]> gcc.gnu.org Git - gcc.git/blob - gcc/alias.c
Daily bump.
[gcc.git] / gcc / alias.c
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42
43 /* The aliasing API provided here solves related but different problems:
44
45 Say there exists (in c)
46
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
51
52 struct Y y2, *py;
53 struct Z z2, *pz;
54
55
56 py = &x1.y1;
57 px2 = &x1;
58
59 Consider the four questions:
60
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
65
66 The answer to these questions can be yes, yes, yes, and maybe.
67
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
72
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
80
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
83
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
91 */
92
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
97
98 struct S { int i; double d; };
99
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
104 struct S
105 / \
106 / \
107 |/_ _\|
108 int double
109
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
113
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
118
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
122
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
124
125 struct GTY(()) alias_set_entry {
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set;
128
129 /* Nonzero if would have a child of zero: this effectively makes this
130 alias set the same as alias set zero. */
131 bool has_zero_child;
132 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133 aggregate contaiing pointer.
134 This is used for a special case where we need an universal pointer type
135 compatible with all other pointer types. */
136 bool is_pointer;
137 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
138 bool has_pointer;
139
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
142
143 struct T { struct S s; float f; }
144
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 hash_map<alias_set_hash, int> *children;
148 };
149
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 const_rtx, machine_mode, rtx,
160 bool, bool, bool);
161 static int compare_base_symbol_refs (const_rtx, const_rtx);
162
163 static void memory_modified_1 (rtx, const_rtx, void *);
164
165 /* Query statistics for the different low-level disambiguators.
166 A high-level query may trigger multiple of them. */
167
168 static struct {
169 unsigned long long num_alias_zero;
170 unsigned long long num_same_alias_set;
171 unsigned long long num_same_objects;
172 unsigned long long num_volatile;
173 unsigned long long num_dag;
174 unsigned long long num_universal;
175 unsigned long long num_disambiguated;
176 } alias_stats;
177
178
179 /* Set up all info needed to perform alias analysis on memory references. */
180
181 /* Returns the size in bytes of the mode of X. */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
183
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains.
186 ??? 10 is a completely arbitrary choice. This should be based on the
187 maximum loop depth in the CFG, but we do not have this information
188 available (even if current_loops _is_ available). */
189 #define MAX_ALIAS_LOOP_PASSES 10
190
191 /* reg_base_value[N] gives an address to which register N is related.
192 If all sets after the first add or subtract to the current value
193 or otherwise modify it so it does not point to a different top level
194 object, reg_base_value[N] is equal to the address part of the source
195 of the first set.
196
197 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
198 expressions represent three types of base:
199
200 1. incoming arguments. There is just one ADDRESS to represent all
201 arguments, since we do not know at this level whether accesses
202 based on different arguments can alias. The ADDRESS has id 0.
203
204 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 Each of these rtxes has a separate ADDRESS associated with it,
207 each with a negative id.
208
209 GCC is (and is required to be) precise in which register it
210 chooses to access a particular region of stack. We can therefore
211 assume that accesses based on one of these rtxes do not alias
212 accesses based on another of these rtxes.
213
214 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 Each such piece of memory has a separate ADDRESS associated
216 with it, each with an id greater than 0.
217
218 Accesses based on one ADDRESS do not alias accesses based on other
219 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
220 alias globals either; the ADDRESSes have Pmode to indicate this.
221 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222 indicate this. */
223
224 static GTY(()) vec<rtx, va_gc> *reg_base_value;
225 static rtx *new_reg_base_value;
226
227 /* The single VOIDmode ADDRESS that represents all argument bases.
228 It has id 0. */
229 static GTY(()) rtx arg_base_value;
230
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
232 static int unique_id;
233
234 /* We preserve the copy of old array around to avoid amount of garbage
235 produced. About 8% of garbage produced were attributed to this
236 array. */
237 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
238
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240 registers. */
241 #define UNIQUE_BASE_VALUE_SP -1
242 #define UNIQUE_BASE_VALUE_ARGP -2
243 #define UNIQUE_BASE_VALUE_FP -3
244 #define UNIQUE_BASE_VALUE_HFP -4
245
246 #define static_reg_base_value \
247 (this_target_rtl->x_static_reg_base_value)
248
249 #define REG_BASE_VALUE(X) \
250 (REGNO (X) < vec_safe_length (reg_base_value) \
251 ? (*reg_base_value)[REGNO (X)] : 0)
252
253 /* Vector indexed by N giving the initial (unchanging) value known for
254 pseudo-register N. This vector is initialized in init_alias_analysis,
255 and does not change until end_alias_analysis is called. */
256 static GTY(()) vec<rtx, va_gc> *reg_known_value;
257
258 /* Vector recording for each reg_known_value whether it is due to a
259 REG_EQUIV note. Future passes (viz., reload) may replace the
260 pseudo with the equivalent expression and so we account for the
261 dependences that would be introduced if that happens.
262
263 The REG_EQUIV notes created in assign_parms may mention the arg
264 pointer, and there are explicit insns in the RTL that modify the
265 arg pointer. Thus we must ensure that such insns don't get
266 scheduled across each other because that would invalidate the
267 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
268 wrong, but solving the problem in the scheduler will likely give
269 better code, so we do it here. */
270 static sbitmap reg_known_equiv_p;
271
272 /* True when scanning insns from the start of the rtl to the
273 NOTE_INSN_FUNCTION_BEG note. */
274 static bool copying_arguments;
275
276
277 /* The splay-tree used to store the various alias set entries. */
278 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
279 \f
280 /* Build a decomposed reference object for querying the alias-oracle
281 from the MEM rtx and store it in *REF.
282 Returns false if MEM is not suitable for the alias-oracle. */
283
284 static bool
285 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
286 {
287 tree expr = MEM_EXPR (mem);
288 tree base;
289
290 if (!expr)
291 return false;
292
293 ao_ref_init (ref, expr);
294
295 /* Get the base of the reference and see if we have to reject or
296 adjust it. */
297 base = ao_ref_base (ref);
298 if (base == NULL_TREE)
299 return false;
300
301 /* The tree oracle doesn't like bases that are neither decls
302 nor indirect references of SSA names. */
303 if (!(DECL_P (base)
304 || (TREE_CODE (base) == MEM_REF
305 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 || (TREE_CODE (base) == TARGET_MEM_REF
307 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
308 return false;
309
310 /* If this is a reference based on a partitioned decl replace the
311 base with a MEM_REF of the pointer representative we
312 created during stack slot partitioning. */
313 if (VAR_P (base)
314 && ! is_global_var (base)
315 && cfun->gimple_df->decls_to_pointers != NULL)
316 {
317 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
318 if (namep)
319 ref->base = build_simple_mem_ref (*namep);
320 }
321
322 ref->ref_alias_set = MEM_ALIAS_SET (mem);
323
324 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325 is conservative, so trust it. */
326 if (!MEM_OFFSET_KNOWN_P (mem)
327 || !MEM_SIZE_KNOWN_P (mem))
328 return true;
329
330 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331 drop ref->ref. */
332 if (maybe_lt (MEM_OFFSET (mem), 0)
333 || (ref->max_size_known_p ()
334 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
335 ref->max_size)))
336 ref->ref = NULL_TREE;
337
338 /* Refine size and offset we got from analyzing MEM_EXPR by using
339 MEM_SIZE and MEM_OFFSET. */
340
341 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
342 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
343
344 /* The MEM may extend into adjacent fields, so adjust max_size if
345 necessary. */
346 if (ref->max_size_known_p ())
347 ref->max_size = upper_bound (ref->max_size, ref->size);
348
349 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
350 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
351 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352 && (maybe_lt (ref->offset, 0)
353 || (DECL_P (ref->base)
354 && (DECL_SIZE (ref->base) == NULL_TREE
355 || !poly_int_tree_p (DECL_SIZE (ref->base))
356 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
357 ref->offset + ref->size)))))
358 return false;
359
360 return true;
361 }
362
363 /* Query the alias-oracle on whether the two memory rtx X and MEM may
364 alias. If TBAA_P is set also apply TBAA. Returns true if the
365 two rtxen may alias, false otherwise. */
366
367 static bool
368 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
369 {
370 ao_ref ref1, ref2;
371
372 if (!ao_ref_from_mem (&ref1, x)
373 || !ao_ref_from_mem (&ref2, mem))
374 return true;
375
376 return refs_may_alias_p_1 (&ref1, &ref2,
377 tbaa_p
378 && MEM_ALIAS_SET (x) != 0
379 && MEM_ALIAS_SET (mem) != 0);
380 }
381
382 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383 such an entry, or NULL otherwise. */
384
385 static inline alias_set_entry *
386 get_alias_set_entry (alias_set_type alias_set)
387 {
388 return (*alias_sets)[alias_set];
389 }
390
391 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392 the two MEMs cannot alias each other. */
393
394 static inline int
395 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
396 {
397 return (flag_strict_aliasing
398 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 MEM_ALIAS_SET (mem2)));
400 }
401
402 /* Return true if the first alias set is a subset of the second. */
403
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
406 {
407 alias_set_entry *ase2;
408
409 /* Disable TBAA oracle with !flag_strict_aliasing. */
410 if (!flag_strict_aliasing)
411 return true;
412
413 /* Everything is a subset of the "aliases everything" set. */
414 if (set2 == 0)
415 return true;
416
417 /* Check if set1 is a subset of set2. */
418 ase2 = get_alias_set_entry (set2);
419 if (ase2 != 0
420 && (ase2->has_zero_child
421 || (ase2->children && ase2->children->get (set1))))
422 return true;
423
424 /* As a special case we consider alias set of "void *" to be both subset
425 and superset of every alias set of a pointer. This extra symmetry does
426 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427 to return true on the following testcase:
428
429 void *ptr;
430 char **ptr2=(char **)&ptr;
431 *ptr2 = ...
432
433 Additionally if a set contains universal pointer, we consider every pointer
434 to be a subset of it, but we do not represent this explicitely - doing so
435 would require us to update transitive closure each time we introduce new
436 pointer type. This makes aliasing_component_refs_p to return true
437 on the following testcase:
438
439 struct a {void *ptr;}
440 char **ptr = (char **)&a.ptr;
441 ptr = ...
442
443 This makes void * truly universal pointer type. See pointer handling in
444 get_alias_set for more details. */
445 if (ase2 && ase2->has_pointer)
446 {
447 alias_set_entry *ase1 = get_alias_set_entry (set1);
448
449 if (ase1 && ase1->is_pointer)
450 {
451 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 /* If one is ptr_type_node and other is pointer, then we consider
453 them subset of each other. */
454 if (set1 == voidptr_set || set2 == voidptr_set)
455 return true;
456 /* If SET2 contains universal pointer's alias set, then we consdier
457 every (non-universal) pointer. */
458 if (ase2->children && set1 != voidptr_set
459 && ase2->children->get (voidptr_set))
460 return true;
461 }
462 }
463 return false;
464 }
465
466 /* Return 1 if the two specified alias sets may conflict. */
467
468 int
469 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
470 {
471 alias_set_entry *ase1;
472 alias_set_entry *ase2;
473
474 /* The easy case. */
475 if (alias_sets_must_conflict_p (set1, set2))
476 return 1;
477
478 /* See if the first alias set is a subset of the second. */
479 ase1 = get_alias_set_entry (set1);
480 if (ase1 != 0
481 && ase1->children && ase1->children->get (set2))
482 {
483 ++alias_stats.num_dag;
484 return 1;
485 }
486
487 /* Now do the same, but with the alias sets reversed. */
488 ase2 = get_alias_set_entry (set2);
489 if (ase2 != 0
490 && ase2->children && ase2->children->get (set1))
491 {
492 ++alias_stats.num_dag;
493 return 1;
494 }
495
496 /* We want void * to be compatible with any other pointer without
497 really dropping it to alias set 0. Doing so would make it
498 compatible with all non-pointer types too.
499
500 This is not strictly necessary by the C/C++ language
501 standards, but avoids common type punning mistakes. In
502 addition to that, we need the existence of such universal
503 pointer to implement Fortran's C_PTR type (which is defined as
504 type compatible with all C pointers). */
505 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
506 {
507 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
508
509 /* If one of the sets corresponds to universal pointer,
510 we consider it to conflict with anything that is
511 or contains pointer. */
512 if (set1 == voidptr_set || set2 == voidptr_set)
513 {
514 ++alias_stats.num_universal;
515 return true;
516 }
517 /* If one of sets is (non-universal) pointer and the other
518 contains universal pointer, we also get conflict. */
519 if (ase1->is_pointer && set2 != voidptr_set
520 && ase2->children && ase2->children->get (voidptr_set))
521 {
522 ++alias_stats.num_universal;
523 return true;
524 }
525 if (ase2->is_pointer && set1 != voidptr_set
526 && ase1->children && ase1->children->get (voidptr_set))
527 {
528 ++alias_stats.num_universal;
529 return true;
530 }
531 }
532
533 ++alias_stats.num_disambiguated;
534
535 /* The two alias sets are distinct and neither one is the
536 child of the other. Therefore, they cannot conflict. */
537 return 0;
538 }
539
540 /* Return 1 if the two specified alias sets will always conflict. */
541
542 int
543 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
544 {
545 /* Disable TBAA oracle with !flag_strict_aliasing. */
546 if (!flag_strict_aliasing)
547 return 1;
548 if (set1 == 0 || set2 == 0)
549 {
550 ++alias_stats.num_alias_zero;
551 return 1;
552 }
553 if (set1 == set2)
554 {
555 ++alias_stats.num_same_alias_set;
556 return 1;
557 }
558
559 return 0;
560 }
561
562 /* Return 1 if any MEM object of type T1 will always conflict (using the
563 dependency routines in this file) with any MEM object of type T2.
564 This is used when allocating temporary storage. If T1 and/or T2 are
565 NULL_TREE, it means we know nothing about the storage. */
566
567 int
568 objects_must_conflict_p (tree t1, tree t2)
569 {
570 alias_set_type set1, set2;
571
572 /* If neither has a type specified, we don't know if they'll conflict
573 because we may be using them to store objects of various types, for
574 example the argument and local variables areas of inlined functions. */
575 if (t1 == 0 && t2 == 0)
576 return 0;
577
578 /* If they are the same type, they must conflict. */
579 if (t1 == t2)
580 {
581 ++alias_stats.num_same_objects;
582 return 1;
583 }
584 /* Likewise if both are volatile. */
585 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
586 {
587 ++alias_stats.num_volatile;
588 return 1;
589 }
590
591 set1 = t1 ? get_alias_set (t1) : 0;
592 set2 = t2 ? get_alias_set (t2) : 0;
593
594 /* We can't use alias_sets_conflict_p because we must make sure
595 that every subtype of t1 will conflict with every subtype of
596 t2 for which a pair of subobjects of these respective subtypes
597 overlaps on the stack. */
598 return alias_sets_must_conflict_p (set1, set2);
599 }
600 \f
601 /* Return the outermost parent of component present in the chain of
602 component references handled by get_inner_reference in T with the
603 following property:
604 - the component is non-addressable
605 or NULL_TREE if no such parent exists. In the former cases, the alias
606 set of this parent is the alias set that must be used for T itself. */
607
608 tree
609 component_uses_parent_alias_set_from (const_tree t)
610 {
611 const_tree found = NULL_TREE;
612
613 while (handled_component_p (t))
614 {
615 switch (TREE_CODE (t))
616 {
617 case COMPONENT_REF:
618 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
619 found = t;
620 /* Permit type-punning when accessing a union, provided the access
621 is directly through the union. For example, this code does not
622 permit taking the address of a union member and then storing
623 through it. Even the type-punning allowed here is a GCC
624 extension, albeit a common and useful one; the C standard says
625 that such accesses have implementation-defined behavior. */
626 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
627 found = t;
628 break;
629
630 case ARRAY_REF:
631 case ARRAY_RANGE_REF:
632 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
633 found = t;
634 break;
635
636 case REALPART_EXPR:
637 case IMAGPART_EXPR:
638 break;
639
640 case BIT_FIELD_REF:
641 case VIEW_CONVERT_EXPR:
642 /* Bitfields and casts are never addressable. */
643 found = t;
644 break;
645
646 default:
647 gcc_unreachable ();
648 }
649
650 t = TREE_OPERAND (t, 0);
651 }
652
653 if (found)
654 return TREE_OPERAND (found, 0);
655
656 return NULL_TREE;
657 }
658
659
660 /* Return whether the pointer-type T effective for aliasing may
661 access everything and thus the reference has to be assigned
662 alias-set zero. */
663
664 static bool
665 ref_all_alias_ptr_type_p (const_tree t)
666 {
667 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
668 || TYPE_REF_CAN_ALIAS_ALL (t));
669 }
670
671 /* Return the alias set for the memory pointed to by T, which may be
672 either a type or an expression. Return -1 if there is nothing
673 special about dereferencing T. */
674
675 static alias_set_type
676 get_deref_alias_set_1 (tree t)
677 {
678 /* All we care about is the type. */
679 if (! TYPE_P (t))
680 t = TREE_TYPE (t);
681
682 /* If we have an INDIRECT_REF via a void pointer, we don't
683 know anything about what that might alias. Likewise if the
684 pointer is marked that way. */
685 if (ref_all_alias_ptr_type_p (t))
686 return 0;
687
688 return -1;
689 }
690
691 /* Return the alias set for the memory pointed to by T, which may be
692 either a type or an expression. */
693
694 alias_set_type
695 get_deref_alias_set (tree t)
696 {
697 /* If we're not doing any alias analysis, just assume everything
698 aliases everything else. */
699 if (!flag_strict_aliasing)
700 return 0;
701
702 alias_set_type set = get_deref_alias_set_1 (t);
703
704 /* Fall back to the alias-set of the pointed-to type. */
705 if (set == -1)
706 {
707 if (! TYPE_P (t))
708 t = TREE_TYPE (t);
709 set = get_alias_set (TREE_TYPE (t));
710 }
711
712 return set;
713 }
714
715 /* Return the pointer-type relevant for TBAA purposes from the
716 memory reference tree *T or NULL_TREE in which case *T is
717 adjusted to point to the outermost component reference that
718 can be used for assigning an alias set. */
719
720 static tree
721 reference_alias_ptr_type_1 (tree *t)
722 {
723 tree inner;
724
725 /* Get the base object of the reference. */
726 inner = *t;
727 while (handled_component_p (inner))
728 {
729 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
730 the type of any component references that wrap it to
731 determine the alias-set. */
732 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
733 *t = TREE_OPERAND (inner, 0);
734 inner = TREE_OPERAND (inner, 0);
735 }
736
737 /* Handle pointer dereferences here, they can override the
738 alias-set. */
739 if (INDIRECT_REF_P (inner)
740 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
741 return TREE_TYPE (TREE_OPERAND (inner, 0));
742 else if (TREE_CODE (inner) == TARGET_MEM_REF)
743 return TREE_TYPE (TMR_OFFSET (inner));
744 else if (TREE_CODE (inner) == MEM_REF
745 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
746 return TREE_TYPE (TREE_OPERAND (inner, 1));
747
748 /* If the innermost reference is a MEM_REF that has a
749 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
750 using the memory access type for determining the alias-set. */
751 if (TREE_CODE (inner) == MEM_REF
752 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
753 != TYPE_MAIN_VARIANT
754 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
755 return TREE_TYPE (TREE_OPERAND (inner, 1));
756
757 /* Otherwise, pick up the outermost object that we could have
758 a pointer to. */
759 tree tem = component_uses_parent_alias_set_from (*t);
760 if (tem)
761 *t = tem;
762
763 return NULL_TREE;
764 }
765
766 /* Return the pointer-type relevant for TBAA purposes from the
767 gimple memory reference tree T. This is the type to be used for
768 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
769 and guarantees that get_alias_set will return the same alias
770 set for T and the replacement. */
771
772 tree
773 reference_alias_ptr_type (tree t)
774 {
775 /* If the frontend assigns this alias-set zero, preserve that. */
776 if (lang_hooks.get_alias_set (t) == 0)
777 return ptr_type_node;
778
779 tree ptype = reference_alias_ptr_type_1 (&t);
780 /* If there is a given pointer type for aliasing purposes, return it. */
781 if (ptype != NULL_TREE)
782 return ptype;
783
784 /* Otherwise build one from the outermost component reference we
785 may use. */
786 if (TREE_CODE (t) == MEM_REF
787 || TREE_CODE (t) == TARGET_MEM_REF)
788 return TREE_TYPE (TREE_OPERAND (t, 1));
789 else
790 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
791 }
792
793 /* Return whether the pointer-types T1 and T2 used to determine
794 two alias sets of two references will yield the same answer
795 from get_deref_alias_set. */
796
797 bool
798 alias_ptr_types_compatible_p (tree t1, tree t2)
799 {
800 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
801 return true;
802
803 if (ref_all_alias_ptr_type_p (t1)
804 || ref_all_alias_ptr_type_p (t2))
805 return false;
806
807 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
808 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
809 }
810
811 /* Create emptry alias set entry. */
812
813 alias_set_entry *
814 init_alias_set_entry (alias_set_type set)
815 {
816 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
817 ase->alias_set = set;
818 ase->children = NULL;
819 ase->has_zero_child = false;
820 ase->is_pointer = false;
821 ase->has_pointer = false;
822 gcc_checking_assert (!get_alias_set_entry (set));
823 (*alias_sets)[set] = ase;
824 return ase;
825 }
826
827 /* Return the alias set for T, which may be either a type or an
828 expression. Call language-specific routine for help, if needed. */
829
830 alias_set_type
831 get_alias_set (tree t)
832 {
833 alias_set_type set;
834
835 /* We cannot give up with -fno-strict-aliasing because we need to build
836 proper type representation for possible functions which are build with
837 -fstrict-aliasing. */
838
839 /* return 0 if this or its type is an error. */
840 if (t == error_mark_node
841 || (! TYPE_P (t)
842 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
843 return 0;
844
845 /* We can be passed either an expression or a type. This and the
846 language-specific routine may make mutually-recursive calls to each other
847 to figure out what to do. At each juncture, we see if this is a tree
848 that the language may need to handle specially. First handle things that
849 aren't types. */
850 if (! TYPE_P (t))
851 {
852 /* Give the language a chance to do something with this tree
853 before we look at it. */
854 STRIP_NOPS (t);
855 set = lang_hooks.get_alias_set (t);
856 if (set != -1)
857 return set;
858
859 /* Get the alias pointer-type to use or the outermost object
860 that we could have a pointer to. */
861 tree ptype = reference_alias_ptr_type_1 (&t);
862 if (ptype != NULL)
863 return get_deref_alias_set (ptype);
864
865 /* If we've already determined the alias set for a decl, just return
866 it. This is necessary for C++ anonymous unions, whose component
867 variables don't look like union members (boo!). */
868 if (VAR_P (t)
869 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
870 return MEM_ALIAS_SET (DECL_RTL (t));
871
872 /* Now all we care about is the type. */
873 t = TREE_TYPE (t);
874 }
875
876 /* Variant qualifiers don't affect the alias set, so get the main
877 variant. */
878 t = TYPE_MAIN_VARIANT (t);
879
880 if (AGGREGATE_TYPE_P (t)
881 && TYPE_TYPELESS_STORAGE (t))
882 return 0;
883
884 /* Always use the canonical type as well. If this is a type that
885 requires structural comparisons to identify compatible types
886 use alias set zero. */
887 if (TYPE_STRUCTURAL_EQUALITY_P (t))
888 {
889 /* Allow the language to specify another alias set for this
890 type. */
891 set = lang_hooks.get_alias_set (t);
892 if (set != -1)
893 return set;
894 /* Handle structure type equality for pointer types, arrays and vectors.
895 This is easy to do, because the code bellow ignore canonical types on
896 these anyway. This is important for LTO, where TYPE_CANONICAL for
897 pointers cannot be meaningfuly computed by the frotnend. */
898 if (canonical_type_used_p (t))
899 {
900 /* In LTO we set canonical types for all types where it makes
901 sense to do so. Double check we did not miss some type. */
902 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
903 return 0;
904 }
905 }
906 else
907 {
908 t = TYPE_CANONICAL (t);
909 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
910 }
911
912 /* If this is a type with a known alias set, return it. */
913 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
914 if (TYPE_ALIAS_SET_KNOWN_P (t))
915 return TYPE_ALIAS_SET (t);
916
917 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
918 if (!COMPLETE_TYPE_P (t))
919 {
920 /* For arrays with unknown size the conservative answer is the
921 alias set of the element type. */
922 if (TREE_CODE (t) == ARRAY_TYPE)
923 return get_alias_set (TREE_TYPE (t));
924
925 /* But return zero as a conservative answer for incomplete types. */
926 return 0;
927 }
928
929 /* See if the language has special handling for this type. */
930 set = lang_hooks.get_alias_set (t);
931 if (set != -1)
932 return set;
933
934 /* There are no objects of FUNCTION_TYPE, so there's no point in
935 using up an alias set for them. (There are, of course, pointers
936 and references to functions, but that's different.) */
937 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
938 set = 0;
939
940 /* Unless the language specifies otherwise, let vector types alias
941 their components. This avoids some nasty type punning issues in
942 normal usage. And indeed lets vectors be treated more like an
943 array slice. */
944 else if (TREE_CODE (t) == VECTOR_TYPE)
945 set = get_alias_set (TREE_TYPE (t));
946
947 /* Unless the language specifies otherwise, treat array types the
948 same as their components. This avoids the asymmetry we get
949 through recording the components. Consider accessing a
950 character(kind=1) through a reference to a character(kind=1)[1:1].
951 Or consider if we want to assign integer(kind=4)[0:D.1387] and
952 integer(kind=4)[4] the same alias set or not.
953 Just be pragmatic here and make sure the array and its element
954 type get the same alias set assigned. */
955 else if (TREE_CODE (t) == ARRAY_TYPE
956 && (!TYPE_NONALIASED_COMPONENT (t)
957 || TYPE_STRUCTURAL_EQUALITY_P (t)))
958 set = get_alias_set (TREE_TYPE (t));
959
960 /* From the former common C and C++ langhook implementation:
961
962 Unfortunately, there is no canonical form of a pointer type.
963 In particular, if we have `typedef int I', then `int *', and
964 `I *' are different types. So, we have to pick a canonical
965 representative. We do this below.
966
967 Technically, this approach is actually more conservative that
968 it needs to be. In particular, `const int *' and `int *'
969 should be in different alias sets, according to the C and C++
970 standard, since their types are not the same, and so,
971 technically, an `int **' and `const int **' cannot point at
972 the same thing.
973
974 But, the standard is wrong. In particular, this code is
975 legal C++:
976
977 int *ip;
978 int **ipp = &ip;
979 const int* const* cipp = ipp;
980 And, it doesn't make sense for that to be legal unless you
981 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
982 the pointed-to types. This issue has been reported to the
983 C++ committee.
984
985 For this reason go to canonical type of the unqalified pointer type.
986 Until GCC 6 this code set all pointers sets to have alias set of
987 ptr_type_node but that is a bad idea, because it prevents disabiguations
988 in between pointers. For Firefox this accounts about 20% of all
989 disambiguations in the program. */
990 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
991 {
992 tree p;
993 auto_vec <bool, 8> reference;
994
995 /* Unnest all pointers and references.
996 We also want to make pointer to array/vector equivalent to pointer to
997 its element (see the reasoning above). Skip all those types, too. */
998 for (p = t; POINTER_TYPE_P (p)
999 || (TREE_CODE (p) == ARRAY_TYPE
1000 && (!TYPE_NONALIASED_COMPONENT (p)
1001 || !COMPLETE_TYPE_P (p)
1002 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1003 || TREE_CODE (p) == VECTOR_TYPE;
1004 p = TREE_TYPE (p))
1005 {
1006 /* Ada supports recusive pointers. Instead of doing recrusion check
1007 just give up once the preallocated space of 8 elements is up.
1008 In this case just punt to void * alias set. */
1009 if (reference.length () == 8)
1010 {
1011 p = ptr_type_node;
1012 break;
1013 }
1014 if (TREE_CODE (p) == REFERENCE_TYPE)
1015 /* In LTO we want languages that use references to be compatible
1016 with languages that use pointers. */
1017 reference.safe_push (true && !in_lto_p);
1018 if (TREE_CODE (p) == POINTER_TYPE)
1019 reference.safe_push (false);
1020 }
1021 p = TYPE_MAIN_VARIANT (p);
1022
1023 /* Make void * compatible with char * and also void **.
1024 Programs are commonly violating TBAA by this.
1025
1026 We also make void * to conflict with every pointer
1027 (see record_component_aliases) and thus it is safe it to use it for
1028 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1029 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1030 set = get_alias_set (ptr_type_node);
1031 else
1032 {
1033 /* Rebuild pointer type starting from canonical types using
1034 unqualified pointers and references only. This way all such
1035 pointers will have the same alias set and will conflict with
1036 each other.
1037
1038 Most of time we already have pointers or references of a given type.
1039 If not we build new one just to be sure that if someone later
1040 (probably only middle-end can, as we should assign all alias
1041 classes only after finishing translation unit) builds the pointer
1042 type, the canonical type will match. */
1043 p = TYPE_CANONICAL (p);
1044 while (!reference.is_empty ())
1045 {
1046 if (reference.pop ())
1047 p = build_reference_type (p);
1048 else
1049 p = build_pointer_type (p);
1050 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1051 /* build_pointer_type should always return the canonical type.
1052 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1053 them. Be sure that frontends do not glob canonical types of
1054 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1055 in all other cases. */
1056 gcc_checking_assert (!TYPE_CANONICAL (p)
1057 || p == TYPE_CANONICAL (p));
1058 }
1059
1060 /* Assign the alias set to both p and t.
1061 We cannot call get_alias_set (p) here as that would trigger
1062 infinite recursion when p == t. In other cases it would just
1063 trigger unnecesary legwork of rebuilding the pointer again. */
1064 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1065 if (TYPE_ALIAS_SET_KNOWN_P (p))
1066 set = TYPE_ALIAS_SET (p);
1067 else
1068 {
1069 set = new_alias_set ();
1070 TYPE_ALIAS_SET (p) = set;
1071 }
1072 }
1073 }
1074 /* Alias set of ptr_type_node is special and serve as universal pointer which
1075 is TBAA compatible with every other pointer type. Be sure we have the
1076 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1077 of pointer types NULL. */
1078 else if (t == ptr_type_node)
1079 set = new_alias_set ();
1080
1081 /* Otherwise make a new alias set for this type. */
1082 else
1083 {
1084 /* Each canonical type gets its own alias set, so canonical types
1085 shouldn't form a tree. It doesn't really matter for types
1086 we handle specially above, so only check it where it possibly
1087 would result in a bogus alias set. */
1088 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1089
1090 set = new_alias_set ();
1091 }
1092
1093 TYPE_ALIAS_SET (t) = set;
1094
1095 /* If this is an aggregate type or a complex type, we must record any
1096 component aliasing information. */
1097 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1098 record_component_aliases (t);
1099
1100 /* We treat pointer types specially in alias_set_subset_of. */
1101 if (POINTER_TYPE_P (t) && set)
1102 {
1103 alias_set_entry *ase = get_alias_set_entry (set);
1104 if (!ase)
1105 ase = init_alias_set_entry (set);
1106 ase->is_pointer = true;
1107 ase->has_pointer = true;
1108 }
1109
1110 return set;
1111 }
1112
1113 /* Return a brand-new alias set. */
1114
1115 alias_set_type
1116 new_alias_set (void)
1117 {
1118 if (alias_sets == 0)
1119 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1120 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1121 return alias_sets->length () - 1;
1122 }
1123
1124 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1125 not everything that aliases SUPERSET also aliases SUBSET. For example,
1126 in C, a store to an `int' can alias a load of a structure containing an
1127 `int', and vice versa. But it can't alias a load of a 'double' member
1128 of the same structure. Here, the structure would be the SUPERSET and
1129 `int' the SUBSET. This relationship is also described in the comment at
1130 the beginning of this file.
1131
1132 This function should be called only once per SUPERSET/SUBSET pair.
1133
1134 It is illegal for SUPERSET to be zero; everything is implicitly a
1135 subset of alias set zero. */
1136
1137 void
1138 record_alias_subset (alias_set_type superset, alias_set_type subset)
1139 {
1140 alias_set_entry *superset_entry;
1141 alias_set_entry *subset_entry;
1142
1143 /* It is possible in complex type situations for both sets to be the same,
1144 in which case we can ignore this operation. */
1145 if (superset == subset)
1146 return;
1147
1148 gcc_assert (superset);
1149
1150 superset_entry = get_alias_set_entry (superset);
1151 if (superset_entry == 0)
1152 {
1153 /* Create an entry for the SUPERSET, so that we have a place to
1154 attach the SUBSET. */
1155 superset_entry = init_alias_set_entry (superset);
1156 }
1157
1158 if (subset == 0)
1159 superset_entry->has_zero_child = 1;
1160 else
1161 {
1162 subset_entry = get_alias_set_entry (subset);
1163 if (!superset_entry->children)
1164 superset_entry->children
1165 = hash_map<alias_set_hash, int>::create_ggc (64);
1166 /* If there is an entry for the subset, enter all of its children
1167 (if they are not already present) as children of the SUPERSET. */
1168 if (subset_entry)
1169 {
1170 if (subset_entry->has_zero_child)
1171 superset_entry->has_zero_child = true;
1172 if (subset_entry->has_pointer)
1173 superset_entry->has_pointer = true;
1174
1175 if (subset_entry->children)
1176 {
1177 hash_map<alias_set_hash, int>::iterator iter
1178 = subset_entry->children->begin ();
1179 for (; iter != subset_entry->children->end (); ++iter)
1180 superset_entry->children->put ((*iter).first, (*iter).second);
1181 }
1182 }
1183
1184 /* Enter the SUBSET itself as a child of the SUPERSET. */
1185 superset_entry->children->put (subset, 0);
1186 }
1187 }
1188
1189 /* Record that component types of TYPE, if any, are part of SUPERSET for
1190 aliasing purposes. For record types, we only record component types
1191 for fields that are not marked non-addressable. For array types, we
1192 only record the component type if it is not marked non-aliased. */
1193
1194 void
1195 record_component_aliases (tree type, alias_set_type superset)
1196 {
1197 tree field;
1198
1199 if (superset == 0)
1200 return;
1201
1202 switch (TREE_CODE (type))
1203 {
1204 case RECORD_TYPE:
1205 case UNION_TYPE:
1206 case QUAL_UNION_TYPE:
1207 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1208 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1209 {
1210 /* LTO type merging does not make any difference between
1211 component pointer types. We may have
1212
1213 struct foo {int *a;};
1214
1215 as TYPE_CANONICAL of
1216
1217 struct bar {float *a;};
1218
1219 Because accesses to int * and float * do not alias, we would get
1220 false negative when accessing the same memory location by
1221 float ** and bar *. We thus record the canonical type as:
1222
1223 struct {void *a;};
1224
1225 void * is special cased and works as a universal pointer type.
1226 Accesses to it conflicts with accesses to any other pointer
1227 type. */
1228 tree t = TREE_TYPE (field);
1229 if (in_lto_p)
1230 {
1231 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1232 element type and that type has to be normalized to void *,
1233 too, in the case it is a pointer. */
1234 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1235 {
1236 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1237 t = TREE_TYPE (t);
1238 }
1239 if (POINTER_TYPE_P (t))
1240 t = ptr_type_node;
1241 else if (flag_checking)
1242 gcc_checking_assert (get_alias_set (t)
1243 == get_alias_set (TREE_TYPE (field)));
1244 }
1245
1246 alias_set_type set = get_alias_set (t);
1247 record_alias_subset (superset, set);
1248 /* If the field has alias-set zero make sure to still record
1249 any componets of it. This makes sure that for
1250 struct A {
1251 struct B {
1252 int i;
1253 char c[4];
1254 } b;
1255 };
1256 in C++ even though 'B' has alias-set zero because
1257 TYPE_TYPELESS_STORAGE is set, 'A' has the alias-set of
1258 'int' as subset. */
1259 if (set == 0)
1260 record_component_aliases (t, superset);
1261 }
1262 break;
1263
1264 case COMPLEX_TYPE:
1265 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1266 break;
1267
1268 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1269 element type. */
1270
1271 default:
1272 break;
1273 }
1274 }
1275
1276 /* Record that component types of TYPE, if any, are part of that type for
1277 aliasing purposes. For record types, we only record component types
1278 for fields that are not marked non-addressable. For array types, we
1279 only record the component type if it is not marked non-aliased. */
1280
1281 void
1282 record_component_aliases (tree type)
1283 {
1284 alias_set_type superset = get_alias_set (type);
1285 record_component_aliases (type, superset);
1286 }
1287
1288
1289 /* Allocate an alias set for use in storing and reading from the varargs
1290 spill area. */
1291
1292 static GTY(()) alias_set_type varargs_set = -1;
1293
1294 alias_set_type
1295 get_varargs_alias_set (void)
1296 {
1297 #if 1
1298 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1299 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1300 consistently use the varargs alias set for loads from the varargs
1301 area. So don't use it anywhere. */
1302 return 0;
1303 #else
1304 if (varargs_set == -1)
1305 varargs_set = new_alias_set ();
1306
1307 return varargs_set;
1308 #endif
1309 }
1310
1311 /* Likewise, but used for the fixed portions of the frame, e.g., register
1312 save areas. */
1313
1314 static GTY(()) alias_set_type frame_set = -1;
1315
1316 alias_set_type
1317 get_frame_alias_set (void)
1318 {
1319 if (frame_set == -1)
1320 frame_set = new_alias_set ();
1321
1322 return frame_set;
1323 }
1324
1325 /* Create a new, unique base with id ID. */
1326
1327 static rtx
1328 unique_base_value (HOST_WIDE_INT id)
1329 {
1330 return gen_rtx_ADDRESS (Pmode, id);
1331 }
1332
1333 /* Return true if accesses based on any other base value cannot alias
1334 those based on X. */
1335
1336 static bool
1337 unique_base_value_p (rtx x)
1338 {
1339 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1340 }
1341
1342 /* Return true if X is known to be a base value. */
1343
1344 static bool
1345 known_base_value_p (rtx x)
1346 {
1347 switch (GET_CODE (x))
1348 {
1349 case LABEL_REF:
1350 case SYMBOL_REF:
1351 return true;
1352
1353 case ADDRESS:
1354 /* Arguments may or may not be bases; we don't know for sure. */
1355 return GET_MODE (x) != VOIDmode;
1356
1357 default:
1358 return false;
1359 }
1360 }
1361
1362 /* Inside SRC, the source of a SET, find a base address. */
1363
1364 static rtx
1365 find_base_value (rtx src)
1366 {
1367 unsigned int regno;
1368 scalar_int_mode int_mode;
1369
1370 #if defined (FIND_BASE_TERM)
1371 /* Try machine-dependent ways to find the base term. */
1372 src = FIND_BASE_TERM (src);
1373 #endif
1374
1375 switch (GET_CODE (src))
1376 {
1377 case SYMBOL_REF:
1378 case LABEL_REF:
1379 return src;
1380
1381 case REG:
1382 regno = REGNO (src);
1383 /* At the start of a function, argument registers have known base
1384 values which may be lost later. Returning an ADDRESS
1385 expression here allows optimization based on argument values
1386 even when the argument registers are used for other purposes. */
1387 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1388 return new_reg_base_value[regno];
1389
1390 /* If a pseudo has a known base value, return it. Do not do this
1391 for non-fixed hard regs since it can result in a circular
1392 dependency chain for registers which have values at function entry.
1393
1394 The test above is not sufficient because the scheduler may move
1395 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1396 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1397 && regno < vec_safe_length (reg_base_value))
1398 {
1399 /* If we're inside init_alias_analysis, use new_reg_base_value
1400 to reduce the number of relaxation iterations. */
1401 if (new_reg_base_value && new_reg_base_value[regno]
1402 && DF_REG_DEF_COUNT (regno) == 1)
1403 return new_reg_base_value[regno];
1404
1405 if ((*reg_base_value)[regno])
1406 return (*reg_base_value)[regno];
1407 }
1408
1409 return 0;
1410
1411 case MEM:
1412 /* Check for an argument passed in memory. Only record in the
1413 copying-arguments block; it is too hard to track changes
1414 otherwise. */
1415 if (copying_arguments
1416 && (XEXP (src, 0) == arg_pointer_rtx
1417 || (GET_CODE (XEXP (src, 0)) == PLUS
1418 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1419 return arg_base_value;
1420 return 0;
1421
1422 case CONST:
1423 src = XEXP (src, 0);
1424 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1425 break;
1426
1427 /* fall through */
1428
1429 case PLUS:
1430 case MINUS:
1431 {
1432 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1433
1434 /* If either operand is a REG that is a known pointer, then it
1435 is the base. */
1436 if (REG_P (src_0) && REG_POINTER (src_0))
1437 return find_base_value (src_0);
1438 if (REG_P (src_1) && REG_POINTER (src_1))
1439 return find_base_value (src_1);
1440
1441 /* If either operand is a REG, then see if we already have
1442 a known value for it. */
1443 if (REG_P (src_0))
1444 {
1445 temp = find_base_value (src_0);
1446 if (temp != 0)
1447 src_0 = temp;
1448 }
1449
1450 if (REG_P (src_1))
1451 {
1452 temp = find_base_value (src_1);
1453 if (temp!= 0)
1454 src_1 = temp;
1455 }
1456
1457 /* If either base is named object or a special address
1458 (like an argument or stack reference), then use it for the
1459 base term. */
1460 if (src_0 != 0 && known_base_value_p (src_0))
1461 return src_0;
1462
1463 if (src_1 != 0 && known_base_value_p (src_1))
1464 return src_1;
1465
1466 /* Guess which operand is the base address:
1467 If either operand is a symbol, then it is the base. If
1468 either operand is a CONST_INT, then the other is the base. */
1469 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1470 return find_base_value (src_0);
1471 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1472 return find_base_value (src_1);
1473
1474 return 0;
1475 }
1476
1477 case LO_SUM:
1478 /* The standard form is (lo_sum reg sym) so look only at the
1479 second operand. */
1480 return find_base_value (XEXP (src, 1));
1481
1482 case AND:
1483 /* If the second operand is constant set the base
1484 address to the first operand. */
1485 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1486 return find_base_value (XEXP (src, 0));
1487 return 0;
1488
1489 case TRUNCATE:
1490 /* As we do not know which address space the pointer is referring to, we can
1491 handle this only if the target does not support different pointer or
1492 address modes depending on the address space. */
1493 if (!target_default_pointer_address_modes_p ())
1494 break;
1495 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1496 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1497 break;
1498 /* Fall through. */
1499 case HIGH:
1500 case PRE_INC:
1501 case PRE_DEC:
1502 case POST_INC:
1503 case POST_DEC:
1504 case PRE_MODIFY:
1505 case POST_MODIFY:
1506 return find_base_value (XEXP (src, 0));
1507
1508 case ZERO_EXTEND:
1509 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1510 /* As we do not know which address space the pointer is referring to, we can
1511 handle this only if the target does not support different pointer or
1512 address modes depending on the address space. */
1513 if (!target_default_pointer_address_modes_p ())
1514 break;
1515
1516 {
1517 rtx temp = find_base_value (XEXP (src, 0));
1518
1519 if (temp != 0 && CONSTANT_P (temp))
1520 temp = convert_memory_address (Pmode, temp);
1521
1522 return temp;
1523 }
1524
1525 default:
1526 break;
1527 }
1528
1529 return 0;
1530 }
1531
1532 /* Called from init_alias_analysis indirectly through note_stores,
1533 or directly if DEST is a register with a REG_NOALIAS note attached.
1534 SET is null in the latter case. */
1535
1536 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1537 register N has been set in this function. */
1538 static sbitmap reg_seen;
1539
1540 static void
1541 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1542 {
1543 unsigned regno;
1544 rtx src;
1545 int n;
1546
1547 if (!REG_P (dest))
1548 return;
1549
1550 regno = REGNO (dest);
1551
1552 gcc_checking_assert (regno < reg_base_value->length ());
1553
1554 n = REG_NREGS (dest);
1555 if (n != 1)
1556 {
1557 while (--n >= 0)
1558 {
1559 bitmap_set_bit (reg_seen, regno + n);
1560 new_reg_base_value[regno + n] = 0;
1561 }
1562 return;
1563 }
1564
1565 if (set)
1566 {
1567 /* A CLOBBER wipes out any old value but does not prevent a previously
1568 unset register from acquiring a base address (i.e. reg_seen is not
1569 set). */
1570 if (GET_CODE (set) == CLOBBER)
1571 {
1572 new_reg_base_value[regno] = 0;
1573 return;
1574 }
1575 /* A CLOBBER_HIGH only wipes out the old value if the mode of the old
1576 value is greater than that of the clobber. */
1577 else if (GET_CODE (set) == CLOBBER_HIGH)
1578 {
1579 if (new_reg_base_value[regno] != 0
1580 && reg_is_clobbered_by_clobber_high (
1581 regno, GET_MODE (new_reg_base_value[regno]), XEXP (set, 0)))
1582 new_reg_base_value[regno] = 0;
1583 return;
1584 }
1585
1586 src = SET_SRC (set);
1587 }
1588 else
1589 {
1590 /* There's a REG_NOALIAS note against DEST. */
1591 if (bitmap_bit_p (reg_seen, regno))
1592 {
1593 new_reg_base_value[regno] = 0;
1594 return;
1595 }
1596 bitmap_set_bit (reg_seen, regno);
1597 new_reg_base_value[regno] = unique_base_value (unique_id++);
1598 return;
1599 }
1600
1601 /* If this is not the first set of REGNO, see whether the new value
1602 is related to the old one. There are two cases of interest:
1603
1604 (1) The register might be assigned an entirely new value
1605 that has the same base term as the original set.
1606
1607 (2) The set might be a simple self-modification that
1608 cannot change REGNO's base value.
1609
1610 If neither case holds, reject the original base value as invalid.
1611 Note that the following situation is not detected:
1612
1613 extern int x, y; int *p = &x; p += (&y-&x);
1614
1615 ANSI C does not allow computing the difference of addresses
1616 of distinct top level objects. */
1617 if (new_reg_base_value[regno] != 0
1618 && find_base_value (src) != new_reg_base_value[regno])
1619 switch (GET_CODE (src))
1620 {
1621 case LO_SUM:
1622 case MINUS:
1623 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1624 new_reg_base_value[regno] = 0;
1625 break;
1626 case PLUS:
1627 /* If the value we add in the PLUS is also a valid base value,
1628 this might be the actual base value, and the original value
1629 an index. */
1630 {
1631 rtx other = NULL_RTX;
1632
1633 if (XEXP (src, 0) == dest)
1634 other = XEXP (src, 1);
1635 else if (XEXP (src, 1) == dest)
1636 other = XEXP (src, 0);
1637
1638 if (! other || find_base_value (other))
1639 new_reg_base_value[regno] = 0;
1640 break;
1641 }
1642 case AND:
1643 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1644 new_reg_base_value[regno] = 0;
1645 break;
1646 default:
1647 new_reg_base_value[regno] = 0;
1648 break;
1649 }
1650 /* If this is the first set of a register, record the value. */
1651 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1652 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1653 new_reg_base_value[regno] = find_base_value (src);
1654
1655 bitmap_set_bit (reg_seen, regno);
1656 }
1657
1658 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1659 using hard registers with non-null REG_BASE_VALUE for renaming. */
1660 rtx
1661 get_reg_base_value (unsigned int regno)
1662 {
1663 return (*reg_base_value)[regno];
1664 }
1665
1666 /* If a value is known for REGNO, return it. */
1667
1668 rtx
1669 get_reg_known_value (unsigned int regno)
1670 {
1671 if (regno >= FIRST_PSEUDO_REGISTER)
1672 {
1673 regno -= FIRST_PSEUDO_REGISTER;
1674 if (regno < vec_safe_length (reg_known_value))
1675 return (*reg_known_value)[regno];
1676 }
1677 return NULL;
1678 }
1679
1680 /* Set it. */
1681
1682 static void
1683 set_reg_known_value (unsigned int regno, rtx val)
1684 {
1685 if (regno >= FIRST_PSEUDO_REGISTER)
1686 {
1687 regno -= FIRST_PSEUDO_REGISTER;
1688 if (regno < vec_safe_length (reg_known_value))
1689 (*reg_known_value)[regno] = val;
1690 }
1691 }
1692
1693 /* Similarly for reg_known_equiv_p. */
1694
1695 bool
1696 get_reg_known_equiv_p (unsigned int regno)
1697 {
1698 if (regno >= FIRST_PSEUDO_REGISTER)
1699 {
1700 regno -= FIRST_PSEUDO_REGISTER;
1701 if (regno < vec_safe_length (reg_known_value))
1702 return bitmap_bit_p (reg_known_equiv_p, regno);
1703 }
1704 return false;
1705 }
1706
1707 static void
1708 set_reg_known_equiv_p (unsigned int regno, bool val)
1709 {
1710 if (regno >= FIRST_PSEUDO_REGISTER)
1711 {
1712 regno -= FIRST_PSEUDO_REGISTER;
1713 if (regno < vec_safe_length (reg_known_value))
1714 {
1715 if (val)
1716 bitmap_set_bit (reg_known_equiv_p, regno);
1717 else
1718 bitmap_clear_bit (reg_known_equiv_p, regno);
1719 }
1720 }
1721 }
1722
1723
1724 /* Returns a canonical version of X, from the point of view alias
1725 analysis. (For example, if X is a MEM whose address is a register,
1726 and the register has a known value (say a SYMBOL_REF), then a MEM
1727 whose address is the SYMBOL_REF is returned.) */
1728
1729 rtx
1730 canon_rtx (rtx x)
1731 {
1732 /* Recursively look for equivalences. */
1733 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1734 {
1735 rtx t = get_reg_known_value (REGNO (x));
1736 if (t == x)
1737 return x;
1738 if (t)
1739 return canon_rtx (t);
1740 }
1741
1742 if (GET_CODE (x) == PLUS)
1743 {
1744 rtx x0 = canon_rtx (XEXP (x, 0));
1745 rtx x1 = canon_rtx (XEXP (x, 1));
1746
1747 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1748 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1749 }
1750
1751 /* This gives us much better alias analysis when called from
1752 the loop optimizer. Note we want to leave the original
1753 MEM alone, but need to return the canonicalized MEM with
1754 all the flags with their original values. */
1755 else if (MEM_P (x))
1756 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1757
1758 return x;
1759 }
1760
1761 /* Return 1 if X and Y are identical-looking rtx's.
1762 Expect that X and Y has been already canonicalized.
1763
1764 We use the data in reg_known_value above to see if two registers with
1765 different numbers are, in fact, equivalent. */
1766
1767 static int
1768 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1769 {
1770 int i;
1771 int j;
1772 enum rtx_code code;
1773 const char *fmt;
1774
1775 if (x == 0 && y == 0)
1776 return 1;
1777 if (x == 0 || y == 0)
1778 return 0;
1779
1780 if (x == y)
1781 return 1;
1782
1783 code = GET_CODE (x);
1784 /* Rtx's of different codes cannot be equal. */
1785 if (code != GET_CODE (y))
1786 return 0;
1787
1788 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1789 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1790
1791 if (GET_MODE (x) != GET_MODE (y))
1792 return 0;
1793
1794 /* Some RTL can be compared without a recursive examination. */
1795 switch (code)
1796 {
1797 case REG:
1798 return REGNO (x) == REGNO (y);
1799
1800 case LABEL_REF:
1801 return label_ref_label (x) == label_ref_label (y);
1802
1803 case SYMBOL_REF:
1804 return compare_base_symbol_refs (x, y) == 1;
1805
1806 case ENTRY_VALUE:
1807 /* This is magic, don't go through canonicalization et al. */
1808 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1809
1810 case VALUE:
1811 CASE_CONST_UNIQUE:
1812 /* Pointer equality guarantees equality for these nodes. */
1813 return 0;
1814
1815 default:
1816 break;
1817 }
1818
1819 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1820 if (code == PLUS)
1821 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1822 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1823 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1824 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1825 /* For commutative operations, the RTX match if the operand match in any
1826 order. Also handle the simple binary and unary cases without a loop. */
1827 if (COMMUTATIVE_P (x))
1828 {
1829 rtx xop0 = canon_rtx (XEXP (x, 0));
1830 rtx yop0 = canon_rtx (XEXP (y, 0));
1831 rtx yop1 = canon_rtx (XEXP (y, 1));
1832
1833 return ((rtx_equal_for_memref_p (xop0, yop0)
1834 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1835 || (rtx_equal_for_memref_p (xop0, yop1)
1836 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1837 }
1838 else if (NON_COMMUTATIVE_P (x))
1839 {
1840 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1841 canon_rtx (XEXP (y, 0)))
1842 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1843 canon_rtx (XEXP (y, 1))));
1844 }
1845 else if (UNARY_P (x))
1846 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1847 canon_rtx (XEXP (y, 0)));
1848
1849 /* Compare the elements. If any pair of corresponding elements
1850 fail to match, return 0 for the whole things.
1851
1852 Limit cases to types which actually appear in addresses. */
1853
1854 fmt = GET_RTX_FORMAT (code);
1855 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1856 {
1857 switch (fmt[i])
1858 {
1859 case 'i':
1860 if (XINT (x, i) != XINT (y, i))
1861 return 0;
1862 break;
1863
1864 case 'p':
1865 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1866 return 0;
1867 break;
1868
1869 case 'E':
1870 /* Two vectors must have the same length. */
1871 if (XVECLEN (x, i) != XVECLEN (y, i))
1872 return 0;
1873
1874 /* And the corresponding elements must match. */
1875 for (j = 0; j < XVECLEN (x, i); j++)
1876 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1877 canon_rtx (XVECEXP (y, i, j))) == 0)
1878 return 0;
1879 break;
1880
1881 case 'e':
1882 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1883 canon_rtx (XEXP (y, i))) == 0)
1884 return 0;
1885 break;
1886
1887 /* This can happen for asm operands. */
1888 case 's':
1889 if (strcmp (XSTR (x, i), XSTR (y, i)))
1890 return 0;
1891 break;
1892
1893 /* This can happen for an asm which clobbers memory. */
1894 case '0':
1895 break;
1896
1897 /* It is believed that rtx's at this level will never
1898 contain anything but integers and other rtx's,
1899 except for within LABEL_REFs and SYMBOL_REFs. */
1900 default:
1901 gcc_unreachable ();
1902 }
1903 }
1904 return 1;
1905 }
1906
1907 static rtx
1908 find_base_term (rtx x, vec<std::pair<cselib_val *,
1909 struct elt_loc_list *> > &visited_vals)
1910 {
1911 cselib_val *val;
1912 struct elt_loc_list *l, *f;
1913 rtx ret;
1914 scalar_int_mode int_mode;
1915
1916 #if defined (FIND_BASE_TERM)
1917 /* Try machine-dependent ways to find the base term. */
1918 x = FIND_BASE_TERM (x);
1919 #endif
1920
1921 switch (GET_CODE (x))
1922 {
1923 case REG:
1924 return REG_BASE_VALUE (x);
1925
1926 case TRUNCATE:
1927 /* As we do not know which address space the pointer is referring to, we can
1928 handle this only if the target does not support different pointer or
1929 address modes depending on the address space. */
1930 if (!target_default_pointer_address_modes_p ())
1931 return 0;
1932 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1933 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1934 return 0;
1935 /* Fall through. */
1936 case HIGH:
1937 case PRE_INC:
1938 case PRE_DEC:
1939 case POST_INC:
1940 case POST_DEC:
1941 case PRE_MODIFY:
1942 case POST_MODIFY:
1943 return find_base_term (XEXP (x, 0), visited_vals);
1944
1945 case ZERO_EXTEND:
1946 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1947 /* As we do not know which address space the pointer is referring to, we can
1948 handle this only if the target does not support different pointer or
1949 address modes depending on the address space. */
1950 if (!target_default_pointer_address_modes_p ())
1951 return 0;
1952
1953 {
1954 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1955
1956 if (temp != 0 && CONSTANT_P (temp))
1957 temp = convert_memory_address (Pmode, temp);
1958
1959 return temp;
1960 }
1961
1962 case VALUE:
1963 val = CSELIB_VAL_PTR (x);
1964 ret = NULL_RTX;
1965
1966 if (!val)
1967 return ret;
1968
1969 if (cselib_sp_based_value_p (val))
1970 return static_reg_base_value[STACK_POINTER_REGNUM];
1971
1972 f = val->locs;
1973 /* Reset val->locs to avoid infinite recursion. */
1974 if (f)
1975 visited_vals.safe_push (std::make_pair (val, f));
1976 val->locs = NULL;
1977
1978 for (l = f; l; l = l->next)
1979 if (GET_CODE (l->loc) == VALUE
1980 && CSELIB_VAL_PTR (l->loc)->locs
1981 && !CSELIB_VAL_PTR (l->loc)->locs->next
1982 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1983 continue;
1984 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1985 break;
1986
1987 return ret;
1988
1989 case LO_SUM:
1990 /* The standard form is (lo_sum reg sym) so look only at the
1991 second operand. */
1992 return find_base_term (XEXP (x, 1), visited_vals);
1993
1994 case CONST:
1995 x = XEXP (x, 0);
1996 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1997 return 0;
1998 /* Fall through. */
1999 case PLUS:
2000 case MINUS:
2001 {
2002 rtx tmp1 = XEXP (x, 0);
2003 rtx tmp2 = XEXP (x, 1);
2004
2005 /* This is a little bit tricky since we have to determine which of
2006 the two operands represents the real base address. Otherwise this
2007 routine may return the index register instead of the base register.
2008
2009 That may cause us to believe no aliasing was possible, when in
2010 fact aliasing is possible.
2011
2012 We use a few simple tests to guess the base register. Additional
2013 tests can certainly be added. For example, if one of the operands
2014 is a shift or multiply, then it must be the index register and the
2015 other operand is the base register. */
2016
2017 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
2018 return find_base_term (tmp2, visited_vals);
2019
2020 /* If either operand is known to be a pointer, then prefer it
2021 to determine the base term. */
2022 if (REG_P (tmp1) && REG_POINTER (tmp1))
2023 ;
2024 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2025 std::swap (tmp1, tmp2);
2026 /* If second argument is constant which has base term, prefer it
2027 over variable tmp1. See PR64025. */
2028 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2029 std::swap (tmp1, tmp2);
2030
2031 /* Go ahead and find the base term for both operands. If either base
2032 term is from a pointer or is a named object or a special address
2033 (like an argument or stack reference), then use it for the
2034 base term. */
2035 rtx base = find_base_term (tmp1, visited_vals);
2036 if (base != NULL_RTX
2037 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2038 || known_base_value_p (base)))
2039 return base;
2040 base = find_base_term (tmp2, visited_vals);
2041 if (base != NULL_RTX
2042 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2043 || known_base_value_p (base)))
2044 return base;
2045
2046 /* We could not determine which of the two operands was the
2047 base register and which was the index. So we can determine
2048 nothing from the base alias check. */
2049 return 0;
2050 }
2051
2052 case AND:
2053 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2054 return find_base_term (XEXP (x, 0), visited_vals);
2055 return 0;
2056
2057 case SYMBOL_REF:
2058 case LABEL_REF:
2059 return x;
2060
2061 default:
2062 return 0;
2063 }
2064 }
2065
2066 /* Wrapper around the worker above which removes locs from visited VALUEs
2067 to avoid visiting them multiple times. We unwind that changes here. */
2068
2069 static rtx
2070 find_base_term (rtx x)
2071 {
2072 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2073 rtx res = find_base_term (x, visited_vals);
2074 for (unsigned i = 0; i < visited_vals.length (); ++i)
2075 visited_vals[i].first->locs = visited_vals[i].second;
2076 return res;
2077 }
2078
2079 /* Return true if accesses to address X may alias accesses based
2080 on the stack pointer. */
2081
2082 bool
2083 may_be_sp_based_p (rtx x)
2084 {
2085 rtx base = find_base_term (x);
2086 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2087 }
2088
2089 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2090 if they refer to different objects and -1 if we cannot decide. */
2091
2092 int
2093 compare_base_decls (tree base1, tree base2)
2094 {
2095 int ret;
2096 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2097 if (base1 == base2)
2098 return 1;
2099
2100 /* If we have two register decls with register specification we
2101 cannot decide unless their assembler names are the same. */
2102 if (DECL_REGISTER (base1)
2103 && DECL_REGISTER (base2)
2104 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2105 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2106 && DECL_ASSEMBLER_NAME_SET_P (base1)
2107 && DECL_ASSEMBLER_NAME_SET_P (base2))
2108 {
2109 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2110 return 1;
2111 return -1;
2112 }
2113
2114 /* Declarations of non-automatic variables may have aliases. All other
2115 decls are unique. */
2116 if (!decl_in_symtab_p (base1)
2117 || !decl_in_symtab_p (base2))
2118 return 0;
2119
2120 /* Don't cause symbols to be inserted by the act of checking. */
2121 symtab_node *node1 = symtab_node::get (base1);
2122 if (!node1)
2123 return 0;
2124 symtab_node *node2 = symtab_node::get (base2);
2125 if (!node2)
2126 return 0;
2127
2128 ret = node1->equal_address_to (node2, true);
2129 return ret;
2130 }
2131
2132 /* Same as compare_base_decls but for SYMBOL_REF. */
2133
2134 static int
2135 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2136 {
2137 tree x_decl = SYMBOL_REF_DECL (x_base);
2138 tree y_decl = SYMBOL_REF_DECL (y_base);
2139 bool binds_def = true;
2140
2141 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2142 return 1;
2143 if (x_decl && y_decl)
2144 return compare_base_decls (x_decl, y_decl);
2145 if (x_decl || y_decl)
2146 {
2147 if (!x_decl)
2148 {
2149 std::swap (x_decl, y_decl);
2150 std::swap (x_base, y_base);
2151 }
2152 /* We handle specially only section anchors and assume that other
2153 labels may overlap with user variables in an arbitrary way. */
2154 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2155 return -1;
2156 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2157 to ignore CONST_DECLs because they are readonly. */
2158 if (!VAR_P (x_decl)
2159 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2160 return 0;
2161
2162 symtab_node *x_node = symtab_node::get_create (x_decl)
2163 ->ultimate_alias_target ();
2164 /* External variable cannot be in section anchor. */
2165 if (!x_node->definition)
2166 return 0;
2167 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2168 /* If not in anchor, we can disambiguate. */
2169 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2170 return 0;
2171
2172 /* We have an alias of anchored variable. If it can be interposed;
2173 we must assume it may or may not alias its anchor. */
2174 binds_def = decl_binds_to_current_def_p (x_decl);
2175 }
2176 /* If we have variable in section anchor, we can compare by offset. */
2177 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2178 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2179 {
2180 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2181 return 0;
2182 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2183 return binds_def ? 1 : -1;
2184 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2185 return -1;
2186 return 0;
2187 }
2188 /* In general we assume that memory locations pointed to by different labels
2189 may overlap in undefined ways. */
2190 return -1;
2191 }
2192
2193 /* Return 0 if the addresses X and Y are known to point to different
2194 objects, 1 if they might be pointers to the same object. */
2195
2196 static int
2197 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2198 machine_mode x_mode, machine_mode y_mode)
2199 {
2200 /* If the address itself has no known base see if a known equivalent
2201 value has one. If either address still has no known base, nothing
2202 is known about aliasing. */
2203 if (x_base == 0)
2204 {
2205 rtx x_c;
2206
2207 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2208 return 1;
2209
2210 x_base = find_base_term (x_c);
2211 if (x_base == 0)
2212 return 1;
2213 }
2214
2215 if (y_base == 0)
2216 {
2217 rtx y_c;
2218 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2219 return 1;
2220
2221 y_base = find_base_term (y_c);
2222 if (y_base == 0)
2223 return 1;
2224 }
2225
2226 /* If the base addresses are equal nothing is known about aliasing. */
2227 if (rtx_equal_p (x_base, y_base))
2228 return 1;
2229
2230 /* The base addresses are different expressions. If they are not accessed
2231 via AND, there is no conflict. We can bring knowledge of object
2232 alignment into play here. For example, on alpha, "char a, b;" can
2233 alias one another, though "char a; long b;" cannot. AND addresses may
2234 implicitly alias surrounding objects; i.e. unaligned access in DImode
2235 via AND address can alias all surrounding object types except those
2236 with aligment 8 or higher. */
2237 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2238 return 1;
2239 if (GET_CODE (x) == AND
2240 && (!CONST_INT_P (XEXP (x, 1))
2241 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2242 return 1;
2243 if (GET_CODE (y) == AND
2244 && (!CONST_INT_P (XEXP (y, 1))
2245 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2246 return 1;
2247
2248 /* Differing symbols not accessed via AND never alias. */
2249 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2250 return compare_base_symbol_refs (x_base, y_base) != 0;
2251
2252 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2253 return 0;
2254
2255 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2256 return 0;
2257
2258 return 1;
2259 }
2260
2261 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2262 (or equal to) that of V. */
2263
2264 static bool
2265 refs_newer_value_p (const_rtx expr, rtx v)
2266 {
2267 int minuid = CSELIB_VAL_PTR (v)->uid;
2268 subrtx_iterator::array_type array;
2269 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2270 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2271 return true;
2272 return false;
2273 }
2274
2275 /* Convert the address X into something we can use. This is done by returning
2276 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2277 we call cselib to get a more useful rtx. */
2278
2279 rtx
2280 get_addr (rtx x)
2281 {
2282 cselib_val *v;
2283 struct elt_loc_list *l;
2284
2285 if (GET_CODE (x) != VALUE)
2286 {
2287 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2288 && GET_CODE (XEXP (x, 0)) == VALUE
2289 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2290 {
2291 rtx op0 = get_addr (XEXP (x, 0));
2292 if (op0 != XEXP (x, 0))
2293 {
2294 poly_int64 c;
2295 if (GET_CODE (x) == PLUS
2296 && poly_int_rtx_p (XEXP (x, 1), &c))
2297 return plus_constant (GET_MODE (x), op0, c);
2298 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2299 op0, XEXP (x, 1));
2300 }
2301 }
2302 return x;
2303 }
2304 v = CSELIB_VAL_PTR (x);
2305 if (v)
2306 {
2307 bool have_equivs = cselib_have_permanent_equivalences ();
2308 if (have_equivs)
2309 v = canonical_cselib_val (v);
2310 for (l = v->locs; l; l = l->next)
2311 if (CONSTANT_P (l->loc))
2312 return l->loc;
2313 for (l = v->locs; l; l = l->next)
2314 if (!REG_P (l->loc) && !MEM_P (l->loc)
2315 /* Avoid infinite recursion when potentially dealing with
2316 var-tracking artificial equivalences, by skipping the
2317 equivalences themselves, and not choosing expressions
2318 that refer to newer VALUEs. */
2319 && (!have_equivs
2320 || (GET_CODE (l->loc) != VALUE
2321 && !refs_newer_value_p (l->loc, x))))
2322 return l->loc;
2323 if (have_equivs)
2324 {
2325 for (l = v->locs; l; l = l->next)
2326 if (REG_P (l->loc)
2327 || (GET_CODE (l->loc) != VALUE
2328 && !refs_newer_value_p (l->loc, x)))
2329 return l->loc;
2330 /* Return the canonical value. */
2331 return v->val_rtx;
2332 }
2333 if (v->locs)
2334 return v->locs->loc;
2335 }
2336 return x;
2337 }
2338
2339 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2340 where SIZE is the size in bytes of the memory reference. If ADDR
2341 is not modified by the memory reference then ADDR is returned. */
2342
2343 static rtx
2344 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2345 {
2346 poly_int64 offset = 0;
2347
2348 switch (GET_CODE (addr))
2349 {
2350 case PRE_INC:
2351 offset = (n_refs + 1) * size;
2352 break;
2353 case PRE_DEC:
2354 offset = -(n_refs + 1) * size;
2355 break;
2356 case POST_INC:
2357 offset = n_refs * size;
2358 break;
2359 case POST_DEC:
2360 offset = -n_refs * size;
2361 break;
2362
2363 default:
2364 return addr;
2365 }
2366
2367 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2368 addr = canon_rtx (addr);
2369
2370 return addr;
2371 }
2372
2373 /* Return TRUE if an object X sized at XSIZE bytes and another object
2374 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2375 any of the sizes is zero, assume an overlap, otherwise use the
2376 absolute value of the sizes as the actual sizes. */
2377
2378 static inline bool
2379 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2380 {
2381 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2382 return true;
2383
2384 if (maybe_ge (c, 0))
2385 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2386 else
2387 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2388 }
2389
2390 /* Return one if X and Y (memory addresses) reference the
2391 same location in memory or if the references overlap.
2392 Return zero if they do not overlap, else return
2393 minus one in which case they still might reference the same location.
2394
2395 C is an offset accumulator. When
2396 C is nonzero, we are testing aliases between X and Y + C.
2397 XSIZE is the size in bytes of the X reference,
2398 similarly YSIZE is the size in bytes for Y.
2399 Expect that canon_rtx has been already called for X and Y.
2400
2401 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2402 referenced (the reference was BLKmode), so make the most pessimistic
2403 assumptions.
2404
2405 If XSIZE or YSIZE is negative, we may access memory outside the object
2406 being referenced as a side effect. This can happen when using AND to
2407 align memory references, as is done on the Alpha.
2408
2409 Nice to notice that varying addresses cannot conflict with fp if no
2410 local variables had their addresses taken, but that's too hard now.
2411
2412 ??? Contrary to the tree alias oracle this does not return
2413 one for X + non-constant and Y + non-constant when X and Y are equal.
2414 If that is fixed the TBAA hack for union type-punning can be removed. */
2415
2416 static int
2417 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2418 poly_int64 c)
2419 {
2420 if (GET_CODE (x) == VALUE)
2421 {
2422 if (REG_P (y))
2423 {
2424 struct elt_loc_list *l = NULL;
2425 if (CSELIB_VAL_PTR (x))
2426 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2427 l; l = l->next)
2428 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2429 break;
2430 if (l)
2431 x = y;
2432 else
2433 x = get_addr (x);
2434 }
2435 /* Don't call get_addr if y is the same VALUE. */
2436 else if (x != y)
2437 x = get_addr (x);
2438 }
2439 if (GET_CODE (y) == VALUE)
2440 {
2441 if (REG_P (x))
2442 {
2443 struct elt_loc_list *l = NULL;
2444 if (CSELIB_VAL_PTR (y))
2445 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2446 l; l = l->next)
2447 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2448 break;
2449 if (l)
2450 y = x;
2451 else
2452 y = get_addr (y);
2453 }
2454 /* Don't call get_addr if x is the same VALUE. */
2455 else if (y != x)
2456 y = get_addr (y);
2457 }
2458 if (GET_CODE (x) == HIGH)
2459 x = XEXP (x, 0);
2460 else if (GET_CODE (x) == LO_SUM)
2461 x = XEXP (x, 1);
2462 else
2463 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2464 if (GET_CODE (y) == HIGH)
2465 y = XEXP (y, 0);
2466 else if (GET_CODE (y) == LO_SUM)
2467 y = XEXP (y, 1);
2468 else
2469 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2470
2471 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2472 {
2473 int cmp = compare_base_symbol_refs (x,y);
2474
2475 /* If both decls are the same, decide by offsets. */
2476 if (cmp == 1)
2477 return offset_overlap_p (c, xsize, ysize);
2478 /* Assume a potential overlap for symbolic addresses that went
2479 through alignment adjustments (i.e., that have negative
2480 sizes), because we can't know how far they are from each
2481 other. */
2482 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2483 return -1;
2484 /* If decls are different or we know by offsets that there is no overlap,
2485 we win. */
2486 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2487 return 0;
2488 /* Decls may or may not be different and offsets overlap....*/
2489 return -1;
2490 }
2491 else if (rtx_equal_for_memref_p (x, y))
2492 {
2493 return offset_overlap_p (c, xsize, ysize);
2494 }
2495
2496 /* This code used to check for conflicts involving stack references and
2497 globals but the base address alias code now handles these cases. */
2498
2499 if (GET_CODE (x) == PLUS)
2500 {
2501 /* The fact that X is canonicalized means that this
2502 PLUS rtx is canonicalized. */
2503 rtx x0 = XEXP (x, 0);
2504 rtx x1 = XEXP (x, 1);
2505
2506 /* However, VALUEs might end up in different positions even in
2507 canonical PLUSes. Comparing their addresses is enough. */
2508 if (x0 == y)
2509 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2510 else if (x1 == y)
2511 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2512
2513 poly_int64 cx1, cy1;
2514 if (GET_CODE (y) == PLUS)
2515 {
2516 /* The fact that Y is canonicalized means that this
2517 PLUS rtx is canonicalized. */
2518 rtx y0 = XEXP (y, 0);
2519 rtx y1 = XEXP (y, 1);
2520
2521 if (x0 == y1)
2522 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2523 if (x1 == y0)
2524 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2525
2526 if (rtx_equal_for_memref_p (x1, y1))
2527 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2528 if (rtx_equal_for_memref_p (x0, y0))
2529 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2530 if (poly_int_rtx_p (x1, &cx1))
2531 {
2532 if (poly_int_rtx_p (y1, &cy1))
2533 return memrefs_conflict_p (xsize, x0, ysize, y0,
2534 c - cx1 + cy1);
2535 else
2536 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2537 }
2538 else if (poly_int_rtx_p (y1, &cy1))
2539 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2540
2541 return -1;
2542 }
2543 else if (poly_int_rtx_p (x1, &cx1))
2544 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2545 }
2546 else if (GET_CODE (y) == PLUS)
2547 {
2548 /* The fact that Y is canonicalized means that this
2549 PLUS rtx is canonicalized. */
2550 rtx y0 = XEXP (y, 0);
2551 rtx y1 = XEXP (y, 1);
2552
2553 if (x == y0)
2554 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2555 if (x == y1)
2556 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2557
2558 poly_int64 cy1;
2559 if (poly_int_rtx_p (y1, &cy1))
2560 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2561 else
2562 return -1;
2563 }
2564
2565 if (GET_CODE (x) == GET_CODE (y))
2566 switch (GET_CODE (x))
2567 {
2568 case MULT:
2569 {
2570 /* Handle cases where we expect the second operands to be the
2571 same, and check only whether the first operand would conflict
2572 or not. */
2573 rtx x0, y0;
2574 rtx x1 = canon_rtx (XEXP (x, 1));
2575 rtx y1 = canon_rtx (XEXP (y, 1));
2576 if (! rtx_equal_for_memref_p (x1, y1))
2577 return -1;
2578 x0 = canon_rtx (XEXP (x, 0));
2579 y0 = canon_rtx (XEXP (y, 0));
2580 if (rtx_equal_for_memref_p (x0, y0))
2581 return offset_overlap_p (c, xsize, ysize);
2582
2583 /* Can't properly adjust our sizes. */
2584 poly_int64 c1;
2585 if (!poly_int_rtx_p (x1, &c1)
2586 || !can_div_trunc_p (xsize, c1, &xsize)
2587 || !can_div_trunc_p (ysize, c1, &ysize)
2588 || !can_div_trunc_p (c, c1, &c))
2589 return -1;
2590 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2591 }
2592
2593 default:
2594 break;
2595 }
2596
2597 /* Deal with alignment ANDs by adjusting offset and size so as to
2598 cover the maximum range, without taking any previously known
2599 alignment into account. Make a size negative after such an
2600 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2601 assume a potential overlap, because they may end up in contiguous
2602 memory locations and the stricter-alignment access may span over
2603 part of both. */
2604 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2605 {
2606 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2607 unsigned HOST_WIDE_INT uc = sc;
2608 if (sc < 0 && pow2_or_zerop (-uc))
2609 {
2610 if (maybe_gt (xsize, 0))
2611 xsize = -xsize;
2612 if (maybe_ne (xsize, 0))
2613 xsize += sc + 1;
2614 c -= sc + 1;
2615 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2616 ysize, y, c);
2617 }
2618 }
2619 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2620 {
2621 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2622 unsigned HOST_WIDE_INT uc = sc;
2623 if (sc < 0 && pow2_or_zerop (-uc))
2624 {
2625 if (maybe_gt (ysize, 0))
2626 ysize = -ysize;
2627 if (maybe_ne (ysize, 0))
2628 ysize += sc + 1;
2629 c += sc + 1;
2630 return memrefs_conflict_p (xsize, x,
2631 ysize, canon_rtx (XEXP (y, 0)), c);
2632 }
2633 }
2634
2635 if (CONSTANT_P (x))
2636 {
2637 poly_int64 cx, cy;
2638 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2639 {
2640 c += cy - cx;
2641 return offset_overlap_p (c, xsize, ysize);
2642 }
2643
2644 if (GET_CODE (x) == CONST)
2645 {
2646 if (GET_CODE (y) == CONST)
2647 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2648 ysize, canon_rtx (XEXP (y, 0)), c);
2649 else
2650 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2651 ysize, y, c);
2652 }
2653 if (GET_CODE (y) == CONST)
2654 return memrefs_conflict_p (xsize, x, ysize,
2655 canon_rtx (XEXP (y, 0)), c);
2656
2657 /* Assume a potential overlap for symbolic addresses that went
2658 through alignment adjustments (i.e., that have negative
2659 sizes), because we can't know how far they are from each
2660 other. */
2661 if (CONSTANT_P (y))
2662 return (maybe_lt (xsize, 0)
2663 || maybe_lt (ysize, 0)
2664 || offset_overlap_p (c, xsize, ysize));
2665
2666 return -1;
2667 }
2668
2669 return -1;
2670 }
2671
2672 /* Functions to compute memory dependencies.
2673
2674 Since we process the insns in execution order, we can build tables
2675 to keep track of what registers are fixed (and not aliased), what registers
2676 are varying in known ways, and what registers are varying in unknown
2677 ways.
2678
2679 If both memory references are volatile, then there must always be a
2680 dependence between the two references, since their order cannot be
2681 changed. A volatile and non-volatile reference can be interchanged
2682 though.
2683
2684 We also must allow AND addresses, because they may generate accesses
2685 outside the object being referenced. This is used to generate aligned
2686 addresses from unaligned addresses, for instance, the alpha
2687 storeqi_unaligned pattern. */
2688
2689 /* Read dependence: X is read after read in MEM takes place. There can
2690 only be a dependence here if both reads are volatile, or if either is
2691 an explicit barrier. */
2692
2693 int
2694 read_dependence (const_rtx mem, const_rtx x)
2695 {
2696 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2697 return true;
2698 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2699 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2700 return true;
2701 return false;
2702 }
2703
2704 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2705
2706 static tree
2707 decl_for_component_ref (tree x)
2708 {
2709 do
2710 {
2711 x = TREE_OPERAND (x, 0);
2712 }
2713 while (x && TREE_CODE (x) == COMPONENT_REF);
2714
2715 return x && DECL_P (x) ? x : NULL_TREE;
2716 }
2717
2718 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2719 for the offset of the field reference. *KNOWN_P says whether the
2720 offset is known. */
2721
2722 static void
2723 adjust_offset_for_component_ref (tree x, bool *known_p,
2724 poly_int64 *offset)
2725 {
2726 if (!*known_p)
2727 return;
2728 do
2729 {
2730 tree xoffset = component_ref_field_offset (x);
2731 tree field = TREE_OPERAND (x, 1);
2732 if (!poly_int_tree_p (xoffset))
2733 {
2734 *known_p = false;
2735 return;
2736 }
2737
2738 poly_offset_int woffset
2739 = (wi::to_poly_offset (xoffset)
2740 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2741 >> LOG2_BITS_PER_UNIT)
2742 + *offset);
2743 if (!woffset.to_shwi (offset))
2744 {
2745 *known_p = false;
2746 return;
2747 }
2748
2749 x = TREE_OPERAND (x, 0);
2750 }
2751 while (x && TREE_CODE (x) == COMPONENT_REF);
2752 }
2753
2754 /* Return nonzero if we can determine the exprs corresponding to memrefs
2755 X and Y and they do not overlap.
2756 If LOOP_VARIANT is set, skip offset-based disambiguation */
2757
2758 int
2759 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2760 {
2761 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2762 rtx rtlx, rtly;
2763 rtx basex, basey;
2764 bool moffsetx_known_p, moffsety_known_p;
2765 poly_int64 moffsetx = 0, moffsety = 0;
2766 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2767
2768 /* Unless both have exprs, we can't tell anything. */
2769 if (exprx == 0 || expry == 0)
2770 return 0;
2771
2772 /* For spill-slot accesses make sure we have valid offsets. */
2773 if ((exprx == get_spill_slot_decl (false)
2774 && ! MEM_OFFSET_KNOWN_P (x))
2775 || (expry == get_spill_slot_decl (false)
2776 && ! MEM_OFFSET_KNOWN_P (y)))
2777 return 0;
2778
2779 /* If the field reference test failed, look at the DECLs involved. */
2780 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2781 if (moffsetx_known_p)
2782 moffsetx = MEM_OFFSET (x);
2783 if (TREE_CODE (exprx) == COMPONENT_REF)
2784 {
2785 tree t = decl_for_component_ref (exprx);
2786 if (! t)
2787 return 0;
2788 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2789 exprx = t;
2790 }
2791
2792 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2793 if (moffsety_known_p)
2794 moffsety = MEM_OFFSET (y);
2795 if (TREE_CODE (expry) == COMPONENT_REF)
2796 {
2797 tree t = decl_for_component_ref (expry);
2798 if (! t)
2799 return 0;
2800 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2801 expry = t;
2802 }
2803
2804 if (! DECL_P (exprx) || ! DECL_P (expry))
2805 return 0;
2806
2807 /* If we refer to different gimple registers, or one gimple register
2808 and one non-gimple-register, we know they can't overlap. First,
2809 gimple registers don't have their addresses taken. Now, there
2810 could be more than one stack slot for (different versions of) the
2811 same gimple register, but we can presumably tell they don't
2812 overlap based on offsets from stack base addresses elsewhere.
2813 It's important that we don't proceed to DECL_RTL, because gimple
2814 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2815 able to do anything about them since no SSA information will have
2816 remained to guide it. */
2817 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2818 return exprx != expry
2819 || (moffsetx_known_p && moffsety_known_p
2820 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2821 && !offset_overlap_p (moffsety - moffsetx,
2822 MEM_SIZE (x), MEM_SIZE (y)));
2823
2824 /* With invalid code we can end up storing into the constant pool.
2825 Bail out to avoid ICEing when creating RTL for this.
2826 See gfortran.dg/lto/20091028-2_0.f90. */
2827 if (TREE_CODE (exprx) == CONST_DECL
2828 || TREE_CODE (expry) == CONST_DECL)
2829 return 1;
2830
2831 /* If one decl is known to be a function or label in a function and
2832 the other is some kind of data, they can't overlap. */
2833 if ((TREE_CODE (exprx) == FUNCTION_DECL
2834 || TREE_CODE (exprx) == LABEL_DECL)
2835 != (TREE_CODE (expry) == FUNCTION_DECL
2836 || TREE_CODE (expry) == LABEL_DECL))
2837 return 1;
2838
2839 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2840 living in multiple places), we can't tell anything. Exception
2841 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2842 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2843 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2844 return 0;
2845
2846 rtlx = DECL_RTL (exprx);
2847 rtly = DECL_RTL (expry);
2848
2849 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2850 can't overlap unless they are the same because we never reuse that part
2851 of the stack frame used for locals for spilled pseudos. */
2852 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2853 && ! rtx_equal_p (rtlx, rtly))
2854 return 1;
2855
2856 /* If we have MEMs referring to different address spaces (which can
2857 potentially overlap), we cannot easily tell from the addresses
2858 whether the references overlap. */
2859 if (MEM_P (rtlx) && MEM_P (rtly)
2860 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2861 return 0;
2862
2863 /* Get the base and offsets of both decls. If either is a register, we
2864 know both are and are the same, so use that as the base. The only
2865 we can avoid overlap is if we can deduce that they are nonoverlapping
2866 pieces of that decl, which is very rare. */
2867 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2868 basex = strip_offset_and_add (basex, &offsetx);
2869
2870 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2871 basey = strip_offset_and_add (basey, &offsety);
2872
2873 /* If the bases are different, we know they do not overlap if both
2874 are constants or if one is a constant and the other a pointer into the
2875 stack frame. Otherwise a different base means we can't tell if they
2876 overlap or not. */
2877 if (compare_base_decls (exprx, expry) == 0)
2878 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2879 || (CONSTANT_P (basex) && REG_P (basey)
2880 && REGNO_PTR_FRAME_P (REGNO (basey)))
2881 || (CONSTANT_P (basey) && REG_P (basex)
2882 && REGNO_PTR_FRAME_P (REGNO (basex))));
2883
2884 /* Offset based disambiguation not appropriate for loop invariant */
2885 if (loop_invariant)
2886 return 0;
2887
2888 /* Offset based disambiguation is OK even if we do not know that the
2889 declarations are necessarily different
2890 (i.e. compare_base_decls (exprx, expry) == -1) */
2891
2892 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2893 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2894 : -1);
2895 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2896 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2897 : -1);
2898
2899 /* If we have an offset for either memref, it can update the values computed
2900 above. */
2901 if (moffsetx_known_p)
2902 offsetx += moffsetx, sizex -= moffsetx;
2903 if (moffsety_known_p)
2904 offsety += moffsety, sizey -= moffsety;
2905
2906 /* If a memref has both a size and an offset, we can use the smaller size.
2907 We can't do this if the offset isn't known because we must view this
2908 memref as being anywhere inside the DECL's MEM. */
2909 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2910 sizex = MEM_SIZE (x);
2911 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2912 sizey = MEM_SIZE (y);
2913
2914 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2915 }
2916
2917 /* Helper for true_dependence and canon_true_dependence.
2918 Checks for true dependence: X is read after store in MEM takes place.
2919
2920 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2921 NULL_RTX, and the canonical addresses of MEM and X are both computed
2922 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2923
2924 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2925
2926 Returns 1 if there is a true dependence, 0 otherwise. */
2927
2928 static int
2929 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2930 const_rtx x, rtx x_addr, bool mem_canonicalized)
2931 {
2932 rtx true_mem_addr;
2933 rtx base;
2934 int ret;
2935
2936 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2937 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2938
2939 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2940 return 1;
2941
2942 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2943 This is used in epilogue deallocation functions, and in cselib. */
2944 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2945 return 1;
2946 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2947 return 1;
2948 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2949 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2950 return 1;
2951
2952 if (! x_addr)
2953 x_addr = XEXP (x, 0);
2954 x_addr = get_addr (x_addr);
2955
2956 if (! mem_addr)
2957 {
2958 mem_addr = XEXP (mem, 0);
2959 if (mem_mode == VOIDmode)
2960 mem_mode = GET_MODE (mem);
2961 }
2962 true_mem_addr = get_addr (mem_addr);
2963
2964 /* Read-only memory is by definition never modified, and therefore can't
2965 conflict with anything. However, don't assume anything when AND
2966 addresses are involved and leave to the code below to determine
2967 dependence. We don't expect to find read-only set on MEM, but
2968 stupid user tricks can produce them, so don't die. */
2969 if (MEM_READONLY_P (x)
2970 && GET_CODE (x_addr) != AND
2971 && GET_CODE (true_mem_addr) != AND)
2972 return 0;
2973
2974 /* If we have MEMs referring to different address spaces (which can
2975 potentially overlap), we cannot easily tell from the addresses
2976 whether the references overlap. */
2977 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2978 return 1;
2979
2980 base = find_base_term (x_addr);
2981 if (base && (GET_CODE (base) == LABEL_REF
2982 || (GET_CODE (base) == SYMBOL_REF
2983 && CONSTANT_POOL_ADDRESS_P (base))))
2984 return 0;
2985
2986 rtx mem_base = find_base_term (true_mem_addr);
2987 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2988 GET_MODE (x), mem_mode))
2989 return 0;
2990
2991 x_addr = canon_rtx (x_addr);
2992 if (!mem_canonicalized)
2993 mem_addr = canon_rtx (true_mem_addr);
2994
2995 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2996 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2997 return ret;
2998
2999 if (mems_in_disjoint_alias_sets_p (x, mem))
3000 return 0;
3001
3002 if (nonoverlapping_memrefs_p (mem, x, false))
3003 return 0;
3004
3005 return rtx_refs_may_alias_p (x, mem, true);
3006 }
3007
3008 /* True dependence: X is read after store in MEM takes place. */
3009
3010 int
3011 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
3012 {
3013 return true_dependence_1 (mem, mem_mode, NULL_RTX,
3014 x, NULL_RTX, /*mem_canonicalized=*/false);
3015 }
3016
3017 /* Canonical true dependence: X is read after store in MEM takes place.
3018 Variant of true_dependence which assumes MEM has already been
3019 canonicalized (hence we no longer do that here).
3020 The mem_addr argument has been added, since true_dependence_1 computed
3021 this value prior to canonicalizing. */
3022
3023 int
3024 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3025 const_rtx x, rtx x_addr)
3026 {
3027 return true_dependence_1 (mem, mem_mode, mem_addr,
3028 x, x_addr, /*mem_canonicalized=*/true);
3029 }
3030
3031 /* Returns nonzero if a write to X might alias a previous read from
3032 (or, if WRITEP is true, a write to) MEM.
3033 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3034 and X_MODE the mode for that access.
3035 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3036
3037 static int
3038 write_dependence_p (const_rtx mem,
3039 const_rtx x, machine_mode x_mode, rtx x_addr,
3040 bool mem_canonicalized, bool x_canonicalized, bool writep)
3041 {
3042 rtx mem_addr;
3043 rtx true_mem_addr, true_x_addr;
3044 rtx base;
3045 int ret;
3046
3047 gcc_checking_assert (x_canonicalized
3048 ? (x_addr != NULL_RTX
3049 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3050 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3051
3052 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3053 return 1;
3054
3055 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3056 This is used in epilogue deallocation functions. */
3057 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3058 return 1;
3059 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3060 return 1;
3061 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3062 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3063 return 1;
3064
3065 if (!x_addr)
3066 x_addr = XEXP (x, 0);
3067 true_x_addr = get_addr (x_addr);
3068
3069 mem_addr = XEXP (mem, 0);
3070 true_mem_addr = get_addr (mem_addr);
3071
3072 /* A read from read-only memory can't conflict with read-write memory.
3073 Don't assume anything when AND addresses are involved and leave to
3074 the code below to determine dependence. */
3075 if (!writep
3076 && MEM_READONLY_P (mem)
3077 && GET_CODE (true_x_addr) != AND
3078 && GET_CODE (true_mem_addr) != AND)
3079 return 0;
3080
3081 /* If we have MEMs referring to different address spaces (which can
3082 potentially overlap), we cannot easily tell from the addresses
3083 whether the references overlap. */
3084 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3085 return 1;
3086
3087 base = find_base_term (true_mem_addr);
3088 if (! writep
3089 && base
3090 && (GET_CODE (base) == LABEL_REF
3091 || (GET_CODE (base) == SYMBOL_REF
3092 && CONSTANT_POOL_ADDRESS_P (base))))
3093 return 0;
3094
3095 rtx x_base = find_base_term (true_x_addr);
3096 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3097 GET_MODE (x), GET_MODE (mem)))
3098 return 0;
3099
3100 if (!x_canonicalized)
3101 {
3102 x_addr = canon_rtx (true_x_addr);
3103 x_mode = GET_MODE (x);
3104 }
3105 if (!mem_canonicalized)
3106 mem_addr = canon_rtx (true_mem_addr);
3107
3108 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3109 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3110 return ret;
3111
3112 if (nonoverlapping_memrefs_p (x, mem, false))
3113 return 0;
3114
3115 return rtx_refs_may_alias_p (x, mem, false);
3116 }
3117
3118 /* Anti dependence: X is written after read in MEM takes place. */
3119
3120 int
3121 anti_dependence (const_rtx mem, const_rtx x)
3122 {
3123 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3124 /*mem_canonicalized=*/false,
3125 /*x_canonicalized*/false, /*writep=*/false);
3126 }
3127
3128 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3129 Also, consider X in X_MODE (which might be from an enclosing
3130 STRICT_LOW_PART / ZERO_EXTRACT).
3131 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3132
3133 int
3134 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3135 const_rtx x, machine_mode x_mode, rtx x_addr)
3136 {
3137 return write_dependence_p (mem, x, x_mode, x_addr,
3138 mem_canonicalized, /*x_canonicalized=*/true,
3139 /*writep=*/false);
3140 }
3141
3142 /* Output dependence: X is written after store in MEM takes place. */
3143
3144 int
3145 output_dependence (const_rtx mem, const_rtx x)
3146 {
3147 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3148 /*mem_canonicalized=*/false,
3149 /*x_canonicalized*/false, /*writep=*/true);
3150 }
3151
3152 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3153 Also, consider X in X_MODE (which might be from an enclosing
3154 STRICT_LOW_PART / ZERO_EXTRACT).
3155 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3156
3157 int
3158 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3159 const_rtx x, machine_mode x_mode, rtx x_addr)
3160 {
3161 return write_dependence_p (mem, x, x_mode, x_addr,
3162 mem_canonicalized, /*x_canonicalized=*/true,
3163 /*writep=*/true);
3164 }
3165 \f
3166
3167
3168 /* Check whether X may be aliased with MEM. Don't do offset-based
3169 memory disambiguation & TBAA. */
3170 int
3171 may_alias_p (const_rtx mem, const_rtx x)
3172 {
3173 rtx x_addr, mem_addr;
3174
3175 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3176 return 1;
3177
3178 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3179 This is used in epilogue deallocation functions. */
3180 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3181 return 1;
3182 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3183 return 1;
3184 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3185 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3186 return 1;
3187
3188 x_addr = XEXP (x, 0);
3189 x_addr = get_addr (x_addr);
3190
3191 mem_addr = XEXP (mem, 0);
3192 mem_addr = get_addr (mem_addr);
3193
3194 /* Read-only memory is by definition never modified, and therefore can't
3195 conflict with anything. However, don't assume anything when AND
3196 addresses are involved and leave to the code below to determine
3197 dependence. We don't expect to find read-only set on MEM, but
3198 stupid user tricks can produce them, so don't die. */
3199 if (MEM_READONLY_P (x)
3200 && GET_CODE (x_addr) != AND
3201 && GET_CODE (mem_addr) != AND)
3202 return 0;
3203
3204 /* If we have MEMs referring to different address spaces (which can
3205 potentially overlap), we cannot easily tell from the addresses
3206 whether the references overlap. */
3207 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3208 return 1;
3209
3210 rtx x_base = find_base_term (x_addr);
3211 rtx mem_base = find_base_term (mem_addr);
3212 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3213 GET_MODE (x), GET_MODE (mem_addr)))
3214 return 0;
3215
3216 if (nonoverlapping_memrefs_p (mem, x, true))
3217 return 0;
3218
3219 /* TBAA not valid for loop_invarint */
3220 return rtx_refs_may_alias_p (x, mem, false);
3221 }
3222
3223 void
3224 init_alias_target (void)
3225 {
3226 int i;
3227
3228 if (!arg_base_value)
3229 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3230
3231 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3232
3233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3234 /* Check whether this register can hold an incoming pointer
3235 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3236 numbers, so translate if necessary due to register windows. */
3237 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3238 && targetm.hard_regno_mode_ok (i, Pmode))
3239 static_reg_base_value[i] = arg_base_value;
3240
3241 /* RTL code is required to be consistent about whether it uses the
3242 stack pointer, the frame pointer or the argument pointer to
3243 access a given area of the frame. We can therefore use the
3244 base address to distinguish between the different areas. */
3245 static_reg_base_value[STACK_POINTER_REGNUM]
3246 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3247 static_reg_base_value[ARG_POINTER_REGNUM]
3248 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3249 static_reg_base_value[FRAME_POINTER_REGNUM]
3250 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3251
3252 /* The above rules extend post-reload, with eliminations applying
3253 consistently to each of the three pointers. Cope with cases in
3254 which the frame pointer is eliminated to the hard frame pointer
3255 rather than the stack pointer. */
3256 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3257 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3258 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3259 }
3260
3261 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3262 to be memory reference. */
3263 static bool memory_modified;
3264 static void
3265 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3266 {
3267 if (MEM_P (x))
3268 {
3269 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3270 memory_modified = true;
3271 }
3272 }
3273
3274
3275 /* Return true when INSN possibly modify memory contents of MEM
3276 (i.e. address can be modified). */
3277 bool
3278 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3279 {
3280 if (!INSN_P (insn))
3281 return false;
3282 /* Conservatively assume all non-readonly MEMs might be modified in
3283 calls. */
3284 if (CALL_P (insn))
3285 return true;
3286 memory_modified = false;
3287 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3288 return memory_modified;
3289 }
3290
3291 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3292 array. */
3293
3294 void
3295 init_alias_analysis (void)
3296 {
3297 unsigned int maxreg = max_reg_num ();
3298 int changed, pass;
3299 int i;
3300 unsigned int ui;
3301 rtx_insn *insn;
3302 rtx val;
3303 int rpo_cnt;
3304 int *rpo;
3305
3306 timevar_push (TV_ALIAS_ANALYSIS);
3307
3308 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3309 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3310 bitmap_clear (reg_known_equiv_p);
3311
3312 /* If we have memory allocated from the previous run, use it. */
3313 if (old_reg_base_value)
3314 reg_base_value = old_reg_base_value;
3315
3316 if (reg_base_value)
3317 reg_base_value->truncate (0);
3318
3319 vec_safe_grow_cleared (reg_base_value, maxreg);
3320
3321 new_reg_base_value = XNEWVEC (rtx, maxreg);
3322 reg_seen = sbitmap_alloc (maxreg);
3323
3324 /* The basic idea is that each pass through this loop will use the
3325 "constant" information from the previous pass to propagate alias
3326 information through another level of assignments.
3327
3328 The propagation is done on the CFG in reverse post-order, to propagate
3329 things forward as far as possible in each iteration.
3330
3331 This could get expensive if the assignment chains are long. Maybe
3332 we should throttle the number of iterations, possibly based on
3333 the optimization level or flag_expensive_optimizations.
3334
3335 We could propagate more information in the first pass by making use
3336 of DF_REG_DEF_COUNT to determine immediately that the alias information
3337 for a pseudo is "constant".
3338
3339 A program with an uninitialized variable can cause an infinite loop
3340 here. Instead of doing a full dataflow analysis to detect such problems
3341 we just cap the number of iterations for the loop.
3342
3343 The state of the arrays for the set chain in question does not matter
3344 since the program has undefined behavior. */
3345
3346 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3347 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3348
3349 /* The prologue/epilogue insns are not threaded onto the
3350 insn chain until after reload has completed. Thus,
3351 there is no sense wasting time checking if INSN is in
3352 the prologue/epilogue until after reload has completed. */
3353 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3354 || targetm.have_epilogue ())
3355 && reload_completed);
3356
3357 pass = 0;
3358 do
3359 {
3360 /* Assume nothing will change this iteration of the loop. */
3361 changed = 0;
3362
3363 /* We want to assign the same IDs each iteration of this loop, so
3364 start counting from one each iteration of the loop. */
3365 unique_id = 1;
3366
3367 /* We're at the start of the function each iteration through the
3368 loop, so we're copying arguments. */
3369 copying_arguments = true;
3370
3371 /* Wipe the potential alias information clean for this pass. */
3372 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3373
3374 /* Wipe the reg_seen array clean. */
3375 bitmap_clear (reg_seen);
3376
3377 /* Initialize the alias information for this pass. */
3378 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3379 if (static_reg_base_value[i]
3380 /* Don't treat the hard frame pointer as special if we
3381 eliminated the frame pointer to the stack pointer instead. */
3382 && !(i == HARD_FRAME_POINTER_REGNUM
3383 && reload_completed
3384 && !frame_pointer_needed
3385 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3386 STACK_POINTER_REGNUM)))
3387 {
3388 new_reg_base_value[i] = static_reg_base_value[i];
3389 bitmap_set_bit (reg_seen, i);
3390 }
3391
3392 /* Walk the insns adding values to the new_reg_base_value array. */
3393 for (i = 0; i < rpo_cnt; i++)
3394 {
3395 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3396 FOR_BB_INSNS (bb, insn)
3397 {
3398 if (NONDEBUG_INSN_P (insn))
3399 {
3400 rtx note, set;
3401
3402 if (could_be_prologue_epilogue
3403 && prologue_epilogue_contains (insn))
3404 continue;
3405
3406 /* If this insn has a noalias note, process it, Otherwise,
3407 scan for sets. A simple set will have no side effects
3408 which could change the base value of any other register. */
3409
3410 if (GET_CODE (PATTERN (insn)) == SET
3411 && REG_NOTES (insn) != 0
3412 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3413 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3414 else
3415 note_stores (PATTERN (insn), record_set, NULL);
3416
3417 set = single_set (insn);
3418
3419 if (set != 0
3420 && REG_P (SET_DEST (set))
3421 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3422 {
3423 unsigned int regno = REGNO (SET_DEST (set));
3424 rtx src = SET_SRC (set);
3425 rtx t;
3426
3427 note = find_reg_equal_equiv_note (insn);
3428 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3429 && DF_REG_DEF_COUNT (regno) != 1)
3430 note = NULL_RTX;
3431
3432 poly_int64 offset;
3433 if (note != NULL_RTX
3434 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3435 && ! rtx_varies_p (XEXP (note, 0), 1)
3436 && ! reg_overlap_mentioned_p (SET_DEST (set),
3437 XEXP (note, 0)))
3438 {
3439 set_reg_known_value (regno, XEXP (note, 0));
3440 set_reg_known_equiv_p (regno,
3441 REG_NOTE_KIND (note) == REG_EQUIV);
3442 }
3443 else if (DF_REG_DEF_COUNT (regno) == 1
3444 && GET_CODE (src) == PLUS
3445 && REG_P (XEXP (src, 0))
3446 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3447 && poly_int_rtx_p (XEXP (src, 1), &offset))
3448 {
3449 t = plus_constant (GET_MODE (src), t, offset);
3450 set_reg_known_value (regno, t);
3451 set_reg_known_equiv_p (regno, false);
3452 }
3453 else if (DF_REG_DEF_COUNT (regno) == 1
3454 && ! rtx_varies_p (src, 1))
3455 {
3456 set_reg_known_value (regno, src);
3457 set_reg_known_equiv_p (regno, false);
3458 }
3459 }
3460 }
3461 else if (NOTE_P (insn)
3462 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3463 copying_arguments = false;
3464 }
3465 }
3466
3467 /* Now propagate values from new_reg_base_value to reg_base_value. */
3468 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3469
3470 for (ui = 0; ui < maxreg; ui++)
3471 {
3472 if (new_reg_base_value[ui]
3473 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3474 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3475 {
3476 (*reg_base_value)[ui] = new_reg_base_value[ui];
3477 changed = 1;
3478 }
3479 }
3480 }
3481 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3482 XDELETEVEC (rpo);
3483
3484 /* Fill in the remaining entries. */
3485 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3486 {
3487 int regno = i + FIRST_PSEUDO_REGISTER;
3488 if (! val)
3489 set_reg_known_value (regno, regno_reg_rtx[regno]);
3490 }
3491
3492 /* Clean up. */
3493 free (new_reg_base_value);
3494 new_reg_base_value = 0;
3495 sbitmap_free (reg_seen);
3496 reg_seen = 0;
3497 timevar_pop (TV_ALIAS_ANALYSIS);
3498 }
3499
3500 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3501 Special API for var-tracking pass purposes. */
3502
3503 void
3504 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3505 {
3506 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3507 }
3508
3509 void
3510 end_alias_analysis (void)
3511 {
3512 old_reg_base_value = reg_base_value;
3513 vec_free (reg_known_value);
3514 sbitmap_free (reg_known_equiv_p);
3515 }
3516
3517 void
3518 dump_alias_stats_in_alias_c (FILE *s)
3519 {
3520 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3521 " %llu are in alias set 0\n"
3522 " %llu queries asked about the same object\n"
3523 " %llu queries asked about the same alias set\n"
3524 " %llu access volatile\n"
3525 " %llu are dependent in the DAG\n"
3526 " %llu are aritificially in conflict with void *\n",
3527 alias_stats.num_disambiguated,
3528 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3529 + alias_stats.num_same_objects + alias_stats.num_volatile
3530 + alias_stats.num_dag + alias_stats.num_disambiguated
3531 + alias_stats.num_universal,
3532 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3533 alias_stats.num_same_objects, alias_stats.num_volatile,
3534 alias_stats.num_dag, alias_stats.num_universal);
3535 }
3536 #include "gt-alias.h"
This page took 0.193127 seconds and 5 git commands to generate.