]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/types.ads
[Ada] Clean up uses of Esize and RM_Size
[gcc.git] / gcc / ada / types.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- T Y P E S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- This package contains host independent type definitions which are used
27 -- in more than one unit in the compiler. They are gathered here for easy
28 -- reference, although in some cases the full description is found in the
29 -- relevant module which implements the definition. The main reason that they
30 -- are not in their "natural" specs is that this would cause a lot of inter-
31 -- spec dependencies, and in particular some awkward circular dependencies
32 -- would have to be dealt with.
33
34 -- WARNING: There is a C version of this package. Any changes to this source
35 -- file must be properly reflected in the C header file types.h
36
37 -- Note: the declarations in this package reflect an expectation that the host
38 -- machine has an efficient integer base type with a range at least 32 bits
39 -- 2s-complement. If there are any machines for which this is not a correct
40 -- assumption, a significant number of changes will be required.
41
42 with System;
43 with Unchecked_Conversion;
44 with Unchecked_Deallocation;
45
46 package Types is
47 pragma Preelaborate;
48
49 -------------------------------
50 -- General Use Integer Types --
51 -------------------------------
52
53 type Int is range -2 ** 31 .. +2 ** 31 - 1;
54 -- Signed 32-bit integer
55
56 subtype Nat is Int range 0 .. Int'Last;
57 -- Non-negative Int values
58
59 subtype Pos is Int range 1 .. Int'Last;
60 -- Positive Int values
61
62 subtype Nonzero_Int is Int with Predicate => Nonzero_Int /= 0;
63
64 type Word is mod 2 ** 32;
65 -- Unsigned 32-bit integer
66
67 type Short is range -32768 .. +32767;
68 for Short'Size use 16;
69 -- 16-bit signed integer
70
71 type Byte is mod 2 ** 8;
72 for Byte'Size use 8;
73 -- 8-bit unsigned integer
74
75 type size_t is mod 2 ** Standard'Address_Size;
76 -- Memory size value, for use in calls to C routines
77
78 --------------------------------------
79 -- 8-Bit Character and String Types --
80 --------------------------------------
81
82 -- We use Standard.Character and Standard.String freely, since we are
83 -- compiling ourselves, and we properly implement the required 8-bit
84 -- character code as required in Ada 95. This section defines a few
85 -- general use constants and subtypes.
86
87 EOF : constant Character := ASCII.SUB;
88 -- The character SUB (16#1A#) is used in DOS and other systems derived
89 -- from DOS (XP, NT etc) to signal the end of a text file. Internally
90 -- all source files are ended by an EOF character, even on Unix systems.
91 -- An EOF character acts as the end of file only as the last character
92 -- of a source buffer, in any other position, it is treated as a blank
93 -- if it appears between tokens, and as an illegal character otherwise.
94 -- This makes life easier dealing with files that originated from DOS,
95 -- including concatenated files with interspersed EOF characters.
96
97 subtype Graphic_Character is Character range ' ' .. '~';
98 -- Graphic characters, as defined in ARM
99
100 subtype Line_Terminator is Character range ASCII.LF .. ASCII.CR;
101 -- Line terminator characters (LF, VT, FF, CR). For further details, see
102 -- the extensive discussion of line termination in the Sinput spec.
103
104 subtype Upper_Half_Character is
105 Character range Character'Val (16#80#) .. Character'Val (16#FF#);
106 -- 8-bit Characters with the upper bit set
107
108 type Character_Ptr is access all Character;
109 type String_Ptr is access all String;
110 type String_Ptr_Const is access constant String;
111 -- Standard character and string pointers
112
113 procedure Free is new Unchecked_Deallocation (String, String_Ptr);
114 -- Procedure for freeing dynamically allocated String values
115
116 subtype Big_String is String (Positive);
117 type Big_String_Ptr is access all Big_String;
118 -- Virtual type for handling imported big strings. Note that we should
119 -- never have any allocators for this type, but we don't give a storage
120 -- size of zero, since there are legitimate deallocations going on.
121
122 function To_Big_String_Ptr is
123 new Unchecked_Conversion (System.Address, Big_String_Ptr);
124 -- Used to obtain Big_String_Ptr values from external addresses
125
126 subtype Word_Hex_String is String (1 .. 8);
127 -- Type used to represent Word value as 8 hex digits, with lower case
128 -- letters for the alphabetic cases.
129
130 function Get_Hex_String (W : Word) return Word_Hex_String;
131 -- Convert word value to 8-character hex string
132
133 -----------------------------------------
134 -- Types Used for Text Buffer Handling --
135 -----------------------------------------
136
137 -- We cannot use type String for text buffers, since we must use the
138 -- standard 32-bit integer as an index value, since we count on all index
139 -- values being the same size.
140
141 type Text_Ptr is new Int;
142 -- Type used for subscripts in text buffer
143
144 type Text_Buffer is array (Text_Ptr range <>) of Character;
145 -- Text buffer used to hold source file or library information file
146
147 type Text_Buffer_Ptr is access all Text_Buffer;
148 -- Text buffers for input files are allocated dynamically and this type
149 -- is used to reference these text buffers.
150
151 procedure Free is new Unchecked_Deallocation (Text_Buffer, Text_Buffer_Ptr);
152 -- Procedure for freeing dynamically allocated text buffers
153
154 ------------------------------------------
155 -- Types Used for Source Input Handling --
156 ------------------------------------------
157
158 type Logical_Line_Number is range 0 .. Int'Last;
159 for Logical_Line_Number'Size use 32;
160 -- Line number type, used for storing logical line numbers (i.e. line
161 -- numbers that include effects of any Source_Reference pragmas in the
162 -- source file). The value zero indicates a line containing a source
163 -- reference pragma.
164
165 No_Line_Number : constant Logical_Line_Number := 0;
166 -- Special value used to indicate no line number
167
168 type Physical_Line_Number is range 1 .. Int'Last;
169 for Physical_Line_Number'Size use 32;
170 -- Line number type, used for storing physical line numbers (i.e. line
171 -- numbers in the physical file being compiled, unaffected by the presence
172 -- of source reference pragmas).
173
174 type Column_Number is range 0 .. 32767;
175 for Column_Number'Size use 16;
176 -- Column number (assume that 2**15 - 1 is large enough). The range for
177 -- this type is used to compute Hostparm.Max_Line_Length. See also the
178 -- processing for -gnatyM in Stylesw).
179
180 No_Column_Number : constant Column_Number := 0;
181 -- Special value used to indicate no column number
182
183 Source_Align : constant := 2 ** 12;
184 -- Alignment requirement for source buffers (by keeping source buffers
185 -- aligned, we can optimize the implementation of Get_Source_File_Index.
186 -- See this routine in Sinput for details.
187
188 subtype Source_Buffer is Text_Buffer;
189 -- Type used to store text of a source file. The buffer for the main
190 -- source (the source specified on the command line) has a lower bound
191 -- starting at zero. Subsequent subsidiary sources have lower bounds
192 -- which are one greater than the previous upper bound, rounded up to
193 -- a multiple of Source_Align.
194
195 type Source_Buffer_Ptr_Var is access all Source_Buffer;
196 type Source_Buffer_Ptr is access constant Source_Buffer;
197 -- Pointer to source buffer. Source_Buffer_Ptr_Var is used for allocation
198 -- and deallocation; Source_Buffer_Ptr is used for all other uses of source
199 -- buffers.
200
201 function Null_Source_Buffer_Ptr (X : Source_Buffer_Ptr) return Boolean;
202 -- True if X = null
203
204 function Source_Buffer_Ptr_Equal (X, Y : Source_Buffer_Ptr) return Boolean
205 renames "=";
206 -- Squirrel away the predefined "=", for use in Null_Source_Buffer_Ptr.
207 -- Do not call this elsewhere.
208
209 function "=" (X, Y : Source_Buffer_Ptr) return Boolean is abstract;
210 -- Make "=" abstract. Note that this makes "/=" abstract as well. This is a
211 -- vestige of the zero-origin array indexing we used to use, where "=" is
212 -- always wrong (including the one in Null_Source_Buffer_Ptr). We keep this
213 -- just because we never need to compare Source_Buffer_Ptrs other than to
214 -- null.
215
216 subtype Source_Ptr is Text_Ptr;
217 -- Type used to represent a source location, which is a subscript of a
218 -- character in the source buffer. As noted above, different source buffers
219 -- have different ranges, so it is possible to tell from a Source_Ptr value
220 -- which source it refers to. Note that negative numbers are allowed to
221 -- accommodate the following special values.
222
223 type Source_Span is record
224 Ptr, First, Last : Source_Ptr;
225 end record;
226 -- Type used to represent a source span, consisting in a main location Ptr,
227 -- with a First and Last location, such that Ptr in First .. Last
228
229 function To_Span (Loc : Source_Ptr) return Source_Span is ((others => Loc));
230 function To_Span (Ptr, First, Last : Source_Ptr) return Source_Span is
231 ((Ptr, First, Last));
232
233 No_Location : constant Source_Ptr := -1;
234 -- Value used to indicate no source position set in a node. A test for a
235 -- Source_Ptr value being > No_Location is the approved way to test for a
236 -- standard value that does not include No_Location or any of the following
237 -- special definitions. One important use of No_Location is to label
238 -- generated nodes that we don't want the debugger to see in normal mode
239 -- (very often we conditionalize so that we set No_Location in normal mode
240 -- and the corresponding source line in -gnatD mode).
241
242 Standard_Location : constant Source_Ptr := -2;
243 -- Used for all nodes in the representation of package Standard other than
244 -- nodes representing the contents of Standard.ASCII. Note that testing for
245 -- a value being <= Standard_Location tests for both Standard_Location and
246 -- for Standard_ASCII_Location.
247
248 Standard_ASCII_Location : constant Source_Ptr := -3;
249 -- Used for all nodes in the presentation of package Standard.ASCII
250
251 System_Location : constant Source_Ptr := -4;
252 -- Used to identify locations of pragmas scanned by Targparm, where we know
253 -- the location is in System, but we don't know exactly what line.
254
255 First_Source_Ptr : constant Source_Ptr := 0;
256 -- Starting source pointer index value for first source program
257
258 -------------------------------------
259 -- Range Definitions for Tree Data --
260 -------------------------------------
261
262 -- The tree has fields that can hold any of the following types:
263
264 -- Pointers to other tree nodes (type Node_Id)
265 -- List pointers (type List_Id)
266 -- Element list pointers (type Elist_Id)
267 -- Names (type Name_Id)
268 -- Strings (type String_Id)
269 -- Universal integers (type Uint)
270 -- Universal reals (type Ureal)
271
272 -- These types are represented as integer indices into various tables.
273 -- However, they should be treated as private, except in a few documented
274 -- cases. In particular it is usually inappropriate to perform arithmetic
275 -- operations using these types. One exception is in computing hash
276 -- functions of these types.
277
278 -- In most contexts, the strongly typed interface determines which of these
279 -- types is present. However, there are some situations (involving untyped
280 -- traversals of the tree), where it is convenient to be easily able to
281 -- distinguish these values. The underlying representation in all cases is
282 -- an integer type Union_Id, and we ensure that the range of the various
283 -- possible values for each of the above types is disjoint (except that
284 -- List_Id and Node_Id overlap at Empty) so that this distinction is
285 -- possible.
286
287 -- Note: it is also helpful for debugging purposes to make these ranges
288 -- distinct. If a bug leads to misidentification of a value, then it will
289 -- typically result in an out of range value and a Constraint_Error.
290
291 -- The range of Node_Id is most of the nonnegative integers. The other
292 -- ranges are negative. Uint has a very large range, because a substantial
293 -- part of this range is used to store direct values; see Uintp for
294 -- details. The other types have 100 million values, which should be
295 -- plenty.
296
297 type Union_Id is new Int;
298 -- The type in the tree for a union of possible ID values
299
300 -- Following are the Low and High bounds of the various ranges.
301
302 List_Low_Bound : constant := -099_999_999;
303 -- The List_Id values are subscripts into an array of list headers which
304 -- has List_Low_Bound as its lower bound.
305
306 List_High_Bound : constant := 0;
307 -- Maximum List_Id subscript value. The ranges of List_Id and Node_Id
308 -- overlap by one element (with value zero), which is used both for the
309 -- Empty node, and for No_List. The fact that the same value is used is
310 -- convenient because it means that the default value of Empty applies to
311 -- both nodes and lists, and also is more efficient to test for.
312
313 Node_Low_Bound : constant := 0;
314 -- The tree Id values start at zero, because we use zero for Empty (to
315 -- allow a zero test for Empty).
316
317 Node_High_Bound : constant := 1_999_999_999;
318
319 Elist_Low_Bound : constant := -199_999_999;
320 -- The Elist_Id values are subscripts into an array of elist headers which
321 -- has Elist_Low_Bound as its lower bound.
322
323 Elist_High_Bound : constant := -100_000_000;
324
325 Elmt_Low_Bound : constant := -299_999_999;
326 -- Low bound of element Id values. The use of these values is internal to
327 -- the Elists package, but the definition of the range is included here
328 -- since it must be disjoint from other Id values. The Elmt_Id values are
329 -- subscripts into an array of list elements which has this as lower bound.
330
331 Elmt_High_Bound : constant := -200_000_000;
332
333 Names_Low_Bound : constant := -399_999_999;
334
335 Names_High_Bound : constant := -300_000_000;
336
337 Strings_Low_Bound : constant := -499_999_999;
338
339 Strings_High_Bound : constant := -400_000_000;
340
341 Ureal_Low_Bound : constant := -599_999_999;
342
343 Ureal_High_Bound : constant := -500_000_000;
344
345 Uint_Low_Bound : constant := -2_100_000_000;
346 -- Low bound for Uint values
347
348 Uint_Table_Start : constant := -699_999_999;
349 -- Location where table entries for universal integers start (see
350 -- Uintp spec for details of the representation of Uint values).
351
352 Uint_High_Bound : constant := -600_000_000;
353
354 -- The following subtype definitions are used to provide convenient names
355 -- for membership tests on Int values to see what data type range they
356 -- lie in. Such tests appear only in the lowest level packages.
357
358 subtype List_Range is Union_Id
359 range List_Low_Bound .. List_High_Bound;
360
361 subtype Node_Range is Union_Id
362 range Node_Low_Bound .. Node_High_Bound;
363
364 subtype Elist_Range is Union_Id
365 range Elist_Low_Bound .. Elist_High_Bound;
366
367 subtype Elmt_Range is Union_Id
368 range Elmt_Low_Bound .. Elmt_High_Bound;
369
370 subtype Names_Range is Union_Id
371 range Names_Low_Bound .. Names_High_Bound;
372
373 subtype Strings_Range is Union_Id
374 range Strings_Low_Bound .. Strings_High_Bound;
375
376 subtype Uint_Range is Union_Id
377 range Uint_Low_Bound .. Uint_High_Bound;
378
379 subtype Ureal_Range is Union_Id
380 range Ureal_Low_Bound .. Ureal_High_Bound;
381
382 -----------------------------
383 -- Types for Atree Package --
384 -----------------------------
385
386 -- Node_Id values are used to identify nodes in the tree. They are
387 -- subscripts into the Nodes table declared in package Atree. Note that
388 -- the special values Empty and Error are subscripts into this table.
389 -- See package Atree for further details.
390
391 type Node_Id is range Node_Low_Bound .. Node_High_Bound with Size => 32;
392 -- Type used to identify nodes in the tree
393
394 subtype Entity_Id is Node_Id;
395 -- A synonym for node types, used in the Einfo package to refer to nodes
396 -- that are entities (i.e. nodes with an Nkind of N_Defining_xxx). All such
397 -- nodes are extended nodes and these are the only extended nodes, so that
398 -- in practice entity and extended nodes are synonymous.
399
400 subtype Node_Or_Entity_Id is Node_Id;
401 -- A synonym for node types, used in cases where a given value may be used
402 -- to represent either a node or an entity. We like to minimize such uses
403 -- for obvious reasons of logical type consistency, but where such uses
404 -- occur, they should be documented by use of this type.
405
406 Empty : constant Node_Id := Node_Low_Bound;
407 -- Used to indicate null node. A node is actually allocated with this
408 -- Id value, so that Nkind (Empty) = N_Empty. Note that Node_Low_Bound
409 -- is zero, so Empty = No_List = zero.
410
411 Empty_List_Or_Node : constant := 0;
412 -- This constant is used in situations (e.g. initializing empty fields)
413 -- where the value set will be used to represent either an empty node or
414 -- a non-existent list, depending on the context.
415
416 Error : constant Node_Id := Node_Low_Bound + 1;
417 -- Used to indicate an error in the source program. A node is actually
418 -- allocated with this Id value, so that Nkind (Error) = N_Error.
419
420 Empty_Or_Error : constant Node_Id := Error;
421 -- Since Empty and Error are the first two Node_Id values, the test for
422 -- N <= Empty_Or_Error tests to see if N is Empty or Error. This definition
423 -- provides convenient self-documentation for such tests.
424
425 First_Node_Id : constant Node_Id := Node_Low_Bound;
426 -- Subscript of first allocated node. Note that Empty and Error are both
427 -- allocated nodes, whose Nkind fields can be accessed without error.
428
429 ------------------------------
430 -- Types for Nlists Package --
431 ------------------------------
432
433 -- List_Id values are used to identify node lists stored in the tree, so
434 -- that each node can be on at most one such list (see package Nlists for
435 -- further details). Note that the special value Error_List is a subscript
436 -- in this table, but the value No_List is *not* a valid subscript, and any
437 -- attempt to apply list operations to No_List will cause a (detected)
438 -- error.
439
440 type List_Id is range List_Low_Bound .. List_High_Bound with Size => 32;
441 -- Type used to identify a node list
442
443 No_List : constant List_Id := List_High_Bound;
444 -- Used to indicate absence of a list. Note that the value is zero, which
445 -- is the same as Empty, which is helpful in initializing nodes where a
446 -- value of zero can represent either an empty node or an empty list.
447
448 Error_List : constant List_Id := List_Low_Bound;
449 -- Used to indicate that there was an error in the source program in a
450 -- context which would normally require a list. This node appears to be
451 -- an empty list to the list operations (a null list is actually allocated
452 -- which has this Id value).
453
454 First_List_Id : constant List_Id := Error_List;
455 -- Subscript of first allocated list header
456
457 ------------------------------
458 -- Types for Elists Package --
459 ------------------------------
460
461 -- Element list Id values are used to identify element lists stored outside
462 -- of the tree, allowing nodes to be members of more than one such list
463 -- (see package Elists for further details).
464
465 type Elist_Id is range Elist_Low_Bound .. Elist_High_Bound with Size => 32;
466 -- Type used to identify an element list (Elist header table subscript)
467
468 No_Elist : constant Elist_Id := Elist_Low_Bound;
469 -- Used to indicate absence of an element list. Note that this is not an
470 -- actual Elist header, so element list operations on this value are not
471 -- valid.
472
473 First_Elist_Id : constant Elist_Id := No_Elist + 1;
474 -- Subscript of first allocated Elist header
475
476 -- Element Id values are used to identify individual elements of an element
477 -- list (see package Elists for further details).
478
479 type Elmt_Id is range Elmt_Low_Bound .. Elmt_High_Bound;
480 -- Type used to identify an element list
481
482 No_Elmt : constant Elmt_Id := Elmt_Low_Bound;
483 -- Used to represent empty element
484
485 First_Elmt_Id : constant Elmt_Id := No_Elmt + 1;
486 -- Subscript of first allocated Elmt table entry
487
488 -------------------------------
489 -- Types for Stringt Package --
490 -------------------------------
491
492 -- String_Id values are used to identify entries in the strings table. They
493 -- are subscripts into the Strings table defined in package Stringt.
494
495 type String_Id is range Strings_Low_Bound .. Strings_High_Bound
496 with Size => 32;
497 -- Type used to identify entries in the strings table
498
499 No_String : constant String_Id := Strings_Low_Bound;
500 -- Used to indicate missing string Id. Note that the value zero is used
501 -- to indicate a missing data value for all the Int types in this section.
502
503 First_String_Id : constant String_Id := No_String + 1;
504 -- First subscript allocated in string table
505
506 -------------------------
507 -- Character Code Type --
508 -------------------------
509
510 -- The type Char is used for character data internally in the compiler, but
511 -- character codes in the source are represented by the Char_Code type.
512 -- Each character literal in the source is interpreted as being one of the
513 -- 16#7FFF_FFFF# possible Wide_Wide_Character codes, and a unique Integer
514 -- value is assigned, corresponding to the UTF-32 value, which also
515 -- corresponds to the Pos value in the Wide_Wide_Character type, and also
516 -- corresponds to the Pos value in the Wide_Character and Character types
517 -- for values that are in appropriate range. String literals are similarly
518 -- interpreted as a sequence of such codes.
519
520 type Char_Code_Base is mod 2 ** 32;
521 for Char_Code_Base'Size use 32;
522
523 subtype Char_Code is Char_Code_Base range 0 .. 16#7FFF_FFFF#;
524 for Char_Code'Value_Size use 32;
525 for Char_Code'Object_Size use 32;
526
527 function Get_Char_Code (C : Character) return Char_Code;
528 pragma Inline (Get_Char_Code);
529 -- Function to obtain internal character code from source character. For
530 -- the moment, the internal character code is simply the Pos value of the
531 -- input source character, but we provide this interface for possible
532 -- later support of alternative character sets.
533
534 function In_Character_Range (C : Char_Code) return Boolean;
535 pragma Inline (In_Character_Range);
536 -- Determines if the given character code is in range of type Character,
537 -- and if so, returns True. If not, returns False.
538
539 function In_Wide_Character_Range (C : Char_Code) return Boolean;
540 pragma Inline (In_Wide_Character_Range);
541 -- Determines if the given character code is in range of the type
542 -- Wide_Character, and if so, returns True. If not, returns False.
543
544 function Get_Character (C : Char_Code) return Character;
545 pragma Inline (Get_Character);
546 -- For a character C that is in Character range (see above function), this
547 -- function returns the corresponding Character value. It is an error to
548 -- call Get_Character if C is not in Character range.
549
550 function Get_Wide_Character (C : Char_Code) return Wide_Character;
551 -- For a character C that is in Wide_Character range (see above function),
552 -- this function returns the corresponding Wide_Character value. It is an
553 -- error to call Get_Wide_Character if C is not in Wide_Character range.
554
555 ---------------------------------------
556 -- Types used for Library Management --
557 ---------------------------------------
558
559 type Unit_Number_Type is new Int range -1 .. Int'Last;
560 -- Unit number. The main source is unit 0, and subsidiary sources have
561 -- non-zero numbers starting with 1. Unit numbers are used to index the
562 -- Units table in package Lib.
563
564 Main_Unit : constant Unit_Number_Type := 0;
565 -- Unit number value for main unit
566
567 No_Unit : constant Unit_Number_Type := -1;
568 -- Special value used to signal no unit
569
570 type Source_File_Index is new Int range -1 .. Int'Last;
571 -- Type used to index the source file table (see package Sinput)
572
573 No_Source_File : constant Source_File_Index := 0;
574 -- Value used to indicate no source file present
575
576 No_Access_To_Source_File : constant Source_File_Index := -1;
577 -- Value used to indicate a source file is present but unreadable
578
579 -----------------------------------
580 -- Representation of Time Stamps --
581 -----------------------------------
582
583 -- All compiled units are marked with a time stamp which is derived from
584 -- the source file (we assume that the host system has the concept of a
585 -- file time stamp which is modified when a file is modified). These
586 -- time stamps are used to ensure consistency of the set of units that
587 -- constitutes a library. Time stamps are 14-character strings with
588 -- with the following format:
589
590 -- YYYYMMDDHHMMSS
591
592 -- YYYY year
593 -- MM month (2 digits 01-12)
594 -- DD day (2 digits 01-31)
595 -- HH hour (2 digits 00-23)
596 -- MM minutes (2 digits 00-59)
597 -- SS seconds (2 digits 00-59)
598
599 -- In the case of Unix systems (and other systems which keep the time in
600 -- GMT), the time stamp is the GMT time of the file, not the local time.
601 -- This solves problems in using libraries across networks with clients
602 -- spread across multiple time-zones.
603
604 Time_Stamp_Length : constant := 14;
605 -- Length of time stamp value
606
607 subtype Time_Stamp_Index is Natural range 1 .. Time_Stamp_Length;
608 type Time_Stamp_Type is new String (Time_Stamp_Index);
609 -- Type used to represent time stamp
610
611 Empty_Time_Stamp : constant Time_Stamp_Type := (others => ' ');
612 -- Value representing an empty or missing time stamp. Looks less than any
613 -- real time stamp if two time stamps are compared. Note that although this
614 -- is not private, clients should not rely on the exact way in which this
615 -- string is represented, and instead should use the subprograms below.
616
617 Dummy_Time_Stamp : constant Time_Stamp_Type := (others => '0');
618 -- This is used for dummy time stamp values used in the D lines for
619 -- non-existent files, and is intended to be an impossible value.
620
621 function "=" (Left, Right : Time_Stamp_Type) return Boolean;
622 function "<=" (Left, Right : Time_Stamp_Type) return Boolean;
623 function ">=" (Left, Right : Time_Stamp_Type) return Boolean;
624 function "<" (Left, Right : Time_Stamp_Type) return Boolean;
625 function ">" (Left, Right : Time_Stamp_Type) return Boolean;
626 -- Comparison functions on time stamps. Note that two time stamps are
627 -- defined as being equal if they have the same day/month/year and the
628 -- hour/minutes/seconds values are within 2 seconds of one another. This
629 -- deals with rounding effects in library file time stamps caused by
630 -- copying operations during installation. We have particularly noticed
631 -- that WinNT seems susceptible to such changes.
632 --
633 -- Note: the Empty_Time_Stamp value looks equal to itself, and less than
634 -- any non-empty time stamp value.
635
636 procedure Split_Time_Stamp
637 (TS : Time_Stamp_Type;
638 Year : out Nat;
639 Month : out Nat;
640 Day : out Nat;
641 Hour : out Nat;
642 Minutes : out Nat;
643 Seconds : out Nat);
644 -- Given a time stamp, decompose it into its components
645
646 procedure Make_Time_Stamp
647 (Year : Nat;
648 Month : Nat;
649 Day : Nat;
650 Hour : Nat;
651 Minutes : Nat;
652 Seconds : Nat;
653 TS : out Time_Stamp_Type);
654 -- Given the components of a time stamp, initialize the value
655
656 -------------------------------------
657 -- Types used for Check Management --
658 -------------------------------------
659
660 type Check_Id is new Nat;
661 -- Type used to represent a check id
662
663 No_Check_Id : constant := 0;
664 -- Check_Id value used to indicate no check
665
666 Access_Check : constant := 1;
667 Accessibility_Check : constant := 2;
668 Alignment_Check : constant := 3;
669 Allocation_Check : constant := 4;
670 Atomic_Synchronization : constant := 5;
671 Characters_Assertion_Check : constant := 6;
672 Containers_Assertion_Check : constant := 7;
673 Discriminant_Check : constant := 8;
674 Division_Check : constant := 9;
675 Duplicated_Tag_Check : constant := 10;
676 Elaboration_Check : constant := 11;
677 Index_Check : constant := 12;
678 Interfaces_Assertion_Check : constant := 13;
679 IO_Assertion_Check : constant := 14;
680 Length_Check : constant := 15;
681 Numerics_Assertion_Check : constant := 16;
682 Overflow_Check : constant := 17;
683 Predicate_Check : constant := 18;
684 Program_Error_Check : constant := 19;
685 Range_Check : constant := 20;
686 Storage_Check : constant := 21;
687 Strings_Assertion_Check : constant := 22;
688 System_Assertion_Check : constant := 23;
689 Tag_Check : constant := 24;
690 Validity_Check : constant := 25;
691 Container_Checks : constant := 26;
692 Tampering_Check : constant := 27;
693 Tasking_Check : constant := 28;
694 -- Values used to represent individual predefined checks (including the
695 -- setting of Atomic_Synchronization, which is implemented internally using
696 -- a "check" whose name is Atomic_Synchronization).
697
698 All_Checks : constant := 29;
699 -- Value used to represent All_Checks value
700
701 subtype Predefined_Check_Id is Check_Id range 1 .. All_Checks;
702 -- Subtype for predefined checks, including All_Checks
703
704 -- The following array contains an entry for each recognized check name
705 -- for pragma Suppress. It is used to represent current settings of scope
706 -- based suppress actions from pragma Suppress or command line settings.
707
708 -- Note: when Suppress_Array (All_Checks) is True, then generally all other
709 -- specific check entries are set True, except for the Elaboration_Check
710 -- entry which is set only if an explicit Suppress for this check is given.
711 -- The reason for this non-uniformity is that we do not want All_Checks to
712 -- suppress elaboration checking when using the static elaboration model.
713 -- We recognize only an explicit suppress of Elaboration_Check as a signal
714 -- that the static elaboration checking should skip a compile time check.
715
716 type Suppress_Array is array (Predefined_Check_Id) of Boolean;
717 pragma Pack (Suppress_Array);
718
719 -- To add a new check type to GNAT, the following steps are required:
720
721 -- 1. Add an entry to Snames spec for the new name
722 -- 2. Add an entry to the definition of Check_Id above (very important:
723 -- these definitions should be in the same order in Snames and here)
724 -- 3. Add a new function to Checks to handle the new check test
725 -- 4. Add a new Do_xxx_Check flag to Sinfo (if required)
726 -- 5. Add appropriate checks for the new test
727
728 -- The following provides precise details on the mode used to generate
729 -- code for intermediate operations in expressions for signed integer
730 -- arithmetic (and how to generate overflow checks if enabled). Note
731 -- that this only affects handling of intermediate results. The final
732 -- result must always fit within the target range, and if overflow
733 -- checking is enabled, the check on the final result is against this
734 -- target range.
735
736 type Overflow_Mode_Type is (
737 Not_Set,
738 -- Dummy value used during initialization process to show that the
739 -- corresponding value has not yet been initialized.
740
741 Strict,
742 -- Operations are done in the base type of the subexpression. If
743 -- overflow checks are enabled, then the check is against the range
744 -- of this base type.
745
746 Minimized,
747 -- Where appropriate, intermediate arithmetic operations are performed
748 -- with an extended range, using Long_Long_Integer if necessary. If
749 -- overflow checking is enabled, then the check is against the range
750 -- of Long_Long_Integer.
751
752 Eliminated);
753 -- In this mode arbitrary precision arithmetic is used as needed to
754 -- ensure that it is impossible for intermediate arithmetic to cause an
755 -- overflow. In this mode, intermediate expressions are not affected by
756 -- the overflow checking mode, since overflows are eliminated.
757
758 subtype Minimized_Or_Eliminated is
759 Overflow_Mode_Type range Minimized .. Eliminated;
760 -- Define subtype so that clients don't need to know ordering. Note that
761 -- Overflow_Mode_Type is not marked as an ordered enumeration type.
762
763 -- The following structure captures the state of check suppression or
764 -- activation at a particular point in the program execution.
765
766 type Suppress_Record is record
767 Suppress : Suppress_Array;
768 -- Indicates suppression status of each possible check
769
770 Overflow_Mode_General : Overflow_Mode_Type;
771 -- This field indicates the mode for handling code generation and
772 -- overflow checking (if enabled) for intermediate expression values.
773 -- This applies to general expressions outside assertions.
774
775 Overflow_Mode_Assertions : Overflow_Mode_Type;
776 -- This field indicates the mode for handling code generation and
777 -- overflow checking (if enabled) for intermediate expression values.
778 -- This applies to any expression occurring inside assertions.
779 end record;
780
781 -----------------------------------
782 -- Global Exception Declarations --
783 -----------------------------------
784
785 -- This section contains declarations of exceptions that are used
786 -- throughout the compiler or in other GNAT tools.
787
788 Unrecoverable_Error : exception;
789 -- This exception is raised to immediately terminate the compilation of the
790 -- current source program. Used in situations where things are bad enough
791 -- that it doesn't seem worth continuing (e.g. max errors reached, or a
792 -- required file is not found). Also raised when the compiler finds itself
793 -- in trouble after an error (see Comperr).
794
795 Terminate_Program : exception;
796 -- This exception is raised to immediately terminate the tool being
797 -- executed. Each tool where this exception may be raised must have a
798 -- single exception handler that contains only a null statement and that is
799 -- the last statement of the program. If needed, procedure Set_Exit_Status
800 -- is called with the appropriate exit status before raising
801 -- Terminate_Program.
802
803 ---------------------------------
804 -- Parameter Mechanism Control --
805 ---------------------------------
806
807 -- Function and parameter entities have a field that records the passing
808 -- mechanism. See specification of Sem_Mech for full details. The following
809 -- subtype is used to represent values of this type:
810
811 subtype Mechanism_Type is Int range -2 .. Int'Last;
812 -- Type used to represent a mechanism value. This is a subtype rather than
813 -- a type to avoid some annoying processing problems with certain routines
814 -- in Einfo (processing them to create the corresponding C). The values in
815 -- the range -2 .. 0 are used to represent mechanism types declared as
816 -- named constants in the spec of Sem_Mech. Positive values are used for
817 -- the case of a pragma C_Pass_By_Copy that sets a threshold value for the
818 -- mechanism to be used. For example if pragma C_Pass_By_Copy (32) is given
819 -- then Default_C_Record_Mechanism is set to 32, and the meaning is to use
820 -- By_Reference if the size is greater than 32, and By_Copy otherwise.
821
822 ---------------------------------
823 -- Component_Alignment Control --
824 ---------------------------------
825
826 -- There are four types of alignment possible for array and record
827 -- types, and a field in the type entities contains a value of the
828 -- following type indicating which alignment choice applies. For full
829 -- details of the meaning of these alignment types, see description
830 -- of the Component_Alignment pragma.
831
832 type Component_Alignment_Kind is (
833 Calign_Default, -- default alignment
834 Calign_Component_Size, -- natural alignment for component size
835 Calign_Component_Size_4, -- natural for size <= 4, 4 for size >= 4
836 Calign_Storage_Unit); -- all components byte aligned
837
838 -----------------------------------
839 -- Floating Point Representation --
840 -----------------------------------
841
842 type Float_Rep_Kind is (IEEE_Binary);
843 -- The only one supported now is IEEE 754p conforming binary format, but
844 -- other formats were supported in the past, and could conceivably be
845 -- supported in the future, so we keep this singleton enumeration type.
846
847 ----------------------------
848 -- Small_Paren_Count_Type --
849 ----------------------------
850
851 -- See Paren_Count in Atree for documentation
852
853 subtype Small_Paren_Count_Type is Nat range 0 .. 3;
854
855 ------------------------------
856 -- Run-Time Exception Codes --
857 ------------------------------
858
859 -- When the code generator generates a run-time exception, it provides a
860 -- reason code which is one of the following. This reason code is used to
861 -- select the appropriate run-time routine to be called, determining both
862 -- the exception to be raised, and the message text to be added.
863
864 -- The prefix CE/PE/SE indicates the exception to be raised
865 -- CE = Constraint_Error
866 -- PE = Program_Error
867 -- SE = Storage_Error
868
869 -- The remaining part of the name indicates the message text to be added,
870 -- where all letters are lower case, and underscores are converted to
871 -- spaces (for example CE_Invalid_Data adds the text "invalid data").
872
873 -- To add a new code, you need to do the following:
874
875 -- 1. Assign a new number to the reason. Do not renumber existing codes,
876 -- since this causes compatibility/bootstrap issues, so always add the
877 -- new code at the end of the list.
878
879 -- 2. Update the contents of the array Kind
880
881 -- 3. Modify the corresponding definitions in types.h, including the
882 -- definition of last_reason_code.
883
884 -- 4. Add the name of the routines in exp_ch11.Get_RT_Exception_Name
885
886 -- 5. Add a new routine in Ada.Exceptions with the appropriate call and
887 -- static string constant. Note that there is more than one version
888 -- of a-except.adb which must be modified.
889
890 -- Note on ordering of references. For the tables in Ada.Exceptions units,
891 -- usually the ordering does not matter, and we use the same ordering as
892 -- is used here.
893
894 type RT_Exception_Code is
895 (CE_Access_Check_Failed, -- 00
896 CE_Access_Parameter_Is_Null, -- 01
897 CE_Discriminant_Check_Failed, -- 02
898 CE_Divide_By_Zero, -- 03
899 CE_Explicit_Raise, -- 04
900 CE_Index_Check_Failed, -- 05
901 CE_Invalid_Data, -- 06
902 CE_Length_Check_Failed, -- 07
903 CE_Null_Exception_Id, -- 08
904 CE_Null_Not_Allowed, -- 09
905
906 CE_Overflow_Check_Failed, -- 10
907 CE_Partition_Check_Failed, -- 11
908 CE_Range_Check_Failed, -- 12
909 CE_Tag_Check_Failed, -- 13
910 PE_Access_Before_Elaboration, -- 14
911 PE_Accessibility_Check_Failed, -- 15
912 PE_Address_Of_Intrinsic, -- 16
913 PE_Aliased_Parameters, -- 17
914 PE_All_Guards_Closed, -- 18
915 PE_Bad_Predicated_Generic_Type, -- 19
916
917 PE_Current_Task_In_Entry_Body, -- 20
918 PE_Duplicated_Entry_Address, -- 21
919 PE_Explicit_Raise, -- 22
920 PE_Finalize_Raised_Exception, -- 23
921 PE_Implicit_Return, -- 24
922 PE_Misaligned_Address_Value, -- 25
923 PE_Missing_Return, -- 26
924 PE_Overlaid_Controlled_Object, -- 27
925 PE_Potentially_Blocking_Operation, -- 28
926 PE_Stubbed_Subprogram_Called, -- 29
927
928 PE_Unchecked_Union_Restriction, -- 30
929 PE_Non_Transportable_Actual, -- 31
930 SE_Empty_Storage_Pool, -- 32
931 SE_Explicit_Raise, -- 33
932 SE_Infinite_Recursion, -- 34
933 SE_Object_Too_Large, -- 35
934 PE_Stream_Operation_Not_Allowed, -- 36
935 PE_Build_In_Place_Mismatch); -- 37
936 pragma Convention (C, RT_Exception_Code);
937
938 Last_Reason_Code : constant :=
939 RT_Exception_Code'Pos (RT_Exception_Code'Last);
940 -- Last reason code
941
942 type Reason_Kind is (CE_Reason, PE_Reason, SE_Reason);
943 -- Categorization of reason codes by exception raised
944
945 Rkind : constant array (RT_Exception_Code range <>) of Reason_Kind :=
946 (CE_Access_Check_Failed => CE_Reason,
947 CE_Access_Parameter_Is_Null => CE_Reason,
948 CE_Discriminant_Check_Failed => CE_Reason,
949 CE_Divide_By_Zero => CE_Reason,
950 CE_Explicit_Raise => CE_Reason,
951 CE_Index_Check_Failed => CE_Reason,
952 CE_Invalid_Data => CE_Reason,
953 CE_Length_Check_Failed => CE_Reason,
954 CE_Null_Exception_Id => CE_Reason,
955 CE_Null_Not_Allowed => CE_Reason,
956 CE_Overflow_Check_Failed => CE_Reason,
957 CE_Partition_Check_Failed => CE_Reason,
958 CE_Range_Check_Failed => CE_Reason,
959 CE_Tag_Check_Failed => CE_Reason,
960
961 PE_Access_Before_Elaboration => PE_Reason,
962 PE_Accessibility_Check_Failed => PE_Reason,
963 PE_Address_Of_Intrinsic => PE_Reason,
964 PE_Aliased_Parameters => PE_Reason,
965 PE_All_Guards_Closed => PE_Reason,
966 PE_Bad_Predicated_Generic_Type => PE_Reason,
967 PE_Current_Task_In_Entry_Body => PE_Reason,
968 PE_Duplicated_Entry_Address => PE_Reason,
969 PE_Explicit_Raise => PE_Reason,
970 PE_Finalize_Raised_Exception => PE_Reason,
971 PE_Implicit_Return => PE_Reason,
972 PE_Misaligned_Address_Value => PE_Reason,
973 PE_Missing_Return => PE_Reason,
974 PE_Overlaid_Controlled_Object => PE_Reason,
975 PE_Potentially_Blocking_Operation => PE_Reason,
976 PE_Stubbed_Subprogram_Called => PE_Reason,
977 PE_Unchecked_Union_Restriction => PE_Reason,
978 PE_Non_Transportable_Actual => PE_Reason,
979 PE_Stream_Operation_Not_Allowed => PE_Reason,
980 PE_Build_In_Place_Mismatch => PE_Reason,
981
982 SE_Empty_Storage_Pool => SE_Reason,
983 SE_Explicit_Raise => SE_Reason,
984 SE_Infinite_Recursion => SE_Reason,
985 SE_Object_Too_Large => SE_Reason);
986
987 -- Types for field offsets/sizes used in Seinfo, Sinfo.Nodes and
988 -- Einfo.Entities:
989
990 type Field_Offset is new Nat;
991 -- Offset of a node field, in units of the size of the field, which is
992 -- always a power of 2.
993
994 subtype Slot_Count is Field_Offset;
995 -- Count of number of slots. Same type as Field_Offset to avoid
996 -- proliferation of type conversions.
997
998 subtype Field_Size_In_Bits is Field_Offset with Predicate =>
999 Field_Size_In_Bits in 1 | 2 | 4 | 8 | 32;
1000
1001 subtype Opt_Field_Offset is Field_Offset'Base range -1 .. Field_Offset'Last;
1002 No_Field_Offset : constant Opt_Field_Offset := Opt_Field_Offset'First;
1003
1004 type Offset_Array_Index is new Nat;
1005 type Offset_Array is
1006 array (Offset_Array_Index range <>) of Opt_Field_Offset;
1007
1008 end Types;
This page took 0.125372 seconds and 5 git commands to generate.