 && pending)
7143 {
7144 /* As an extension, allow initializing objects with static storage
7145 duration with compound literals (which are then treated just as
7146 the brace enclosed list they contain). */
7147 tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
7148 value = DECL_INITIAL (decl);
7149 }
7150
7151 npc = null_pointer_constant_p (value);
7152 if (TREE_CODE (value) == EXCESS_PRECISION_EXPR)
7153 {
7154 semantic_type = TREE_TYPE (value);
7155 value = TREE_OPERAND (value, 0);
7156 }
7157 value = c_fully_fold (value, require_constant_value, &maybe_const);
7158
7159 if (value == error_mark_node)
7160 constructor_erroneous = 1;
7161 else if (!TREE_CONSTANT (value))
7162 constructor_constant = 0;
7163 else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
7164 || ((TREE_CODE (constructor_type) == RECORD_TYPE
7165 || TREE_CODE (constructor_type) == UNION_TYPE)
7166 && DECL_C_BIT_FIELD (field)
7167 && TREE_CODE (value) != INTEGER_CST))
7168 constructor_simple = 0;
7169 if (!maybe_const)
7170 constructor_nonconst = 1;
7171
7172 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
7173 {
7174 if (require_constant_value)
7175 {
7176 error_init ("initializer element is not constant");
7177 value = error_mark_node;
7178 }
7179 else if (require_constant_elements)
7180 pedwarn (input_location, 0,
7181 "initializer element is not computable at load time");
7182 }
7183 else if (!maybe_const
7184 && (require_constant_value || require_constant_elements))
7185 pedwarn_init (input_location, 0,
7186 "initializer element is not a constant expression");
7187
7188 /* Issue -Wc++-compat warnings about initializing a bitfield with
7189 enum type. */
7190 if (warn_cxx_compat
7191 && field != NULL_TREE
7192 && TREE_CODE (field) == FIELD_DECL
7193 && DECL_BIT_FIELD_TYPE (field) != NULL_TREE
7194 && (TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field))
7195 != TYPE_MAIN_VARIANT (type))
7196 && TREE_CODE (DECL_BIT_FIELD_TYPE (field)) == ENUMERAL_TYPE)
7197 {
7198 tree checktype = origtype != NULL_TREE ? origtype : TREE_TYPE (value);
7199 if (checktype != error_mark_node
7200 && (TYPE_MAIN_VARIANT (checktype)
7201 != TYPE_MAIN_VARIANT (DECL_BIT_FIELD_TYPE (field))))
7202 warning_init (OPT_Wc___compat,
7203 "enum conversion in initialization is invalid in C++");
7204 }
7205
7206 /* If this field is empty (and not at the end of structure),
7207 don't do anything other than checking the initializer. */
7208 if (field
7209 && (TREE_TYPE (field) == error_mark_node
7210 || (COMPLETE_TYPE_P (TREE_TYPE (field))
7211 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
7212 && (TREE_CODE (constructor_type) == ARRAY_TYPE
7213 || TREE_CHAIN (field)))))
7214 return;
7215
7216 if (semantic_type)
7217 value = build1 (EXCESS_PRECISION_EXPR, semantic_type, value);
7218 value = digest_init (input_location, type, value, origtype, npc,
7219 strict_string, require_constant_value);
7220 if (value == error_mark_node)
7221 {
7222 constructor_erroneous = 1;
7223 return;
7224 }
7225 if (require_constant_value || require_constant_elements)
7226 constant_expression_warning (value);
7227
7228 /* If this element doesn't come next in sequence,
7229 put it on constructor_pending_elts. */
7230 if (TREE_CODE (constructor_type) == ARRAY_TYPE
7231 && (!constructor_incremental
7232 || !tree_int_cst_equal (field, constructor_unfilled_index)))
7233 {
7234 if (constructor_incremental
7235 && tree_int_cst_lt (field, constructor_unfilled_index))
7236 set_nonincremental_init ();
7237
7238 add_pending_init (field, value, origtype, implicit);
7239 return;
7240 }
7241 else if (TREE_CODE (constructor_type) == RECORD_TYPE
7242 && (!constructor_incremental
7243 || field != constructor_unfilled_fields))
7244 {
7245 /* We do this for records but not for unions. In a union,
7246 no matter which field is specified, it can be initialized
7247 right away since it starts at the beginning of the union. */
7248 if (constructor_incremental)
7249 {
7250 if (!constructor_unfilled_fields)
7251 set_nonincremental_init ();
7252 else
7253 {
7254 tree bitpos, unfillpos;
7255
7256 bitpos = bit_position (field);
7257 unfillpos = bit_position (constructor_unfilled_fields);
7258
7259 if (tree_int_cst_lt (bitpos, unfillpos))
7260 set_nonincremental_init ();
7261 }
7262 }
7263
7264 add_pending_init (field, value, origtype, implicit);
7265 return;
7266 }
7267 else if (TREE_CODE (constructor_type) == UNION_TYPE
7268 && !VEC_empty (constructor_elt, constructor_elements))
7269 {
7270 if (!implicit)
7271 {
7272 if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
7273 constructor_elements)->value))
7274 warning_init (0,
7275 "initialized field with side-effects overwritten");
7276 else if (warn_override_init)
7277 warning_init (OPT_Woverride_init, "initialized field overwritten");
7278 }
7279
7280 /* We can have just one union field set. */
7281 constructor_elements = 0;
7282 }
7283
7284 /* Otherwise, output this element either to
7285 constructor_elements or to the assembler file. */
7286
7287 celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
7288 celt->index = field;
7289 celt->value = value;
7290
7291 /* Advance the variable that indicates sequential elements output. */
7292 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7293 constructor_unfilled_index
7294 = size_binop (PLUS_EXPR, constructor_unfilled_index,
7295 bitsize_one_node);
7296 else if (TREE_CODE (constructor_type) == RECORD_TYPE)
7297 {
7298 constructor_unfilled_fields
7299 = TREE_CHAIN (constructor_unfilled_fields);
7300
7301 /* Skip any nameless bit fields. */
7302 while (constructor_unfilled_fields != 0
7303 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
7304 && DECL_NAME (constructor_unfilled_fields) == 0)
7305 constructor_unfilled_fields =
7306 TREE_CHAIN (constructor_unfilled_fields);
7307 }
7308 else if (TREE_CODE (constructor_type) == UNION_TYPE)
7309 constructor_unfilled_fields = 0;
7310
7311 /* Now output any pending elements which have become next. */
7312 if (pending)
7313 output_pending_init_elements (0);
7314 }
7315
7316 /* Output any pending elements which have become next.
7317 As we output elements, constructor_unfilled_{fields,index}
7318 advances, which may cause other elements to become next;
7319 if so, they too are output.
7320
7321 If ALL is 0, we return when there are
7322 no more pending elements to output now.
7323
7324 If ALL is 1, we output space as necessary so that
7325 we can output all the pending elements. */
7326
7327 static void
7328 output_pending_init_elements (int all)
7329 {
7330 struct init_node *elt = constructor_pending_elts;
7331 tree next;
7332
7333 retry:
7334
7335 /* Look through the whole pending tree.
7336 If we find an element that should be output now,
7337 output it. Otherwise, set NEXT to the element
7338 that comes first among those still pending. */
7339
7340 next = 0;
7341 while (elt)
7342 {
7343 if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7344 {
7345 if (tree_int_cst_equal (elt->purpose,
7346 constructor_unfilled_index))
7347 output_init_element (elt->value, elt->origtype, true,
7348 TREE_TYPE (constructor_type),
7349 constructor_unfilled_index, 0, false);
7350 else if (tree_int_cst_lt (constructor_unfilled_index,
7351 elt->purpose))
7352 {
7353 /* Advance to the next smaller node. */
7354 if (elt->left)
7355 elt = elt->left;
7356 else
7357 {
7358 /* We have reached the smallest node bigger than the
7359 current unfilled index. Fill the space first. */
7360 next = elt->purpose;
7361 break;
7362 }
7363 }
7364 else
7365 {
7366 /* Advance to the next bigger node. */
7367 if (elt->right)
7368 elt = elt->right;
7369 else
7370 {
7371 /* We have reached the biggest node in a subtree. Find
7372 the parent of it, which is the next bigger node. */
7373 while (elt->parent && elt->parent->right == elt)
7374 elt = elt->parent;
7375 elt = elt->parent;
7376 if (elt && tree_int_cst_lt (constructor_unfilled_index,
7377 elt->purpose))
7378 {
7379 next = elt->purpose;
7380 break;
7381 }
7382 }
7383 }
7384 }
7385 else if (TREE_CODE (constructor_type) == RECORD_TYPE
7386 || TREE_CODE (constructor_type) == UNION_TYPE)
7387 {
7388 tree ctor_unfilled_bitpos, elt_bitpos;
7389
7390 /* If the current record is complete we are done. */
7391 if (constructor_unfilled_fields == 0)
7392 break;
7393
7394 ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
7395 elt_bitpos = bit_position (elt->purpose);
7396 /* We can't compare fields here because there might be empty
7397 fields in between. */
7398 if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
7399 {
7400 constructor_unfilled_fields = elt->purpose;
7401 output_init_element (elt->value, elt->origtype, true,
7402 TREE_TYPE (elt->purpose),
7403 elt->purpose, 0, false);
7404 }
7405 else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
7406 {
7407 /* Advance to the next smaller node. */
7408 if (elt->left)
7409 elt = elt->left;
7410 else
7411 {
7412 /* We have reached the smallest node bigger than the
7413 current unfilled field. Fill the space first. */
7414 next = elt->purpose;
7415 break;
7416 }
7417 }
7418 else
7419 {
7420 /* Advance to the next bigger node. */
7421 if (elt->right)
7422 elt = elt->right;
7423 else
7424 {
7425 /* We have reached the biggest node in a subtree. Find
7426 the parent of it, which is the next bigger node. */
7427 while (elt->parent && elt->parent->right == elt)
7428 elt = elt->parent;
7429 elt = elt->parent;
7430 if (elt
7431 && (tree_int_cst_lt (ctor_unfilled_bitpos,
7432 bit_position (elt->purpose))))
7433 {
7434 next = elt->purpose;
7435 break;
7436 }
7437 }
7438 }
7439 }
7440 }
7441
7442 /* Ordinarily return, but not if we want to output all
7443 and there are elements left. */
7444 if (!(all && next != 0))
7445 return;
7446
7447 /* If it's not incremental, just skip over the gap, so that after
7448 jumping to retry we will output the next successive element. */
7449 if (TREE_CODE (constructor_type) == RECORD_TYPE
7450 || TREE_CODE (constructor_type) == UNION_TYPE)
7451 constructor_unfilled_fields = next;
7452 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7453 constructor_unfilled_index = next;
7454
7455 /* ELT now points to the node in the pending tree with the next
7456 initializer to output. */
7457 goto retry;
7458 }
7459 \f
7460 /* Add one non-braced element to the current constructor level.
7461 This adjusts the current position within the constructor's type.
7462 This may also start or terminate implicit levels
7463 to handle a partly-braced initializer.
7464
7465 Once this has found the correct level for the new element,
7466 it calls output_init_element.
7467
7468 IMPLICIT is true if value comes from pop_init_level (1),
7469 the new initializer has been merged with the existing one
7470 and thus no warnings should be emitted about overriding an
7471 existing initializer. */
7472
7473 void
7474 process_init_element (struct c_expr value, bool implicit)
7475 {
7476 tree orig_value = value.value;
7477 int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
7478 bool strict_string = value.original_code == STRING_CST;
7479
7480 designator_depth = 0;
7481 designator_erroneous = 0;
7482
7483 /* Handle superfluous braces around string cst as in
7484 char x[] = {"foo"}; */
7485 if (string_flag
7486 && constructor_type
7487 && TREE_CODE (constructor_type) == ARRAY_TYPE
7488 && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
7489 && integer_zerop (constructor_unfilled_index))
7490 {
7491 if (constructor_stack->replacement_value.value)
7492 error_init ("excess elements in char array initializer");
7493 constructor_stack->replacement_value = value;
7494 return;
7495 }
7496
7497 if (constructor_stack->replacement_value.value != 0)
7498 {
7499 error_init ("excess elements in struct initializer");
7500 return;
7501 }
7502
7503 /* Ignore elements of a brace group if it is entirely superfluous
7504 and has already been diagnosed. */
7505 if (constructor_type == 0)
7506 return;
7507
7508 /* If we've exhausted any levels that didn't have braces,
7509 pop them now. */
7510 while (constructor_stack->implicit)
7511 {
7512 if ((TREE_CODE (constructor_type) == RECORD_TYPE
7513 || TREE_CODE (constructor_type) == UNION_TYPE)
7514 && constructor_fields == 0)
7515 process_init_element (pop_init_level (1), true);
7516 else if ((TREE_CODE (constructor_type) == ARRAY_TYPE
7517 || TREE_CODE (constructor_type) == VECTOR_TYPE)
7518 && (constructor_max_index == 0
7519 || tree_int_cst_lt (constructor_max_index,
7520 constructor_index)))
7521 process_init_element (pop_init_level (1), true);
7522 else
7523 break;
7524 }
7525
7526 /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once. */
7527 if (constructor_range_stack)
7528 {
7529 /* If value is a compound literal and we'll be just using its
7530 content, don't put it into a SAVE_EXPR. */
7531 if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
7532 || !require_constant_value
7533 || flag_isoc99)
7534 {
7535 tree semantic_type = NULL_TREE;
7536 if (TREE_CODE (value.value) == EXCESS_PRECISION_EXPR)
7537 {
7538 semantic_type = TREE_TYPE (value.value);
7539 value.value = TREE_OPERAND (value.value, 0);
7540 }
7541 value.value = c_save_expr (value.value);
7542 if (semantic_type)
7543 value.value = build1 (EXCESS_PRECISION_EXPR, semantic_type,
7544 value.value);
7545 }
7546 }
7547
7548 while (1)
7549 {
7550 if (TREE_CODE (constructor_type) == RECORD_TYPE)
7551 {
7552 tree fieldtype;
7553 enum tree_code fieldcode;
7554
7555 if (constructor_fields == 0)
7556 {
7557 pedwarn_init (input_location, 0,
7558 "excess elements in struct initializer");
7559 break;
7560 }
7561
7562 fieldtype = TREE_TYPE (constructor_fields);
7563 if (fieldtype != error_mark_node)
7564 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
7565 fieldcode = TREE_CODE (fieldtype);
7566
7567 /* Error for non-static initialization of a flexible array member. */
7568 if (fieldcode == ARRAY_TYPE
7569 && !require_constant_value
7570 && TYPE_SIZE (fieldtype) == NULL_TREE
7571 && TREE_CHAIN (constructor_fields) == NULL_TREE)
7572 {
7573 error_init ("non-static initialization of a flexible array member");
7574 break;
7575 }
7576
7577 /* Accept a string constant to initialize a subarray. */
7578 if (value.value != 0
7579 && fieldcode == ARRAY_TYPE
7580 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
7581 && string_flag)
7582 value.value = orig_value;
7583 /* Otherwise, if we have come to a subaggregate,
7584 and we don't have an element of its type, push into it. */
7585 else if (value.value != 0
7586 && value.value != error_mark_node
7587 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
7588 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
7589 || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE))
7590 {
7591 push_init_level (1);
7592 continue;
7593 }
7594
7595 if (value.value)
7596 {
7597 push_member_name (constructor_fields);
7598 output_init_element (value.value, value.original_type,
7599 strict_string, fieldtype,
7600 constructor_fields, 1, implicit);
7601 RESTORE_SPELLING_DEPTH (constructor_depth);
7602 }
7603 else
7604 /* Do the bookkeeping for an element that was
7605 directly output as a constructor. */
7606 {
7607 /* For a record, keep track of end position of last field. */
7608 if (DECL_SIZE (constructor_fields))
7609 constructor_bit_index
7610 = size_binop (PLUS_EXPR,
7611 bit_position (constructor_fields),
7612 DECL_SIZE (constructor_fields));
7613
7614 /* If the current field was the first one not yet written out,
7615 it isn't now, so update. */
7616 if (constructor_unfilled_fields == constructor_fields)
7617 {
7618 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
7619 /* Skip any nameless bit fields. */
7620 while (constructor_unfilled_fields != 0
7621 && DECL_C_BIT_FIELD (constructor_unfilled_fields)
7622 && DECL_NAME (constructor_unfilled_fields) == 0)
7623 constructor_unfilled_fields =
7624 TREE_CHAIN (constructor_unfilled_fields);
7625 }
7626 }
7627
7628 constructor_fields = TREE_CHAIN (constructor_fields);
7629 /* Skip any nameless bit fields at the beginning. */
7630 while (constructor_fields != 0
7631 && DECL_C_BIT_FIELD (constructor_fields)
7632 && DECL_NAME (constructor_fields) == 0)
7633 constructor_fields = TREE_CHAIN (constructor_fields);
7634 }
7635 else if (TREE_CODE (constructor_type) == UNION_TYPE)
7636 {
7637 tree fieldtype;
7638 enum tree_code fieldcode;
7639
7640 if (constructor_fields == 0)
7641 {
7642 pedwarn_init (input_location, 0,
7643 "excess elements in union initializer");
7644 break;
7645 }
7646
7647 fieldtype = TREE_TYPE (constructor_fields);
7648 if (fieldtype != error_mark_node)
7649 fieldtype = TYPE_MAIN_VARIANT (fieldtype);
7650 fieldcode = TREE_CODE (fieldtype);
7651
7652 /* Warn that traditional C rejects initialization of unions.
7653 We skip the warning if the value is zero. This is done
7654 under the assumption that the zero initializer in user
7655 code appears conditioned on e.g. __STDC__ to avoid
7656 "missing initializer" warnings and relies on default
7657 initialization to zero in the traditional C case.
7658 We also skip the warning if the initializer is designated,
7659 again on the assumption that this must be conditional on
7660 __STDC__ anyway (and we've already complained about the
7661 member-designator already). */
7662 if (!in_system_header && !constructor_designated
7663 && !(value.value && (integer_zerop (value.value)
7664 || real_zerop (value.value))))
7665 warning (OPT_Wtraditional, "traditional C rejects initialization "
7666 "of unions");
7667
7668 /* Accept a string constant to initialize a subarray. */
7669 if (value.value != 0
7670 && fieldcode == ARRAY_TYPE
7671 && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
7672 && string_flag)
7673 value.value = orig_value;
7674 /* Otherwise, if we have come to a subaggregate,
7675 and we don't have an element of its type, push into it. */
7676 else if (value.value != 0
7677 && value.value != error_mark_node
7678 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
7679 && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
7680 || fieldcode == UNION_TYPE || fieldcode == VECTOR_TYPE))
7681 {
7682 push_init_level (1);
7683 continue;
7684 }
7685
7686 if (value.value)
7687 {
7688 push_member_name (constructor_fields);
7689 output_init_element (value.value, value.original_type,
7690 strict_string, fieldtype,
7691 constructor_fields, 1, implicit);
7692 RESTORE_SPELLING_DEPTH (constructor_depth);
7693 }
7694 else
7695 /* Do the bookkeeping for an element that was
7696 directly output as a constructor. */
7697 {
7698 constructor_bit_index = DECL_SIZE (constructor_fields);
7699 constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
7700 }
7701
7702 constructor_fields = 0;
7703 }
7704 else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
7705 {
7706 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
7707 enum tree_code eltcode = TREE_CODE (elttype);
7708
7709 /* Accept a string constant to initialize a subarray. */
7710 if (value.value != 0
7711 && eltcode == ARRAY_TYPE
7712 && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
7713 && string_flag)
7714 value.value = orig_value;
7715 /* Otherwise, if we have come to a subaggregate,
7716 and we don't have an element of its type, push into it. */
7717 else if (value.value != 0
7718 && value.value != error_mark_node
7719 && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
7720 && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
7721 || eltcode == UNION_TYPE || eltcode == VECTOR_TYPE))
7722 {
7723 push_init_level (1);
7724 continue;
7725 }
7726
7727 if (constructor_max_index != 0
7728 && (tree_int_cst_lt (constructor_max_index, constructor_index)
7729 || integer_all_onesp (constructor_max_index)))
7730 {
7731 pedwarn_init (input_location, 0,
7732 "excess elements in array initializer");
7733 break;
7734 }
7735
7736 /* Now output the actual element. */
7737 if (value.value)
7738 {
7739 push_array_bounds (tree_low_cst (constructor_index, 1));
7740 output_init_element (value.value, value.original_type,
7741 strict_string, elttype,
7742 constructor_index, 1, implicit);
7743 RESTORE_SPELLING_DEPTH (constructor_depth);
7744 }
7745
7746 constructor_index
7747 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
7748
7749 if (!value.value)
7750 /* If we are doing the bookkeeping for an element that was
7751 directly output as a constructor, we must update
7752 constructor_unfilled_index. */
7753 constructor_unfilled_index = constructor_index;
7754 }
7755 else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
7756 {
7757 tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
7758
7759 /* Do a basic check of initializer size. Note that vectors
7760 always have a fixed size derived from their type. */
7761 if (tree_int_cst_lt (constructor_max_index, constructor_index))
7762 {
7763 pedwarn_init (input_location, 0,
7764 "excess elements in vector initializer");
7765 break;
7766 }
7767
7768 /* Now output the actual element. */
7769 if (value.value)
7770 {
7771 if (TREE_CODE (value.value) == VECTOR_CST)
7772 elttype = TYPE_MAIN_VARIANT (constructor_type);
7773 output_init_element (value.value, value.original_type,
7774 strict_string, elttype,
7775 constructor_index, 1, implicit);
7776 }
7777
7778 constructor_index
7779 = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
7780
7781 if (!value.value)
7782 /* If we are doing the bookkeeping for an element that was
7783 directly output as a constructor, we must update
7784 constructor_unfilled_index. */
7785 constructor_unfilled_index = constructor_index;
7786 }
7787
7788 /* Handle the sole element allowed in a braced initializer
7789 for a scalar variable. */
7790 else if (constructor_type != error_mark_node
7791 && constructor_fields == 0)
7792 {
7793 pedwarn_init (input_location, 0,
7794 "excess elements in scalar initializer");
7795 break;
7796 }
7797 else
7798 {
7799 if (value.value)
7800 output_init_element (value.value, value.original_type,
7801 strict_string, constructor_type,
7802 NULL_TREE, 1, implicit);
7803 constructor_fields = 0;
7804 }
7805
7806 /* Handle range initializers either at this level or anywhere higher
7807 in the designator stack. */
7808 if (constructor_range_stack)
7809 {
7810 struct constructor_range_stack *p, *range_stack;
7811 int finish = 0;
7812
7813 range_stack = constructor_range_stack;
7814 constructor_range_stack = 0;
7815 while (constructor_stack != range_stack->stack)
7816 {
7817 gcc_assert (constructor_stack->implicit);
7818 process_init_element (pop_init_level (1), true);
7819 }
7820 for (p = range_stack;
7821 !p->range_end || tree_int_cst_equal (p->index, p->range_end);
7822 p = p->prev)
7823 {
7824 gcc_assert (constructor_stack->implicit);
7825 process_init_element (pop_init_level (1), true);
7826 }
7827
7828 p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
7829 if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
7830 finish = 1;
7831
7832 while (1)
7833 {
7834 constructor_index = p->index;
7835 constructor_fields = p->fields;
7836 if (finish && p->range_end && p->index == p->range_start)
7837 {
7838 finish = 0;
7839 p->prev = 0;
7840 }
7841 p = p->next;
7842 if (!p)
7843 break;
7844 push_init_level (2);
7845 p->stack = constructor_stack;
7846 if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
7847 p->index = p->range_start;
7848 }
7849
7850 if (!finish)
7851 constructor_range_stack = range_stack;
7852 continue;
7853 }
7854
7855 break;
7856 }
7857
7858 constructor_range_stack = 0;
7859 }
7860 \f
7861 /* Build a complete asm-statement, whose components are a CV_QUALIFIER
7862 (guaranteed to be 'volatile' or null) and ARGS (represented using
7863 an ASM_EXPR node). */
7864 tree
7865 build_asm_stmt (tree cv_qualifier, tree args)
7866 {
7867 if (!ASM_VOLATILE_P (args) && cv_qualifier)
7868 ASM_VOLATILE_P (args) = 1;
7869 return add_stmt (args);
7870 }
7871
7872 /* Build an asm-expr, whose components are a STRING, some OUTPUTS,
7873 some INPUTS, and some CLOBBERS. The latter three may be NULL.
7874 SIMPLE indicates whether there was anything at all after the
7875 string in the asm expression -- asm("blah") and asm("blah" : )
7876 are subtly different. We use a ASM_EXPR node to represent this. */
7877 tree
7878 build_asm_expr (location_t loc, tree string, tree outputs, tree inputs,
7879 tree clobbers, bool simple)
7880 {
7881 tree tail;
7882 tree args;
7883 int i;
7884 const char *constraint;
7885 const char **oconstraints;
7886 bool allows_mem, allows_reg, is_inout;
7887 int ninputs, noutputs;
7888
7889 ninputs = list_length (inputs);
7890 noutputs = list_length (outputs);
7891 oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
7892
7893 string = resolve_asm_operand_names (string, outputs, inputs);
7894
7895 /* Remove output conversions that change the type but not the mode. */
7896 for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
7897 {
7898 tree output = TREE_VALUE (tail);
7899
7900 /* ??? Really, this should not be here. Users should be using a
7901 proper lvalue, dammit. But there's a long history of using casts
7902 in the output operands. In cases like longlong.h, this becomes a
7903 primitive form of typechecking -- if the cast can be removed, then
7904 the output operand had a type of the proper width; otherwise we'll
7905 get an error. Gross, but ... */
7906 STRIP_NOPS (output);
7907
7908 if (!lvalue_or_else (output, lv_asm))
7909 output = error_mark_node;
7910
7911 if (output != error_mark_node
7912 && (TREE_READONLY (output)
7913 || TYPE_READONLY (TREE_TYPE (output))
7914 || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
7915 || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
7916 && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
7917 readonly_error (output, lv_asm);
7918
7919 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
7920 oconstraints[i] = constraint;
7921
7922 if (parse_output_constraint (&constraint, i, ninputs, noutputs,
7923 &allows_mem, &allows_reg, &is_inout))
7924 {
7925 /* If the operand is going to end up in memory,
7926 mark it addressable. */
7927 if (!allows_reg && !c_mark_addressable (output))
7928 output = error_mark_node;
7929 }
7930 else
7931 output = error_mark_node;
7932
7933 TREE_VALUE (tail) = output;
7934 }
7935
7936 for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
7937 {
7938 tree input;
7939
7940 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
7941 input = TREE_VALUE (tail);
7942
7943 if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
7944 oconstraints, &allows_mem, &allows_reg))
7945 {
7946 /* If the operand is going to end up in memory,
7947 mark it addressable. */
7948 if (!allows_reg && allows_mem)
7949 {
7950 /* Strip the nops as we allow this case. FIXME, this really
7951 should be rejected or made deprecated. */
7952 STRIP_NOPS (input);
7953 if (!c_mark_addressable (input))
7954 input = error_mark_node;
7955 }
7956 }
7957 else
7958 input = error_mark_node;
7959
7960 TREE_VALUE (tail) = input;
7961 }
7962
7963 args = build_stmt (loc, ASM_EXPR, string, outputs, inputs, clobbers);
7964
7965 /* asm statements without outputs, including simple ones, are treated
7966 as volatile. */
7967 ASM_INPUT_P (args) = simple;
7968 ASM_VOLATILE_P (args) = (noutputs == 0);
7969
7970 return args;
7971 }
7972 \f
7973 /* Generate a goto statement to LABEL. LOC is the location of the
7974 GOTO. */
7975
7976 tree
7977 c_finish_goto_label (location_t loc, tree label)
7978 {
7979 tree decl = lookup_label_for_goto (loc, label);
7980 if (!decl)
7981 return NULL_TREE;
7982 TREE_USED (decl) = 1;
7983 {
7984 tree t = build1 (GOTO_EXPR, void_type_node, decl);
7985 SET_EXPR_LOCATION (t, loc);
7986 return add_stmt (t);
7987 }
7988 }
7989
7990 /* Generate a computed goto statement to EXPR. LOC is the location of
7991 the GOTO. */
7992
7993 tree
7994 c_finish_goto_ptr (location_t loc, tree expr)
7995 {
7996 tree t;
7997 pedwarn (loc, OPT_pedantic, "ISO C forbids %<goto *expr;%>");
7998 expr = c_fully_fold (expr, false, NULL);
7999 expr = convert (ptr_type_node, expr);
8000 t = build1 (GOTO_EXPR, void_type_node, expr);
8001 SET_EXPR_LOCATION (t, loc);
8002 return add_stmt (t);
8003 }
8004
8005 /* Generate a C `return' statement. RETVAL is the expression for what
8006 to return, or a null pointer for `return;' with no value. LOC is
8007 the location of the return statement. If ORIGTYPE is not NULL_TREE, it
8008 is the original type of RETVAL. */
8009
8010 tree
8011 c_finish_return (location_t loc, tree retval, tree origtype)
8012 {
8013 tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
8014 bool no_warning = false;
8015 bool npc = false;
8016
8017 if (TREE_THIS_VOLATILE (current_function_decl))
8018 warning_at (loc, 0,
8019 "function declared %<noreturn%> has a %<return%> statement");
8020
8021 if (retval)
8022 {
8023 tree semantic_type = NULL_TREE;
8024 npc = null_pointer_constant_p (retval);
8025 if (TREE_CODE (retval) == EXCESS_PRECISION_EXPR)
8026 {
8027 semantic_type = TREE_TYPE (retval);
8028 retval = TREE_OPERAND (retval, 0);
8029 }
8030 retval = c_fully_fold (retval, false, NULL);
8031 if (semantic_type)
8032 retval = build1 (EXCESS_PRECISION_EXPR, semantic_type, retval);
8033 }
8034
8035 if (!retval)
8036 {
8037 current_function_returns_null = 1;
8038 if ((warn_return_type || flag_isoc99)
8039 && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
8040 {
8041 pedwarn_c99 (loc, flag_isoc99 ? 0 : OPT_Wreturn_type,
8042 "%<return%> with no value, in "
8043 "function returning non-void");
8044 no_warning = true;
8045 }
8046 }
8047 else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
8048 {
8049 current_function_returns_null = 1;
8050 if (TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
8051 pedwarn (loc, 0,
8052 "%<return%> with a value, in function returning void");
8053 else
8054 pedwarn (loc, OPT_pedantic, "ISO C forbids "
8055 "%<return%> with expression, in function returning void");
8056 }
8057 else
8058 {
8059 tree t = convert_for_assignment (loc, valtype, retval, origtype,
8060 ic_return,
8061 npc, NULL_TREE, NULL_TREE, 0);
8062 tree res = DECL_RESULT (current_function_decl);
8063 tree inner;
8064
8065 current_function_returns_value = 1;
8066 if (t == error_mark_node)
8067 return NULL_TREE;
8068
8069 inner = t = convert (TREE_TYPE (res), t);
8070
8071 /* Strip any conversions, additions, and subtractions, and see if
8072 we are returning the address of a local variable. Warn if so. */
8073 while (1)
8074 {
8075 switch (TREE_CODE (inner))
8076 {
8077 CASE_CONVERT:
8078 case NON_LVALUE_EXPR:
8079 case PLUS_EXPR:
8080 case POINTER_PLUS_EXPR:
8081 inner = TREE_OPERAND (inner, 0);
8082 continue;
8083
8084 case MINUS_EXPR:
8085 /* If the second operand of the MINUS_EXPR has a pointer
8086 type (or is converted from it), this may be valid, so
8087 don't give a warning. */
8088 {
8089 tree op1 = TREE_OPERAND (inner, 1);
8090
8091 while (!POINTER_TYPE_P (TREE_TYPE (op1))
8092 && (CONVERT_EXPR_P (op1)
8093 || TREE_CODE (op1) == NON_LVALUE_EXPR))
8094 op1 = TREE_OPERAND (op1, 0);
8095
8096 if (POINTER_TYPE_P (TREE_TYPE (op1)))
8097 break;
8098
8099 inner = TREE_OPERAND (inner, 0);
8100 continue;
8101 }
8102
8103 case ADDR_EXPR:
8104 inner = TREE_OPERAND (inner, 0);
8105
8106 while (REFERENCE_CLASS_P (inner)
8107 && TREE_CODE (inner) != INDIRECT_REF)
8108 inner = TREE_OPERAND (inner, 0);
8109
8110 if (DECL_P (inner)
8111 && !DECL_EXTERNAL (inner)
8112 && !TREE_STATIC (inner)
8113 && DECL_CONTEXT (inner) == current_function_decl)
8114 warning_at (loc,
8115 0, "function returns address of local variable");
8116 break;
8117
8118 default:
8119 break;
8120 }
8121
8122 break;
8123 }
8124
8125 retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
8126 SET_EXPR_LOCATION (retval, loc);
8127
8128 if (warn_sequence_point)
8129 verify_sequence_points (retval);
8130 }
8131
8132 ret_stmt = build_stmt (loc, RETURN_EXPR, retval);
8133 TREE_NO_WARNING (ret_stmt) |= no_warning;
8134 return add_stmt (ret_stmt);
8135 }
8136 \f
8137 struct c_switch {
8138 /* The SWITCH_EXPR being built. */
8139 tree switch_expr;
8140
8141 /* The original type of the testing expression, i.e. before the
8142 default conversion is applied. */
8143 tree orig_type;
8144
8145 /* A splay-tree mapping the low element of a case range to the high
8146 element, or NULL_TREE if there is no high element. Used to
8147 determine whether or not a new case label duplicates an old case
8148 label. We need a tree, rather than simply a hash table, because
8149 of the GNU case range extension. */
8150 splay_tree cases;
8151
8152 /* The bindings at the point of the switch. This is used for
8153 warnings crossing decls when branching to a case label. */
8154 struct c_spot_bindings *bindings;
8155
8156 /* The next node on the stack. */
8157 struct c_switch *next;
8158 };
8159
8160 /* A stack of the currently active switch statements. The innermost
8161 switch statement is on the top of the stack. There is no need to
8162 mark the stack for garbage collection because it is only active
8163 during the processing of the body of a function, and we never
8164 collect at that point. */
8165
8166 struct c_switch *c_switch_stack;
8167
8168 /* Start a C switch statement, testing expression EXP. Return the new
8169 SWITCH_EXPR. SWITCH_LOC is the location of the `switch'.
8170 SWITCH_COND_LOC is the location of the switch's condition. */
8171
8172 tree
8173 c_start_case (location_t switch_loc,
8174 location_t switch_cond_loc,
8175 tree exp)
8176 {
8177 tree orig_type = error_mark_node;
8178 struct c_switch *cs;
8179
8180 if (exp != error_mark_node)
8181 {
8182 orig_type = TREE_TYPE (exp);
8183
8184 if (!INTEGRAL_TYPE_P (orig_type))
8185 {
8186 if (orig_type != error_mark_node)
8187 {
8188 error_at (switch_cond_loc, "switch quantity not an integer");
8189 orig_type = error_mark_node;
8190 }
8191 exp = integer_zero_node;
8192 }
8193 else
8194 {
8195 tree type = TYPE_MAIN_VARIANT (orig_type);
8196
8197 if (!in_system_header
8198 && (type == long_integer_type_node
8199 || type == long_unsigned_type_node))
8200 warning_at (switch_cond_loc,
8201 OPT_Wtraditional, "%<long%> switch expression not "
8202 "converted to %<int%> in ISO C");
8203
8204 exp = c_fully_fold (exp, false, NULL);
8205 exp = default_conversion (exp);
8206
8207 if (warn_sequence_point)
8208 verify_sequence_points (exp);
8209 }
8210 }
8211
8212 /* Add this new SWITCH_EXPR to the stack. */
8213 cs = XNEW (struct c_switch);
8214 cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
8215 SET_EXPR_LOCATION (cs->switch_expr, switch_loc);
8216 cs->orig_type = orig_type;
8217 cs->cases = splay_tree_new (case_compare, NULL, NULL);
8218 cs->bindings = c_get_switch_bindings ();
8219 cs->next = c_switch_stack;
8220 c_switch_stack = cs;
8221
8222 return add_stmt (cs->switch_expr);
8223 }
8224
8225 /* Process a case label at location LOC. */
8226
8227 tree
8228 do_case (location_t loc, tree low_value, tree high_value)
8229 {
8230 tree label = NULL_TREE;
8231
8232 if (low_value && TREE_CODE (low_value) != INTEGER_CST)
8233 {
8234 low_value = c_fully_fold (low_value, false, NULL);
8235 if (TREE_CODE (low_value) == INTEGER_CST)
8236 pedwarn (input_location, OPT_pedantic,
8237 "case label is not an integer constant expression");
8238 }
8239
8240 if (high_value && TREE_CODE (high_value) != INTEGER_CST)
8241 {
8242 high_value = c_fully_fold (high_value, false, NULL);
8243 if (TREE_CODE (high_value) == INTEGER_CST)
8244 pedwarn (input_location, OPT_pedantic,
8245 "case label is not an integer constant expression");
8246 }
8247
8248 if (c_switch_stack == NULL)
8249 {
8250 if (low_value)
8251 error_at (loc, "case label not within a switch statement");
8252 else
8253 error_at (loc, "%<default%> label not within a switch statement");
8254 return NULL_TREE;
8255 }
8256
8257 if (c_check_switch_jump_warnings (c_switch_stack->bindings,
8258 EXPR_LOCATION (c_switch_stack->switch_expr),
8259 loc))
8260 return NULL_TREE;
8261
8262 label = c_add_case_label (loc, c_switch_stack->cases,
8263 SWITCH_COND (c_switch_stack->switch_expr),
8264 c_switch_stack->orig_type,
8265 low_value, high_value);
8266 if (label == error_mark_node)
8267 label = NULL_TREE;
8268 return label;
8269 }
8270
8271 /* Finish the switch statement. */
8272
8273 void
8274 c_finish_case (tree body)
8275 {
8276 struct c_switch *cs = c_switch_stack;
8277 location_t switch_location;
8278
8279 SWITCH_BODY (cs->switch_expr) = body;
8280
8281 /* Emit warnings as needed. */
8282 switch_location = EXPR_LOCATION (cs->switch_expr);
8283 c_do_switch_warnings (cs->cases, switch_location,
8284 TREE_TYPE (cs->switch_expr),
8285 SWITCH_COND (cs->switch_expr));
8286
8287 /* Pop the stack. */
8288 c_switch_stack = cs->next;
8289 splay_tree_delete (cs->cases);
8290 c_release_switch_bindings (cs->bindings);
8291 XDELETE (cs);
8292 }
8293 \f
8294 /* Emit an if statement. IF_LOCUS is the location of the 'if'. COND,
8295 THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
8296 may be null. NESTED_IF is true if THEN_BLOCK contains another IF
8297 statement, and was not surrounded with parenthesis. */
8298
8299 void
8300 c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
8301 tree else_block, bool nested_if)
8302 {
8303 tree stmt;
8304
8305 /* Diagnose an ambiguous else if if-then-else is nested inside if-then. */
8306 if (warn_parentheses && nested_if && else_block == NULL)
8307 {
8308 tree inner_if = then_block;
8309
8310 /* We know from the grammar productions that there is an IF nested
8311 within THEN_BLOCK. Due to labels and c99 conditional declarations,
8312 it might not be exactly THEN_BLOCK, but should be the last
8313 non-container statement within. */
8314 while (1)
8315 switch (TREE_CODE (inner_if))
8316 {
8317 case COND_EXPR:
8318 goto found;
8319 case BIND_EXPR:
8320 inner_if = BIND_EXPR_BODY (inner_if);
8321 break;
8322 case STATEMENT_LIST:
8323 inner_if = expr_last (then_block);
8324 break;
8325 case TRY_FINALLY_EXPR:
8326 case TRY_CATCH_EXPR:
8327 inner_if = TREE_OPERAND (inner_if, 0);
8328 break;
8329 default:
8330 gcc_unreachable ();
8331 }
8332 found:
8333
8334 if (COND_EXPR_ELSE (inner_if))
8335 warning (OPT_Wparentheses,
8336 "%Hsuggest explicit braces to avoid ambiguous %<else%>",
8337 &if_locus);
8338 }
8339
8340 stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
8341 SET_EXPR_LOCATION (stmt, if_locus);
8342 add_stmt (stmt);
8343 }
8344
8345 /* Emit a general-purpose loop construct. START_LOCUS is the location of
8346 the beginning of the loop. COND is the loop condition. COND_IS_FIRST
8347 is false for DO loops. INCR is the FOR increment expression. BODY is
8348 the statement controlled by the loop. BLAB is the break label. CLAB is
8349 the continue label. Everything is allowed to be NULL. */
8350
8351 void
8352 c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
8353 tree blab, tree clab, bool cond_is_first)
8354 {
8355 tree entry = NULL, exit = NULL, t;
8356
8357 /* If the condition is zero don't generate a loop construct. */
8358 if (cond && integer_zerop (cond))
8359 {
8360 if (cond_is_first)
8361 {
8362 t = build_and_jump (&blab);
8363 SET_EXPR_LOCATION (t, start_locus);
8364 add_stmt (t);
8365 }
8366 }
8367 else
8368 {
8369 tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
8370
8371 /* If we have an exit condition, then we build an IF with gotos either
8372 out of the loop, or to the top of it. If there's no exit condition,
8373 then we just build a jump back to the top. */
8374 exit = build_and_jump (&LABEL_EXPR_LABEL (top));
8375
8376 if (cond && !integer_nonzerop (cond))
8377 {
8378 /* Canonicalize the loop condition to the end. This means
8379 generating a branch to the loop condition. Reuse the
8380 continue label, if possible. */
8381 if (cond_is_first)
8382 {
8383 if (incr || !clab)
8384 {
8385 entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
8386 t = build_and_jump (&LABEL_EXPR_LABEL (entry));
8387 }
8388 else
8389 t = build1 (GOTO_EXPR, void_type_node, clab);
8390 SET_EXPR_LOCATION (t, start_locus);
8391 add_stmt (t);
8392 }
8393
8394 t = build_and_jump (&blab);
8395 exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
8396 if (cond_is_first)
8397 SET_EXPR_LOCATION (exit, start_locus);
8398 else
8399 SET_EXPR_LOCATION (exit, input_location);
8400 }
8401
8402 add_stmt (top);
8403 }
8404
8405 if (body)
8406 add_stmt (body);
8407 if (clab)
8408 add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
8409 if (incr)
8410 add_stmt (incr);
8411 if (entry)
8412 add_stmt (entry);
8413 if (exit)
8414 add_stmt (exit);
8415 if (blab)
8416 add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
8417 }
8418
8419 tree
8420 c_finish_bc_stmt (location_t loc, tree *label_p, bool is_break)
8421 {
8422 bool skip;
8423 tree label = *label_p;
8424
8425 /* In switch statements break is sometimes stylistically used after
8426 a return statement. This can lead to spurious warnings about
8427 control reaching the end of a non-void function when it is
8428 inlined. Note that we are calling block_may_fallthru with
8429 language specific tree nodes; this works because
8430 block_may_fallthru returns true when given something it does not
8431 understand. */
8432 skip = !block_may_fallthru (cur_stmt_list);
8433
8434 if (!label)
8435 {
8436 if (!skip)
8437 *label_p = label = create_artificial_label (loc);
8438 }
8439 else if (TREE_CODE (label) == LABEL_DECL)
8440 ;
8441 else switch (TREE_INT_CST_LOW (label))
8442 {
8443 case 0:
8444 if (is_break)
8445 error_at (loc, "break statement not within loop or switch");
8446 else
8447 error_at (loc, "continue statement not within a loop");
8448 return NULL_TREE;
8449
8450 case 1:
8451 gcc_assert (is_break);
8452 error_at (loc, "break statement used with OpenMP for loop");
8453 return NULL_TREE;
8454
8455 default:
8456 gcc_unreachable ();
8457 }
8458
8459 if (skip)
8460 return NULL_TREE;
8461
8462 if (!is_break)
8463 add_stmt (build_predict_expr (PRED_CONTINUE, NOT_TAKEN));
8464
8465 return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
8466 }
8467
8468 /* A helper routine for c_process_expr_stmt and c_finish_stmt_expr. */
8469
8470 static void
8471 emit_side_effect_warnings (location_t loc, tree expr)
8472 {
8473 if (expr == error_mark_node)
8474 ;
8475 else if (!TREE_SIDE_EFFECTS (expr))
8476 {
8477 if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
8478 warning_at (loc, OPT_Wunused_value, "statement with no effect");
8479 }
8480 else
8481 warn_if_unused_value (expr, loc);
8482 }
8483
8484 /* Process an expression as if it were a complete statement. Emit
8485 diagnostics, but do not call ADD_STMT. LOC is the location of the
8486 statement. */
8487
8488 tree
8489 c_process_expr_stmt (location_t loc, tree expr)
8490 {
8491 if (!expr)
8492 return NULL_TREE;
8493
8494 expr = c_fully_fold (expr, false, NULL);
8495
8496 if (warn_sequence_point)
8497 verify_sequence_points (expr);
8498
8499 if (TREE_TYPE (expr) != error_mark_node
8500 && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
8501 && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
8502 error_at (loc, "expression statement has incomplete type");
8503
8504 /* If we're not processing a statement expression, warn about unused values.
8505 Warnings for statement expressions will be emitted later, once we figure
8506 out which is the result. */
8507 if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
8508 && warn_unused_value)
8509 emit_side_effect_warnings (loc, expr);
8510
8511 /* If the expression is not of a type to which we cannot assign a line
8512 number, wrap the thing in a no-op NOP_EXPR. */
8513 if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
8514 {
8515 expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
8516 SET_EXPR_LOCATION (expr, loc);
8517 }
8518
8519 return expr;
8520 }
8521
8522 /* Emit an expression as a statement. LOC is the location of the
8523 expression. */
8524
8525 tree
8526 c_finish_expr_stmt (location_t loc, tree expr)
8527 {
8528 if (expr)
8529 return add_stmt (c_process_expr_stmt (loc, expr));
8530 else
8531 return NULL;
8532 }
8533
8534 /* Do the opposite and emit a statement as an expression. To begin,
8535 create a new binding level and return it. */
8536
8537 tree
8538 c_begin_stmt_expr (void)
8539 {
8540 tree ret;
8541
8542 /* We must force a BLOCK for this level so that, if it is not expanded
8543 later, there is a way to turn off the entire subtree of blocks that
8544 are contained in it. */
8545 keep_next_level ();
8546 ret = c_begin_compound_stmt (true);
8547
8548 c_bindings_start_stmt_expr (c_switch_stack == NULL
8549 ? NULL
8550 : c_switch_stack->bindings);
8551
8552 /* Mark the current statement list as belonging to a statement list. */
8553 STATEMENT_LIST_STMT_EXPR (ret) = 1;
8554
8555 return ret;
8556 }
8557
8558 /* LOC is the location of the compound statement to which this body
8559 belongs. */
8560
8561 tree
8562 c_finish_stmt_expr (location_t loc, tree body)
8563 {
8564 tree last, type, tmp, val;
8565 tree *last_p;
8566
8567 body = c_end_compound_stmt (loc, body, true);
8568
8569 c_bindings_end_stmt_expr (c_switch_stack == NULL
8570 ? NULL
8571 : c_switch_stack->bindings);
8572
8573 /* Locate the last statement in BODY. See c_end_compound_stmt
8574 about always returning a BIND_EXPR. */
8575 last_p = &BIND_EXPR_BODY (body);
8576 last = BIND_EXPR_BODY (body);
8577
8578 continue_searching:
8579 if (TREE_CODE (last) == STATEMENT_LIST)
8580 {
8581 tree_stmt_iterator i;
8582
8583 /* This can happen with degenerate cases like ({ }). No value. */
8584 if (!TREE_SIDE_EFFECTS (last))
8585 return body;
8586
8587 /* If we're supposed to generate side effects warnings, process
8588 all of the statements except the last. */
8589 if (warn_unused_value)
8590 {
8591 for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
8592 {
8593 location_t tloc;
8594 tree t = tsi_stmt (i);
8595
8596 tloc = EXPR_HAS_LOCATION (t) ? EXPR_LOCATION (t) : loc;
8597 emit_side_effect_warnings (tloc, t);
8598 }
8599 }
8600 else
8601 i = tsi_last (last);
8602 last_p = tsi_stmt_ptr (i);
8603 last = *last_p;
8604 }
8605
8606 /* If the end of the list is exception related, then the list was split
8607 by a call to push_cleanup. Continue searching. */
8608 if (TREE_CODE (last) == TRY_FINALLY_EXPR
8609 || TREE_CODE (last) == TRY_CATCH_EXPR)
8610 {
8611 last_p = &TREE_OPERAND (last, 0);
8612 last = *last_p;
8613 goto continue_searching;
8614 }
8615
8616 /* In the case that the BIND_EXPR is not necessary, return the
8617 expression out from inside it. */
8618 if (last == error_mark_node
8619 || (last == BIND_EXPR_BODY (body)
8620 && BIND_EXPR_VARS (body) == NULL))
8621 {
8622 /* Even if this looks constant, do not allow it in a constant
8623 expression. */
8624 last = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (last), NULL_TREE, last);
8625 C_MAYBE_CONST_EXPR_NON_CONST (last) = 1;
8626 /* Do not warn if the return value of a statement expression is
8627 unused. */
8628 TREE_NO_WARNING (last) = 1;
8629 return last;
8630 }
8631
8632 /* Extract the type of said expression. */
8633 type = TREE_TYPE (last);
8634
8635 /* If we're not returning a value at all, then the BIND_EXPR that
8636 we already have is a fine expression to return. */
8637 if (!type || VOID_TYPE_P (type))
8638 return body;
8639
8640 /* Now that we've located the expression containing the value, it seems
8641 silly to make voidify_wrapper_expr repeat the process. Create a
8642 temporary of the appropriate type and stick it in a TARGET_EXPR. */
8643 tmp = create_tmp_var_raw (type, NULL);
8644
8645 /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt. This avoids
8646 tree_expr_nonnegative_p giving up immediately. */
8647 val = last;
8648 if (TREE_CODE (val) == NOP_EXPR
8649 && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
8650 val = TREE_OPERAND (val, 0);
8651
8652 *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
8653 SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
8654
8655 {
8656 tree t = build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
8657 SET_EXPR_LOCATION (t, loc);
8658 return t;
8659 }
8660 }
8661 \f
8662 /* Begin and end compound statements. This is as simple as pushing
8663 and popping new statement lists from the tree. */
8664
8665 tree
8666 c_begin_compound_stmt (bool do_scope)
8667 {
8668 tree stmt = push_stmt_list ();
8669 if (do_scope)
8670 push_scope ();
8671 return stmt;
8672 }
8673
8674 /* End a compound statement. STMT is the statement. LOC is the
8675 location of the compound statement-- this is usually the location
8676 of the opening brace. */
8677
8678 tree
8679 c_end_compound_stmt (location_t loc, tree stmt, bool do_scope)
8680 {
8681 tree block = NULL;
8682
8683 if (do_scope)
8684 {
8685 if (c_dialect_objc ())
8686 objc_clear_super_receiver ();
8687 block = pop_scope ();
8688 }
8689
8690 stmt = pop_stmt_list (stmt);
8691 stmt = c_build_bind_expr (loc, block, stmt);
8692
8693 /* If this compound statement is nested immediately inside a statement
8694 expression, then force a BIND_EXPR to be created. Otherwise we'll
8695 do the wrong thing for ({ { 1; } }) or ({ 1; { } }). In particular,
8696 STATEMENT_LISTs merge, and thus we can lose track of what statement
8697 was really last. */
8698 if (cur_stmt_list
8699 && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
8700 && TREE_CODE (stmt) != BIND_EXPR)
8701 {
8702 stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
8703 TREE_SIDE_EFFECTS (stmt) = 1;
8704 SET_EXPR_LOCATION (stmt, loc);
8705 }
8706
8707 return stmt;
8708 }
8709
8710 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
8711 when the current scope is exited. EH_ONLY is true when this is not
8712 meant to apply to normal control flow transfer. */
8713
8714 void
8715 push_cleanup (tree decl, tree cleanup, bool eh_only)
8716 {
8717 enum tree_code code;
8718 tree stmt, list;
8719 bool stmt_expr;
8720
8721 code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
8722 stmt = build_stmt (DECL_SOURCE_LOCATION (decl), code, NULL, cleanup);
8723 add_stmt (stmt);
8724 stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
8725 list = push_stmt_list ();
8726 TREE_OPERAND (stmt, 0) = list;
8727 STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
8728 }
8729 \f
8730 /* Build a binary-operation expression without default conversions.
8731 CODE is the kind of expression to build.
8732 LOCATION is the operator's location.
8733 This function differs from `build' in several ways:
8734 the data type of the result is computed and recorded in it,
8735 warnings are generated if arg data types are invalid,
8736 special handling for addition and subtraction of pointers is known,
8737 and some optimization is done (operations on narrow ints
8738 are done in the narrower type when that gives the same result).
8739 Constant folding is also done before the result is returned.
8740
8741 Note that the operands will never have enumeral types, or function
8742 or array types, because either they will have the default conversions
8743 performed or they have both just been converted to some other type in which
8744 the arithmetic is to be done. */
8745
8746 tree
8747 build_binary_op (location_t location, enum tree_code code,
8748 tree orig_op0, tree orig_op1, int convert_p)
8749 {
8750 tree type0, type1, orig_type0, orig_type1;
8751 tree eptype;
8752 enum tree_code code0, code1;
8753 tree op0, op1;
8754 tree ret = error_mark_node;
8755 const char *invalid_op_diag;
8756 bool op0_int_operands, op1_int_operands;
8757 bool int_const, int_const_or_overflow, int_operands;
8758
8759 /* Expression code to give to the expression when it is built.
8760 Normally this is CODE, which is what the caller asked for,
8761 but in some special cases we change it. */
8762 enum tree_code resultcode = code;
8763
8764 /* Data type in which the computation is to be performed.
8765 In the simplest cases this is the common type of the arguments. */
8766 tree result_type = NULL;
8767
8768 /* When the computation is in excess precision, the type of the
8769 final EXCESS_PRECISION_EXPR. */
8770 tree real_result_type = NULL;
8771
8772 /* Nonzero means operands have already been type-converted
8773 in whatever way is necessary.
8774 Zero means they need to be converted to RESULT_TYPE. */
8775 int converted = 0;
8776
8777 /* Nonzero means create the expression with this type, rather than
8778 RESULT_TYPE. */
8779 tree build_type = 0;
8780
8781 /* Nonzero means after finally constructing the expression
8782 convert it to this type. */
8783 tree final_type = 0;
8784
8785 /* Nonzero if this is an operation like MIN or MAX which can
8786 safely be computed in short if both args are promoted shorts.
8787 Also implies COMMON.
8788 -1 indicates a bitwise operation; this makes a difference
8789 in the exact conditions for when it is safe to do the operation
8790 in a narrower mode. */
8791 int shorten = 0;
8792
8793 /* Nonzero if this is a comparison operation;
8794 if both args are promoted shorts, compare the original shorts.
8795 Also implies COMMON. */
8796 int short_compare = 0;
8797
8798 /* Nonzero if this is a right-shift operation, which can be computed on the
8799 original short and then promoted if the operand is a promoted short. */
8800 int short_shift = 0;
8801
8802 /* Nonzero means set RESULT_TYPE to the common type of the args. */
8803 int common = 0;
8804
8805 /* True means types are compatible as far as ObjC is concerned. */
8806 bool objc_ok;
8807
8808 /* True means this is an arithmetic operation that may need excess
8809 precision. */
8810 bool may_need_excess_precision;
8811
8812 if (location == UNKNOWN_LOCATION)
8813 location = input_location;
8814
8815 op0 = orig_op0;
8816 op1 = orig_op1;
8817
8818 op0_int_operands = EXPR_INT_CONST_OPERANDS (orig_op0);
8819 if (op0_int_operands)
8820 op0 = remove_c_maybe_const_expr (op0);
8821 op1_int_operands = EXPR_INT_CONST_OPERANDS (orig_op1);
8822 if (op1_int_operands)
8823 op1 = remove_c_maybe_const_expr (op1);
8824 int_operands = (op0_int_operands && op1_int_operands);
8825 if (int_operands)
8826 {
8827 int_const_or_overflow = (TREE_CODE (orig_op0) == INTEGER_CST
8828 && TREE_CODE (orig_op1) == INTEGER_CST);
8829 int_const = (int_const_or_overflow
8830 && !TREE_OVERFLOW (orig_op0)
8831 && !TREE_OVERFLOW (orig_op1));
8832 }
8833 else
8834 int_const = int_const_or_overflow = false;
8835
8836 if (convert_p)
8837 {
8838 op0 = default_conversion (op0);
8839 op1 = default_conversion (op1);
8840 }
8841
8842 orig_type0 = type0 = TREE_TYPE (op0);
8843 orig_type1 = type1 = TREE_TYPE (op1);
8844
8845 /* The expression codes of the data types of the arguments tell us
8846 whether the arguments are integers, floating, pointers, etc. */
8847 code0 = TREE_CODE (type0);
8848 code1 = TREE_CODE (type1);
8849
8850 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
8851 STRIP_TYPE_NOPS (op0);
8852 STRIP_TYPE_NOPS (op1);
8853
8854 /* If an error was already reported for one of the arguments,
8855 avoid reporting another error. */
8856
8857 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
8858 return error_mark_node;
8859
8860 if ((invalid_op_diag
8861 = targetm.invalid_binary_op (code, type0, type1)))
8862 {
8863 error_at (location, invalid_op_diag);
8864 return error_mark_node;
8865 }
8866
8867 switch (code)
8868 {
8869 case PLUS_EXPR:
8870 case MINUS_EXPR:
8871 case MULT_EXPR:
8872 case TRUNC_DIV_EXPR:
8873 case CEIL_DIV_EXPR:
8874 case FLOOR_DIV_EXPR:
8875 case ROUND_DIV_EXPR:
8876 case EXACT_DIV_EXPR:
8877 may_need_excess_precision = true;
8878 break;
8879 default:
8880 may_need_excess_precision = false;
8881 break;
8882 }
8883 if (TREE_CODE (op0) == EXCESS_PRECISION_EXPR)
8884 {
8885 op0 = TREE_OPERAND (op0, 0);
8886 type0 = TREE_TYPE (op0);
8887 }
8888 else if (may_need_excess_precision
8889 && (eptype = excess_precision_type (type0)) != NULL_TREE)
8890 {
8891 type0 = eptype;
8892 op0 = convert (eptype, op0);
8893 }
8894 if (TREE_CODE (op1) == EXCESS_PRECISION_EXPR)
8895 {
8896 op1 = TREE_OPERAND (op1, 0);
8897 type1 = TREE_TYPE (op1);
8898 }
8899 else if (may_need_excess_precision
8900 && (eptype = excess_precision_type (type1)) != NULL_TREE)
8901 {
8902 type1 = eptype;
8903 op1 = convert (eptype, op1);
8904 }
8905
8906 objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
8907
8908 switch (code)
8909 {
8910 case PLUS_EXPR:
8911 /* Handle the pointer + int case. */
8912 if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8913 {
8914 ret = pointer_int_sum (PLUS_EXPR, op0, op1);
8915 goto return_build_binary_op;
8916 }
8917 else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
8918 {
8919 ret = pointer_int_sum (PLUS_EXPR, op1, op0);
8920 goto return_build_binary_op;
8921 }
8922 else
8923 common = 1;
8924 break;
8925
8926 case MINUS_EXPR:
8927 /* Subtraction of two similar pointers.
8928 We must subtract them as integers, then divide by object size. */
8929 if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
8930 && comp_target_types (location, type0, type1))
8931 {
8932 ret = pointer_diff (op0, op1);
8933 goto return_build_binary_op;
8934 }
8935 /* Handle pointer minus int. Just like pointer plus int. */
8936 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
8937 {
8938 ret = pointer_int_sum (MINUS_EXPR, op0, op1);
8939 goto return_build_binary_op;
8940 }
8941 else
8942 common = 1;
8943 break;
8944
8945 case MULT_EXPR:
8946 common = 1;
8947 break;
8948
8949 case TRUNC_DIV_EXPR:
8950 case CEIL_DIV_EXPR:
8951 case FLOOR_DIV_EXPR:
8952 case ROUND_DIV_EXPR:
8953 case EXACT_DIV_EXPR:
8954 warn_for_div_by_zero (location, op1);
8955
8956 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
8957 || code0 == FIXED_POINT_TYPE
8958 || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8959 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
8960 || code1 == FIXED_POINT_TYPE
8961 || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
8962 {
8963 enum tree_code tcode0 = code0, tcode1 = code1;
8964
8965 if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
8966 tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
8967 if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
8968 tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
8969
8970 if (!((tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE)
8971 || (tcode0 == FIXED_POINT_TYPE && tcode1 == FIXED_POINT_TYPE)))
8972 resultcode = RDIV_EXPR;
8973 else
8974 /* Although it would be tempting to shorten always here, that
8975 loses on some targets, since the modulo instruction is
8976 undefined if the quotient can't be represented in the
8977 computation mode. We shorten only if unsigned or if
8978 dividing by something we know != -1. */
8979 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
8980 || (TREE_CODE (op1) == INTEGER_CST
8981 && !integer_all_onesp (op1)));
8982 common = 1;
8983 }
8984 break;
8985
8986 case BIT_AND_EXPR:
8987 case BIT_IOR_EXPR:
8988 case BIT_XOR_EXPR:
8989 if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
8990 shorten = -1;
8991 /* Allow vector types which are not floating point types. */
8992 else if (code0 == VECTOR_TYPE
8993 && code1 == VECTOR_TYPE
8994 && !VECTOR_FLOAT_TYPE_P (type0)
8995 && !VECTOR_FLOAT_TYPE_P (type1))
8996 common = 1;
8997 break;
8998
8999 case TRUNC_MOD_EXPR:
9000 case FLOOR_MOD_EXPR:
9001 warn_for_div_by_zero (location, op1);
9002
9003 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9004 && TREE_CODE (TREE_TYPE (type0)) == INTEGER_TYPE
9005 && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
9006 common = 1;
9007 else if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
9008 {
9009 /* Although it would be tempting to shorten always here, that loses
9010 on some targets, since the modulo instruction is undefined if the
9011 quotient can't be represented in the computation mode. We shorten
9012 only if unsigned or if dividing by something we know != -1. */
9013 shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
9014 || (TREE_CODE (op1) == INTEGER_CST
9015 && !integer_all_onesp (op1)));
9016 common = 1;
9017 }
9018 break;
9019
9020 case TRUTH_ANDIF_EXPR:
9021 case TRUTH_ORIF_EXPR:
9022 case TRUTH_AND_EXPR:
9023 case TRUTH_OR_EXPR:
9024 case TRUTH_XOR_EXPR:
9025 if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
9026 || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
9027 || code0 == FIXED_POINT_TYPE)
9028 && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
9029 || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
9030 || code1 == FIXED_POINT_TYPE))
9031 {
9032 /* Result of these operations is always an int,
9033 but that does not mean the operands should be
9034 converted to ints! */
9035 result_type = integer_type_node;
9036 op0 = c_common_truthvalue_conversion (location, op0);
9037 op1 = c_common_truthvalue_conversion (location, op1);
9038 converted = 1;
9039 }
9040 if (code == TRUTH_ANDIF_EXPR)
9041 {
9042 int_const_or_overflow = (int_operands
9043 && TREE_CODE (orig_op0) == INTEGER_CST
9044 && (op0 == truthvalue_false_node
9045 || TREE_CODE (orig_op1) == INTEGER_CST));
9046 int_const = (int_const_or_overflow
9047 && !TREE_OVERFLOW (orig_op0)
9048 && (op0 == truthvalue_false_node
9049 || !TREE_OVERFLOW (orig_op1)));
9050 }
9051 else if (code == TRUTH_ORIF_EXPR)
9052 {
9053 int_const_or_overflow = (int_operands
9054 && TREE_CODE (orig_op0) == INTEGER_CST
9055 && (op0 == truthvalue_true_node
9056 || TREE_CODE (orig_op1) == INTEGER_CST));
9057 int_const = (int_const_or_overflow
9058 && !TREE_OVERFLOW (orig_op0)
9059 && (op0 == truthvalue_true_node
9060 || !TREE_OVERFLOW (orig_op1)));
9061 }
9062 break;
9063
9064 /* Shift operations: result has same type as first operand;
9065 always convert second operand to int.
9066 Also set SHORT_SHIFT if shifting rightward. */
9067
9068 case RSHIFT_EXPR:
9069 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
9070 && code1 == INTEGER_TYPE)
9071 {
9072 if (TREE_CODE (op1) == INTEGER_CST)
9073 {
9074 if (tree_int_cst_sgn (op1) < 0)
9075 {
9076 int_const = false;
9077 if (c_inhibit_evaluation_warnings == 0)
9078 warning (0, "right shift count is negative");
9079 }
9080 else
9081 {
9082 if (!integer_zerop (op1))
9083 short_shift = 1;
9084
9085 if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
9086 {
9087 int_const = false;
9088 if (c_inhibit_evaluation_warnings == 0)
9089 warning (0, "right shift count >= width of type");
9090 }
9091 }
9092 }
9093
9094 /* Use the type of the value to be shifted. */
9095 result_type = type0;
9096 /* Convert the shift-count to an integer, regardless of size
9097 of value being shifted. */
9098 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
9099 op1 = convert (integer_type_node, op1);
9100 /* Avoid converting op1 to result_type later. */
9101 converted = 1;
9102 }
9103 break;
9104
9105 case LSHIFT_EXPR:
9106 if ((code0 == INTEGER_TYPE || code0 == FIXED_POINT_TYPE)
9107 && code1 == INTEGER_TYPE)
9108 {
9109 if (TREE_CODE (op1) == INTEGER_CST)
9110 {
9111 if (tree_int_cst_sgn (op1) < 0)
9112 {
9113 int_const = false;
9114 if (c_inhibit_evaluation_warnings == 0)
9115 warning (0, "left shift count is negative");
9116 }
9117
9118 else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
9119 {
9120 int_const = false;
9121 if (c_inhibit_evaluation_warnings == 0)
9122 warning (0, "left shift count >= width of type");
9123 }
9124 }
9125
9126 /* Use the type of the value to be shifted. */
9127 result_type = type0;
9128 /* Convert the shift-count to an integer, regardless of size
9129 of value being shifted. */
9130 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
9131 op1 = convert (integer_type_node, op1);
9132 /* Avoid converting op1 to result_type later. */
9133 converted = 1;
9134 }
9135 break;
9136
9137 case EQ_EXPR:
9138 case NE_EXPR:
9139 if (FLOAT_TYPE_P (type0) || FLOAT_TYPE_P (type1))
9140 warning_at (location,
9141 OPT_Wfloat_equal,
9142 "comparing floating point with == or != is unsafe");
9143 /* Result of comparison is always int,
9144 but don't convert the args to int! */
9145 build_type = integer_type_node;
9146 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
9147 || code0 == FIXED_POINT_TYPE || code0 == COMPLEX_TYPE)
9148 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
9149 || code1 == FIXED_POINT_TYPE || code1 == COMPLEX_TYPE))
9150 short_compare = 1;
9151 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
9152 {
9153 tree tt0 = TREE_TYPE (type0);
9154 tree tt1 = TREE_TYPE (type1);
9155 /* Anything compares with void *. void * compares with anything.
9156 Otherwise, the targets must be compatible
9157 and both must be object or both incomplete. */
9158 if (comp_target_types (location, type0, type1))
9159 result_type = common_pointer_type (type0, type1);
9160 else if (VOID_TYPE_P (tt0))
9161 {
9162 /* op0 != orig_op0 detects the case of something
9163 whose value is 0 but which isn't a valid null ptr const. */
9164 if (pedantic && !null_pointer_constant_p (orig_op0)
9165 && TREE_CODE (tt1) == FUNCTION_TYPE)
9166 pedwarn (location, OPT_pedantic, "ISO C forbids "
9167 "comparison of %<void *%> with function pointer");
9168 }
9169 else if (VOID_TYPE_P (tt1))
9170 {
9171 if (pedantic && !null_pointer_constant_p (orig_op1)
9172 && TREE_CODE (tt0) == FUNCTION_TYPE)
9173 pedwarn (location, OPT_pedantic, "ISO C forbids "
9174 "comparison of %<void *%> with function pointer");
9175 }
9176 else
9177 /* Avoid warning about the volatile ObjC EH puts on decls. */
9178 if (!objc_ok)
9179 pedwarn (location, 0,
9180 "comparison of distinct pointer types lacks a cast");
9181
9182 if (result_type == NULL_TREE)
9183 result_type = ptr_type_node;
9184 }
9185 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
9186 {
9187 if (TREE_CODE (op0) == ADDR_EXPR
9188 && decl_with_nonnull_addr_p (TREE_OPERAND (op0, 0)))
9189 warning_at (location,
9190 OPT_Waddress, "the address of %qD will never be NULL",
9191 TREE_OPERAND (op0, 0));
9192 result_type = type0;
9193 }
9194 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
9195 {
9196 if (TREE_CODE (op1) == ADDR_EXPR
9197 && decl_with_nonnull_addr_p (TREE_OPERAND (op1, 0)))
9198 warning_at (location,
9199 OPT_Waddress, "the address of %qD will never be NULL",
9200 TREE_OPERAND (op1, 0));
9201 result_type = type1;
9202 }
9203 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
9204 {
9205 result_type = type0;
9206 pedwarn (location, 0, "comparison between pointer and integer");
9207 }
9208 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
9209 {
9210 result_type = type1;
9211 pedwarn (location, 0, "comparison between pointer and integer");
9212 }
9213 break;
9214
9215 case LE_EXPR:
9216 case GE_EXPR:
9217 case LT_EXPR:
9218 case GT_EXPR:
9219 build_type = integer_type_node;
9220 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
9221 || code0 == FIXED_POINT_TYPE)
9222 && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
9223 || code1 == FIXED_POINT_TYPE))
9224 short_compare = 1;
9225 else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
9226 {
9227 if (comp_target_types (location, type0, type1))
9228 {
9229 result_type = common_pointer_type (type0, type1);
9230 if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
9231 != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
9232 pedwarn (location, 0,
9233 "comparison of complete and incomplete pointers");
9234 else if (TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
9235 pedwarn (location, OPT_pedantic, "ISO C forbids "
9236 "ordered comparisons of pointers to functions");
9237 }
9238 else
9239 {
9240 result_type = ptr_type_node;
9241 pedwarn (location, 0,
9242 "comparison of distinct pointer types lacks a cast");
9243 }
9244 }
9245 else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
9246 {
9247 result_type = type0;
9248 if (pedantic)
9249 pedwarn (location, OPT_pedantic,
9250 "ordered comparison of pointer with integer zero");
9251 else if (extra_warnings)
9252 warning_at (location, OPT_Wextra,
9253 "ordered comparison of pointer with integer zero");
9254 }
9255 else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
9256 {
9257 result_type = type1;
9258 pedwarn (location, OPT_pedantic,
9259 "ordered comparison of pointer with integer zero");
9260 }
9261 else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
9262 {
9263 result_type = type0;
9264 pedwarn (location, 0, "comparison between pointer and integer");
9265 }
9266 else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
9267 {
9268 result_type = type1;
9269 pedwarn (location, 0, "comparison between pointer and integer");
9270 }
9271 break;
9272
9273 default:
9274 gcc_unreachable ();
9275 }
9276
9277 if (code0 == ERROR_MARK || code1 == ERROR_MARK)
9278 return error_mark_node;
9279
9280 if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
9281 && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
9282 || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
9283 TREE_TYPE (type1))))
9284 {
9285 binary_op_error (location, code, type0, type1);
9286 return error_mark_node;
9287 }
9288
9289 if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
9290 || code0 == FIXED_POINT_TYPE || code0 == VECTOR_TYPE)
9291 &&
9292 (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
9293 || code1 == FIXED_POINT_TYPE || code1 == VECTOR_TYPE))
9294 {
9295 bool first_complex = (code0 == COMPLEX_TYPE);
9296 bool second_complex = (code1 == COMPLEX_TYPE);
9297 int none_complex = (!first_complex && !second_complex);
9298
9299 if (shorten || common || short_compare)
9300 {
9301 result_type = c_common_type (type0, type1);
9302 if (result_type == error_mark_node)
9303 return error_mark_node;
9304 }
9305
9306 if (first_complex != second_complex
9307 && (code == PLUS_EXPR
9308 || code == MINUS_EXPR
9309 || code == MULT_EXPR
9310 || (code == TRUNC_DIV_EXPR && first_complex))
9311 && TREE_CODE (TREE_TYPE (result_type)) == REAL_TYPE
9312 && flag_signed_zeros)
9313 {
9314 /* An operation on mixed real/complex operands must be
9315 handled specially, but the language-independent code can
9316 more easily optimize the plain complex arithmetic if
9317 -fno-signed-zeros. */
9318 tree real_type = TREE_TYPE (result_type);
9319 tree real, imag;
9320 if (type0 != orig_type0 || type1 != orig_type1)
9321 {
9322 gcc_assert (may_need_excess_precision && common);
9323 real_result_type = c_common_type (orig_type0, orig_type1);
9324 }
9325 if (first_complex)
9326 {
9327 if (TREE_TYPE (op0) != result_type)
9328 op0 = convert_and_check (result_type, op0);
9329 if (TREE_TYPE (op1) != real_type)
9330 op1 = convert_and_check (real_type, op1);
9331 }
9332 else
9333 {
9334 if (TREE_TYPE (op0) != real_type)
9335 op0 = convert_and_check (real_type, op0);
9336 if (TREE_TYPE (op1) != result_type)
9337 op1 = convert_and_check (result_type, op1);
9338 }
9339 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
9340 return error_mark_node;
9341 if (first_complex)
9342 {
9343 op0 = c_save_expr (op0);
9344 real = build_unary_op (EXPR_LOCATION (orig_op0), REALPART_EXPR,
9345 op0, 1);
9346 imag = build_unary_op (EXPR_LOCATION (orig_op0), IMAGPART_EXPR,
9347 op0, 1);
9348 switch (code)
9349 {
9350 case MULT_EXPR:
9351 case TRUNC_DIV_EXPR:
9352 imag = build2 (resultcode, real_type, imag, op1);
9353 /* Fall through. */
9354 case PLUS_EXPR:
9355 case MINUS_EXPR:
9356 real = build2 (resultcode, real_type, real, op1);
9357 break;
9358 default:
9359 gcc_unreachable();
9360 }
9361 }
9362 else
9363 {
9364 op1 = c_save_expr (op1);
9365 real = build_unary_op (EXPR_LOCATION (orig_op1), REALPART_EXPR,
9366 op1, 1);
9367 imag = build_unary_op (EXPR_LOCATION (orig_op1), IMAGPART_EXPR,
9368 op1, 1);
9369 switch (code)
9370 {
9371 case MULT_EXPR:
9372 imag = build2 (resultcode, real_type, op0, imag);
9373 /* Fall through. */
9374 case PLUS_EXPR:
9375 real = build2 (resultcode, real_type, op0, real);
9376 break;
9377 case MINUS_EXPR:
9378 real = build2 (resultcode, real_type, op0, real);
9379 imag = build1 (NEGATE_EXPR, real_type, imag);
9380 break;
9381 default:
9382 gcc_unreachable();
9383 }
9384 }
9385 ret = build2 (COMPLEX_EXPR, result_type, real, imag);
9386 goto return_build_binary_op;
9387 }
9388
9389 /* For certain operations (which identify themselves by shorten != 0)
9390 if both args were extended from the same smaller type,
9391 do the arithmetic in that type and then extend.
9392
9393 shorten !=0 and !=1 indicates a bitwise operation.
9394 For them, this optimization is safe only if
9395 both args are zero-extended or both are sign-extended.
9396 Otherwise, we might change the result.
9397 Eg, (short)-1 | (unsigned short)-1 is (int)-1
9398 but calculated in (unsigned short) it would be (unsigned short)-1. */
9399
9400 if (shorten && none_complex)
9401 {
9402 final_type = result_type;
9403 result_type = shorten_binary_op (result_type, op0, op1,
9404 shorten == -1);
9405 }
9406
9407 /* Shifts can be shortened if shifting right. */
9408
9409 if (short_shift)
9410 {
9411 int unsigned_arg;
9412 tree arg0 = get_narrower (op0, &unsigned_arg);
9413
9414 final_type = result_type;
9415
9416 if (arg0 == op0 && final_type == TREE_TYPE (op0))
9417 unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
9418
9419 if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
9420 /* We can shorten only if the shift count is less than the
9421 number of bits in the smaller type size. */
9422 && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
9423 /* We cannot drop an unsigned shift after sign-extension. */
9424 && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
9425 {
9426 /* Do an unsigned shift if the operand was zero-extended. */
9427 result_type
9428 = c_common_signed_or_unsigned_type (unsigned_arg,
9429 TREE_TYPE (arg0));
9430 /* Convert value-to-be-shifted to that type. */
9431 if (TREE_TYPE (op0) != result_type)
9432 op0 = convert (result_type, op0);
9433 converted = 1;
9434 }
9435 }
9436
9437 /* Comparison operations are shortened too but differently.
9438 They identify themselves by setting short_compare = 1. */
9439
9440 if (short_compare)
9441 {
9442 /* Don't write &op0, etc., because that would prevent op0
9443 from being kept in a register.
9444 Instead, make copies of the our local variables and
9445 pass the copies by reference, then copy them back afterward. */
9446 tree xop0 = op0, xop1 = op1, xresult_type = result_type;
9447 enum tree_code xresultcode = resultcode;
9448 tree val
9449 = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
9450
9451 if (val != 0)
9452 {
9453 ret = val;
9454 goto return_build_binary_op;
9455 }
9456
9457 op0 = xop0, op1 = xop1;
9458 converted = 1;
9459 resultcode = xresultcode;
9460
9461 if (c_inhibit_evaluation_warnings == 0)
9462 {
9463 bool op0_maybe_const = true;
9464 bool op1_maybe_const = true;
9465 tree orig_op0_folded, orig_op1_folded;
9466
9467 if (in_late_binary_op)
9468 {
9469 orig_op0_folded = orig_op0;
9470 orig_op1_folded = orig_op1;
9471 }
9472 else
9473 {
9474 /* Fold for the sake of possible warnings, as in
9475 build_conditional_expr. This requires the
9476 "original" values to be folded, not just op0 and
9477 op1. */
9478 op0 = c_fully_fold (op0, require_constant_value,
9479 &op0_maybe_const);
9480 op1 = c_fully_fold (op1, require_constant_value,
9481 &op1_maybe_const);
9482 orig_op0_folded = c_fully_fold (orig_op0,
9483 require_constant_value,
9484 NULL);
9485 orig_op1_folded = c_fully_fold (orig_op1,
9486 require_constant_value,
9487 NULL);
9488 }
9489
9490 if (warn_sign_compare)
9491 warn_for_sign_compare (location, orig_op0_folded,
9492 orig_op1_folded, op0, op1,
9493 result_type, resultcode);
9494 if (!in_late_binary_op)
9495 {
9496 if (!op0_maybe_const || TREE_CODE (op0) != INTEGER_CST)
9497 {
9498 op0 = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (op0),
9499 NULL, op0);
9500 C_MAYBE_CONST_EXPR_NON_CONST (op0) = !op0_maybe_const;
9501 }
9502 if (!op1_maybe_const || TREE_CODE (op1) != INTEGER_CST)
9503 {
9504 op1 = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (op1),
9505 NULL, op1);
9506 C_MAYBE_CONST_EXPR_NON_CONST (op1) = !op1_maybe_const;
9507 }
9508 }
9509 }
9510 }
9511 }
9512
9513 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
9514 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
9515 Then the expression will be built.
9516 It will be given type FINAL_TYPE if that is nonzero;
9517 otherwise, it will be given type RESULT_TYPE. */
9518
9519 if (!result_type)
9520 {
9521 binary_op_error (location, code, TREE_TYPE (op0), TREE_TYPE (op1));
9522 return error_mark_node;
9523 }
9524
9525 if (!converted)
9526 {
9527 if (TREE_TYPE (op0) != result_type)
9528 op0 = convert_and_check (result_type, op0);
9529 if (TREE_TYPE (op1) != result_type)
9530 op1 = convert_and_check (result_type, op1);
9531
9532 /* This can happen if one operand has a vector type, and the other
9533 has a different type. */
9534 if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
9535 return error_mark_node;
9536 }
9537
9538 if (build_type == NULL_TREE)
9539 {
9540 build_type = result_type;
9541 if (type0 != orig_type0 || type1 != orig_type1)
9542 {
9543 gcc_assert (may_need_excess_precision && common);
9544 real_result_type = c_common_type (orig_type0, orig_type1);
9545 }
9546 }
9547
9548 /* Treat expressions in initializers specially as they can't trap. */
9549 if (int_const_or_overflow)
9550 ret = (require_constant_value
9551 ? fold_build2_initializer (resultcode, build_type, op0, op1)
9552 : fold_build2 (resultcode, build_type, op0, op1));
9553 else
9554 ret = build2 (resultcode, build_type, op0, op1);
9555 if (final_type != 0)
9556 ret = convert (final_type, ret);
9557
9558 return_build_binary_op:
9559 gcc_assert (ret != error_mark_node);
9560 if (TREE_CODE (ret) == INTEGER_CST && !TREE_OVERFLOW (ret) && !int_const)
9561 ret = (int_operands
9562 ? note_integer_operands (ret)
9563 : build1 (NOP_EXPR, TREE_TYPE (ret), ret));
9564 else if (TREE_CODE (ret) != INTEGER_CST && int_operands
9565 && !in_late_binary_op)
9566 ret = note_integer_operands (ret);
9567 if (real_result_type)
9568 ret = build1 (EXCESS_PRECISION_EXPR, real_result_type, ret);
9569 protected_set_expr_location (ret, location);
9570 return ret;
9571 }
9572
9573
9574 /* Convert EXPR to be a truth-value, validating its type for this
9575 purpose. LOCATION is the source location for the expression. */
9576
9577 tree
9578 c_objc_common_truthvalue_conversion (location_t location, tree expr)
9579 {
9580 bool int_const, int_operands;
9581
9582 switch (TREE_CODE (TREE_TYPE (expr)))
9583 {
9584 case ARRAY_TYPE:
9585 error_at (location, "used array that cannot be converted to pointer where scalar is required");
9586 return error_mark_node;
9587
9588 case RECORD_TYPE:
9589 error_at (location, "used struct type value where scalar is required");
9590 return error_mark_node;
9591
9592 case UNION_TYPE:
9593 error_at (location, "used union type value where scalar is required");
9594 return error_mark_node;
9595
9596 case FUNCTION_TYPE:
9597 gcc_unreachable ();
9598
9599 default:
9600 break;
9601 }
9602
9603 int_const = (TREE_CODE (expr) == INTEGER_CST && !TREE_OVERFLOW (expr));
9604 int_operands = EXPR_INT_CONST_OPERANDS (expr);
9605 if (int_operands)
9606 expr = remove_c_maybe_const_expr (expr);
9607
9608 /* ??? Should we also give an error for void and vectors rather than
9609 leaving those to give errors later? */
9610 expr = c_common_truthvalue_conversion (location, expr);
9611
9612 if (TREE_CODE (expr) == INTEGER_CST && int_operands && !int_const)
9613 {
9614 if (TREE_OVERFLOW (expr))
9615 return expr;
9616 else
9617 return note_integer_operands (expr);
9618 }
9619 if (TREE_CODE (expr) == INTEGER_CST && !int_const)
9620 return build1 (NOP_EXPR, TREE_TYPE (expr), expr);
9621 return expr;
9622 }
9623 \f
9624
9625 /* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
9626 required. */
9627
9628 tree
9629 c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED, bool *se)
9630 {
9631 if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
9632 {
9633 tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
9634 /* Executing a compound literal inside a function reinitializes
9635 it. */
9636 if (!TREE_STATIC (decl))
9637 *se = true;
9638 return decl;
9639 }
9640 else
9641 return expr;
9642 }
9643 \f
9644 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
9645
9646 tree
9647 c_begin_omp_parallel (void)
9648 {
9649 tree block;
9650
9651 keep_next_level ();
9652 block = c_begin_compound_stmt (true);
9653
9654 return block;
9655 }
9656
9657 /* Generate OMP_PARALLEL, with CLAUSES and BLOCK as its compound
9658 statement. LOC is the location of the OMP_PARALLEL. */
9659
9660 tree
9661 c_finish_omp_parallel (location_t loc, tree clauses, tree block)
9662 {
9663 tree stmt;
9664
9665 block = c_end_compound_stmt (loc, block, true);
9666
9667 stmt = make_node (OMP_PARALLEL);
9668 TREE_TYPE (stmt) = void_type_node;
9669 OMP_PARALLEL_CLAUSES (stmt) = clauses;
9670 OMP_PARALLEL_BODY (stmt) = block;
9671 SET_EXPR_LOCATION (stmt, loc);
9672
9673 return add_stmt (stmt);
9674 }
9675
9676 /* Like c_begin_compound_stmt, except force the retention of the BLOCK. */
9677
9678 tree
9679 c_begin_omp_task (void)
9680 {
9681 tree block;
9682
9683 keep_next_level ();
9684 block = c_begin_compound_stmt (true);
9685
9686 return block;
9687 }
9688
9689 /* Generate OMP_TASK, with CLAUSES and BLOCK as its compound
9690 statement. LOC is the location of the #pragma. */
9691
9692 tree
9693 c_finish_omp_task (location_t loc, tree clauses, tree block)
9694 {
9695 tree stmt;
9696
9697 block = c_end_compound_stmt (loc, block, true);
9698
9699 stmt = make_node (OMP_TASK);
9700 TREE_TYPE (stmt) = void_type_node;
9701 OMP_TASK_CLAUSES (stmt) = clauses;
9702 OMP_TASK_BODY (stmt) = block;
9703 SET_EXPR_LOCATION (stmt, loc);
9704
9705 return add_stmt (stmt);
9706 }
9707
9708 /* For all elements of CLAUSES, validate them vs OpenMP constraints.
9709 Remove any elements from the list that are invalid. */
9710
9711 tree
9712 c_finish_omp_clauses (tree clauses)
9713 {
9714 bitmap_head generic_head, firstprivate_head, lastprivate_head;
9715 tree c, t, *pc = &clauses;
9716 const char *name;
9717
9718 bitmap_obstack_initialize (NULL);
9719 bitmap_initialize (&generic_head, &bitmap_default_obstack);
9720 bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
9721 bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
9722
9723 for (pc = &clauses, c = clauses; c ; c = *pc)
9724 {
9725 bool remove = false;
9726 bool need_complete = false;
9727 bool need_implicitly_determined = false;
9728
9729 switch (OMP_CLAUSE_CODE (c))
9730 {
9731 case OMP_CLAUSE_SHARED:
9732 name = "shared";
9733 need_implicitly_determined = true;
9734 goto check_dup_generic;
9735
9736 case OMP_CLAUSE_PRIVATE:
9737 name = "private";
9738 need_complete = true;
9739 need_implicitly_determined = true;
9740 goto check_dup_generic;
9741
9742 case OMP_CLAUSE_REDUCTION:
9743 name = "reduction";
9744 need_implicitly_determined = true;
9745 t = OMP_CLAUSE_DECL (c);
9746 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
9747 || POINTER_TYPE_P (TREE_TYPE (t)))
9748 {
9749 error_at (OMP_CLAUSE_LOCATION (c),
9750 "%qE has invalid type for %<reduction%>", t);
9751 remove = true;
9752 }
9753 else if (FLOAT_TYPE_P (TREE_TYPE (t)))
9754 {
9755 enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
9756 const char *r_name = NULL;
9757
9758 switch (r_code)
9759 {
9760 case PLUS_EXPR:
9761 case MULT_EXPR:
9762 case MINUS_EXPR:
9763 break;
9764 case BIT_AND_EXPR:
9765 r_name = "&";
9766 break;
9767 case BIT_XOR_EXPR:
9768 r_name = "^";
9769 break;
9770 case BIT_IOR_EXPR:
9771 r_name = "|";
9772 break;
9773 case TRUTH_ANDIF_EXPR:
9774 r_name = "&&";
9775 break;
9776 case TRUTH_ORIF_EXPR:
9777 r_name = "||";
9778 break;
9779 default:
9780 gcc_unreachable ();
9781 }
9782 if (r_name)
9783 {
9784 error_at (OMP_CLAUSE_LOCATION (c),
9785 "%qE has invalid type for %<reduction(%s)%>",
9786 t, r_name);
9787 remove = true;
9788 }
9789 }
9790 goto check_dup_generic;
9791
9792 case OMP_CLAUSE_COPYPRIVATE:
9793 name = "copyprivate";
9794 goto check_dup_generic;
9795
9796 case OMP_CLAUSE_COPYIN:
9797 name = "copyin";
9798 t = OMP_CLAUSE_DECL (c);
9799 if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
9800 {
9801 error_at (OMP_CLAUSE_LOCATION (c),
9802 "%qE must be %<threadprivate%> for %<copyin%>", t);
9803 remove = true;
9804 }
9805 goto check_dup_generic;
9806
9807 check_dup_generic:
9808 t = OMP_CLAUSE_DECL (c);
9809 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
9810 {
9811 error_at (OMP_CLAUSE_LOCATION (c),
9812 "%qE is not a variable in clause %qs", t, name);
9813 remove = true;
9814 }
9815 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
9816 || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
9817 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
9818 {
9819 error_at (OMP_CLAUSE_LOCATION (c),
9820 "%qE appears more than once in data clauses", t);
9821 remove = true;
9822 }
9823 else
9824 bitmap_set_bit (&generic_head, DECL_UID (t));
9825 break;
9826
9827 case OMP_CLAUSE_FIRSTPRIVATE:
9828 name = "firstprivate";
9829 t = OMP_CLAUSE_DECL (c);
9830 need_complete = true;
9831 need_implicitly_determined = true;
9832 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
9833 {
9834 error_at (OMP_CLAUSE_LOCATION (c),
9835 "%qE is not a variable in clause %<firstprivate%>", t);
9836 remove = true;
9837 }
9838 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
9839 || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
9840 {
9841 error_at (OMP_CLAUSE_LOCATION (c),
9842 "%qE appears more than once in data clauses", t);
9843 remove = true;
9844 }
9845 else
9846 bitmap_set_bit (&firstprivate_head, DECL_UID (t));
9847 break;
9848
9849 case OMP_CLAUSE_LASTPRIVATE:
9850 name = "lastprivate";
9851 t = OMP_CLAUSE_DECL (c);
9852 need_complete = true;
9853 need_implicitly_determined = true;
9854 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
9855 {
9856 error_at (OMP_CLAUSE_LOCATION (c),
9857 "%qE is not a variable in clause %<lastprivate%>", t);
9858 remove = true;
9859 }
9860 else if (bitmap_bit_p (&generic_head, DECL_UID (t))
9861 || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
9862 {
9863 error_at (OMP_CLAUSE_LOCATION (c),
9864 "%qE appears more than once in data clauses", t);
9865 remove = true;
9866 }
9867 else
9868 bitmap_set_bit (&lastprivate_head, DECL_UID (t));
9869 break;
9870
9871 case OMP_CLAUSE_IF:
9872 case OMP_CLAUSE_NUM_THREADS:
9873 case OMP_CLAUSE_SCHEDULE:
9874 case OMP_CLAUSE_NOWAIT:
9875 case OMP_CLAUSE_ORDERED:
9876 case OMP_CLAUSE_DEFAULT:
9877 case OMP_CLAUSE_UNTIED:
9878 case OMP_CLAUSE_COLLAPSE:
9879 pc = &OMP_CLAUSE_CHAIN (c);
9880 continue;
9881
9882 default:
9883 gcc_unreachable ();
9884 }
9885
9886 if (!remove)
9887 {
9888 t = OMP_CLAUSE_DECL (c);
9889
9890 if (need_complete)
9891 {
9892 t = require_complete_type (t);
9893 if (t == error_mark_node)
9894 remove = true;
9895 }
9896
9897 if (need_implicitly_determined)
9898 {
9899 const char *share_name = NULL;
9900
9901 if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
9902 share_name = "threadprivate";
9903 else switch (c_omp_predetermined_sharing (t))
9904 {
9905 case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
9906 break;
9907 case OMP_CLAUSE_DEFAULT_SHARED:
9908 share_name = "shared";
9909 break;
9910 case OMP_CLAUSE_DEFAULT_PRIVATE:
9911 share_name = "private";
9912 break;
9913 default:
9914 gcc_unreachable ();
9915 }
9916 if (share_name)
9917 {
9918 error_at (OMP_CLAUSE_LOCATION (c),
9919 "%qE is predetermined %qs for %qs",
9920 t, share_name, name);
9921 remove = true;
9922 }
9923 }
9924 }
9925
9926 if (remove)
9927 *pc = OMP_CLAUSE_CHAIN (c);
9928 else
9929 pc = &OMP_CLAUSE_CHAIN (c);
9930 }
9931
9932 bitmap_obstack_release (NULL);
9933 return clauses;
9934 }
9935
9936 /* Make a variant type in the proper way for C/C++, propagating qualifiers
9937 down to the element type of an array. */
9938
9939 tree
9940 c_build_qualified_type (tree type, int type_quals)
9941 {
9942 if (type == error_mark_node)
9943 return type;
9944
9945 if (TREE_CODE (type) == ARRAY_TYPE)
9946 {
9947 tree t;
9948 tree element_type = c_build_qualified_type (TREE_TYPE (type),
9949 type_quals);
9950
9951 /* See if we already have an identically qualified type. */
9952 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
9953 {
9954 if (TYPE_QUALS (strip_array_types (t)) == type_quals
9955 && TYPE_NAME (t) == TYPE_NAME (type)
9956 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
9957 && attribute_list_equal (TYPE_ATTRIBUTES (t),
9958 TYPE_ATTRIBUTES (type)))
9959 break;
9960 }
9961 if (!t)
9962 {
9963 tree domain = TYPE_DOMAIN (type);
9964
9965 t = build_variant_type_copy (type);
9966 TREE_TYPE (t) = element_type;
9967
9968 if (TYPE_STRUCTURAL_EQUALITY_P (element_type)
9969 || (domain && TYPE_STRUCTURAL_EQUALITY_P (domain)))
9970 SET_TYPE_STRUCTURAL_EQUALITY (t);
9971 else if (TYPE_CANONICAL (element_type) != element_type
9972 || (domain && TYPE_CANONICAL (domain) != domain))
9973 {
9974 tree unqualified_canon
9975 = build_array_type (TYPE_CANONICAL (element_type),
9976 domain? TYPE_CANONICAL (domain)
9977 : NULL_TREE);
9978 TYPE_CANONICAL (t)
9979 = c_build_qualified_type (unqualified_canon, type_quals);
9980 }
9981 else
9982 TYPE_CANONICAL (t) = t;
9983 }
9984 return t;
9985 }
9986
9987 /* A restrict-qualified pointer type must be a pointer to object or
9988 incomplete type. Note that the use of POINTER_TYPE_P also allows
9989 REFERENCE_TYPEs, which is appropriate for C++. */
9990 if ((type_quals & TYPE_QUAL_RESTRICT)
9991 && (!POINTER_TYPE_P (type)
9992 || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
9993 {
9994 error ("invalid use of %<restrict%>");
9995 type_quals &= ~TYPE_QUAL_RESTRICT;
9996 }
9997
9998 return build_qualified_type (type, type_quals);
9999 }
10000
10001 /* Build a VA_ARG_EXPR for the C parser. */
10002
10003 tree
10004 c_build_va_arg (location_t loc, tree expr, tree type)
10005 {
10006 if (warn_cxx_compat && TREE_CODE (type) == ENUMERAL_TYPE)
10007 warning_at (loc, OPT_Wc___compat,
10008 "C++ requires promoted type, not enum type, in %<va_arg%>");
10009 return build_va_arg (loc, expr, type);
10010 }
This page took 0.472654 seconds and 5 git commands to generate.