]> gcc.gnu.org Git - gcc.git/blob - gcc/bb-reorder.c
re PR other/32948 (five warnings and a patch)
[gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This (greedy) algorithm constructs traces in several rounds.
22 The construction starts from "seeds". The seed for the first round
23 is the entry point of function. When there are more than one seed
24 that one is selected first that has the lowest key in the heap
25 (see function bb_to_key). Then the algorithm repeatedly adds the most
26 probable successor to the end of a trace. Finally it connects the traces.
27
28 There are two parameters: Branch Threshold and Exec Threshold.
29 If the edge to a successor of the actual basic block is lower than
30 Branch Threshold or the frequency of the successor is lower than
31 Exec Threshold the successor will be the seed in one of the next rounds.
32 Each round has these parameters lower than the previous one.
33 The last round has to have these parameters set to zero
34 so that the remaining blocks are picked up.
35
36 The algorithm selects the most probable successor from all unvisited
37 successors and successors that have been added to this trace.
38 The other successors (that has not been "sent" to the next round) will be
39 other seeds for this round and the secondary traces will start in them.
40 If the successor has not been visited in this trace it is added to the trace
41 (however, there is some heuristic for simple branches).
42 If the successor has been visited in this trace the loop has been found.
43 If the loop has many iterations the loop is rotated so that the
44 source block of the most probable edge going out from the loop
45 is the last block of the trace.
46 If the loop has few iterations and there is no edge from the last block of
47 the loop going out from loop the loop header is duplicated.
48 Finally, the construction of the trace is terminated.
49
50 When connecting traces it first checks whether there is an edge from the
51 last block of one trace to the first block of another trace.
52 When there are still some unconnected traces it checks whether there exists
53 a basic block BB such that BB is a successor of the last bb of one trace
54 and BB is a predecessor of the first block of another trace. In this case,
55 BB is duplicated and the traces are connected through this duplicate.
56 The rest of traces are simply connected so there will be a jump to the
57 beginning of the rest of trace.
58
59
60 References:
61
62 "Software Trace Cache"
63 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64 http://citeseer.nj.nec.com/15361.html
65
66 */
67
68 #include "config.h"
69 #include "system.h"
70 #include "coretypes.h"
71 #include "tm.h"
72 #include "rtl.h"
73 #include "regs.h"
74 #include "flags.h"
75 #include "timevar.h"
76 #include "output.h"
77 #include "cfglayout.h"
78 #include "fibheap.h"
79 #include "target.h"
80 #include "function.h"
81 #include "tm_p.h"
82 #include "obstack.h"
83 #include "expr.h"
84 #include "params.h"
85 #include "toplev.h"
86 #include "tree-pass.h"
87 #include "df.h"
88
89 #ifndef HAVE_conditional_execution
90 #define HAVE_conditional_execution 0
91 #endif
92
93 /* The number of rounds. In most cases there will only be 4 rounds, but
94 when partitioning hot and cold basic blocks into separate sections of
95 the .o file there will be an extra round.*/
96 #define N_ROUNDS 5
97
98 /* Stubs in case we don't have a return insn.
99 We have to check at runtime too, not only compiletime. */
100
101 #ifndef HAVE_return
102 #define HAVE_return 0
103 #define gen_return() NULL_RTX
104 #endif
105
106
107 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
108 static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
109
110 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
111 static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
112
113 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
114 block the edge destination is not duplicated while connecting traces. */
115 #define DUPLICATION_THRESHOLD 100
116
117 /* Length of unconditional jump instruction. */
118 static int uncond_jump_length;
119
120 /* Structure to hold needed information for each basic block. */
121 typedef struct bbro_basic_block_data_def
122 {
123 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
124 int start_of_trace;
125
126 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
127 int end_of_trace;
128
129 /* Which trace is the bb in? */
130 int in_trace;
131
132 /* Which heap is BB in (if any)? */
133 fibheap_t heap;
134
135 /* Which heap node is BB in (if any)? */
136 fibnode_t node;
137 } bbro_basic_block_data;
138
139 /* The current size of the following dynamic array. */
140 static int array_size;
141
142 /* The array which holds needed information for basic blocks. */
143 static bbro_basic_block_data *bbd;
144
145 /* To avoid frequent reallocation the size of arrays is greater than needed,
146 the number of elements is (not less than) 1.25 * size_wanted. */
147 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
148
149 /* Free the memory and set the pointer to NULL. */
150 #define FREE(P) (gcc_assert (P), free (P), P = 0)
151
152 /* Structure for holding information about a trace. */
153 struct trace
154 {
155 /* First and last basic block of the trace. */
156 basic_block first, last;
157
158 /* The round of the STC creation which this trace was found in. */
159 int round;
160
161 /* The length (i.e. the number of basic blocks) of the trace. */
162 int length;
163 };
164
165 /* Maximum frequency and count of one of the entry blocks. */
166 static int max_entry_frequency;
167 static gcov_type max_entry_count;
168
169 /* Local function prototypes. */
170 static void find_traces (int *, struct trace *);
171 static basic_block rotate_loop (edge, struct trace *, int);
172 static void mark_bb_visited (basic_block, int);
173 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
174 int, fibheap_t *, int);
175 static basic_block copy_bb (basic_block, edge, basic_block, int);
176 static fibheapkey_t bb_to_key (basic_block);
177 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
178 static void connect_traces (int, struct trace *);
179 static bool copy_bb_p (const_basic_block, int);
180 static int get_uncond_jump_length (void);
181 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
182 static void find_rarely_executed_basic_blocks_and_crossing_edges (edge **,
183 int *,
184 int *);
185 static void add_labels_and_missing_jumps (edge *, int);
186 static void add_reg_crossing_jump_notes (void);
187 static void fix_up_fall_thru_edges (void);
188 static void fix_edges_for_rarely_executed_code (edge *, int);
189 static void fix_crossing_conditional_branches (void);
190 static void fix_crossing_unconditional_branches (void);
191 \f
192 /* Check to see if bb should be pushed into the next round of trace
193 collections or not. Reasons for pushing the block forward are 1).
194 If the block is cold, we are doing partitioning, and there will be
195 another round (cold partition blocks are not supposed to be
196 collected into traces until the very last round); or 2). There will
197 be another round, and the basic block is not "hot enough" for the
198 current round of trace collection. */
199
200 static bool
201 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
202 int exec_th, gcov_type count_th)
203 {
204 bool there_exists_another_round;
205 bool block_not_hot_enough;
206
207 there_exists_another_round = round < number_of_rounds - 1;
208
209 block_not_hot_enough = (bb->frequency < exec_th
210 || bb->count < count_th
211 || probably_never_executed_bb_p (bb));
212
213 if (there_exists_another_round
214 && block_not_hot_enough)
215 return true;
216 else
217 return false;
218 }
219
220 /* Find the traces for Software Trace Cache. Chain each trace through
221 RBI()->next. Store the number of traces to N_TRACES and description of
222 traces to TRACES. */
223
224 static void
225 find_traces (int *n_traces, struct trace *traces)
226 {
227 int i;
228 int number_of_rounds;
229 edge e;
230 edge_iterator ei;
231 fibheap_t heap;
232
233 /* Add one extra round of trace collection when partitioning hot/cold
234 basic blocks into separate sections. The last round is for all the
235 cold blocks (and ONLY the cold blocks). */
236
237 number_of_rounds = N_ROUNDS - 1;
238
239 /* Insert entry points of function into heap. */
240 heap = fibheap_new ();
241 max_entry_frequency = 0;
242 max_entry_count = 0;
243 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
244 {
245 bbd[e->dest->index].heap = heap;
246 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
247 e->dest);
248 if (e->dest->frequency > max_entry_frequency)
249 max_entry_frequency = e->dest->frequency;
250 if (e->dest->count > max_entry_count)
251 max_entry_count = e->dest->count;
252 }
253
254 /* Find the traces. */
255 for (i = 0; i < number_of_rounds; i++)
256 {
257 gcov_type count_threshold;
258
259 if (dump_file)
260 fprintf (dump_file, "STC - round %d\n", i + 1);
261
262 if (max_entry_count < INT_MAX / 1000)
263 count_threshold = max_entry_count * exec_threshold[i] / 1000;
264 else
265 count_threshold = max_entry_count / 1000 * exec_threshold[i];
266
267 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
268 max_entry_frequency * exec_threshold[i] / 1000,
269 count_threshold, traces, n_traces, i, &heap,
270 number_of_rounds);
271 }
272 fibheap_delete (heap);
273
274 if (dump_file)
275 {
276 for (i = 0; i < *n_traces; i++)
277 {
278 basic_block bb;
279 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
280 traces[i].round + 1);
281 for (bb = traces[i].first; bb != traces[i].last; bb = bb->aux)
282 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
283 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
284 }
285 fflush (dump_file);
286 }
287 }
288
289 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
290 (with sequential number TRACE_N). */
291
292 static basic_block
293 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
294 {
295 basic_block bb;
296
297 /* Information about the best end (end after rotation) of the loop. */
298 basic_block best_bb = NULL;
299 edge best_edge = NULL;
300 int best_freq = -1;
301 gcov_type best_count = -1;
302 /* The best edge is preferred when its destination is not visited yet
303 or is a start block of some trace. */
304 bool is_preferred = false;
305
306 /* Find the most frequent edge that goes out from current trace. */
307 bb = back_edge->dest;
308 do
309 {
310 edge e;
311 edge_iterator ei;
312
313 FOR_EACH_EDGE (e, ei, bb->succs)
314 if (e->dest != EXIT_BLOCK_PTR
315 && e->dest->il.rtl->visited != trace_n
316 && (e->flags & EDGE_CAN_FALLTHRU)
317 && !(e->flags & EDGE_COMPLEX))
318 {
319 if (is_preferred)
320 {
321 /* The best edge is preferred. */
322 if (!e->dest->il.rtl->visited
323 || bbd[e->dest->index].start_of_trace >= 0)
324 {
325 /* The current edge E is also preferred. */
326 int freq = EDGE_FREQUENCY (e);
327 if (freq > best_freq || e->count > best_count)
328 {
329 best_freq = freq;
330 best_count = e->count;
331 best_edge = e;
332 best_bb = bb;
333 }
334 }
335 }
336 else
337 {
338 if (!e->dest->il.rtl->visited
339 || bbd[e->dest->index].start_of_trace >= 0)
340 {
341 /* The current edge E is preferred. */
342 is_preferred = true;
343 best_freq = EDGE_FREQUENCY (e);
344 best_count = e->count;
345 best_edge = e;
346 best_bb = bb;
347 }
348 else
349 {
350 int freq = EDGE_FREQUENCY (e);
351 if (!best_edge || freq > best_freq || e->count > best_count)
352 {
353 best_freq = freq;
354 best_count = e->count;
355 best_edge = e;
356 best_bb = bb;
357 }
358 }
359 }
360 }
361 bb = bb->aux;
362 }
363 while (bb != back_edge->dest);
364
365 if (best_bb)
366 {
367 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
368 the trace. */
369 if (back_edge->dest == trace->first)
370 {
371 trace->first = best_bb->aux;
372 }
373 else
374 {
375 basic_block prev_bb;
376
377 for (prev_bb = trace->first;
378 prev_bb->aux != back_edge->dest;
379 prev_bb = prev_bb->aux)
380 ;
381 prev_bb->aux = best_bb->aux;
382
383 /* Try to get rid of uncond jump to cond jump. */
384 if (single_succ_p (prev_bb))
385 {
386 basic_block header = single_succ (prev_bb);
387
388 /* Duplicate HEADER if it is a small block containing cond jump
389 in the end. */
390 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
391 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
392 NULL_RTX))
393 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
394 }
395 }
396 }
397 else
398 {
399 /* We have not found suitable loop tail so do no rotation. */
400 best_bb = back_edge->src;
401 }
402 best_bb->aux = NULL;
403 return best_bb;
404 }
405
406 /* This function marks BB that it was visited in trace number TRACE. */
407
408 static void
409 mark_bb_visited (basic_block bb, int trace)
410 {
411 bb->il.rtl->visited = trace;
412 if (bbd[bb->index].heap)
413 {
414 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
415 bbd[bb->index].heap = NULL;
416 bbd[bb->index].node = NULL;
417 }
418 }
419
420 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
421 not include basic blocks their probability is lower than BRANCH_TH or their
422 frequency is lower than EXEC_TH into traces (or count is lower than
423 COUNT_TH). It stores the new traces into TRACES and modifies the number of
424 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
425 expects that starting basic blocks are in *HEAP and at the end it deletes
426 *HEAP and stores starting points for the next round into new *HEAP. */
427
428 static void
429 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
430 struct trace *traces, int *n_traces, int round,
431 fibheap_t *heap, int number_of_rounds)
432 {
433 /* Heap for discarded basic blocks which are possible starting points for
434 the next round. */
435 fibheap_t new_heap = fibheap_new ();
436
437 while (!fibheap_empty (*heap))
438 {
439 basic_block bb;
440 struct trace *trace;
441 edge best_edge, e;
442 fibheapkey_t key;
443 edge_iterator ei;
444
445 bb = fibheap_extract_min (*heap);
446 bbd[bb->index].heap = NULL;
447 bbd[bb->index].node = NULL;
448
449 if (dump_file)
450 fprintf (dump_file, "Getting bb %d\n", bb->index);
451
452 /* If the BB's frequency is too low send BB to the next round. When
453 partitioning hot/cold blocks into separate sections, make sure all
454 the cold blocks (and ONLY the cold blocks) go into the (extra) final
455 round. */
456
457 if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
458 count_th))
459 {
460 int key = bb_to_key (bb);
461 bbd[bb->index].heap = new_heap;
462 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
463
464 if (dump_file)
465 fprintf (dump_file,
466 " Possible start point of next round: %d (key: %d)\n",
467 bb->index, key);
468 continue;
469 }
470
471 trace = traces + *n_traces;
472 trace->first = bb;
473 trace->round = round;
474 trace->length = 0;
475 bbd[bb->index].in_trace = *n_traces;
476 (*n_traces)++;
477
478 do
479 {
480 int prob, freq;
481 bool ends_in_call;
482
483 /* The probability and frequency of the best edge. */
484 int best_prob = INT_MIN / 2;
485 int best_freq = INT_MIN / 2;
486
487 best_edge = NULL;
488 mark_bb_visited (bb, *n_traces);
489 trace->length++;
490
491 if (dump_file)
492 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
493 bb->index, *n_traces - 1);
494
495 ends_in_call = block_ends_with_call_p (bb);
496
497 /* Select the successor that will be placed after BB. */
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 {
500 gcc_assert (!(e->flags & EDGE_FAKE));
501
502 if (e->dest == EXIT_BLOCK_PTR)
503 continue;
504
505 if (e->dest->il.rtl->visited
506 && e->dest->il.rtl->visited != *n_traces)
507 continue;
508
509 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
510 continue;
511
512 prob = e->probability;
513 freq = e->dest->frequency;
514
515 /* The only sensible preference for a call instruction is the
516 fallthru edge. Don't bother selecting anything else. */
517 if (ends_in_call)
518 {
519 if (e->flags & EDGE_CAN_FALLTHRU)
520 {
521 best_edge = e;
522 best_prob = prob;
523 best_freq = freq;
524 }
525 continue;
526 }
527
528 /* Edge that cannot be fallthru or improbable or infrequent
529 successor (i.e. it is unsuitable successor). */
530 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
531 || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
532 || e->count < count_th)
533 continue;
534
535 /* If partitioning hot/cold basic blocks, don't consider edges
536 that cross section boundaries. */
537
538 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
539 best_edge))
540 {
541 best_edge = e;
542 best_prob = prob;
543 best_freq = freq;
544 }
545 }
546
547 /* If the best destination has multiple predecessors, and can be
548 duplicated cheaper than a jump, don't allow it to be added
549 to a trace. We'll duplicate it when connecting traces. */
550 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
551 && copy_bb_p (best_edge->dest, 0))
552 best_edge = NULL;
553
554 /* Add all non-selected successors to the heaps. */
555 FOR_EACH_EDGE (e, ei, bb->succs)
556 {
557 if (e == best_edge
558 || e->dest == EXIT_BLOCK_PTR
559 || e->dest->il.rtl->visited)
560 continue;
561
562 key = bb_to_key (e->dest);
563
564 if (bbd[e->dest->index].heap)
565 {
566 /* E->DEST is already in some heap. */
567 if (key != bbd[e->dest->index].node->key)
568 {
569 if (dump_file)
570 {
571 fprintf (dump_file,
572 "Changing key for bb %d from %ld to %ld.\n",
573 e->dest->index,
574 (long) bbd[e->dest->index].node->key,
575 key);
576 }
577 fibheap_replace_key (bbd[e->dest->index].heap,
578 bbd[e->dest->index].node, key);
579 }
580 }
581 else
582 {
583 fibheap_t which_heap = *heap;
584
585 prob = e->probability;
586 freq = EDGE_FREQUENCY (e);
587
588 if (!(e->flags & EDGE_CAN_FALLTHRU)
589 || (e->flags & EDGE_COMPLEX)
590 || prob < branch_th || freq < exec_th
591 || e->count < count_th)
592 {
593 /* When partitioning hot/cold basic blocks, make sure
594 the cold blocks (and only the cold blocks) all get
595 pushed to the last round of trace collection. */
596
597 if (push_to_next_round_p (e->dest, round,
598 number_of_rounds,
599 exec_th, count_th))
600 which_heap = new_heap;
601 }
602
603 bbd[e->dest->index].heap = which_heap;
604 bbd[e->dest->index].node = fibheap_insert (which_heap,
605 key, e->dest);
606
607 if (dump_file)
608 {
609 fprintf (dump_file,
610 " Possible start of %s round: %d (key: %ld)\n",
611 (which_heap == new_heap) ? "next" : "this",
612 e->dest->index, (long) key);
613 }
614
615 }
616 }
617
618 if (best_edge) /* Suitable successor was found. */
619 {
620 if (best_edge->dest->il.rtl->visited == *n_traces)
621 {
622 /* We do nothing with one basic block loops. */
623 if (best_edge->dest != bb)
624 {
625 if (EDGE_FREQUENCY (best_edge)
626 > 4 * best_edge->dest->frequency / 5)
627 {
628 /* The loop has at least 4 iterations. If the loop
629 header is not the first block of the function
630 we can rotate the loop. */
631
632 if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
633 {
634 if (dump_file)
635 {
636 fprintf (dump_file,
637 "Rotating loop %d - %d\n",
638 best_edge->dest->index, bb->index);
639 }
640 bb->aux = best_edge->dest;
641 bbd[best_edge->dest->index].in_trace =
642 (*n_traces) - 1;
643 bb = rotate_loop (best_edge, trace, *n_traces);
644 }
645 }
646 else
647 {
648 /* The loop has less than 4 iterations. */
649
650 if (single_succ_p (bb)
651 && copy_bb_p (best_edge->dest, !optimize_size))
652 {
653 bb = copy_bb (best_edge->dest, best_edge, bb,
654 *n_traces);
655 trace->length++;
656 }
657 }
658 }
659
660 /* Terminate the trace. */
661 break;
662 }
663 else
664 {
665 /* Check for a situation
666
667 A
668 /|
669 B |
670 \|
671 C
672
673 where
674 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
675 >= EDGE_FREQUENCY (AC).
676 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
677 Best ordering is then A B C.
678
679 This situation is created for example by:
680
681 if (A) B;
682 C;
683
684 */
685
686 FOR_EACH_EDGE (e, ei, bb->succs)
687 if (e != best_edge
688 && (e->flags & EDGE_CAN_FALLTHRU)
689 && !(e->flags & EDGE_COMPLEX)
690 && !e->dest->il.rtl->visited
691 && single_pred_p (e->dest)
692 && !(e->flags & EDGE_CROSSING)
693 && single_succ_p (e->dest)
694 && (single_succ_edge (e->dest)->flags
695 & EDGE_CAN_FALLTHRU)
696 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
697 && single_succ (e->dest) == best_edge->dest
698 && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
699 {
700 best_edge = e;
701 if (dump_file)
702 fprintf (dump_file, "Selecting BB %d\n",
703 best_edge->dest->index);
704 break;
705 }
706
707 bb->aux = best_edge->dest;
708 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
709 bb = best_edge->dest;
710 }
711 }
712 }
713 while (best_edge);
714 trace->last = bb;
715 bbd[trace->first->index].start_of_trace = *n_traces - 1;
716 bbd[trace->last->index].end_of_trace = *n_traces - 1;
717
718 /* The trace is terminated so we have to recount the keys in heap
719 (some block can have a lower key because now one of its predecessors
720 is an end of the trace). */
721 FOR_EACH_EDGE (e, ei, bb->succs)
722 {
723 if (e->dest == EXIT_BLOCK_PTR
724 || e->dest->il.rtl->visited)
725 continue;
726
727 if (bbd[e->dest->index].heap)
728 {
729 key = bb_to_key (e->dest);
730 if (key != bbd[e->dest->index].node->key)
731 {
732 if (dump_file)
733 {
734 fprintf (dump_file,
735 "Changing key for bb %d from %ld to %ld.\n",
736 e->dest->index,
737 (long) bbd[e->dest->index].node->key, key);
738 }
739 fibheap_replace_key (bbd[e->dest->index].heap,
740 bbd[e->dest->index].node,
741 key);
742 }
743 }
744 }
745 }
746
747 fibheap_delete (*heap);
748
749 /* "Return" the new heap. */
750 *heap = new_heap;
751 }
752
753 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
754 it to trace after BB, mark OLD_BB visited and update pass' data structures
755 (TRACE is a number of trace which OLD_BB is duplicated to). */
756
757 static basic_block
758 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
759 {
760 basic_block new_bb;
761
762 new_bb = duplicate_block (old_bb, e, bb);
763 BB_COPY_PARTITION (new_bb, old_bb);
764
765 gcc_assert (e->dest == new_bb);
766 gcc_assert (!e->dest->il.rtl->visited);
767
768 if (dump_file)
769 fprintf (dump_file,
770 "Duplicated bb %d (created bb %d)\n",
771 old_bb->index, new_bb->index);
772 new_bb->il.rtl->visited = trace;
773 new_bb->aux = bb->aux;
774 bb->aux = new_bb;
775
776 if (new_bb->index >= array_size || last_basic_block > array_size)
777 {
778 int i;
779 int new_size;
780
781 new_size = MAX (last_basic_block, new_bb->index + 1);
782 new_size = GET_ARRAY_SIZE (new_size);
783 bbd = xrealloc (bbd, new_size * sizeof (bbro_basic_block_data));
784 for (i = array_size; i < new_size; i++)
785 {
786 bbd[i].start_of_trace = -1;
787 bbd[i].in_trace = -1;
788 bbd[i].end_of_trace = -1;
789 bbd[i].heap = NULL;
790 bbd[i].node = NULL;
791 }
792 array_size = new_size;
793
794 if (dump_file)
795 {
796 fprintf (dump_file,
797 "Growing the dynamic array to %d elements.\n",
798 array_size);
799 }
800 }
801
802 bbd[new_bb->index].in_trace = trace;
803
804 return new_bb;
805 }
806
807 /* Compute and return the key (for the heap) of the basic block BB. */
808
809 static fibheapkey_t
810 bb_to_key (basic_block bb)
811 {
812 edge e;
813 edge_iterator ei;
814 int priority = 0;
815
816 /* Do not start in probably never executed blocks. */
817
818 if (BB_PARTITION (bb) == BB_COLD_PARTITION
819 || probably_never_executed_bb_p (bb))
820 return BB_FREQ_MAX;
821
822 /* Prefer blocks whose predecessor is an end of some trace
823 or whose predecessor edge is EDGE_DFS_BACK. */
824 FOR_EACH_EDGE (e, ei, bb->preds)
825 {
826 if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
827 || (e->flags & EDGE_DFS_BACK))
828 {
829 int edge_freq = EDGE_FREQUENCY (e);
830
831 if (edge_freq > priority)
832 priority = edge_freq;
833 }
834 }
835
836 if (priority)
837 /* The block with priority should have significantly lower key. */
838 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
839 return -bb->frequency;
840 }
841
842 /* Return true when the edge E from basic block BB is better than the temporary
843 best edge (details are in function). The probability of edge E is PROB. The
844 frequency of the successor is FREQ. The current best probability is
845 BEST_PROB, the best frequency is BEST_FREQ.
846 The edge is considered to be equivalent when PROB does not differ much from
847 BEST_PROB; similarly for frequency. */
848
849 static bool
850 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
851 int best_freq, const_edge cur_best_edge)
852 {
853 bool is_better_edge;
854
855 /* The BEST_* values do not have to be best, but can be a bit smaller than
856 maximum values. */
857 int diff_prob = best_prob / 10;
858 int diff_freq = best_freq / 10;
859
860 if (prob > best_prob + diff_prob)
861 /* The edge has higher probability than the temporary best edge. */
862 is_better_edge = true;
863 else if (prob < best_prob - diff_prob)
864 /* The edge has lower probability than the temporary best edge. */
865 is_better_edge = false;
866 else if (freq < best_freq - diff_freq)
867 /* The edge and the temporary best edge have almost equivalent
868 probabilities. The higher frequency of a successor now means
869 that there is another edge going into that successor.
870 This successor has lower frequency so it is better. */
871 is_better_edge = true;
872 else if (freq > best_freq + diff_freq)
873 /* This successor has higher frequency so it is worse. */
874 is_better_edge = false;
875 else if (e->dest->prev_bb == bb)
876 /* The edges have equivalent probabilities and the successors
877 have equivalent frequencies. Select the previous successor. */
878 is_better_edge = true;
879 else
880 is_better_edge = false;
881
882 /* If we are doing hot/cold partitioning, make sure that we always favor
883 non-crossing edges over crossing edges. */
884
885 if (!is_better_edge
886 && flag_reorder_blocks_and_partition
887 && cur_best_edge
888 && (cur_best_edge->flags & EDGE_CROSSING)
889 && !(e->flags & EDGE_CROSSING))
890 is_better_edge = true;
891
892 return is_better_edge;
893 }
894
895 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
896
897 static void
898 connect_traces (int n_traces, struct trace *traces)
899 {
900 int i;
901 bool *connected;
902 bool two_passes;
903 int last_trace;
904 int current_pass;
905 int current_partition;
906 int freq_threshold;
907 gcov_type count_threshold;
908
909 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
910 if (max_entry_count < INT_MAX / 1000)
911 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
912 else
913 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
914
915 connected = XCNEWVEC (bool, n_traces);
916 last_trace = -1;
917 current_pass = 1;
918 current_partition = BB_PARTITION (traces[0].first);
919 two_passes = false;
920
921 if (flag_reorder_blocks_and_partition)
922 for (i = 0; i < n_traces && !two_passes; i++)
923 if (BB_PARTITION (traces[0].first)
924 != BB_PARTITION (traces[i].first))
925 two_passes = true;
926
927 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
928 {
929 int t = i;
930 int t2;
931 edge e, best;
932 int best_len;
933
934 if (i >= n_traces)
935 {
936 gcc_assert (two_passes && current_pass == 1);
937 i = 0;
938 t = i;
939 current_pass = 2;
940 if (current_partition == BB_HOT_PARTITION)
941 current_partition = BB_COLD_PARTITION;
942 else
943 current_partition = BB_HOT_PARTITION;
944 }
945
946 if (connected[t])
947 continue;
948
949 if (two_passes
950 && BB_PARTITION (traces[t].first) != current_partition)
951 continue;
952
953 connected[t] = true;
954
955 /* Find the predecessor traces. */
956 for (t2 = t; t2 > 0;)
957 {
958 edge_iterator ei;
959 best = NULL;
960 best_len = 0;
961 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
962 {
963 int si = e->src->index;
964
965 if (e->src != ENTRY_BLOCK_PTR
966 && (e->flags & EDGE_CAN_FALLTHRU)
967 && !(e->flags & EDGE_COMPLEX)
968 && bbd[si].end_of_trace >= 0
969 && !connected[bbd[si].end_of_trace]
970 && (BB_PARTITION (e->src) == current_partition)
971 && (!best
972 || e->probability > best->probability
973 || (e->probability == best->probability
974 && traces[bbd[si].end_of_trace].length > best_len)))
975 {
976 best = e;
977 best_len = traces[bbd[si].end_of_trace].length;
978 }
979 }
980 if (best)
981 {
982 best->src->aux = best->dest;
983 t2 = bbd[best->src->index].end_of_trace;
984 connected[t2] = true;
985
986 if (dump_file)
987 {
988 fprintf (dump_file, "Connection: %d %d\n",
989 best->src->index, best->dest->index);
990 }
991 }
992 else
993 break;
994 }
995
996 if (last_trace >= 0)
997 traces[last_trace].last->aux = traces[t2].first;
998 last_trace = t;
999
1000 /* Find the successor traces. */
1001 while (1)
1002 {
1003 /* Find the continuation of the chain. */
1004 edge_iterator ei;
1005 best = NULL;
1006 best_len = 0;
1007 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1008 {
1009 int di = e->dest->index;
1010
1011 if (e->dest != EXIT_BLOCK_PTR
1012 && (e->flags & EDGE_CAN_FALLTHRU)
1013 && !(e->flags & EDGE_COMPLEX)
1014 && bbd[di].start_of_trace >= 0
1015 && !connected[bbd[di].start_of_trace]
1016 && (BB_PARTITION (e->dest) == current_partition)
1017 && (!best
1018 || e->probability > best->probability
1019 || (e->probability == best->probability
1020 && traces[bbd[di].start_of_trace].length > best_len)))
1021 {
1022 best = e;
1023 best_len = traces[bbd[di].start_of_trace].length;
1024 }
1025 }
1026
1027 if (best)
1028 {
1029 if (dump_file)
1030 {
1031 fprintf (dump_file, "Connection: %d %d\n",
1032 best->src->index, best->dest->index);
1033 }
1034 t = bbd[best->dest->index].start_of_trace;
1035 traces[last_trace].last->aux = traces[t].first;
1036 connected[t] = true;
1037 last_trace = t;
1038 }
1039 else
1040 {
1041 /* Try to connect the traces by duplication of 1 block. */
1042 edge e2;
1043 basic_block next_bb = NULL;
1044 bool try_copy = false;
1045
1046 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1047 if (e->dest != EXIT_BLOCK_PTR
1048 && (e->flags & EDGE_CAN_FALLTHRU)
1049 && !(e->flags & EDGE_COMPLEX)
1050 && (!best || e->probability > best->probability))
1051 {
1052 edge_iterator ei;
1053 edge best2 = NULL;
1054 int best2_len = 0;
1055
1056 /* If the destination is a start of a trace which is only
1057 one block long, then no need to search the successor
1058 blocks of the trace. Accept it. */
1059 if (bbd[e->dest->index].start_of_trace >= 0
1060 && traces[bbd[e->dest->index].start_of_trace].length
1061 == 1)
1062 {
1063 best = e;
1064 try_copy = true;
1065 continue;
1066 }
1067
1068 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1069 {
1070 int di = e2->dest->index;
1071
1072 if (e2->dest == EXIT_BLOCK_PTR
1073 || ((e2->flags & EDGE_CAN_FALLTHRU)
1074 && !(e2->flags & EDGE_COMPLEX)
1075 && bbd[di].start_of_trace >= 0
1076 && !connected[bbd[di].start_of_trace]
1077 && (BB_PARTITION (e2->dest) == current_partition)
1078 && (EDGE_FREQUENCY (e2) >= freq_threshold)
1079 && (e2->count >= count_threshold)
1080 && (!best2
1081 || e2->probability > best2->probability
1082 || (e2->probability == best2->probability
1083 && traces[bbd[di].start_of_trace].length
1084 > best2_len))))
1085 {
1086 best = e;
1087 best2 = e2;
1088 if (e2->dest != EXIT_BLOCK_PTR)
1089 best2_len = traces[bbd[di].start_of_trace].length;
1090 else
1091 best2_len = INT_MAX;
1092 next_bb = e2->dest;
1093 try_copy = true;
1094 }
1095 }
1096 }
1097
1098 if (flag_reorder_blocks_and_partition)
1099 try_copy = false;
1100
1101 /* Copy tiny blocks always; copy larger blocks only when the
1102 edge is traversed frequently enough. */
1103 if (try_copy
1104 && copy_bb_p (best->dest,
1105 !optimize_size
1106 && EDGE_FREQUENCY (best) >= freq_threshold
1107 && best->count >= count_threshold))
1108 {
1109 basic_block new_bb;
1110
1111 if (dump_file)
1112 {
1113 fprintf (dump_file, "Connection: %d %d ",
1114 traces[t].last->index, best->dest->index);
1115 if (!next_bb)
1116 fputc ('\n', dump_file);
1117 else if (next_bb == EXIT_BLOCK_PTR)
1118 fprintf (dump_file, "exit\n");
1119 else
1120 fprintf (dump_file, "%d\n", next_bb->index);
1121 }
1122
1123 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1124 traces[t].last = new_bb;
1125 if (next_bb && next_bb != EXIT_BLOCK_PTR)
1126 {
1127 t = bbd[next_bb->index].start_of_trace;
1128 traces[last_trace].last->aux = traces[t].first;
1129 connected[t] = true;
1130 last_trace = t;
1131 }
1132 else
1133 break; /* Stop finding the successor traces. */
1134 }
1135 else
1136 break; /* Stop finding the successor traces. */
1137 }
1138 }
1139 }
1140
1141 if (dump_file)
1142 {
1143 basic_block bb;
1144
1145 fprintf (dump_file, "Final order:\n");
1146 for (bb = traces[0].first; bb; bb = bb->aux)
1147 fprintf (dump_file, "%d ", bb->index);
1148 fprintf (dump_file, "\n");
1149 fflush (dump_file);
1150 }
1151
1152 FREE (connected);
1153 }
1154
1155 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1156 when code size is allowed to grow by duplication. */
1157
1158 static bool
1159 copy_bb_p (const_basic_block bb, int code_may_grow)
1160 {
1161 int size = 0;
1162 int max_size = uncond_jump_length;
1163 rtx insn;
1164
1165 if (!bb->frequency)
1166 return false;
1167 if (EDGE_COUNT (bb->preds) < 2)
1168 return false;
1169 if (!can_duplicate_block_p (bb))
1170 return false;
1171
1172 /* Avoid duplicating blocks which have many successors (PR/13430). */
1173 if (EDGE_COUNT (bb->succs) > 8)
1174 return false;
1175
1176 if (code_may_grow && maybe_hot_bb_p (bb))
1177 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1178
1179 FOR_BB_INSNS (bb, insn)
1180 {
1181 if (INSN_P (insn))
1182 size += get_attr_min_length (insn);
1183 }
1184
1185 if (size <= max_size)
1186 return true;
1187
1188 if (dump_file)
1189 {
1190 fprintf (dump_file,
1191 "Block %d can't be copied because its size = %d.\n",
1192 bb->index, size);
1193 }
1194
1195 return false;
1196 }
1197
1198 /* Return the length of unconditional jump instruction. */
1199
1200 static int
1201 get_uncond_jump_length (void)
1202 {
1203 rtx label, jump;
1204 int length;
1205
1206 label = emit_label_before (gen_label_rtx (), get_insns ());
1207 jump = emit_jump_insn (gen_jump (label));
1208
1209 length = get_attr_min_length (jump);
1210
1211 delete_insn (jump);
1212 delete_insn (label);
1213 return length;
1214 }
1215
1216 /* Find the basic blocks that are rarely executed and need to be moved to
1217 a separate section of the .o file (to cut down on paging and improve
1218 cache locality). */
1219
1220 static void
1221 find_rarely_executed_basic_blocks_and_crossing_edges (edge **crossing_edges,
1222 int *n_crossing_edges,
1223 int *max_idx)
1224 {
1225 basic_block bb;
1226 edge e;
1227 int i;
1228 edge_iterator ei;
1229
1230 /* Mark which partition (hot/cold) each basic block belongs in. */
1231
1232 FOR_EACH_BB (bb)
1233 {
1234 if (probably_never_executed_bb_p (bb))
1235 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1236 else
1237 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1238 }
1239
1240 /* Mark every edge that crosses between sections. */
1241
1242 i = 0;
1243 FOR_EACH_BB (bb)
1244 FOR_EACH_EDGE (e, ei, bb->succs)
1245 {
1246 if (e->src != ENTRY_BLOCK_PTR
1247 && e->dest != EXIT_BLOCK_PTR
1248 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1249 {
1250 e->flags |= EDGE_CROSSING;
1251 if (i == *max_idx)
1252 {
1253 *max_idx *= 2;
1254 *crossing_edges = xrealloc (*crossing_edges,
1255 (*max_idx) * sizeof (edge));
1256 }
1257 (*crossing_edges)[i++] = e;
1258 }
1259 else
1260 e->flags &= ~EDGE_CROSSING;
1261 }
1262 *n_crossing_edges = i;
1263 }
1264
1265 /* If any destination of a crossing edge does not have a label, add label;
1266 Convert any fall-through crossing edges (for blocks that do not contain
1267 a jump) to unconditional jumps. */
1268
1269 static void
1270 add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1271 {
1272 int i;
1273 basic_block src;
1274 basic_block dest;
1275 rtx label;
1276 rtx barrier;
1277 rtx new_jump;
1278
1279 for (i=0; i < n_crossing_edges; i++)
1280 {
1281 if (crossing_edges[i])
1282 {
1283 src = crossing_edges[i]->src;
1284 dest = crossing_edges[i]->dest;
1285
1286 /* Make sure dest has a label. */
1287
1288 if (dest && (dest != EXIT_BLOCK_PTR))
1289 {
1290 label = block_label (dest);
1291
1292 /* Make sure source block ends with a jump. */
1293
1294 if (src && (src != ENTRY_BLOCK_PTR))
1295 {
1296 if (!JUMP_P (BB_END (src)))
1297 /* bb just falls through. */
1298 {
1299 /* make sure there's only one successor */
1300 gcc_assert (single_succ_p (src));
1301
1302 /* Find label in dest block. */
1303 label = block_label (dest);
1304
1305 new_jump = emit_jump_insn_after (gen_jump (label),
1306 BB_END (src));
1307 barrier = emit_barrier_after (new_jump);
1308 JUMP_LABEL (new_jump) = label;
1309 LABEL_NUSES (label) += 1;
1310 src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1311 /* Mark edge as non-fallthru. */
1312 crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
1313 } /* end: 'if (GET_CODE ... ' */
1314 } /* end: 'if (src && src->index...' */
1315 } /* end: 'if (dest && dest->index...' */
1316 } /* end: 'if (crossing_edges[i]...' */
1317 } /* end for loop */
1318 }
1319
1320 /* Find any bb's where the fall-through edge is a crossing edge (note that
1321 these bb's must also contain a conditional jump; we've already
1322 dealt with fall-through edges for blocks that didn't have a
1323 conditional jump in the call to add_labels_and_missing_jumps).
1324 Convert the fall-through edge to non-crossing edge by inserting a
1325 new bb to fall-through into. The new bb will contain an
1326 unconditional jump (crossing edge) to the original fall through
1327 destination. */
1328
1329 static void
1330 fix_up_fall_thru_edges (void)
1331 {
1332 basic_block cur_bb;
1333 basic_block new_bb;
1334 edge succ1;
1335 edge succ2;
1336 edge fall_thru;
1337 edge cond_jump = NULL;
1338 edge e;
1339 bool cond_jump_crosses;
1340 int invert_worked;
1341 rtx old_jump;
1342 rtx fall_thru_label;
1343 rtx barrier;
1344
1345 FOR_EACH_BB (cur_bb)
1346 {
1347 fall_thru = NULL;
1348 if (EDGE_COUNT (cur_bb->succs) > 0)
1349 succ1 = EDGE_SUCC (cur_bb, 0);
1350 else
1351 succ1 = NULL;
1352
1353 if (EDGE_COUNT (cur_bb->succs) > 1)
1354 succ2 = EDGE_SUCC (cur_bb, 1);
1355 else
1356 succ2 = NULL;
1357
1358 /* Find the fall-through edge. */
1359
1360 if (succ1
1361 && (succ1->flags & EDGE_FALLTHRU))
1362 {
1363 fall_thru = succ1;
1364 cond_jump = succ2;
1365 }
1366 else if (succ2
1367 && (succ2->flags & EDGE_FALLTHRU))
1368 {
1369 fall_thru = succ2;
1370 cond_jump = succ1;
1371 }
1372
1373 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1374 {
1375 /* Check to see if the fall-thru edge is a crossing edge. */
1376
1377 if (fall_thru->flags & EDGE_CROSSING)
1378 {
1379 /* The fall_thru edge crosses; now check the cond jump edge, if
1380 it exists. */
1381
1382 cond_jump_crosses = true;
1383 invert_worked = 0;
1384 old_jump = BB_END (cur_bb);
1385
1386 /* Find the jump instruction, if there is one. */
1387
1388 if (cond_jump)
1389 {
1390 if (!(cond_jump->flags & EDGE_CROSSING))
1391 cond_jump_crosses = false;
1392
1393 /* We know the fall-thru edge crosses; if the cond
1394 jump edge does NOT cross, and its destination is the
1395 next block in the bb order, invert the jump
1396 (i.e. fix it so the fall thru does not cross and
1397 the cond jump does). */
1398
1399 if (!cond_jump_crosses
1400 && cur_bb->aux == cond_jump->dest)
1401 {
1402 /* Find label in fall_thru block. We've already added
1403 any missing labels, so there must be one. */
1404
1405 fall_thru_label = block_label (fall_thru->dest);
1406
1407 if (old_jump && fall_thru_label)
1408 invert_worked = invert_jump (old_jump,
1409 fall_thru_label,0);
1410 if (invert_worked)
1411 {
1412 fall_thru->flags &= ~EDGE_FALLTHRU;
1413 cond_jump->flags |= EDGE_FALLTHRU;
1414 update_br_prob_note (cur_bb);
1415 e = fall_thru;
1416 fall_thru = cond_jump;
1417 cond_jump = e;
1418 cond_jump->flags |= EDGE_CROSSING;
1419 fall_thru->flags &= ~EDGE_CROSSING;
1420 }
1421 }
1422 }
1423
1424 if (cond_jump_crosses || !invert_worked)
1425 {
1426 /* This is the case where both edges out of the basic
1427 block are crossing edges. Here we will fix up the
1428 fall through edge. The jump edge will be taken care
1429 of later. */
1430
1431 new_bb = force_nonfallthru (fall_thru);
1432
1433 if (new_bb)
1434 {
1435 new_bb->aux = cur_bb->aux;
1436 cur_bb->aux = new_bb;
1437
1438 /* Make sure new fall-through bb is in same
1439 partition as bb it's falling through from. */
1440
1441 BB_COPY_PARTITION (new_bb, cur_bb);
1442 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1443 }
1444
1445 /* Add barrier after new jump */
1446
1447 if (new_bb)
1448 {
1449 barrier = emit_barrier_after (BB_END (new_bb));
1450 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1451 barrier);
1452 }
1453 else
1454 {
1455 barrier = emit_barrier_after (BB_END (cur_bb));
1456 cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
1457 barrier);
1458 }
1459 }
1460 }
1461 }
1462 }
1463 }
1464
1465 /* This function checks the destination blockof a "crossing jump" to
1466 see if it has any crossing predecessors that begin with a code label
1467 and end with an unconditional jump. If so, it returns that predecessor
1468 block. (This is to avoid creating lots of new basic blocks that all
1469 contain unconditional jumps to the same destination). */
1470
1471 static basic_block
1472 find_jump_block (basic_block jump_dest)
1473 {
1474 basic_block source_bb = NULL;
1475 edge e;
1476 rtx insn;
1477 edge_iterator ei;
1478
1479 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1480 if (e->flags & EDGE_CROSSING)
1481 {
1482 basic_block src = e->src;
1483
1484 /* Check each predecessor to see if it has a label, and contains
1485 only one executable instruction, which is an unconditional jump.
1486 If so, we can use it. */
1487
1488 if (LABEL_P (BB_HEAD (src)))
1489 for (insn = BB_HEAD (src);
1490 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1491 insn = NEXT_INSN (insn))
1492 {
1493 if (INSN_P (insn)
1494 && insn == BB_END (src)
1495 && JUMP_P (insn)
1496 && !any_condjump_p (insn))
1497 {
1498 source_bb = src;
1499 break;
1500 }
1501 }
1502
1503 if (source_bb)
1504 break;
1505 }
1506
1507 return source_bb;
1508 }
1509
1510 /* Find all BB's with conditional jumps that are crossing edges;
1511 insert a new bb and make the conditional jump branch to the new
1512 bb instead (make the new bb same color so conditional branch won't
1513 be a 'crossing' edge). Insert an unconditional jump from the
1514 new bb to the original destination of the conditional jump. */
1515
1516 static void
1517 fix_crossing_conditional_branches (void)
1518 {
1519 basic_block cur_bb;
1520 basic_block new_bb;
1521 basic_block last_bb;
1522 basic_block dest;
1523 edge succ1;
1524 edge succ2;
1525 edge crossing_edge;
1526 edge new_edge;
1527 rtx old_jump;
1528 rtx set_src;
1529 rtx old_label = NULL_RTX;
1530 rtx new_label;
1531 rtx new_jump;
1532 rtx barrier;
1533
1534 last_bb = EXIT_BLOCK_PTR->prev_bb;
1535
1536 FOR_EACH_BB (cur_bb)
1537 {
1538 crossing_edge = NULL;
1539 if (EDGE_COUNT (cur_bb->succs) > 0)
1540 succ1 = EDGE_SUCC (cur_bb, 0);
1541 else
1542 succ1 = NULL;
1543
1544 if (EDGE_COUNT (cur_bb->succs) > 1)
1545 succ2 = EDGE_SUCC (cur_bb, 1);
1546 else
1547 succ2 = NULL;
1548
1549 /* We already took care of fall-through edges, so only one successor
1550 can be a crossing edge. */
1551
1552 if (succ1 && (succ1->flags & EDGE_CROSSING))
1553 crossing_edge = succ1;
1554 else if (succ2 && (succ2->flags & EDGE_CROSSING))
1555 crossing_edge = succ2;
1556
1557 if (crossing_edge)
1558 {
1559 old_jump = BB_END (cur_bb);
1560
1561 /* Check to make sure the jump instruction is a
1562 conditional jump. */
1563
1564 set_src = NULL_RTX;
1565
1566 if (any_condjump_p (old_jump))
1567 {
1568 if (GET_CODE (PATTERN (old_jump)) == SET)
1569 set_src = SET_SRC (PATTERN (old_jump));
1570 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1571 {
1572 set_src = XVECEXP (PATTERN (old_jump), 0,0);
1573 if (GET_CODE (set_src) == SET)
1574 set_src = SET_SRC (set_src);
1575 else
1576 set_src = NULL_RTX;
1577 }
1578 }
1579
1580 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1581 {
1582 if (GET_CODE (XEXP (set_src, 1)) == PC)
1583 old_label = XEXP (set_src, 2);
1584 else if (GET_CODE (XEXP (set_src, 2)) == PC)
1585 old_label = XEXP (set_src, 1);
1586
1587 /* Check to see if new bb for jumping to that dest has
1588 already been created; if so, use it; if not, create
1589 a new one. */
1590
1591 new_bb = find_jump_block (crossing_edge->dest);
1592
1593 if (new_bb)
1594 new_label = block_label (new_bb);
1595 else
1596 {
1597 /* Create new basic block to be dest for
1598 conditional jump. */
1599
1600 new_bb = create_basic_block (NULL, NULL, last_bb);
1601 new_bb->aux = last_bb->aux;
1602 last_bb->aux = new_bb;
1603 last_bb = new_bb;
1604 /* Put appropriate instructions in new bb. */
1605
1606 new_label = gen_label_rtx ();
1607 emit_label_before (new_label, BB_HEAD (new_bb));
1608 BB_HEAD (new_bb) = new_label;
1609
1610 if (GET_CODE (old_label) == LABEL_REF)
1611 {
1612 old_label = JUMP_LABEL (old_jump);
1613 new_jump = emit_jump_insn_after (gen_jump
1614 (old_label),
1615 BB_END (new_bb));
1616 }
1617 else
1618 {
1619 gcc_assert (HAVE_return
1620 && GET_CODE (old_label) == RETURN);
1621 new_jump = emit_jump_insn_after (gen_return (),
1622 BB_END (new_bb));
1623 }
1624
1625 barrier = emit_barrier_after (new_jump);
1626 JUMP_LABEL (new_jump) = old_label;
1627 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1628 barrier);
1629
1630 /* Make sure new bb is in same partition as source
1631 of conditional branch. */
1632 BB_COPY_PARTITION (new_bb, cur_bb);
1633 }
1634
1635 /* Make old jump branch to new bb. */
1636
1637 redirect_jump (old_jump, new_label, 0);
1638
1639 /* Remove crossing_edge as predecessor of 'dest'. */
1640
1641 dest = crossing_edge->dest;
1642
1643 redirect_edge_succ (crossing_edge, new_bb);
1644
1645 /* Make a new edge from new_bb to old dest; new edge
1646 will be a successor for new_bb and a predecessor
1647 for 'dest'. */
1648
1649 if (EDGE_COUNT (new_bb->succs) == 0)
1650 new_edge = make_edge (new_bb, dest, 0);
1651 else
1652 new_edge = EDGE_SUCC (new_bb, 0);
1653
1654 crossing_edge->flags &= ~EDGE_CROSSING;
1655 new_edge->flags |= EDGE_CROSSING;
1656 }
1657 }
1658 }
1659 }
1660
1661 /* Find any unconditional branches that cross between hot and cold
1662 sections. Convert them into indirect jumps instead. */
1663
1664 static void
1665 fix_crossing_unconditional_branches (void)
1666 {
1667 basic_block cur_bb;
1668 rtx last_insn;
1669 rtx label;
1670 rtx label_addr;
1671 rtx indirect_jump_sequence;
1672 rtx jump_insn = NULL_RTX;
1673 rtx new_reg;
1674 rtx cur_insn;
1675 edge succ;
1676
1677 FOR_EACH_BB (cur_bb)
1678 {
1679 last_insn = BB_END (cur_bb);
1680
1681 if (EDGE_COUNT (cur_bb->succs) < 1)
1682 continue;
1683
1684 succ = EDGE_SUCC (cur_bb, 0);
1685
1686 /* Check to see if bb ends in a crossing (unconditional) jump. At
1687 this point, no crossing jumps should be conditional. */
1688
1689 if (JUMP_P (last_insn)
1690 && (succ->flags & EDGE_CROSSING))
1691 {
1692 rtx label2, table;
1693
1694 gcc_assert (!any_condjump_p (last_insn));
1695
1696 /* Make sure the jump is not already an indirect or table jump. */
1697
1698 if (!computed_jump_p (last_insn)
1699 && !tablejump_p (last_insn, &label2, &table))
1700 {
1701 /* We have found a "crossing" unconditional branch. Now
1702 we must convert it to an indirect jump. First create
1703 reference of label, as target for jump. */
1704
1705 label = JUMP_LABEL (last_insn);
1706 label_addr = gen_rtx_LABEL_REF (Pmode, label);
1707 LABEL_NUSES (label) += 1;
1708
1709 /* Get a register to use for the indirect jump. */
1710
1711 new_reg = gen_reg_rtx (Pmode);
1712
1713 /* Generate indirect the jump sequence. */
1714
1715 start_sequence ();
1716 emit_move_insn (new_reg, label_addr);
1717 emit_indirect_jump (new_reg);
1718 indirect_jump_sequence = get_insns ();
1719 end_sequence ();
1720
1721 /* Make sure every instruction in the new jump sequence has
1722 its basic block set to be cur_bb. */
1723
1724 for (cur_insn = indirect_jump_sequence; cur_insn;
1725 cur_insn = NEXT_INSN (cur_insn))
1726 {
1727 if (!BARRIER_P (cur_insn))
1728 BLOCK_FOR_INSN (cur_insn) = cur_bb;
1729 if (JUMP_P (cur_insn))
1730 jump_insn = cur_insn;
1731 }
1732
1733 /* Insert the new (indirect) jump sequence immediately before
1734 the unconditional jump, then delete the unconditional jump. */
1735
1736 emit_insn_before (indirect_jump_sequence, last_insn);
1737 delete_insn (last_insn);
1738
1739 /* Make BB_END for cur_bb be the jump instruction (NOT the
1740 barrier instruction at the end of the sequence...). */
1741
1742 BB_END (cur_bb) = jump_insn;
1743 }
1744 }
1745 }
1746 }
1747
1748 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
1749
1750 static void
1751 add_reg_crossing_jump_notes (void)
1752 {
1753 basic_block bb;
1754 edge e;
1755 edge_iterator ei;
1756
1757 FOR_EACH_BB (bb)
1758 FOR_EACH_EDGE (e, ei, bb->succs)
1759 if ((e->flags & EDGE_CROSSING)
1760 && JUMP_P (BB_END (e->src)))
1761 REG_NOTES (BB_END (e->src)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1762 NULL_RTX,
1763 REG_NOTES (BB_END
1764 (e->src)));
1765 }
1766
1767 /* Hot and cold basic blocks are partitioned and put in separate
1768 sections of the .o file, to reduce paging and improve cache
1769 performance (hopefully). This can result in bits of code from the
1770 same function being widely separated in the .o file. However this
1771 is not obvious to the current bb structure. Therefore we must take
1772 care to ensure that: 1). There are no fall_thru edges that cross
1773 between sections; 2). For those architectures which have "short"
1774 conditional branches, all conditional branches that attempt to
1775 cross between sections are converted to unconditional branches;
1776 and, 3). For those architectures which have "short" unconditional
1777 branches, all unconditional branches that attempt to cross between
1778 sections are converted to indirect jumps.
1779
1780 The code for fixing up fall_thru edges that cross between hot and
1781 cold basic blocks does so by creating new basic blocks containing
1782 unconditional branches to the appropriate label in the "other"
1783 section. The new basic block is then put in the same (hot or cold)
1784 section as the original conditional branch, and the fall_thru edge
1785 is modified to fall into the new basic block instead. By adding
1786 this level of indirection we end up with only unconditional branches
1787 crossing between hot and cold sections.
1788
1789 Conditional branches are dealt with by adding a level of indirection.
1790 A new basic block is added in the same (hot/cold) section as the
1791 conditional branch, and the conditional branch is retargeted to the
1792 new basic block. The new basic block contains an unconditional branch
1793 to the original target of the conditional branch (in the other section).
1794
1795 Unconditional branches are dealt with by converting them into
1796 indirect jumps. */
1797
1798 static void
1799 fix_edges_for_rarely_executed_code (edge *crossing_edges,
1800 int n_crossing_edges)
1801 {
1802 /* Make sure the source of any crossing edge ends in a jump and the
1803 destination of any crossing edge has a label. */
1804
1805 add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1806
1807 /* Convert all crossing fall_thru edges to non-crossing fall
1808 thrus to unconditional jumps (that jump to the original fall
1809 thru dest). */
1810
1811 fix_up_fall_thru_edges ();
1812
1813 /* If the architecture does not have conditional branches that can
1814 span all of memory, convert crossing conditional branches into
1815 crossing unconditional branches. */
1816
1817 if (!HAS_LONG_COND_BRANCH)
1818 fix_crossing_conditional_branches ();
1819
1820 /* If the architecture does not have unconditional branches that
1821 can span all of memory, convert crossing unconditional branches
1822 into indirect jumps. Since adding an indirect jump also adds
1823 a new register usage, update the register usage information as
1824 well. */
1825
1826 if (!HAS_LONG_UNCOND_BRANCH)
1827 fix_crossing_unconditional_branches ();
1828
1829 add_reg_crossing_jump_notes ();
1830 }
1831
1832 /* Verify, in the basic block chain, that there is at most one switch
1833 between hot/cold partitions. This is modelled on
1834 rtl_verify_flow_info_1, but it cannot go inside that function
1835 because this condition will not be true until after
1836 reorder_basic_blocks is called. */
1837
1838 static void
1839 verify_hot_cold_block_grouping (void)
1840 {
1841 basic_block bb;
1842 int err = 0;
1843 bool switched_sections = false;
1844 int current_partition = 0;
1845
1846 FOR_EACH_BB (bb)
1847 {
1848 if (!current_partition)
1849 current_partition = BB_PARTITION (bb);
1850 if (BB_PARTITION (bb) != current_partition)
1851 {
1852 if (switched_sections)
1853 {
1854 error ("multiple hot/cold transitions found (bb %i)",
1855 bb->index);
1856 err = 1;
1857 }
1858 else
1859 {
1860 switched_sections = true;
1861 current_partition = BB_PARTITION (bb);
1862 }
1863 }
1864 }
1865
1866 gcc_assert(!err);
1867 }
1868
1869 /* Reorder basic blocks. The main entry point to this file. FLAGS is
1870 the set of flags to pass to cfg_layout_initialize(). */
1871
1872 void
1873 reorder_basic_blocks (void)
1874 {
1875 int n_traces;
1876 int i;
1877 struct trace *traces;
1878
1879 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
1880
1881 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1882 return;
1883
1884 set_edge_can_fallthru_flag ();
1885 mark_dfs_back_edges ();
1886
1887 /* We are estimating the length of uncond jump insn only once since the code
1888 for getting the insn length always returns the minimal length now. */
1889 if (uncond_jump_length == 0)
1890 uncond_jump_length = get_uncond_jump_length ();
1891
1892 /* We need to know some information for each basic block. */
1893 array_size = GET_ARRAY_SIZE (last_basic_block);
1894 bbd = XNEWVEC (bbro_basic_block_data, array_size);
1895 for (i = 0; i < array_size; i++)
1896 {
1897 bbd[i].start_of_trace = -1;
1898 bbd[i].in_trace = -1;
1899 bbd[i].end_of_trace = -1;
1900 bbd[i].heap = NULL;
1901 bbd[i].node = NULL;
1902 }
1903
1904 traces = XNEWVEC (struct trace, n_basic_blocks);
1905 n_traces = 0;
1906 find_traces (&n_traces, traces);
1907 connect_traces (n_traces, traces);
1908 FREE (traces);
1909 FREE (bbd);
1910
1911 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
1912
1913 if (dump_file)
1914 dump_flow_info (dump_file, dump_flags);
1915
1916 if (flag_reorder_blocks_and_partition)
1917 verify_hot_cold_block_grouping ();
1918 }
1919
1920 /* Determine which partition the first basic block in the function
1921 belongs to, then find the first basic block in the current function
1922 that belongs to a different section, and insert a
1923 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1924 instruction stream. When writing out the assembly code,
1925 encountering this note will make the compiler switch between the
1926 hot and cold text sections. */
1927
1928 static void
1929 insert_section_boundary_note (void)
1930 {
1931 basic_block bb;
1932 rtx new_note;
1933 int first_partition = 0;
1934
1935 if (flag_reorder_blocks_and_partition)
1936 FOR_EACH_BB (bb)
1937 {
1938 if (!first_partition)
1939 first_partition = BB_PARTITION (bb);
1940 if (BB_PARTITION (bb) != first_partition)
1941 {
1942 new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1943 BB_HEAD (bb));
1944 /* ??? This kind of note always lives between basic blocks,
1945 but add_insn_before will set BLOCK_FOR_INSN anyway. */
1946 BLOCK_FOR_INSN (new_note) = NULL;
1947 break;
1948 }
1949 }
1950 }
1951
1952 /* Duplicate the blocks containing computed gotos. This basically unfactors
1953 computed gotos that were factored early on in the compilation process to
1954 speed up edge based data flow. We used to not unfactoring them again,
1955 which can seriously pessimize code with many computed jumps in the source
1956 code, such as interpreters. See e.g. PR15242. */
1957
1958 static bool
1959 gate_duplicate_computed_gotos (void)
1960 {
1961 if (targetm.cannot_modify_jumps_p ())
1962 return false;
1963 return (optimize > 0 && flag_expensive_optimizations && !optimize_size);
1964 }
1965
1966
1967 static unsigned int
1968 duplicate_computed_gotos (void)
1969 {
1970 basic_block bb, new_bb;
1971 bitmap candidates;
1972 int max_size;
1973
1974 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1975 return 0;
1976
1977 cfg_layout_initialize (0);
1978
1979 /* We are estimating the length of uncond jump insn only once
1980 since the code for getting the insn length always returns
1981 the minimal length now. */
1982 if (uncond_jump_length == 0)
1983 uncond_jump_length = get_uncond_jump_length ();
1984
1985 max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
1986 candidates = BITMAP_ALLOC (NULL);
1987
1988 /* Look for blocks that end in a computed jump, and see if such blocks
1989 are suitable for unfactoring. If a block is a candidate for unfactoring,
1990 mark it in the candidates. */
1991 FOR_EACH_BB (bb)
1992 {
1993 rtx insn;
1994 edge e;
1995 edge_iterator ei;
1996 int size, all_flags;
1997
1998 /* Build the reorder chain for the original order of blocks. */
1999 if (bb->next_bb != EXIT_BLOCK_PTR)
2000 bb->aux = bb->next_bb;
2001
2002 /* Obviously the block has to end in a computed jump. */
2003 if (!computed_jump_p (BB_END (bb)))
2004 continue;
2005
2006 /* Only consider blocks that can be duplicated. */
2007 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2008 || !can_duplicate_block_p (bb))
2009 continue;
2010
2011 /* Make sure that the block is small enough. */
2012 size = 0;
2013 FOR_BB_INSNS (bb, insn)
2014 if (INSN_P (insn))
2015 {
2016 size += get_attr_min_length (insn);
2017 if (size > max_size)
2018 break;
2019 }
2020 if (size > max_size)
2021 continue;
2022
2023 /* Final check: there must not be any incoming abnormal edges. */
2024 all_flags = 0;
2025 FOR_EACH_EDGE (e, ei, bb->preds)
2026 all_flags |= e->flags;
2027 if (all_flags & EDGE_COMPLEX)
2028 continue;
2029
2030 bitmap_set_bit (candidates, bb->index);
2031 }
2032
2033 /* Nothing to do if there is no computed jump here. */
2034 if (bitmap_empty_p (candidates))
2035 goto done;
2036
2037 /* Duplicate computed gotos. */
2038 FOR_EACH_BB (bb)
2039 {
2040 if (bb->il.rtl->visited)
2041 continue;
2042
2043 bb->il.rtl->visited = 1;
2044
2045 /* BB must have one outgoing edge. That edge must not lead to
2046 the exit block or the next block.
2047 The destination must have more than one predecessor. */
2048 if (!single_succ_p (bb)
2049 || single_succ (bb) == EXIT_BLOCK_PTR
2050 || single_succ (bb) == bb->next_bb
2051 || single_pred_p (single_succ (bb)))
2052 continue;
2053
2054 /* The successor block has to be a duplication candidate. */
2055 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2056 continue;
2057
2058 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2059 new_bb->aux = bb->aux;
2060 bb->aux = new_bb;
2061 new_bb->il.rtl->visited = 1;
2062 }
2063
2064 done:
2065 cfg_layout_finalize ();
2066
2067 BITMAP_FREE (candidates);
2068 return 0;
2069 }
2070
2071 struct tree_opt_pass pass_duplicate_computed_gotos =
2072 {
2073 "compgotos", /* name */
2074 gate_duplicate_computed_gotos, /* gate */
2075 duplicate_computed_gotos, /* execute */
2076 NULL, /* sub */
2077 NULL, /* next */
2078 0, /* static_pass_number */
2079 TV_REORDER_BLOCKS, /* tv_id */
2080 0, /* properties_required */
2081 0, /* properties_provided */
2082 0, /* properties_destroyed */
2083 0, /* todo_flags_start */
2084 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2085 0 /* letter */
2086 };
2087
2088
2089 /* This function is the main 'entrance' for the optimization that
2090 partitions hot and cold basic blocks into separate sections of the
2091 .o file (to improve performance and cache locality). Ideally it
2092 would be called after all optimizations that rearrange the CFG have
2093 been called. However part of this optimization may introduce new
2094 register usage, so it must be called before register allocation has
2095 occurred. This means that this optimization is actually called
2096 well before the optimization that reorders basic blocks (see
2097 function above).
2098
2099 This optimization checks the feedback information to determine
2100 which basic blocks are hot/cold, updates flags on the basic blocks
2101 to indicate which section they belong in. This information is
2102 later used for writing out sections in the .o file. Because hot
2103 and cold sections can be arbitrarily large (within the bounds of
2104 memory), far beyond the size of a single function, it is necessary
2105 to fix up all edges that cross section boundaries, to make sure the
2106 instructions used can actually span the required distance. The
2107 fixes are described below.
2108
2109 Fall-through edges must be changed into jumps; it is not safe or
2110 legal to fall through across a section boundary. Whenever a
2111 fall-through edge crossing a section boundary is encountered, a new
2112 basic block is inserted (in the same section as the fall-through
2113 source), and the fall through edge is redirected to the new basic
2114 block. The new basic block contains an unconditional jump to the
2115 original fall-through target. (If the unconditional jump is
2116 insufficient to cross section boundaries, that is dealt with a
2117 little later, see below).
2118
2119 In order to deal with architectures that have short conditional
2120 branches (which cannot span all of memory) we take any conditional
2121 jump that attempts to cross a section boundary and add a level of
2122 indirection: it becomes a conditional jump to a new basic block, in
2123 the same section. The new basic block contains an unconditional
2124 jump to the original target, in the other section.
2125
2126 For those architectures whose unconditional branch is also
2127 incapable of reaching all of memory, those unconditional jumps are
2128 converted into indirect jumps, through a register.
2129
2130 IMPORTANT NOTE: This optimization causes some messy interactions
2131 with the cfg cleanup optimizations; those optimizations want to
2132 merge blocks wherever possible, and to collapse indirect jump
2133 sequences (change "A jumps to B jumps to C" directly into "A jumps
2134 to C"). Those optimizations can undo the jump fixes that
2135 partitioning is required to make (see above), in order to ensure
2136 that jumps attempting to cross section boundaries are really able
2137 to cover whatever distance the jump requires (on many architectures
2138 conditional or unconditional jumps are not able to reach all of
2139 memory). Therefore tests have to be inserted into each such
2140 optimization to make sure that it does not undo stuff necessary to
2141 cross partition boundaries. This would be much less of a problem
2142 if we could perform this optimization later in the compilation, but
2143 unfortunately the fact that we may need to create indirect jumps
2144 (through registers) requires that this optimization be performed
2145 before register allocation. */
2146
2147 static void
2148 partition_hot_cold_basic_blocks (void)
2149 {
2150 basic_block cur_bb;
2151 edge *crossing_edges;
2152 int n_crossing_edges;
2153 int max_edges = 2 * last_basic_block;
2154
2155 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2156 return;
2157
2158 crossing_edges = XCNEWVEC (edge, max_edges);
2159
2160 cfg_layout_initialize (0);
2161
2162 FOR_EACH_BB (cur_bb)
2163 if (cur_bb->index >= NUM_FIXED_BLOCKS
2164 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
2165 cur_bb->aux = cur_bb->next_bb;
2166
2167 find_rarely_executed_basic_blocks_and_crossing_edges (&crossing_edges,
2168 &n_crossing_edges,
2169 &max_edges);
2170
2171 if (n_crossing_edges > 0)
2172 fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2173
2174 free (crossing_edges);
2175
2176 cfg_layout_finalize ();
2177 }
2178 \f
2179 static bool
2180 gate_handle_reorder_blocks (void)
2181 {
2182 if (targetm.cannot_modify_jumps_p ())
2183 return false;
2184 return (optimize > 0);
2185 }
2186
2187
2188 /* Reorder basic blocks. */
2189 static unsigned int
2190 rest_of_handle_reorder_blocks (void)
2191 {
2192 basic_block bb;
2193
2194 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2195 splitting possibly introduced more crossjumping opportunities. */
2196 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2197
2198 if (flag_reorder_blocks || flag_reorder_blocks_and_partition)
2199 {
2200 reorder_basic_blocks ();
2201 cleanup_cfg (CLEANUP_EXPENSIVE);
2202 }
2203
2204 FOR_EACH_BB (bb)
2205 if (bb->next_bb != EXIT_BLOCK_PTR)
2206 bb->aux = bb->next_bb;
2207 cfg_layout_finalize ();
2208
2209 /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
2210 insert_section_boundary_note ();
2211 return 0;
2212 }
2213
2214 struct tree_opt_pass pass_reorder_blocks =
2215 {
2216 "bbro", /* name */
2217 gate_handle_reorder_blocks, /* gate */
2218 rest_of_handle_reorder_blocks, /* execute */
2219 NULL, /* sub */
2220 NULL, /* next */
2221 0, /* static_pass_number */
2222 TV_REORDER_BLOCKS, /* tv_id */
2223 0, /* properties_required */
2224 0, /* properties_provided */
2225 0, /* properties_destroyed */
2226 0, /* todo_flags_start */
2227 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2228 'B' /* letter */
2229 };
2230
2231 static bool
2232 gate_handle_partition_blocks (void)
2233 {
2234 /* The optimization to partition hot/cold basic blocks into separate
2235 sections of the .o file does not work well with linkonce or with
2236 user defined section attributes. Don't call it if either case
2237 arises. */
2238
2239 return (flag_reorder_blocks_and_partition
2240 && !DECL_ONE_ONLY (current_function_decl)
2241 && !user_defined_section_attribute);
2242 }
2243
2244 /* Partition hot and cold basic blocks. */
2245 static unsigned int
2246 rest_of_handle_partition_blocks (void)
2247 {
2248 partition_hot_cold_basic_blocks ();
2249 return 0;
2250 }
2251
2252 struct tree_opt_pass pass_partition_blocks =
2253 {
2254 "bbpart", /* name */
2255 gate_handle_partition_blocks, /* gate */
2256 rest_of_handle_partition_blocks, /* execute */
2257 NULL, /* sub */
2258 NULL, /* next */
2259 0, /* static_pass_number */
2260 TV_REORDER_BLOCKS, /* tv_id */
2261 0, /* properties_required */
2262 0, /* properties_provided */
2263 0, /* properties_destroyed */
2264 0, /* todo_flags_start */
2265 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2266 0 /* letter */
2267 };
2268
2269
This page took 0.13607 seconds and 6 git commands to generate.