]> gcc.gnu.org Git - gcc.git/blob - gcc/c-aux-info.c
If errorcount nonzero, don't call abort if the function is already defined.
[gcc.git] / gcc / c-aux-info.c
1 /* Generate information regarding function declarations and definitions based
2 on information stored in GCC's tree structure. This code implements the
3 -aux-info option.
4 Copyright (C) 1989, 91, 94, 95, 97, 1998 Free Software Foundation, Inc.
5 Contributed by Ron Guilmette (rfg@segfault.us.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "c-tree.h"
29
30 enum formals_style_enum {
31 ansi,
32 k_and_r_names,
33 k_and_r_decls
34 };
35 typedef enum formals_style_enum formals_style;
36
37
38 static char *data_type;
39
40 static char *concat PROTO((char *, char *));
41 static char *concat3 PROTO((char *, char *, char *));
42 static char *affix_data_type PROTO((char *));
43 static char *gen_formal_list_for_type PROTO((tree, formals_style));
44 static int deserves_ellipsis PROTO((tree));
45 static char *gen_formal_list_for_func_def PROTO((tree, formals_style));
46 static char *gen_type PROTO((char *, tree, formals_style));
47 static char *gen_decl PROTO((tree, int, formals_style));
48 \f
49 /* Take two strings and mash them together into a newly allocated area. */
50
51 static char *
52 concat (s1, s2)
53 char *s1;
54 char *s2;
55 {
56 int size1, size2;
57 char *ret_val;
58
59 if (!s1)
60 s1 = "";
61 if (!s2)
62 s2 = "";
63
64 size1 = strlen (s1);
65 size2 = strlen (s2);
66 ret_val = xmalloc (size1 + size2 + 1);
67 strcpy (ret_val, s1);
68 strcpy (&ret_val[size1], s2);
69 return ret_val;
70 }
71
72 /* Take three strings and mash them together into a newly allocated area. */
73
74 static char *
75 concat3 (s1, s2, s3)
76 char *s1;
77 char *s2;
78 char *s3;
79 {
80 int size1, size2, size3;
81 char *ret_val;
82
83 if (!s1)
84 s1 = "";
85 if (!s2)
86 s2 = "";
87 if (!s3)
88 s3 = "";
89
90 size1 = strlen (s1);
91 size2 = strlen (s2);
92 size3 = strlen (s3);
93 ret_val = xmalloc (size1 + size2 + size3 + 1);
94 strcpy (ret_val, s1);
95 strcpy (&ret_val[size1], s2);
96 strcpy (&ret_val[size1+size2], s3);
97 return ret_val;
98 }
99
100 /* Given a string representing an entire type or an entire declaration
101 which only lacks the actual "data-type" specifier (at its left end),
102 affix the data-type specifier to the left end of the given type
103 specification or object declaration.
104
105 Because of C language weirdness, the data-type specifier (which normally
106 goes in at the very left end) may have to be slipped in just to the
107 right of any leading "const" or "volatile" qualifiers (there may be more
108 than one). Actually this may not be strictly necessary because it seems
109 that GCC (at least) accepts `<data-type> const foo;' and treats it the
110 same as `const <data-type> foo;' but people are accustomed to seeing
111 `const char *foo;' and *not* `char const *foo;' so we try to create types
112 that look as expected. */
113
114 static char *
115 affix_data_type (type_or_decl)
116 char *type_or_decl;
117 {
118 char *p = type_or_decl;
119 char *qualifiers_then_data_type;
120 char saved;
121
122 /* Skip as many leading const's or volatile's as there are. */
123
124 for (;;)
125 {
126 if (!strncmp (p, "volatile ", 9))
127 {
128 p += 9;
129 continue;
130 }
131 if (!strncmp (p, "const ", 6))
132 {
133 p += 6;
134 continue;
135 }
136 break;
137 }
138
139 /* p now points to the place where we can insert the data type. We have to
140 add a blank after the data-type of course. */
141
142 if (p == type_or_decl)
143 return concat3 (data_type, " ", type_or_decl);
144
145 saved = *p;
146 *p = '\0';
147 qualifiers_then_data_type = concat (type_or_decl, data_type);
148 *p = saved;
149 return concat3 (qualifiers_then_data_type, " ", p);
150 }
151
152 /* Given a tree node which represents some "function type", generate the
153 source code version of a formal parameter list (of some given style) for
154 this function type. Return the whole formal parameter list (including
155 a pair of surrounding parens) as a string. Note that if the style
156 we are currently aiming for is non-ansi, then we just return a pair
157 of empty parens here. */
158
159 static char *
160 gen_formal_list_for_type (fntype, style)
161 tree fntype;
162 formals_style style;
163 {
164 char *formal_list = "";
165 tree formal_type;
166
167 if (style != ansi)
168 return "()";
169
170 formal_type = TYPE_ARG_TYPES (fntype);
171 while (formal_type && TREE_VALUE (formal_type) != void_type_node)
172 {
173 char *this_type;
174
175 if (*formal_list)
176 formal_list = concat (formal_list, ", ");
177
178 this_type = gen_type ("", TREE_VALUE (formal_type), ansi);
179 formal_list
180 = ((strlen (this_type))
181 ? concat (formal_list, affix_data_type (this_type))
182 : concat (formal_list, data_type));
183
184 formal_type = TREE_CHAIN (formal_type);
185 }
186
187 /* If we got to here, then we are trying to generate an ANSI style formal
188 parameters list.
189
190 New style prototyped ANSI formal parameter lists should in theory always
191 contain some stuff between the opening and closing parens, even if it is
192 only "void".
193
194 The brutal truth though is that there is lots of old K&R code out there
195 which contains declarations of "pointer-to-function" parameters and
196 these almost never have fully specified formal parameter lists associated
197 with them. That is, the pointer-to-function parameters are declared
198 with just empty parameter lists.
199
200 In cases such as these, protoize should really insert *something* into
201 the vacant parameter lists, but what? It has no basis on which to insert
202 anything in particular.
203
204 Here, we make life easy for protoize by trying to distinguish between
205 K&R empty parameter lists and new-style prototyped parameter lists
206 that actually contain "void". In the latter case we (obviously) want
207 to output the "void" verbatim, and that what we do. In the former case,
208 we do our best to give protoize something nice to insert.
209
210 This "something nice" should be something that is still valid (when
211 re-compiled) but something that can clearly indicate to the user that
212 more typing information (for the parameter list) should be added (by
213 hand) at some convenient moment.
214
215 The string chosen here is a comment with question marks in it. */
216
217 if (!*formal_list)
218 {
219 if (TYPE_ARG_TYPES (fntype))
220 /* assert (TREE_VALUE (TYPE_ARG_TYPES (fntype)) == void_type_node); */
221 formal_list = "void";
222 else
223 formal_list = "/* ??? */";
224 }
225 else
226 {
227 /* If there were at least some parameters, and if the formals-types-list
228 petered out to a NULL (i.e. without being terminated by a
229 void_type_node) then we need to tack on an ellipsis. */
230 if (!formal_type)
231 formal_list = concat (formal_list, ", ...");
232 }
233
234 return concat3 (" (", formal_list, ")");
235 }
236
237 /* For the generation of an ANSI prototype for a function definition, we have
238 to look at the formal parameter list of the function's own "type" to
239 determine if the function's formal parameter list should end with an
240 ellipsis. Given a tree node, the following function will return non-zero
241 if the "function type" parameter list should end with an ellipsis. */
242
243 static int
244 deserves_ellipsis (fntype)
245 tree fntype;
246 {
247 tree formal_type;
248
249 formal_type = TYPE_ARG_TYPES (fntype);
250 while (formal_type && TREE_VALUE (formal_type) != void_type_node)
251 formal_type = TREE_CHAIN (formal_type);
252
253 /* If there were at least some parameters, and if the formals-types-list
254 petered out to a NULL (i.e. without being terminated by a void_type_node)
255 then we need to tack on an ellipsis. */
256
257 return (!formal_type && TYPE_ARG_TYPES (fntype));
258 }
259
260 /* Generate a parameter list for a function definition (in some given style).
261
262 Note that this routine has to be separate (and different) from the code that
263 generates the prototype parameter lists for function declarations, because
264 in the case of a function declaration, all we have to go on is a tree node
265 representing the function's own "function type". This can tell us the types
266 of all of the formal parameters for the function, but it cannot tell us the
267 actual *names* of each of the formal parameters. We need to output those
268 parameter names for each function definition.
269
270 This routine gets a pointer to a tree node which represents the actual
271 declaration of the given function, and this DECL node has a list of formal
272 parameter (variable) declarations attached to it. These formal parameter
273 (variable) declaration nodes give us the actual names of the formal
274 parameters for the given function definition.
275
276 This routine returns a string which is the source form for the entire
277 function formal parameter list. */
278
279 static char *
280 gen_formal_list_for_func_def (fndecl, style)
281 tree fndecl;
282 formals_style style;
283 {
284 char *formal_list = "";
285 tree formal_decl;
286
287 formal_decl = DECL_ARGUMENTS (fndecl);
288 while (formal_decl)
289 {
290 char *this_formal;
291
292 if (*formal_list && ((style == ansi) || (style == k_and_r_names)))
293 formal_list = concat (formal_list, ", ");
294 this_formal = gen_decl (formal_decl, 0, style);
295 if (style == k_and_r_decls)
296 formal_list = concat3 (formal_list, this_formal, "; ");
297 else
298 formal_list = concat (formal_list, this_formal);
299 formal_decl = TREE_CHAIN (formal_decl);
300 }
301 if (style == ansi)
302 {
303 if (!DECL_ARGUMENTS (fndecl))
304 formal_list = concat (formal_list, "void");
305 if (deserves_ellipsis (TREE_TYPE (fndecl)))
306 formal_list = concat (formal_list, ", ...");
307 }
308 if ((style == ansi) || (style == k_and_r_names))
309 formal_list = concat3 (" (", formal_list, ")");
310 return formal_list;
311 }
312
313 /* Generate a string which is the source code form for a given type (t). This
314 routine is ugly and complex because the C syntax for declarations is ugly
315 and complex. This routine is straightforward so long as *no* pointer types,
316 array types, or function types are involved.
317
318 In the simple cases, this routine will return the (string) value which was
319 passed in as the "ret_val" argument. Usually, this starts out either as an
320 empty string, or as the name of the declared item (i.e. the formal function
321 parameter variable).
322
323 This routine will also return with the global variable "data_type" set to
324 some string value which is the "basic" data-type of the given complete type.
325 This "data_type" string can be concatenated onto the front of the returned
326 string after this routine returns to its caller.
327
328 In complicated cases involving pointer types, array types, or function
329 types, the C declaration syntax requires an "inside out" approach, i.e. if
330 you have a type which is a "pointer-to-function" type, you need to handle
331 the "pointer" part first, but it also has to be "innermost" (relative to
332 the declaration stuff for the "function" type). Thus, is this case, you
333 must prepend a "(*" and append a ")" to the name of the item (i.e. formal
334 variable). Then you must append and prepend the other info for the
335 "function type" part of the overall type.
336
337 To handle the "innermost precedence" rules of complicated C declarators, we
338 do the following (in this routine). The input parameter called "ret_val"
339 is treated as a "seed". Each time gen_type is called (perhaps recursively)
340 some additional strings may be appended or prepended (or both) to the "seed"
341 string. If yet another (lower) level of the GCC tree exists for the given
342 type (as in the case of a pointer type, an array type, or a function type)
343 then the (wrapped) seed is passed to a (recursive) invocation of gen_type()
344 this recursive invocation may again "wrap" the (new) seed with yet more
345 declarator stuff, by appending, prepending (or both). By the time the
346 recursion bottoms out, the "seed value" at that point will have a value
347 which is (almost) the complete source version of the declarator (except
348 for the data_type info). Thus, this deepest "seed" value is simply passed
349 back up through all of the recursive calls until it is given (as the return
350 value) to the initial caller of the gen_type() routine. All that remains
351 to do at this point is for the initial caller to prepend the "data_type"
352 string onto the returned "seed". */
353
354 static char *
355 gen_type (ret_val, t, style)
356 char *ret_val;
357 tree t;
358 formals_style style;
359 {
360 tree chain_p;
361
362 /* If there is a typedef name for this type, use it. */
363 if (TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
364 data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
365 else
366 {
367 switch (TREE_CODE (t))
368 {
369 case POINTER_TYPE:
370 if (TYPE_READONLY (t))
371 ret_val = concat ("const ", ret_val);
372 if (TYPE_VOLATILE (t))
373 ret_val = concat ("volatile ", ret_val);
374
375 ret_val = concat ("*", ret_val);
376
377 if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE)
378 ret_val = concat3 ("(", ret_val, ")");
379
380 ret_val = gen_type (ret_val, TREE_TYPE (t), style);
381
382 return ret_val;
383
384 case ARRAY_TYPE:
385 if (TYPE_SIZE (t) == 0 || TREE_CODE (TYPE_SIZE (t)) != INTEGER_CST)
386 ret_val = gen_type (concat (ret_val, "[]"), TREE_TYPE (t), style);
387 else if (int_size_in_bytes (t) == 0)
388 ret_val = gen_type (concat (ret_val, "[0]"), TREE_TYPE (t), style);
389 else
390 {
391 int size = (int_size_in_bytes (t) / int_size_in_bytes (TREE_TYPE (t)));
392 char buff[10];
393 sprintf (buff, "[%d]", size);
394 ret_val = gen_type (concat (ret_val, buff),
395 TREE_TYPE (t), style);
396 }
397 break;
398
399 case FUNCTION_TYPE:
400 ret_val = gen_type (concat (ret_val, gen_formal_list_for_type (t, style)), TREE_TYPE (t), style);
401 break;
402
403 case IDENTIFIER_NODE:
404 data_type = IDENTIFIER_POINTER (t);
405 break;
406
407 /* The following three cases are complicated by the fact that a
408 user may do something really stupid, like creating a brand new
409 "anonymous" type specification in a formal argument list (or as
410 part of a function return type specification). For example:
411
412 int f (enum { red, green, blue } color);
413
414 In such cases, we have no name that we can put into the prototype
415 to represent the (anonymous) type. Thus, we have to generate the
416 whole darn type specification. Yuck! */
417
418 case RECORD_TYPE:
419 if (TYPE_NAME (t))
420 data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
421 else
422 {
423 data_type = "";
424 chain_p = TYPE_FIELDS (t);
425 while (chain_p)
426 {
427 data_type = concat (data_type, gen_decl (chain_p, 0, ansi));
428 chain_p = TREE_CHAIN (chain_p);
429 data_type = concat (data_type, "; ");
430 }
431 data_type = concat3 ("{ ", data_type, "}");
432 }
433 data_type = concat ("struct ", data_type);
434 break;
435
436 case UNION_TYPE:
437 if (TYPE_NAME (t))
438 data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
439 else
440 {
441 data_type = "";
442 chain_p = TYPE_FIELDS (t);
443 while (chain_p)
444 {
445 data_type = concat (data_type, gen_decl (chain_p, 0, ansi));
446 chain_p = TREE_CHAIN (chain_p);
447 data_type = concat (data_type, "; ");
448 }
449 data_type = concat3 ("{ ", data_type, "}");
450 }
451 data_type = concat ("union ", data_type);
452 break;
453
454 case ENUMERAL_TYPE:
455 if (TYPE_NAME (t))
456 data_type = IDENTIFIER_POINTER (TYPE_NAME (t));
457 else
458 {
459 data_type = "";
460 chain_p = TYPE_VALUES (t);
461 while (chain_p)
462 {
463 data_type = concat (data_type,
464 IDENTIFIER_POINTER (TREE_PURPOSE (chain_p)));
465 chain_p = TREE_CHAIN (chain_p);
466 if (chain_p)
467 data_type = concat (data_type, ", ");
468 }
469 data_type = concat3 ("{ ", data_type, " }");
470 }
471 data_type = concat ("enum ", data_type);
472 break;
473
474 case TYPE_DECL:
475 data_type = IDENTIFIER_POINTER (DECL_NAME (t));
476 break;
477
478 case INTEGER_TYPE:
479 data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
480 /* Normally, `unsigned' is part of the deal. Not so if it comes
481 with `const' or `volatile'. */
482 if (TREE_UNSIGNED (t) && (TYPE_READONLY (t) || TYPE_VOLATILE (t)))
483 data_type = concat ("unsigned ", data_type);
484 break;
485
486 case REAL_TYPE:
487 data_type = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (t)));
488 break;
489
490 case VOID_TYPE:
491 data_type = "void";
492 break;
493
494 case ERROR_MARK:
495 data_type = "[ERROR]";
496 break;
497
498 default:
499 abort ();
500 }
501 }
502 if (TYPE_READONLY (t))
503 ret_val = concat ("const ", ret_val);
504 if (TYPE_VOLATILE (t))
505 ret_val = concat ("volatile ", ret_val);
506 return ret_val;
507 }
508
509 /* Generate a string (source) representation of an entire entity declaration
510 (using some particular style for function types).
511
512 The given entity may be either a variable or a function.
513
514 If the "is_func_definition" parameter is non-zero, assume that the thing
515 we are generating a declaration for is a FUNCTION_DECL node which is
516 associated with a function definition. In this case, we can assume that
517 an attached list of DECL nodes for function formal arguments is present. */
518
519 static char *
520 gen_decl (decl, is_func_definition, style)
521 tree decl;
522 int is_func_definition;
523 formals_style style;
524 {
525 char *ret_val;
526
527 if (DECL_NAME (decl))
528 ret_val = IDENTIFIER_POINTER (DECL_NAME (decl));
529 else
530 ret_val = "";
531
532 /* If we are just generating a list of names of formal parameters, we can
533 simply return the formal parameter name (with no typing information
534 attached to it) now. */
535
536 if (style == k_and_r_names)
537 return ret_val;
538
539 /* Note that for the declaration of some entity (either a function or a
540 data object, like for instance a parameter) if the entity itself was
541 declared as either const or volatile, then const and volatile properties
542 are associated with just the declaration of the entity, and *not* with
543 the `type' of the entity. Thus, for such declared entities, we have to
544 generate the qualifiers here. */
545
546 if (TREE_THIS_VOLATILE (decl))
547 ret_val = concat ("volatile ", ret_val);
548 if (TREE_READONLY (decl))
549 ret_val = concat ("const ", ret_val);
550
551 data_type = "";
552
553 /* For FUNCTION_DECL nodes, there are two possible cases here. First, if
554 this FUNCTION_DECL node was generated from a function "definition", then
555 we will have a list of DECL_NODE's, one for each of the function's formal
556 parameters. In this case, we can print out not only the types of each
557 formal, but also each formal's name. In the second case, this
558 FUNCTION_DECL node came from an actual function declaration (and *not*
559 a definition). In this case, we do nothing here because the formal
560 argument type-list will be output later, when the "type" of the function
561 is added to the string we are building. Note that the ANSI-style formal
562 parameter list is considered to be a (suffix) part of the "type" of the
563 function. */
564
565 if (TREE_CODE (decl) == FUNCTION_DECL && is_func_definition)
566 {
567 ret_val = concat (ret_val, gen_formal_list_for_func_def (decl, ansi));
568
569 /* Since we have already added in the formals list stuff, here we don't
570 add the whole "type" of the function we are considering (which
571 would include its parameter-list info), rather, we only add in
572 the "type" of the "type" of the function, which is really just
573 the return-type of the function (and does not include the parameter
574 list info). */
575
576 ret_val = gen_type (ret_val, TREE_TYPE (TREE_TYPE (decl)), style);
577 }
578 else
579 ret_val = gen_type (ret_val, TREE_TYPE (decl), style);
580
581 ret_val = affix_data_type (ret_val);
582
583 if (TREE_CODE (decl) != FUNCTION_DECL && DECL_REGISTER (decl))
584 ret_val = concat ("register ", ret_val);
585 if (TREE_PUBLIC (decl))
586 ret_val = concat ("extern ", ret_val);
587 if (TREE_CODE (decl) == FUNCTION_DECL && !TREE_PUBLIC (decl))
588 ret_val = concat ("static ", ret_val);
589
590 return ret_val;
591 }
592
593 extern FILE *aux_info_file;
594
595 /* Generate and write a new line of info to the aux-info (.X) file. This
596 routine is called once for each function declaration, and once for each
597 function definition (even the implicit ones). */
598
599 void
600 gen_aux_info_record (fndecl, is_definition, is_implicit, is_prototyped)
601 tree fndecl;
602 int is_definition;
603 int is_implicit;
604 int is_prototyped;
605 {
606 if (flag_gen_aux_info)
607 {
608 static int compiled_from_record = 0;
609
610 /* Each output .X file must have a header line. Write one now if we
611 have not yet done so. */
612
613 if (! compiled_from_record++)
614 {
615 /* The first line tells which directory file names are relative to.
616 Currently, -aux-info works only for files in the working
617 directory, so just use a `.' as a placeholder for now. */
618 fprintf (aux_info_file, "/* compiled from: . */\n");
619 }
620
621 /* Write the actual line of auxiliary info. */
622
623 fprintf (aux_info_file, "/* %s:%d:%c%c */ %s;",
624 DECL_SOURCE_FILE (fndecl),
625 DECL_SOURCE_LINE (fndecl),
626 (is_implicit) ? 'I' : (is_prototyped) ? 'N' : 'O',
627 (is_definition) ? 'F' : 'C',
628 gen_decl (fndecl, is_definition, ansi));
629
630 /* If this is an explicit function declaration, we need to also write
631 out an old-style (i.e. K&R) function header, just in case the user
632 wants to run unprotoize. */
633
634 if (is_definition)
635 {
636 fprintf (aux_info_file, " /*%s %s*/",
637 gen_formal_list_for_func_def (fndecl, k_and_r_names),
638 gen_formal_list_for_func_def (fndecl, k_and_r_decls));
639 }
640
641 fprintf (aux_info_file, "\n");
642 }
643 }
This page took 0.064887 seconds and 5 git commands to generate.