]> gcc.gnu.org Git - gcc.git/blob - gcc/bb-reorder.c
bb-reorder.c (fix_crossing_conditional_branches): Emit all insns before calling creat...
[gcc.git] / gcc / bb-reorder.c
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This (greedy) algorithm constructs traces in several rounds.
22 The construction starts from "seeds". The seed for the first round
23 is the entry point of function. When there are more than one seed
24 that one is selected first that has the lowest key in the heap
25 (see function bb_to_key). Then the algorithm repeatedly adds the most
26 probable successor to the end of a trace. Finally it connects the traces.
27
28 There are two parameters: Branch Threshold and Exec Threshold.
29 If the edge to a successor of the actual basic block is lower than
30 Branch Threshold or the frequency of the successor is lower than
31 Exec Threshold the successor will be the seed in one of the next rounds.
32 Each round has these parameters lower than the previous one.
33 The last round has to have these parameters set to zero
34 so that the remaining blocks are picked up.
35
36 The algorithm selects the most probable successor from all unvisited
37 successors and successors that have been added to this trace.
38 The other successors (that has not been "sent" to the next round) will be
39 other seeds for this round and the secondary traces will start in them.
40 If the successor has not been visited in this trace it is added to the trace
41 (however, there is some heuristic for simple branches).
42 If the successor has been visited in this trace the loop has been found.
43 If the loop has many iterations the loop is rotated so that the
44 source block of the most probable edge going out from the loop
45 is the last block of the trace.
46 If the loop has few iterations and there is no edge from the last block of
47 the loop going out from loop the loop header is duplicated.
48 Finally, the construction of the trace is terminated.
49
50 When connecting traces it first checks whether there is an edge from the
51 last block of one trace to the first block of another trace.
52 When there are still some unconnected traces it checks whether there exists
53 a basic block BB such that BB is a successor of the last bb of one trace
54 and BB is a predecessor of the first block of another trace. In this case,
55 BB is duplicated and the traces are connected through this duplicate.
56 The rest of traces are simply connected so there will be a jump to the
57 beginning of the rest of trace.
58
59
60 References:
61
62 "Software Trace Cache"
63 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64 http://citeseer.nj.nec.com/15361.html
65
66 */
67
68 #include "config.h"
69 #include "system.h"
70 #include "coretypes.h"
71 #include "tm.h"
72 #include "rtl.h"
73 #include "regs.h"
74 #include "flags.h"
75 #include "timevar.h"
76 #include "output.h"
77 #include "cfglayout.h"
78 #include "fibheap.h"
79 #include "target.h"
80 #include "function.h"
81 #include "tm_p.h"
82 #include "obstack.h"
83 #include "expr.h"
84 #include "params.h"
85 #include "diagnostic-core.h"
86 #include "toplev.h" /* user_defined_section_attribute */
87 #include "tree-pass.h"
88 #include "df.h"
89 #include "bb-reorder.h"
90
91 /* The number of rounds. In most cases there will only be 4 rounds, but
92 when partitioning hot and cold basic blocks into separate sections of
93 the .o file there will be an extra round.*/
94 #define N_ROUNDS 5
95
96 /* Stubs in case we don't have a return insn.
97 We have to check at runtime too, not only compiletime. */
98
99 #ifndef HAVE_return
100 #define HAVE_return 0
101 #define gen_return() NULL_RTX
102 #endif
103
104
105 struct target_bb_reorder default_target_bb_reorder;
106 #if SWITCHABLE_TARGET
107 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
108 #endif
109
110 #define uncond_jump_length \
111 (this_target_bb_reorder->x_uncond_jump_length)
112
113 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
114 static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
115
116 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
117 static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
118
119 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
120 block the edge destination is not duplicated while connecting traces. */
121 #define DUPLICATION_THRESHOLD 100
122
123 /* Structure to hold needed information for each basic block. */
124 typedef struct bbro_basic_block_data_def
125 {
126 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
127 int start_of_trace;
128
129 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
130 int end_of_trace;
131
132 /* Which trace is the bb in? */
133 int in_trace;
134
135 /* Which heap is BB in (if any)? */
136 fibheap_t heap;
137
138 /* Which heap node is BB in (if any)? */
139 fibnode_t node;
140 } bbro_basic_block_data;
141
142 /* The current size of the following dynamic array. */
143 static int array_size;
144
145 /* The array which holds needed information for basic blocks. */
146 static bbro_basic_block_data *bbd;
147
148 /* To avoid frequent reallocation the size of arrays is greater than needed,
149 the number of elements is (not less than) 1.25 * size_wanted. */
150 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
151
152 /* Free the memory and set the pointer to NULL. */
153 #define FREE(P) (gcc_assert (P), free (P), P = 0)
154
155 /* Structure for holding information about a trace. */
156 struct trace
157 {
158 /* First and last basic block of the trace. */
159 basic_block first, last;
160
161 /* The round of the STC creation which this trace was found in. */
162 int round;
163
164 /* The length (i.e. the number of basic blocks) of the trace. */
165 int length;
166 };
167
168 /* Maximum frequency and count of one of the entry blocks. */
169 static int max_entry_frequency;
170 static gcov_type max_entry_count;
171
172 /* Local function prototypes. */
173 static void find_traces (int *, struct trace *);
174 static basic_block rotate_loop (edge, struct trace *, int);
175 static void mark_bb_visited (basic_block, int);
176 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
177 int, fibheap_t *, int);
178 static basic_block copy_bb (basic_block, edge, basic_block, int);
179 static fibheapkey_t bb_to_key (basic_block);
180 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
181 static void connect_traces (int, struct trace *);
182 static bool copy_bb_p (const_basic_block, int);
183 static int get_uncond_jump_length (void);
184 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
185 \f
186 /* Check to see if bb should be pushed into the next round of trace
187 collections or not. Reasons for pushing the block forward are 1).
188 If the block is cold, we are doing partitioning, and there will be
189 another round (cold partition blocks are not supposed to be
190 collected into traces until the very last round); or 2). There will
191 be another round, and the basic block is not "hot enough" for the
192 current round of trace collection. */
193
194 static bool
195 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
196 int exec_th, gcov_type count_th)
197 {
198 bool there_exists_another_round;
199 bool block_not_hot_enough;
200
201 there_exists_another_round = round < number_of_rounds - 1;
202
203 block_not_hot_enough = (bb->frequency < exec_th
204 || bb->count < count_th
205 || probably_never_executed_bb_p (bb));
206
207 if (there_exists_another_round
208 && block_not_hot_enough)
209 return true;
210 else
211 return false;
212 }
213
214 /* Find the traces for Software Trace Cache. Chain each trace through
215 RBI()->next. Store the number of traces to N_TRACES and description of
216 traces to TRACES. */
217
218 static void
219 find_traces (int *n_traces, struct trace *traces)
220 {
221 int i;
222 int number_of_rounds;
223 edge e;
224 edge_iterator ei;
225 fibheap_t heap;
226
227 /* Add one extra round of trace collection when partitioning hot/cold
228 basic blocks into separate sections. The last round is for all the
229 cold blocks (and ONLY the cold blocks). */
230
231 number_of_rounds = N_ROUNDS - 1;
232
233 /* Insert entry points of function into heap. */
234 heap = fibheap_new ();
235 max_entry_frequency = 0;
236 max_entry_count = 0;
237 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
238 {
239 bbd[e->dest->index].heap = heap;
240 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
241 e->dest);
242 if (e->dest->frequency > max_entry_frequency)
243 max_entry_frequency = e->dest->frequency;
244 if (e->dest->count > max_entry_count)
245 max_entry_count = e->dest->count;
246 }
247
248 /* Find the traces. */
249 for (i = 0; i < number_of_rounds; i++)
250 {
251 gcov_type count_threshold;
252
253 if (dump_file)
254 fprintf (dump_file, "STC - round %d\n", i + 1);
255
256 if (max_entry_count < INT_MAX / 1000)
257 count_threshold = max_entry_count * exec_threshold[i] / 1000;
258 else
259 count_threshold = max_entry_count / 1000 * exec_threshold[i];
260
261 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
262 max_entry_frequency * exec_threshold[i] / 1000,
263 count_threshold, traces, n_traces, i, &heap,
264 number_of_rounds);
265 }
266 fibheap_delete (heap);
267
268 if (dump_file)
269 {
270 for (i = 0; i < *n_traces; i++)
271 {
272 basic_block bb;
273 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
274 traces[i].round + 1);
275 for (bb = traces[i].first; bb != traces[i].last; bb = (basic_block) bb->aux)
276 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
277 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
278 }
279 fflush (dump_file);
280 }
281 }
282
283 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
284 (with sequential number TRACE_N). */
285
286 static basic_block
287 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
288 {
289 basic_block bb;
290
291 /* Information about the best end (end after rotation) of the loop. */
292 basic_block best_bb = NULL;
293 edge best_edge = NULL;
294 int best_freq = -1;
295 gcov_type best_count = -1;
296 /* The best edge is preferred when its destination is not visited yet
297 or is a start block of some trace. */
298 bool is_preferred = false;
299
300 /* Find the most frequent edge that goes out from current trace. */
301 bb = back_edge->dest;
302 do
303 {
304 edge e;
305 edge_iterator ei;
306
307 FOR_EACH_EDGE (e, ei, bb->succs)
308 if (e->dest != EXIT_BLOCK_PTR
309 && e->dest->il.rtl->visited != trace_n
310 && (e->flags & EDGE_CAN_FALLTHRU)
311 && !(e->flags & EDGE_COMPLEX))
312 {
313 if (is_preferred)
314 {
315 /* The best edge is preferred. */
316 if (!e->dest->il.rtl->visited
317 || bbd[e->dest->index].start_of_trace >= 0)
318 {
319 /* The current edge E is also preferred. */
320 int freq = EDGE_FREQUENCY (e);
321 if (freq > best_freq || e->count > best_count)
322 {
323 best_freq = freq;
324 best_count = e->count;
325 best_edge = e;
326 best_bb = bb;
327 }
328 }
329 }
330 else
331 {
332 if (!e->dest->il.rtl->visited
333 || bbd[e->dest->index].start_of_trace >= 0)
334 {
335 /* The current edge E is preferred. */
336 is_preferred = true;
337 best_freq = EDGE_FREQUENCY (e);
338 best_count = e->count;
339 best_edge = e;
340 best_bb = bb;
341 }
342 else
343 {
344 int freq = EDGE_FREQUENCY (e);
345 if (!best_edge || freq > best_freq || e->count > best_count)
346 {
347 best_freq = freq;
348 best_count = e->count;
349 best_edge = e;
350 best_bb = bb;
351 }
352 }
353 }
354 }
355 bb = (basic_block) bb->aux;
356 }
357 while (bb != back_edge->dest);
358
359 if (best_bb)
360 {
361 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
362 the trace. */
363 if (back_edge->dest == trace->first)
364 {
365 trace->first = (basic_block) best_bb->aux;
366 }
367 else
368 {
369 basic_block prev_bb;
370
371 for (prev_bb = trace->first;
372 prev_bb->aux != back_edge->dest;
373 prev_bb = (basic_block) prev_bb->aux)
374 ;
375 prev_bb->aux = best_bb->aux;
376
377 /* Try to get rid of uncond jump to cond jump. */
378 if (single_succ_p (prev_bb))
379 {
380 basic_block header = single_succ (prev_bb);
381
382 /* Duplicate HEADER if it is a small block containing cond jump
383 in the end. */
384 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
385 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
386 NULL_RTX))
387 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
388 }
389 }
390 }
391 else
392 {
393 /* We have not found suitable loop tail so do no rotation. */
394 best_bb = back_edge->src;
395 }
396 best_bb->aux = NULL;
397 return best_bb;
398 }
399
400 /* This function marks BB that it was visited in trace number TRACE. */
401
402 static void
403 mark_bb_visited (basic_block bb, int trace)
404 {
405 bb->il.rtl->visited = trace;
406 if (bbd[bb->index].heap)
407 {
408 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
409 bbd[bb->index].heap = NULL;
410 bbd[bb->index].node = NULL;
411 }
412 }
413
414 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
415 not include basic blocks their probability is lower than BRANCH_TH or their
416 frequency is lower than EXEC_TH into traces (or count is lower than
417 COUNT_TH). It stores the new traces into TRACES and modifies the number of
418 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
419 expects that starting basic blocks are in *HEAP and at the end it deletes
420 *HEAP and stores starting points for the next round into new *HEAP. */
421
422 static void
423 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
424 struct trace *traces, int *n_traces, int round,
425 fibheap_t *heap, int number_of_rounds)
426 {
427 /* Heap for discarded basic blocks which are possible starting points for
428 the next round. */
429 fibheap_t new_heap = fibheap_new ();
430
431 while (!fibheap_empty (*heap))
432 {
433 basic_block bb;
434 struct trace *trace;
435 edge best_edge, e;
436 fibheapkey_t key;
437 edge_iterator ei;
438
439 bb = (basic_block) fibheap_extract_min (*heap);
440 bbd[bb->index].heap = NULL;
441 bbd[bb->index].node = NULL;
442
443 if (dump_file)
444 fprintf (dump_file, "Getting bb %d\n", bb->index);
445
446 /* If the BB's frequency is too low send BB to the next round. When
447 partitioning hot/cold blocks into separate sections, make sure all
448 the cold blocks (and ONLY the cold blocks) go into the (extra) final
449 round. */
450
451 if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
452 count_th))
453 {
454 int key = bb_to_key (bb);
455 bbd[bb->index].heap = new_heap;
456 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
457
458 if (dump_file)
459 fprintf (dump_file,
460 " Possible start point of next round: %d (key: %d)\n",
461 bb->index, key);
462 continue;
463 }
464
465 trace = traces + *n_traces;
466 trace->first = bb;
467 trace->round = round;
468 trace->length = 0;
469 bbd[bb->index].in_trace = *n_traces;
470 (*n_traces)++;
471
472 do
473 {
474 int prob, freq;
475 bool ends_in_call;
476
477 /* The probability and frequency of the best edge. */
478 int best_prob = INT_MIN / 2;
479 int best_freq = INT_MIN / 2;
480
481 best_edge = NULL;
482 mark_bb_visited (bb, *n_traces);
483 trace->length++;
484
485 if (dump_file)
486 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
487 bb->index, *n_traces - 1);
488
489 ends_in_call = block_ends_with_call_p (bb);
490
491 /* Select the successor that will be placed after BB. */
492 FOR_EACH_EDGE (e, ei, bb->succs)
493 {
494 gcc_assert (!(e->flags & EDGE_FAKE));
495
496 if (e->dest == EXIT_BLOCK_PTR)
497 continue;
498
499 if (e->dest->il.rtl->visited
500 && e->dest->il.rtl->visited != *n_traces)
501 continue;
502
503 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
504 continue;
505
506 prob = e->probability;
507 freq = e->dest->frequency;
508
509 /* The only sensible preference for a call instruction is the
510 fallthru edge. Don't bother selecting anything else. */
511 if (ends_in_call)
512 {
513 if (e->flags & EDGE_CAN_FALLTHRU)
514 {
515 best_edge = e;
516 best_prob = prob;
517 best_freq = freq;
518 }
519 continue;
520 }
521
522 /* Edge that cannot be fallthru or improbable or infrequent
523 successor (i.e. it is unsuitable successor). */
524 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
525 || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
526 || e->count < count_th)
527 continue;
528
529 /* If partitioning hot/cold basic blocks, don't consider edges
530 that cross section boundaries. */
531
532 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
533 best_edge))
534 {
535 best_edge = e;
536 best_prob = prob;
537 best_freq = freq;
538 }
539 }
540
541 /* If the best destination has multiple predecessors, and can be
542 duplicated cheaper than a jump, don't allow it to be added
543 to a trace. We'll duplicate it when connecting traces. */
544 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
545 && copy_bb_p (best_edge->dest, 0))
546 best_edge = NULL;
547
548 /* Add all non-selected successors to the heaps. */
549 FOR_EACH_EDGE (e, ei, bb->succs)
550 {
551 if (e == best_edge
552 || e->dest == EXIT_BLOCK_PTR
553 || e->dest->il.rtl->visited)
554 continue;
555
556 key = bb_to_key (e->dest);
557
558 if (bbd[e->dest->index].heap)
559 {
560 /* E->DEST is already in some heap. */
561 if (key != bbd[e->dest->index].node->key)
562 {
563 if (dump_file)
564 {
565 fprintf (dump_file,
566 "Changing key for bb %d from %ld to %ld.\n",
567 e->dest->index,
568 (long) bbd[e->dest->index].node->key,
569 key);
570 }
571 fibheap_replace_key (bbd[e->dest->index].heap,
572 bbd[e->dest->index].node, key);
573 }
574 }
575 else
576 {
577 fibheap_t which_heap = *heap;
578
579 prob = e->probability;
580 freq = EDGE_FREQUENCY (e);
581
582 if (!(e->flags & EDGE_CAN_FALLTHRU)
583 || (e->flags & EDGE_COMPLEX)
584 || prob < branch_th || freq < exec_th
585 || e->count < count_th)
586 {
587 /* When partitioning hot/cold basic blocks, make sure
588 the cold blocks (and only the cold blocks) all get
589 pushed to the last round of trace collection. */
590
591 if (push_to_next_round_p (e->dest, round,
592 number_of_rounds,
593 exec_th, count_th))
594 which_heap = new_heap;
595 }
596
597 bbd[e->dest->index].heap = which_heap;
598 bbd[e->dest->index].node = fibheap_insert (which_heap,
599 key, e->dest);
600
601 if (dump_file)
602 {
603 fprintf (dump_file,
604 " Possible start of %s round: %d (key: %ld)\n",
605 (which_heap == new_heap) ? "next" : "this",
606 e->dest->index, (long) key);
607 }
608
609 }
610 }
611
612 if (best_edge) /* Suitable successor was found. */
613 {
614 if (best_edge->dest->il.rtl->visited == *n_traces)
615 {
616 /* We do nothing with one basic block loops. */
617 if (best_edge->dest != bb)
618 {
619 if (EDGE_FREQUENCY (best_edge)
620 > 4 * best_edge->dest->frequency / 5)
621 {
622 /* The loop has at least 4 iterations. If the loop
623 header is not the first block of the function
624 we can rotate the loop. */
625
626 if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
627 {
628 if (dump_file)
629 {
630 fprintf (dump_file,
631 "Rotating loop %d - %d\n",
632 best_edge->dest->index, bb->index);
633 }
634 bb->aux = best_edge->dest;
635 bbd[best_edge->dest->index].in_trace =
636 (*n_traces) - 1;
637 bb = rotate_loop (best_edge, trace, *n_traces);
638 }
639 }
640 else
641 {
642 /* The loop has less than 4 iterations. */
643
644 if (single_succ_p (bb)
645 && copy_bb_p (best_edge->dest,
646 optimize_edge_for_speed_p (best_edge)))
647 {
648 bb = copy_bb (best_edge->dest, best_edge, bb,
649 *n_traces);
650 trace->length++;
651 }
652 }
653 }
654
655 /* Terminate the trace. */
656 break;
657 }
658 else
659 {
660 /* Check for a situation
661
662 A
663 /|
664 B |
665 \|
666 C
667
668 where
669 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
670 >= EDGE_FREQUENCY (AC).
671 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
672 Best ordering is then A B C.
673
674 This situation is created for example by:
675
676 if (A) B;
677 C;
678
679 */
680
681 FOR_EACH_EDGE (e, ei, bb->succs)
682 if (e != best_edge
683 && (e->flags & EDGE_CAN_FALLTHRU)
684 && !(e->flags & EDGE_COMPLEX)
685 && !e->dest->il.rtl->visited
686 && single_pred_p (e->dest)
687 && !(e->flags & EDGE_CROSSING)
688 && single_succ_p (e->dest)
689 && (single_succ_edge (e->dest)->flags
690 & EDGE_CAN_FALLTHRU)
691 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
692 && single_succ (e->dest) == best_edge->dest
693 && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
694 {
695 best_edge = e;
696 if (dump_file)
697 fprintf (dump_file, "Selecting BB %d\n",
698 best_edge->dest->index);
699 break;
700 }
701
702 bb->aux = best_edge->dest;
703 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
704 bb = best_edge->dest;
705 }
706 }
707 }
708 while (best_edge);
709 trace->last = bb;
710 bbd[trace->first->index].start_of_trace = *n_traces - 1;
711 bbd[trace->last->index].end_of_trace = *n_traces - 1;
712
713 /* The trace is terminated so we have to recount the keys in heap
714 (some block can have a lower key because now one of its predecessors
715 is an end of the trace). */
716 FOR_EACH_EDGE (e, ei, bb->succs)
717 {
718 if (e->dest == EXIT_BLOCK_PTR
719 || e->dest->il.rtl->visited)
720 continue;
721
722 if (bbd[e->dest->index].heap)
723 {
724 key = bb_to_key (e->dest);
725 if (key != bbd[e->dest->index].node->key)
726 {
727 if (dump_file)
728 {
729 fprintf (dump_file,
730 "Changing key for bb %d from %ld to %ld.\n",
731 e->dest->index,
732 (long) bbd[e->dest->index].node->key, key);
733 }
734 fibheap_replace_key (bbd[e->dest->index].heap,
735 bbd[e->dest->index].node,
736 key);
737 }
738 }
739 }
740 }
741
742 fibheap_delete (*heap);
743
744 /* "Return" the new heap. */
745 *heap = new_heap;
746 }
747
748 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
749 it to trace after BB, mark OLD_BB visited and update pass' data structures
750 (TRACE is a number of trace which OLD_BB is duplicated to). */
751
752 static basic_block
753 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
754 {
755 basic_block new_bb;
756
757 new_bb = duplicate_block (old_bb, e, bb);
758 BB_COPY_PARTITION (new_bb, old_bb);
759
760 gcc_assert (e->dest == new_bb);
761 gcc_assert (!e->dest->il.rtl->visited);
762
763 if (dump_file)
764 fprintf (dump_file,
765 "Duplicated bb %d (created bb %d)\n",
766 old_bb->index, new_bb->index);
767 new_bb->il.rtl->visited = trace;
768 new_bb->aux = bb->aux;
769 bb->aux = new_bb;
770
771 if (new_bb->index >= array_size || last_basic_block > array_size)
772 {
773 int i;
774 int new_size;
775
776 new_size = MAX (last_basic_block, new_bb->index + 1);
777 new_size = GET_ARRAY_SIZE (new_size);
778 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
779 for (i = array_size; i < new_size; i++)
780 {
781 bbd[i].start_of_trace = -1;
782 bbd[i].in_trace = -1;
783 bbd[i].end_of_trace = -1;
784 bbd[i].heap = NULL;
785 bbd[i].node = NULL;
786 }
787 array_size = new_size;
788
789 if (dump_file)
790 {
791 fprintf (dump_file,
792 "Growing the dynamic array to %d elements.\n",
793 array_size);
794 }
795 }
796
797 bbd[new_bb->index].in_trace = trace;
798
799 return new_bb;
800 }
801
802 /* Compute and return the key (for the heap) of the basic block BB. */
803
804 static fibheapkey_t
805 bb_to_key (basic_block bb)
806 {
807 edge e;
808 edge_iterator ei;
809 int priority = 0;
810
811 /* Do not start in probably never executed blocks. */
812
813 if (BB_PARTITION (bb) == BB_COLD_PARTITION
814 || probably_never_executed_bb_p (bb))
815 return BB_FREQ_MAX;
816
817 /* Prefer blocks whose predecessor is an end of some trace
818 or whose predecessor edge is EDGE_DFS_BACK. */
819 FOR_EACH_EDGE (e, ei, bb->preds)
820 {
821 if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
822 || (e->flags & EDGE_DFS_BACK))
823 {
824 int edge_freq = EDGE_FREQUENCY (e);
825
826 if (edge_freq > priority)
827 priority = edge_freq;
828 }
829 }
830
831 if (priority)
832 /* The block with priority should have significantly lower key. */
833 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
834 return -bb->frequency;
835 }
836
837 /* Return true when the edge E from basic block BB is better than the temporary
838 best edge (details are in function). The probability of edge E is PROB. The
839 frequency of the successor is FREQ. The current best probability is
840 BEST_PROB, the best frequency is BEST_FREQ.
841 The edge is considered to be equivalent when PROB does not differ much from
842 BEST_PROB; similarly for frequency. */
843
844 static bool
845 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
846 int best_freq, const_edge cur_best_edge)
847 {
848 bool is_better_edge;
849
850 /* The BEST_* values do not have to be best, but can be a bit smaller than
851 maximum values. */
852 int diff_prob = best_prob / 10;
853 int diff_freq = best_freq / 10;
854
855 if (prob > best_prob + diff_prob)
856 /* The edge has higher probability than the temporary best edge. */
857 is_better_edge = true;
858 else if (prob < best_prob - diff_prob)
859 /* The edge has lower probability than the temporary best edge. */
860 is_better_edge = false;
861 else if (freq < best_freq - diff_freq)
862 /* The edge and the temporary best edge have almost equivalent
863 probabilities. The higher frequency of a successor now means
864 that there is another edge going into that successor.
865 This successor has lower frequency so it is better. */
866 is_better_edge = true;
867 else if (freq > best_freq + diff_freq)
868 /* This successor has higher frequency so it is worse. */
869 is_better_edge = false;
870 else if (e->dest->prev_bb == bb)
871 /* The edges have equivalent probabilities and the successors
872 have equivalent frequencies. Select the previous successor. */
873 is_better_edge = true;
874 else
875 is_better_edge = false;
876
877 /* If we are doing hot/cold partitioning, make sure that we always favor
878 non-crossing edges over crossing edges. */
879
880 if (!is_better_edge
881 && flag_reorder_blocks_and_partition
882 && cur_best_edge
883 && (cur_best_edge->flags & EDGE_CROSSING)
884 && !(e->flags & EDGE_CROSSING))
885 is_better_edge = true;
886
887 return is_better_edge;
888 }
889
890 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
891
892 static void
893 connect_traces (int n_traces, struct trace *traces)
894 {
895 int i;
896 bool *connected;
897 bool two_passes;
898 int last_trace;
899 int current_pass;
900 int current_partition;
901 int freq_threshold;
902 gcov_type count_threshold;
903
904 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
905 if (max_entry_count < INT_MAX / 1000)
906 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
907 else
908 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
909
910 connected = XCNEWVEC (bool, n_traces);
911 last_trace = -1;
912 current_pass = 1;
913 current_partition = BB_PARTITION (traces[0].first);
914 two_passes = false;
915
916 if (flag_reorder_blocks_and_partition)
917 for (i = 0; i < n_traces && !two_passes; i++)
918 if (BB_PARTITION (traces[0].first)
919 != BB_PARTITION (traces[i].first))
920 two_passes = true;
921
922 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
923 {
924 int t = i;
925 int t2;
926 edge e, best;
927 int best_len;
928
929 if (i >= n_traces)
930 {
931 gcc_assert (two_passes && current_pass == 1);
932 i = 0;
933 t = i;
934 current_pass = 2;
935 if (current_partition == BB_HOT_PARTITION)
936 current_partition = BB_COLD_PARTITION;
937 else
938 current_partition = BB_HOT_PARTITION;
939 }
940
941 if (connected[t])
942 continue;
943
944 if (two_passes
945 && BB_PARTITION (traces[t].first) != current_partition)
946 continue;
947
948 connected[t] = true;
949
950 /* Find the predecessor traces. */
951 for (t2 = t; t2 > 0;)
952 {
953 edge_iterator ei;
954 best = NULL;
955 best_len = 0;
956 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
957 {
958 int si = e->src->index;
959
960 if (e->src != ENTRY_BLOCK_PTR
961 && (e->flags & EDGE_CAN_FALLTHRU)
962 && !(e->flags & EDGE_COMPLEX)
963 && bbd[si].end_of_trace >= 0
964 && !connected[bbd[si].end_of_trace]
965 && (BB_PARTITION (e->src) == current_partition)
966 && (!best
967 || e->probability > best->probability
968 || (e->probability == best->probability
969 && traces[bbd[si].end_of_trace].length > best_len)))
970 {
971 best = e;
972 best_len = traces[bbd[si].end_of_trace].length;
973 }
974 }
975 if (best)
976 {
977 best->src->aux = best->dest;
978 t2 = bbd[best->src->index].end_of_trace;
979 connected[t2] = true;
980
981 if (dump_file)
982 {
983 fprintf (dump_file, "Connection: %d %d\n",
984 best->src->index, best->dest->index);
985 }
986 }
987 else
988 break;
989 }
990
991 if (last_trace >= 0)
992 traces[last_trace].last->aux = traces[t2].first;
993 last_trace = t;
994
995 /* Find the successor traces. */
996 while (1)
997 {
998 /* Find the continuation of the chain. */
999 edge_iterator ei;
1000 best = NULL;
1001 best_len = 0;
1002 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1003 {
1004 int di = e->dest->index;
1005
1006 if (e->dest != EXIT_BLOCK_PTR
1007 && (e->flags & EDGE_CAN_FALLTHRU)
1008 && !(e->flags & EDGE_COMPLEX)
1009 && bbd[di].start_of_trace >= 0
1010 && !connected[bbd[di].start_of_trace]
1011 && (BB_PARTITION (e->dest) == current_partition)
1012 && (!best
1013 || e->probability > best->probability
1014 || (e->probability == best->probability
1015 && traces[bbd[di].start_of_trace].length > best_len)))
1016 {
1017 best = e;
1018 best_len = traces[bbd[di].start_of_trace].length;
1019 }
1020 }
1021
1022 if (best)
1023 {
1024 if (dump_file)
1025 {
1026 fprintf (dump_file, "Connection: %d %d\n",
1027 best->src->index, best->dest->index);
1028 }
1029 t = bbd[best->dest->index].start_of_trace;
1030 traces[last_trace].last->aux = traces[t].first;
1031 connected[t] = true;
1032 last_trace = t;
1033 }
1034 else
1035 {
1036 /* Try to connect the traces by duplication of 1 block. */
1037 edge e2;
1038 basic_block next_bb = NULL;
1039 bool try_copy = false;
1040
1041 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1042 if (e->dest != EXIT_BLOCK_PTR
1043 && (e->flags & EDGE_CAN_FALLTHRU)
1044 && !(e->flags & EDGE_COMPLEX)
1045 && (!best || e->probability > best->probability))
1046 {
1047 edge_iterator ei;
1048 edge best2 = NULL;
1049 int best2_len = 0;
1050
1051 /* If the destination is a start of a trace which is only
1052 one block long, then no need to search the successor
1053 blocks of the trace. Accept it. */
1054 if (bbd[e->dest->index].start_of_trace >= 0
1055 && traces[bbd[e->dest->index].start_of_trace].length
1056 == 1)
1057 {
1058 best = e;
1059 try_copy = true;
1060 continue;
1061 }
1062
1063 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1064 {
1065 int di = e2->dest->index;
1066
1067 if (e2->dest == EXIT_BLOCK_PTR
1068 || ((e2->flags & EDGE_CAN_FALLTHRU)
1069 && !(e2->flags & EDGE_COMPLEX)
1070 && bbd[di].start_of_trace >= 0
1071 && !connected[bbd[di].start_of_trace]
1072 && (BB_PARTITION (e2->dest) == current_partition)
1073 && (EDGE_FREQUENCY (e2) >= freq_threshold)
1074 && (e2->count >= count_threshold)
1075 && (!best2
1076 || e2->probability > best2->probability
1077 || (e2->probability == best2->probability
1078 && traces[bbd[di].start_of_trace].length
1079 > best2_len))))
1080 {
1081 best = e;
1082 best2 = e2;
1083 if (e2->dest != EXIT_BLOCK_PTR)
1084 best2_len = traces[bbd[di].start_of_trace].length;
1085 else
1086 best2_len = INT_MAX;
1087 next_bb = e2->dest;
1088 try_copy = true;
1089 }
1090 }
1091 }
1092
1093 if (flag_reorder_blocks_and_partition)
1094 try_copy = false;
1095
1096 /* Copy tiny blocks always; copy larger blocks only when the
1097 edge is traversed frequently enough. */
1098 if (try_copy
1099 && copy_bb_p (best->dest,
1100 optimize_edge_for_speed_p (best)
1101 && EDGE_FREQUENCY (best) >= freq_threshold
1102 && best->count >= count_threshold))
1103 {
1104 basic_block new_bb;
1105
1106 if (dump_file)
1107 {
1108 fprintf (dump_file, "Connection: %d %d ",
1109 traces[t].last->index, best->dest->index);
1110 if (!next_bb)
1111 fputc ('\n', dump_file);
1112 else if (next_bb == EXIT_BLOCK_PTR)
1113 fprintf (dump_file, "exit\n");
1114 else
1115 fprintf (dump_file, "%d\n", next_bb->index);
1116 }
1117
1118 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1119 traces[t].last = new_bb;
1120 if (next_bb && next_bb != EXIT_BLOCK_PTR)
1121 {
1122 t = bbd[next_bb->index].start_of_trace;
1123 traces[last_trace].last->aux = traces[t].first;
1124 connected[t] = true;
1125 last_trace = t;
1126 }
1127 else
1128 break; /* Stop finding the successor traces. */
1129 }
1130 else
1131 break; /* Stop finding the successor traces. */
1132 }
1133 }
1134 }
1135
1136 if (dump_file)
1137 {
1138 basic_block bb;
1139
1140 fprintf (dump_file, "Final order:\n");
1141 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1142 fprintf (dump_file, "%d ", bb->index);
1143 fprintf (dump_file, "\n");
1144 fflush (dump_file);
1145 }
1146
1147 FREE (connected);
1148 }
1149
1150 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1151 when code size is allowed to grow by duplication. */
1152
1153 static bool
1154 copy_bb_p (const_basic_block bb, int code_may_grow)
1155 {
1156 int size = 0;
1157 int max_size = uncond_jump_length;
1158 rtx insn;
1159
1160 if (!bb->frequency)
1161 return false;
1162 if (EDGE_COUNT (bb->preds) < 2)
1163 return false;
1164 if (!can_duplicate_block_p (bb))
1165 return false;
1166
1167 /* Avoid duplicating blocks which have many successors (PR/13430). */
1168 if (EDGE_COUNT (bb->succs) > 8)
1169 return false;
1170
1171 if (code_may_grow && optimize_bb_for_speed_p (bb))
1172 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1173
1174 FOR_BB_INSNS (bb, insn)
1175 {
1176 if (INSN_P (insn))
1177 size += get_attr_min_length (insn);
1178 }
1179
1180 if (size <= max_size)
1181 return true;
1182
1183 if (dump_file)
1184 {
1185 fprintf (dump_file,
1186 "Block %d can't be copied because its size = %d.\n",
1187 bb->index, size);
1188 }
1189
1190 return false;
1191 }
1192
1193 /* Return the length of unconditional jump instruction. */
1194
1195 static int
1196 get_uncond_jump_length (void)
1197 {
1198 rtx label, jump;
1199 int length;
1200
1201 label = emit_label_before (gen_label_rtx (), get_insns ());
1202 jump = emit_jump_insn (gen_jump (label));
1203
1204 length = get_attr_min_length (jump);
1205
1206 delete_insn (jump);
1207 delete_insn (label);
1208 return length;
1209 }
1210
1211 /* Find the basic blocks that are rarely executed and need to be moved to
1212 a separate section of the .o file (to cut down on paging and improve
1213 cache locality). Return a vector of all edges that cross. */
1214
1215 static VEC(edge, heap) *
1216 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1217 {
1218 VEC(edge, heap) *crossing_edges = NULL;
1219 basic_block bb;
1220 edge e;
1221 edge_iterator ei;
1222
1223 /* Mark which partition (hot/cold) each basic block belongs in. */
1224
1225 FOR_EACH_BB (bb)
1226 {
1227 if (probably_never_executed_bb_p (bb))
1228 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1229 else
1230 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1231 }
1232
1233 /* Mark every edge that crosses between sections. */
1234
1235 FOR_EACH_BB (bb)
1236 FOR_EACH_EDGE (e, ei, bb->succs)
1237 {
1238 if (e->src != ENTRY_BLOCK_PTR
1239 && e->dest != EXIT_BLOCK_PTR
1240 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1241 {
1242 e->flags |= EDGE_CROSSING;
1243 VEC_safe_push (edge, heap, crossing_edges, e);
1244 }
1245 else
1246 e->flags &= ~EDGE_CROSSING;
1247 }
1248
1249 return crossing_edges;
1250 }
1251
1252 /* Emit a barrier into the footer of BB. */
1253
1254 static void
1255 emit_barrier_after_bb (basic_block bb)
1256 {
1257 rtx barrier = emit_barrier_after (BB_END (bb));
1258 bb->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1259 }
1260
1261 /* If any destination of a crossing edge does not have a label, add label;
1262 Convert any easy fall-through crossing edges to unconditional jumps. */
1263
1264 static void
1265 add_labels_and_missing_jumps (VEC(edge, heap) *crossing_edges)
1266 {
1267 size_t i;
1268 edge e;
1269
1270 FOR_EACH_VEC_ELT (edge, crossing_edges, i, e)
1271 {
1272 basic_block src = e->src;
1273 basic_block dest = e->dest;
1274 rtx label, new_jump;
1275
1276 if (dest == EXIT_BLOCK_PTR)
1277 continue;
1278
1279 /* Make sure dest has a label. */
1280 label = block_label (dest);
1281
1282 /* Nothing to do for non-fallthru edges. */
1283 if (src == ENTRY_BLOCK_PTR)
1284 continue;
1285 if ((e->flags & EDGE_FALLTHRU) == 0)
1286 continue;
1287
1288 /* If the block does not end with a control flow insn, then we
1289 can trivially add a jump to the end to fixup the crossing.
1290 Otherwise the jump will have to go in a new bb, which will
1291 be handled by fix_up_fall_thru_edges function. */
1292 if (control_flow_insn_p (BB_END (src)))
1293 continue;
1294
1295 /* Make sure there's only one successor. */
1296 gcc_assert (single_succ_p (src));
1297
1298 new_jump = emit_jump_insn_after (gen_jump (label), BB_END (src));
1299 BB_END (src) = new_jump;
1300 JUMP_LABEL (new_jump) = label;
1301 LABEL_NUSES (label) += 1;
1302
1303 emit_barrier_after_bb (src);
1304
1305 /* Mark edge as non-fallthru. */
1306 e->flags &= ~EDGE_FALLTHRU;
1307 }
1308 }
1309
1310 /* Find any bb's where the fall-through edge is a crossing edge (note that
1311 these bb's must also contain a conditional jump or end with a call
1312 instruction; we've already dealt with fall-through edges for blocks
1313 that didn't have a conditional jump or didn't end with call instruction
1314 in the call to add_labels_and_missing_jumps). Convert the fall-through
1315 edge to non-crossing edge by inserting a new bb to fall-through into.
1316 The new bb will contain an unconditional jump (crossing edge) to the
1317 original fall through destination. */
1318
1319 static void
1320 fix_up_fall_thru_edges (void)
1321 {
1322 basic_block cur_bb;
1323 basic_block new_bb;
1324 edge succ1;
1325 edge succ2;
1326 edge fall_thru;
1327 edge cond_jump = NULL;
1328 edge e;
1329 bool cond_jump_crosses;
1330 int invert_worked;
1331 rtx old_jump;
1332 rtx fall_thru_label;
1333
1334 FOR_EACH_BB (cur_bb)
1335 {
1336 fall_thru = NULL;
1337 if (EDGE_COUNT (cur_bb->succs) > 0)
1338 succ1 = EDGE_SUCC (cur_bb, 0);
1339 else
1340 succ1 = NULL;
1341
1342 if (EDGE_COUNT (cur_bb->succs) > 1)
1343 succ2 = EDGE_SUCC (cur_bb, 1);
1344 else
1345 succ2 = NULL;
1346
1347 /* Find the fall-through edge. */
1348
1349 if (succ1
1350 && (succ1->flags & EDGE_FALLTHRU))
1351 {
1352 fall_thru = succ1;
1353 cond_jump = succ2;
1354 }
1355 else if (succ2
1356 && (succ2->flags & EDGE_FALLTHRU))
1357 {
1358 fall_thru = succ2;
1359 cond_jump = succ1;
1360 }
1361 else if (succ1
1362 && (block_ends_with_call_p (cur_bb)
1363 || can_throw_internal (BB_END (cur_bb))))
1364 {
1365 edge e;
1366 edge_iterator ei;
1367
1368 /* Find EDGE_CAN_FALLTHRU edge. */
1369 FOR_EACH_EDGE (e, ei, cur_bb->succs)
1370 if (e->flags & EDGE_CAN_FALLTHRU)
1371 {
1372 fall_thru = e;
1373 break;
1374 }
1375 }
1376
1377 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1378 {
1379 /* Check to see if the fall-thru edge is a crossing edge. */
1380
1381 if (fall_thru->flags & EDGE_CROSSING)
1382 {
1383 /* The fall_thru edge crosses; now check the cond jump edge, if
1384 it exists. */
1385
1386 cond_jump_crosses = true;
1387 invert_worked = 0;
1388 old_jump = BB_END (cur_bb);
1389
1390 /* Find the jump instruction, if there is one. */
1391
1392 if (cond_jump)
1393 {
1394 if (!(cond_jump->flags & EDGE_CROSSING))
1395 cond_jump_crosses = false;
1396
1397 /* We know the fall-thru edge crosses; if the cond
1398 jump edge does NOT cross, and its destination is the
1399 next block in the bb order, invert the jump
1400 (i.e. fix it so the fall thru does not cross and
1401 the cond jump does). */
1402
1403 if (!cond_jump_crosses
1404 && cur_bb->aux == cond_jump->dest)
1405 {
1406 /* Find label in fall_thru block. We've already added
1407 any missing labels, so there must be one. */
1408
1409 fall_thru_label = block_label (fall_thru->dest);
1410
1411 if (old_jump && JUMP_P (old_jump) && fall_thru_label)
1412 invert_worked = invert_jump (old_jump,
1413 fall_thru_label,0);
1414 if (invert_worked)
1415 {
1416 fall_thru->flags &= ~EDGE_FALLTHRU;
1417 cond_jump->flags |= EDGE_FALLTHRU;
1418 update_br_prob_note (cur_bb);
1419 e = fall_thru;
1420 fall_thru = cond_jump;
1421 cond_jump = e;
1422 cond_jump->flags |= EDGE_CROSSING;
1423 fall_thru->flags &= ~EDGE_CROSSING;
1424 }
1425 }
1426 }
1427
1428 if (cond_jump_crosses || !invert_worked)
1429 {
1430 /* This is the case where both edges out of the basic
1431 block are crossing edges. Here we will fix up the
1432 fall through edge. The jump edge will be taken care
1433 of later. The EDGE_CROSSING flag of fall_thru edge
1434 is unset before the call to force_nonfallthru
1435 function because if a new basic-block is created
1436 this edge remains in the current section boundary
1437 while the edge between new_bb and the fall_thru->dest
1438 becomes EDGE_CROSSING. */
1439
1440 fall_thru->flags &= ~EDGE_CROSSING;
1441 new_bb = force_nonfallthru (fall_thru);
1442
1443 if (new_bb)
1444 {
1445 new_bb->aux = cur_bb->aux;
1446 cur_bb->aux = new_bb;
1447
1448 /* Make sure new fall-through bb is in same
1449 partition as bb it's falling through from. */
1450
1451 BB_COPY_PARTITION (new_bb, cur_bb);
1452 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1453 }
1454 else
1455 {
1456 /* If a new basic-block was not created; restore
1457 the EDGE_CROSSING flag. */
1458 fall_thru->flags |= EDGE_CROSSING;
1459 }
1460
1461 /* Add barrier after new jump */
1462 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1463 }
1464 }
1465 }
1466 }
1467 }
1468
1469 /* This function checks the destination block of a "crossing jump" to
1470 see if it has any crossing predecessors that begin with a code label
1471 and end with an unconditional jump. If so, it returns that predecessor
1472 block. (This is to avoid creating lots of new basic blocks that all
1473 contain unconditional jumps to the same destination). */
1474
1475 static basic_block
1476 find_jump_block (basic_block jump_dest)
1477 {
1478 basic_block source_bb = NULL;
1479 edge e;
1480 rtx insn;
1481 edge_iterator ei;
1482
1483 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1484 if (e->flags & EDGE_CROSSING)
1485 {
1486 basic_block src = e->src;
1487
1488 /* Check each predecessor to see if it has a label, and contains
1489 only one executable instruction, which is an unconditional jump.
1490 If so, we can use it. */
1491
1492 if (LABEL_P (BB_HEAD (src)))
1493 for (insn = BB_HEAD (src);
1494 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1495 insn = NEXT_INSN (insn))
1496 {
1497 if (INSN_P (insn)
1498 && insn == BB_END (src)
1499 && JUMP_P (insn)
1500 && !any_condjump_p (insn))
1501 {
1502 source_bb = src;
1503 break;
1504 }
1505 }
1506
1507 if (source_bb)
1508 break;
1509 }
1510
1511 return source_bb;
1512 }
1513
1514 /* Find all BB's with conditional jumps that are crossing edges;
1515 insert a new bb and make the conditional jump branch to the new
1516 bb instead (make the new bb same color so conditional branch won't
1517 be a 'crossing' edge). Insert an unconditional jump from the
1518 new bb to the original destination of the conditional jump. */
1519
1520 static void
1521 fix_crossing_conditional_branches (void)
1522 {
1523 basic_block cur_bb;
1524 basic_block new_bb;
1525 basic_block dest;
1526 edge succ1;
1527 edge succ2;
1528 edge crossing_edge;
1529 edge new_edge;
1530 rtx old_jump;
1531 rtx set_src;
1532 rtx old_label = NULL_RTX;
1533 rtx new_label;
1534
1535 FOR_EACH_BB (cur_bb)
1536 {
1537 crossing_edge = NULL;
1538 if (EDGE_COUNT (cur_bb->succs) > 0)
1539 succ1 = EDGE_SUCC (cur_bb, 0);
1540 else
1541 succ1 = NULL;
1542
1543 if (EDGE_COUNT (cur_bb->succs) > 1)
1544 succ2 = EDGE_SUCC (cur_bb, 1);
1545 else
1546 succ2 = NULL;
1547
1548 /* We already took care of fall-through edges, so only one successor
1549 can be a crossing edge. */
1550
1551 if (succ1 && (succ1->flags & EDGE_CROSSING))
1552 crossing_edge = succ1;
1553 else if (succ2 && (succ2->flags & EDGE_CROSSING))
1554 crossing_edge = succ2;
1555
1556 if (crossing_edge)
1557 {
1558 old_jump = BB_END (cur_bb);
1559
1560 /* Check to make sure the jump instruction is a
1561 conditional jump. */
1562
1563 set_src = NULL_RTX;
1564
1565 if (any_condjump_p (old_jump))
1566 {
1567 if (GET_CODE (PATTERN (old_jump)) == SET)
1568 set_src = SET_SRC (PATTERN (old_jump));
1569 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1570 {
1571 set_src = XVECEXP (PATTERN (old_jump), 0,0);
1572 if (GET_CODE (set_src) == SET)
1573 set_src = SET_SRC (set_src);
1574 else
1575 set_src = NULL_RTX;
1576 }
1577 }
1578
1579 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1580 {
1581 if (GET_CODE (XEXP (set_src, 1)) == PC)
1582 old_label = XEXP (set_src, 2);
1583 else if (GET_CODE (XEXP (set_src, 2)) == PC)
1584 old_label = XEXP (set_src, 1);
1585
1586 /* Check to see if new bb for jumping to that dest has
1587 already been created; if so, use it; if not, create
1588 a new one. */
1589
1590 new_bb = find_jump_block (crossing_edge->dest);
1591
1592 if (new_bb)
1593 new_label = block_label (new_bb);
1594 else
1595 {
1596 basic_block last_bb;
1597 rtx new_jump;
1598
1599 /* Create new basic block to be dest for
1600 conditional jump. */
1601
1602 /* Put appropriate instructions in new bb. */
1603
1604 new_label = gen_label_rtx ();
1605 emit_label (new_label);
1606 BB_HEAD (new_bb) = new_label;
1607
1608 gcc_assert (GET_CODE (old_label) == LABEL_REF);
1609 old_label = JUMP_LABEL (old_jump);
1610 new_jump = emit_jump_insn (gen_jump (old_label));
1611 JUMP_LABEL (new_jump) = old_label;
1612
1613 last_bb = EXIT_BLOCK_PTR->prev_bb;
1614 new_bb = create_basic_block (new_label, new_jump, last_bb);
1615 new_bb->aux = last_bb->aux;
1616 last_bb->aux = new_bb;
1617
1618 emit_barrier_after_bb (new_bb);
1619
1620 /* Make sure new bb is in same partition as source
1621 of conditional branch. */
1622 BB_COPY_PARTITION (new_bb, cur_bb);
1623 }
1624
1625 /* Make old jump branch to new bb. */
1626
1627 redirect_jump (old_jump, new_label, 0);
1628
1629 /* Remove crossing_edge as predecessor of 'dest'. */
1630
1631 dest = crossing_edge->dest;
1632
1633 redirect_edge_succ (crossing_edge, new_bb);
1634
1635 /* Make a new edge from new_bb to old dest; new edge
1636 will be a successor for new_bb and a predecessor
1637 for 'dest'. */
1638
1639 if (EDGE_COUNT (new_bb->succs) == 0)
1640 new_edge = make_edge (new_bb, dest, 0);
1641 else
1642 new_edge = EDGE_SUCC (new_bb, 0);
1643
1644 crossing_edge->flags &= ~EDGE_CROSSING;
1645 new_edge->flags |= EDGE_CROSSING;
1646 }
1647 }
1648 }
1649 }
1650
1651 /* Find any unconditional branches that cross between hot and cold
1652 sections. Convert them into indirect jumps instead. */
1653
1654 static void
1655 fix_crossing_unconditional_branches (void)
1656 {
1657 basic_block cur_bb;
1658 rtx last_insn;
1659 rtx label;
1660 rtx label_addr;
1661 rtx indirect_jump_sequence;
1662 rtx jump_insn = NULL_RTX;
1663 rtx new_reg;
1664 rtx cur_insn;
1665 edge succ;
1666
1667 FOR_EACH_BB (cur_bb)
1668 {
1669 last_insn = BB_END (cur_bb);
1670
1671 if (EDGE_COUNT (cur_bb->succs) < 1)
1672 continue;
1673
1674 succ = EDGE_SUCC (cur_bb, 0);
1675
1676 /* Check to see if bb ends in a crossing (unconditional) jump. At
1677 this point, no crossing jumps should be conditional. */
1678
1679 if (JUMP_P (last_insn)
1680 && (succ->flags & EDGE_CROSSING))
1681 {
1682 rtx label2, table;
1683
1684 gcc_assert (!any_condjump_p (last_insn));
1685
1686 /* Make sure the jump is not already an indirect or table jump. */
1687
1688 if (!computed_jump_p (last_insn)
1689 && !tablejump_p (last_insn, &label2, &table))
1690 {
1691 /* We have found a "crossing" unconditional branch. Now
1692 we must convert it to an indirect jump. First create
1693 reference of label, as target for jump. */
1694
1695 label = JUMP_LABEL (last_insn);
1696 label_addr = gen_rtx_LABEL_REF (Pmode, label);
1697 LABEL_NUSES (label) += 1;
1698
1699 /* Get a register to use for the indirect jump. */
1700
1701 new_reg = gen_reg_rtx (Pmode);
1702
1703 /* Generate indirect the jump sequence. */
1704
1705 start_sequence ();
1706 emit_move_insn (new_reg, label_addr);
1707 emit_indirect_jump (new_reg);
1708 indirect_jump_sequence = get_insns ();
1709 end_sequence ();
1710
1711 /* Make sure every instruction in the new jump sequence has
1712 its basic block set to be cur_bb. */
1713
1714 for (cur_insn = indirect_jump_sequence; cur_insn;
1715 cur_insn = NEXT_INSN (cur_insn))
1716 {
1717 if (!BARRIER_P (cur_insn))
1718 BLOCK_FOR_INSN (cur_insn) = cur_bb;
1719 if (JUMP_P (cur_insn))
1720 jump_insn = cur_insn;
1721 }
1722
1723 /* Insert the new (indirect) jump sequence immediately before
1724 the unconditional jump, then delete the unconditional jump. */
1725
1726 emit_insn_before (indirect_jump_sequence, last_insn);
1727 delete_insn (last_insn);
1728
1729 /* Make BB_END for cur_bb be the jump instruction (NOT the
1730 barrier instruction at the end of the sequence...). */
1731
1732 BB_END (cur_bb) = jump_insn;
1733 }
1734 }
1735 }
1736 }
1737
1738 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
1739
1740 static void
1741 add_reg_crossing_jump_notes (void)
1742 {
1743 basic_block bb;
1744 edge e;
1745 edge_iterator ei;
1746
1747 FOR_EACH_BB (bb)
1748 FOR_EACH_EDGE (e, ei, bb->succs)
1749 if ((e->flags & EDGE_CROSSING)
1750 && JUMP_P (BB_END (e->src)))
1751 add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1752 }
1753
1754 /* Verify, in the basic block chain, that there is at most one switch
1755 between hot/cold partitions. This is modelled on
1756 rtl_verify_flow_info_1, but it cannot go inside that function
1757 because this condition will not be true until after
1758 reorder_basic_blocks is called. */
1759
1760 static void
1761 verify_hot_cold_block_grouping (void)
1762 {
1763 basic_block bb;
1764 int err = 0;
1765 bool switched_sections = false;
1766 int current_partition = 0;
1767
1768 FOR_EACH_BB (bb)
1769 {
1770 if (!current_partition)
1771 current_partition = BB_PARTITION (bb);
1772 if (BB_PARTITION (bb) != current_partition)
1773 {
1774 if (switched_sections)
1775 {
1776 error ("multiple hot/cold transitions found (bb %i)",
1777 bb->index);
1778 err = 1;
1779 }
1780 else
1781 {
1782 switched_sections = true;
1783 current_partition = BB_PARTITION (bb);
1784 }
1785 }
1786 }
1787
1788 gcc_assert(!err);
1789 }
1790
1791 /* Reorder basic blocks. The main entry point to this file. FLAGS is
1792 the set of flags to pass to cfg_layout_initialize(). */
1793
1794 void
1795 reorder_basic_blocks (void)
1796 {
1797 int n_traces;
1798 int i;
1799 struct trace *traces;
1800
1801 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
1802
1803 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1804 return;
1805
1806 set_edge_can_fallthru_flag ();
1807 mark_dfs_back_edges ();
1808
1809 /* We are estimating the length of uncond jump insn only once since the code
1810 for getting the insn length always returns the minimal length now. */
1811 if (uncond_jump_length == 0)
1812 uncond_jump_length = get_uncond_jump_length ();
1813
1814 /* We need to know some information for each basic block. */
1815 array_size = GET_ARRAY_SIZE (last_basic_block);
1816 bbd = XNEWVEC (bbro_basic_block_data, array_size);
1817 for (i = 0; i < array_size; i++)
1818 {
1819 bbd[i].start_of_trace = -1;
1820 bbd[i].in_trace = -1;
1821 bbd[i].end_of_trace = -1;
1822 bbd[i].heap = NULL;
1823 bbd[i].node = NULL;
1824 }
1825
1826 traces = XNEWVEC (struct trace, n_basic_blocks);
1827 n_traces = 0;
1828 find_traces (&n_traces, traces);
1829 connect_traces (n_traces, traces);
1830 FREE (traces);
1831 FREE (bbd);
1832
1833 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
1834
1835 if (dump_file)
1836 dump_flow_info (dump_file, dump_flags);
1837
1838 if (flag_reorder_blocks_and_partition)
1839 verify_hot_cold_block_grouping ();
1840 }
1841
1842 /* Determine which partition the first basic block in the function
1843 belongs to, then find the first basic block in the current function
1844 that belongs to a different section, and insert a
1845 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1846 instruction stream. When writing out the assembly code,
1847 encountering this note will make the compiler switch between the
1848 hot and cold text sections. */
1849
1850 static void
1851 insert_section_boundary_note (void)
1852 {
1853 basic_block bb;
1854 rtx new_note;
1855 int first_partition = 0;
1856
1857 if (flag_reorder_blocks_and_partition)
1858 FOR_EACH_BB (bb)
1859 {
1860 if (!first_partition)
1861 first_partition = BB_PARTITION (bb);
1862 if (BB_PARTITION (bb) != first_partition)
1863 {
1864 new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1865 BB_HEAD (bb));
1866 /* ??? This kind of note always lives between basic blocks,
1867 but add_insn_before will set BLOCK_FOR_INSN anyway. */
1868 BLOCK_FOR_INSN (new_note) = NULL;
1869 break;
1870 }
1871 }
1872 }
1873
1874 /* Duplicate the blocks containing computed gotos. This basically unfactors
1875 computed gotos that were factored early on in the compilation process to
1876 speed up edge based data flow. We used to not unfactoring them again,
1877 which can seriously pessimize code with many computed jumps in the source
1878 code, such as interpreters. See e.g. PR15242. */
1879
1880 static bool
1881 gate_duplicate_computed_gotos (void)
1882 {
1883 if (targetm.cannot_modify_jumps_p ())
1884 return false;
1885 return (optimize > 0
1886 && flag_expensive_optimizations
1887 && ! optimize_function_for_size_p (cfun));
1888 }
1889
1890
1891 static unsigned int
1892 duplicate_computed_gotos (void)
1893 {
1894 basic_block bb, new_bb;
1895 bitmap candidates;
1896 int max_size;
1897
1898 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1899 return 0;
1900
1901 cfg_layout_initialize (0);
1902
1903 /* We are estimating the length of uncond jump insn only once
1904 since the code for getting the insn length always returns
1905 the minimal length now. */
1906 if (uncond_jump_length == 0)
1907 uncond_jump_length = get_uncond_jump_length ();
1908
1909 max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
1910 candidates = BITMAP_ALLOC (NULL);
1911
1912 /* Look for blocks that end in a computed jump, and see if such blocks
1913 are suitable for unfactoring. If a block is a candidate for unfactoring,
1914 mark it in the candidates. */
1915 FOR_EACH_BB (bb)
1916 {
1917 rtx insn;
1918 edge e;
1919 edge_iterator ei;
1920 int size, all_flags;
1921
1922 /* Build the reorder chain for the original order of blocks. */
1923 if (bb->next_bb != EXIT_BLOCK_PTR)
1924 bb->aux = bb->next_bb;
1925
1926 /* Obviously the block has to end in a computed jump. */
1927 if (!computed_jump_p (BB_END (bb)))
1928 continue;
1929
1930 /* Only consider blocks that can be duplicated. */
1931 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
1932 || !can_duplicate_block_p (bb))
1933 continue;
1934
1935 /* Make sure that the block is small enough. */
1936 size = 0;
1937 FOR_BB_INSNS (bb, insn)
1938 if (INSN_P (insn))
1939 {
1940 size += get_attr_min_length (insn);
1941 if (size > max_size)
1942 break;
1943 }
1944 if (size > max_size)
1945 continue;
1946
1947 /* Final check: there must not be any incoming abnormal edges. */
1948 all_flags = 0;
1949 FOR_EACH_EDGE (e, ei, bb->preds)
1950 all_flags |= e->flags;
1951 if (all_flags & EDGE_COMPLEX)
1952 continue;
1953
1954 bitmap_set_bit (candidates, bb->index);
1955 }
1956
1957 /* Nothing to do if there is no computed jump here. */
1958 if (bitmap_empty_p (candidates))
1959 goto done;
1960
1961 /* Duplicate computed gotos. */
1962 FOR_EACH_BB (bb)
1963 {
1964 if (bb->il.rtl->visited)
1965 continue;
1966
1967 bb->il.rtl->visited = 1;
1968
1969 /* BB must have one outgoing edge. That edge must not lead to
1970 the exit block or the next block.
1971 The destination must have more than one predecessor. */
1972 if (!single_succ_p (bb)
1973 || single_succ (bb) == EXIT_BLOCK_PTR
1974 || single_succ (bb) == bb->next_bb
1975 || single_pred_p (single_succ (bb)))
1976 continue;
1977
1978 /* The successor block has to be a duplication candidate. */
1979 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
1980 continue;
1981
1982 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
1983 new_bb->aux = bb->aux;
1984 bb->aux = new_bb;
1985 new_bb->il.rtl->visited = 1;
1986 }
1987
1988 done:
1989 cfg_layout_finalize ();
1990
1991 BITMAP_FREE (candidates);
1992 return 0;
1993 }
1994
1995 struct rtl_opt_pass pass_duplicate_computed_gotos =
1996 {
1997 {
1998 RTL_PASS,
1999 "compgotos", /* name */
2000 gate_duplicate_computed_gotos, /* gate */
2001 duplicate_computed_gotos, /* execute */
2002 NULL, /* sub */
2003 NULL, /* next */
2004 0, /* static_pass_number */
2005 TV_REORDER_BLOCKS, /* tv_id */
2006 0, /* properties_required */
2007 0, /* properties_provided */
2008 0, /* properties_destroyed */
2009 0, /* todo_flags_start */
2010 TODO_verify_rtl_sharing,/* todo_flags_finish */
2011 }
2012 };
2013
2014
2015 /* This function is the main 'entrance' for the optimization that
2016 partitions hot and cold basic blocks into separate sections of the
2017 .o file (to improve performance and cache locality). Ideally it
2018 would be called after all optimizations that rearrange the CFG have
2019 been called. However part of this optimization may introduce new
2020 register usage, so it must be called before register allocation has
2021 occurred. This means that this optimization is actually called
2022 well before the optimization that reorders basic blocks (see
2023 function above).
2024
2025 This optimization checks the feedback information to determine
2026 which basic blocks are hot/cold, updates flags on the basic blocks
2027 to indicate which section they belong in. This information is
2028 later used for writing out sections in the .o file. Because hot
2029 and cold sections can be arbitrarily large (within the bounds of
2030 memory), far beyond the size of a single function, it is necessary
2031 to fix up all edges that cross section boundaries, to make sure the
2032 instructions used can actually span the required distance. The
2033 fixes are described below.
2034
2035 Fall-through edges must be changed into jumps; it is not safe or
2036 legal to fall through across a section boundary. Whenever a
2037 fall-through edge crossing a section boundary is encountered, a new
2038 basic block is inserted (in the same section as the fall-through
2039 source), and the fall through edge is redirected to the new basic
2040 block. The new basic block contains an unconditional jump to the
2041 original fall-through target. (If the unconditional jump is
2042 insufficient to cross section boundaries, that is dealt with a
2043 little later, see below).
2044
2045 In order to deal with architectures that have short conditional
2046 branches (which cannot span all of memory) we take any conditional
2047 jump that attempts to cross a section boundary and add a level of
2048 indirection: it becomes a conditional jump to a new basic block, in
2049 the same section. The new basic block contains an unconditional
2050 jump to the original target, in the other section.
2051
2052 For those architectures whose unconditional branch is also
2053 incapable of reaching all of memory, those unconditional jumps are
2054 converted into indirect jumps, through a register.
2055
2056 IMPORTANT NOTE: This optimization causes some messy interactions
2057 with the cfg cleanup optimizations; those optimizations want to
2058 merge blocks wherever possible, and to collapse indirect jump
2059 sequences (change "A jumps to B jumps to C" directly into "A jumps
2060 to C"). Those optimizations can undo the jump fixes that
2061 partitioning is required to make (see above), in order to ensure
2062 that jumps attempting to cross section boundaries are really able
2063 to cover whatever distance the jump requires (on many architectures
2064 conditional or unconditional jumps are not able to reach all of
2065 memory). Therefore tests have to be inserted into each such
2066 optimization to make sure that it does not undo stuff necessary to
2067 cross partition boundaries. This would be much less of a problem
2068 if we could perform this optimization later in the compilation, but
2069 unfortunately the fact that we may need to create indirect jumps
2070 (through registers) requires that this optimization be performed
2071 before register allocation.
2072
2073 Hot and cold basic blocks are partitioned and put in separate
2074 sections of the .o file, to reduce paging and improve cache
2075 performance (hopefully). This can result in bits of code from the
2076 same function being widely separated in the .o file. However this
2077 is not obvious to the current bb structure. Therefore we must take
2078 care to ensure that: 1). There are no fall_thru edges that cross
2079 between sections; 2). For those architectures which have "short"
2080 conditional branches, all conditional branches that attempt to
2081 cross between sections are converted to unconditional branches;
2082 and, 3). For those architectures which have "short" unconditional
2083 branches, all unconditional branches that attempt to cross between
2084 sections are converted to indirect jumps.
2085
2086 The code for fixing up fall_thru edges that cross between hot and
2087 cold basic blocks does so by creating new basic blocks containing
2088 unconditional branches to the appropriate label in the "other"
2089 section. The new basic block is then put in the same (hot or cold)
2090 section as the original conditional branch, and the fall_thru edge
2091 is modified to fall into the new basic block instead. By adding
2092 this level of indirection we end up with only unconditional branches
2093 crossing between hot and cold sections.
2094
2095 Conditional branches are dealt with by adding a level of indirection.
2096 A new basic block is added in the same (hot/cold) section as the
2097 conditional branch, and the conditional branch is retargeted to the
2098 new basic block. The new basic block contains an unconditional branch
2099 to the original target of the conditional branch (in the other section).
2100
2101 Unconditional branches are dealt with by converting them into
2102 indirect jumps. */
2103
2104 static unsigned
2105 partition_hot_cold_basic_blocks (void)
2106 {
2107 VEC(edge, heap) *crossing_edges;
2108
2109 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2110 return 0;
2111
2112 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2113 if (crossing_edges == NULL)
2114 return 0;
2115
2116 /* Make sure the source of any crossing edge ends in a jump and the
2117 destination of any crossing edge has a label. */
2118 add_labels_and_missing_jumps (crossing_edges);
2119
2120 /* Convert all crossing fall_thru edges to non-crossing fall
2121 thrus to unconditional jumps (that jump to the original fall
2122 thru dest). */
2123 fix_up_fall_thru_edges ();
2124
2125 /* If the architecture does not have conditional branches that can
2126 span all of memory, convert crossing conditional branches into
2127 crossing unconditional branches. */
2128 if (!HAS_LONG_COND_BRANCH)
2129 fix_crossing_conditional_branches ();
2130
2131 /* If the architecture does not have unconditional branches that
2132 can span all of memory, convert crossing unconditional branches
2133 into indirect jumps. Since adding an indirect jump also adds
2134 a new register usage, update the register usage information as
2135 well. */
2136 if (!HAS_LONG_UNCOND_BRANCH)
2137 fix_crossing_unconditional_branches ();
2138
2139 add_reg_crossing_jump_notes ();
2140
2141 VEC_free (edge, heap, crossing_edges);
2142
2143 return TODO_verify_flow | TODO_verify_rtl_sharing;
2144 }
2145 \f
2146 static bool
2147 gate_handle_reorder_blocks (void)
2148 {
2149 if (targetm.cannot_modify_jumps_p ())
2150 return false;
2151 return (optimize > 0);
2152 }
2153
2154
2155 /* Reorder basic blocks. */
2156 static unsigned int
2157 rest_of_handle_reorder_blocks (void)
2158 {
2159 basic_block bb;
2160
2161 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2162 splitting possibly introduced more crossjumping opportunities. */
2163 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2164
2165 if ((flag_reorder_blocks || flag_reorder_blocks_and_partition)
2166 /* Don't reorder blocks when optimizing for size because extra jump insns may
2167 be created; also barrier may create extra padding.
2168
2169 More correctly we should have a block reordering mode that tried to
2170 minimize the combined size of all the jumps. This would more or less
2171 automatically remove extra jumps, but would also try to use more short
2172 jumps instead of long jumps. */
2173 && optimize_function_for_speed_p (cfun))
2174 {
2175 reorder_basic_blocks ();
2176 cleanup_cfg (CLEANUP_EXPENSIVE);
2177 }
2178
2179 FOR_EACH_BB (bb)
2180 if (bb->next_bb != EXIT_BLOCK_PTR)
2181 bb->aux = bb->next_bb;
2182 cfg_layout_finalize ();
2183
2184 /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
2185 insert_section_boundary_note ();
2186 return 0;
2187 }
2188
2189 struct rtl_opt_pass pass_reorder_blocks =
2190 {
2191 {
2192 RTL_PASS,
2193 "bbro", /* name */
2194 gate_handle_reorder_blocks, /* gate */
2195 rest_of_handle_reorder_blocks, /* execute */
2196 NULL, /* sub */
2197 NULL, /* next */
2198 0, /* static_pass_number */
2199 TV_REORDER_BLOCKS, /* tv_id */
2200 0, /* properties_required */
2201 0, /* properties_provided */
2202 0, /* properties_destroyed */
2203 0, /* todo_flags_start */
2204 TODO_verify_rtl_sharing, /* todo_flags_finish */
2205 }
2206 };
2207
2208 static bool
2209 gate_handle_partition_blocks (void)
2210 {
2211 /* The optimization to partition hot/cold basic blocks into separate
2212 sections of the .o file does not work well with linkonce or with
2213 user defined section attributes. Don't call it if either case
2214 arises. */
2215 return (flag_reorder_blocks_and_partition
2216 && !DECL_ONE_ONLY (current_function_decl)
2217 && !user_defined_section_attribute);
2218 }
2219
2220 struct rtl_opt_pass pass_partition_blocks =
2221 {
2222 {
2223 RTL_PASS,
2224 "bbpart", /* name */
2225 gate_handle_partition_blocks, /* gate */
2226 partition_hot_cold_basic_blocks, /* execute */
2227 NULL, /* sub */
2228 NULL, /* next */
2229 0, /* static_pass_number */
2230 TV_REORDER_BLOCKS, /* tv_id */
2231 PROP_cfglayout, /* properties_required */
2232 0, /* properties_provided */
2233 0, /* properties_destroyed */
2234 0, /* todo_flags_start */
2235 0 /* todo_flags_finish */
2236 }
2237 };
This page took 0.135155 seconds and 6 git commands to generate.