]> gcc.gnu.org Git - gcc.git/blob - gcc/alias.c
* config/mips/mips.h: Formatting fix.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "varray.h"
46
47 /* The alias sets assigned to MEMs assist the back-end in determining
48 which MEMs can alias which other MEMs. In general, two MEMs in
49 different alias sets cannot alias each other, with one important
50 exception. Consider something like:
51
52 struct S { int i; double d; };
53
54 a store to an `S' can alias something of either type `int' or type
55 `double'. (However, a store to an `int' cannot alias a `double'
56 and vice versa.) We indicate this via a tree structure that looks
57 like:
58 struct S
59 / \
60 / \
61 |/_ _\|
62 int double
63
64 (The arrows are directed and point downwards.)
65 In this situation we say the alias set for `struct S' is the
66 `superset' and that those for `int' and `double' are `subsets'.
67
68 To see whether two alias sets can point to the same memory, we must
69 see if either alias set is a subset of the other. We need not trace
70 past immediate descendants, however, since we propagate all
71 grandchildren up one level.
72
73 Alias set zero is implicitly a superset of all other alias sets.
74 However, this is no actual entry for alias set zero. It is an
75 error to attempt to explicitly construct a subset of zero. */
76
77 struct alias_set_entry GTY(())
78 {
79 /* The alias set number, as stored in MEM_ALIAS_SET. */
80 HOST_WIDE_INT alias_set;
81
82 /* The children of the alias set. These are not just the immediate
83 children, but, in fact, all descendants. So, if we have:
84
85 struct T { struct S s; float f; }
86
87 continuing our example above, the children here will be all of
88 `int', `double', `float', and `struct S'. */
89 splay_tree GTY((param1_is (int), param2_is (int))) children;
90
91 /* Nonzero if would have a child of zero: this effectively makes this
92 alias set the same as alias set zero. */
93 int has_zero_child;
94 };
95 typedef struct alias_set_entry *alias_set_entry;
96
97 static int rtx_equal_for_memref_p (rtx, rtx);
98 static rtx find_symbolic_term (rtx);
99 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
100 static void record_set (rtx, rtx, void *);
101 static int base_alias_check (rtx, rtx, enum machine_mode,
102 enum machine_mode);
103 static rtx find_base_value (rtx);
104 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
105 static int insert_subset_children (splay_tree_node, void*);
106 static tree find_base_decl (tree);
107 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
108 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
109 int (*) (rtx, int));
110 static int aliases_everything_p (rtx);
111 static bool nonoverlapping_component_refs_p (tree, tree);
112 static tree decl_for_component_ref (tree);
113 static rtx adjust_offset_for_component_ref (tree, rtx);
114 static int nonoverlapping_memrefs_p (rtx, rtx);
115 static int write_dependence_p (rtx, rtx, int, int);
116
117 static int nonlocal_mentioned_p_1 (rtx *, void *);
118 static int nonlocal_mentioned_p (rtx);
119 static int nonlocal_referenced_p_1 (rtx *, void *);
120 static int nonlocal_referenced_p (rtx);
121 static int nonlocal_set_p_1 (rtx *, void *);
122 static int nonlocal_set_p (rtx);
123 static void memory_modified_1 (rtx, rtx, void *);
124
125 /* Set up all info needed to perform alias analysis on memory references. */
126
127 /* Returns the size in bytes of the mode of X. */
128 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
129
130 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
131 different alias sets. We ignore alias sets in functions making use
132 of variable arguments because the va_arg macros on some systems are
133 not legal ANSI C. */
134 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
135 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
136
137 /* Cap the number of passes we make over the insns propagating alias
138 information through set chains. 10 is a completely arbitrary choice. */
139 #define MAX_ALIAS_LOOP_PASSES 10
140
141 /* reg_base_value[N] gives an address to which register N is related.
142 If all sets after the first add or subtract to the current value
143 or otherwise modify it so it does not point to a different top level
144 object, reg_base_value[N] is equal to the address part of the source
145 of the first set.
146
147 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
148 expressions represent certain special values: function arguments and
149 the stack, frame, and argument pointers.
150
151 The contents of an ADDRESS is not normally used, the mode of the
152 ADDRESS determines whether the ADDRESS is a function argument or some
153 other special value. Pointer equality, not rtx_equal_p, determines whether
154 two ADDRESS expressions refer to the same base address.
155
156 The only use of the contents of an ADDRESS is for determining if the
157 current function performs nonlocal memory memory references for the
158 purposes of marking the function as a constant function. */
159
160 static GTY(()) varray_type reg_base_value;
161 static rtx *new_reg_base_value;
162
163 /* We preserve the copy of old array around to avoid amount of garbage
164 produced. About 8% of garbage produced were attributed to this
165 array. */
166 static GTY((deletable (""))) varray_type old_reg_base_value;
167
168 /* Static hunks of RTL used by the aliasing code; these are initialized
169 once per function to avoid unnecessary RTL allocations. */
170 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
171
172 #define REG_BASE_VALUE(X) \
173 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
174 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
175
176 /* Vector of known invariant relationships between registers. Set in
177 loop unrolling. Indexed by register number, if nonzero the value
178 is an expression describing this register in terms of another.
179
180 The length of this array is REG_BASE_VALUE_SIZE.
181
182 Because this array contains only pseudo registers it has no effect
183 after reload. */
184 static GTY((length("alias_invariant_size"))) rtx *alias_invariant;
185 unsigned GTY(()) int alias_invariant_size;
186
187 /* Vector indexed by N giving the initial (unchanging) value known for
188 pseudo-register N. This array is initialized in init_alias_analysis,
189 and does not change until end_alias_analysis is called. */
190 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
191
192 /* Indicates number of valid entries in reg_known_value. */
193 static GTY(()) unsigned int reg_known_value_size;
194
195 /* Vector recording for each reg_known_value whether it is due to a
196 REG_EQUIV note. Future passes (viz., reload) may replace the
197 pseudo with the equivalent expression and so we account for the
198 dependences that would be introduced if that happens.
199
200 The REG_EQUIV notes created in assign_parms may mention the arg
201 pointer, and there are explicit insns in the RTL that modify the
202 arg pointer. Thus we must ensure that such insns don't get
203 scheduled across each other because that would invalidate the
204 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
205 wrong, but solving the problem in the scheduler will likely give
206 better code, so we do it here. */
207 static bool *reg_known_equiv_p;
208
209 /* True when scanning insns from the start of the rtl to the
210 NOTE_INSN_FUNCTION_BEG note. */
211 static bool copying_arguments;
212
213 /* The splay-tree used to store the various alias set entries. */
214 static GTY ((param_is (struct alias_set_entry))) varray_type alias_sets;
215 \f
216 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
217 such an entry, or NULL otherwise. */
218
219 static inline alias_set_entry
220 get_alias_set_entry (HOST_WIDE_INT alias_set)
221 {
222 return (alias_set_entry)VARRAY_GENERIC_PTR (alias_sets, alias_set);
223 }
224
225 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
226 the two MEMs cannot alias each other. */
227
228 static inline int
229 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
230 {
231 #ifdef ENABLE_CHECKING
232 /* Perform a basic sanity check. Namely, that there are no alias sets
233 if we're not using strict aliasing. This helps to catch bugs
234 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
235 where a MEM is allocated in some way other than by the use of
236 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
237 use alias sets to indicate that spilled registers cannot alias each
238 other, we might need to remove this check. */
239 if (! flag_strict_aliasing
240 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
241 abort ();
242 #endif
243
244 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
245 }
246
247 /* Insert the NODE into the splay tree given by DATA. Used by
248 record_alias_subset via splay_tree_foreach. */
249
250 static int
251 insert_subset_children (splay_tree_node node, void *data)
252 {
253 splay_tree_insert ((splay_tree) data, node->key, node->value);
254
255 return 0;
256 }
257
258 /* Return 1 if the two specified alias sets may conflict. */
259
260 int
261 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
262 {
263 alias_set_entry ase;
264
265 /* If have no alias set information for one of the operands, we have
266 to assume it can alias anything. */
267 if (set1 == 0 || set2 == 0
268 /* If the two alias sets are the same, they may alias. */
269 || set1 == set2)
270 return 1;
271
272 /* See if the first alias set is a subset of the second. */
273 ase = get_alias_set_entry (set1);
274 if (ase != 0
275 && (ase->has_zero_child
276 || splay_tree_lookup (ase->children,
277 (splay_tree_key) set2)))
278 return 1;
279
280 /* Now do the same, but with the alias sets reversed. */
281 ase = get_alias_set_entry (set2);
282 if (ase != 0
283 && (ase->has_zero_child
284 || splay_tree_lookup (ase->children,
285 (splay_tree_key) set1)))
286 return 1;
287
288 /* The two alias sets are distinct and neither one is the
289 child of the other. Therefore, they cannot alias. */
290 return 0;
291 }
292
293 /* Return 1 if the two specified alias sets might conflict, or if any subtype
294 of these alias sets might conflict. */
295
296 int
297 alias_sets_might_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
298 {
299 if (set1 == 0 || set2 == 0 || set1 == set2)
300 return 1;
301
302 return 0;
303 }
304
305 \f
306 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
307 has any readonly fields. If any of the fields have types that
308 contain readonly fields, return true as well. */
309
310 int
311 readonly_fields_p (tree type)
312 {
313 tree field;
314
315 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
316 && TREE_CODE (type) != QUAL_UNION_TYPE)
317 return 0;
318
319 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
320 if (TREE_CODE (field) == FIELD_DECL
321 && (TREE_READONLY (field)
322 || readonly_fields_p (TREE_TYPE (field))))
323 return 1;
324
325 return 0;
326 }
327 \f
328 /* Return 1 if any MEM object of type T1 will always conflict (using the
329 dependency routines in this file) with any MEM object of type T2.
330 This is used when allocating temporary storage. If T1 and/or T2 are
331 NULL_TREE, it means we know nothing about the storage. */
332
333 int
334 objects_must_conflict_p (tree t1, tree t2)
335 {
336 HOST_WIDE_INT set1, set2;
337
338 /* If neither has a type specified, we don't know if they'll conflict
339 because we may be using them to store objects of various types, for
340 example the argument and local variables areas of inlined functions. */
341 if (t1 == 0 && t2 == 0)
342 return 0;
343
344 /* If one or the other has readonly fields or is readonly,
345 then they may not conflict. */
346 if ((t1 != 0 && readonly_fields_p (t1))
347 || (t2 != 0 && readonly_fields_p (t2))
348 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
349 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
350 return 0;
351
352 /* If they are the same type, they must conflict. */
353 if (t1 == t2
354 /* Likewise if both are volatile. */
355 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
356 return 1;
357
358 set1 = t1 ? get_alias_set (t1) : 0;
359 set2 = t2 ? get_alias_set (t2) : 0;
360
361 /* Otherwise they conflict if they have no alias set or the same. We
362 can't simply use alias_sets_conflict_p here, because we must make
363 sure that every subtype of t1 will conflict with every subtype of
364 t2 for which a pair of subobjects of these respective subtypes
365 overlaps on the stack. */
366 return set1 == 0 || set2 == 0 || set1 == set2;
367 }
368 \f
369 /* T is an expression with pointer type. Find the DECL on which this
370 expression is based. (For example, in `a[i]' this would be `a'.)
371 If there is no such DECL, or a unique decl cannot be determined,
372 NULL_TREE is returned. */
373
374 static tree
375 find_base_decl (tree t)
376 {
377 tree d0, d1, d2;
378
379 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
380 return 0;
381
382 /* If this is a declaration, return it. */
383 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
384 return t;
385
386 /* Handle general expressions. It would be nice to deal with
387 COMPONENT_REFs here. If we could tell that `a' and `b' were the
388 same, then `a->f' and `b->f' are also the same. */
389 switch (TREE_CODE_CLASS (TREE_CODE (t)))
390 {
391 case '1':
392 return find_base_decl (TREE_OPERAND (t, 0));
393
394 case '2':
395 /* Return 0 if found in neither or both are the same. */
396 d0 = find_base_decl (TREE_OPERAND (t, 0));
397 d1 = find_base_decl (TREE_OPERAND (t, 1));
398 if (d0 == d1)
399 return d0;
400 else if (d0 == 0)
401 return d1;
402 else if (d1 == 0)
403 return d0;
404 else
405 return 0;
406
407 case '3':
408 d0 = find_base_decl (TREE_OPERAND (t, 0));
409 d1 = find_base_decl (TREE_OPERAND (t, 1));
410 d2 = find_base_decl (TREE_OPERAND (t, 2));
411
412 /* Set any nonzero values from the last, then from the first. */
413 if (d1 == 0) d1 = d2;
414 if (d0 == 0) d0 = d1;
415 if (d1 == 0) d1 = d0;
416 if (d2 == 0) d2 = d1;
417
418 /* At this point all are nonzero or all are zero. If all three are the
419 same, return it. Otherwise, return zero. */
420 return (d0 == d1 && d1 == d2) ? d0 : 0;
421
422 default:
423 return 0;
424 }
425 }
426
427 /* Return 1 if all the nested component references handled by
428 get_inner_reference in T are such that we can address the object in T. */
429
430 int
431 can_address_p (tree t)
432 {
433 /* If we're at the end, it is vacuously addressable. */
434 if (! handled_component_p (t))
435 return 1;
436
437 /* Bitfields are never addressable. */
438 else if (TREE_CODE (t) == BIT_FIELD_REF)
439 return 0;
440
441 /* Fields are addressable unless they are marked as nonaddressable or
442 the containing type has alias set 0. */
443 else if (TREE_CODE (t) == COMPONENT_REF
444 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
445 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
446 && can_address_p (TREE_OPERAND (t, 0)))
447 return 1;
448
449 /* Likewise for arrays. */
450 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
451 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
452 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
453 && can_address_p (TREE_OPERAND (t, 0)))
454 return 1;
455
456 return 0;
457 }
458
459 /* Return the alias set for T, which may be either a type or an
460 expression. Call language-specific routine for help, if needed. */
461
462 HOST_WIDE_INT
463 get_alias_set (tree t)
464 {
465 HOST_WIDE_INT set;
466
467 /* If we're not doing any alias analysis, just assume everything
468 aliases everything else. Also return 0 if this or its type is
469 an error. */
470 if (! flag_strict_aliasing || t == error_mark_node
471 || (! TYPE_P (t)
472 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
473 return 0;
474
475 /* We can be passed either an expression or a type. This and the
476 language-specific routine may make mutually-recursive calls to each other
477 to figure out what to do. At each juncture, we see if this is a tree
478 that the language may need to handle specially. First handle things that
479 aren't types. */
480 if (! TYPE_P (t))
481 {
482 tree inner = t;
483
484 /* Remove any nops, then give the language a chance to do
485 something with this tree before we look at it. */
486 STRIP_NOPS (t);
487 set = lang_hooks.get_alias_set (t);
488 if (set != -1)
489 return set;
490
491 /* First see if the actual object referenced is an INDIRECT_REF from a
492 restrict-qualified pointer or a "void *". */
493 while (handled_component_p (inner))
494 {
495 inner = TREE_OPERAND (inner, 0);
496 STRIP_NOPS (inner);
497 }
498
499 /* Check for accesses through restrict-qualified pointers. */
500 if (TREE_CODE (inner) == INDIRECT_REF)
501 {
502 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
503
504 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
505 {
506 /* If we haven't computed the actual alias set, do it now. */
507 if (DECL_POINTER_ALIAS_SET (decl) == -2)
508 {
509 /* No two restricted pointers can point at the same thing.
510 However, a restricted pointer can point at the same thing
511 as an unrestricted pointer, if that unrestricted pointer
512 is based on the restricted pointer. So, we make the
513 alias set for the restricted pointer a subset of the
514 alias set for the type pointed to by the type of the
515 decl. */
516 HOST_WIDE_INT pointed_to_alias_set
517 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
518
519 if (pointed_to_alias_set == 0)
520 /* It's not legal to make a subset of alias set zero. */
521 DECL_POINTER_ALIAS_SET (decl) = 0;
522 else
523 {
524 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
525 record_alias_subset (pointed_to_alias_set,
526 DECL_POINTER_ALIAS_SET (decl));
527 }
528 }
529
530 /* We use the alias set indicated in the declaration. */
531 return DECL_POINTER_ALIAS_SET (decl);
532 }
533
534 /* If we have an INDIRECT_REF via a void pointer, we don't
535 know anything about what that might alias. Likewise if the
536 pointer is marked that way. */
537 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
538 || (TYPE_REF_CAN_ALIAS_ALL
539 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
540 return 0;
541 }
542
543 /* Otherwise, pick up the outermost object that we could have a pointer
544 to, processing conversions as above. */
545 while (handled_component_p (t) && ! can_address_p (t))
546 {
547 t = TREE_OPERAND (t, 0);
548 STRIP_NOPS (t);
549 }
550
551 /* If we've already determined the alias set for a decl, just return
552 it. This is necessary for C++ anonymous unions, whose component
553 variables don't look like union members (boo!). */
554 if (TREE_CODE (t) == VAR_DECL
555 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
556 return MEM_ALIAS_SET (DECL_RTL (t));
557
558 /* Now all we care about is the type. */
559 t = TREE_TYPE (t);
560 }
561
562 /* Variant qualifiers don't affect the alias set, so get the main
563 variant. If this is a type with a known alias set, return it. */
564 t = TYPE_MAIN_VARIANT (t);
565 if (TYPE_ALIAS_SET_KNOWN_P (t))
566 return TYPE_ALIAS_SET (t);
567
568 /* See if the language has special handling for this type. */
569 set = lang_hooks.get_alias_set (t);
570 if (set != -1)
571 return set;
572
573 /* There are no objects of FUNCTION_TYPE, so there's no point in
574 using up an alias set for them. (There are, of course, pointers
575 and references to functions, but that's different.) */
576 else if (TREE_CODE (t) == FUNCTION_TYPE)
577 set = 0;
578
579 /* Unless the language specifies otherwise, let vector types alias
580 their components. This avoids some nasty type punning issues in
581 normal usage. And indeed lets vectors be treated more like an
582 array slice. */
583 else if (TREE_CODE (t) == VECTOR_TYPE)
584 set = get_alias_set (TREE_TYPE (t));
585
586 else
587 /* Otherwise make a new alias set for this type. */
588 set = new_alias_set ();
589
590 TYPE_ALIAS_SET (t) = set;
591
592 /* If this is an aggregate type, we must record any component aliasing
593 information. */
594 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
595 record_component_aliases (t);
596
597 return set;
598 }
599
600 /* Return a brand-new alias set. */
601
602 static GTY(()) HOST_WIDE_INT last_alias_set;
603
604 HOST_WIDE_INT
605 new_alias_set (void)
606 {
607 if (flag_strict_aliasing)
608 {
609 if (!alias_sets)
610 VARRAY_GENERIC_PTR_INIT (alias_sets, 10, "alias sets");
611 else
612 VARRAY_GROW (alias_sets, last_alias_set + 2);
613 return ++last_alias_set;
614 }
615 else
616 return 0;
617 }
618
619 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
620 not everything that aliases SUPERSET also aliases SUBSET. For example,
621 in C, a store to an `int' can alias a load of a structure containing an
622 `int', and vice versa. But it can't alias a load of a 'double' member
623 of the same structure. Here, the structure would be the SUPERSET and
624 `int' the SUBSET. This relationship is also described in the comment at
625 the beginning of this file.
626
627 This function should be called only once per SUPERSET/SUBSET pair.
628
629 It is illegal for SUPERSET to be zero; everything is implicitly a
630 subset of alias set zero. */
631
632 void
633 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
634 {
635 alias_set_entry superset_entry;
636 alias_set_entry subset_entry;
637
638 /* It is possible in complex type situations for both sets to be the same,
639 in which case we can ignore this operation. */
640 if (superset == subset)
641 return;
642
643 if (superset == 0)
644 abort ();
645
646 superset_entry = get_alias_set_entry (superset);
647 if (superset_entry == 0)
648 {
649 /* Create an entry for the SUPERSET, so that we have a place to
650 attach the SUBSET. */
651 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
652 superset_entry->alias_set = superset;
653 superset_entry->children
654 = splay_tree_new_ggc (splay_tree_compare_ints);
655 superset_entry->has_zero_child = 0;
656 VARRAY_GENERIC_PTR (alias_sets, superset) = superset_entry;
657 }
658
659 if (subset == 0)
660 superset_entry->has_zero_child = 1;
661 else
662 {
663 subset_entry = get_alias_set_entry (subset);
664 /* If there is an entry for the subset, enter all of its children
665 (if they are not already present) as children of the SUPERSET. */
666 if (subset_entry)
667 {
668 if (subset_entry->has_zero_child)
669 superset_entry->has_zero_child = 1;
670
671 splay_tree_foreach (subset_entry->children, insert_subset_children,
672 superset_entry->children);
673 }
674
675 /* Enter the SUBSET itself as a child of the SUPERSET. */
676 splay_tree_insert (superset_entry->children,
677 (splay_tree_key) subset, 0);
678 }
679 }
680
681 /* Record that component types of TYPE, if any, are part of that type for
682 aliasing purposes. For record types, we only record component types
683 for fields that are marked addressable. For array types, we always
684 record the component types, so the front end should not call this
685 function if the individual component aren't addressable. */
686
687 void
688 record_component_aliases (tree type)
689 {
690 HOST_WIDE_INT superset = get_alias_set (type);
691 tree field;
692
693 if (superset == 0)
694 return;
695
696 switch (TREE_CODE (type))
697 {
698 case ARRAY_TYPE:
699 if (! TYPE_NONALIASED_COMPONENT (type))
700 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
701 break;
702
703 case RECORD_TYPE:
704 case UNION_TYPE:
705 case QUAL_UNION_TYPE:
706 /* Recursively record aliases for the base classes, if there are any. */
707 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
708 {
709 int i;
710 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
711 {
712 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
713 record_alias_subset (superset,
714 get_alias_set (BINFO_TYPE (binfo)));
715 }
716 }
717 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
718 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
719 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
720 break;
721
722 case COMPLEX_TYPE:
723 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
724 break;
725
726 default:
727 break;
728 }
729 }
730
731 /* Allocate an alias set for use in storing and reading from the varargs
732 spill area. */
733
734 static GTY(()) HOST_WIDE_INT varargs_set = -1;
735
736 HOST_WIDE_INT
737 get_varargs_alias_set (void)
738 {
739 if (varargs_set == -1)
740 varargs_set = new_alias_set ();
741
742 return varargs_set;
743 }
744
745 /* Likewise, but used for the fixed portions of the frame, e.g., register
746 save areas. */
747
748 static GTY(()) HOST_WIDE_INT frame_set = -1;
749
750 HOST_WIDE_INT
751 get_frame_alias_set (void)
752 {
753 if (frame_set == -1)
754 frame_set = new_alias_set ();
755
756 return frame_set;
757 }
758
759 /* Inside SRC, the source of a SET, find a base address. */
760
761 static rtx
762 find_base_value (rtx src)
763 {
764 unsigned int regno;
765
766 switch (GET_CODE (src))
767 {
768 case SYMBOL_REF:
769 case LABEL_REF:
770 return src;
771
772 case REG:
773 regno = REGNO (src);
774 /* At the start of a function, argument registers have known base
775 values which may be lost later. Returning an ADDRESS
776 expression here allows optimization based on argument values
777 even when the argument registers are used for other purposes. */
778 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
779 return new_reg_base_value[regno];
780
781 /* If a pseudo has a known base value, return it. Do not do this
782 for non-fixed hard regs since it can result in a circular
783 dependency chain for registers which have values at function entry.
784
785 The test above is not sufficient because the scheduler may move
786 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
787 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
788 && regno < VARRAY_SIZE (reg_base_value))
789 {
790 /* If we're inside init_alias_analysis, use new_reg_base_value
791 to reduce the number of relaxation iterations. */
792 if (new_reg_base_value && new_reg_base_value[regno]
793 && REG_N_SETS (regno) == 1)
794 return new_reg_base_value[regno];
795
796 if (VARRAY_RTX (reg_base_value, regno))
797 return VARRAY_RTX (reg_base_value, regno);
798 }
799
800 return 0;
801
802 case MEM:
803 /* Check for an argument passed in memory. Only record in the
804 copying-arguments block; it is too hard to track changes
805 otherwise. */
806 if (copying_arguments
807 && (XEXP (src, 0) == arg_pointer_rtx
808 || (GET_CODE (XEXP (src, 0)) == PLUS
809 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
810 return gen_rtx_ADDRESS (VOIDmode, src);
811 return 0;
812
813 case CONST:
814 src = XEXP (src, 0);
815 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
816 break;
817
818 /* ... fall through ... */
819
820 case PLUS:
821 case MINUS:
822 {
823 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
824
825 /* If either operand is a REG that is a known pointer, then it
826 is the base. */
827 if (REG_P (src_0) && REG_POINTER (src_0))
828 return find_base_value (src_0);
829 if (REG_P (src_1) && REG_POINTER (src_1))
830 return find_base_value (src_1);
831
832 /* If either operand is a REG, then see if we already have
833 a known value for it. */
834 if (REG_P (src_0))
835 {
836 temp = find_base_value (src_0);
837 if (temp != 0)
838 src_0 = temp;
839 }
840
841 if (REG_P (src_1))
842 {
843 temp = find_base_value (src_1);
844 if (temp!= 0)
845 src_1 = temp;
846 }
847
848 /* If either base is named object or a special address
849 (like an argument or stack reference), then use it for the
850 base term. */
851 if (src_0 != 0
852 && (GET_CODE (src_0) == SYMBOL_REF
853 || GET_CODE (src_0) == LABEL_REF
854 || (GET_CODE (src_0) == ADDRESS
855 && GET_MODE (src_0) != VOIDmode)))
856 return src_0;
857
858 if (src_1 != 0
859 && (GET_CODE (src_1) == SYMBOL_REF
860 || GET_CODE (src_1) == LABEL_REF
861 || (GET_CODE (src_1) == ADDRESS
862 && GET_MODE (src_1) != VOIDmode)))
863 return src_1;
864
865 /* Guess which operand is the base address:
866 If either operand is a symbol, then it is the base. If
867 either operand is a CONST_INT, then the other is the base. */
868 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
869 return find_base_value (src_0);
870 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
871 return find_base_value (src_1);
872
873 return 0;
874 }
875
876 case LO_SUM:
877 /* The standard form is (lo_sum reg sym) so look only at the
878 second operand. */
879 return find_base_value (XEXP (src, 1));
880
881 case AND:
882 /* If the second operand is constant set the base
883 address to the first operand. */
884 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
885 return find_base_value (XEXP (src, 0));
886 return 0;
887
888 case TRUNCATE:
889 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
890 break;
891 /* Fall through. */
892 case HIGH:
893 case PRE_INC:
894 case PRE_DEC:
895 case POST_INC:
896 case POST_DEC:
897 case PRE_MODIFY:
898 case POST_MODIFY:
899 return find_base_value (XEXP (src, 0));
900
901 case ZERO_EXTEND:
902 case SIGN_EXTEND: /* used for NT/Alpha pointers */
903 {
904 rtx temp = find_base_value (XEXP (src, 0));
905
906 if (temp != 0 && CONSTANT_P (temp))
907 temp = convert_memory_address (Pmode, temp);
908
909 return temp;
910 }
911
912 default:
913 break;
914 }
915
916 return 0;
917 }
918
919 /* Called from init_alias_analysis indirectly through note_stores. */
920
921 /* While scanning insns to find base values, reg_seen[N] is nonzero if
922 register N has been set in this function. */
923 static char *reg_seen;
924
925 /* Addresses which are known not to alias anything else are identified
926 by a unique integer. */
927 static int unique_id;
928
929 static void
930 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
931 {
932 unsigned regno;
933 rtx src;
934 int n;
935
936 if (GET_CODE (dest) != REG)
937 return;
938
939 regno = REGNO (dest);
940
941 if (regno >= VARRAY_SIZE (reg_base_value))
942 abort ();
943
944 /* If this spans multiple hard registers, then we must indicate that every
945 register has an unusable value. */
946 if (regno < FIRST_PSEUDO_REGISTER)
947 n = hard_regno_nregs[regno][GET_MODE (dest)];
948 else
949 n = 1;
950 if (n != 1)
951 {
952 while (--n >= 0)
953 {
954 reg_seen[regno + n] = 1;
955 new_reg_base_value[regno + n] = 0;
956 }
957 return;
958 }
959
960 if (set)
961 {
962 /* A CLOBBER wipes out any old value but does not prevent a previously
963 unset register from acquiring a base address (i.e. reg_seen is not
964 set). */
965 if (GET_CODE (set) == CLOBBER)
966 {
967 new_reg_base_value[regno] = 0;
968 return;
969 }
970 src = SET_SRC (set);
971 }
972 else
973 {
974 if (reg_seen[regno])
975 {
976 new_reg_base_value[regno] = 0;
977 return;
978 }
979 reg_seen[regno] = 1;
980 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
981 GEN_INT (unique_id++));
982 return;
983 }
984
985 /* If this is not the first set of REGNO, see whether the new value
986 is related to the old one. There are two cases of interest:
987
988 (1) The register might be assigned an entirely new value
989 that has the same base term as the original set.
990
991 (2) The set might be a simple self-modification that
992 cannot change REGNO's base value.
993
994 If neither case holds, reject the original base value as invalid.
995 Note that the following situation is not detected:
996
997 extern int x, y; int *p = &x; p += (&y-&x);
998
999 ANSI C does not allow computing the difference of addresses
1000 of distinct top level objects. */
1001 if (new_reg_base_value[regno] != 0
1002 && find_base_value (src) != new_reg_base_value[regno])
1003 switch (GET_CODE (src))
1004 {
1005 case LO_SUM:
1006 case MINUS:
1007 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1008 new_reg_base_value[regno] = 0;
1009 break;
1010 case PLUS:
1011 /* If the value we add in the PLUS is also a valid base value,
1012 this might be the actual base value, and the original value
1013 an index. */
1014 {
1015 rtx other = NULL_RTX;
1016
1017 if (XEXP (src, 0) == dest)
1018 other = XEXP (src, 1);
1019 else if (XEXP (src, 1) == dest)
1020 other = XEXP (src, 0);
1021
1022 if (! other || find_base_value (other))
1023 new_reg_base_value[regno] = 0;
1024 break;
1025 }
1026 case AND:
1027 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1028 new_reg_base_value[regno] = 0;
1029 break;
1030 default:
1031 new_reg_base_value[regno] = 0;
1032 break;
1033 }
1034 /* If this is the first set of a register, record the value. */
1035 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1036 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1037 new_reg_base_value[regno] = find_base_value (src);
1038
1039 reg_seen[regno] = 1;
1040 }
1041
1042 /* Called from loop optimization when a new pseudo-register is
1043 created. It indicates that REGNO is being set to VAL. f INVARIANT
1044 is true then this value also describes an invariant relationship
1045 which can be used to deduce that two registers with unknown values
1046 are different. */
1047
1048 void
1049 record_base_value (unsigned int regno, rtx val, int invariant)
1050 {
1051 if (invariant && alias_invariant && regno < alias_invariant_size)
1052 alias_invariant[regno] = val;
1053
1054 if (regno >= VARRAY_SIZE (reg_base_value))
1055 VARRAY_GROW (reg_base_value, max_reg_num ());
1056
1057 if (GET_CODE (val) == REG)
1058 {
1059 VARRAY_RTX (reg_base_value, regno)
1060 = REG_BASE_VALUE (val);
1061 return;
1062 }
1063 VARRAY_RTX (reg_base_value, regno)
1064 = find_base_value (val);
1065 }
1066
1067 /* Clear alias info for a register. This is used if an RTL transformation
1068 changes the value of a register. This is used in flow by AUTO_INC_DEC
1069 optimizations. We don't need to clear reg_base_value, since flow only
1070 changes the offset. */
1071
1072 void
1073 clear_reg_alias_info (rtx reg)
1074 {
1075 unsigned int regno = REGNO (reg);
1076
1077 if (regno >= FIRST_PSEUDO_REGISTER)
1078 {
1079 regno -= FIRST_PSEUDO_REGISTER;
1080 if (regno < reg_known_value_size)
1081 {
1082 reg_known_value[regno] = reg;
1083 reg_known_equiv_p[regno] = false;
1084 }
1085 }
1086 }
1087
1088 /* If a value is known for REGNO, return it. */
1089
1090 rtx
1091 get_reg_known_value (unsigned int regno)
1092 {
1093 if (regno >= FIRST_PSEUDO_REGISTER)
1094 {
1095 regno -= FIRST_PSEUDO_REGISTER;
1096 if (regno < reg_known_value_size)
1097 return reg_known_value[regno];
1098 }
1099 return NULL;
1100 }
1101
1102 /* Set it. */
1103
1104 static void
1105 set_reg_known_value (unsigned int regno, rtx val)
1106 {
1107 if (regno >= FIRST_PSEUDO_REGISTER)
1108 {
1109 regno -= FIRST_PSEUDO_REGISTER;
1110 if (regno < reg_known_value_size)
1111 reg_known_value[regno] = val;
1112 }
1113 }
1114
1115 /* Similarly for reg_known_equiv_p. */
1116
1117 bool
1118 get_reg_known_equiv_p (unsigned int regno)
1119 {
1120 if (regno >= FIRST_PSEUDO_REGISTER)
1121 {
1122 regno -= FIRST_PSEUDO_REGISTER;
1123 if (regno < reg_known_value_size)
1124 return reg_known_equiv_p[regno];
1125 }
1126 return false;
1127 }
1128
1129 static void
1130 set_reg_known_equiv_p (unsigned int regno, bool val)
1131 {
1132 if (regno >= FIRST_PSEUDO_REGISTER)
1133 {
1134 regno -= FIRST_PSEUDO_REGISTER;
1135 if (regno < reg_known_value_size)
1136 reg_known_equiv_p[regno] = val;
1137 }
1138 }
1139
1140
1141 /* Returns a canonical version of X, from the point of view alias
1142 analysis. (For example, if X is a MEM whose address is a register,
1143 and the register has a known value (say a SYMBOL_REF), then a MEM
1144 whose address is the SYMBOL_REF is returned.) */
1145
1146 rtx
1147 canon_rtx (rtx x)
1148 {
1149 /* Recursively look for equivalences. */
1150 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1151 {
1152 rtx t = get_reg_known_value (REGNO (x));
1153 if (t == x)
1154 return x;
1155 if (t)
1156 return canon_rtx (t);
1157 }
1158
1159 if (GET_CODE (x) == PLUS)
1160 {
1161 rtx x0 = canon_rtx (XEXP (x, 0));
1162 rtx x1 = canon_rtx (XEXP (x, 1));
1163
1164 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1165 {
1166 if (GET_CODE (x0) == CONST_INT)
1167 return plus_constant (x1, INTVAL (x0));
1168 else if (GET_CODE (x1) == CONST_INT)
1169 return plus_constant (x0, INTVAL (x1));
1170 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1171 }
1172 }
1173
1174 /* This gives us much better alias analysis when called from
1175 the loop optimizer. Note we want to leave the original
1176 MEM alone, but need to return the canonicalized MEM with
1177 all the flags with their original values. */
1178 else if (GET_CODE (x) == MEM)
1179 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1180
1181 return x;
1182 }
1183
1184 /* Return 1 if X and Y are identical-looking rtx's.
1185 Expect that X and Y has been already canonicalized.
1186
1187 We use the data in reg_known_value above to see if two registers with
1188 different numbers are, in fact, equivalent. */
1189
1190 static int
1191 rtx_equal_for_memref_p (rtx x, rtx y)
1192 {
1193 int i;
1194 int j;
1195 enum rtx_code code;
1196 const char *fmt;
1197
1198 if (x == 0 && y == 0)
1199 return 1;
1200 if (x == 0 || y == 0)
1201 return 0;
1202
1203 if (x == y)
1204 return 1;
1205
1206 code = GET_CODE (x);
1207 /* Rtx's of different codes cannot be equal. */
1208 if (code != GET_CODE (y))
1209 return 0;
1210
1211 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1212 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1213
1214 if (GET_MODE (x) != GET_MODE (y))
1215 return 0;
1216
1217 /* Some RTL can be compared without a recursive examination. */
1218 switch (code)
1219 {
1220 case REG:
1221 return REGNO (x) == REGNO (y);
1222
1223 case LABEL_REF:
1224 return XEXP (x, 0) == XEXP (y, 0);
1225
1226 case SYMBOL_REF:
1227 return XSTR (x, 0) == XSTR (y, 0);
1228
1229 case VALUE:
1230 case CONST_INT:
1231 case CONST_DOUBLE:
1232 /* There's no need to compare the contents of CONST_DOUBLEs or
1233 CONST_INTs because pointer equality is a good enough
1234 comparison for these nodes. */
1235 return 0;
1236
1237 case ADDRESSOF:
1238 return (XINT (x, 1) == XINT (y, 1)
1239 && rtx_equal_for_memref_p (XEXP (x, 0),
1240 XEXP (y, 0)));
1241
1242 default:
1243 break;
1244 }
1245
1246 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1247 if (code == PLUS)
1248 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1249 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1250 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1251 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1252 /* For commutative operations, the RTX match if the operand match in any
1253 order. Also handle the simple binary and unary cases without a loop. */
1254 if (COMMUTATIVE_P (x))
1255 {
1256 rtx xop0 = canon_rtx (XEXP (x, 0));
1257 rtx yop0 = canon_rtx (XEXP (y, 0));
1258 rtx yop1 = canon_rtx (XEXP (y, 1));
1259
1260 return ((rtx_equal_for_memref_p (xop0, yop0)
1261 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1262 || (rtx_equal_for_memref_p (xop0, yop1)
1263 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1264 }
1265 else if (NON_COMMUTATIVE_P (x))
1266 {
1267 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1268 canon_rtx (XEXP (y, 0)))
1269 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1270 canon_rtx (XEXP (y, 1))));
1271 }
1272 else if (UNARY_P (x))
1273 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1274 canon_rtx (XEXP (y, 0)));
1275
1276 /* Compare the elements. If any pair of corresponding elements
1277 fail to match, return 0 for the whole things.
1278
1279 Limit cases to types which actually appear in addresses. */
1280
1281 fmt = GET_RTX_FORMAT (code);
1282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1283 {
1284 switch (fmt[i])
1285 {
1286 case 'i':
1287 if (XINT (x, i) != XINT (y, i))
1288 return 0;
1289 break;
1290
1291 case 'E':
1292 /* Two vectors must have the same length. */
1293 if (XVECLEN (x, i) != XVECLEN (y, i))
1294 return 0;
1295
1296 /* And the corresponding elements must match. */
1297 for (j = 0; j < XVECLEN (x, i); j++)
1298 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1299 canon_rtx (XVECEXP (y, i, j))) == 0)
1300 return 0;
1301 break;
1302
1303 case 'e':
1304 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1305 canon_rtx (XEXP (y, i))) == 0)
1306 return 0;
1307 break;
1308
1309 /* This can happen for asm operands. */
1310 case 's':
1311 if (strcmp (XSTR (x, i), XSTR (y, i)))
1312 return 0;
1313 break;
1314
1315 /* This can happen for an asm which clobbers memory. */
1316 case '0':
1317 break;
1318
1319 /* It is believed that rtx's at this level will never
1320 contain anything but integers and other rtx's,
1321 except for within LABEL_REFs and SYMBOL_REFs. */
1322 default:
1323 abort ();
1324 }
1325 }
1326 return 1;
1327 }
1328
1329 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1330 X and return it, or return 0 if none found. */
1331
1332 static rtx
1333 find_symbolic_term (rtx x)
1334 {
1335 int i;
1336 enum rtx_code code;
1337 const char *fmt;
1338
1339 code = GET_CODE (x);
1340 if (code == SYMBOL_REF || code == LABEL_REF)
1341 return x;
1342 if (OBJECT_P (x))
1343 return 0;
1344
1345 fmt = GET_RTX_FORMAT (code);
1346 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1347 {
1348 rtx t;
1349
1350 if (fmt[i] == 'e')
1351 {
1352 t = find_symbolic_term (XEXP (x, i));
1353 if (t != 0)
1354 return t;
1355 }
1356 else if (fmt[i] == 'E')
1357 break;
1358 }
1359 return 0;
1360 }
1361
1362 rtx
1363 find_base_term (rtx x)
1364 {
1365 cselib_val *val;
1366 struct elt_loc_list *l;
1367
1368 #if defined (FIND_BASE_TERM)
1369 /* Try machine-dependent ways to find the base term. */
1370 x = FIND_BASE_TERM (x);
1371 #endif
1372
1373 switch (GET_CODE (x))
1374 {
1375 case REG:
1376 return REG_BASE_VALUE (x);
1377
1378 case TRUNCATE:
1379 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1380 return 0;
1381 /* Fall through. */
1382 case HIGH:
1383 case PRE_INC:
1384 case PRE_DEC:
1385 case POST_INC:
1386 case POST_DEC:
1387 case PRE_MODIFY:
1388 case POST_MODIFY:
1389 return find_base_term (XEXP (x, 0));
1390
1391 case ZERO_EXTEND:
1392 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1393 {
1394 rtx temp = find_base_term (XEXP (x, 0));
1395
1396 if (temp != 0 && CONSTANT_P (temp))
1397 temp = convert_memory_address (Pmode, temp);
1398
1399 return temp;
1400 }
1401
1402 case VALUE:
1403 val = CSELIB_VAL_PTR (x);
1404 if (!val)
1405 return 0;
1406 for (l = val->locs; l; l = l->next)
1407 if ((x = find_base_term (l->loc)) != 0)
1408 return x;
1409 return 0;
1410
1411 case CONST:
1412 x = XEXP (x, 0);
1413 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1414 return 0;
1415 /* Fall through. */
1416 case LO_SUM:
1417 case PLUS:
1418 case MINUS:
1419 {
1420 rtx tmp1 = XEXP (x, 0);
1421 rtx tmp2 = XEXP (x, 1);
1422
1423 /* This is a little bit tricky since we have to determine which of
1424 the two operands represents the real base address. Otherwise this
1425 routine may return the index register instead of the base register.
1426
1427 That may cause us to believe no aliasing was possible, when in
1428 fact aliasing is possible.
1429
1430 We use a few simple tests to guess the base register. Additional
1431 tests can certainly be added. For example, if one of the operands
1432 is a shift or multiply, then it must be the index register and the
1433 other operand is the base register. */
1434
1435 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1436 return find_base_term (tmp2);
1437
1438 /* If either operand is known to be a pointer, then use it
1439 to determine the base term. */
1440 if (REG_P (tmp1) && REG_POINTER (tmp1))
1441 return find_base_term (tmp1);
1442
1443 if (REG_P (tmp2) && REG_POINTER (tmp2))
1444 return find_base_term (tmp2);
1445
1446 /* Neither operand was known to be a pointer. Go ahead and find the
1447 base term for both operands. */
1448 tmp1 = find_base_term (tmp1);
1449 tmp2 = find_base_term (tmp2);
1450
1451 /* If either base term is named object or a special address
1452 (like an argument or stack reference), then use it for the
1453 base term. */
1454 if (tmp1 != 0
1455 && (GET_CODE (tmp1) == SYMBOL_REF
1456 || GET_CODE (tmp1) == LABEL_REF
1457 || (GET_CODE (tmp1) == ADDRESS
1458 && GET_MODE (tmp1) != VOIDmode)))
1459 return tmp1;
1460
1461 if (tmp2 != 0
1462 && (GET_CODE (tmp2) == SYMBOL_REF
1463 || GET_CODE (tmp2) == LABEL_REF
1464 || (GET_CODE (tmp2) == ADDRESS
1465 && GET_MODE (tmp2) != VOIDmode)))
1466 return tmp2;
1467
1468 /* We could not determine which of the two operands was the
1469 base register and which was the index. So we can determine
1470 nothing from the base alias check. */
1471 return 0;
1472 }
1473
1474 case AND:
1475 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1476 return find_base_term (XEXP (x, 0));
1477 return 0;
1478
1479 case SYMBOL_REF:
1480 case LABEL_REF:
1481 return x;
1482
1483 case ADDRESSOF:
1484 return REG_BASE_VALUE (frame_pointer_rtx);
1485
1486 default:
1487 return 0;
1488 }
1489 }
1490
1491 /* Return 0 if the addresses X and Y are known to point to different
1492 objects, 1 if they might be pointers to the same object. */
1493
1494 static int
1495 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1496 enum machine_mode y_mode)
1497 {
1498 rtx x_base = find_base_term (x);
1499 rtx y_base = find_base_term (y);
1500
1501 /* If the address itself has no known base see if a known equivalent
1502 value has one. If either address still has no known base, nothing
1503 is known about aliasing. */
1504 if (x_base == 0)
1505 {
1506 rtx x_c;
1507
1508 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1509 return 1;
1510
1511 x_base = find_base_term (x_c);
1512 if (x_base == 0)
1513 return 1;
1514 }
1515
1516 if (y_base == 0)
1517 {
1518 rtx y_c;
1519 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1520 return 1;
1521
1522 y_base = find_base_term (y_c);
1523 if (y_base == 0)
1524 return 1;
1525 }
1526
1527 /* If the base addresses are equal nothing is known about aliasing. */
1528 if (rtx_equal_p (x_base, y_base))
1529 return 1;
1530
1531 /* The base addresses of the read and write are different expressions.
1532 If they are both symbols and they are not accessed via AND, there is
1533 no conflict. We can bring knowledge of object alignment into play
1534 here. For example, on alpha, "char a, b;" can alias one another,
1535 though "char a; long b;" cannot. */
1536 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1537 {
1538 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1539 return 1;
1540 if (GET_CODE (x) == AND
1541 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1542 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1543 return 1;
1544 if (GET_CODE (y) == AND
1545 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1546 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1547 return 1;
1548 /* Differing symbols never alias. */
1549 return 0;
1550 }
1551
1552 /* If one address is a stack reference there can be no alias:
1553 stack references using different base registers do not alias,
1554 a stack reference can not alias a parameter, and a stack reference
1555 can not alias a global. */
1556 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1557 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1558 return 0;
1559
1560 if (! flag_argument_noalias)
1561 return 1;
1562
1563 if (flag_argument_noalias > 1)
1564 return 0;
1565
1566 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1567 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1568 }
1569
1570 /* Convert the address X into something we can use. This is done by returning
1571 it unchanged unless it is a value; in the latter case we call cselib to get
1572 a more useful rtx. */
1573
1574 rtx
1575 get_addr (rtx x)
1576 {
1577 cselib_val *v;
1578 struct elt_loc_list *l;
1579
1580 if (GET_CODE (x) != VALUE)
1581 return x;
1582 v = CSELIB_VAL_PTR (x);
1583 if (v)
1584 {
1585 for (l = v->locs; l; l = l->next)
1586 if (CONSTANT_P (l->loc))
1587 return l->loc;
1588 for (l = v->locs; l; l = l->next)
1589 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1590 return l->loc;
1591 if (v->locs)
1592 return v->locs->loc;
1593 }
1594 return x;
1595 }
1596
1597 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1598 where SIZE is the size in bytes of the memory reference. If ADDR
1599 is not modified by the memory reference then ADDR is returned. */
1600
1601 rtx
1602 addr_side_effect_eval (rtx addr, int size, int n_refs)
1603 {
1604 int offset = 0;
1605
1606 switch (GET_CODE (addr))
1607 {
1608 case PRE_INC:
1609 offset = (n_refs + 1) * size;
1610 break;
1611 case PRE_DEC:
1612 offset = -(n_refs + 1) * size;
1613 break;
1614 case POST_INC:
1615 offset = n_refs * size;
1616 break;
1617 case POST_DEC:
1618 offset = -n_refs * size;
1619 break;
1620
1621 default:
1622 return addr;
1623 }
1624
1625 if (offset)
1626 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1627 GEN_INT (offset));
1628 else
1629 addr = XEXP (addr, 0);
1630 addr = canon_rtx (addr);
1631
1632 return addr;
1633 }
1634
1635 /* Return nonzero if X and Y (memory addresses) could reference the
1636 same location in memory. C is an offset accumulator. When
1637 C is nonzero, we are testing aliases between X and Y + C.
1638 XSIZE is the size in bytes of the X reference,
1639 similarly YSIZE is the size in bytes for Y.
1640 Expect that canon_rtx has been already called for X and Y.
1641
1642 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1643 referenced (the reference was BLKmode), so make the most pessimistic
1644 assumptions.
1645
1646 If XSIZE or YSIZE is negative, we may access memory outside the object
1647 being referenced as a side effect. This can happen when using AND to
1648 align memory references, as is done on the Alpha.
1649
1650 Nice to notice that varying addresses cannot conflict with fp if no
1651 local variables had their addresses taken, but that's too hard now. */
1652
1653 static int
1654 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1655 {
1656 if (GET_CODE (x) == VALUE)
1657 x = get_addr (x);
1658 if (GET_CODE (y) == VALUE)
1659 y = get_addr (y);
1660 if (GET_CODE (x) == HIGH)
1661 x = XEXP (x, 0);
1662 else if (GET_CODE (x) == LO_SUM)
1663 x = XEXP (x, 1);
1664 else
1665 x = addr_side_effect_eval (x, xsize, 0);
1666 if (GET_CODE (y) == HIGH)
1667 y = XEXP (y, 0);
1668 else if (GET_CODE (y) == LO_SUM)
1669 y = XEXP (y, 1);
1670 else
1671 y = addr_side_effect_eval (y, ysize, 0);
1672
1673 if (rtx_equal_for_memref_p (x, y))
1674 {
1675 if (xsize <= 0 || ysize <= 0)
1676 return 1;
1677 if (c >= 0 && xsize > c)
1678 return 1;
1679 if (c < 0 && ysize+c > 0)
1680 return 1;
1681 return 0;
1682 }
1683
1684 /* This code used to check for conflicts involving stack references and
1685 globals but the base address alias code now handles these cases. */
1686
1687 if (GET_CODE (x) == PLUS)
1688 {
1689 /* The fact that X is canonicalized means that this
1690 PLUS rtx is canonicalized. */
1691 rtx x0 = XEXP (x, 0);
1692 rtx x1 = XEXP (x, 1);
1693
1694 if (GET_CODE (y) == PLUS)
1695 {
1696 /* The fact that Y is canonicalized means that this
1697 PLUS rtx is canonicalized. */
1698 rtx y0 = XEXP (y, 0);
1699 rtx y1 = XEXP (y, 1);
1700
1701 if (rtx_equal_for_memref_p (x1, y1))
1702 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1703 if (rtx_equal_for_memref_p (x0, y0))
1704 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1705 if (GET_CODE (x1) == CONST_INT)
1706 {
1707 if (GET_CODE (y1) == CONST_INT)
1708 return memrefs_conflict_p (xsize, x0, ysize, y0,
1709 c - INTVAL (x1) + INTVAL (y1));
1710 else
1711 return memrefs_conflict_p (xsize, x0, ysize, y,
1712 c - INTVAL (x1));
1713 }
1714 else if (GET_CODE (y1) == CONST_INT)
1715 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1716
1717 return 1;
1718 }
1719 else if (GET_CODE (x1) == CONST_INT)
1720 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1721 }
1722 else if (GET_CODE (y) == PLUS)
1723 {
1724 /* The fact that Y is canonicalized means that this
1725 PLUS rtx is canonicalized. */
1726 rtx y0 = XEXP (y, 0);
1727 rtx y1 = XEXP (y, 1);
1728
1729 if (GET_CODE (y1) == CONST_INT)
1730 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1731 else
1732 return 1;
1733 }
1734
1735 if (GET_CODE (x) == GET_CODE (y))
1736 switch (GET_CODE (x))
1737 {
1738 case MULT:
1739 {
1740 /* Handle cases where we expect the second operands to be the
1741 same, and check only whether the first operand would conflict
1742 or not. */
1743 rtx x0, y0;
1744 rtx x1 = canon_rtx (XEXP (x, 1));
1745 rtx y1 = canon_rtx (XEXP (y, 1));
1746 if (! rtx_equal_for_memref_p (x1, y1))
1747 return 1;
1748 x0 = canon_rtx (XEXP (x, 0));
1749 y0 = canon_rtx (XEXP (y, 0));
1750 if (rtx_equal_for_memref_p (x0, y0))
1751 return (xsize == 0 || ysize == 0
1752 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1753
1754 /* Can't properly adjust our sizes. */
1755 if (GET_CODE (x1) != CONST_INT)
1756 return 1;
1757 xsize /= INTVAL (x1);
1758 ysize /= INTVAL (x1);
1759 c /= INTVAL (x1);
1760 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1761 }
1762
1763 case REG:
1764 /* Are these registers known not to be equal? */
1765 if (alias_invariant)
1766 {
1767 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1768 rtx i_x, i_y; /* invariant relationships of X and Y */
1769
1770 i_x = r_x >= alias_invariant_size ? 0 : alias_invariant[r_x];
1771 i_y = r_y >= alias_invariant_size ? 0 : alias_invariant[r_y];
1772
1773 if (i_x == 0 && i_y == 0)
1774 break;
1775
1776 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1777 ysize, i_y ? i_y : y, c))
1778 return 0;
1779 }
1780 break;
1781
1782 default:
1783 break;
1784 }
1785
1786 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1787 as an access with indeterminate size. Assume that references
1788 besides AND are aligned, so if the size of the other reference is
1789 at least as large as the alignment, assume no other overlap. */
1790 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1791 {
1792 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1793 xsize = -1;
1794 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1795 }
1796 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1797 {
1798 /* ??? If we are indexing far enough into the array/structure, we
1799 may yet be able to determine that we can not overlap. But we
1800 also need to that we are far enough from the end not to overlap
1801 a following reference, so we do nothing with that for now. */
1802 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1803 ysize = -1;
1804 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1805 }
1806
1807 if (GET_CODE (x) == ADDRESSOF)
1808 {
1809 if (y == frame_pointer_rtx
1810 || GET_CODE (y) == ADDRESSOF)
1811 return xsize <= 0 || ysize <= 0;
1812 }
1813 if (GET_CODE (y) == ADDRESSOF)
1814 {
1815 if (x == frame_pointer_rtx)
1816 return xsize <= 0 || ysize <= 0;
1817 }
1818
1819 if (CONSTANT_P (x))
1820 {
1821 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1822 {
1823 c += (INTVAL (y) - INTVAL (x));
1824 return (xsize <= 0 || ysize <= 0
1825 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1826 }
1827
1828 if (GET_CODE (x) == CONST)
1829 {
1830 if (GET_CODE (y) == CONST)
1831 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1832 ysize, canon_rtx (XEXP (y, 0)), c);
1833 else
1834 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1835 ysize, y, c);
1836 }
1837 if (GET_CODE (y) == CONST)
1838 return memrefs_conflict_p (xsize, x, ysize,
1839 canon_rtx (XEXP (y, 0)), c);
1840
1841 if (CONSTANT_P (y))
1842 return (xsize <= 0 || ysize <= 0
1843 || (rtx_equal_for_memref_p (x, y)
1844 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1845
1846 return 1;
1847 }
1848 return 1;
1849 }
1850
1851 /* Functions to compute memory dependencies.
1852
1853 Since we process the insns in execution order, we can build tables
1854 to keep track of what registers are fixed (and not aliased), what registers
1855 are varying in known ways, and what registers are varying in unknown
1856 ways.
1857
1858 If both memory references are volatile, then there must always be a
1859 dependence between the two references, since their order can not be
1860 changed. A volatile and non-volatile reference can be interchanged
1861 though.
1862
1863 A MEM_IN_STRUCT reference at a non-AND varying address can never
1864 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1865 also must allow AND addresses, because they may generate accesses
1866 outside the object being referenced. This is used to generate
1867 aligned addresses from unaligned addresses, for instance, the alpha
1868 storeqi_unaligned pattern. */
1869
1870 /* Read dependence: X is read after read in MEM takes place. There can
1871 only be a dependence here if both reads are volatile. */
1872
1873 int
1874 read_dependence (rtx mem, rtx x)
1875 {
1876 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1877 }
1878
1879 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1880 MEM2 is a reference to a structure at a varying address, or returns
1881 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1882 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1883 to decide whether or not an address may vary; it should return
1884 nonzero whenever variation is possible.
1885 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1886
1887 static rtx
1888 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1889 rtx mem2_addr,
1890 int (*varies_p) (rtx, int))
1891 {
1892 if (! flag_strict_aliasing)
1893 return NULL_RTX;
1894
1895 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1896 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1897 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1898 varying address. */
1899 return mem1;
1900
1901 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1902 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1903 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1904 varying address. */
1905 return mem2;
1906
1907 return NULL_RTX;
1908 }
1909
1910 /* Returns nonzero if something about the mode or address format MEM1
1911 indicates that it might well alias *anything*. */
1912
1913 static int
1914 aliases_everything_p (rtx mem)
1915 {
1916 if (GET_CODE (XEXP (mem, 0)) == AND)
1917 /* If the address is an AND, its very hard to know at what it is
1918 actually pointing. */
1919 return 1;
1920
1921 return 0;
1922 }
1923
1924 /* Return true if we can determine that the fields referenced cannot
1925 overlap for any pair of objects. */
1926
1927 static bool
1928 nonoverlapping_component_refs_p (tree x, tree y)
1929 {
1930 tree fieldx, fieldy, typex, typey, orig_y;
1931
1932 do
1933 {
1934 /* The comparison has to be done at a common type, since we don't
1935 know how the inheritance hierarchy works. */
1936 orig_y = y;
1937 do
1938 {
1939 fieldx = TREE_OPERAND (x, 1);
1940 typex = DECL_FIELD_CONTEXT (fieldx);
1941
1942 y = orig_y;
1943 do
1944 {
1945 fieldy = TREE_OPERAND (y, 1);
1946 typey = DECL_FIELD_CONTEXT (fieldy);
1947
1948 if (typex == typey)
1949 goto found;
1950
1951 y = TREE_OPERAND (y, 0);
1952 }
1953 while (y && TREE_CODE (y) == COMPONENT_REF);
1954
1955 x = TREE_OPERAND (x, 0);
1956 }
1957 while (x && TREE_CODE (x) == COMPONENT_REF);
1958
1959 /* Never found a common type. */
1960 return false;
1961
1962 found:
1963 /* If we're left with accessing different fields of a structure,
1964 then no overlap. */
1965 if (TREE_CODE (typex) == RECORD_TYPE
1966 && fieldx != fieldy)
1967 return true;
1968
1969 /* The comparison on the current field failed. If we're accessing
1970 a very nested structure, look at the next outer level. */
1971 x = TREE_OPERAND (x, 0);
1972 y = TREE_OPERAND (y, 0);
1973 }
1974 while (x && y
1975 && TREE_CODE (x) == COMPONENT_REF
1976 && TREE_CODE (y) == COMPONENT_REF);
1977
1978 return false;
1979 }
1980
1981 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1982
1983 static tree
1984 decl_for_component_ref (tree x)
1985 {
1986 do
1987 {
1988 x = TREE_OPERAND (x, 0);
1989 }
1990 while (x && TREE_CODE (x) == COMPONENT_REF);
1991
1992 return x && DECL_P (x) ? x : NULL_TREE;
1993 }
1994
1995 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1996 offset of the field reference. */
1997
1998 static rtx
1999 adjust_offset_for_component_ref (tree x, rtx offset)
2000 {
2001 HOST_WIDE_INT ioffset;
2002
2003 if (! offset)
2004 return NULL_RTX;
2005
2006 ioffset = INTVAL (offset);
2007 do
2008 {
2009 tree field = TREE_OPERAND (x, 1);
2010
2011 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2012 return NULL_RTX;
2013 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2014 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2015 / BITS_PER_UNIT));
2016
2017 x = TREE_OPERAND (x, 0);
2018 }
2019 while (x && TREE_CODE (x) == COMPONENT_REF);
2020
2021 return GEN_INT (ioffset);
2022 }
2023
2024 /* Return nonzero if we can determine the exprs corresponding to memrefs
2025 X and Y and they do not overlap. */
2026
2027 static int
2028 nonoverlapping_memrefs_p (rtx x, rtx y)
2029 {
2030 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2031 rtx rtlx, rtly;
2032 rtx basex, basey;
2033 rtx moffsetx, moffsety;
2034 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2035
2036 /* Unless both have exprs, we can't tell anything. */
2037 if (exprx == 0 || expry == 0)
2038 return 0;
2039
2040 /* If both are field references, we may be able to determine something. */
2041 if (TREE_CODE (exprx) == COMPONENT_REF
2042 && TREE_CODE (expry) == COMPONENT_REF
2043 && nonoverlapping_component_refs_p (exprx, expry))
2044 return 1;
2045
2046 /* If the field reference test failed, look at the DECLs involved. */
2047 moffsetx = MEM_OFFSET (x);
2048 if (TREE_CODE (exprx) == COMPONENT_REF)
2049 {
2050 tree t = decl_for_component_ref (exprx);
2051 if (! t)
2052 return 0;
2053 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2054 exprx = t;
2055 }
2056 else if (TREE_CODE (exprx) == INDIRECT_REF)
2057 {
2058 exprx = TREE_OPERAND (exprx, 0);
2059 if (flag_argument_noalias < 2
2060 || TREE_CODE (exprx) != PARM_DECL)
2061 return 0;
2062 }
2063
2064 moffsety = MEM_OFFSET (y);
2065 if (TREE_CODE (expry) == COMPONENT_REF)
2066 {
2067 tree t = decl_for_component_ref (expry);
2068 if (! t)
2069 return 0;
2070 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2071 expry = t;
2072 }
2073 else if (TREE_CODE (expry) == INDIRECT_REF)
2074 {
2075 expry = TREE_OPERAND (expry, 0);
2076 if (flag_argument_noalias < 2
2077 || TREE_CODE (expry) != PARM_DECL)
2078 return 0;
2079 }
2080
2081 if (! DECL_P (exprx) || ! DECL_P (expry))
2082 return 0;
2083
2084 rtlx = DECL_RTL (exprx);
2085 rtly = DECL_RTL (expry);
2086
2087 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2088 can't overlap unless they are the same because we never reuse that part
2089 of the stack frame used for locals for spilled pseudos. */
2090 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2091 && ! rtx_equal_p (rtlx, rtly))
2092 return 1;
2093
2094 /* Get the base and offsets of both decls. If either is a register, we
2095 know both are and are the same, so use that as the base. The only
2096 we can avoid overlap is if we can deduce that they are nonoverlapping
2097 pieces of that decl, which is very rare. */
2098 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2099 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2100 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2101
2102 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2103 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2104 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2105
2106 /* If the bases are different, we know they do not overlap if both
2107 are constants or if one is a constant and the other a pointer into the
2108 stack frame. Otherwise a different base means we can't tell if they
2109 overlap or not. */
2110 if (! rtx_equal_p (basex, basey))
2111 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2112 || (CONSTANT_P (basex) && REG_P (basey)
2113 && REGNO_PTR_FRAME_P (REGNO (basey)))
2114 || (CONSTANT_P (basey) && REG_P (basex)
2115 && REGNO_PTR_FRAME_P (REGNO (basex))));
2116
2117 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2118 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2119 : -1);
2120 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2121 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2122 -1);
2123
2124 /* If we have an offset for either memref, it can update the values computed
2125 above. */
2126 if (moffsetx)
2127 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2128 if (moffsety)
2129 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2130
2131 /* If a memref has both a size and an offset, we can use the smaller size.
2132 We can't do this if the offset isn't known because we must view this
2133 memref as being anywhere inside the DECL's MEM. */
2134 if (MEM_SIZE (x) && moffsetx)
2135 sizex = INTVAL (MEM_SIZE (x));
2136 if (MEM_SIZE (y) && moffsety)
2137 sizey = INTVAL (MEM_SIZE (y));
2138
2139 /* Put the values of the memref with the lower offset in X's values. */
2140 if (offsetx > offsety)
2141 {
2142 tem = offsetx, offsetx = offsety, offsety = tem;
2143 tem = sizex, sizex = sizey, sizey = tem;
2144 }
2145
2146 /* If we don't know the size of the lower-offset value, we can't tell
2147 if they conflict. Otherwise, we do the test. */
2148 return sizex >= 0 && offsety >= offsetx + sizex;
2149 }
2150
2151 /* True dependence: X is read after store in MEM takes place. */
2152
2153 int
2154 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2155 int (*varies) (rtx, int))
2156 {
2157 rtx x_addr, mem_addr;
2158 rtx base;
2159
2160 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2161 return 1;
2162
2163 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2164 This is used in epilogue deallocation functions. */
2165 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2166 return 1;
2167 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2168 return 1;
2169
2170 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2171 return 0;
2172
2173 /* Unchanging memory can't conflict with non-unchanging memory.
2174 A non-unchanging read can conflict with a non-unchanging write.
2175 An unchanging read can conflict with an unchanging write since
2176 there may be a single store to this address to initialize it.
2177 Note that an unchanging store can conflict with a non-unchanging read
2178 since we have to make conservative assumptions when we have a
2179 record with readonly fields and we are copying the whole thing.
2180 Just fall through to the code below to resolve potential conflicts.
2181 This won't handle all cases optimally, but the possible performance
2182 loss should be negligible. */
2183 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2184 return 0;
2185
2186 if (nonoverlapping_memrefs_p (mem, x))
2187 return 0;
2188
2189 if (mem_mode == VOIDmode)
2190 mem_mode = GET_MODE (mem);
2191
2192 x_addr = get_addr (XEXP (x, 0));
2193 mem_addr = get_addr (XEXP (mem, 0));
2194
2195 base = find_base_term (x_addr);
2196 if (base && (GET_CODE (base) == LABEL_REF
2197 || (GET_CODE (base) == SYMBOL_REF
2198 && CONSTANT_POOL_ADDRESS_P (base))))
2199 return 0;
2200
2201 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2202 return 0;
2203
2204 x_addr = canon_rtx (x_addr);
2205 mem_addr = canon_rtx (mem_addr);
2206
2207 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2208 SIZE_FOR_MODE (x), x_addr, 0))
2209 return 0;
2210
2211 if (aliases_everything_p (x))
2212 return 1;
2213
2214 /* We cannot use aliases_everything_p to test MEM, since we must look
2215 at MEM_MODE, rather than GET_MODE (MEM). */
2216 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2217 return 1;
2218
2219 /* In true_dependence we also allow BLKmode to alias anything. Why
2220 don't we do this in anti_dependence and output_dependence? */
2221 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2222 return 1;
2223
2224 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2225 varies);
2226 }
2227
2228 /* Canonical true dependence: X is read after store in MEM takes place.
2229 Variant of true_dependence which assumes MEM has already been
2230 canonicalized (hence we no longer do that here).
2231 The mem_addr argument has been added, since true_dependence computed
2232 this value prior to canonicalizing. */
2233
2234 int
2235 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2236 rtx x, int (*varies) (rtx, int))
2237 {
2238 rtx x_addr;
2239
2240 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2241 return 1;
2242
2243 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2244 This is used in epilogue deallocation functions. */
2245 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2246 return 1;
2247 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2248 return 1;
2249
2250 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2251 return 0;
2252
2253 /* If X is an unchanging read, then it can't possibly conflict with any
2254 non-unchanging store. It may conflict with an unchanging write though,
2255 because there may be a single store to this address to initialize it.
2256 Just fall through to the code below to resolve the case where we have
2257 both an unchanging read and an unchanging write. This won't handle all
2258 cases optimally, but the possible performance loss should be
2259 negligible. */
2260 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2261 return 0;
2262
2263 if (nonoverlapping_memrefs_p (x, mem))
2264 return 0;
2265
2266 x_addr = get_addr (XEXP (x, 0));
2267
2268 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2269 return 0;
2270
2271 x_addr = canon_rtx (x_addr);
2272 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2273 SIZE_FOR_MODE (x), x_addr, 0))
2274 return 0;
2275
2276 if (aliases_everything_p (x))
2277 return 1;
2278
2279 /* We cannot use aliases_everything_p to test MEM, since we must look
2280 at MEM_MODE, rather than GET_MODE (MEM). */
2281 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2282 return 1;
2283
2284 /* In true_dependence we also allow BLKmode to alias anything. Why
2285 don't we do this in anti_dependence and output_dependence? */
2286 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2287 return 1;
2288
2289 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2290 varies);
2291 }
2292
2293 /* Returns nonzero if a write to X might alias a previous read from
2294 (or, if WRITEP is nonzero, a write to) MEM. If CONSTP is nonzero,
2295 honor the RTX_UNCHANGING_P flags on X and MEM. */
2296
2297 static int
2298 write_dependence_p (rtx mem, rtx x, int writep, int constp)
2299 {
2300 rtx x_addr, mem_addr;
2301 rtx fixed_scalar;
2302 rtx base;
2303
2304 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2305 return 1;
2306
2307 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2308 This is used in epilogue deallocation functions. */
2309 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2310 return 1;
2311 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2312 return 1;
2313
2314 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2315 return 0;
2316
2317 if (constp)
2318 {
2319 /* Unchanging memory can't conflict with non-unchanging memory. */
2320 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2321 return 0;
2322
2323 /* If MEM is an unchanging read, then it can't possibly conflict with
2324 the store to X, because there is at most one store to MEM, and it
2325 must have occurred somewhere before MEM. */
2326 if (! writep && RTX_UNCHANGING_P (mem))
2327 return 0;
2328 }
2329
2330 if (nonoverlapping_memrefs_p (x, mem))
2331 return 0;
2332
2333 x_addr = get_addr (XEXP (x, 0));
2334 mem_addr = get_addr (XEXP (mem, 0));
2335
2336 if (! writep)
2337 {
2338 base = find_base_term (mem_addr);
2339 if (base && (GET_CODE (base) == LABEL_REF
2340 || (GET_CODE (base) == SYMBOL_REF
2341 && CONSTANT_POOL_ADDRESS_P (base))))
2342 return 0;
2343 }
2344
2345 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2346 GET_MODE (mem)))
2347 return 0;
2348
2349 x_addr = canon_rtx (x_addr);
2350 mem_addr = canon_rtx (mem_addr);
2351
2352 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2353 SIZE_FOR_MODE (x), x_addr, 0))
2354 return 0;
2355
2356 fixed_scalar
2357 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2358 rtx_addr_varies_p);
2359
2360 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2361 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2362 }
2363
2364 /* Anti dependence: X is written after read in MEM takes place. */
2365
2366 int
2367 anti_dependence (rtx mem, rtx x)
2368 {
2369 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/1);
2370 }
2371
2372 /* Output dependence: X is written after store in MEM takes place. */
2373
2374 int
2375 output_dependence (rtx mem, rtx x)
2376 {
2377 return write_dependence_p (mem, x, /*writep=*/1, /*constp*/1);
2378 }
2379
2380 /* Unchanging anti dependence: Like anti_dependence but ignores
2381 the UNCHANGING_RTX_P property on const variable references. */
2382
2383 int
2384 unchanging_anti_dependence (rtx mem, rtx x)
2385 {
2386 return write_dependence_p (mem, x, /*writep=*/0, /*constp*/0);
2387 }
2388 \f
2389 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2390 something which is not local to the function and is not constant. */
2391
2392 static int
2393 nonlocal_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2394 {
2395 rtx x = *loc;
2396 rtx base;
2397 int regno;
2398
2399 if (! x)
2400 return 0;
2401
2402 switch (GET_CODE (x))
2403 {
2404 case SUBREG:
2405 if (GET_CODE (SUBREG_REG (x)) == REG)
2406 {
2407 /* Global registers are not local. */
2408 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2409 && global_regs[subreg_regno (x)])
2410 return 1;
2411 return 0;
2412 }
2413 break;
2414
2415 case REG:
2416 regno = REGNO (x);
2417 /* Global registers are not local. */
2418 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2419 return 1;
2420 return 0;
2421
2422 case SCRATCH:
2423 case PC:
2424 case CC0:
2425 case CONST_INT:
2426 case CONST_DOUBLE:
2427 case CONST_VECTOR:
2428 case CONST:
2429 case LABEL_REF:
2430 return 0;
2431
2432 case SYMBOL_REF:
2433 /* Constants in the function's constants pool are constant. */
2434 if (CONSTANT_POOL_ADDRESS_P (x))
2435 return 0;
2436 return 1;
2437
2438 case CALL:
2439 /* Non-constant calls and recursion are not local. */
2440 return 1;
2441
2442 case MEM:
2443 /* Be overly conservative and consider any volatile memory
2444 reference as not local. */
2445 if (MEM_VOLATILE_P (x))
2446 return 1;
2447 base = find_base_term (XEXP (x, 0));
2448 if (base)
2449 {
2450 /* A Pmode ADDRESS could be a reference via the structure value
2451 address or static chain. Such memory references are nonlocal.
2452
2453 Thus, we have to examine the contents of the ADDRESS to find
2454 out if this is a local reference or not. */
2455 if (GET_CODE (base) == ADDRESS
2456 && GET_MODE (base) == Pmode
2457 && (XEXP (base, 0) == stack_pointer_rtx
2458 || XEXP (base, 0) == arg_pointer_rtx
2459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2460 || XEXP (base, 0) == hard_frame_pointer_rtx
2461 #endif
2462 || XEXP (base, 0) == frame_pointer_rtx))
2463 return 0;
2464 /* Constants in the function's constant pool are constant. */
2465 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2466 return 0;
2467 }
2468 return 1;
2469
2470 case UNSPEC_VOLATILE:
2471 case ASM_INPUT:
2472 return 1;
2473
2474 case ASM_OPERANDS:
2475 if (MEM_VOLATILE_P (x))
2476 return 1;
2477
2478 /* Fall through. */
2479
2480 default:
2481 break;
2482 }
2483
2484 return 0;
2485 }
2486
2487 /* Returns nonzero if X might mention something which is not
2488 local to the function and is not constant. */
2489
2490 static int
2491 nonlocal_mentioned_p (rtx x)
2492 {
2493 if (INSN_P (x))
2494 {
2495 if (GET_CODE (x) == CALL_INSN)
2496 {
2497 if (! CONST_OR_PURE_CALL_P (x))
2498 return 1;
2499 x = CALL_INSN_FUNCTION_USAGE (x);
2500 if (x == 0)
2501 return 0;
2502 }
2503 else
2504 x = PATTERN (x);
2505 }
2506
2507 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2508 }
2509
2510 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2511 something which is not local to the function and is not constant. */
2512
2513 static int
2514 nonlocal_referenced_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2515 {
2516 rtx x = *loc;
2517
2518 if (! x)
2519 return 0;
2520
2521 switch (GET_CODE (x))
2522 {
2523 case MEM:
2524 case REG:
2525 case SYMBOL_REF:
2526 case SUBREG:
2527 return nonlocal_mentioned_p (x);
2528
2529 case CALL:
2530 /* Non-constant calls and recursion are not local. */
2531 return 1;
2532
2533 case SET:
2534 if (nonlocal_mentioned_p (SET_SRC (x)))
2535 return 1;
2536
2537 if (GET_CODE (SET_DEST (x)) == MEM)
2538 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2539
2540 /* If the destination is anything other than a CC0, PC,
2541 MEM, REG, or a SUBREG of a REG that occupies all of
2542 the REG, then X references nonlocal memory if it is
2543 mentioned in the destination. */
2544 if (GET_CODE (SET_DEST (x)) != CC0
2545 && GET_CODE (SET_DEST (x)) != PC
2546 && GET_CODE (SET_DEST (x)) != REG
2547 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2548 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2549 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2550 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2551 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2552 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2553 return nonlocal_mentioned_p (SET_DEST (x));
2554 return 0;
2555
2556 case CLOBBER:
2557 if (GET_CODE (XEXP (x, 0)) == MEM)
2558 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2559 return 0;
2560
2561 case USE:
2562 return nonlocal_mentioned_p (XEXP (x, 0));
2563
2564 case ASM_INPUT:
2565 case UNSPEC_VOLATILE:
2566 return 1;
2567
2568 case ASM_OPERANDS:
2569 if (MEM_VOLATILE_P (x))
2570 return 1;
2571
2572 /* Fall through. */
2573
2574 default:
2575 break;
2576 }
2577
2578 return 0;
2579 }
2580
2581 /* Returns nonzero if X might reference something which is not
2582 local to the function and is not constant. */
2583
2584 static int
2585 nonlocal_referenced_p (rtx x)
2586 {
2587 if (INSN_P (x))
2588 {
2589 if (GET_CODE (x) == CALL_INSN)
2590 {
2591 if (! CONST_OR_PURE_CALL_P (x))
2592 return 1;
2593 x = CALL_INSN_FUNCTION_USAGE (x);
2594 if (x == 0)
2595 return 0;
2596 }
2597 else
2598 x = PATTERN (x);
2599 }
2600
2601 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2602 }
2603
2604 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2605 something which is not local to the function and is not constant. */
2606
2607 static int
2608 nonlocal_set_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2609 {
2610 rtx x = *loc;
2611
2612 if (! x)
2613 return 0;
2614
2615 switch (GET_CODE (x))
2616 {
2617 case CALL:
2618 /* Non-constant calls and recursion are not local. */
2619 return 1;
2620
2621 case PRE_INC:
2622 case PRE_DEC:
2623 case POST_INC:
2624 case POST_DEC:
2625 case PRE_MODIFY:
2626 case POST_MODIFY:
2627 return nonlocal_mentioned_p (XEXP (x, 0));
2628
2629 case SET:
2630 if (nonlocal_mentioned_p (SET_DEST (x)))
2631 return 1;
2632 return nonlocal_set_p (SET_SRC (x));
2633
2634 case CLOBBER:
2635 return nonlocal_mentioned_p (XEXP (x, 0));
2636
2637 case USE:
2638 return 0;
2639
2640 case ASM_INPUT:
2641 case UNSPEC_VOLATILE:
2642 return 1;
2643
2644 case ASM_OPERANDS:
2645 if (MEM_VOLATILE_P (x))
2646 return 1;
2647
2648 /* Fall through. */
2649
2650 default:
2651 break;
2652 }
2653
2654 return 0;
2655 }
2656
2657 /* Returns nonzero if X might set something which is not
2658 local to the function and is not constant. */
2659
2660 static int
2661 nonlocal_set_p (rtx x)
2662 {
2663 if (INSN_P (x))
2664 {
2665 if (GET_CODE (x) == CALL_INSN)
2666 {
2667 if (! CONST_OR_PURE_CALL_P (x))
2668 return 1;
2669 x = CALL_INSN_FUNCTION_USAGE (x);
2670 if (x == 0)
2671 return 0;
2672 }
2673 else
2674 x = PATTERN (x);
2675 }
2676
2677 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2678 }
2679
2680 /* Mark the function if it is pure or constant. */
2681
2682 void
2683 mark_constant_function (void)
2684 {
2685 rtx insn;
2686 int nonlocal_memory_referenced;
2687
2688 if (TREE_READONLY (current_function_decl)
2689 || DECL_IS_PURE (current_function_decl)
2690 || TREE_THIS_VOLATILE (current_function_decl)
2691 || current_function_has_nonlocal_goto
2692 || !targetm.binds_local_p (current_function_decl))
2693 return;
2694
2695 /* A loop might not return which counts as a side effect. */
2696 if (mark_dfs_back_edges ())
2697 return;
2698
2699 nonlocal_memory_referenced = 0;
2700
2701 init_alias_analysis ();
2702
2703 /* Determine if this is a constant or pure function. */
2704
2705 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2706 {
2707 if (! INSN_P (insn))
2708 continue;
2709
2710 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2711 || volatile_refs_p (PATTERN (insn)))
2712 break;
2713
2714 if (! nonlocal_memory_referenced)
2715 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2716 }
2717
2718 end_alias_analysis ();
2719
2720 /* Mark the function. */
2721
2722 if (insn)
2723 ;
2724 else if (nonlocal_memory_referenced)
2725 {
2726 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2727 DECL_IS_PURE (current_function_decl) = 1;
2728 }
2729 else
2730 {
2731 cgraph_rtl_info (current_function_decl)->const_function = 1;
2732 TREE_READONLY (current_function_decl) = 1;
2733 }
2734 }
2735 \f
2736
2737 void
2738 init_alias_once (void)
2739 {
2740 int i;
2741
2742 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2743 /* Check whether this register can hold an incoming pointer
2744 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2745 numbers, so translate if necessary due to register windows. */
2746 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2747 && HARD_REGNO_MODE_OK (i, Pmode))
2748 static_reg_base_value[i]
2749 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2750
2751 static_reg_base_value[STACK_POINTER_REGNUM]
2752 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2753 static_reg_base_value[ARG_POINTER_REGNUM]
2754 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2755 static_reg_base_value[FRAME_POINTER_REGNUM]
2756 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2757 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2758 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2759 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2760 #endif
2761 }
2762
2763 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2764 to be memory reference. */
2765 static bool memory_modified;
2766 static void
2767 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2768 {
2769 if (GET_CODE (x) == MEM)
2770 {
2771 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2772 memory_modified = true;
2773 }
2774 }
2775
2776
2777 /* Return true when INSN possibly modify memory contents of MEM
2778 (ie address can be modified). */
2779 bool
2780 memory_modified_in_insn_p (rtx mem, rtx insn)
2781 {
2782 if (!INSN_P (insn))
2783 return false;
2784 memory_modified = false;
2785 note_stores (PATTERN (insn), memory_modified_1, mem);
2786 return memory_modified;
2787 }
2788
2789 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2790 array. */
2791
2792 void
2793 init_alias_analysis (void)
2794 {
2795 unsigned int maxreg = max_reg_num ();
2796 int changed, pass;
2797 int i;
2798 unsigned int ui;
2799 rtx insn;
2800
2801 timevar_push (TV_ALIAS_ANALYSIS);
2802
2803 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2804 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2805 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2806
2807 /* Overallocate reg_base_value to allow some growth during loop
2808 optimization. Loop unrolling can create a large number of
2809 registers. */
2810 if (old_reg_base_value)
2811 {
2812 reg_base_value = old_reg_base_value;
2813 /* If varray gets large zeroing cost may get important. */
2814 if (VARRAY_SIZE (reg_base_value) > 256
2815 && VARRAY_SIZE (reg_base_value) > 4 * maxreg)
2816 VARRAY_GROW (reg_base_value, maxreg);
2817 VARRAY_CLEAR (reg_base_value);
2818 if (VARRAY_SIZE (reg_base_value) < maxreg)
2819 VARRAY_GROW (reg_base_value, maxreg);
2820 }
2821 else
2822 {
2823 VARRAY_RTX_INIT (reg_base_value, maxreg, "reg_base_value");
2824 }
2825
2826 new_reg_base_value = xmalloc (maxreg * sizeof (rtx));
2827 reg_seen = xmalloc (maxreg);
2828 if (! reload_completed && flag_old_unroll_loops)
2829 {
2830 /* ??? Why are we realloc'ing if we're just going to zero it? */
2831 alias_invariant = xrealloc (alias_invariant,
2832 maxreg * sizeof (rtx));
2833 memset (alias_invariant, 0, maxreg * sizeof (rtx));
2834 alias_invariant_size = maxreg;
2835 }
2836
2837 /* The basic idea is that each pass through this loop will use the
2838 "constant" information from the previous pass to propagate alias
2839 information through another level of assignments.
2840
2841 This could get expensive if the assignment chains are long. Maybe
2842 we should throttle the number of iterations, possibly based on
2843 the optimization level or flag_expensive_optimizations.
2844
2845 We could propagate more information in the first pass by making use
2846 of REG_N_SETS to determine immediately that the alias information
2847 for a pseudo is "constant".
2848
2849 A program with an uninitialized variable can cause an infinite loop
2850 here. Instead of doing a full dataflow analysis to detect such problems
2851 we just cap the number of iterations for the loop.
2852
2853 The state of the arrays for the set chain in question does not matter
2854 since the program has undefined behavior. */
2855
2856 pass = 0;
2857 do
2858 {
2859 /* Assume nothing will change this iteration of the loop. */
2860 changed = 0;
2861
2862 /* We want to assign the same IDs each iteration of this loop, so
2863 start counting from zero each iteration of the loop. */
2864 unique_id = 0;
2865
2866 /* We're at the start of the function each iteration through the
2867 loop, so we're copying arguments. */
2868 copying_arguments = true;
2869
2870 /* Wipe the potential alias information clean for this pass. */
2871 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2872
2873 /* Wipe the reg_seen array clean. */
2874 memset (reg_seen, 0, maxreg);
2875
2876 /* Mark all hard registers which may contain an address.
2877 The stack, frame and argument pointers may contain an address.
2878 An argument register which can hold a Pmode value may contain
2879 an address even if it is not in BASE_REGS.
2880
2881 The address expression is VOIDmode for an argument and
2882 Pmode for other registers. */
2883
2884 memcpy (new_reg_base_value, static_reg_base_value,
2885 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2886
2887 /* Walk the insns adding values to the new_reg_base_value array. */
2888 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2889 {
2890 if (INSN_P (insn))
2891 {
2892 rtx note, set;
2893
2894 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2895 /* The prologue/epilogue insns are not threaded onto the
2896 insn chain until after reload has completed. Thus,
2897 there is no sense wasting time checking if INSN is in
2898 the prologue/epilogue until after reload has completed. */
2899 if (reload_completed
2900 && prologue_epilogue_contains (insn))
2901 continue;
2902 #endif
2903
2904 /* If this insn has a noalias note, process it, Otherwise,
2905 scan for sets. A simple set will have no side effects
2906 which could change the base value of any other register. */
2907
2908 if (GET_CODE (PATTERN (insn)) == SET
2909 && REG_NOTES (insn) != 0
2910 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2911 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2912 else
2913 note_stores (PATTERN (insn), record_set, NULL);
2914
2915 set = single_set (insn);
2916
2917 if (set != 0
2918 && GET_CODE (SET_DEST (set)) == REG
2919 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2920 {
2921 unsigned int regno = REGNO (SET_DEST (set));
2922 rtx src = SET_SRC (set);
2923 rtx t;
2924
2925 if (REG_NOTES (insn) != 0
2926 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2927 && REG_N_SETS (regno) == 1)
2928 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2929 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2930 && ! rtx_varies_p (XEXP (note, 0), 1)
2931 && ! reg_overlap_mentioned_p (SET_DEST (set),
2932 XEXP (note, 0)))
2933 {
2934 set_reg_known_value (regno, XEXP (note, 0));
2935 set_reg_known_equiv_p (regno,
2936 REG_NOTE_KIND (note) == REG_EQUIV);
2937 }
2938 else if (REG_N_SETS (regno) == 1
2939 && GET_CODE (src) == PLUS
2940 && GET_CODE (XEXP (src, 0)) == REG
2941 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2942 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2943 {
2944 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2945 set_reg_known_value (regno, t);
2946 set_reg_known_equiv_p (regno, 0);
2947 }
2948 else if (REG_N_SETS (regno) == 1
2949 && ! rtx_varies_p (src, 1))
2950 {
2951 set_reg_known_value (regno, src);
2952 set_reg_known_equiv_p (regno, 0);
2953 }
2954 }
2955 }
2956 else if (GET_CODE (insn) == NOTE
2957 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2958 copying_arguments = false;
2959 }
2960
2961 /* Now propagate values from new_reg_base_value to reg_base_value. */
2962 if (maxreg != (unsigned int) max_reg_num())
2963 abort ();
2964 for (ui = 0; ui < maxreg; ui++)
2965 {
2966 if (new_reg_base_value[ui]
2967 && new_reg_base_value[ui] != VARRAY_RTX (reg_base_value, ui)
2968 && ! rtx_equal_p (new_reg_base_value[ui],
2969 VARRAY_RTX (reg_base_value, ui)))
2970 {
2971 VARRAY_RTX (reg_base_value, ui) = new_reg_base_value[ui];
2972 changed = 1;
2973 }
2974 }
2975 }
2976 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2977
2978 /* Fill in the remaining entries. */
2979 for (i = 0; i < (int)reg_known_value_size; i++)
2980 if (reg_known_value[i] == 0)
2981 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2982
2983 /* Simplify the reg_base_value array so that no register refers to
2984 another register, except to special registers indirectly through
2985 ADDRESS expressions.
2986
2987 In theory this loop can take as long as O(registers^2), but unless
2988 there are very long dependency chains it will run in close to linear
2989 time.
2990
2991 This loop may not be needed any longer now that the main loop does
2992 a better job at propagating alias information. */
2993 pass = 0;
2994 do
2995 {
2996 changed = 0;
2997 pass++;
2998 for (ui = 0; ui < maxreg; ui++)
2999 {
3000 rtx base = VARRAY_RTX (reg_base_value, ui);
3001 if (base && GET_CODE (base) == REG)
3002 {
3003 unsigned int base_regno = REGNO (base);
3004 if (base_regno == ui) /* register set from itself */
3005 VARRAY_RTX (reg_base_value, ui) = 0;
3006 else
3007 VARRAY_RTX (reg_base_value, ui)
3008 = VARRAY_RTX (reg_base_value, base_regno);
3009 changed = 1;
3010 }
3011 }
3012 }
3013 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
3014
3015 /* Clean up. */
3016 free (new_reg_base_value);
3017 new_reg_base_value = 0;
3018 free (reg_seen);
3019 reg_seen = 0;
3020 timevar_pop (TV_ALIAS_ANALYSIS);
3021 }
3022
3023 void
3024 end_alias_analysis (void)
3025 {
3026 old_reg_base_value = reg_base_value;
3027 ggc_free (reg_known_value);
3028 reg_known_value = 0;
3029 reg_known_value_size = 0;
3030 free (reg_known_equiv_p);
3031 reg_known_equiv_p = 0;
3032 if (alias_invariant)
3033 {
3034 free (alias_invariant);
3035 alias_invariant = 0;
3036 alias_invariant_size = 0;
3037 }
3038 }
3039
3040 #include "gt-alias.h"
This page took 0.173659 seconds and 5 git commands to generate.