]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_util.ads
[Ada] Fix predicate check on object declaration
[gcc.git] / gcc / ada / sem_util.ads
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 -- Package containing utility procedures used throughout the semantics
27
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Exp_Tss; use Exp_Tss;
33 with Namet; use Namet;
34 with Opt; use Opt;
35 with Snames; use Snames;
36 with Types; use Types;
37 with Uintp; use Uintp;
38 with Urealp; use Urealp;
39
40 package Sem_Util is
41
42 function Abstract_Interface_List (Typ : Entity_Id) return List_Id;
43 -- The list of interfaces implemented by Typ. Empty if there are none,
44 -- including the cases where there can't be any because e.g. the type is
45 -- not tagged.
46
47 type Accessibility_Level_Kind is
48 (Dynamic_Level,
49 Object_Decl_Level,
50 Zero_On_Dynamic_Level);
51 -- Accessibility_Level_Kind is an enumerated type which captures the
52 -- different modes in which an accessibility level could be obtained for
53 -- a given expression.
54
55 -- When in the context of the function Accessibility_Level,
56 -- Accessibility_Level_Kind signals what type of accessibility level to
57 -- obtain. For example, when Level is Dynamic_Level, a defining identifier
58 -- associated with a SAOOAAT may be returned or an N_Integer_Literal node.
59 -- When the level is Object_Decl_Level, an N_Integer_Literal node is
60 -- returned containing the level of the declaration of the object if
61 -- relevant (be it a SAOOAAT or otherwise). Finally, Zero_On_Dynamic_Level
62 -- returns library level for all cases where the accessibility level is
63 -- dynamic (used to bypass static accessibility checks in dynamic cases).
64
65 function Accessibility_Level
66 (Expr : Node_Id;
67 Level : Accessibility_Level_Kind;
68 In_Return_Context : Boolean := False;
69 Allow_Alt_Model : Boolean := True) return Node_Id;
70 -- Centralized accessibility level calculation routine for finding the
71 -- accessibility level of a given expression Expr.
72
73 -- In_Return_Context forces the Accessibility_Level calculations to be
74 -- carried out "as if" Expr existed in a return value. This is useful for
75 -- calculating the accessibility levels for discriminant associations
76 -- and return aggregates.
77
78 -- The Allow_Alt_Model parameter allows the alternative level calculation
79 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
80
81 function Acquire_Warning_Match_String (Str_Lit : Node_Id) return String;
82 -- Used by pragma Warnings (Off, string), and Warn_As_Error (string) to get
83 -- the given string argument, adding leading and trailing asterisks if they
84 -- are not already present. Str_Lit is the static value of the pragma
85 -- argument.
86
87 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id);
88 -- Add A to the list of access types to process when expanding the
89 -- freeze node of E.
90
91 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id);
92 -- Given a block statement N, generate an internal E_Block label and make
93 -- it the identifier of the block. Id denotes the generated entity. If the
94 -- block already has an identifier, Id returns the entity of its label.
95
96 procedure Add_Global_Declaration (N : Node_Id);
97 -- These procedures adds a declaration N at the library level, to be
98 -- elaborated before any other code in the unit. It is used for example
99 -- for the entity that marks whether a unit has been elaborated. The
100 -- declaration is added to the Declarations list of the Aux_Decls_Node
101 -- for the current unit. The declarations are added in the current scope,
102 -- so the caller should push a new scope as required before the call.
103
104 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
105 -- Returns the name of E adding Suffix
106
107 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean;
108 -- Given two types, returns True if we are in Allow_Integer_Address mode
109 -- and one of the types is (a descendant of) System.Address (and this type
110 -- is private), and the other type is any integer type.
111
112 function Address_Value (N : Node_Id) return Node_Id;
113 -- Return the underlying value of the expression N of an address clause
114
115 function Addressable (V : Uint) return Boolean;
116 function Addressable (V : Int) return Boolean;
117 pragma Inline (Addressable);
118 -- Returns True if the value of V is the word size or an addressable factor
119 -- or multiple of the word size (typically 8, 16, 32, 64 or 128).
120
121 procedure Aggregate_Constraint_Checks
122 (Exp : Node_Id;
123 Check_Typ : Entity_Id);
124 -- Checks expression Exp against subtype Check_Typ. If Exp is an aggregate
125 -- and Check_Typ a constrained record type with discriminants, we generate
126 -- the appropriate discriminant checks. If Exp is an array aggregate then
127 -- emit the appropriate length checks. If Exp is a scalar type, or a string
128 -- literal, Exp is changed into Check_Typ'(Exp) to ensure that range checks
129 -- are performed at run time. Also used for expressions in the argument of
130 -- 'Update, which shares some of the features of an aggregate.
131
132 function Alignment_In_Bits (E : Entity_Id) return Uint;
133 -- If the alignment of the type or object E is currently known to the
134 -- compiler, then this function returns the alignment value in bits.
135 -- Otherwise Uint_0 is returned, indicating that the alignment of the
136 -- entity is not yet known to the compiler.
137
138 function All_Composite_Constraints_Static (Constr : Node_Id) return Boolean;
139 -- Used to implement pragma Restrictions (No_Dynamic_Sized_Objects).
140 -- Given a constraint or subtree of a constraint on a composite
141 -- subtype/object, returns True if there are no nonstatic constraints,
142 -- which might cause objects to be created with dynamic size.
143 -- Called for subtype declarations (including implicit ones created for
144 -- subtype indications in object declarations, as well as discriminated
145 -- record aggregate cases). For record aggregates, only records containing
146 -- discriminant-dependent arrays matter, because the discriminants must be
147 -- static when governing a variant part. Access discriminants are
148 -- irrelevant. Also called for array aggregates, but only named notation,
149 -- because those are the only dynamic cases.
150
151 procedure Append_Entity_Name (Buf : in out Bounded_String; E : Entity_Id);
152 -- Recursive procedure to construct string for qualified name of enclosing
153 -- program unit. The qualification stops at an enclosing scope has no
154 -- source name (block or loop). If entity is a subprogram instance, skip
155 -- enclosing wrapper package. The name is appended to Buf.
156
157 procedure Append_Inherited_Subprogram (S : Entity_Id);
158 -- If the parent of the operation is declared in the visible part of
159 -- the current scope, the inherited operation is visible even though the
160 -- derived type that inherits the operation may be completed in the private
161 -- part of the current package.
162
163 procedure Apply_Compile_Time_Constraint_Error
164 (N : Node_Id;
165 Msg : String;
166 Reason : RT_Exception_Code;
167 Ent : Entity_Id := Empty;
168 Typ : Entity_Id := Empty;
169 Loc : Source_Ptr := No_Location;
170 Warn : Boolean := False;
171 Emit_Message : Boolean := True);
172 -- N is a subexpression that will raise Constraint_Error when evaluated
173 -- at run time. Msg is a message that explains the reason for raising the
174 -- exception. The last character is ? if the message is always a warning,
175 -- even in Ada 95, and is not a ? if the message represents an illegality
176 -- (because of violation of static expression rules) in Ada 95 (but not
177 -- in Ada 83). Typically this routine posts all messages at the Sloc of
178 -- node N. However, if Loc /= No_Location, Loc is the Sloc used to output
179 -- the message. After posting the appropriate message, this routine
180 -- replaces the expression with an appropriate N_Raise_Constraint_Error
181 -- node using the given Reason code. This node is then marked as being
182 -- static if the original node is static, but sets the flag
183 -- Raises_Constraint_Error, preventing further evaluation. The error
184 -- message may contain a } or & insertion character. This normally
185 -- references Etype (N), unless the Ent argument is given explicitly, in
186 -- which case it is used instead. The type of the raise node that is built
187 -- is normally Etype (N), but if the Typ parameter is present, this is used
188 -- instead. Warn is normally False. If it is True then the message is
189 -- treated as a warning even though it does not end with a ? (this is used
190 -- when the caller wants to parameterize whether an error or warning is
191 -- given), or when the message should be treated as a warning even when
192 -- SPARK_Mode is On (which otherwise would force an error).
193 -- If Emit_Message is False, then do not emit any message.
194
195 function Async_Readers_Enabled (Id : Entity_Id) return Boolean;
196 -- Id should be the entity of a state abstraction, an object, or a type.
197 -- Returns True iff Id is subject to external property Async_Readers.
198
199 function Async_Writers_Enabled (Id : Entity_Id) return Boolean;
200 -- Id should be the entity of a state abstraction, an object, or a type.
201 -- Returns True iff Id is subject to external property Async_Writers.
202
203 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean;
204 -- If at the point of declaration an array type has a private or limited
205 -- component, several array operations are not available on the type, and
206 -- the array type is flagged accordingly. If in the immediate scope of
207 -- the array type the component becomes non-private or non-limited, these
208 -- operations become available. This can happen if the scopes of both types
209 -- are open, and the scope of the array is not outside the scope of the
210 -- component.
211
212 procedure Bad_Aspect
213 (N : Node_Id;
214 Nam : Name_Id;
215 Warn : Boolean := False);
216 -- Called when node N is expected to contain a valid aspect name, and
217 -- Nam is found instead. If Warn is set True this is a warning, else this
218 -- is an error.
219
220 procedure Bad_Attribute
221 (N : Node_Id;
222 Nam : Name_Id;
223 Warn : Boolean := False);
224 -- Called when node N is expected to contain a valid attribute name, and
225 -- Nam is found instead. If Warn is set True this is a warning, else this
226 -- is an error.
227
228 procedure Bad_Predicated_Subtype_Use
229 (Msg : String;
230 N : Node_Id;
231 Typ : Entity_Id;
232 Suggest_Static : Boolean := False);
233 -- This is called when Typ, a predicated subtype, is used in a context
234 -- which does not allow the use of a predicated subtype. Msg is passed to
235 -- Error_Msg_FE to output an appropriate message using N as the location,
236 -- and Typ as the entity. The caller must set up any insertions other than
237 -- the & for the type itself. Note that if Typ is a generic actual type,
238 -- then the message will be output as a warning, and a raise Program_Error
239 -- is inserted using Insert_Action with node N as the insertion point. Node
240 -- N also supplies the source location for construction of the raise node.
241 -- If Typ does not have any predicates, the call has no effect. Set flag
242 -- Suggest_Static when the context warrants an advice on how to avoid the
243 -- use error.
244
245 function Bad_Unordered_Enumeration_Reference
246 (N : Node_Id;
247 T : Entity_Id) return Boolean;
248 -- Node N contains a potentially dubious reference to type T, either an
249 -- explicit comparison, or an explicit range. This function returns True
250 -- if the type T is an enumeration type for which No pragma Order has been
251 -- given, and the reference N is not in the same extended source unit as
252 -- the declaration of T.
253
254 function Begin_Keyword_Location (N : Node_Id) return Source_Ptr;
255 -- Given block statement, entry body, package body, subprogram body, or
256 -- task body N, return the closest source location to the "begin" keyword.
257
258 function Build_Actual_Subtype
259 (T : Entity_Id;
260 N : Node_Or_Entity_Id) return Node_Id;
261 -- Build an anonymous subtype for an entity or expression, using the
262 -- bounds of the entity or the discriminants of the enclosing record.
263 -- T is the type for which the actual subtype is required, and N is either
264 -- a defining identifier, or any subexpression.
265
266 function Build_Actual_Subtype_Of_Component
267 (T : Entity_Id;
268 N : Node_Id) return Node_Id;
269 -- Determine whether a selected component has a type that depends on
270 -- discriminants, and build actual subtype for it if so.
271
272 -- Handling of inherited primitives whose ancestors have class-wide
273 -- pre/postconditions.
274
275 -- If a primitive operation of a parent type has a class-wide pre/post-
276 -- condition that includes calls to other primitives, and that operation
277 -- is inherited by a descendant type that also overrides some of these
278 -- other primitives, the condition that applies to the inherited
279 -- operation has a modified condition in which the overridden primitives
280 -- have been replaced by the primitives of the descendent type. A call
281 -- to the inherited operation cannot be simply a call to the parent
282 -- operation (with an appropriate conversion) as is the case for other
283 -- inherited operations, but must appear with a wrapper subprogram to which
284 -- the modified conditions apply. Furthermore the call to the parent
285 -- operation must not be subject to the original class-wide condition,
286 -- given that modified conditions apply. To implement these semantics
287 -- economically we create a subprogram body (a "class-wide clone") to
288 -- which no pre/postconditions apply, and we create bodies for the
289 -- original and the inherited operation that have their respective
290 -- pre/postconditions and simply call the clone. The following operations
291 -- take care of constructing declaration and body of the clone, and
292 -- building the calls to it within the appropriate wrappers.
293
294 procedure Build_Constrained_Itype
295 (N : Node_Id;
296 Typ : Entity_Id;
297 New_Assoc_List : List_Id);
298 -- Build a constrained itype for the newly created record aggregate N and
299 -- set it as a type of N. The itype will have Typ as its base type and
300 -- will be constrained by the values of discriminants from the component
301 -- association list New_Assoc_List.
302
303 -- ??? This code used to be pretty much a copy of Build_Subtype, but now
304 -- those two routines behave differently for types with unknown
305 -- discriminants. They are both exported in from this package in the hope
306 -- to eventually unify them (a not duplicate them even more until then).
307
308 -- ??? Performance WARNING. The current implementation creates a new itype
309 -- for all aggregates whose base type is discriminated. This means that
310 -- for record aggregates nested inside an array aggregate we will create
311 -- a new itype for each record aggregate if the array component type has
312 -- discriminants. For large aggregates this may be a problem. What should
313 -- be done in this case is to reuse itypes as much as possible.
314
315 function Build_Default_Subtype
316 (T : Entity_Id;
317 N : Node_Id) return Entity_Id;
318 -- If T is an unconstrained type with defaulted discriminants, build a
319 -- subtype constrained by the default values, insert the subtype
320 -- declaration in the tree before N, and return the entity of that
321 -- subtype. Otherwise, simply return T.
322
323 function Build_Default_Subtype_OK (T : Entity_Id) return Boolean;
324 -- When analyzing components or object declarations, it is possible, in
325 -- some cases, to build subtypes for discriminated types. This is
326 -- worthwhile to avoid the backend allocating the maximum possible size for
327 -- objects of the type.
328 -- In particular, when T is limited, the discriminants and therefore the
329 -- size of an object of type T cannot change. Furthermore, if T is definite
330 -- with statically initialized defaulted discriminants, we are able and
331 -- want to build a constrained subtype of the right size.
332
333 function Build_Discriminal_Subtype_Of_Component
334 (T : Entity_Id) return Node_Id;
335 -- Determine whether a record component has a type that depends on
336 -- discriminants, and build actual subtype for it if so.
337
338 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id);
339 -- Given a compilation unit node N, allocate an elaboration counter for
340 -- the compilation unit, and install it in the Elaboration_Entity field
341 -- of Spec_Id, the entity for the compilation unit.
342
343 procedure Build_Explicit_Dereference
344 (Expr : Node_Id;
345 Disc : Entity_Id);
346 -- AI05-139: Names with implicit dereference. If the expression N is a
347 -- reference type and the context imposes the corresponding designated
348 -- type, convert N into N.Disc.all. Such expressions are always over-
349 -- loaded with both interpretations, and the dereference interpretation
350 -- carries the name of the reference discriminant.
351
352 function Build_Overriding_Spec
353 (Op : Entity_Id;
354 Typ : Entity_Id) return Node_Id;
355 -- Build a subprogram specification for the wrapper of an inherited
356 -- operation with a modified pre- or postcondition (See AI12-0113).
357 -- Op is the parent operation, and Typ is the descendant type that
358 -- inherits the operation.
359
360 function Build_Subtype
361 (Related_Node : Node_Id;
362 Loc : Source_Ptr;
363 Typ : Entity_Id;
364 Constraints : List_Id)
365 return Entity_Id;
366 -- Typ is an array or discriminated type, Constraints is a list of
367 -- constraints that apply to Typ. This routine builds the constrained
368 -- subtype using Loc as the source location and attached this subtype
369 -- declaration to Related_Node. The returned subtype inherits predicates
370 -- from Typ.
371
372 -- ??? The routine is mostly a duplicate of Build_Constrained_Itype, so be
373 -- careful which of the two better suits your needs (and certainly do not
374 -- duplicate their code).
375
376 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean;
377 -- Returns True if the expression cannot possibly raise Constraint_Error.
378 -- The response is conservative in the sense that a result of False does
379 -- not necessarily mean that CE could be raised, but a response of True
380 -- means that for sure CE cannot be raised.
381
382 procedure Check_Ambiguous_Aggregate (Call : Node_Id);
383 -- Additional information on an ambiguous call in Ada_2022 when a
384 -- subprogram call has an actual that is an aggregate, and the
385 -- presence of container aggregates (or types with the corresponding
386 -- aspect) provides an additional interpretation. Message indicates
387 -- that an aggregate actual should carry a type qualification.
388
389 procedure Check_Dynamically_Tagged_Expression
390 (Expr : Node_Id;
391 Typ : Entity_Id;
392 Related_Nod : Node_Id);
393 -- Check wrong use of dynamically tagged expression
394
395 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id);
396 -- Verify that the full declaration of type T has been seen. If not, place
397 -- error message on node N. Used in object declarations, type conversions
398 -- and qualified expressions.
399
400 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id);
401 -- A subprogram that has an Address parameter and is declared in a Pure
402 -- package is not considered Pure, because the parameter may be used as a
403 -- pointer and the referenced data may change even if the address value
404 -- itself does not.
405 -- If the programmer gave an explicit Pure_Function pragma, then we respect
406 -- the pragma and leave the subprogram Pure.
407
408 procedure Check_Function_Writable_Actuals (N : Node_Id);
409 -- (Ada 2012): If the construct N has two or more direct constituents that
410 -- are names or expressions whose evaluation may occur in an arbitrary
411 -- order, at least one of which contains a function call with an in out or
412 -- out parameter, then the construct is legal only if: for each name that
413 -- is passed as a parameter of mode in out or out to some inner function
414 -- call C2 (not including the construct N itself), there is no other name
415 -- anywhere within a direct constituent of the construct C other than
416 -- the one containing C2, that is known to refer to the same object (RM
417 -- 6.4.1(6.17/3)).
418
419 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id);
420 -- AI05-139-2: Accessors and iterators for containers. This procedure
421 -- checks whether T is a reference type, and if so it adds an interprettion
422 -- to N whose type is the designated type of the reference_discriminant.
423 -- If N is a generalized indexing operation, the interpretation is added
424 -- both to the corresponding function call, and to the indexing node.
425
426 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id);
427 -- Within a protected function, the current object is a constant, and
428 -- internal calls to a procedure or entry are illegal. Similarly, other
429 -- uses of a protected procedure in a renaming or a generic instantiation
430 -- in the context of a protected function are illegal (AI05-0225).
431
432 procedure Check_Later_Vs_Basic_Declarations
433 (Decls : List_Id;
434 During_Parsing : Boolean);
435 -- If During_Parsing is True, check for misplacement of later vs basic
436 -- declarations in Ada 83. If During_Parsing is False, and the SPARK
437 -- restriction is set, do the same: although SPARK 95 removes the
438 -- distinction between initial and later declarative items, the distinction
439 -- remains in the Examiner (JB01-005). Note that the Examiner does not
440 -- count package declarations in later declarative items.
441
442 procedure Check_No_Hidden_State (Id : Entity_Id);
443 -- Determine whether object or state Id introduces a hidden state. If this
444 -- is the case, emit an error.
445
446 procedure Check_Inherited_Nonoverridable_Aspects
447 (Inheritor : Entity_Id;
448 Interface_List : List_Id;
449 Parent_Type : Entity_Id);
450 -- Verify consistency of inherited nonoverridable aspects
451 -- when aspects are inherited from more than one source.
452 -- Parent_Type may be void (e.g., for a tagged task/protected type
453 -- whose declaration includes a non-empty interface list).
454 -- In the error case, error message is associate with Inheritor;
455 -- Inheritor parameter is otherwise unused.
456
457 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id);
458 -- Verify that the profile of nonvolatile function Func_Id does not contain
459 -- effectively volatile parameters or return type for reading.
460
461 function Check_Parents (N : Node_Id; List : Elist_Id) return Boolean;
462 -- Return True if all the occurrences of subtree N referencing entities in
463 -- the given List have the right value in their Parent field.
464
465 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id);
466 -- Verify the legality of reference Ref to variable Var_Id when the
467 -- variable is a constituent of a single protected/task type.
468
469 procedure Check_Potentially_Blocking_Operation (N : Node_Id);
470 -- N is one of the statement forms that is a potentially blocking
471 -- operation. If it appears within a protected action, emit warning.
472
473 procedure Check_Previous_Null_Procedure
474 (Decl : Node_Id;
475 Prev : Entity_Id);
476 -- A null procedure or a subprogram renaming can complete a previous
477 -- declaration, unless that previous declaration is itself a null
478 -- procedure. This must be treated specially because the analysis of
479 -- the null procedure leaves the corresponding entity as having no
480 -- completion, because its completion is provided by a generated body
481 -- inserted after all other declarations.
482
483 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id);
484 -- Determine whether the contract of subprogram Subp_Id mentions attribute
485 -- 'Result and it contains an expression that evaluates differently in pre-
486 -- and post-state.
487
488 procedure Check_State_Refinements
489 (Context : Node_Id;
490 Is_Main_Unit : Boolean := False);
491 -- Verify that all abstract states declared in a block statement, entry
492 -- body, package body, protected body, subprogram body, task body, or a
493 -- package declaration denoted by Context have proper refinement. Emit an
494 -- error if this is not the case. Flag Is_Main_Unit should be set when
495 -- Context denotes the main compilation unit.
496
497 procedure Check_Unused_Body_States (Body_Id : Entity_Id);
498 -- Verify that all abstract states and objects declared in the state space
499 -- of package body Body_Id are used as constituents. Emit an error if this
500 -- is not the case.
501
502 procedure Check_Unprotected_Access
503 (Context : Node_Id;
504 Expr : Node_Id);
505 -- Check whether the expression is a pointer to a protected component,
506 -- and the context is external to the protected operation, to warn against
507 -- a possible unlocked access to data.
508
509 procedure Check_Volatility_Compatibility
510 (Id1, Id2 : Entity_Id;
511 Description_1, Description_2 : String;
512 Srcpos_Bearer : Node_Id);
513 -- Id1 and Id2 should each be the entity of a state abstraction, a
514 -- variable, or a type (i.e., something suitable for passing to
515 -- Async_Readers_Enabled and similar functions).
516 -- Does nothing if SPARK_Mode /= On. Otherwise, flags a legality violation
517 -- if one or more of the four volatility-related aspects is False for Id1
518 -- and True for Id2. The two descriptions are included in the error message
519 -- text; the source position for the generated message is determined by
520 -- Srcpos_Bearer.
521
522 function Choice_List (N : Node_Id) return List_Id;
523 -- Utility to retrieve the choices of a Component_Association or the
524 -- Discrete_Choices of an Iterated_Component_Association. For various
525 -- reasons these nodes have a different structure even though they play
526 -- similar roles in array aggregates.
527
528 type Condition_Kind is
529 (Ignored_Class_Precondition,
530 Ignored_Class_Postcondition,
531 Class_Precondition,
532 Class_Postcondition);
533 -- Kind of class-wide conditions
534
535 function Class_Condition
536 (Kind : Condition_Kind;
537 Subp : Entity_Id) return Node_Id;
538 -- Class-wide Kind condition of Subp
539
540 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id;
541 -- Gather the entities of all abstract states and objects declared in the
542 -- body state space of package body Body_Id.
543
544 procedure Collect_Interfaces
545 (T : Entity_Id;
546 Ifaces_List : out Elist_Id;
547 Exclude_Parents : Boolean := False;
548 Use_Full_View : Boolean := True);
549 -- Ada 2005 (AI-251): Collect whole list of abstract interfaces that are
550 -- directly or indirectly implemented by T. Exclude_Parents is used to
551 -- avoid the addition of inherited interfaces to the generated list.
552 -- Use_Full_View is used to collect the interfaces using the full-view
553 -- (if available).
554
555 procedure Collect_Interface_Components
556 (Tagged_Type : Entity_Id;
557 Components_List : out Elist_Id);
558 -- Ada 2005 (AI-251): Collect all the tag components associated with the
559 -- secondary dispatch tables of a tagged type.
560
561 procedure Collect_Interfaces_Info
562 (T : Entity_Id;
563 Ifaces_List : out Elist_Id;
564 Components_List : out Elist_Id;
565 Tags_List : out Elist_Id);
566 -- Ada 2005 (AI-251): Collect all the interfaces associated with T plus
567 -- the record component and tag associated with each of these interfaces.
568 -- On exit Ifaces_List, Components_List and Tags_List have the same number
569 -- of elements, and elements at the same position on these tables provide
570 -- information on the same interface type.
571
572 procedure Collect_Parents
573 (T : Entity_Id;
574 List : out Elist_Id;
575 Use_Full_View : Boolean := True);
576 -- Collect all the parents of Typ. Use_Full_View is used to collect them
577 -- using the full-view of private parents (if available).
578
579 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id;
580 -- Called upon type derivation and extension. We scan the declarative part
581 -- in which the type appears, and collect subprograms that have one
582 -- subsidiary subtype of the type. These subprograms can only appear after
583 -- the type itself.
584
585 function Compile_Time_Constraint_Error
586 (N : Node_Id;
587 Msg : String;
588 Ent : Entity_Id := Empty;
589 Loc : Source_Ptr := No_Location;
590 Warn : Boolean := False;
591 Extra_Msg : String := "") return Node_Id;
592 -- This is similar to Apply_Compile_Time_Constraint_Error in that it
593 -- generates a warning (or error) message in the same manner, but it does
594 -- not replace any nodes. For convenience, the function always returns its
595 -- first argument. The message is a warning if the message ends with ?, or
596 -- we are operating in Ada 83 mode, or the Warn parameter is set to True.
597 -- If Extra_Msg is not a null string, then it's associated with N and
598 -- emitted immediately after the main message (and before output of any
599 -- message indicating that Constraint_Error will be raised).
600
601 procedure Compute_Returns_By_Ref (Func : Entity_Id);
602 -- Set the Returns_By_Ref flag on Func if appropriate
603
604 generic
605 with function Predicate (Typ : Entity_Id) return Boolean;
606 function Collect_Types_In_Hierarchy
607 (Typ : Entity_Id;
608 Examine_Components : Boolean := False) return Elist_Id;
609 -- Inspect the ancestor and progenitor types of Typ and Typ itself -
610 -- collecting those for which function Predicate is True. The resulting
611 -- list is ordered in a type-to-ultimate-ancestor fashion.
612
613 -- When Examine_Components is True, components types in the hierarchy also
614 -- get collected.
615
616 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id);
617 -- Sets the Has_Delayed_Freeze flag of New_Ent if the Delayed_Freeze flag
618 -- of Old_Ent is set and Old_Ent has not yet been Frozen (i.e. Is_Frozen is
619 -- False).
620
621 function Copy_Component_List
622 (R_Typ : Entity_Id;
623 Loc : Source_Ptr) return List_Id;
624 -- Copy components from record type R_Typ that come from source. Used to
625 -- create a new compatible record type. Loc is the source location assigned
626 -- to the created nodes.
627
628 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id;
629 -- Utility to create a parameter profile for a new subprogram spec, when
630 -- the subprogram has a body that acts as spec. This is done for some cases
631 -- of inlining, and for private protected ops. Also used to create bodies
632 -- for stubbed subprograms.
633
634 procedure Copy_SPARK_Mode_Aspect (From : Node_Id; To : Node_Id);
635 -- Copy the SPARK_Mode aspect if present in the aspect specifications
636 -- of node From to node To. On entry it is assumed that To does not have
637 -- aspect specifications. If From has no aspects, the routine has no
638 -- effect.
639
640 function Copy_Subprogram_Spec
641 (Spec : Node_Id;
642 New_Sloc : Source_Ptr := No_Location) return Node_Id;
643 -- Replicate a function or a procedure specification denoted by Spec. The
644 -- resulting tree is an exact duplicate of the original tree. New entities
645 -- are created for the unit name and the formal parameters. For definition
646 -- of New_Sloc, see the comment for New_Copy_Tree.
647
648 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id;
649 -- If a type is a generic actual type, return the corresponding formal in
650 -- the generic parent unit. There is no direct link in the tree for this
651 -- attribute, except in the case of formal private and derived types.
652 -- Possible optimization???
653
654 function Corresponding_Primitive_Op
655 (Ancestor_Op : Entity_Id;
656 Descendant_Type : Entity_Id) return Entity_Id;
657 -- Given a primitive subprogram of a tagged type and a (distinct)
658 -- descendant type of that type, find the corresponding primitive
659 -- subprogram of the descendant type.
660
661 function Current_Entity (N : Node_Id) return Entity_Id;
662 pragma Inline (Current_Entity);
663 -- Find the currently visible definition for a given identifier, that is to
664 -- say the first entry in the visibility chain for the Chars of N.
665
666 function Current_Entity_In_Scope (N : Name_Id) return Entity_Id;
667 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id;
668 -- Find whether there is a previous definition for name or identifier N in
669 -- the current scope. Because declarations for a scope are not necessarily
670 -- contiguous (e.g. for packages) the first entry on the visibility chain
671 -- for N is not necessarily in the current scope.
672
673 function Current_Scope return Entity_Id;
674 -- Get entity representing current scope
675
676 function Current_Scope_No_Loops return Entity_Id;
677 -- Return the current scope ignoring internally generated loops
678
679 function Current_Subprogram return Entity_Id;
680 -- Returns current enclosing subprogram. If Current_Scope is a subprogram,
681 -- then that is what is returned, otherwise the Enclosing_Subprogram of the
682 -- Current_Scope is returned. The returned value is Empty if this is called
683 -- from a library package which is not within any subprogram.
684
685 function CW_Or_Needs_Finalization (Typ : Entity_Id) return Boolean;
686 -- True if Typ is a class-wide type or requires finalization actions. Same
687 -- as Needs_Finalization except with pragma Restrictions (No_Finalization),
688 -- in which case we know that class-wide objects do not need finalization.
689
690 function Deepest_Type_Access_Level
691 (Typ : Entity_Id;
692 Allow_Alt_Model : Boolean := True) return Uint;
693
694 -- Same as Type_Access_Level, except that if the type is the type of an Ada
695 -- 2012 stand-alone object of an anonymous access type, then return the
696 -- static accessibility level of the object. In that case, the dynamic
697 -- accessibility level of the object may take on values in a range. The low
698 -- bound of that range is returned by Type_Access_Level; this function
699 -- yields the high bound of that range. Also differs from Type_Access_Level
700 -- in the case of a descendant of a generic formal type (returns Int'Last
701 -- instead of 0).
702
703 -- The Allow_Alt_Model parameter allows the alternative level calculation
704 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
705
706 function Defining_Entity (N : Node_Id) return Entity_Id;
707 -- Given a declaration N, returns the associated defining entity. If the
708 -- declaration has a specification, the entity is obtained from the
709 -- specification. If the declaration has a defining unit name, then the
710 -- defining entity is obtained from the defining unit name ignoring any
711 -- child unit prefixes.
712 --
713 -- Iterator loops also have a defining entity, which holds the list of
714 -- local entities declared during loop expansion. These entities need
715 -- debugging information, generated through Qualify_Entity_Names, and
716 -- the loop declaration must be placed in the table Name_Qualify_Units.
717
718 -- WARNING: There is a matching C declaration of this subprogram in fe.h
719
720 function Defining_Entity_Or_Empty (N : Node_Id) return Entity_Id;
721 -- This is equivalent to Defining_Entity but it returns Empty for nodes
722 -- without an entity instead of raising Program_Error.
723
724 function Denotes_Discriminant
725 (N : Node_Id;
726 Check_Concurrent : Boolean := False) return Boolean;
727 -- Returns True if node N is an Entity_Name node for a discriminant. If the
728 -- flag Check_Concurrent is true, function also returns true when N denotes
729 -- the discriminal of the discriminant of a concurrent type. This is needed
730 -- to disable some optimizations on private components of protected types,
731 -- and constraint checks on entry families constrained by discriminants.
732
733 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean;
734 -- Detect suspicious overlapping between actuals in a call, when both are
735 -- writable (RM 2012 6.4.1(6.4/3)).
736
737 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean;
738 -- Functions to detect suspicious overlapping between actuals in a call,
739 -- when one of them is writable. The predicates are those proposed in
740 -- AI05-0144, to detect dangerous order dependence in complex calls.
741 -- I would add a parameter Warn which enables more extensive testing of
742 -- cases as we find appropriate when we are only warning ??? Or perhaps
743 -- return an indication of (Error, Warn, OK) ???
744
745 function Denotes_Variable (N : Node_Id) return Boolean;
746 -- Returns True if node N denotes a single variable without parentheses
747
748 function Depends_On_Discriminant (N : Node_Id) return Boolean;
749 -- Returns True if N denotes a discriminant or if N is a range, a subtype
750 -- indication or a scalar subtype where one of the bounds is a
751 -- discriminant.
752
753 function Derivation_Too_Early_To_Inherit
754 (Typ : Entity_Id; Streaming_Op : TSS_Name_Type) return Boolean;
755 -- Returns True if Typ is a derived type, the given Streaming_Op
756 -- (one of Read, Write, Input, or Output) is explicitly specified
757 -- for Typ's parent type, and that attribute specification is *not*
758 -- inherited by Typ because the declaration of Typ precedes that
759 -- of the attribute specification.
760
761 function Designate_Same_Unit
762 (Name1 : Node_Id;
763 Name2 : Node_Id) return Boolean;
764 -- Returns True if Name1 and Name2 designate the same unit name; each of
765 -- these names is supposed to be a selected component name, an expanded
766 -- name, a defining program unit name or an identifier.
767
768 procedure Diagnose_Iterated_Component_Association (N : Node_Id);
769 -- Emit an error if iterated component association N is actually an illegal
770 -- quantified expression lacking a quantifier.
771
772 function Discriminated_Size (Comp : Entity_Id) return Boolean;
773 -- If a component size is not static then a warning will be emitted
774 -- in Ravenscar or other restricted contexts. When a component is non-
775 -- static because of a discriminant constraint we can specialize the
776 -- warning by mentioning discriminants explicitly. This was created for
777 -- private components of protected objects, but is generally useful when
778 -- restriction No_Implicit_Heap_Allocation is active.
779
780 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id;
781 -- Same as Einfo.Extra_Accessibility except thtat object renames
782 -- are looked through.
783
784 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean;
785 -- Id should be the entity of a state abstraction, an object, or a type.
786 -- Returns True iff Id is subject to external property Effective_Reads.
787
788 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean;
789 -- Id should be the entity of a state abstraction, an object, or a type.
790 -- Returns True iff Id is subject to external property Effective_Writes.
791
792 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id;
793 -- Returns the enclosing N_Compilation_Unit node that is the root of a
794 -- subtree containing N.
795
796 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id;
797 -- Returns the closest ancestor of Typ that is a CPP type.
798
799 function Enclosing_Declaration (N : Node_Id) return Node_Id;
800 -- Returns the declaration node enclosing N (including possibly N itself),
801 -- if any, or Empty otherwise.
802
803 function Enclosing_Generic_Body (N : Node_Id) return Node_Id;
804 -- Returns the Node_Id associated with the innermost enclosing generic
805 -- body, if any. If none, then returns Empty.
806
807 function Enclosing_Generic_Unit (N : Node_Id) return Node_Id;
808 -- Returns the Node_Id associated with the innermost enclosing generic
809 -- unit, if any. If none, then returns Empty.
810
811 function Enclosing_HSS (Stmt : Node_Id) return Node_Id;
812 -- Returns the nearest handled sequence of statements that encloses a given
813 -- statement, or Empty.
814
815 function Enclosing_Lib_Unit_Entity
816 (E : Entity_Id := Current_Scope) return Entity_Id;
817 -- Returns the entity of enclosing library unit node which is the root of
818 -- the current scope (which must not be Standard_Standard, and the caller
819 -- is responsible for ensuring this condition) or other specified entity.
820
821 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id;
822 -- Returns the N_Compilation_Unit node of the library unit that is directly
823 -- or indirectly (through a subunit) at the root of a subtree containing
824 -- N. This may be either the same as Enclosing_Comp_Unit_Node, or if
825 -- Enclosing_Comp_Unit_Node returns a subunit, then the corresponding
826 -- library unit. If no such item is found, returns Empty.
827
828 function Enclosing_Package (N : Node_Or_Entity_Id) return Entity_Id;
829 -- Utility function to return the Ada entity of the package enclosing
830 -- the entity or node N, if any. Returns Empty if no enclosing package.
831
832 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id;
833 -- Returns the entity of the package or subprogram enclosing E, if any.
834 -- Returns Empty if no enclosing package or subprogram.
835
836 function Enclosing_Subprogram (N : Node_Or_Entity_Id) return Entity_Id;
837 -- Utility function to return the Ada entity of the subprogram enclosing
838 -- N, if any. Returns Empty if no enclosing subprogram.
839
840 function End_Keyword_Location (N : Node_Id) return Source_Ptr;
841 -- Given block statement, entry body, package body, package declaration,
842 -- protected body, [single] protected type declaration, subprogram body,
843 -- task body, or [single] task type declaration N, return the closest
844 -- source location of the "end" keyword.
845
846 procedure Ensure_Freeze_Node (E : Entity_Id);
847 -- Make sure a freeze node is allocated for entity E. If necessary, build
848 -- and initialize a new freeze node and set Has_Delayed_Freeze True for E.
849
850 procedure Enter_Name (Def_Id : Entity_Id);
851 -- Insert new name in symbol table of current scope with check for
852 -- duplications (error message is issued if a conflict is found).
853 -- Note: Enter_Name is not used for overloadable entities, instead these
854 -- are entered using Sem_Ch6.Enter_Overloaded_Entity.
855
856 function Entity_Of (N : Node_Id) return Entity_Id;
857 -- Obtain the entity of arbitrary node N. If N is a renaming, return the
858 -- entity of the earliest renamed source abstract state or whole object.
859 -- If no suitable entity is available, return Empty. This routine carries
860 -- out actions that are tied to SPARK semantics.
861
862 function Exceptions_OK return Boolean;
863 -- Determine whether exceptions are allowed to be caught, propagated, or
864 -- raised.
865
866 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id);
867 -- This procedure is called after issuing a message complaining about an
868 -- inappropriate use of limited type T. If useful, it adds additional
869 -- continuation lines to the message explaining why type T is limited.
870 -- Messages are placed at node N.
871
872 function Expression_Of_Expression_Function
873 (Subp : Entity_Id) return Node_Id;
874 -- Return the expression of expression function Subp
875
876 type Extensions_Visible_Mode is
877 (Extensions_Visible_None,
878 -- Extensions_Visible does not yield a mode when SPARK_Mode is off. This
879 -- value acts as a default in a non-SPARK compilation.
880
881 Extensions_Visible_False,
882 -- A value of "False" signifies that Extensions_Visible is either
883 -- missing or the pragma is present and the value of its Boolean
884 -- expression is False.
885
886 Extensions_Visible_True);
887 -- A value of "True" signifies that Extensions_Visible is present and
888 -- the value of its Boolean expression is True.
889
890 function Extensions_Visible_Status
891 (Id : Entity_Id) return Extensions_Visible_Mode;
892 -- Given the entity of a subprogram or formal parameter subject to pragma
893 -- Extensions_Visible, return the Boolean value denoted by the expression
894 -- of the pragma.
895
896 procedure Find_Actual
897 (N : Node_Id;
898 Formal : out Entity_Id;
899 Call : out Node_Id);
900 -- Determines if the node N is an actual parameter of a function or a
901 -- procedure call. If so, then Formal points to the entity for the formal
902 -- (Ekind is E_In_Parameter, E_Out_Parameter, or E_In_Out_Parameter) and
903 -- Call is set to the node for the corresponding call. If the node N is not
904 -- an actual parameter then Formal and Call are set to Empty.
905
906 function Find_Body_Discriminal
907 (Spec_Discriminant : Entity_Id) return Entity_Id;
908 -- Given a discriminant of the record type that implements a task or
909 -- protected type, return the discriminal of the corresponding discriminant
910 -- of the actual concurrent type.
911
912 function Find_Corresponding_Discriminant
913 (Id : Node_Id;
914 Typ : Entity_Id) return Entity_Id;
915 -- Because discriminants may have different names in a generic unit and in
916 -- an instance, they are resolved positionally when possible. A reference
917 -- to a discriminant carries the discriminant that it denotes when it is
918 -- analyzed. Subsequent uses of this id on a different type denotes the
919 -- discriminant at the same position in this new type.
920
921 function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
922 -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
923 -- defines the Default_Initial_Condition pragma of type Typ. This is either
924 -- Typ itself or a parent type when the pragma is inherited.
925
926 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id;
927 -- Find the nearest iterator loop which encloses arbitrary entity Id. If
928 -- such a loop exists, return the entity of its identifier (E_Loop scope),
929 -- otherwise return Empty.
930
931 function Find_Enclosing_Scope (N : Node_Id) return Entity_Id;
932 -- Find the nearest scope which encloses arbitrary node N
933
934 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id;
935 -- Find the nested loop statement in a conditional block. Loops subject to
936 -- attribute 'Loop_Entry are transformed into blocks. Parts of the original
937 -- loop are nested within the block.
938
939 procedure Find_Overlaid_Entity
940 (N : Node_Id;
941 Ent : out Entity_Id;
942 Off : out Boolean);
943 -- The node N should be an address representation clause. Determines if the
944 -- target expression is the address of an entity with an optional offset.
945 -- If so, set Ent to the entity and, if there is an offset, set Off to
946 -- True, otherwise to False. If it is not possible to determine that the
947 -- address is of this form, then set Ent to Empty.
948
949 function Find_Parameter_Type (Param : Node_Id) return Entity_Id;
950 -- Return the type of formal parameter Param as determined by its
951 -- specification.
952
953 -- The following type describes the placement of an arbitrary entity with
954 -- respect to SPARK visible / hidden state space.
955
956 type State_Space_Kind is
957 (Not_In_Package,
958 -- An entity is not in the visible, private or body state space when
959 -- the immediate enclosing construct is not a package.
960
961 Visible_State_Space,
962 -- An entity is in the visible state space when it appears immediately
963 -- within the visible declarations of a package or when it appears in
964 -- the visible state space of a nested package which in turn is declared
965 -- in the visible declarations of an enclosing package:
966
967 -- package Pack is
968 -- Visible_Variable : ...
969 -- package Nested
970 -- with Abstract_State => Visible_State
971 -- is
972 -- Visible_Nested_Variable : ...
973 -- end Nested;
974 -- end Pack;
975
976 -- Entities associated with a package instantiation inherit the state
977 -- space from the instance placement:
978
979 -- generic
980 -- package Gen is
981 -- Generic_Variable : ...
982 -- end Gen;
983
984 -- with Gen;
985 -- package Pack is
986 -- package Inst is new Gen;
987 -- -- Generic_Variable is in the visible state space of Pack
988 -- end Pack;
989
990 Private_State_Space,
991 -- An entity is in the private state space when it appears immediately
992 -- within the private declarations of a package or when it appears in
993 -- the visible state space of a nested package which in turn is declared
994 -- in the private declarations of an enclosing package:
995
996 -- package Pack is
997 -- private
998 -- Private_Variable : ...
999 -- package Nested
1000 -- with Abstract_State => Private_State
1001 -- is
1002 -- Private_Nested_Variable : ...
1003 -- end Nested;
1004 -- end Pack;
1005
1006 -- The same placement principle applies to package instantiations
1007
1008 Body_State_Space);
1009 -- An entity is in the body state space when it appears immediately
1010 -- within the declarations of a package body or when it appears in the
1011 -- visible state space of a nested package which in turn is declared in
1012 -- the declarations of an enclosing package body:
1013
1014 -- package body Pack is
1015 -- Body_Variable : ...
1016 -- package Nested
1017 -- with Abstract_State => Body_State
1018 -- is
1019 -- Body_Nested_Variable : ...
1020 -- end Nested;
1021 -- end Pack;
1022
1023 -- The same placement principle applies to package instantiations
1024
1025 procedure Find_Placement_In_State_Space
1026 (Item_Id : Entity_Id;
1027 Placement : out State_Space_Kind;
1028 Pack_Id : out Entity_Id);
1029 -- Determine the state space placement of an item. Item_Id denotes the
1030 -- entity of an abstract state, object, or package instantiation. Placement
1031 -- captures the precise placement of the item in the enclosing state space.
1032 -- If the state space is that of a package, Pack_Id denotes its entity,
1033 -- otherwise Pack_Id is Empty.
1034
1035 function Find_Primitive_Eq (Typ : Entity_Id) return Entity_Id;
1036 -- Locate primitive equality for type if it exists. Return Empty if it is
1037 -- not available.
1038
1039 function Find_Specific_Type (CW : Entity_Id) return Entity_Id;
1040 -- Find specific type of a class-wide type, and handle the case of an
1041 -- incomplete type coming either from a limited_with clause or from an
1042 -- incomplete type declaration. If resulting type is private return its
1043 -- full view.
1044
1045 function Find_Static_Alternative (N : Node_Id) return Node_Id;
1046 -- N is a case statement whose expression is a compile-time value.
1047 -- Determine the alternative chosen, so that the code of non-selected
1048 -- alternatives, and the warnings that may apply to them, are removed.
1049
1050 function First_Actual (Node : Node_Id) return Node_Id;
1051 -- Node is an N_Function_Call, N_Procedure_Call_Statement or
1052 -- N_Entry_Call_Statement node. The result returned is the first actual
1053 -- parameter in declaration order (not the order of parameters as they
1054 -- appeared in the source, which can be quite different as a result of the
1055 -- use of named parameters). Empty is returned for a call with no
1056 -- parameters. The procedure for iterating through the actuals in
1057 -- declaration order is to use this function to find the first actual, and
1058 -- then use Next_Actual to obtain the next actual in declaration order.
1059 -- Note that the value returned is always the expression (not the
1060 -- N_Parameter_Association nodes, even if named association is used).
1061
1062 -- WARNING: There is a matching C declaration of this subprogram in fe.h
1063
1064 function First_Global
1065 (Subp : Entity_Id;
1066 Global_Mode : Name_Id;
1067 Refined : Boolean := False) return Node_Id;
1068 -- Returns the first global item of mode Global_Mode (which can be
1069 -- Name_Input, Name_Output, Name_In_Out or Name_Proof_In) associated to
1070 -- subprogram Subp, or Empty otherwise. If Refined is True, the global item
1071 -- is retrieved from the Refined_Global aspect/pragma associated to the
1072 -- body of Subp if present. Next_Global can be used to get the next global
1073 -- item with the same mode.
1074
1075 function Fix_Msg (Id : Entity_Id; Msg : String) return String;
1076 -- Replace all occurrences of a particular word in string Msg depending on
1077 -- the Ekind of Id as follows:
1078 -- * Replace "subprogram" with
1079 -- - "entry" when Id is an entry [family]
1080 -- - "task type" when Id is a single task object, task type or task
1081 -- body.
1082 -- * Replace "protected" with
1083 -- - "task" when Id is a single task object, task type or task body
1084 -- All other non-matching words remain as is
1085
1086 function From_Nested_Package (T : Entity_Id) return Boolean;
1087 -- A type declared in a nested package may be frozen by a declaration
1088 -- appearing after the package but before the package is frozen. If the
1089 -- type has aspects that generate subprograms, these may contain references
1090 -- to entities local to the nested package. In that case the package must
1091 -- be installed on the scope stack to prevent spurious visibility errors.
1092
1093 procedure Gather_Components
1094 (Typ : Entity_Id;
1095 Comp_List : Node_Id;
1096 Governed_By : List_Id;
1097 Into : Elist_Id;
1098 Report_Errors : out Boolean;
1099 Allow_Compile_Time : Boolean := False;
1100 Include_Interface_Tag : Boolean := False);
1101 -- The purpose of this procedure is to gather the valid components in a
1102 -- record type according to the values of its discriminants, in order to
1103 -- validate the components of a record aggregate.
1104 --
1105 -- Typ is the type of the aggregate when its constrained discriminants
1106 -- need to be collected, otherwise it is Empty.
1107 --
1108 -- Comp_List is an N_Component_List node.
1109 --
1110 -- Governed_By is a list of N_Component_Association nodes, where each
1111 -- choice list contains the name of a discriminant and the expression
1112 -- field gives its value. The values of the discriminants governing
1113 -- the (possibly nested) variant parts in Comp_List are found in this
1114 -- Component_Association List.
1115 --
1116 -- Into is the list where the valid components are appended. Note that
1117 -- Into need not be an Empty list. If it's not, components are attached
1118 -- to its tail.
1119 --
1120 -- Report_Errors is set to True if the values of the discriminants are
1121 -- insufficiently static (see body for details of what that means).
1122
1123 --
1124 -- Allow_Compile_Time if set to True, allows compile time known values in
1125 -- Governed_By expressions in addition to static expressions.
1126 --
1127 -- Include_Interface_Tag if set to True, gather any interface tag
1128 -- component, otherwise exclude them.
1129 --
1130 -- This procedure is also used when building a record subtype. If the
1131 -- discriminant constraint of the subtype is static, the components of the
1132 -- subtype are only those of the variants selected by the values of the
1133 -- discriminants. Otherwise all components of the parent must be included
1134 -- in the subtype for semantic analysis.
1135
1136 function Get_Dynamic_Accessibility (E : Entity_Id) return Entity_Id;
1137 -- Obtain the accessibility level for a given entity formal taking into
1138 -- account both extra and minimum accessibility.
1139
1140 function Get_Actual_Subtype (N : Node_Id) return Entity_Id;
1141 -- Given a node for an expression, obtain the actual subtype of the
1142 -- expression. In the case of a parameter where the formal is an
1143 -- unconstrained array or discriminated type, this will be the previously
1144 -- constructed subtype of the actual. Note that this is not quite the
1145 -- "Actual Subtype" of the RM, since it is always a constrained type, i.e.
1146 -- it is the subtype of the value of the actual. The actual subtype is also
1147 -- returned in other cases where it has already been constructed for an
1148 -- object. Otherwise the expression type is returned unchanged, except for
1149 -- the case of an unconstrained array type, where an actual subtype is
1150 -- created, using Insert_Actions if necessary to insert any associated
1151 -- actions.
1152
1153 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id;
1154 -- This is like Get_Actual_Subtype, except that it never constructs an
1155 -- actual subtype. If an actual subtype is already available, i.e. the
1156 -- Actual_Subtype field of the corresponding entity is set, then it is
1157 -- returned. Otherwise the Etype of the node is returned.
1158
1159 function Get_Body_From_Stub (N : Node_Id) return Node_Id;
1160 -- Return the body node for a stub
1161
1162 function Get_Cursor_Type
1163 (Aspect : Node_Id;
1164 Typ : Entity_Id) return Entity_Id;
1165 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1166 -- primitive operation First. For use in resolving the other primitive
1167 -- operations of an Iterable type and expanding loops and quantified
1168 -- expressions over formal containers.
1169
1170 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
1171 -- Find Cursor type in scope of type Typ with Iterable aspect, by locating
1172 -- primitive operation First. For use after resolving the primitive
1173 -- operations of an Iterable type.
1174
1175 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id;
1176 -- This is used to construct the string literal node representing a
1177 -- default external name, i.e. one that is constructed from the name of an
1178 -- entity, or (in the case of extended DEC import/export pragmas) an
1179 -- identifier provided as the external name. Letters in the name are
1180 -- according to the setting of Opt.External_Name_Default_Casing.
1181
1182 function Get_Enclosing_Object (N : Node_Id) return Entity_Id;
1183 -- If expression N references a part of an object, return this object.
1184 -- Otherwise return Empty. Expression N should have been resolved already.
1185
1186 function Get_Generic_Entity (N : Node_Id) return Entity_Id;
1187 -- Returns the true generic entity in an instantiation. If the name in the
1188 -- instantiation is a renaming, the function returns the renamed generic.
1189
1190 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id;
1191 -- Implements the notion introduced ever-so briefly in RM 7.3.1 (5.2/3):
1192 -- in a child unit a derived type is within the derivation class of an
1193 -- ancestor declared in a parent unit, even if there is an intermediate
1194 -- derivation that does not see the full view of that ancestor.
1195
1196 procedure Get_Index_Bounds
1197 (N : Node_Id;
1198 L : out Node_Id;
1199 H : out Node_Id;
1200 Use_Full_View : Boolean := False);
1201 -- This procedure assigns to L and H respectively the values of the low and
1202 -- high bounds of node N, which must be a range, subtype indication, or the
1203 -- name of a scalar subtype. The result in L, H may be set to Error if
1204 -- there was an earlier error in the range.
1205 -- Use_Full_View is intended for use by clients other than the compiler
1206 -- (specifically, gnat2scil) to indicate that we want the full view if
1207 -- the index type turns out to be a partial view; this case should not
1208 -- arise during normal compilation of semantically correct programs.
1209
1210 type Range_Nodes is record
1211 First, Last : Node_Id; -- First and Last nodes of a discrete_range
1212 end record;
1213
1214 type Range_Values is record
1215 First, Last : Uint; -- First and Last values of a discrete_range
1216 end record;
1217
1218 function Get_Index_Bounds
1219 (N : Node_Id;
1220 Use_Full_View : Boolean := False) return Range_Nodes;
1221 -- Same as the above procedure, but returns the result as a record.
1222 -- ???This should probably replace the procedure.
1223
1224 function Get_Index_Bounds
1225 (N : Node_Id;
1226 Use_Full_View : Boolean := False) return Range_Values;
1227 -- Same as the above function, but returns the values, which must be known
1228 -- at compile time.
1229
1230 procedure Get_Interfacing_Aspects
1231 (Iface_Asp : Node_Id;
1232 Conv_Asp : out Node_Id;
1233 EN_Asp : out Node_Id;
1234 Expo_Asp : out Node_Id;
1235 Imp_Asp : out Node_Id;
1236 LN_Asp : out Node_Id;
1237 Do_Checks : Boolean := False);
1238 -- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
1239 -- aspects that apply to the same related entity. The aspects considered by
1240 -- this routine are as follows:
1241 --
1242 -- Conv_Asp - aspect Convention
1243 -- EN_Asp - aspect External_Name
1244 -- Expo_Asp - aspect Export
1245 -- Imp_Asp - aspect Import
1246 -- LN_Asp - aspect Link_Name
1247 --
1248 -- When flag Do_Checks is set, this routine will flag duplicate uses of
1249 -- aspects.
1250
1251 function Get_Enum_Lit_From_Pos
1252 (T : Entity_Id;
1253 Pos : Uint;
1254 Loc : Source_Ptr) return Node_Id;
1255 -- This function returns an identifier denoting the E_Enumeration_Literal
1256 -- entity for the specified value from the enumeration type or subtype T.
1257 -- The second argument is the Pos value. Constraint_Error is raised if
1258 -- argument Pos is not in range. The third argument supplies a source
1259 -- location for constructed nodes returned by this function. If No_Location
1260 -- is supplied as source location, the location of the returned node is
1261 -- copied from the original source location for the enumeration literal,
1262 -- when available.
1263
1264 function Get_Iterable_Type_Primitive
1265 (Typ : Entity_Id;
1266 Nam : Name_Id) return Entity_Id;
1267 -- Retrieve one of the primitives First, Last, Next, Previous, Has_Element,
1268 -- Element from the value of the Iterable aspect of a type.
1269
1270 function Get_Library_Unit_Name (Decl_Node : Node_Id) return String_Id;
1271 -- Return the full expanded name of the library unit declared by Decl_Node
1272
1273 function Get_Max_Queue_Length (Id : Entity_Id) return Uint;
1274 -- Return the argument of pragma Max_Queue_Length or zero if the annotation
1275 -- is not present. It is assumed that Id denotes an entry.
1276
1277 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id;
1278 pragma Inline (Get_Name_Entity_Id);
1279 -- An entity value is associated with each name in the name table. The
1280 -- Get_Name_Entity_Id function fetches the Entity_Id of this entity, which
1281 -- is the innermost visible entity with the given name. See the body of
1282 -- Sem_Ch8 for further details on handling of entity visibility.
1283
1284 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id;
1285 -- Return the Name component of Test_Case pragma N
1286 -- Bad name now that this no longer applies to Contract_Case ???
1287
1288 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id;
1289 -- Get defining entity of parent unit of a child unit. In most cases this
1290 -- is the defining entity of the unit, but for a child instance whose
1291 -- parent needs a body for inlining, the instantiation node of the parent
1292 -- has not yet been rewritten as a package declaration, and the entity has
1293 -- to be retrieved from the Instance_Spec of the unit.
1294
1295 function Get_Pragma_Id (N : Node_Id) return Pragma_Id;
1296 pragma Inline (Get_Pragma_Id);
1297 -- Obtains the Pragma_Id from Pragma_Name_Unmapped (N)
1298
1299 function Get_Qualified_Name
1300 (Id : Entity_Id;
1301 Suffix : Entity_Id := Empty) return Name_Id;
1302 -- Obtain the fully qualified form of entity Id. The format is:
1303 -- scope_of_id-1__scope_of_id__chars_of_id__chars_of_suffix
1304
1305 function Get_Qualified_Name
1306 (Nam : Name_Id;
1307 Suffix : Name_Id := No_Name;
1308 Scop : Entity_Id := Current_Scope) return Name_Id;
1309 -- Obtain the fully qualified form of name Nam assuming it appears in scope
1310 -- Scop. The format is:
1311 -- scop-1__scop__nam__suffix
1312
1313 procedure Get_Reason_String (N : Node_Id);
1314 -- Recursive routine to analyze reason argument for pragma Warnings. The
1315 -- value of the reason argument is appended to the current string using
1316 -- Store_String_Chars. The reason argument is expected to be a string
1317 -- literal or concatenation of string literals. An error is given for
1318 -- any other form.
1319
1320 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id;
1321 -- If Typ has Implicit_Dereference, return discriminant specified in the
1322 -- corresponding aspect.
1323
1324 function Get_Referenced_Object (N : Node_Id) return Node_Id;
1325 -- Given an arbitrary node, return the renamed object if the node
1326 -- represents a renamed object; otherwise return the node unchanged.
1327 -- The node can represent an arbitrary expression or any other kind of
1328 -- node (such as the name of a type).
1329
1330 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id;
1331 -- Given an entity for an exception, package, subprogram or generic unit,
1332 -- returns the ultimately renamed entity if this is a renaming. If this is
1333 -- not a renamed entity, returns its argument. It is an error to call this
1334 -- with any other kind of entity.
1335
1336 function Get_Return_Object (N : Node_Id) return Entity_Id;
1337 -- Given an extended return statement, return the corresponding return
1338 -- object, identified as the one for which Is_Return_Object = True.
1339
1340 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id;
1341 -- Nod is either a procedure call statement, or a function call, or an
1342 -- accept statement node. This procedure finds the Entity_Id of the related
1343 -- subprogram or entry and returns it, or if no subprogram can be found,
1344 -- returns Empty.
1345
1346 function Get_Task_Body_Procedure (E : Entity_Id) return Entity_Id;
1347 -- Given an entity for a task type or subtype, retrieves the
1348 -- Task_Body_Procedure field from the corresponding task type declaration.
1349
1350 function Get_User_Defined_Equality (E : Entity_Id) return Entity_Id;
1351 -- For a type entity, return the entity of the primitive equality function
1352 -- for the type if it exists, otherwise return Empty.
1353
1354 procedure Get_Views
1355 (Typ : Entity_Id;
1356 Priv_Typ : out Entity_Id;
1357 Full_Typ : out Entity_Id;
1358 UFull_Typ : out Entity_Id;
1359 CRec_Typ : out Entity_Id);
1360 -- Obtain the partial and full views of type Typ and in addition any extra
1361 -- types the full views may have. The return entities are as follows:
1362 --
1363 -- Priv_Typ - the partial view (a private type)
1364 -- Full_Typ - the full view
1365 -- UFull_Typ - the underlying full view, if the full view is private
1366 -- CRec_Typ - the corresponding record type of the full views
1367
1368 function Get_Fullest_View
1369 (E : Entity_Id;
1370 Include_PAT : Boolean := True;
1371 Recurse : Boolean := True) return Entity_Id;
1372 -- Get the fullest possible view of E, looking through private, limited,
1373 -- packed array and other implementation types. If Include_PAT is False,
1374 -- don't look inside packed array types. If Recurse is False, just
1375 -- go down one level (so it's no longer the "fullest" view).
1376
1377 function Has_Access_Values (T : Entity_Id) return Boolean;
1378 -- Returns true if the underlying type of T is an access type, or has a
1379 -- component (at any recursive level) that is an access type. This is a
1380 -- conservative predicate, if it is not known whether or not T contains
1381 -- access values (happens for generic formals in some cases), then False is
1382 -- returned. Note that tagged types return False. Even though the tag is
1383 -- implemented as an access type internally, this function tests only for
1384 -- access types known to the programmer. See also Has_Tagged_Component.
1385
1386 function Has_Anonymous_Access_Discriminant (Typ : Entity_Id) return Boolean;
1387 -- Returns True if Typ has one or more anonymous access discriminants
1388
1389 type Alignment_Result is (Known_Compatible, Unknown, Known_Incompatible);
1390 -- Result of Has_Compatible_Alignment test, description found below. Note
1391 -- that the values are arranged in increasing order of problematicness.
1392
1393 function Has_Compatible_Alignment
1394 (Obj : Entity_Id;
1395 Expr : Node_Id;
1396 Layout_Done : Boolean) return Alignment_Result;
1397 -- Obj is an object entity, and expr is a node for an object reference. If
1398 -- the alignment of the object referenced by Expr is known to be compatible
1399 -- with the alignment of Obj (i.e. is larger or the same), then the result
1400 -- is Known_Compatible. If the alignment of the object referenced by Expr
1401 -- is known to be less than the alignment of Obj, then Known_Incompatible
1402 -- is returned. If neither condition can be reliably established at compile
1403 -- time, then Unknown is returned. If Layout_Done is True, the function can
1404 -- assume that the information on size and alignment of types and objects
1405 -- is present in the tree. This is used to determine if alignment checks
1406 -- are required for address clauses (Layout_Done is False in this case) as
1407 -- well as to issue appropriate warnings for them in the post compilation
1408 -- phase (Layout_Done is True in this case).
1409 --
1410 -- Note: Known_Incompatible does not mean that at run time the alignment
1411 -- of Expr is known to be wrong for Obj, just that it can be determined
1412 -- that alignments have been explicitly or implicitly specified which are
1413 -- incompatible (whereas Unknown means that even this is not known). The
1414 -- appropriate reaction of a caller to Known_Incompatible is to treat it as
1415 -- Unknown, but issue a warning that there may be an alignment error.
1416
1417 function Has_Declarations (N : Node_Id) return Boolean;
1418 -- Determines if the node can have declarations
1419
1420 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean;
1421 -- Simple predicate to test for defaulted discriminants
1422
1423 function Has_Denormals (E : Entity_Id) return Boolean;
1424 -- Determines if the floating-point type E supports denormal numbers.
1425 -- Returns False if E is not a floating-point type.
1426
1427 function Has_Discriminant_Dependent_Constraint
1428 (Comp : Entity_Id) return Boolean;
1429 -- Returns True if and only if Comp has a constrained subtype that depends
1430 -- on a discriminant.
1431
1432 function Has_Effectively_Volatile_Profile
1433 (Subp_Id : Entity_Id) return Boolean;
1434 -- Determine whether subprogram Subp_Id has an effectively volatile formal
1435 -- parameter for reading or returns an effectively volatile value for
1436 -- reading.
1437
1438 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean;
1439 -- Determine whether type Typ defines "full default initialization" as
1440 -- specified by SPARK RM 3.1. To qualify as such, the type must be
1441 -- * A scalar type with specified Default_Value
1442 -- * An array-of-scalar type with specified Default_Component_Value
1443 -- * An array type whose element type defines full default initialization
1444 -- * A protected type, record type or type extension whose components
1445 -- either include a default expression or have a type which defines
1446 -- full default initialization. In the case of type extensions, the
1447 -- parent type defines full default initialization.
1448 -- * A task type
1449 -- * A private type with pragma Default_Initial_Condition that provides
1450 -- full default initialization.
1451 -- This function is not used in GNATprove anymore, but is used in CodePeer.
1452
1453 function Has_Fully_Default_Initializing_DIC_Pragma
1454 (Typ : Entity_Id) return Boolean;
1455 -- Determine whether type Typ has a suitable Default_Initial_Condition
1456 -- pragma which provides the full default initialization of the type.
1457
1458 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
1459 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
1460 -- discriminants if it has a constrained nominal type, unless the object
1461 -- is a component of an enclosing Unchecked_Union object that is subject
1462 -- to a per-object constraint and the enclosing object lacks inferable
1463 -- discriminants.
1464 --
1465 -- An expression of an Unchecked_Union type has inferable discriminants
1466 -- if it is either a name of an object with inferable discriminants or a
1467 -- qualified expression whose subtype mark denotes a constrained subtype.
1468
1469 function Has_Infinities (E : Entity_Id) return Boolean;
1470 -- Determines if the range of the floating-point type E includes
1471 -- infinities. Returns False if E is not a floating-point type.
1472
1473 function Has_Interfaces
1474 (T : Entity_Id;
1475 Use_Full_View : Boolean := True) return Boolean;
1476 -- Where T is a concurrent type or a record type, returns true if T covers
1477 -- any abstract interface types. In case of private types the argument
1478 -- Use_Full_View controls if the check is done using its full view (if
1479 -- available).
1480
1481 function Has_Max_Queue_Length (Id : Entity_Id) return Boolean;
1482 -- Determine whether Id is subject to pragma Max_Queue_Length. It is
1483 -- assumed that Id denotes an entry.
1484
1485 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean;
1486 -- This is a simple minded function for determining whether an expression
1487 -- has no obvious side effects. It is used only for determining whether
1488 -- warnings are needed in certain situations, and is not guaranteed to
1489 -- be accurate in either direction. Exceptions may mean an expression
1490 -- does in fact have side effects, but this may be ignored and True is
1491 -- returned, or a complex expression may in fact be side effect free
1492 -- but we don't recognize it here and return False. The Side_Effect_Free
1493 -- routine in Remove_Side_Effects is much more extensive and perhaps could
1494 -- be shared, so that this routine would be more accurate.
1495
1496 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean;
1497 -- Determine whether abstract state Id has at least one nonnull constituent
1498 -- as expressed in pragma Refined_State. This function does not take into
1499 -- account the visible refinement region of abstract state Id.
1500
1501 function Has_Non_Trivial_Precondition (Subp : Entity_Id) return Boolean;
1502 -- Determine whether subprogram Subp has a class-wide precondition that is
1503 -- not statically True.
1504
1505 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
1506 -- Determine whether the body of procedure Proc_Id contains a sole null
1507 -- statement, possibly followed by an optional return. Used to optimize
1508 -- useless calls to assertion checks.
1509
1510 function Has_Null_Exclusion (N : Node_Id) return Boolean;
1511 -- Determine whether node N has a null exclusion
1512
1513 function Has_Null_Refinement (Id : Entity_Id) return Boolean;
1514 -- Determine whether abstract state Id has a null refinement as expressed
1515 -- in pragma Refined_State. This function does not take into account the
1516 -- visible refinement region of abstract state Id.
1517
1518 function Has_Non_Null_Statements (L : List_Id) return Boolean;
1519 -- Return True if L has non-null statements
1520
1521 function Side_Effect_Free_Statements (L : List_Id) return Boolean;
1522 -- Return True if L has no statements with side effects
1523
1524 function Side_Effect_Free_Loop (N : Node_Id) return Boolean;
1525 -- Return True if the loop has no side effect and can therefore be
1526 -- marked for removal. Return False if N is not a N_Loop_Statement.
1527
1528 subtype Static_Accessibility_Level_Kind
1529 is Accessibility_Level_Kind range Object_Decl_Level
1530 .. Zero_On_Dynamic_Level;
1531 -- Restrict the reange of Accessibility_Level_Kind to be non-dynamic for
1532 -- use in the static version of Accessibility_Level below.
1533
1534 function Static_Accessibility_Level
1535 (Expr : Node_Id;
1536 Level : Static_Accessibility_Level_Kind;
1537 In_Return_Context : Boolean := False) return Uint;
1538 -- Overloaded version of Accessibility_Level which returns a universal
1539 -- integer for use in compile-time checking. Note: Level is restricted to
1540 -- be non-dynamic.
1541
1542 function Is_Newly_Constructed
1543 (Exp : Node_Id; Context_Requires_NC : Boolean) return Boolean;
1544 -- Indicates whether a given expression is "newly constructed" (RM 4.4).
1545 -- Context_Requires_NC determines the result returned for cases like a
1546 -- raise expression or a conditional expression where some-but-not-all
1547 -- operative constituents are newly constructed. Thus, this is a
1548 -- somewhat unusual predicate in that the result required in order to
1549 -- satisfy whatever legality rule is being checked can influence the
1550 -- result of the predicate. Context_Requires_NC might be True for
1551 -- something like the "newly constructed" rule for a limited expression
1552 -- of a return statement, and False for something like the
1553 -- "newly constructed" rule pertaining to a limited object renaming in a
1554 -- declare expression. Eventually, the code to implement every
1555 -- RM legality rule requiring/prohibiting a "newly constructed" expression
1556 -- should be implemented by calling this function; that's not done yet.
1557 -- The function name doesn't quite match the RM definition of the term if
1558 -- Context_Requires_NC = False; in that case, "Might_Be_Newly_Constructed"
1559 -- might be a more accurate name.
1560
1561 function Is_Prim_Of_Abst_Type_With_Nonstatic_CW_Pre_Post
1562 (Subp : Entity_Id) return Boolean;
1563 -- Return True if Subp is a primitive of an abstract type, where the
1564 -- primitive has a class-wide pre- or postcondition whose expression
1565 -- is nonstatic.
1566
1567 function Has_Overriding_Initialize (T : Entity_Id) return Boolean;
1568 -- Predicate to determine whether a controlled type has a user-defined
1569 -- Initialize primitive (and, in Ada 2012, whether that primitive is
1570 -- non-null), which causes the type to not have preelaborable
1571 -- initialization.
1572
1573 function Has_Preelaborable_Initialization
1574 (E : Entity_Id;
1575 Preelab_Init_Expr : Node_Id := Empty) return Boolean;
1576 -- Return True iff type E has preelaborable initialization as defined in
1577 -- Ada 2005 (see AI-161 for details of the definition of this attribute).
1578 -- If Preelab_Init_Expr is present, indicates that the function should
1579 -- presume that for any subcomponent of E that is of a formal private or
1580 -- derived type that is referenced by a Preelaborable_Initialization
1581 -- attribute within the expression Preelab_Init_Expr, the formal type has
1582 -- preelaborable initialization (RM 10.2.1(11.8/5) and AI12-0409).
1583
1584 function Has_Prefix (N : Node_Id) return Boolean;
1585 -- Return True if N has attribute Prefix
1586
1587 function Has_Private_Component (Type_Id : Entity_Id) return Boolean;
1588 -- Check if a type has a (sub)component of a private type that has not
1589 -- yet received a full declaration.
1590
1591 function Has_Relaxed_Initialization (E : Entity_Id) return Boolean;
1592 -- Returns True iff entity E is subject to the Relaxed_Initialization
1593 -- aspect. Entity E can be either type, variable, constant, subprogram,
1594 -- entry or an abstract state. For private types and deferred constants
1595 -- E should be the private view, because aspect can only be attached there.
1596
1597 function Has_Signed_Zeros (E : Entity_Id) return Boolean;
1598 -- Determines if the floating-point type E supports signed zeros.
1599 -- Returns False if E is not a floating-point type.
1600
1601 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean;
1602 -- Determine whether subprogram [body] Subp_Id has a significant contract.
1603 -- All subprograms have a N_Contract node, but this does not mean that the
1604 -- contract is useful.
1605
1606 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean;
1607 -- Return whether an array type has static bounds
1608
1609 function Has_Static_Non_Empty_Array_Bounds (Typ : Node_Id) return Boolean;
1610 -- Determine whether array type Typ has static non-empty bounds
1611
1612 function Has_Stream (T : Entity_Id) return Boolean;
1613 -- Tests if type T is derived from Ada.Streams.Root_Stream_Type, or in the
1614 -- case of a composite type, has a component for which this predicate is
1615 -- True, and if so returns True. Otherwise a result of False means that
1616 -- there is no Stream type in sight. For a private type, the test is
1617 -- applied to the underlying type (or returns False if there is no
1618 -- underlying type).
1619
1620 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean;
1621 -- Returns true if the last character of E is Suffix. Used in Assertions.
1622
1623 function Has_Tagged_Component (Typ : Entity_Id) return Boolean;
1624 -- Returns True if Typ is a composite type (array or record) that is either
1625 -- a tagged type or has a subcomponent that is tagged. Returns False for a
1626 -- noncomposite type, or if no tagged subcomponents are present.
1627
1628 function Has_Unconstrained_Access_Discriminants
1629 (Subtyp : Entity_Id) return Boolean;
1630 -- Returns True if the given subtype is unconstrained and has one or more
1631 -- access discriminants.
1632
1633 function Has_Undefined_Reference (Expr : Node_Id) return Boolean;
1634 -- Given arbitrary expression Expr, determine whether it contains at
1635 -- least one name whose entity is Any_Id.
1636
1637 function Has_Volatile_Component (Typ : Entity_Id) return Boolean;
1638 -- Given arbitrary type Typ, determine whether it contains at least one
1639 -- volatile component.
1640
1641 function Implementation_Kind (Subp : Entity_Id) return Name_Id;
1642 -- Subp is a subprogram marked with pragma Implemented. Return the specific
1643 -- implementation requirement which the pragma imposes. The return value is
1644 -- either Name_By_Any, Name_By_Entry or Name_By_Protected_Procedure.
1645
1646 function Implements_Interface
1647 (Typ_Ent : Entity_Id;
1648 Iface_Ent : Entity_Id;
1649 Exclude_Parents : Boolean := False) return Boolean;
1650 -- Returns true if the Typ_Ent implements interface Iface_Ent
1651
1652 function Implicitly_Designated_Type (Typ : Entity_Id) return Entity_Id;
1653 -- Called when Typ is the type of the prefix of an implicit dereference.
1654 -- Return the designated type of Typ, taking into account that this type
1655 -- may be a limited view, when the nonlimited view is visible.
1656
1657 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean;
1658 -- Returns True if node N appears within a pragma that acts as an assertion
1659 -- expression. See Sem_Prag for the list of qualifying pragmas.
1660
1661 function In_Check_Node (N : Node_Id) return Boolean;
1662 -- Return True if N is part of a N_Raise_xxx_Error node
1663
1664 function In_Generic_Formal_Package (E : Entity_Id) return Boolean;
1665 -- Returns True if entity E is inside a generic formal package
1666
1667 function In_Generic_Scope (E : Entity_Id) return Boolean;
1668 -- Returns True if entity E is inside a generic scope
1669
1670 function In_Instance return Boolean;
1671 -- Returns True if the current scope is within a generic instance
1672
1673 function In_Instance_Body return Boolean;
1674 -- Returns True if current scope is within the body of an instance, where
1675 -- several semantic checks (e.g. accessibility checks) are relaxed.
1676
1677 function In_Instance_Not_Visible return Boolean;
1678 -- Returns True if current scope is with the private part or the body of
1679 -- an instance. Other semantic checks are suppressed in this context.
1680
1681 function In_Instance_Visible_Part
1682 (Id : Entity_Id := Current_Scope) return Boolean;
1683 -- Returns True if arbitrary entity Id is within the visible part of a
1684 -- package instance, where several additional semantic checks apply.
1685
1686 function In_Package_Body return Boolean;
1687 -- Returns True if current scope is within a package body
1688
1689 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean;
1690 -- Returns true if the expression N occurs within a pragma with name Nam
1691
1692 function In_Pre_Post_Condition
1693 (N : Node_Id; Class_Wide_Only : Boolean := False) return Boolean;
1694 -- Returns True if node N appears within a pre/postcondition pragma. Note
1695 -- the pragma Check equivalents are NOT considered. If Class_Wide_Only is
1696 -- True, then tests for N appearing within a class-wide pre/postcondition.
1697
1698 function In_Quantified_Expression (N : Node_Id) return Boolean;
1699 -- Returns true if the expression N occurs within a quantified expression
1700
1701 function In_Return_Value (Expr : Node_Id) return Boolean;
1702 -- Returns true if the expression Expr occurs within a simple return
1703 -- statement or is part of an assignment to the return object in an
1704 -- extended return statement.
1705
1706 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean;
1707 -- Returns True if N denotes a component or subcomponent in a record or
1708 -- array that has Reverse_Storage_Order.
1709
1710 function In_Same_Declarative_Part
1711 (Context : Node_Id;
1712 N : Node_Id) return Boolean;
1713 -- True if the node N appears within the same declarative part denoted by
1714 -- the node Context.
1715
1716 function In_Subprogram_Or_Concurrent_Unit return Boolean;
1717 -- Determines if the current scope is within a subprogram compilation unit
1718 -- (inside a subprogram declaration, subprogram body, or generic subprogram
1719 -- declaration) or within a task or protected body. The test is for
1720 -- appearing anywhere within such a construct (that is it does not need
1721 -- to be directly within).
1722
1723 function In_Subtree (N : Node_Id; Root : Node_Id) return Boolean;
1724 -- Determine whether node N is within the subtree rooted at Root
1725
1726 function In_Subtree
1727 (N : Node_Id;
1728 Root1 : Node_Id;
1729 Root2 : Node_Id) return Boolean;
1730 -- Determine whether node N is within the subtree rooted at Root1 or Root2.
1731 -- This version is more efficient than calling the single root version of
1732 -- Is_Subtree twice.
1733
1734 function In_Statement_Condition_With_Actions (N : Node_Id) return Boolean;
1735 -- Returns true if the expression N occurs within the condition of a
1736 -- statement node with actions. Subsidiary to inlining for GNATprove, where
1737 -- inlining of function calls in such expressions would expand the called
1738 -- body into actions list of the condition node. GNATprove cannot yet cope
1739 -- with such a complex AST.
1740
1741 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean;
1742 -- Determine whether a declaration occurs within the visible part of a
1743 -- package specification. The package must be on the scope stack, and the
1744 -- corresponding private part must not.
1745
1746 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id;
1747 -- Given the entity of a constant or a type, retrieve the incomplete or
1748 -- partial view of the same entity. Note that Id may not have a partial
1749 -- view in which case the function returns Empty.
1750
1751 function Incomplete_View_From_Limited_With
1752 (Typ : Entity_Id) return Entity_Id;
1753 -- Typ is a type entity. This normally returns Typ. However, if there is
1754 -- an incomplete view of this entity that comes from a limited-with'ed
1755 -- package, then this returns that incomplete view.
1756
1757 function Indexed_Component_Bit_Offset (N : Node_Id) return Uint;
1758 -- Given an N_Indexed_Component node, return the first bit position of the
1759 -- component if it is known at compile time. A value of No_Uint means that
1760 -- either the value is not yet known before back-end processing or it is
1761 -- not known at compile time after back-end processing.
1762
1763 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
1764 -- Propagate static and dynamic predicate flags from a parent to the
1765 -- subtype in a subtype declaration with and without constraints.
1766
1767 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id);
1768 -- Inherit the rep item chain of type From_Typ without clobbering any
1769 -- existing rep items on Typ's chain. Typ is the destination type.
1770
1771 function Inherits_From_Tagged_Full_View (Typ : Entity_Id) return Boolean;
1772 pragma Inline (Inherits_From_Tagged_Full_View);
1773 -- Return True if Typ is an untagged private type completed with a
1774 -- derivation of an untagged private type declaration whose full view
1775 -- is a tagged type.
1776
1777 procedure Insert_Explicit_Dereference (N : Node_Id);
1778 -- In a context that requires a composite or subprogram type and where a
1779 -- prefix is an access type, rewrite the access type node N (which is the
1780 -- prefix, e.g. of an indexed component) as an explicit dereference.
1781
1782 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id);
1783 -- Examine all deferred constants in the declaration list Decls and check
1784 -- whether they have been completed by a full constant declaration or an
1785 -- Import pragma. Emit the error message if that is not the case.
1786
1787 procedure Install_Elaboration_Model (Unit_Id : Entity_Id);
1788 -- Install the elaboration model specified by pragma Elaboration_Checks
1789 -- associated with compilation unit Unit_Id. No action is taken when the
1790 -- unit lacks such pragma.
1791
1792 procedure Install_Generic_Formals (Subp_Id : Entity_Id);
1793 -- Install both the generic formal parameters and the formal parameters of
1794 -- generic subprogram Subp_Id into visibility.
1795
1796 procedure Install_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
1797 -- Establish the SPARK_Mode and SPARK_Mode_Pragma currently in effect
1798
1799 function Invalid_Scalar_Value
1800 (Loc : Source_Ptr;
1801 Scal_Typ : Scalar_Id) return Node_Id;
1802 -- Obtain the invalid value for scalar type Scal_Typ as either specified by
1803 -- pragma Initialize_Scalars or by the binder. Return an expression created
1804 -- at source location Loc, which denotes the invalid value.
1805
1806 function Is_Anonymous_Access_Actual (N : Node_Id) return Boolean;
1807 -- Determine if N is used as an actual for a call whose corresponding
1808 -- formal is of an anonymous access type.
1809
1810 function Is_Access_Subprogram_Wrapper (E : Entity_Id) return Boolean;
1811 -- True if E is the constructed wrapper for an access_to_subprogram
1812 -- type with Pre/Postconditions.
1813
1814 function Is_Access_Variable (E : Entity_Id) return Boolean;
1815 -- Determines if type E is an access-to-variable
1816
1817 function Is_Actual_In_Out_Parameter (N : Node_Id) return Boolean;
1818 -- Determines if N is an actual parameter of in-out mode in a subprogram
1819 -- call.
1820
1821 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean;
1822 -- Determines if N is an actual parameter of out mode in a subprogram call
1823
1824 function Is_Actual_Out_Or_In_Out_Parameter (N : Node_Id) return Boolean;
1825 -- Determines if N is an actual parameter of out or in out mode in a
1826 -- subprogram call.
1827
1828 function Is_Actual_Parameter (N : Node_Id) return Boolean;
1829 -- Determines if N is an actual parameter in a subprogram or entry call
1830
1831 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean;
1832 -- Determines if N is an actual parameter of a formal of tagged type in a
1833 -- subprogram call.
1834
1835 function Is_Aliased_View (Obj : Node_Id) return Boolean;
1836 -- Determine if Obj is an aliased view, i.e. the name of an object to which
1837 -- 'Access or 'Unchecked_Access can apply. Note that this routine uses the
1838 -- rules of the language, it does not take into account the restriction
1839 -- No_Implicit_Aliasing, so it can return True if the restriction is active
1840 -- and Obj violates the restriction. The caller is responsible for calling
1841 -- Restrict.Check_No_Implicit_Aliasing if True is returned, but there is a
1842 -- requirement for obeying the restriction in the call context.
1843
1844 function Is_Ancestor_Package
1845 (E1 : Entity_Id;
1846 E2 : Entity_Id) return Boolean;
1847 -- Determine whether package E1 is an ancestor of E2
1848
1849 function Is_Atomic_Object (N : Node_Id) return Boolean;
1850 -- Determine whether arbitrary node N denotes a reference to an atomic
1851 -- object as per RM C.6(7) and the crucial remark in RM C.6(8).
1852
1853 function Is_Attribute_Loop_Entry (N : Node_Id) return Boolean;
1854 -- Determine whether node N denotes attribute 'Loop_Entry
1855
1856 function Is_Attribute_Old (N : Node_Id) return Boolean;
1857 -- Determine whether node N denotes attribute 'Old
1858
1859 function Is_Attribute_Result (N : Node_Id) return Boolean;
1860 -- Determine whether node N denotes attribute 'Result
1861
1862 function Is_Attribute_Update (N : Node_Id) return Boolean;
1863 -- Determine whether node N denotes attribute 'Update
1864
1865 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean;
1866 -- Determine whether node N denotes a body or a package declaration
1867
1868 function Is_Bounded_String (T : Entity_Id) return Boolean;
1869 -- True if T is a bounded string type. Used to make sure "=" composes
1870 -- properly for bounded string types.
1871
1872 function Is_By_Protected_Procedure (Id : Entity_Id) return Boolean;
1873 -- Determine whether entity Id denotes a procedure with synchronization
1874 -- kind By_Protected_Procedure.
1875
1876 function Is_Confirming (Aspect : Nonoverridable_Aspect_Id;
1877 Aspect_Spec_1, Aspect_Spec_2 : Node_Id)
1878 return Boolean;
1879 -- Returns true if the two specifications of the given
1880 -- nonoverridable aspect are compatible.
1881
1882 function Is_Conjunction_Of_Formal_Preelab_Init_Attributes
1883 (Expr : Node_Id) return Boolean;
1884 -- Returns True if Expr is a Preelaborable_Initialization attribute applied
1885 -- to a formal type, or a sequence of two or more such attributes connected
1886 -- by "and" operators, or if the Original_Node of Expr or its constituents
1887 -- is such an attribute.
1888
1889 function Is_Constant_Bound (Exp : Node_Id) return Boolean;
1890 -- Exp is the expression for an array bound. Determines whether the
1891 -- bound is a compile-time known value, or a constant entity, or an
1892 -- enumeration literal, or an expression composed of constant-bound
1893 -- subexpressions which are evaluated by means of standard operators.
1894
1895 function Is_Container_Element (Exp : Node_Id) return Boolean;
1896 -- This routine recognizes expressions that denote an element of one of
1897 -- the predefined containers, when the source only contains an indexing
1898 -- operation and an implicit dereference is inserted by the compiler.
1899 -- In the absence of this optimization, the indexing creates a temporary
1900 -- controlled cursor that sets the tampering bit of the container, and
1901 -- restricts the use of the convenient notation C (X) to contexts that
1902 -- do not check the tampering bit (e.g. C.Include (X, C (Y)). Exp is an
1903 -- explicit dereference. The transformation applies when it has the form
1904 -- F (X).Discr.all.
1905
1906 function Is_Contract_Annotation (Item : Node_Id) return Boolean;
1907 -- Determine whether aspect specification or pragma Item is a contract
1908 -- annotation.
1909
1910 function Is_Controlling_Limited_Procedure
1911 (Proc_Nam : Entity_Id) return Boolean;
1912 -- Ada 2005 (AI-345): Determine whether Proc_Nam is a primitive procedure
1913 -- of a limited interface with a controlling first parameter.
1914
1915 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean;
1916 -- Returns True if N is a call to a CPP constructor
1917
1918 function Is_CCT_Instance
1919 (Ref_Id : Entity_Id;
1920 Context_Id : Entity_Id) return Boolean;
1921 -- Subsidiary to the analysis of pragmas [Refined_]Depends and [Refined_]
1922 -- Global; also used when analyzing default expressions of protected and
1923 -- record components. Determine whether entity Ref_Id (which must represent
1924 -- either a protected type or a task type) denotes the current instance of
1925 -- a concurrent type. Context_Id denotes the associated context where the
1926 -- pragma appears.
1927
1928 function Is_Child_Or_Sibling
1929 (Pack_1 : Entity_Id;
1930 Pack_2 : Entity_Id) return Boolean;
1931 -- Determine the following relations between two arbitrary packages:
1932 -- 1) One package is the parent of a child package
1933 -- 2) Both packages are siblings and share a common parent
1934
1935 function Is_Concurrent_Interface (T : Entity_Id) return Boolean;
1936 -- First determine whether type T is an interface and then check whether
1937 -- it is of protected, synchronized or task kind.
1938
1939 function Is_Current_Instance (N : Node_Id) return Boolean;
1940 -- Predicate is true if N legally denotes a type name within its own
1941 -- declaration. Prior to Ada 2012 this covered only synchronized type
1942 -- declarations. In Ada 2012 it also covers type and subtype declarations
1943 -- with aspects: Invariant, Predicate, and Default_Initial_Condition.
1944
1945 function Is_Current_Instance_Reference_In_Type_Aspect
1946 (N : Node_Id) return Boolean;
1947 -- True if N is a reference to a current instance object that occurs within
1948 -- an aspect_specification for a type or subtype. In this case N will be
1949 -- a formal parameter of a subprogram created for a predicate, invariant,
1950 -- or Default_Initial_Condition aspect.
1951
1952 function Is_Declaration
1953 (N : Node_Id;
1954 Body_OK : Boolean := True;
1955 Concurrent_OK : Boolean := True;
1956 Formal_OK : Boolean := True;
1957 Generic_OK : Boolean := True;
1958 Instantiation_OK : Boolean := True;
1959 Renaming_OK : Boolean := True;
1960 Stub_OK : Boolean := True;
1961 Subprogram_OK : Boolean := True;
1962 Type_OK : Boolean := True) return Boolean;
1963 -- Determine whether arbitrary node N denotes a declaration depending
1964 -- on the allowed subsets of declarations. Set the following flags to
1965 -- consider specific subsets of declarations:
1966 --
1967 -- * Body_OK - body declarations
1968 --
1969 -- * Concurrent_OK - concurrent type declarations
1970 --
1971 -- * Formal_OK - formal declarations
1972 --
1973 -- * Generic_OK - generic declarations, including generic renamings
1974 --
1975 -- * Instantiation_OK - generic instantiations
1976 --
1977 -- * Renaming_OK - renaming declarations, including generic renamings
1978 --
1979 -- * Stub_OK - stub declarations
1980 --
1981 -- * Subprogram_OK - entry, expression function, and subprogram
1982 -- declarations.
1983 --
1984 -- * Type_OK - type declarations, including concurrent types
1985
1986 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
1987 -- Returns True iff component Comp is declared within a variant part
1988
1989 function Is_Dependent_Component_Of_Mutable_Object
1990 (Object : Node_Id) return Boolean;
1991 -- Returns True if Object is the name of a subcomponent that depends on
1992 -- discriminants of a variable whose nominal subtype is unconstrained and
1993 -- not indefinite, and the variable is not aliased. Otherwise returns
1994 -- False. The nodes passed to this function are assumed to denote objects.
1995
1996 function Is_Dereferenced (N : Node_Id) return Boolean;
1997 -- N is a subexpression node of an access type. This function returns true
1998 -- if N appears as the prefix of a node that does a dereference of the
1999 -- access value (selected/indexed component, explicit dereference or a
2000 -- slice), and false otherwise.
2001
2002 function Is_Descendant_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean;
2003 -- Returns True if type T1 is a descendant of type T2, and false otherwise.
2004 -- This is the RM definition, a type is a descendant of another type if it
2005 -- is the same type or is derived from a descendant of the other type.
2006
2007 function Is_Descendant_Of_Suspension_Object
2008 (Typ : Entity_Id) return Boolean;
2009 -- Determine whether type Typ is a descendant of type Suspension_Object
2010 -- defined in Ada.Synchronous_Task_Control. This version is different from
2011 -- Is_Descendant_Of as the detection of Suspension_Object does not involve
2012 -- an entity and by extension a call to RTSfind.
2013
2014 function Is_Double_Precision_Floating_Point_Type
2015 (E : Entity_Id) return Boolean;
2016 -- Return whether E is a double precision floating point type,
2017 -- characterized by:
2018 -- . machine_radix = 2
2019 -- . machine_mantissa = 53
2020 -- . machine_emax = 2**10
2021 -- . machine_emin = 3 - machine_emax
2022
2023 function Is_Effectively_Volatile
2024 (Id : Entity_Id;
2025 Ignore_Protected : Boolean := False) return Boolean;
2026 -- Determine whether a type or object denoted by entity Id is effectively
2027 -- volatile (SPARK RM 7.1.2). To qualify as such, the entity must be either
2028 -- * Volatile without No_Caching
2029 -- * An array type subject to aspect Volatile_Components
2030 -- * An array type whose component type is effectively volatile
2031 -- * A protected type
2032 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2033 --
2034 -- If Ignore_Protected is True, then a protected object/type is treated
2035 -- like a non-protected record object/type for computing the result of
2036 -- this query.
2037
2038 function Is_Effectively_Volatile_For_Reading
2039 (Id : Entity_Id;
2040 Ignore_Protected : Boolean := False) return Boolean;
2041 -- Determine whether a type or object denoted by entity Id is effectively
2042 -- volatile for reading (SPARK RM 7.1.2). To qualify as such, the entity
2043 -- must be either
2044 -- * Volatile without No_Caching and have Async_Writers or
2045 -- Effective_Reads set to True
2046 -- * An array type subject to aspect Volatile_Components, unless it has
2047 -- Async_Writers and Effective_Reads set to False
2048 -- * An array type whose component type is effectively volatile for
2049 -- reading
2050 -- * A protected type
2051 -- * Descendant of type Ada.Synchronous_Task_Control.Suspension_Object
2052 --
2053 -- If Ignore_Protected is True, then a protected object/type is treated
2054 -- like a non-protected record object/type for computing the result of
2055 -- this query.
2056
2057 function Is_Effectively_Volatile_Object
2058 (N : Node_Id) return Boolean;
2059 -- Determine whether an arbitrary node denotes an effectively volatile
2060 -- object (SPARK RM 7.1.2).
2061
2062 function Is_Effectively_Volatile_Object_For_Reading
2063 (N : Node_Id) return Boolean;
2064 -- Determine whether an arbitrary node denotes an effectively volatile
2065 -- object for reading (SPARK RM 7.1.2).
2066
2067 function Is_Entity_Of_Quantified_Expression (Id : Entity_Id) return Boolean;
2068 -- Determine whether entity Id is the entity of a quantified expression
2069
2070 function Is_Entry_Body (Id : Entity_Id) return Boolean;
2071 -- Determine whether entity Id is the body entity of an entry [family]
2072
2073 function Is_Entry_Declaration (Id : Entity_Id) return Boolean;
2074 -- Determine whether entity Id is the spec entity of an entry [family]
2075
2076 function Is_Explicitly_Aliased (N : Node_Id) return Boolean;
2077 -- Determine if a given node N is an explicitly aliased formal parameter.
2078
2079 function Is_Expanded_Priority_Attribute (E : Entity_Id) return Boolean;
2080 -- Check whether a function in a call is an expanded priority attribute,
2081 -- which is transformed into an Rtsfind call to Get_Ceiling. This expansion
2082 -- does not take place in a configurable runtime.
2083
2084 function Is_Expression_Function (Subp : Entity_Id) return Boolean;
2085 -- Determine whether subprogram [body] Subp denotes an expression function
2086
2087 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2088
2089 function Is_Expression_Function_Or_Completion
2090 (Subp : Entity_Id) return Boolean;
2091 -- Determine whether subprogram [body] Subp denotes an expression function
2092 -- or is completed by an expression function body.
2093
2094 function Is_Extended_Precision_Floating_Point_Type
2095 (E : Entity_Id) return Boolean;
2096 -- Return whether E is an extended precision floating point type,
2097 -- characterized by:
2098 -- . machine_radix = 2
2099 -- . machine_mantissa = 64
2100 -- . machine_emax = 2**14
2101 -- . machine_emin = 3 - machine_emax
2102
2103 function Is_EVF_Expression (N : Node_Id) return Boolean;
2104 -- Determine whether node N denotes a reference to a formal parameter of
2105 -- a specific tagged type whose related subprogram is subject to pragma
2106 -- Extensions_Visible with value "False" (SPARK RM 6.1.7). Several other
2107 -- constructs fall under this category:
2108 -- 1) A qualified expression whose operand is EVF
2109 -- 2) A type conversion whose operand is EVF
2110 -- 3) An if expression with at least one EVF dependent_expression
2111 -- 4) A case expression with at least one EVF dependent_expression
2112
2113 function Is_False (U : Opt_Ubool) return Boolean;
2114 pragma Inline (Is_False);
2115 -- True if U is Boolean'Pos (False) (i.e. Uint_0)
2116
2117 function Is_True (U : Opt_Ubool) return Boolean;
2118 pragma Inline (Is_True);
2119 -- True if U is Boolean'Pos (True) (i.e. Uint_1). Also True if U is
2120 -- No_Uint; we allow No_Uint because Static_Boolean returns that in
2121 -- case of error. It doesn't really matter whether the error case is
2122 -- considered True or False, but we don't want this to blow up in that
2123 -- case.
2124
2125 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean;
2126 -- Returns True iff the number U is a model number of the fixed-point type
2127 -- T, i.e. if it is an exact multiple of Small.
2128
2129 function Is_Full_Access_Object (N : Node_Id) return Boolean;
2130 -- Determine whether arbitrary node N denotes a reference to a full access
2131 -- object as per Ada 2022 RM C.6(8.2).
2132
2133 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean;
2134 -- Typ is a type entity. This function returns true if this type is fully
2135 -- initialized, meaning that an object of the type is fully initialized.
2136 -- Note that initialization resulting from use of pragma Normalize_Scalars
2137 -- does not count. Note that this is only used for the purpose of issuing
2138 -- warnings for objects that are potentially referenced uninitialized. This
2139 -- means that the result returned is not crucial, but should err on the
2140 -- side of thinking things are fully initialized if it does not know.
2141
2142 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean;
2143 -- Determine whether arbitrary declaration Decl denotes a generic package,
2144 -- a generic subprogram or a generic body.
2145
2146 function Is_Independent_Object (N : Node_Id) return Boolean;
2147 -- Determine whether arbitrary node N denotes a reference to an independent
2148 -- object as per RM C.6(8).
2149
2150 function Is_Inherited_Operation (E : Entity_Id) return Boolean;
2151 -- E is a subprogram. Return True is E is an implicit operation inherited
2152 -- by a derived type declaration.
2153
2154 function Is_Inherited_Operation_For_Type
2155 (E : Entity_Id;
2156 Typ : Entity_Id) return Boolean;
2157 -- E is a subprogram. Return True is E is an implicit operation inherited
2158 -- by the derived type declaration for type Typ.
2159
2160 function Is_Inlinable_Expression_Function (Subp : Entity_Id) return Boolean;
2161 -- Return True if Subp is an expression function that fulfills all the
2162 -- following requirements for inlining:
2163 -- 1. pragma/aspect Inline_Always
2164 -- 2. No formals
2165 -- 3. No contracts
2166 -- 4. No dispatching primitive
2167 -- 5. Result subtype controlled (or with controlled components)
2168 -- 6. Result subtype not subject to type-invariant checks
2169 -- 7. Result subtype not a class-wide type
2170 -- 8. Return expression naming an object global to the function
2171 -- 9. Nominal subtype of the returned object statically compatible
2172 -- with the result subtype of the expression function.
2173
2174 function Is_Iterator (Typ : Entity_Id) return Boolean;
2175 -- AI05-0139-2: Check whether Typ is one of the predefined interfaces in
2176 -- Ada.Iterator_Interfaces, or it is derived from one.
2177
2178 function Is_Iterator_Over_Array (N : Node_Id) return Boolean;
2179 -- N is an iterator specification. Returns True iff N is an iterator over
2180 -- an array, either inside a loop of the form 'for X of A' or a quantified
2181 -- expression of the form 'for all/some X of A' where A is of array type.
2182
2183 function Is_Library_Level_Entity (E : Entity_Id) return Boolean;
2184 -- A library-level declaration is one that is accessible from Standard,
2185 -- i.e. a library unit or an entity declared in a library package.
2186
2187 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean;
2188 -- Determine whether a given type is a limited class-wide type, in which
2189 -- case it needs a Master_Id, because extensions of its designated type
2190 -- may include task components. A class-wide type that comes from a
2191 -- limited view must be treated in the same way.
2192
2193 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean;
2194 -- Determines whether Expr is a reference to a variable or formal parameter
2195 -- of mode OUT or IN OUT of the current enclosing subprogram.
2196
2197 function Is_Master (N : Node_Id) return Boolean;
2198 -- Determine if the given node N constitutes a finalization master
2199
2200 function Is_Name_Reference (N : Node_Id) return Boolean;
2201 -- Determine whether arbitrary node N is a reference to a name. This is
2202 -- similar to Is_Object_Reference but returns True only if N can be renamed
2203 -- without the need for a temporary, the typical example of an object not
2204 -- in this category being a function call.
2205
2206 function Is_Non_Preelaborable_Construct (N : Node_Id) return Boolean;
2207 -- Determine whether arbitrary construct N violates preelaborability as
2208 -- defined in ARM 10.2.1 5-9/3. This routine takes into account both the
2209 -- syntactic and semantic properties of the construct.
2210
2211 function Is_Nontrivial_DIC_Procedure (Id : Entity_Id) return Boolean;
2212 -- Determine whether entity Id denotes the procedure that verifies the
2213 -- assertion expression of pragma Default_Initial_Condition and if it does,
2214 -- the encapsulated expression is nontrivial.
2215
2216 function Is_Null_Extension
2217 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2218 -- Given a tagged type, returns True if argument is a type extension
2219 -- that introduces no new components (discriminant or nondiscriminant).
2220 -- Ignore_Privacy should be True for use in implementing dynamic semantics.
2221 -- Cannot be called with class-wide types.
2222
2223 function Is_Null_Extension_Of
2224 (Descendant, Ancestor : Entity_Id) return Boolean;
2225 -- Given two tagged types, the first a descendant of the second,
2226 -- returns True if every component of Descendant is inherited
2227 -- (directly or indirectly) from Ancestor. Privacy is ignored.
2228 -- Cannot be called with class-wide types.
2229
2230 function Is_Null_Record_Definition (Record_Def : Node_Id) return Boolean;
2231 -- Returns True for an N_Record_Definition node that has no user-defined
2232 -- components (and no variant part).
2233
2234 function Is_Null_Record_Type
2235 (T : Entity_Id; Ignore_Privacy : Boolean := False) return Boolean;
2236 -- Determine whether T is declared with a null record definition, a
2237 -- null component list, or as a type derived from a null record type
2238 -- (with a null extension if tagged). Returns True for interface types,
2239 -- False for discriminated types.
2240
2241 function Is_Object_Image (Prefix : Node_Id) return Boolean;
2242 -- Returns True if an 'Img, 'Image, 'Wide_Image, or 'Wide_Wide_Image
2243 -- attribute is applied to an object.
2244
2245 function Is_Object_Reference (N : Node_Id) return Boolean;
2246 -- Determines if the tree referenced by N represents an object. Both
2247 -- variable and constant objects return True (compare Is_Variable).
2248
2249 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean;
2250 -- Used to test if AV is an acceptable formal for an OUT or IN OUT formal.
2251 -- Note that the Is_Variable function is not quite the right test because
2252 -- this is a case in which conversions whose expression is a variable (in
2253 -- the Is_Variable sense) with an untagged type target are considered view
2254 -- conversions and hence variables.
2255
2256 function Is_OK_Volatile_Context
2257 (Context : Node_Id;
2258 Obj_Ref : Node_Id;
2259 Check_Actuals : Boolean) return Boolean;
2260 -- Determine whether node Context denotes a "non-interfering context" (as
2261 -- defined in SPARK RM 7.1.3(10)) where volatile reference Obj_Ref can
2262 -- safely reside. When examining references that might be located within
2263 -- actual parameters of a subprogram call that has not been resolved yet,
2264 -- Check_Actuals should be False; such references will be assumed to be
2265 -- legal. They will need to be checked again after subprogram call has
2266 -- been resolved.
2267
2268 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean;
2269 -- Determine whether aspect specification or pragma Item is one of the
2270 -- following package contract annotations:
2271 -- Abstract_State
2272 -- Initial_Condition
2273 -- Initializes
2274 -- Refined_State
2275
2276 function Is_Partially_Initialized_Type
2277 (Typ : Entity_Id;
2278 Include_Implicit : Boolean := True) return Boolean;
2279 -- Typ is a type entity. This function returns true if this type is partly
2280 -- initialized, meaning that an object of the type is at least partly
2281 -- initialized (in particular in the record case, that at least one
2282 -- component has an initialization expression, including via Default_Value
2283 -- and Default_Component_Value aspects). Note that initialization
2284 -- resulting from the use of pragma Normalize_Scalars does not count.
2285 -- Include_Implicit controls whether implicit initialization of access
2286 -- values to null, and of discriminant values, is counted as making the
2287 -- type be partially initialized. For the default setting of True, these
2288 -- implicit cases do count, and discriminated types or types containing
2289 -- access values not explicitly initialized will return True. Otherwise
2290 -- if Include_Implicit is False, these cases do not count as making the
2291 -- type be partially initialized.
2292
2293 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean;
2294 -- Predicate to implement definition given in RM 6.1.1 (20/3)
2295
2296 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean;
2297 -- Determines if type T is a potentially persistent type. A potentially
2298 -- persistent type is defined (recursively) as a scalar type, an untagged
2299 -- record whose components are all of a potentially persistent type, or an
2300 -- array with all static constraints whose component type is potentially
2301 -- persistent. A private type is potentially persistent if the full type
2302 -- is potentially persistent.
2303
2304 function Is_Predefined_Dispatching_Operation (E : Entity_Id) return Boolean;
2305 -- Ada 2005 (AI-251): Determines if E is a predefined primitive operation
2306
2307 function Is_Predefined_Interface_Primitive (E : Entity_Id) return Boolean;
2308 -- Ada 2005 (AI-345): Returns True if E is one of the predefined primitives
2309 -- required to implement interfaces.
2310
2311 function Is_Predefined_Internal_Operation (E : Entity_Id) return Boolean;
2312 -- Similar to the previous one, but excludes stream operations, because
2313 -- these may be overridden, and need extra formals, like user-defined
2314 -- operations.
2315
2316 function Is_Preelaborable_Aggregate (Aggr : Node_Id) return Boolean;
2317 -- Determine whether aggregate Aggr violates the restrictions of
2318 -- preelaborable constructs as defined in ARM 10.2.1(5-9).
2319
2320 function Is_Preelaborable_Construct (N : Node_Id) return Boolean;
2321 -- Determine whether arbitrary node N violates the restrictions of
2322 -- preelaborable constructs as defined in ARM 10.2.1(5-9). Routine
2323 -- Is_Non_Preelaborable_Construct takes into account the syntactic
2324 -- and semantic properties of N for a more accurate diagnostic.
2325
2326 function Is_Private_Library_Unit (Unit : Entity_Id) return Boolean;
2327 -- Returns True if and only if the library unit is declared with an
2328 -- explicit designation of private.
2329
2330 function Is_Protected_Self_Reference (N : Node_Id) return Boolean;
2331 -- Return True if node N denotes a protected type name which represents
2332 -- the current instance of a protected object according to RM 9.4(21/2).
2333
2334 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean;
2335 -- Return True if a compilation unit is the specification or the
2336 -- body of a remote call interface package.
2337
2338 function Is_Remote_Access_To_Class_Wide_Type (E : Entity_Id) return Boolean;
2339 -- Return True if E is a remote access-to-class-wide type
2340
2341 function Is_Remote_Access_To_Subprogram_Type (E : Entity_Id) return Boolean;
2342 -- Return True if E is a remote access to subprogram type
2343
2344 function Is_Remote_Call (N : Node_Id) return Boolean;
2345 -- Return True if N denotes a potentially remote call
2346
2347 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean;
2348 -- Return True if Proc_Nam is a procedure renaming of an entry
2349
2350 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean;
2351 -- AI05-0139-2: Check whether Typ is derived from the predefined interface
2352 -- Ada.Iterator_Interfaces.Reversible_Iterator.
2353
2354 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean;
2355 -- Determine whether arbitrary entity Id denotes the anonymous object
2356 -- created for a single protected or single task type.
2357
2358 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean;
2359 -- Determine whether arbitrary entity Id denotes a single protected or
2360 -- single task type.
2361
2362 function Is_Single_Concurrent_Type_Declaration (N : Node_Id) return Boolean;
2363 -- Determine whether arbitrary node N denotes the declaration of a single
2364 -- protected type or single task type.
2365
2366 function Is_Single_Precision_Floating_Point_Type
2367 (E : Entity_Id) return Boolean;
2368 -- Return whether E is a single precision floating point type,
2369 -- characterized by:
2370 -- . machine_radix = 2
2371 -- . machine_mantissa = 24
2372 -- . machine_emax = 2**7
2373 -- . machine_emin = 3 - machine_emax
2374
2375 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean;
2376 -- Determine whether arbitrary entity Id denotes the anonymous object
2377 -- created for a single protected type.
2378
2379 function Is_Single_Task_Object (Id : Entity_Id) return Boolean;
2380 -- Determine whether arbitrary entity Id denotes the anonymous object
2381 -- created for a single task type.
2382
2383 function Is_Special_Aliased_Formal_Access
2384 (Exp : Node_Id;
2385 In_Return_Context : Boolean := False) return Boolean;
2386 -- Determines whether a dynamic check must be generated for explicitly
2387 -- aliased formals within a function Scop for the expression Exp.
2388
2389 -- In_Return_Context forces Is_Special_Aliased_Formal_Access to assume
2390 -- that Exp is within a return value which is useful for checking
2391 -- expressions within discriminant associations of return objects.
2392
2393 -- More specially, Is_Special_Aliased_Formal_Access checks that Exp is a
2394 -- 'Access attribute reference within a return statement where the ultimate
2395 -- prefix is an aliased formal of Scop and that Scop returns an anonymous
2396 -- access type. See RM 3.10.2 for more details.
2397
2398 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean;
2399 -- Determine whether an arbitrary [private] type is specifically tagged
2400
2401 function Is_Statement (N : Node_Id) return Boolean;
2402 pragma Inline (Is_Statement);
2403 -- Check if the node N is a statement node. Note that this includes
2404 -- the case of procedure call statements (unlike the direct use of
2405 -- the N_Statement_Other_Than_Procedure_Call subtype from Sinfo).
2406 -- Note that a label is *not* a statement, and will return False.
2407
2408 function Is_Static_Discriminant_Component (N : Node_Id) return Boolean;
2409 -- Return True if N is guaranteed to a selected component containing a
2410 -- statically known discriminant.
2411 -- Note that this routine takes a conservative view and may return False
2412 -- in some cases where N would match the criteria. In other words this
2413 -- routine should be used to simplify or optimize the expanded code.
2414
2415 function Is_Static_Function (Subp : Entity_Id) return Boolean;
2416 -- Determine whether subprogram Subp denotes a static function,
2417 -- which is a function with the aspect Static with value True.
2418
2419 function Is_Static_Function_Call (Call : Node_Id) return Boolean;
2420 -- Determine whether Call is a static call to a static function,
2421 -- meaning that the name of the call denotes a static function
2422 -- and all of the call's actual parameters are given by static expressions.
2423
2424 function Is_Subcomponent_Of_Full_Access_Object (N : Node_Id) return Boolean;
2425 -- Determine whether arbitrary node N denotes a reference to a subcomponent
2426 -- of a full access object as per RM C.6(7).
2427
2428 function Is_Subprogram_Contract_Annotation (Item : Node_Id) return Boolean;
2429 -- Determine whether aspect specification or pragma Item is one of the
2430 -- following subprogram contract annotations:
2431 -- Contract_Cases
2432 -- Depends
2433 -- Extensions_Visible
2434 -- Global
2435 -- Post
2436 -- Post_Class
2437 -- Postcondition
2438 -- Pre
2439 -- Pre_Class
2440 -- Precondition
2441 -- Refined_Depends
2442 -- Refined_Global
2443 -- Refined_Post
2444 -- Subprogram_Variant
2445 -- Test_Case
2446
2447 function Is_Subprogram_Stub_Without_Prior_Declaration
2448 (N : Node_Id) return Boolean;
2449 -- Given an N_Subprogram_Body_Stub node N, return True if N is a subprogram
2450 -- stub with no prior subprogram declaration.
2451
2452 function Is_Suitable_Primitive (Subp_Id : Entity_Id) return Boolean;
2453 -- Determine whether arbitrary subprogram Subp_Id may act as a primitive of
2454 -- an arbitrary tagged type.
2455
2456 function Is_Synchronized_Object (Id : Entity_Id) return Boolean;
2457 -- Determine whether entity Id denotes an object and if it does, whether
2458 -- this object is synchronized as specified in SPARK RM 9.1. To qualify as
2459 -- such, the object must be
2460 -- * Of a type that yields a synchronized object
2461 -- * An atomic object with enabled Async_Writers
2462 -- * A constant not of access-to-variable type
2463 -- * A variable subject to pragma Constant_After_Elaboration
2464
2465 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean;
2466 -- Returns True if E is a synchronized tagged type (AARM 3.9.4 (6/2))
2467
2468 function Is_Transfer (N : Node_Id) return Boolean;
2469 -- Returns True if the node N is a statement which is known to cause an
2470 -- unconditional transfer of control at run time, i.e. the following
2471 -- statement definitely will not be executed.
2472
2473 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean;
2474 -- Determine whether an arbitrary entity denotes an instance of function
2475 -- Ada.Unchecked_Conversion.
2476
2477 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean;
2478 pragma Inline (Is_Universal_Numeric_Type);
2479 -- True if T is Universal_Integer or Universal_Real
2480
2481 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
2482 -- Determine whether an entity denotes a user-defined equality
2483
2484 function Is_User_Defined_Literal
2485 (N : Node_Id;
2486 Typ : Entity_Id) return Boolean;
2487 pragma Inline (Is_User_Defined_Literal);
2488 -- Determine whether N is a user-defined literal for Typ
2489
2490 function Is_Validation_Variable_Reference (N : Node_Id) return Boolean;
2491 -- Determine whether N denotes a reference to a variable which captures the
2492 -- value of an object for validation purposes.
2493
2494 function Is_Variable_Size_Array (E : Entity_Id) return Boolean;
2495 -- Returns true if E has variable size components
2496
2497 function Is_Variable_Size_Record (E : Entity_Id) return Boolean;
2498 -- Returns true if E has variable size components
2499
2500 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2501
2502 function Is_Variable
2503 (N : Node_Id;
2504 Use_Original_Node : Boolean := True) return Boolean;
2505 -- Determines if the tree referenced by N represents a variable, i.e. can
2506 -- appear on the left side of an assignment. There is one situation (formal
2507 -- parameters) in which untagged type conversions are also considered
2508 -- variables, but Is_Variable returns False for such cases, since it has
2509 -- no knowledge of the context. Note that this is the point at which
2510 -- Assignment_OK is checked, and True is returned for any tree thus marked.
2511 -- Use_Original_Node is used to perform the test on Original_Node (N). By
2512 -- default is True since this routine is commonly invoked as part of the
2513 -- semantic analysis and it must not be disturbed by the rewriten nodes.
2514
2515 function Is_View_Conversion (N : Node_Id) return Boolean;
2516 -- Returns True if N is a type_conversion whose operand is the name of an
2517 -- object and both its target type and operand type are tagged, or it
2518 -- appears in a call as an actual parameter of mode out or in out
2519 -- (RM 4.6(5/2)).
2520
2521 function Is_Visibly_Controlled (T : Entity_Id) return Boolean;
2522 -- Check whether T is derived from a visibly controlled type. This is true
2523 -- if the root type is declared in Ada.Finalization. If T is derived
2524 -- instead from a private type whose full view is controlled, an explicit
2525 -- Initialize/Adjust/Finalize subprogram does not override the inherited
2526 -- one.
2527
2528 function Is_Volatile_Full_Access_Object_Ref (N : Node_Id) return Boolean;
2529 -- Determine whether arbitrary node N denotes a reference to an object
2530 -- which is Volatile_Full_Access.
2531
2532 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean;
2533 -- Determine whether [generic] function Func_Id is subject to enabled
2534 -- pragma Volatile_Function. Protected functions are treated as volatile
2535 -- (SPARK RM 7.1.2).
2536
2537 function Is_Volatile_Object_Ref (N : Node_Id) return Boolean;
2538 -- Determine whether arbitrary node N denotes a reference to a volatile
2539 -- object as per RM C.6(8). Note that the test here is for something that
2540 -- is actually declared as volatile, not for an object that gets treated
2541 -- as volatile (see Einfo.Treat_As_Volatile).
2542
2543 generic
2544 with procedure Handle_Parameter (Formal : Entity_Id; Actual : Node_Id);
2545 procedure Iterate_Call_Parameters (Call : Node_Id);
2546 -- Calls Handle_Parameter for each pair of formal and actual parameters of
2547 -- a function, procedure, or entry call.
2548
2549 function Itype_Has_Declaration (Id : Entity_Id) return Boolean;
2550 -- Applies to Itypes. True if the Itype is attached to a declaration for
2551 -- the type through its Parent field, which may or not be present in the
2552 -- tree.
2553
2554 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False);
2555 -- This procedure is called to clear all constant indications from all
2556 -- entities in the current scope and in any parent scopes if the current
2557 -- scope is a block or a package (and that recursion continues to the top
2558 -- scope that is not a block or a package). This is used when the
2559 -- sequential flow-of-control assumption is violated (occurrence of a
2560 -- label, head of a loop, or start of an exception handler). The effect of
2561 -- the call is to clear the Current_Value field (but we do not need to
2562 -- clear the Is_True_Constant flag, since that only gets reset if there
2563 -- really is an assignment somewhere in the entity scope). This procedure
2564 -- also calls Kill_All_Checks, since this is a special case of needing to
2565 -- forget saved values. This procedure also clears the Is_Known_Null and
2566 -- Is_Known_Non_Null and Is_Known_Valid flags in variables, constants or
2567 -- parameters since these are also not known to be trustable any more.
2568 --
2569 -- The Last_Assignment_Only flag is set True to clear only Last_Assignment
2570 -- fields and leave other fields unchanged. This is used when we encounter
2571 -- an unconditional flow of control change (return, goto, raise). In such
2572 -- cases we don't need to clear the current values, since it may be that
2573 -- the flow of control change occurs in a conditional context, and if it
2574 -- is not taken, then it is just fine to keep the current values. But the
2575 -- Last_Assignment field is different, if we have a sequence assign-to-v,
2576 -- conditional-return, assign-to-v, we do not want to complain that the
2577 -- second assignment clobbers the first.
2578
2579 procedure Kill_Current_Values
2580 (Ent : Entity_Id;
2581 Last_Assignment_Only : Boolean := False);
2582 -- This performs the same processing as described above for the form with
2583 -- no argument, but for the specific entity given. The call has no effect
2584 -- if the entity Ent is not for an object. Last_Assignment_Only has the
2585 -- same meaning as for the call with no Ent.
2586
2587 procedure Kill_Size_Check_Code (E : Entity_Id);
2588 -- Called when an address clause or pragma Import is applied to an entity.
2589 -- If the entity is a variable or a constant, and size check code is
2590 -- present, this size check code is killed, since the object will not be
2591 -- allocated by the program.
2592
2593 function Known_Non_Null (N : Node_Id) return Boolean;
2594 -- Given a node N for a subexpression of an access type, determines if
2595 -- this subexpression yields a value that is known at compile time to
2596 -- be non-null and returns True if so. Returns False otherwise. It is
2597 -- an error to call this function if N is not of an access type.
2598
2599 function Known_Null (N : Node_Id) return Boolean;
2600 -- Given a node N for a subexpression of an access type, determines if this
2601 -- subexpression yields a value that is known at compile time to be null
2602 -- and returns True if so. Returns False otherwise. It is an error to call
2603 -- this function if N is not of an access type.
2604
2605 function Known_To_Be_Assigned
2606 (N : Node_Id;
2607 Only_LHS : Boolean := False) return Boolean;
2608 -- The node N is an entity reference. This function determines whether the
2609 -- reference is for sure an assignment of the entity, returning True if
2610 -- so. Only_LHS will modify this behavior such that actuals for out or
2611 -- in out parameters will not be considered assigned.
2612
2613 function Last_Source_Statement (HSS : Node_Id) return Node_Id;
2614 -- HSS is a handled statement sequence. This function returns the last
2615 -- statement in Statements (HSS) that has Comes_From_Source set. If no
2616 -- such statement exists, Empty is returned.
2617
2618 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id);
2619 -- Given a node which designates the context of analysis and an origin in
2620 -- the tree, traverse from Root_Nod and mark all allocators as either
2621 -- dynamic or static depending on Context_Nod. Any incorrect marking is
2622 -- cleaned up during resolution.
2623
2624 procedure Mark_Elaboration_Attributes
2625 (N_Id : Node_Or_Entity_Id;
2626 Checks : Boolean := False;
2627 Level : Boolean := False;
2628 Modes : Boolean := False;
2629 Warnings : Boolean := False);
2630 -- Preserve relevant elaboration-related properties of the context in
2631 -- arbitrary entity or node N_Id. The flags control the properties as
2632 -- follows:
2633 --
2634 -- Checks - Save the status of Elaboration_Check
2635 -- Level - Save the declaration level of N_Id (if applicable)
2636 -- Modes - Save the Ghost and SPARK modes in effect (if applicable)
2637 -- Warnings - Save the status of Elab_Warnings
2638
2639 procedure Mark_Save_Invocation_Graph_Of_Body;
2640 -- Notify the body of the main unit that the invocation constructs and
2641 -- relations expressed within it must be recorded by the ABE mechanism.
2642
2643 function Matching_Static_Array_Bounds
2644 (L_Typ : Node_Id;
2645 R_Typ : Node_Id) return Boolean;
2646 -- L_Typ and R_Typ are two array types. Returns True when they have the
2647 -- same number of dimensions, and the same static bounds for each index
2648 -- position.
2649
2650 function Might_Raise (N : Node_Id) return Boolean;
2651 -- True if evaluation of N might raise an exception. This is conservative;
2652 -- if we're not sure, we return True. If N is a subprogram body, this is
2653 -- about whether execution of that body can raise.
2654
2655 function Nearest_Class_Condition_Subprogram
2656 (Kind : Condition_Kind;
2657 Spec_Id : Entity_Id) return Entity_Id;
2658 -- Return the nearest ancestor containing the merged class-wide conditions
2659 -- that statically apply to Spec_Id; return Empty otherwise.
2660
2661 function Nearest_Enclosing_Instance (E : Entity_Id) return Entity_Id;
2662 -- Return the entity of the nearest enclosing instance which encapsulates
2663 -- entity E. If no such instance exits, return Empty.
2664
2665 function Needs_Finalization (Typ : Entity_Id) return Boolean;
2666 -- True if Typ requires finalization actions
2667
2668 function Needs_One_Actual (E : Entity_Id) return Boolean;
2669 -- Returns True if a function has defaults for all but its first formal,
2670 -- which is a controlling formal. Used in Ada 2005 mode to solve the
2671 -- syntactic ambiguity that results from an indexing of a function call
2672 -- that returns an array, so that Obj.F (X, Y) may mean F (Ob) (X, Y).
2673
2674 function Needs_Result_Accessibility_Level
2675 (Func_Id : Entity_Id) return Boolean;
2676 -- Ada 2012 (AI05-0234): Return True if the function needs an implicit
2677 -- parameter to identify the accessibility level of the function result
2678 -- "determined by the point of call".
2679
2680 function Needs_Simple_Initialization
2681 (Typ : Entity_Id;
2682 Consider_IS : Boolean := True) return Boolean;
2683 -- Certain types need initialization even though there is no specific
2684 -- initialization routine:
2685 -- Access types (which need initializing to null)
2686 -- All scalar types if Normalize_Scalars mode set
2687 -- Descendants of standard string types if Normalize_Scalars mode set
2688 -- Scalar types having a Default_Value attribute
2689 -- Regarding Initialize_Scalars mode, this is ignored if Consider_IS is
2690 -- set to False, but if Consider_IS is set to True, then the cases above
2691 -- mentioning Normalize_Scalars also apply for Initialize_Scalars mode.
2692
2693 function Needs_Variable_Reference_Marker
2694 (N : Node_Id;
2695 Calls_OK : Boolean) return Boolean;
2696 -- Determine whether arbitrary node N denotes a reference to a variable
2697 -- which is suitable for SPARK elaboration checks. Flag Calls_OK should
2698 -- be set when the reference is allowed to appear within calls.
2699
2700 function New_Copy_List_Tree (List : List_Id) return List_Id;
2701 -- Copy recursively an analyzed list of nodes. Uses New_Copy_Tree defined
2702 -- below. As for New_Copy_Tree, it is illegal to attempt to copy extended
2703 -- nodes (entities) either directly or indirectly using this function.
2704
2705 function New_Copy_Separate_List (List : List_Id) return List_Id;
2706 -- Copy recursively a list of nodes using New_Copy_Separate_Tree
2707
2708 function New_Copy_Separate_Tree (Source : Node_Id) return Node_Id;
2709 -- Perform a deep copy of the subtree rooted at Source using New_Copy_Tree
2710 -- replacing entities of local declarations by new entities. This behavior
2711 -- is required by the backend to ensure entities uniqueness when a copy of
2712 -- a subtree is attached to the tree. The new entities keep their original
2713 -- names to facilitate debugging the tree copy.
2714
2715 function New_Copy_Tree
2716 (Source : Node_Id;
2717 Map : Elist_Id := No_Elist;
2718 New_Sloc : Source_Ptr := No_Location;
2719 New_Scope : Entity_Id := Empty;
2720 Scopes_In_EWA_OK : Boolean := False) return Node_Id;
2721 -- Perform a deep copy of the subtree rooted at Source. Entities, itypes,
2722 -- and nodes are handled separately as follows:
2723 --
2724 -- * A node is replicated by first creating a shallow copy, then copying
2725 -- its syntactic fields, where all Parent pointers of the fields are
2726 -- updated to refer to the copy. In addition, the following semantic
2727 -- fields are recreated after the replication takes place.
2728 --
2729 -- First_Named_Actual
2730 -- First_Real_Statement
2731 -- Next_Named_Actual
2732 --
2733 -- If applicable, the Etype field (if any) is updated to refer to a
2734 -- local itype or type (see below).
2735 --
2736 -- * An entity defined within an N_Expression_With_Actions node in the
2737 -- subtree is given a new entity, and all references to the original
2738 -- entity are updated to refer to the new entity. In addition, the
2739 -- following semantic fields are replicated and/or updated to refer
2740 -- to a local entity or itype.
2741 --
2742 -- Discriminant_Constraint
2743 -- Etype
2744 -- First_Index
2745 -- Next_Entity
2746 -- Packed_Array_Impl_Type
2747 -- Scalar_Range
2748 -- Scope
2749 --
2750 -- Note that currently no other expression can define entities.
2751 --
2752 -- * An itype whose Associated_Node_For_Itype node is in the subtree
2753 -- is given a new entity, and all references to the original itype
2754 -- are updated to refer to the new itype. In addition, the following
2755 -- semantic fields are replicated and/or updated to refer to a local
2756 -- entity or itype.
2757 --
2758 -- Discriminant_Constraint
2759 -- Etype
2760 -- First_Index
2761 -- Next_Entity
2762 -- Packed_Array_Impl_Type
2763 -- Scalar_Range
2764 -- Scope
2765 --
2766 -- The Associated_Node_For_Itype is updated to refer to a replicated
2767 -- node.
2768 --
2769 -- The routine can replicate both analyzed and unanalyzed trees. Copying an
2770 -- Empty or Error node yields the same node.
2771 --
2772 -- Parameter Map may be used to specify a set of mappings between entities.
2773 -- These mappings are then taken into account when replicating entities.
2774 -- The format of Map must be as follows:
2775 --
2776 -- old entity 1
2777 -- new entity to replace references to entity 1
2778 -- old entity 2
2779 -- new entity to replace references to entity 2
2780 -- ...
2781 --
2782 -- Map and its contents are left unchanged.
2783 --
2784 -- Parameter New_Sloc may be used to specify a new source location for all
2785 -- replicated entities, itypes, and nodes. The Comes_From_Source indicator
2786 -- is defaulted if a new source location is provided.
2787 --
2788 -- Parameter New_Scope may be used to specify a new scope for all copied
2789 -- entities and itypes.
2790 --
2791 -- Parameter Scopes_In_EWA_OK may be used to force the replication of both
2792 -- scoping entities and non-scoping entities found within expression with
2793 -- actions nodes.
2794
2795 function New_External_Entity
2796 (Kind : Entity_Kind;
2797 Scope_Id : Entity_Id;
2798 Sloc_Value : Source_Ptr;
2799 Related_Id : Entity_Id;
2800 Suffix : Character;
2801 Suffix_Index : Int := 0;
2802 Prefix : Character := ' ') return Entity_Id;
2803 -- This function creates an N_Defining_Identifier node for an internal
2804 -- created entity, such as an implicit type or subtype, or a record
2805 -- initialization procedure. The entity name is constructed with a call
2806 -- to New_External_Name (Related_Id, Suffix, Suffix_Index, Prefix), so
2807 -- that the generated name may be referenced as a public entry, and the
2808 -- Is_Public flag is set if needed (using Set_Public_Status). If the
2809 -- entity is for a type or subtype, the size/align fields are initialized
2810 -- to unknown (Uint_0).
2811
2812 function New_Internal_Entity
2813 (Kind : Entity_Kind;
2814 Scope_Id : Entity_Id;
2815 Sloc_Value : Source_Ptr;
2816 Id_Char : Character) return Entity_Id;
2817 -- This function is similar to New_External_Entity, except that the
2818 -- name is constructed by New_Internal_Name (Id_Char). This is used
2819 -- when the resulting entity does not have to be referenced as a
2820 -- public entity (and in this case Is_Public is not set).
2821
2822 function Next_Actual (Actual_Id : Node_Id) return Node_Id;
2823 -- Find next actual parameter in declaration order. As described for
2824 -- First_Actual, this is the next actual in the declaration order, not
2825 -- the call order, so this does not correspond to simply taking the
2826 -- next entry of the Parameter_Associations list. The argument is an
2827 -- actual previously returned by a call to First_Actual or Next_Actual.
2828 -- Note that the result produced is always an expression, not a parameter
2829 -- association node, even if named notation was used.
2830
2831 -- WARNING: There is a matching C declaration of this subprogram in fe.h
2832
2833 procedure Next_Actual (Actual_Id : in out Node_Id);
2834 pragma Inline (Next_Actual);
2835 -- Next_Actual (N) is equivalent to N := Next_Actual (N). Note that we
2836 -- inline this procedural form, but not the functional form above.
2837
2838 function Next_Global (Node : Node_Id) return Node_Id;
2839 -- Node is a global item from a list, obtained through calling First_Global
2840 -- and possibly Next_Global a number of times. Returns the next global item
2841 -- with the same mode.
2842
2843 procedure Next_Global (Node : in out Node_Id);
2844 pragma Inline (Next_Global);
2845 -- Next_Global (N) is equivalent to N := Next_Global (N). Note that we
2846 -- inline this procedural form, but not the functional form above.
2847
2848 function No_Caching_Enabled (Id : Entity_Id) return Boolean;
2849 -- Given the entity of a variable, determine whether Id is subject to
2850 -- volatility property No_Caching and if it is, the related expression
2851 -- evaluates to True.
2852
2853 function No_Heap_Finalization (Typ : Entity_Id) return Boolean;
2854 -- Determine whether type Typ is subject to pragma No_Heap_Finalization
2855
2856 procedure Normalize_Actuals
2857 (N : Node_Id;
2858 S : Entity_Id;
2859 Report : Boolean;
2860 Success : out Boolean);
2861 -- Reorders lists of actuals according to names of formals, value returned
2862 -- in Success indicates success of reordering. For more details, see body.
2863 -- Errors are reported only if Report is set to True.
2864
2865 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean);
2866 -- This routine is called if the sub-expression N maybe the target of
2867 -- an assignment (e.g. it is the left side of an assignment, used as
2868 -- an out parameters, or used as prefixes of access attributes). It
2869 -- sets May_Be_Modified in the associated entity if there is one,
2870 -- taking into account the rule that in the case of renamed objects,
2871 -- it is the flag in the renamed object that must be set.
2872 --
2873 -- The parameter Sure is set True if the modification is sure to occur
2874 -- (e.g. target of assignment, or out parameter), and to False if the
2875 -- modification is only potential (e.g. address of entity taken).
2876
2877 function Null_To_Null_Address_Convert_OK
2878 (N : Node_Id;
2879 Typ : Entity_Id := Empty) return Boolean;
2880 -- Return True if we are compiling in relaxed RM semantics mode and:
2881 -- 1) N is a N_Null node and Typ is a descendant of System.Address, or
2882 -- 2) N is a comparison operator, one of the operands is null, and the
2883 -- type of the other operand is a descendant of System.Address.
2884
2885 function Number_Of_Elements_In_Array (T : Entity_Id) return Int;
2886 -- Returns the number of elements in the array T if the index bounds of T
2887 -- is known at compile time. If the bounds are not known at compile time,
2888 -- the function returns the value zero.
2889
2890 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id;
2891 -- Retrieve the name of aspect or pragma N, taking into account a possible
2892 -- rewrite and whether the pragma is generated from an aspect as the names
2893 -- may be different. The routine also deals with 'Class in which case it
2894 -- returns the following values:
2895 --
2896 -- Invariant -> Name_uInvariant
2897 -- Post'Class -> Name_uPost
2898 -- Pre'Class -> Name_uPre
2899 -- Type_Invariant -> Name_uType_Invariant
2900 -- Type_Invariant'Class -> Name_uType_Invariant
2901
2902 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id;
2903 -- [Ada 2012: AI05-0125-1]: If S is an inherited dispatching primitive S2,
2904 -- or overrides an inherited dispatching primitive S2, the original
2905 -- corresponding operation of S is the original corresponding operation of
2906 -- S2. Otherwise, it is S itself.
2907
2908 function Original_View_In_Visible_Part (Typ : Entity_Id) return Boolean;
2909 -- Returns True if the type Typ has a private view or if the public view
2910 -- appears in the visible part of a package spec.
2911
2912 procedure Output_Entity (Id : Entity_Id);
2913 -- Print entity Id to standard output. The name of the entity appears in
2914 -- fully qualified form.
2915 --
2916 -- WARNING: this routine should be used in debugging scenarios such as
2917 -- tracking down undefined symbols as it is fairly low level.
2918
2919 procedure Output_Name (Nam : Name_Id; Scop : Entity_Id := Current_Scope);
2920 -- Print name Nam to standard output. The name appears in fully qualified
2921 -- form assuming it appears in scope Scop. Note that this may not reflect
2922 -- the final qualification as the entity which carries the name may be
2923 -- relocated to a different scope.
2924 --
2925 -- WARNING: this routine should be used in debugging scenarios such as
2926 -- tracking down undefined symbols as it is fairly low level.
2927
2928 function Param_Entity (N : Node_Id) return Entity_Id;
2929 -- Given an expression N, determines if the expression is a reference
2930 -- to a formal (of a subprogram or entry), and if so returns the Id
2931 -- of the corresponding formal entity, otherwise returns Empty. Also
2932 -- handles the case of references to renamings of formals.
2933
2934 function Policy_In_Effect (Policy : Name_Id) return Name_Id;
2935 -- Given a policy, return the policy identifier associated with it. If no
2936 -- such policy is in effect, the value returned is No_Name.
2937
2938 function Predicate_Enabled (Typ : Entity_Id) return Boolean;
2939 -- Return True if a predicate check should be emitted for the given type
2940 -- Typ, taking into account Predicates_Ignored and
2941 -- Predicate_Checks_Suppressed.
2942
2943 function Predicate_Failure_Expression
2944 (Typ : Entity_Id; Inherited_OK : Boolean) return Node_Id;
2945 -- If the given type or subtype is subject to a Predicate_Failure
2946 -- aspect specification, then returns the specified expression.
2947 -- Otherwise, if Inherited_OK is False then returns Empty.
2948 -- Otherwise, if Typ denotes a subtype or a derived type then
2949 -- returns the result of recursing on the ancestor subtype.
2950 -- Otherwise, returns Empty.
2951
2952 function Predicate_Function_Needs_Membership_Parameter (Typ : Entity_Id)
2953 return Boolean is
2954 (Present (Predicate_Failure_Expression (Typ, Inherited_OK => True)));
2955 -- The predicate function for some, but not all, subtypes needs to
2956 -- know whether the predicate is being evaluated as part of a membership
2957 -- test. The predicate function for such a subtype takes an additional
2958 -- boolean to convey this information. This function returns True if this
2959 -- additional parameter is needed. More specifically, this function
2960 -- returns true if the Predicate_Failure aspect is specified for the
2961 -- given subtype or for any of its "ancestor" subtypes.
2962
2963 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean;
2964 -- Subp is the entity for a subprogram call. This function returns True if
2965 -- predicate tests are required for the arguments in this call (this is the
2966 -- normal case). It returns False for special cases where these predicate
2967 -- tests should be skipped (see body for details).
2968
2969 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean;
2970 -- Returns True if the names of both entities correspond with matching
2971 -- primitives. This routine includes support for the case in which one
2972 -- or both entities correspond with entities built by Derive_Subprogram
2973 -- with a special name to avoid being overridden (i.e. return true in case
2974 -- of entities with names "nameP" and "name" or vice versa).
2975
2976 function Private_Component (Type_Id : Entity_Id) return Entity_Id;
2977 -- Returns some private component (if any) of the given Type_Id.
2978 -- Used to enforce the rules on visibility of operations on composite
2979 -- types, that depend on the full view of the component type. For a
2980 -- record type there may be several such components, we just return
2981 -- the first one.
2982
2983 procedure Process_End_Label
2984 (N : Node_Id;
2985 Typ : Character;
2986 Ent : Entity_Id);
2987 -- N is a node whose End_Label is to be processed, generating all
2988 -- appropriate cross-reference entries, and performing style checks
2989 -- for any identifier references in the end label. Typ is either
2990 -- 'e' or 't indicating the type of the cross-reference entity
2991 -- (e for spec, t for body, see Lib.Xref spec for details). The
2992 -- parameter Ent gives the entity to which the End_Label refers,
2993 -- and to which cross-references are to be generated.
2994
2995 procedure Propagate_Concurrent_Flags
2996 (Typ : Entity_Id;
2997 Comp_Typ : Entity_Id);
2998 -- Set Has_Task, Has_Protected, and Has_Timing_Event on Typ when the flags
2999 -- are set on Comp_Typ. This follows the definition of these flags, which
3000 -- are set (recursively) on any composite type that has a component marked
3001 -- by one of these flags. This procedure can only set flags for Typ, and
3002 -- never clear them. Comp_Typ is the type of a component or a parent.
3003
3004 procedure Propagate_DIC_Attributes
3005 (Typ : Entity_Id;
3006 From_Typ : Entity_Id);
3007 -- Inherit all Default_Initial_Condition-related attributes from type
3008 -- From_Typ. Typ is the destination type.
3009
3010 procedure Propagate_Invariant_Attributes
3011 (Typ : Entity_Id;
3012 From_Typ : Entity_Id);
3013 -- Inherit all invariant-related attributes from type From_Typ. Typ is the
3014 -- destination type.
3015
3016 procedure Propagate_Predicate_Attributes
3017 (Typ : Entity_Id;
3018 From_Typ : Entity_Id);
3019 -- Inherit predicate functions and Has_Predicates flag from type From_Typ.
3020 -- Typ is the destination type.
3021
3022 procedure Record_Possible_Part_Of_Reference
3023 (Var_Id : Entity_Id;
3024 Ref : Node_Id);
3025 -- Save reference Ref to variable Var_Id when the variable is subject to
3026 -- pragma Part_Of. If the variable is known to be a constituent of a single
3027 -- protected/task type, the legality of the reference is verified and the
3028 -- save does not take place.
3029
3030 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean;
3031 -- Determine whether entity Id is referenced within expression Expr
3032
3033 function References_Generic_Formal_Type (N : Node_Id) return Boolean;
3034 -- Returns True if the expression Expr contains any references to a generic
3035 -- type. This can only happen within a generic template.
3036
3037 procedure Remove_Entity_And_Homonym (Id : Entity_Id);
3038 -- Remove arbitrary entity Id from both the homonym and scope chains. Use
3039 -- Remove_Overloaded_Entity for overloadable entities. Note: the removal
3040 -- performed by this routine does not affect the visibility of existing
3041 -- homonyms.
3042
3043 procedure Remove_Homonym (Id : Entity_Id);
3044 -- Removes entity Id from the homonym chain
3045
3046 procedure Remove_Overloaded_Entity (Id : Entity_Id);
3047 -- Remove arbitrary entity Id from the homonym chain, the scope chain and
3048 -- the primitive operations list of the associated controlling type. Use
3049 -- Remove_Entity for non-overloadable entities. Note: the removal performed
3050 -- by this routine does not affect the visibility of existing homonyms.
3051
3052 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id;
3053 -- Returns the name of E without Suffix
3054
3055 procedure Replace_Null_By_Null_Address (N : Node_Id);
3056 -- N is N_Null or a binary comparison operator, we are compiling in relaxed
3057 -- RM semantics mode, and one of the operands is null. Replace null with
3058 -- System.Null_Address.
3059
3060 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id;
3061 -- This is used to construct the second argument in a call to Rep_To_Pos
3062 -- which is Standard_True if range checks are enabled (E is an entity to
3063 -- which the Range_Checks_Suppressed test is applied), and Standard_False
3064 -- if range checks are suppressed. Loc is the location for the node that
3065 -- is returned (which is a New_Occurrence of the appropriate entity).
3066 --
3067 -- Note: one might think that it would be fine to always use True and
3068 -- to ignore the suppress in this case, but it is generally better to
3069 -- believe a request to suppress exceptions if possible, and further
3070 -- more there is at least one case in the generated code (the code for
3071 -- array assignment in a loop) that depends on this suppression.
3072
3073 procedure Require_Entity (N : Node_Id);
3074 -- N is a node which should have an entity value if it is an entity name.
3075 -- If not, then check if there were previous errors. If so, just fill
3076 -- in with Any_Id and ignore. Otherwise signal a program error exception.
3077 -- This is used as a defense mechanism against ill-formed trees caused by
3078 -- previous errors (particularly in -gnatq mode).
3079
3080 function Requires_Transient_Scope (Typ : Entity_Id) return Boolean;
3081 pragma Inline (Requires_Transient_Scope);
3082 -- Return true if temporaries of Typ need to be wrapped in a transient
3083 -- scope, either because they are allocated on the secondary stack or
3084 -- finalization actions must be generated before the next instruction.
3085 -- Examples of types requiring such wrapping are variable-sized types,
3086 -- including unconstrained arrays, and controlled types.
3087
3088 procedure Reset_Analyzed_Flags (N : Node_Id);
3089 -- Reset the Analyzed flags in all nodes of the tree whose root is N
3090
3091 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type; Prag : Node_Id);
3092 -- Set the current SPARK_Mode to Mode and SPARK_Mode_Pragma to Prag. This
3093 -- routine must be used in tandem with Set_SPARK_Mode.
3094
3095 function Returns_On_Secondary_Stack (Id : Entity_Id) return Boolean;
3096 -- Return true if functions whose result type is Id must return on the
3097 -- secondary stack, i.e. allocate the return object on this stack.
3098
3099 -- WARNING: There is a matching C declaration of this subprogram in fe.h
3100
3101 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean;
3102 -- Return true if Subp is a function that returns an unconstrained type
3103
3104 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id;
3105 -- Similar to attribute Root_Type, but this version always follows the
3106 -- Full_View of a private type (if available) while searching for the
3107 -- ultimate derivation ancestor.
3108
3109 function Safe_To_Capture_Value
3110 (N : Node_Id;
3111 Ent : Entity_Id;
3112 Cond : Boolean := False) return Boolean;
3113 -- The caller is interested in capturing a value (either the current
3114 -- value, an indication that the value is [non-]null or an indication that
3115 -- the value is valid) for the given entity Ent. This value can only be
3116 -- captured if sequential execution semantics can be properly guaranteed so
3117 -- that a subsequent reference will indeed be sure that this current value
3118 -- indication is correct. The node N is the construct that resulted in the
3119 -- possible capture of the value (this is used to check if we are in a
3120 -- conditional).
3121 --
3122 -- Cond is used to skip the test for being inside a conditional. It is used
3123 -- in the case of capturing values from if/while tests, which already do a
3124 -- proper job of handling scoping issues without this help.
3125 --
3126 -- The only entities whose values can be captured are OUT and IN OUT formal
3127 -- parameters, and variables unless Cond is True, in which case we also
3128 -- allow IN formals, loop parameters and constants, where we cannot ever
3129 -- capture actual value information, but we can capture conditional tests.
3130
3131 function Same_Name (N1, N2 : Node_Id) return Boolean;
3132 -- Determine if two (possibly expanded) names are the same name. This is
3133 -- a purely syntactic test, and N1 and N2 need not be analyzed.
3134
3135 function Same_Object (Node1, Node2 : Node_Id) return Boolean;
3136 -- Determine if Node1 and Node2 are known to designate the same object.
3137 -- This is a semantic test and both nodes must be fully analyzed. A result
3138 -- of True is decisively correct. A result of False does not necessarily
3139 -- mean that different objects are designated, just that this could not
3140 -- be reliably determined at compile time.
3141
3142 function Same_Or_Aliased_Subprograms
3143 (S : Entity_Id;
3144 E : Entity_Id) return Boolean;
3145 -- Returns True if the subprogram entity S is the same as E or else S is an
3146 -- alias of E.
3147
3148 function Same_Type (T1, T2 : Entity_Id) return Boolean;
3149 -- Determines if T1 and T2 represent exactly the same type. Two types
3150 -- are the same if they are identical, or if one is an unconstrained
3151 -- subtype of the other, or they are both common subtypes of the same
3152 -- type with identical constraints. The result returned is conservative.
3153 -- It is True if the types are known to be the same, but a result of
3154 -- False is indecisive (e.g. the compiler may not be able to tell that
3155 -- two constraints are identical).
3156
3157 function Same_Value (Node1, Node2 : Node_Id) return Boolean;
3158 -- Determines if Node1 and Node2 are known to be the same value, which is
3159 -- true if they are both compile time known values and have the same value,
3160 -- or if they are the same object (in the sense of function Same_Object).
3161 -- A result of False does not necessarily mean they have different values,
3162 -- just that it is not possible to determine they have the same value.
3163
3164 function Scalar_Part_Present (Typ : Entity_Id) return Boolean;
3165 -- Determine whether arbitrary type Typ is a scalar type, or contains at
3166 -- least one scalar subcomponent.
3167
3168 function Scope_Within
3169 (Inner : Entity_Id;
3170 Outer : Entity_Id) return Boolean;
3171 -- Determine whether scope Inner appears within scope Outer. Note that
3172 -- scopes are partially ordered, so Scope_Within (A, B) and Scope_Within
3173 -- (B, A) may both return False.
3174
3175 function Scope_Within_Or_Same
3176 (Inner : Entity_Id;
3177 Outer : Entity_Id) return Boolean;
3178 -- Determine whether scope Inner appears within scope Outer or both denote
3179 -- the same scope. Note that scopes are partially ordered, so Scope_Within
3180 -- (A, B) and Scope_Within (B, A) may both return False.
3181
3182 procedure Set_Current_Entity (E : Entity_Id);
3183 pragma Inline (Set_Current_Entity);
3184 -- Establish the entity E as the currently visible definition of its
3185 -- associated name (i.e. the Node_Id associated with its name).
3186
3187 procedure Set_Debug_Info_Defining_Id (N : Node_Id);
3188 -- Call Set_Debug_Info_Needed on Defining_Identifier (N) if it comes
3189 -- from source.
3190
3191 procedure Set_Debug_Info_Needed (T : Entity_Id);
3192 -- Sets the Debug_Info_Needed flag on entity T , and also on any entities
3193 -- that are needed by T (for an object, the type of the object is needed,
3194 -- and for a type, various subsidiary types are needed -- see body for
3195 -- details). Never has any effect on T if the Debug_Info_Off flag is set.
3196 -- This routine should always be used instead of Set_Needs_Debug_Info to
3197 -- ensure that subsidiary entities are properly handled.
3198
3199 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id);
3200 -- This procedure has the same calling sequence as Set_Entity, but it
3201 -- performs additional checks as follows:
3202 --
3203 -- If Style_Check is set, then it calls a style checking routine that
3204 -- can check identifier spelling style.
3205 --
3206 -- If restriction No_Abort_Statements is set, then it checks that the
3207 -- entity is not Ada.Task_Identification.Abort_Task.
3208 --
3209 -- If restriction No_Dynamic_Attachment is set, then it checks that the
3210 -- entity is not one of the restricted names for this restriction.
3211 --
3212 -- If restriction No_Long_Long_Integers is set, then it checks that the
3213 -- entity is not Standard.Long_Long_Integer.
3214 --
3215 -- If restriction No_Implementation_Identifiers is set, then it checks
3216 -- that the entity is not implementation defined.
3217
3218 procedure Set_Invalid_Scalar_Value
3219 (Scal_Typ : Float_Scalar_Id;
3220 Value : Ureal);
3221 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3222 -- pragma Initialize_Scalars.
3223
3224 procedure Set_Invalid_Scalar_Value
3225 (Scal_Typ : Integer_Scalar_Id;
3226 Value : Uint);
3227 -- Associate invalid value Value with scalar type Scal_Typ as specified by
3228 -- pragma Initialize_Scalars.
3229
3230 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id);
3231 pragma Inline (Set_Name_Entity_Id);
3232 -- Sets the Entity_Id value associated with the given name, which is the
3233 -- Id of the innermost visible entity with the given name. See the body
3234 -- of package Sem_Ch8 for further details on the handling of visibility.
3235
3236 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id);
3237 -- The arguments may be parameter associations, whose descendants
3238 -- are the optional formal name and the actual parameter. Positional
3239 -- parameters are already members of a list, and do not need to be
3240 -- chained separately. See also First_Actual and Next_Actual.
3241
3242 procedure Set_Optimize_Alignment_Flags (E : Entity_Id);
3243 pragma Inline (Set_Optimize_Alignment_Flags);
3244 -- Sets Optimize_Alignment_Space/Time flags in E from current settings
3245
3246 procedure Set_Public_Status (Id : Entity_Id);
3247 -- If an entity (visible or otherwise) is defined in a library
3248 -- package, or a package that is itself public, then this subprogram
3249 -- labels the entity public as well.
3250
3251 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean);
3252 -- N is the node for either a left hand side (Out_Param set to False),
3253 -- or an Out or In_Out parameter (Out_Param set to True). If there is
3254 -- an assignable entity being referenced, then the appropriate flag
3255 -- (Referenced_As_LHS if Out_Param is False, Referenced_As_Out_Parameter
3256 -- if Out_Param is True) is set True, and the other flag set False.
3257
3258 procedure Set_Rep_Info (T1 : Entity_Id; T2 : Entity_Id);
3259 pragma Inline (Set_Rep_Info);
3260 -- Copies the Is_Atomic, Is_Independent and Is_Volatile_Full_Access flags
3261 -- from sub(type) entity T2 to (sub)type entity T1, as well as Is_Volatile
3262 -- if T1 is a base type.
3263
3264 procedure Set_Scope_Is_Transient (V : Boolean := True);
3265 -- Set the flag Is_Transient of the current scope
3266
3267 procedure Set_Size_Info (T1, T2 : Entity_Id);
3268 pragma Inline (Set_Size_Info);
3269 -- Copies the Esize field and Has_Biased_Representation flag from sub(type)
3270 -- entity T2 to (sub)type entity T1. Also copies the Is_Unsigned_Type flag
3271 -- in the fixed-point and discrete cases, and also copies the alignment
3272 -- value from T2 to T1. It does NOT copy the RM_Size field, which must be
3273 -- separately set if this is required to be copied also.
3274
3275 procedure Set_SPARK_Mode (Context : Entity_Id);
3276 -- Establish the SPARK_Mode and SPARK_Mode_Pragma (if any) of a package or
3277 -- a subprogram denoted by Context. This routine must be used in tandem
3278 -- with Restore_SPARK_Mode.
3279
3280 function Scope_Is_Transient return Boolean;
3281 -- True if the current scope is transient
3282
3283 function Should_Ignore_Pragma_Par (Prag_Name : Name_Id) return Boolean;
3284 function Should_Ignore_Pragma_Sem (N : Node_Id) return Boolean;
3285 -- True if we should ignore pragmas with the specified name. In particular,
3286 -- this returns True if pragma Ignore_Pragma applies, and we are not in a
3287 -- predefined unit. The _Par version should be called only from the parser;
3288 -- the _Sem version should be called only during semantic analysis.
3289
3290 function Static_Boolean (N : Node_Id) return Opt_Ubool;
3291 -- This function analyzes the given expression node and then resolves it
3292 -- as Standard.Boolean. If the result is static, then Uint_1 or Uint_0 is
3293 -- returned corresponding to the value, otherwise an error message is
3294 -- output and No_Uint is returned.
3295
3296 function Static_Integer (N : Node_Id) return Uint;
3297 -- This function analyzes the given expression node and then resolves it
3298 -- as any integer type. If the result is static, then the value of the
3299 -- universal expression is returned, otherwise an error message is output
3300 -- and a value of No_Uint is returned.
3301
3302 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
3303 -- Return True iff N is a name that "statically denotes" an entity.
3304
3305 function Statically_Denotes_Object (N : Node_Id) return Boolean;
3306 -- Return True iff N is a name that "statically denotes" an object.
3307
3308 function Statically_Different (E1, E2 : Node_Id) return Boolean;
3309 -- Return True if it can be statically determined that the Expressions
3310 -- E1 and E2 refer to different objects
3311
3312 function Statically_Names_Object (N : Node_Id) return Boolean;
3313 -- Return True iff N is a name that "statically names" an object.
3314
3315 function String_From_Numeric_Literal (N : Node_Id) return String_Id;
3316 -- Return the string that corresponds to the numeric literal N as it
3317 -- appears in the source.
3318
3319 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean;
3320 -- Determine whether node N is a loop statement subject to at least one
3321 -- 'Loop_Entry attribute.
3322
3323 function Subprogram_Access_Level (Subp : Entity_Id) return Uint;
3324 -- Return the accessibility level of the view denoted by Subp
3325
3326 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean;
3327 -- Return True if Typ supports the GCC built-in atomic operations (i.e. if
3328 -- Typ is properly sized and aligned).
3329
3330 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String);
3331 -- Print debugging information on entry to each unit being analyzed
3332
3333 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id);
3334 -- Move a list of entities from one scope to another, and recompute
3335 -- Is_Public based upon the new scope.
3336
3337 generic
3338 with function Process (N : Node_Id) return Traverse_Result is <>;
3339 Process_Itypes : Boolean := False;
3340 function Traverse_More_Func (Node : Node_Id) return Traverse_Final_Result;
3341 -- This is a version of Atree.Traverse_Func that not only traverses
3342 -- syntactic children of nodes, but also semantic children which are
3343 -- logically children of the node. This concerns currently lists of
3344 -- action nodes and ranges under Itypes, both inserted by the compiler.
3345 -- Itypes are only traversed when Process_Itypes is True.
3346
3347 generic
3348 with function Process (N : Node_Id) return Traverse_Result is <>;
3349 Process_Itypes : Boolean := False;
3350 procedure Traverse_More_Proc (Node : Node_Id);
3351 pragma Inline (Traverse_More_Proc);
3352 -- This is the same as Traverse_More_Func except that no result is
3353 -- returned, i.e. Traverse_More_Func is called and the result is simply
3354 -- discarded.
3355
3356 function Type_Access_Level
3357 (Typ : Entity_Id;
3358 Allow_Alt_Model : Boolean := True;
3359 Assoc_Ent : Entity_Id := Empty) return Uint;
3360 -- Return the accessibility level of Typ
3361
3362 -- The Allow_Alt_Model parameter allows the alternative level calculation
3363 -- under the restriction No_Dynamic_Accessibility_Checks to be performed.
3364
3365 -- Assoc_Ent allows for the optional specification of the entity associated
3366 -- with Typ. This gets utilized mostly for anonymous access type
3367 -- processing, where context matters in interpreting Typ's level.
3368
3369 function Type_Without_Stream_Operation
3370 (T : Entity_Id;
3371 Op : TSS_Name_Type := TSS_Null) return Entity_Id;
3372 -- AI05-0161: In Ada 2012, if the restriction No_Default_Stream_Attributes
3373 -- is active then we cannot generate stream subprograms for composite types
3374 -- with elementary subcomponents that lack user-defined stream subprograms.
3375 -- This predicate determines whether a type has such an elementary
3376 -- subcomponent. If Op is TSS_Null, a type that lacks either Read or Write
3377 -- prevents the construction of a composite stream operation. If Op is
3378 -- specified we check only for the given stream operation.
3379
3380 function Ultimate_Overlaid_Entity (E : Entity_Id) return Entity_Id;
3381 -- If entity E is overlaying some other entity via an Address clause (which
3382 -- possibly overlays yet another entity via its own Address clause), then
3383 -- return the ultimate overlaid entity. If entity E is not overlaying any
3384 -- other entity (or the overlaid entity cannot be determined statically),
3385 -- then return Empty.
3386 --
3387 -- Subsidiary to the analysis of object overlays in SPARK.
3388
3389 function Ultimate_Prefix (N : Node_Id) return Node_Id;
3390 -- Obtain the "outermost" prefix of arbitrary node N. Return N if no such
3391 -- prefix exists.
3392
3393 function Unique_Defining_Entity (N : Node_Id) return Entity_Id;
3394 -- Return the entity that represents declaration N, so that different
3395 -- views of the same entity have the same unique defining entity:
3396 -- * private view and full view of a deferred constant
3397 -- --> full view
3398 -- * entry spec and entry body
3399 -- --> entry spec
3400 -- * formal parameter on spec and body
3401 -- --> formal parameter on spec
3402 -- * package spec, body, and body stub
3403 -- --> package spec
3404 -- * protected type, protected body, and protected body stub
3405 -- --> protected type (full view if private)
3406 -- * subprogram spec, body, and body stub
3407 -- --> subprogram spec
3408 -- * task type, task body, and task body stub
3409 -- --> task type (full view if private)
3410 -- * private or incomplete view and full view of a type
3411 -- --> full view
3412 -- In other cases, return the defining entity for N.
3413
3414 function Unique_Entity (E : Entity_Id) return Entity_Id;
3415 -- Return the unique entity for entity E, which would be returned by
3416 -- Unique_Defining_Entity if applied to the enclosing declaration of E.
3417
3418 function Unique_Name (E : Entity_Id) return String;
3419 -- Return a unique name for entity E, which could be used to identify E
3420 -- across compilation units.
3421
3422 Child_Prefix : constant String := "ada___";
3423 -- Prefix for child packages when building a unique name for an entity. It
3424 -- is included here to share between Unique_Name and gnatprove.
3425
3426 function Unit_Is_Visible (U : Entity_Id) return Boolean;
3427 -- Determine whether a compilation unit is visible in the current context,
3428 -- because there is a with_clause that makes the unit available. Used to
3429 -- provide better messages on common visiblity errors on operators.
3430
3431 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id;
3432 -- Yields Universal_Integer or Universal_Real if this is a candidate
3433
3434 function Unqualify (Expr : Node_Id) return Node_Id;
3435 pragma Inline (Unqualify);
3436 -- Removes any qualifications from Expr. For example, for T1'(T2'(X)), this
3437 -- returns X. If Expr is not a qualified expression, returns Expr.
3438
3439 function Unqual_Conv (Expr : Node_Id) return Node_Id;
3440 pragma Inline (Unqual_Conv);
3441 -- Similar to Unqualify, but removes qualified expressions, type
3442 -- conversions, and unchecked conversions.
3443
3444 function Validated_View (Typ : Entity_Id) return Entity_Id;
3445 -- Obtain the "validated view" of arbitrary type Typ which is suitable for
3446 -- verification by attribute 'Valid_Scalars. This view is the type itself
3447 -- or its full view while stripping away concurrency, derivations, and
3448 -- privacy.
3449
3450 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id;
3451 -- [Ada 2012:AI-0125-1]: Collect all the visible parents and progenitors
3452 -- of a type extension or private extension declaration. If the full-view
3453 -- of private parents and progenitors is available then it is used to
3454 -- generate the list of visible ancestors; otherwise their partial
3455 -- view is added to the resulting list.
3456
3457 function Within_Init_Proc return Boolean;
3458 -- Determines if Current_Scope is within an init proc
3459
3460 function Within_Protected_Type (E : Entity_Id) return Boolean;
3461 -- Returns True if entity E is declared within a protected type
3462
3463 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean;
3464 -- Returns True if entity E is declared within scope S
3465
3466 procedure Warn_On_Hiding_Entity
3467 (N : Node_Id;
3468 Hidden, Visible : Entity_Id;
3469 On_Use_Clause : Boolean);
3470 -- Warn on hiding of an entity, either because a new declaration hides
3471 -- an entity directly visible or potentially visible through a use_clause
3472 -- (On_Use_Clause = False), or because the entity would be potentially
3473 -- visible through a use_clause if it was now hidden by a visible
3474 -- declaration (On_Use_Clause = True). N is the node on which the warning
3475 -- is potentially issued: it is the visible entity in the former case, and
3476 -- the use_clause in the latter case.
3477
3478 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id);
3479 -- Output error message for incorrectly typed expression. Expr is the node
3480 -- for the incorrectly typed construct (Etype (Expr) is the type found),
3481 -- and Expected_Type is the entity for the expected type. Note that Expr
3482 -- does not have to be a subexpression, anything with an Etype field may
3483 -- be used.
3484
3485 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean;
3486 -- Determine whether type Typ "yields synchronized object" as specified by
3487 -- SPARK RM 9.1. To qualify as such, a type must be
3488 -- * An array type whose element type yields a synchronized object
3489 -- * A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
3490 -- * A protected type
3491 -- * A record type or type extension without defaulted discriminants
3492 -- whose components are of a type that yields a synchronized object.
3493 -- * A synchronized interface type
3494 -- * A task type
3495
3496 function Yields_Universal_Type (N : Node_Id) return Boolean;
3497 -- Determine whether unanalyzed node N yields a universal type
3498
3499 procedure Preanalyze_Without_Errors (N : Node_Id);
3500 -- Preanalyze N without reporting errors
3501
3502 package Interval_Lists is
3503 type Discrete_Interval is
3504 record
3505 Low, High : Uint;
3506 end record;
3507
3508 type Discrete_Interval_List is
3509 array (Pos range <>) of Discrete_Interval;
3510 -- A sorted (in ascending order) list of non-empty pairwise-disjoint
3511 -- intervals, always with a gap of at least one value between
3512 -- successive intervals (i.e., mergeable intervals are merged).
3513 -- Low bound is one; high bound is nonnegative.
3514
3515 function Aggregate_Intervals (N : Node_Id) return Discrete_Interval_List;
3516 -- Given an array aggregate N, returns the (unique) interval list
3517 -- representing the values of the aggregate choices; if all the array
3518 -- components are covered by the others choice then the length of the
3519 -- result is zero.
3520
3521 function Choice_List_Intervals
3522 (Discrete_Choices : List_Id) return Discrete_Interval_List;
3523 -- Given a discrete choice list, returns the (unique) interval
3524 -- list representing the chosen values.
3525
3526 function Type_Intervals (Typ : Entity_Id) return Discrete_Interval_List;
3527 -- Given a static discrete type or subtype, returns the (unique)
3528 -- interval list representing the values of the type/subtype.
3529 -- If no static predicates are involved, the length of the result
3530 -- will be at most one.
3531
3532 function Is_Subset (Subset, Of_Set : Discrete_Interval_List)
3533 return Boolean;
3534 -- Returns True iff every value belonging to some interval of
3535 -- Subset also belongs to some interval of Of_Set.
3536
3537 -- When we get around to implementing "is statically compatible"
3538 -- correctly for real types with static predicates, we may need
3539 -- an analogous Real_Interval_List type. Most of the language
3540 -- rules that reference "is statically compatible" pertain to
3541 -- discriminants and therefore do not require support for real types;
3542 -- the exception is 12.5.1(8).
3543
3544 Intervals_Error : exception;
3545 -- Raised when the list of non-empty pair-wise disjoint intervals cannot
3546 -- be built.
3547 end Interval_Lists;
3548
3549 package Old_Attr_Util is
3550 -- Operations related to 'Old attribute evaluation. This
3551 -- includes cases where a level of indirection is needed due to
3552 -- conditional evaluation as well as support for the
3553 -- "known on entry" rules.
3554
3555 package Conditional_Evaluation is
3556 function Eligible_For_Conditional_Evaluation
3557 (Expr : Node_Id) return Boolean;
3558 -- Given a subexpression of a Postcondition expression
3559 -- (typically a 'Old attribute reference), returns True if
3560 -- - the expression is conditionally evaluated; and
3561 -- - its determining expressions are all known on entry; and
3562 -- - Ada_Version >= Ada_2022.
3563 -- See RM 6.1.1 for definitions of these terms.
3564 --
3565 -- Also returns True if Expr is of an anonymous access type;
3566 -- this is just because we want the code that knows how to build
3567 -- 'Old temps in that case to reside in only one place.
3568
3569 function Conditional_Evaluation_Condition
3570 (Expr : Node_Id) return Node_Id;
3571 -- Given an expression which is eligible for conditional evaluation,
3572 -- build a Boolean expression whose value indicates whether the
3573 -- expression should be evaluated.
3574 end Conditional_Evaluation;
3575
3576 package Indirect_Temps is
3577 generic
3578 with procedure Append_Item (N : Node_Id; Is_Eval_Stmt : Boolean);
3579 -- If Is_Eval_Stmt is True, then N is a statement that should
3580 -- only be executed in the case where the 'Old prefix is to be
3581 -- evaluated. If Is_Eval_Stmt is False, then N is a declaration
3582 -- which should be elaborated unconditionally.
3583 -- Client is responsible for ensuring that any appended
3584 -- Eval_Stmt nodes are eventually analyzed.
3585
3586 Append_Decls_In_Reverse_Order : Boolean := False;
3587 -- This parameter is for the convenience of exp_prag.adb, where we
3588 -- want to Prepend rather than Append so it is better to get the
3589 -- Append calls in reverse order.
3590
3591 procedure Declare_Indirect_Temp
3592 (Attr_Prefix : Node_Id; -- prefix of 'Old attribute (or similar?)
3593 Indirect_Temp : out Entity_Id);
3594 -- Indirect_Temp is of an access type; it is unconditionally
3595 -- declared but only conditionally initialized to reference the
3596 -- saved value of Attr_Prefix.
3597
3598 function Indirect_Temp_Needed (Typ : Entity_Id) return Boolean;
3599 -- Returns True for a specific tagged type because the temp must
3600 -- be of the class-wide type in order to preserve the underlying tag.
3601 --
3602 -- Also returns True in the case of an anonymous access type
3603 -- because we want the code that knows how to deal with
3604 -- this case to reside in only one place.
3605 --
3606 -- For an unconstrained-but-definite discriminated subtype, returns
3607 -- True if the potential difference in size between an
3608 -- unconstrained object and a constrained object is large.
3609 -- [This part is not implemented yet.]
3610 --
3611 -- Otherwise, returns False if a declaration of the form
3612 -- Temp : Typ;
3613 -- is legal and side-effect-free (assuming that default
3614 -- initialization is suppressed). For example, returns True if Typ is
3615 -- indefinite, or if Typ has a controlled part.
3616 --
3617
3618 function Indirect_Temp_Value
3619 (Temp : Entity_Id;
3620 Typ : Entity_Id;
3621 Loc : Source_Ptr) return Node_Id;
3622 -- Evaluate a temp declared by Declare_Indirect_Temp.
3623
3624 function Is_Access_Type_For_Indirect_Temp
3625 (T : Entity_Id) return Boolean;
3626 -- True for an access type that was declared via a call
3627 -- to Declare_Indirect_Temp.
3628 -- Indicates that the given access type should be treated
3629 -- the same with respect to finalization as a
3630 -- user-defined "comes from source" access type.
3631
3632 end Indirect_Temps;
3633 end Old_Attr_Util;
3634
3635 package Storage_Model_Support is
3636
3637 -- This package provides a set of utility functions related to support
3638 -- for the Storage_Model feature. These functions provide an interface
3639 -- that the compiler (in particular back-end phases such as gigi and
3640 -- GNAT-LLVM) can use to easily obtain entities and operations that
3641 -- are specified for types that have aspects Storage_Model_Type or
3642 -- Designated_Storage_Model.
3643
3644 function Has_Storage_Model_Type_Aspect (Typ : Entity_Id) return Boolean;
3645 -- Returns True iff Typ specifies aspect Storage_Model_Type
3646
3647 function Has_Designated_Storage_Model_Aspect
3648 (Typ : Entity_Id) return Boolean;
3649 -- Returns True iff Typ specifies aspect Designated_Storage_Model
3650
3651 function Storage_Model_Object (Typ : Entity_Id) return Entity_Id;
3652 -- Given an access type Typ with aspect Designated_Storage_Model,
3653 -- returns the storage-model object associated with that type.
3654 -- The object Entity_Ids returned by this function can be passed
3655 -- other functions declared in this interface to retrieve operations
3656 -- associated with Storage_Model_Type aspect of the object's type.
3657
3658 function Storage_Model_Type (Obj : Entity_Id) return Entity_Id;
3659 -- Given an object Obj of a type specifying aspect Storage_Model_Type,
3660 -- returns that type.
3661
3662 function Get_Storage_Model_Type_Entity
3663 (SM_Obj_Or_Type : Entity_Id;
3664 Nam : Name_Id) return Entity_Id;
3665 -- Given a type with aspect Storage_Model_Type or an object of such a
3666 -- type, and Nam denoting the name of one of the argument kinds allowed
3667 -- for that aspect, returns the Entity_Id corresponding to the entity
3668 -- associated with Nam in the aspect. If such an entity is not present,
3669 -- then returns Empty. (Note: This function is modeled on function
3670 -- Get_Iterable_Type_Primitive.)
3671
3672 function Storage_Model_Address_Type
3673 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3674 -- Given a type with aspect Storage_Model_Type or an object of such a
3675 -- type, returns the type specified for the Address_Type choice in that
3676 -- aspect; returns Empty if the type isn't specified.
3677
3678 function Storage_Model_Null_Address
3679 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3680 -- Given a type with aspect Storage_Model_Type or an object of such a
3681 -- type, returns the constant specified for the Null_Address choice in
3682 -- that aspect; returns Empty if the constant object isn't specified.
3683
3684 function Storage_Model_Allocate
3685 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3686 -- Given a type with aspect Storage_Model_Type or an object of such a
3687 -- type, returns the procedure specified for the Allocate choice in that
3688 -- aspect; returns Empty if the procedure isn't specified.
3689
3690 function Storage_Model_Deallocate
3691 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3692 -- Given a type with aspect Storage_Model_Type or an object of such a
3693 -- type, returns the procedure specified for the Deallocate choice in
3694 -- that aspect; returns Empty if the procedure isn't specified.
3695
3696 function Storage_Model_Copy_From
3697 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3698 -- Given a type with aspect Storage_Model_Type or an object of such a
3699 -- type, returns the procedure specified for the Copy_From choice in
3700 -- that aspect; returns Empty if the procedure isn't specified.
3701
3702 function Storage_Model_Copy_To
3703 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3704 -- Given a type with aspect Storage_Model_Type or an object of such a
3705 -- type, returns the procedure specified for the Copy_To choice in that
3706 -- aspect; returns Empty if the procedure isn't specified.
3707
3708 function Storage_Model_Storage_Size
3709 (SM_Obj_Or_Type : Entity_Id) return Entity_Id;
3710 -- Given a type with aspect Storage_Model_Type or an object of such a
3711 -- type, returns the function specified for the Storage_Size choice in
3712 -- that aspect; returns Empty if the procedure isn't specified.
3713
3714 end Storage_Model_Support;
3715
3716 end Sem_Util;
This page took 0.205412 seconds and 5 git commands to generate.