]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_util.adb
[multiple changes]
[gcc.git] / gcc / ada / sem_util.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Treepr; -- ???For debugging code below
27
28 with Aspects; use Aspects;
29 with Atree; use Atree;
30 with Casing; use Casing;
31 with Checks; use Checks;
32 with Debug; use Debug;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Ch11; use Exp_Ch11;
36 with Exp_Disp; use Exp_Disp;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Lib; use Lib;
42 with Lib.Xref; use Lib.Xref;
43 with Namet.Sp; use Namet.Sp;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Output; use Output;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Attr; use Sem_Attr;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Disp; use Sem_Disp;
57 with Sem_Eval; use Sem_Eval;
58 with Sem_Prag; use Sem_Prag;
59 with Sem_Res; use Sem_Res;
60 with Sem_Warn; use Sem_Warn;
61 with Sem_Type; use Sem_Type;
62 with Sinfo; use Sinfo;
63 with Sinput; use Sinput;
64 with Stand; use Stand;
65 with Style;
66 with Stringt; use Stringt;
67 with Targparm; use Targparm;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Uname; use Uname;
71
72 with GNAT.HTable; use GNAT.HTable;
73
74 package body Sem_Util is
75
76 ----------------------------------------
77 -- Global Variables for New_Copy_Tree --
78 ----------------------------------------
79
80 -- These global variables are used by New_Copy_Tree. See description of the
81 -- body of this subprogram for details. Global variables can be safely used
82 -- by New_Copy_Tree, since there is no case of a recursive call from the
83 -- processing inside New_Copy_Tree.
84
85 NCT_Hash_Threshold : constant := 20;
86 -- If there are more than this number of pairs of entries in the map, then
87 -- Hash_Tables_Used will be set, and the hash tables will be initialized
88 -- and used for the searches.
89
90 NCT_Hash_Tables_Used : Boolean := False;
91 -- Set to True if hash tables are in use
92
93 NCT_Table_Entries : Nat := 0;
94 -- Count entries in table to see if threshold is reached
95
96 NCT_Hash_Table_Setup : Boolean := False;
97 -- Set to True if hash table contains data. We set this True if we setup
98 -- the hash table with data, and leave it set permanently from then on,
99 -- this is a signal that second and subsequent users of the hash table
100 -- must clear the old entries before reuse.
101
102 subtype NCT_Header_Num is Int range 0 .. 511;
103 -- Defines range of headers in hash tables (512 headers)
104
105 -----------------------
106 -- Local Subprograms --
107 -----------------------
108
109 function Build_Component_Subtype
110 (C : List_Id;
111 Loc : Source_Ptr;
112 T : Entity_Id) return Node_Id;
113 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
114 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
115 -- Loc is the source location, T is the original subtype.
116
117 function Has_Enabled_Property
118 (Item_Id : Entity_Id;
119 Property : Name_Id) return Boolean;
120 -- Subsidiary to routines Async_xxx_Enabled and Effective_xxx_Enabled.
121 -- Determine whether an abstract state or a variable denoted by entity
122 -- Item_Id has enabled property Property.
123
124 function Has_Null_Extension (T : Entity_Id) return Boolean;
125 -- T is a derived tagged type. Check whether the type extension is null.
126 -- If the parent type is fully initialized, T can be treated as such.
127
128 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
129 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
130 -- with discriminants whose default values are static, examine only the
131 -- components in the selected variant to determine whether all of them
132 -- have a default.
133
134 ------------------------------
135 -- Abstract_Interface_List --
136 ------------------------------
137
138 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
139 Nod : Node_Id;
140
141 begin
142 if Is_Concurrent_Type (Typ) then
143
144 -- If we are dealing with a synchronized subtype, go to the base
145 -- type, whose declaration has the interface list.
146
147 -- Shouldn't this be Declaration_Node???
148
149 Nod := Parent (Base_Type (Typ));
150
151 if Nkind (Nod) = N_Full_Type_Declaration then
152 return Empty_List;
153 end if;
154
155 elsif Ekind (Typ) = E_Record_Type_With_Private then
156 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
157 Nod := Type_Definition (Parent (Typ));
158
159 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
160 if Present (Full_View (Typ))
161 and then
162 Nkind (Parent (Full_View (Typ))) = N_Full_Type_Declaration
163 then
164 Nod := Type_Definition (Parent (Full_View (Typ)));
165
166 -- If the full-view is not available we cannot do anything else
167 -- here (the source has errors).
168
169 else
170 return Empty_List;
171 end if;
172
173 -- Support for generic formals with interfaces is still missing ???
174
175 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
176 return Empty_List;
177
178 else
179 pragma Assert
180 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
181 Nod := Parent (Typ);
182 end if;
183
184 elsif Ekind (Typ) = E_Record_Subtype then
185 Nod := Type_Definition (Parent (Etype (Typ)));
186
187 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
188
189 -- Recurse, because parent may still be a private extension. Also
190 -- note that the full view of the subtype or the full view of its
191 -- base type may (both) be unavailable.
192
193 return Abstract_Interface_List (Etype (Typ));
194
195 else pragma Assert ((Ekind (Typ)) = E_Record_Type);
196 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
197 Nod := Formal_Type_Definition (Parent (Typ));
198 else
199 Nod := Type_Definition (Parent (Typ));
200 end if;
201 end if;
202
203 return Interface_List (Nod);
204 end Abstract_Interface_List;
205
206 --------------------------------
207 -- Add_Access_Type_To_Process --
208 --------------------------------
209
210 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
211 L : Elist_Id;
212
213 begin
214 Ensure_Freeze_Node (E);
215 L := Access_Types_To_Process (Freeze_Node (E));
216
217 if No (L) then
218 L := New_Elmt_List;
219 Set_Access_Types_To_Process (Freeze_Node (E), L);
220 end if;
221
222 Append_Elmt (A, L);
223 end Add_Access_Type_To_Process;
224
225 --------------------------
226 -- Add_Block_Identifier --
227 --------------------------
228
229 procedure Add_Block_Identifier (N : Node_Id; Id : out Entity_Id) is
230 Loc : constant Source_Ptr := Sloc (N);
231
232 begin
233 pragma Assert (Nkind (N) = N_Block_Statement);
234
235 -- The block already has a label, return its entity
236
237 if Present (Identifier (N)) then
238 Id := Entity (Identifier (N));
239
240 -- Create a new block label and set its attributes
241
242 else
243 Id := New_Internal_Entity (E_Block, Current_Scope, Loc, 'B');
244 Set_Etype (Id, Standard_Void_Type);
245 Set_Parent (Id, N);
246
247 Set_Identifier (N, New_Occurrence_Of (Id, Loc));
248 Set_Block_Node (Id, Identifier (N));
249 end if;
250 end Add_Block_Identifier;
251
252 ----------------------------
253 -- Add_Global_Declaration --
254 ----------------------------
255
256 procedure Add_Global_Declaration (N : Node_Id) is
257 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
258
259 begin
260 if No (Declarations (Aux_Node)) then
261 Set_Declarations (Aux_Node, New_List);
262 end if;
263
264 Append_To (Declarations (Aux_Node), N);
265 Analyze (N);
266 end Add_Global_Declaration;
267
268 --------------------------------
269 -- Address_Integer_Convert_OK --
270 --------------------------------
271
272 function Address_Integer_Convert_OK (T1, T2 : Entity_Id) return Boolean is
273 begin
274 if Allow_Integer_Address
275 and then ((Is_Descendent_Of_Address (T1)
276 and then Is_Private_Type (T1)
277 and then Is_Integer_Type (T2))
278 or else
279 (Is_Descendent_Of_Address (T2)
280 and then Is_Private_Type (T2)
281 and then Is_Integer_Type (T1)))
282 then
283 return True;
284 else
285 return False;
286 end if;
287 end Address_Integer_Convert_OK;
288
289 -----------------
290 -- Addressable --
291 -----------------
292
293 -- For now, just 8/16/32/64. but analyze later if AAMP is special???
294
295 function Addressable (V : Uint) return Boolean is
296 begin
297 return V = Uint_8 or else
298 V = Uint_16 or else
299 V = Uint_32 or else
300 V = Uint_64;
301 end Addressable;
302
303 function Addressable (V : Int) return Boolean is
304 begin
305 return V = 8 or else
306 V = 16 or else
307 V = 32 or else
308 V = 64;
309 end Addressable;
310
311 ---------------------------------
312 -- Aggregate_Constraint_Checks --
313 ---------------------------------
314
315 procedure Aggregate_Constraint_Checks
316 (Exp : Node_Id;
317 Check_Typ : Entity_Id)
318 is
319 Exp_Typ : constant Entity_Id := Etype (Exp);
320
321 begin
322 if Raises_Constraint_Error (Exp) then
323 return;
324 end if;
325
326 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
327 -- component's type to force the appropriate accessibility checks.
328
329 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
330 -- type to force the corresponding run-time check
331
332 if Is_Access_Type (Check_Typ)
333 and then ((Is_Local_Anonymous_Access (Check_Typ))
334 or else (Can_Never_Be_Null (Check_Typ)
335 and then not Can_Never_Be_Null (Exp_Typ)))
336 then
337 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
338 Analyze_And_Resolve (Exp, Check_Typ);
339 Check_Unset_Reference (Exp);
340 end if;
341
342 -- This is really expansion activity, so make sure that expansion is
343 -- on and is allowed. In GNATprove mode, we also want check flags to
344 -- be added in the tree, so that the formal verification can rely on
345 -- those to be present. In GNATprove mode for formal verification, some
346 -- treatment typically only done during expansion needs to be performed
347 -- on the tree, but it should not be applied inside generics. Otherwise,
348 -- this breaks the name resolution mechanism for generic instances.
349
350 if not Expander_Active
351 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
352 then
353 return;
354 end if;
355
356 -- First check if we have to insert discriminant checks
357
358 if Has_Discriminants (Exp_Typ) then
359 Apply_Discriminant_Check (Exp, Check_Typ);
360
361 -- Next emit length checks for array aggregates
362
363 elsif Is_Array_Type (Exp_Typ) then
364 Apply_Length_Check (Exp, Check_Typ);
365
366 -- Finally emit scalar and string checks. If we are dealing with a
367 -- scalar literal we need to check by hand because the Etype of
368 -- literals is not necessarily correct.
369
370 elsif Is_Scalar_Type (Exp_Typ)
371 and then Compile_Time_Known_Value (Exp)
372 then
373 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
374 Apply_Compile_Time_Constraint_Error
375 (Exp, "value not in range of}??", CE_Range_Check_Failed,
376 Ent => Base_Type (Check_Typ),
377 Typ => Base_Type (Check_Typ));
378
379 elsif Is_Out_Of_Range (Exp, Check_Typ) then
380 Apply_Compile_Time_Constraint_Error
381 (Exp, "value not in range of}??", CE_Range_Check_Failed,
382 Ent => Check_Typ,
383 Typ => Check_Typ);
384
385 elsif not Range_Checks_Suppressed (Check_Typ) then
386 Apply_Scalar_Range_Check (Exp, Check_Typ);
387 end if;
388
389 -- Verify that target type is also scalar, to prevent view anomalies
390 -- in instantiations.
391
392 elsif (Is_Scalar_Type (Exp_Typ)
393 or else Nkind (Exp) = N_String_Literal)
394 and then Is_Scalar_Type (Check_Typ)
395 and then Exp_Typ /= Check_Typ
396 then
397 if Is_Entity_Name (Exp)
398 and then Ekind (Entity (Exp)) = E_Constant
399 then
400 -- If expression is a constant, it is worthwhile checking whether
401 -- it is a bound of the type.
402
403 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
404 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
405 or else
406 (Is_Entity_Name (Type_High_Bound (Check_Typ))
407 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
408 then
409 return;
410
411 else
412 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
413 Analyze_And_Resolve (Exp, Check_Typ);
414 Check_Unset_Reference (Exp);
415 end if;
416
417 -- Could use a comment on this case ???
418
419 else
420 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
421 Analyze_And_Resolve (Exp, Check_Typ);
422 Check_Unset_Reference (Exp);
423 end if;
424
425 end if;
426 end Aggregate_Constraint_Checks;
427
428 -----------------------
429 -- Alignment_In_Bits --
430 -----------------------
431
432 function Alignment_In_Bits (E : Entity_Id) return Uint is
433 begin
434 return Alignment (E) * System_Storage_Unit;
435 end Alignment_In_Bits;
436
437 --------------------------------------
438 -- All_Composite_Constraints_Static --
439 --------------------------------------
440
441 function All_Composite_Constraints_Static
442 (Constr : Node_Id) return Boolean
443 is
444 begin
445 if No (Constr) or else Error_Posted (Constr) then
446 return True;
447 end if;
448
449 case Nkind (Constr) is
450 when N_Subexpr =>
451 if Nkind (Constr) in N_Has_Entity
452 and then Present (Entity (Constr))
453 then
454 if Is_Type (Entity (Constr)) then
455 return
456 not Is_Discrete_Type (Entity (Constr))
457 or else Is_OK_Static_Subtype (Entity (Constr));
458 end if;
459
460 elsif Nkind (Constr) = N_Range then
461 return
462 Is_OK_Static_Expression (Low_Bound (Constr))
463 and then
464 Is_OK_Static_Expression (High_Bound (Constr));
465
466 elsif Nkind (Constr) = N_Attribute_Reference
467 and then Attribute_Name (Constr) = Name_Range
468 then
469 return
470 Is_OK_Static_Expression
471 (Type_Low_Bound (Etype (Prefix (Constr))))
472 and then
473 Is_OK_Static_Expression
474 (Type_High_Bound (Etype (Prefix (Constr))));
475 end if;
476
477 return
478 not Present (Etype (Constr)) -- previous error
479 or else not Is_Discrete_Type (Etype (Constr))
480 or else Is_OK_Static_Expression (Constr);
481
482 when N_Discriminant_Association =>
483 return All_Composite_Constraints_Static (Expression (Constr));
484
485 when N_Range_Constraint =>
486 return
487 All_Composite_Constraints_Static (Range_Expression (Constr));
488
489 when N_Index_Or_Discriminant_Constraint =>
490 declare
491 One_Cstr : Entity_Id;
492 begin
493 One_Cstr := First (Constraints (Constr));
494 while Present (One_Cstr) loop
495 if not All_Composite_Constraints_Static (One_Cstr) then
496 return False;
497 end if;
498
499 Next (One_Cstr);
500 end loop;
501 end;
502
503 return True;
504
505 when N_Subtype_Indication =>
506 return
507 All_Composite_Constraints_Static (Subtype_Mark (Constr))
508 and then
509 All_Composite_Constraints_Static (Constraint (Constr));
510
511 when others =>
512 raise Program_Error;
513 end case;
514 end All_Composite_Constraints_Static;
515
516 ---------------------------------
517 -- Append_Inherited_Subprogram --
518 ---------------------------------
519
520 procedure Append_Inherited_Subprogram (S : Entity_Id) is
521 Par : constant Entity_Id := Alias (S);
522 -- The parent subprogram
523
524 Scop : constant Entity_Id := Scope (Par);
525 -- The scope of definition of the parent subprogram
526
527 Typ : constant Entity_Id := Defining_Entity (Parent (S));
528 -- The derived type of which S is a primitive operation
529
530 Decl : Node_Id;
531 Next_E : Entity_Id;
532
533 begin
534 if Ekind (Current_Scope) = E_Package
535 and then In_Private_Part (Current_Scope)
536 and then Has_Private_Declaration (Typ)
537 and then Is_Tagged_Type (Typ)
538 and then Scop = Current_Scope
539 then
540 -- The inherited operation is available at the earliest place after
541 -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
542 -- relevant for type extensions. If the parent operation appears
543 -- after the type extension, the operation is not visible.
544
545 Decl := First
546 (Visible_Declarations
547 (Package_Specification (Current_Scope)));
548 while Present (Decl) loop
549 if Nkind (Decl) = N_Private_Extension_Declaration
550 and then Defining_Entity (Decl) = Typ
551 then
552 if Sloc (Decl) > Sloc (Par) then
553 Next_E := Next_Entity (Par);
554 Set_Next_Entity (Par, S);
555 Set_Next_Entity (S, Next_E);
556 return;
557
558 else
559 exit;
560 end if;
561 end if;
562
563 Next (Decl);
564 end loop;
565 end if;
566
567 -- If partial view is not a type extension, or it appears before the
568 -- subprogram declaration, insert normally at end of entity list.
569
570 Append_Entity (S, Current_Scope);
571 end Append_Inherited_Subprogram;
572
573 -----------------------------------------
574 -- Apply_Compile_Time_Constraint_Error --
575 -----------------------------------------
576
577 procedure Apply_Compile_Time_Constraint_Error
578 (N : Node_Id;
579 Msg : String;
580 Reason : RT_Exception_Code;
581 Ent : Entity_Id := Empty;
582 Typ : Entity_Id := Empty;
583 Loc : Source_Ptr := No_Location;
584 Rep : Boolean := True;
585 Warn : Boolean := False)
586 is
587 Stat : constant Boolean := Is_Static_Expression (N);
588 R_Stat : constant Node_Id :=
589 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
590 Rtyp : Entity_Id;
591
592 begin
593 if No (Typ) then
594 Rtyp := Etype (N);
595 else
596 Rtyp := Typ;
597 end if;
598
599 Discard_Node
600 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
601
602 if not Rep then
603 return;
604 end if;
605
606 -- Now we replace the node by an N_Raise_Constraint_Error node
607 -- This does not need reanalyzing, so set it as analyzed now.
608
609 Rewrite (N, R_Stat);
610 Set_Analyzed (N, True);
611
612 Set_Etype (N, Rtyp);
613 Set_Raises_Constraint_Error (N);
614
615 -- Now deal with possible local raise handling
616
617 Possible_Local_Raise (N, Standard_Constraint_Error);
618
619 -- If the original expression was marked as static, the result is
620 -- still marked as static, but the Raises_Constraint_Error flag is
621 -- always set so that further static evaluation is not attempted.
622
623 if Stat then
624 Set_Is_Static_Expression (N);
625 end if;
626 end Apply_Compile_Time_Constraint_Error;
627
628 ---------------------------
629 -- Async_Readers_Enabled --
630 ---------------------------
631
632 function Async_Readers_Enabled (Id : Entity_Id) return Boolean is
633 begin
634 return Has_Enabled_Property (Id, Name_Async_Readers);
635 end Async_Readers_Enabled;
636
637 ---------------------------
638 -- Async_Writers_Enabled --
639 ---------------------------
640
641 function Async_Writers_Enabled (Id : Entity_Id) return Boolean is
642 begin
643 return Has_Enabled_Property (Id, Name_Async_Writers);
644 end Async_Writers_Enabled;
645
646 --------------------------------------
647 -- Available_Full_View_Of_Component --
648 --------------------------------------
649
650 function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
651 ST : constant Entity_Id := Scope (T);
652 SCT : constant Entity_Id := Scope (Component_Type (T));
653 begin
654 return In_Open_Scopes (ST)
655 and then In_Open_Scopes (SCT)
656 and then Scope_Depth (ST) >= Scope_Depth (SCT);
657 end Available_Full_View_Of_Component;
658
659 -------------------
660 -- Bad_Attribute --
661 -------------------
662
663 procedure Bad_Attribute
664 (N : Node_Id;
665 Nam : Name_Id;
666 Warn : Boolean := False)
667 is
668 begin
669 Error_Msg_Warn := Warn;
670 Error_Msg_N ("unrecognized attribute&<<", N);
671
672 -- Check for possible misspelling
673
674 Error_Msg_Name_1 := First_Attribute_Name;
675 while Error_Msg_Name_1 <= Last_Attribute_Name loop
676 if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
677 Error_Msg_N -- CODEFIX
678 ("\possible misspelling of %<<", N);
679 exit;
680 end if;
681
682 Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
683 end loop;
684 end Bad_Attribute;
685
686 --------------------------------
687 -- Bad_Predicated_Subtype_Use --
688 --------------------------------
689
690 procedure Bad_Predicated_Subtype_Use
691 (Msg : String;
692 N : Node_Id;
693 Typ : Entity_Id;
694 Suggest_Static : Boolean := False)
695 is
696 Gen : Entity_Id;
697
698 begin
699 -- Avoid cascaded errors
700
701 if Error_Posted (N) then
702 return;
703 end if;
704
705 if Inside_A_Generic then
706 Gen := Current_Scope;
707 while Present (Gen) and then Ekind (Gen) /= E_Generic_Package loop
708 Gen := Scope (Gen);
709 end loop;
710
711 if No (Gen) then
712 return;
713 end if;
714
715 if Is_Generic_Formal (Typ) and then Is_Discrete_Type (Typ) then
716 Set_No_Predicate_On_Actual (Typ);
717 end if;
718
719 elsif Has_Predicates (Typ) then
720 if Is_Generic_Actual_Type (Typ) then
721
722 -- The restriction on loop parameters is only that the type
723 -- should have no dynamic predicates.
724
725 if Nkind (Parent (N)) = N_Loop_Parameter_Specification
726 and then not Has_Dynamic_Predicate_Aspect (Typ)
727 and then Is_OK_Static_Subtype (Typ)
728 then
729 return;
730 end if;
731
732 Gen := Current_Scope;
733 while not Is_Generic_Instance (Gen) loop
734 Gen := Scope (Gen);
735 end loop;
736
737 pragma Assert (Present (Gen));
738
739 if Ekind (Gen) = E_Package and then In_Package_Body (Gen) then
740 Error_Msg_Warn := SPARK_Mode /= On;
741 Error_Msg_FE (Msg & "<<", N, Typ);
742 Error_Msg_F ("\Program_Error [<<", N);
743
744 Insert_Action (N,
745 Make_Raise_Program_Error (Sloc (N),
746 Reason => PE_Bad_Predicated_Generic_Type));
747
748 else
749 Error_Msg_FE (Msg & "<<", N, Typ);
750 end if;
751
752 else
753 Error_Msg_FE (Msg, N, Typ);
754 end if;
755
756 -- Emit an optional suggestion on how to remedy the error if the
757 -- context warrants it.
758
759 if Suggest_Static and then Has_Static_Predicate (Typ) then
760 Error_Msg_FE ("\predicate of & should be marked static", N, Typ);
761 end if;
762 end if;
763 end Bad_Predicated_Subtype_Use;
764
765 -----------------------------------------
766 -- Bad_Unordered_Enumeration_Reference --
767 -----------------------------------------
768
769 function Bad_Unordered_Enumeration_Reference
770 (N : Node_Id;
771 T : Entity_Id) return Boolean
772 is
773 begin
774 return Is_Enumeration_Type (T)
775 and then Warn_On_Unordered_Enumeration_Type
776 and then not Is_Generic_Type (T)
777 and then Comes_From_Source (N)
778 and then not Has_Pragma_Ordered (T)
779 and then not In_Same_Extended_Unit (N, T);
780 end Bad_Unordered_Enumeration_Reference;
781
782 --------------------------
783 -- Build_Actual_Subtype --
784 --------------------------
785
786 function Build_Actual_Subtype
787 (T : Entity_Id;
788 N : Node_Or_Entity_Id) return Node_Id
789 is
790 Loc : Source_Ptr;
791 -- Normally Sloc (N), but may point to corresponding body in some cases
792
793 Constraints : List_Id;
794 Decl : Node_Id;
795 Discr : Entity_Id;
796 Hi : Node_Id;
797 Lo : Node_Id;
798 Subt : Entity_Id;
799 Disc_Type : Entity_Id;
800 Obj : Node_Id;
801
802 begin
803 Loc := Sloc (N);
804
805 if Nkind (N) = N_Defining_Identifier then
806 Obj := New_Occurrence_Of (N, Loc);
807
808 -- If this is a formal parameter of a subprogram declaration, and
809 -- we are compiling the body, we want the declaration for the
810 -- actual subtype to carry the source position of the body, to
811 -- prevent anomalies in gdb when stepping through the code.
812
813 if Is_Formal (N) then
814 declare
815 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
816 begin
817 if Nkind (Decl) = N_Subprogram_Declaration
818 and then Present (Corresponding_Body (Decl))
819 then
820 Loc := Sloc (Corresponding_Body (Decl));
821 end if;
822 end;
823 end if;
824
825 else
826 Obj := N;
827 end if;
828
829 if Is_Array_Type (T) then
830 Constraints := New_List;
831 for J in 1 .. Number_Dimensions (T) loop
832
833 -- Build an array subtype declaration with the nominal subtype and
834 -- the bounds of the actual. Add the declaration in front of the
835 -- local declarations for the subprogram, for analysis before any
836 -- reference to the formal in the body.
837
838 Lo :=
839 Make_Attribute_Reference (Loc,
840 Prefix =>
841 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
842 Attribute_Name => Name_First,
843 Expressions => New_List (
844 Make_Integer_Literal (Loc, J)));
845
846 Hi :=
847 Make_Attribute_Reference (Loc,
848 Prefix =>
849 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
850 Attribute_Name => Name_Last,
851 Expressions => New_List (
852 Make_Integer_Literal (Loc, J)));
853
854 Append (Make_Range (Loc, Lo, Hi), Constraints);
855 end loop;
856
857 -- If the type has unknown discriminants there is no constrained
858 -- subtype to build. This is never called for a formal or for a
859 -- lhs, so returning the type is ok ???
860
861 elsif Has_Unknown_Discriminants (T) then
862 return T;
863
864 else
865 Constraints := New_List;
866
867 -- Type T is a generic derived type, inherit the discriminants from
868 -- the parent type.
869
870 if Is_Private_Type (T)
871 and then No (Full_View (T))
872
873 -- T was flagged as an error if it was declared as a formal
874 -- derived type with known discriminants. In this case there
875 -- is no need to look at the parent type since T already carries
876 -- its own discriminants.
877
878 and then not Error_Posted (T)
879 then
880 Disc_Type := Etype (Base_Type (T));
881 else
882 Disc_Type := T;
883 end if;
884
885 Discr := First_Discriminant (Disc_Type);
886 while Present (Discr) loop
887 Append_To (Constraints,
888 Make_Selected_Component (Loc,
889 Prefix =>
890 Duplicate_Subexpr_No_Checks (Obj),
891 Selector_Name => New_Occurrence_Of (Discr, Loc)));
892 Next_Discriminant (Discr);
893 end loop;
894 end if;
895
896 Subt := Make_Temporary (Loc, 'S', Related_Node => N);
897 Set_Is_Internal (Subt);
898
899 Decl :=
900 Make_Subtype_Declaration (Loc,
901 Defining_Identifier => Subt,
902 Subtype_Indication =>
903 Make_Subtype_Indication (Loc,
904 Subtype_Mark => New_Occurrence_Of (T, Loc),
905 Constraint =>
906 Make_Index_Or_Discriminant_Constraint (Loc,
907 Constraints => Constraints)));
908
909 Mark_Rewrite_Insertion (Decl);
910 return Decl;
911 end Build_Actual_Subtype;
912
913 ---------------------------------------
914 -- Build_Actual_Subtype_Of_Component --
915 ---------------------------------------
916
917 function Build_Actual_Subtype_Of_Component
918 (T : Entity_Id;
919 N : Node_Id) return Node_Id
920 is
921 Loc : constant Source_Ptr := Sloc (N);
922 P : constant Node_Id := Prefix (N);
923 D : Elmt_Id;
924 Id : Node_Id;
925 Index_Typ : Entity_Id;
926
927 Desig_Typ : Entity_Id;
928 -- This is either a copy of T, or if T is an access type, then it is
929 -- the directly designated type of this access type.
930
931 function Build_Actual_Array_Constraint return List_Id;
932 -- If one or more of the bounds of the component depends on
933 -- discriminants, build actual constraint using the discriminants
934 -- of the prefix.
935
936 function Build_Actual_Record_Constraint return List_Id;
937 -- Similar to previous one, for discriminated components constrained
938 -- by the discriminant of the enclosing object.
939
940 -----------------------------------
941 -- Build_Actual_Array_Constraint --
942 -----------------------------------
943
944 function Build_Actual_Array_Constraint return List_Id is
945 Constraints : constant List_Id := New_List;
946 Indx : Node_Id;
947 Hi : Node_Id;
948 Lo : Node_Id;
949 Old_Hi : Node_Id;
950 Old_Lo : Node_Id;
951
952 begin
953 Indx := First_Index (Desig_Typ);
954 while Present (Indx) loop
955 Old_Lo := Type_Low_Bound (Etype (Indx));
956 Old_Hi := Type_High_Bound (Etype (Indx));
957
958 if Denotes_Discriminant (Old_Lo) then
959 Lo :=
960 Make_Selected_Component (Loc,
961 Prefix => New_Copy_Tree (P),
962 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
963
964 else
965 Lo := New_Copy_Tree (Old_Lo);
966
967 -- The new bound will be reanalyzed in the enclosing
968 -- declaration. For literal bounds that come from a type
969 -- declaration, the type of the context must be imposed, so
970 -- insure that analysis will take place. For non-universal
971 -- types this is not strictly necessary.
972
973 Set_Analyzed (Lo, False);
974 end if;
975
976 if Denotes_Discriminant (Old_Hi) then
977 Hi :=
978 Make_Selected_Component (Loc,
979 Prefix => New_Copy_Tree (P),
980 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
981
982 else
983 Hi := New_Copy_Tree (Old_Hi);
984 Set_Analyzed (Hi, False);
985 end if;
986
987 Append (Make_Range (Loc, Lo, Hi), Constraints);
988 Next_Index (Indx);
989 end loop;
990
991 return Constraints;
992 end Build_Actual_Array_Constraint;
993
994 ------------------------------------
995 -- Build_Actual_Record_Constraint --
996 ------------------------------------
997
998 function Build_Actual_Record_Constraint return List_Id is
999 Constraints : constant List_Id := New_List;
1000 D : Elmt_Id;
1001 D_Val : Node_Id;
1002
1003 begin
1004 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1005 while Present (D) loop
1006 if Denotes_Discriminant (Node (D)) then
1007 D_Val := Make_Selected_Component (Loc,
1008 Prefix => New_Copy_Tree (P),
1009 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
1010
1011 else
1012 D_Val := New_Copy_Tree (Node (D));
1013 end if;
1014
1015 Append (D_Val, Constraints);
1016 Next_Elmt (D);
1017 end loop;
1018
1019 return Constraints;
1020 end Build_Actual_Record_Constraint;
1021
1022 -- Start of processing for Build_Actual_Subtype_Of_Component
1023
1024 begin
1025 -- Why the test for Spec_Expression mode here???
1026
1027 if In_Spec_Expression then
1028 return Empty;
1029
1030 -- More comments for the rest of this body would be good ???
1031
1032 elsif Nkind (N) = N_Explicit_Dereference then
1033 if Is_Composite_Type (T)
1034 and then not Is_Constrained (T)
1035 and then not (Is_Class_Wide_Type (T)
1036 and then Is_Constrained (Root_Type (T)))
1037 and then not Has_Unknown_Discriminants (T)
1038 then
1039 -- If the type of the dereference is already constrained, it is an
1040 -- actual subtype.
1041
1042 if Is_Array_Type (Etype (N))
1043 and then Is_Constrained (Etype (N))
1044 then
1045 return Empty;
1046 else
1047 Remove_Side_Effects (P);
1048 return Build_Actual_Subtype (T, N);
1049 end if;
1050 else
1051 return Empty;
1052 end if;
1053 end if;
1054
1055 if Ekind (T) = E_Access_Subtype then
1056 Desig_Typ := Designated_Type (T);
1057 else
1058 Desig_Typ := T;
1059 end if;
1060
1061 if Ekind (Desig_Typ) = E_Array_Subtype then
1062 Id := First_Index (Desig_Typ);
1063 while Present (Id) loop
1064 Index_Typ := Underlying_Type (Etype (Id));
1065
1066 if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
1067 or else
1068 Denotes_Discriminant (Type_High_Bound (Index_Typ))
1069 then
1070 Remove_Side_Effects (P);
1071 return
1072 Build_Component_Subtype
1073 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
1074 end if;
1075
1076 Next_Index (Id);
1077 end loop;
1078
1079 elsif Is_Composite_Type (Desig_Typ)
1080 and then Has_Discriminants (Desig_Typ)
1081 and then not Has_Unknown_Discriminants (Desig_Typ)
1082 then
1083 if Is_Private_Type (Desig_Typ)
1084 and then No (Discriminant_Constraint (Desig_Typ))
1085 then
1086 Desig_Typ := Full_View (Desig_Typ);
1087 end if;
1088
1089 D := First_Elmt (Discriminant_Constraint (Desig_Typ));
1090 while Present (D) loop
1091 if Denotes_Discriminant (Node (D)) then
1092 Remove_Side_Effects (P);
1093 return
1094 Build_Component_Subtype (
1095 Build_Actual_Record_Constraint, Loc, Base_Type (T));
1096 end if;
1097
1098 Next_Elmt (D);
1099 end loop;
1100 end if;
1101
1102 -- If none of the above, the actual and nominal subtypes are the same
1103
1104 return Empty;
1105 end Build_Actual_Subtype_Of_Component;
1106
1107 -----------------------------
1108 -- Build_Component_Subtype --
1109 -----------------------------
1110
1111 function Build_Component_Subtype
1112 (C : List_Id;
1113 Loc : Source_Ptr;
1114 T : Entity_Id) return Node_Id
1115 is
1116 Subt : Entity_Id;
1117 Decl : Node_Id;
1118
1119 begin
1120 -- Unchecked_Union components do not require component subtypes
1121
1122 if Is_Unchecked_Union (T) then
1123 return Empty;
1124 end if;
1125
1126 Subt := Make_Temporary (Loc, 'S');
1127 Set_Is_Internal (Subt);
1128
1129 Decl :=
1130 Make_Subtype_Declaration (Loc,
1131 Defining_Identifier => Subt,
1132 Subtype_Indication =>
1133 Make_Subtype_Indication (Loc,
1134 Subtype_Mark => New_Occurrence_Of (Base_Type (T), Loc),
1135 Constraint =>
1136 Make_Index_Or_Discriminant_Constraint (Loc,
1137 Constraints => C)));
1138
1139 Mark_Rewrite_Insertion (Decl);
1140 return Decl;
1141 end Build_Component_Subtype;
1142
1143 ----------------------------------
1144 -- Build_Default_Init_Cond_Call --
1145 ----------------------------------
1146
1147 function Build_Default_Init_Cond_Call
1148 (Loc : Source_Ptr;
1149 Obj_Id : Entity_Id;
1150 Typ : Entity_Id) return Node_Id
1151 is
1152 Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
1153 Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
1154
1155 begin
1156 return
1157 Make_Procedure_Call_Statement (Loc,
1158 Name => New_Occurrence_Of (Proc_Id, Loc),
1159 Parameter_Associations => New_List (
1160 Make_Unchecked_Type_Conversion (Loc,
1161 Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc),
1162 Expression => New_Occurrence_Of (Obj_Id, Loc))));
1163 end Build_Default_Init_Cond_Call;
1164
1165 ----------------------------------------------
1166 -- Build_Default_Init_Cond_Procedure_Bodies --
1167 ----------------------------------------------
1168
1169 procedure Build_Default_Init_Cond_Procedure_Bodies (Priv_Decls : List_Id) is
1170 procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id);
1171 -- If type Typ is subject to pragma Default_Initial_Condition, build the
1172 -- body of the procedure which verifies the assumption of the pragma at
1173 -- run time. The generated body is added after the type declaration.
1174
1175 --------------------------------------------
1176 -- Build_Default_Init_Cond_Procedure_Body --
1177 --------------------------------------------
1178
1179 procedure Build_Default_Init_Cond_Procedure_Body (Typ : Entity_Id) is
1180 Param_Id : Entity_Id;
1181 -- The entity of the sole formal parameter of the default initial
1182 -- condition procedure.
1183
1184 procedure Replace_Type_Reference (N : Node_Id);
1185 -- Replace a single reference to type Typ with a reference to formal
1186 -- parameter Param_Id.
1187
1188 ----------------------------
1189 -- Replace_Type_Reference --
1190 ----------------------------
1191
1192 procedure Replace_Type_Reference (N : Node_Id) is
1193 begin
1194 Rewrite (N, New_Occurrence_Of (Param_Id, Sloc (N)));
1195 end Replace_Type_Reference;
1196
1197 procedure Replace_Type_References is
1198 new Replace_Type_References_Generic (Replace_Type_Reference);
1199
1200 -- Local variables
1201
1202 Loc : constant Source_Ptr := Sloc (Typ);
1203 Prag : constant Node_Id :=
1204 Get_Pragma (Typ, Pragma_Default_Initial_Condition);
1205 Proc_Id : constant Entity_Id := Default_Init_Cond_Procedure (Typ);
1206 Spec_Decl : constant Node_Id := Unit_Declaration_Node (Proc_Id);
1207 Body_Decl : Node_Id;
1208 Expr : Node_Id;
1209 Stmt : Node_Id;
1210
1211 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1212
1213 -- Start of processing for Build_Default_Init_Cond_Procedure_Body
1214
1215 begin
1216 -- The procedure should be generated only for [sub]types subject to
1217 -- pragma Default_Initial_Condition. Types that inherit the pragma do
1218 -- not get this specialized procedure.
1219
1220 pragma Assert (Has_Default_Init_Cond (Typ));
1221 pragma Assert (Present (Prag));
1222 pragma Assert (Present (Proc_Id));
1223
1224 -- Nothing to do if the body was already built
1225
1226 if Present (Corresponding_Body (Spec_Decl)) then
1227 return;
1228 end if;
1229
1230 -- The related type may be subject to pragma Ghost. Set the mode now
1231 -- to ensure that the analysis and expansion produce Ghost nodes.
1232
1233 Set_Ghost_Mode_From_Entity (Typ);
1234
1235 Param_Id := First_Formal (Proc_Id);
1236
1237 -- The pragma has an argument. Note that the argument is analyzed
1238 -- after all references to the current instance of the type are
1239 -- replaced.
1240
1241 if Present (Pragma_Argument_Associations (Prag)) then
1242 Expr :=
1243 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
1244
1245 if Nkind (Expr) = N_Null then
1246 Stmt := Make_Null_Statement (Loc);
1247
1248 -- Preserve the original argument of the pragma by replicating it.
1249 -- Replace all references to the current instance of the type with
1250 -- references to the formal parameter.
1251
1252 else
1253 Expr := New_Copy_Tree (Expr);
1254 Replace_Type_References (Expr, Typ);
1255
1256 -- Generate:
1257 -- pragma Check (Default_Initial_Condition, <Expr>);
1258
1259 Stmt :=
1260 Make_Pragma (Loc,
1261 Pragma_Identifier =>
1262 Make_Identifier (Loc, Name_Check),
1263
1264 Pragma_Argument_Associations => New_List (
1265 Make_Pragma_Argument_Association (Loc,
1266 Expression =>
1267 Make_Identifier (Loc,
1268 Chars => Name_Default_Initial_Condition)),
1269 Make_Pragma_Argument_Association (Loc,
1270 Expression => Expr)));
1271 end if;
1272
1273 -- Otherwise the pragma appears without an argument
1274
1275 else
1276 Stmt := Make_Null_Statement (Loc);
1277 end if;
1278
1279 -- Generate:
1280 -- procedure <Typ>Default_Init_Cond (I : <Typ>) is
1281 -- begin
1282 -- <Stmt>;
1283 -- end <Typ>Default_Init_Cond;
1284
1285 Body_Decl :=
1286 Make_Subprogram_Body (Loc,
1287 Specification =>
1288 Copy_Separate_Tree (Specification (Spec_Decl)),
1289 Declarations => Empty_List,
1290 Handled_Statement_Sequence =>
1291 Make_Handled_Sequence_Of_Statements (Loc,
1292 Statements => New_List (Stmt)));
1293
1294 -- Link the spec and body of the default initial condition procedure
1295 -- to prevent the generation of a duplicate body.
1296
1297 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
1298 Set_Corresponding_Spec (Body_Decl, Proc_Id);
1299
1300 Insert_After_And_Analyze (Declaration_Node (Typ), Body_Decl);
1301 Ghost_Mode := Save_Ghost_Mode;
1302 end Build_Default_Init_Cond_Procedure_Body;
1303
1304 -- Local variables
1305
1306 Decl : Node_Id;
1307 Typ : Entity_Id;
1308
1309 -- Start of processing for Build_Default_Init_Cond_Procedure_Bodies
1310
1311 begin
1312 -- Inspect the private declarations looking for [sub]type declarations
1313
1314 Decl := First (Priv_Decls);
1315 while Present (Decl) loop
1316 if Nkind_In (Decl, N_Full_Type_Declaration,
1317 N_Subtype_Declaration)
1318 then
1319 Typ := Defining_Entity (Decl);
1320
1321 -- Guard against partially decorate types due to previous errors
1322
1323 if Is_Type (Typ) then
1324
1325 -- If the type is subject to pragma Default_Initial_Condition,
1326 -- generate the body of the internal procedure which verifies
1327 -- the assertion of the pragma at run time.
1328
1329 if Has_Default_Init_Cond (Typ) then
1330 Build_Default_Init_Cond_Procedure_Body (Typ);
1331
1332 -- A derived type inherits the default initial condition
1333 -- procedure from its parent type.
1334
1335 elsif Has_Inherited_Default_Init_Cond (Typ) then
1336 Inherit_Default_Init_Cond_Procedure (Typ);
1337 end if;
1338 end if;
1339 end if;
1340
1341 Next (Decl);
1342 end loop;
1343 end Build_Default_Init_Cond_Procedure_Bodies;
1344
1345 ---------------------------------------------------
1346 -- Build_Default_Init_Cond_Procedure_Declaration --
1347 ---------------------------------------------------
1348
1349 procedure Build_Default_Init_Cond_Procedure_Declaration (Typ : Entity_Id) is
1350 Loc : constant Source_Ptr := Sloc (Typ);
1351 Prag : constant Node_Id :=
1352 Get_Pragma (Typ, Pragma_Default_Initial_Condition);
1353
1354 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
1355
1356 Proc_Id : Entity_Id;
1357
1358 begin
1359 -- The procedure should be generated only for types subject to pragma
1360 -- Default_Initial_Condition. Types that inherit the pragma do not get
1361 -- this specialized procedure.
1362
1363 pragma Assert (Has_Default_Init_Cond (Typ));
1364 pragma Assert (Present (Prag));
1365
1366 -- Nothing to do if default initial condition procedure already built
1367
1368 if Present (Default_Init_Cond_Procedure (Typ)) then
1369 return;
1370 end if;
1371
1372 -- The related type may be subject to pragma Ghost. Set the mode now to
1373 -- ensure that the analysis and expansion produce Ghost nodes.
1374
1375 Set_Ghost_Mode_From_Entity (Typ);
1376
1377 Proc_Id :=
1378 Make_Defining_Identifier (Loc,
1379 Chars => New_External_Name (Chars (Typ), "Default_Init_Cond"));
1380
1381 -- Associate default initial condition procedure with the private type
1382
1383 Set_Ekind (Proc_Id, E_Procedure);
1384 Set_Is_Default_Init_Cond_Procedure (Proc_Id);
1385 Set_Default_Init_Cond_Procedure (Typ, Proc_Id);
1386
1387 -- Mark the default initial condition procedure explicitly as Ghost
1388 -- because it does not come from source.
1389
1390 if Ghost_Mode > None then
1391 Set_Is_Ghost_Entity (Proc_Id);
1392 end if;
1393
1394 -- Generate:
1395 -- procedure <Typ>Default_Init_Cond (Inn : <Typ>);
1396
1397 Insert_After_And_Analyze (Prag,
1398 Make_Subprogram_Declaration (Loc,
1399 Specification =>
1400 Make_Procedure_Specification (Loc,
1401 Defining_Unit_Name => Proc_Id,
1402 Parameter_Specifications => New_List (
1403 Make_Parameter_Specification (Loc,
1404 Defining_Identifier => Make_Temporary (Loc, 'I'),
1405 Parameter_Type => New_Occurrence_Of (Typ, Loc))))));
1406
1407 Ghost_Mode := Save_Ghost_Mode;
1408 end Build_Default_Init_Cond_Procedure_Declaration;
1409
1410 ---------------------------
1411 -- Build_Default_Subtype --
1412 ---------------------------
1413
1414 function Build_Default_Subtype
1415 (T : Entity_Id;
1416 N : Node_Id) return Entity_Id
1417 is
1418 Loc : constant Source_Ptr := Sloc (N);
1419 Disc : Entity_Id;
1420
1421 Bas : Entity_Id;
1422 -- The base type that is to be constrained by the defaults
1423
1424 begin
1425 if not Has_Discriminants (T) or else Is_Constrained (T) then
1426 return T;
1427 end if;
1428
1429 Bas := Base_Type (T);
1430
1431 -- If T is non-private but its base type is private, this is the
1432 -- completion of a subtype declaration whose parent type is private
1433 -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
1434 -- are to be found in the full view of the base. Check that the private
1435 -- status of T and its base differ.
1436
1437 if Is_Private_Type (Bas)
1438 and then not Is_Private_Type (T)
1439 and then Present (Full_View (Bas))
1440 then
1441 Bas := Full_View (Bas);
1442 end if;
1443
1444 Disc := First_Discriminant (T);
1445
1446 if No (Discriminant_Default_Value (Disc)) then
1447 return T;
1448 end if;
1449
1450 declare
1451 Act : constant Entity_Id := Make_Temporary (Loc, 'S');
1452 Constraints : constant List_Id := New_List;
1453 Decl : Node_Id;
1454
1455 begin
1456 while Present (Disc) loop
1457 Append_To (Constraints,
1458 New_Copy_Tree (Discriminant_Default_Value (Disc)));
1459 Next_Discriminant (Disc);
1460 end loop;
1461
1462 Decl :=
1463 Make_Subtype_Declaration (Loc,
1464 Defining_Identifier => Act,
1465 Subtype_Indication =>
1466 Make_Subtype_Indication (Loc,
1467 Subtype_Mark => New_Occurrence_Of (Bas, Loc),
1468 Constraint =>
1469 Make_Index_Or_Discriminant_Constraint (Loc,
1470 Constraints => Constraints)));
1471
1472 Insert_Action (N, Decl);
1473
1474 -- If the context is a component declaration the subtype declaration
1475 -- will be analyzed when the enclosing type is frozen, otherwise do
1476 -- it now.
1477
1478 if Ekind (Current_Scope) /= E_Record_Type then
1479 Analyze (Decl);
1480 end if;
1481
1482 return Act;
1483 end;
1484 end Build_Default_Subtype;
1485
1486 --------------------------------------------
1487 -- Build_Discriminal_Subtype_Of_Component --
1488 --------------------------------------------
1489
1490 function Build_Discriminal_Subtype_Of_Component
1491 (T : Entity_Id) return Node_Id
1492 is
1493 Loc : constant Source_Ptr := Sloc (T);
1494 D : Elmt_Id;
1495 Id : Node_Id;
1496
1497 function Build_Discriminal_Array_Constraint return List_Id;
1498 -- If one or more of the bounds of the component depends on
1499 -- discriminants, build actual constraint using the discriminants
1500 -- of the prefix.
1501
1502 function Build_Discriminal_Record_Constraint return List_Id;
1503 -- Similar to previous one, for discriminated components constrained by
1504 -- the discriminant of the enclosing object.
1505
1506 ----------------------------------------
1507 -- Build_Discriminal_Array_Constraint --
1508 ----------------------------------------
1509
1510 function Build_Discriminal_Array_Constraint return List_Id is
1511 Constraints : constant List_Id := New_List;
1512 Indx : Node_Id;
1513 Hi : Node_Id;
1514 Lo : Node_Id;
1515 Old_Hi : Node_Id;
1516 Old_Lo : Node_Id;
1517
1518 begin
1519 Indx := First_Index (T);
1520 while Present (Indx) loop
1521 Old_Lo := Type_Low_Bound (Etype (Indx));
1522 Old_Hi := Type_High_Bound (Etype (Indx));
1523
1524 if Denotes_Discriminant (Old_Lo) then
1525 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
1526
1527 else
1528 Lo := New_Copy_Tree (Old_Lo);
1529 end if;
1530
1531 if Denotes_Discriminant (Old_Hi) then
1532 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
1533
1534 else
1535 Hi := New_Copy_Tree (Old_Hi);
1536 end if;
1537
1538 Append (Make_Range (Loc, Lo, Hi), Constraints);
1539 Next_Index (Indx);
1540 end loop;
1541
1542 return Constraints;
1543 end Build_Discriminal_Array_Constraint;
1544
1545 -----------------------------------------
1546 -- Build_Discriminal_Record_Constraint --
1547 -----------------------------------------
1548
1549 function Build_Discriminal_Record_Constraint return List_Id is
1550 Constraints : constant List_Id := New_List;
1551 D : Elmt_Id;
1552 D_Val : Node_Id;
1553
1554 begin
1555 D := First_Elmt (Discriminant_Constraint (T));
1556 while Present (D) loop
1557 if Denotes_Discriminant (Node (D)) then
1558 D_Val :=
1559 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
1560 else
1561 D_Val := New_Copy_Tree (Node (D));
1562 end if;
1563
1564 Append (D_Val, Constraints);
1565 Next_Elmt (D);
1566 end loop;
1567
1568 return Constraints;
1569 end Build_Discriminal_Record_Constraint;
1570
1571 -- Start of processing for Build_Discriminal_Subtype_Of_Component
1572
1573 begin
1574 if Ekind (T) = E_Array_Subtype then
1575 Id := First_Index (T);
1576 while Present (Id) loop
1577 if Denotes_Discriminant (Type_Low_Bound (Etype (Id)))
1578 or else
1579 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
1580 then
1581 return Build_Component_Subtype
1582 (Build_Discriminal_Array_Constraint, Loc, T);
1583 end if;
1584
1585 Next_Index (Id);
1586 end loop;
1587
1588 elsif Ekind (T) = E_Record_Subtype
1589 and then Has_Discriminants (T)
1590 and then not Has_Unknown_Discriminants (T)
1591 then
1592 D := First_Elmt (Discriminant_Constraint (T));
1593 while Present (D) loop
1594 if Denotes_Discriminant (Node (D)) then
1595 return Build_Component_Subtype
1596 (Build_Discriminal_Record_Constraint, Loc, T);
1597 end if;
1598
1599 Next_Elmt (D);
1600 end loop;
1601 end if;
1602
1603 -- If none of the above, the actual and nominal subtypes are the same
1604
1605 return Empty;
1606 end Build_Discriminal_Subtype_Of_Component;
1607
1608 ------------------------------
1609 -- Build_Elaboration_Entity --
1610 ------------------------------
1611
1612 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
1613 Loc : constant Source_Ptr := Sloc (N);
1614 Decl : Node_Id;
1615 Elab_Ent : Entity_Id;
1616
1617 procedure Set_Package_Name (Ent : Entity_Id);
1618 -- Given an entity, sets the fully qualified name of the entity in
1619 -- Name_Buffer, with components separated by double underscores. This
1620 -- is a recursive routine that climbs the scope chain to Standard.
1621
1622 ----------------------
1623 -- Set_Package_Name --
1624 ----------------------
1625
1626 procedure Set_Package_Name (Ent : Entity_Id) is
1627 begin
1628 if Scope (Ent) /= Standard_Standard then
1629 Set_Package_Name (Scope (Ent));
1630
1631 declare
1632 Nam : constant String := Get_Name_String (Chars (Ent));
1633 begin
1634 Name_Buffer (Name_Len + 1) := '_';
1635 Name_Buffer (Name_Len + 2) := '_';
1636 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
1637 Name_Len := Name_Len + Nam'Length + 2;
1638 end;
1639
1640 else
1641 Get_Name_String (Chars (Ent));
1642 end if;
1643 end Set_Package_Name;
1644
1645 -- Start of processing for Build_Elaboration_Entity
1646
1647 begin
1648 -- Ignore call if already constructed
1649
1650 if Present (Elaboration_Entity (Spec_Id)) then
1651 return;
1652
1653 -- Ignore in ASIS mode, elaboration entity is not in source and plays
1654 -- no role in analysis.
1655
1656 elsif ASIS_Mode then
1657 return;
1658
1659 -- See if we need elaboration entity. We always need it for the dynamic
1660 -- elaboration model, since it is needed to properly generate the PE
1661 -- exception for access before elaboration.
1662
1663 elsif Dynamic_Elaboration_Checks then
1664 null;
1665
1666 -- For the static model, we don't need the elaboration counter if this
1667 -- unit is sure to have no elaboration code, since that means there
1668 -- is no elaboration unit to be called. Note that we can't just decide
1669 -- after the fact by looking to see whether there was elaboration code,
1670 -- because that's too late to make this decision.
1671
1672 elsif Restriction_Active (No_Elaboration_Code) then
1673 return;
1674
1675 -- Similarly, for the static model, we can skip the elaboration counter
1676 -- if we have the No_Multiple_Elaboration restriction, since for the
1677 -- static model, that's the only purpose of the counter (to avoid
1678 -- multiple elaboration).
1679
1680 elsif Restriction_Active (No_Multiple_Elaboration) then
1681 return;
1682 end if;
1683
1684 -- Here we need the elaboration entity
1685
1686 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
1687 -- name with dots replaced by double underscore. We have to manually
1688 -- construct this name, since it will be elaborated in the outer scope,
1689 -- and thus will not have the unit name automatically prepended.
1690
1691 Set_Package_Name (Spec_Id);
1692 Add_Str_To_Name_Buffer ("_E");
1693
1694 -- Create elaboration counter
1695
1696 Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
1697 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
1698
1699 Decl :=
1700 Make_Object_Declaration (Loc,
1701 Defining_Identifier => Elab_Ent,
1702 Object_Definition =>
1703 New_Occurrence_Of (Standard_Short_Integer, Loc),
1704 Expression => Make_Integer_Literal (Loc, Uint_0));
1705
1706 Push_Scope (Standard_Standard);
1707 Add_Global_Declaration (Decl);
1708 Pop_Scope;
1709
1710 -- Reset True_Constant indication, since we will indeed assign a value
1711 -- to the variable in the binder main. We also kill the Current_Value
1712 -- and Last_Assignment fields for the same reason.
1713
1714 Set_Is_True_Constant (Elab_Ent, False);
1715 Set_Current_Value (Elab_Ent, Empty);
1716 Set_Last_Assignment (Elab_Ent, Empty);
1717
1718 -- We do not want any further qualification of the name (if we did not
1719 -- do this, we would pick up the name of the generic package in the case
1720 -- of a library level generic instantiation).
1721
1722 Set_Has_Qualified_Name (Elab_Ent);
1723 Set_Has_Fully_Qualified_Name (Elab_Ent);
1724 end Build_Elaboration_Entity;
1725
1726 --------------------------------
1727 -- Build_Explicit_Dereference --
1728 --------------------------------
1729
1730 procedure Build_Explicit_Dereference
1731 (Expr : Node_Id;
1732 Disc : Entity_Id)
1733 is
1734 Loc : constant Source_Ptr := Sloc (Expr);
1735 I : Interp_Index;
1736 It : Interp;
1737
1738 begin
1739 -- An entity of a type with a reference aspect is overloaded with
1740 -- both interpretations: with and without the dereference. Now that
1741 -- the dereference is made explicit, set the type of the node properly,
1742 -- to prevent anomalies in the backend. Same if the expression is an
1743 -- overloaded function call whose return type has a reference aspect.
1744
1745 if Is_Entity_Name (Expr) then
1746 Set_Etype (Expr, Etype (Entity (Expr)));
1747
1748 elsif Nkind (Expr) = N_Function_Call then
1749
1750 -- If the name of the indexing function is overloaded, locate the one
1751 -- whose return type has an implicit dereference on the desired
1752 -- discriminant, and set entity and type of function call.
1753
1754 if Is_Overloaded (Name (Expr)) then
1755 Get_First_Interp (Name (Expr), I, It);
1756
1757 while Present (It.Nam) loop
1758 if Ekind ((It.Typ)) = E_Record_Type
1759 and then First_Entity ((It.Typ)) = Disc
1760 then
1761 Set_Entity (Name (Expr), It.Nam);
1762 Set_Etype (Name (Expr), Etype (It.Nam));
1763 exit;
1764 end if;
1765
1766 Get_Next_Interp (I, It);
1767 end loop;
1768 end if;
1769
1770 -- Set type of call from resolved function name.
1771
1772 Set_Etype (Expr, Etype (Name (Expr)));
1773 end if;
1774
1775 Set_Is_Overloaded (Expr, False);
1776
1777 -- The expression will often be a generalized indexing that yields a
1778 -- container element that is then dereferenced, in which case the
1779 -- generalized indexing call is also non-overloaded.
1780
1781 if Nkind (Expr) = N_Indexed_Component
1782 and then Present (Generalized_Indexing (Expr))
1783 then
1784 Set_Is_Overloaded (Generalized_Indexing (Expr), False);
1785 end if;
1786
1787 Rewrite (Expr,
1788 Make_Explicit_Dereference (Loc,
1789 Prefix =>
1790 Make_Selected_Component (Loc,
1791 Prefix => Relocate_Node (Expr),
1792 Selector_Name => New_Occurrence_Of (Disc, Loc))));
1793 Set_Etype (Prefix (Expr), Etype (Disc));
1794 Set_Etype (Expr, Designated_Type (Etype (Disc)));
1795 end Build_Explicit_Dereference;
1796
1797 -----------------------------------
1798 -- Cannot_Raise_Constraint_Error --
1799 -----------------------------------
1800
1801 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
1802 begin
1803 if Compile_Time_Known_Value (Expr) then
1804 return True;
1805
1806 elsif Do_Range_Check (Expr) then
1807 return False;
1808
1809 elsif Raises_Constraint_Error (Expr) then
1810 return False;
1811
1812 else
1813 case Nkind (Expr) is
1814 when N_Identifier =>
1815 return True;
1816
1817 when N_Expanded_Name =>
1818 return True;
1819
1820 when N_Selected_Component =>
1821 return not Do_Discriminant_Check (Expr);
1822
1823 when N_Attribute_Reference =>
1824 if Do_Overflow_Check (Expr) then
1825 return False;
1826
1827 elsif No (Expressions (Expr)) then
1828 return True;
1829
1830 else
1831 declare
1832 N : Node_Id;
1833
1834 begin
1835 N := First (Expressions (Expr));
1836 while Present (N) loop
1837 if Cannot_Raise_Constraint_Error (N) then
1838 Next (N);
1839 else
1840 return False;
1841 end if;
1842 end loop;
1843
1844 return True;
1845 end;
1846 end if;
1847
1848 when N_Type_Conversion =>
1849 if Do_Overflow_Check (Expr)
1850 or else Do_Length_Check (Expr)
1851 or else Do_Tag_Check (Expr)
1852 then
1853 return False;
1854 else
1855 return Cannot_Raise_Constraint_Error (Expression (Expr));
1856 end if;
1857
1858 when N_Unchecked_Type_Conversion =>
1859 return Cannot_Raise_Constraint_Error (Expression (Expr));
1860
1861 when N_Unary_Op =>
1862 if Do_Overflow_Check (Expr) then
1863 return False;
1864 else
1865 return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1866 end if;
1867
1868 when N_Op_Divide |
1869 N_Op_Mod |
1870 N_Op_Rem
1871 =>
1872 if Do_Division_Check (Expr)
1873 or else
1874 Do_Overflow_Check (Expr)
1875 then
1876 return False;
1877 else
1878 return
1879 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1880 and then
1881 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1882 end if;
1883
1884 when N_Op_Add |
1885 N_Op_And |
1886 N_Op_Concat |
1887 N_Op_Eq |
1888 N_Op_Expon |
1889 N_Op_Ge |
1890 N_Op_Gt |
1891 N_Op_Le |
1892 N_Op_Lt |
1893 N_Op_Multiply |
1894 N_Op_Ne |
1895 N_Op_Or |
1896 N_Op_Rotate_Left |
1897 N_Op_Rotate_Right |
1898 N_Op_Shift_Left |
1899 N_Op_Shift_Right |
1900 N_Op_Shift_Right_Arithmetic |
1901 N_Op_Subtract |
1902 N_Op_Xor
1903 =>
1904 if Do_Overflow_Check (Expr) then
1905 return False;
1906 else
1907 return
1908 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1909 and then
1910 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1911 end if;
1912
1913 when others =>
1914 return False;
1915 end case;
1916 end if;
1917 end Cannot_Raise_Constraint_Error;
1918
1919 -----------------------------
1920 -- Check_Part_Of_Reference --
1921 -----------------------------
1922
1923 procedure Check_Part_Of_Reference (Var_Id : Entity_Id; Ref : Node_Id) is
1924 Conc_Typ : constant Entity_Id := Encapsulating_State (Var_Id);
1925 Decl : Node_Id;
1926 OK_Use : Boolean := False;
1927 Par : Node_Id;
1928 Prag_Nam : Name_Id;
1929 Spec_Id : Entity_Id;
1930
1931 begin
1932 -- Traverse the parent chain looking for a suitable context for the
1933 -- reference to the concurrent constituent.
1934
1935 Par := Parent (Ref);
1936 while Present (Par) loop
1937 if Nkind (Par) = N_Pragma then
1938 Prag_Nam := Pragma_Name (Par);
1939
1940 -- A concurrent constituent is allowed to appear in pragmas
1941 -- Initial_Condition and Initializes as this is part of the
1942 -- elaboration checks for the constituent (SPARK RM 9.3).
1943
1944 if Nam_In (Prag_Nam, Name_Initial_Condition, Name_Initializes) then
1945 OK_Use := True;
1946 exit;
1947
1948 -- When the reference appears within pragma Depends or Global,
1949 -- check whether the pragma applies to a single task type. Note
1950 -- that the pragma is not encapsulated by the type definition,
1951 -- but this is still a valid context.
1952
1953 elsif Nam_In (Prag_Nam, Name_Depends, Name_Global) then
1954 Decl := Find_Related_Declaration_Or_Body (Par);
1955
1956 if Nkind (Decl) = N_Object_Declaration
1957 and then Defining_Entity (Decl) = Conc_Typ
1958 then
1959 OK_Use := True;
1960 exit;
1961 end if;
1962 end if;
1963
1964 -- The reference appears somewhere in the definition of the single
1965 -- protected/task type (SPARK RM 9.3).
1966
1967 elsif Nkind_In (Par, N_Single_Protected_Declaration,
1968 N_Single_Task_Declaration)
1969 and then Defining_Entity (Par) = Conc_Typ
1970 then
1971 OK_Use := True;
1972 exit;
1973
1974 -- The reference appears within the expanded declaration or the body
1975 -- of the single protected/task type (SPARK RM 9.3).
1976
1977 elsif Nkind_In (Par, N_Protected_Body,
1978 N_Protected_Type_Declaration,
1979 N_Task_Body,
1980 N_Task_Type_Declaration)
1981 then
1982 Spec_Id := Unique_Defining_Entity (Par);
1983
1984 if Present (Anonymous_Object (Spec_Id))
1985 and then Anonymous_Object (Spec_Id) = Conc_Typ
1986 then
1987 OK_Use := True;
1988 exit;
1989 end if;
1990
1991 -- The reference has been relocated within an internally generated
1992 -- package or subprogram. Assume that the reference is legal as the
1993 -- real check was already performed in the original context of the
1994 -- reference.
1995
1996 elsif Nkind_In (Par, N_Package_Body,
1997 N_Package_Declaration,
1998 N_Subprogram_Body,
1999 N_Subprogram_Declaration)
2000 and then not Comes_From_Source (Par)
2001 then
2002 OK_Use := True;
2003 exit;
2004
2005 -- The reference has been relocated to an inlined body for GNATprove.
2006 -- Assume that the reference is legal as the real check was already
2007 -- performed in the original context of the reference.
2008
2009 elsif GNATprove_Mode
2010 and then Nkind (Par) = N_Subprogram_Body
2011 and then Chars (Defining_Entity (Par)) = Name_uParent
2012 then
2013 OK_Use := True;
2014 exit;
2015 end if;
2016
2017 Par := Parent (Par);
2018 end loop;
2019
2020 -- The reference is illegal as it appears outside the definition or
2021 -- body of the single protected/task type.
2022
2023 if not OK_Use then
2024 Error_Msg_NE
2025 ("reference to variable & cannot appear in this context",
2026 Ref, Var_Id);
2027 Error_Msg_Name_1 := Chars (Var_Id);
2028
2029 if Ekind (Conc_Typ) = E_Protected_Type then
2030 Error_Msg_NE
2031 ("\% is constituent of single protected type &", Ref, Conc_Typ);
2032 else
2033 Error_Msg_NE
2034 ("\% is constituent of single task type &", Ref, Conc_Typ);
2035 end if;
2036 end if;
2037 end Check_Part_Of_Reference;
2038
2039 -----------------------------------------
2040 -- Check_Dynamically_Tagged_Expression --
2041 -----------------------------------------
2042
2043 procedure Check_Dynamically_Tagged_Expression
2044 (Expr : Node_Id;
2045 Typ : Entity_Id;
2046 Related_Nod : Node_Id)
2047 is
2048 begin
2049 pragma Assert (Is_Tagged_Type (Typ));
2050
2051 -- In order to avoid spurious errors when analyzing the expanded code,
2052 -- this check is done only for nodes that come from source and for
2053 -- actuals of generic instantiations.
2054
2055 if (Comes_From_Source (Related_Nod)
2056 or else In_Generic_Actual (Expr))
2057 and then (Is_Class_Wide_Type (Etype (Expr))
2058 or else Is_Dynamically_Tagged (Expr))
2059 and then Is_Tagged_Type (Typ)
2060 and then not Is_Class_Wide_Type (Typ)
2061 then
2062 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
2063 end if;
2064 end Check_Dynamically_Tagged_Expression;
2065
2066 --------------------------
2067 -- Check_Fully_Declared --
2068 --------------------------
2069
2070 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
2071 begin
2072 if Ekind (T) = E_Incomplete_Type then
2073
2074 -- Ada 2005 (AI-50217): If the type is available through a limited
2075 -- with_clause, verify that its full view has been analyzed.
2076
2077 if From_Limited_With (T)
2078 and then Present (Non_Limited_View (T))
2079 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
2080 then
2081 -- The non-limited view is fully declared
2082
2083 null;
2084
2085 else
2086 Error_Msg_NE
2087 ("premature usage of incomplete}", N, First_Subtype (T));
2088 end if;
2089
2090 -- Need comments for these tests ???
2091
2092 elsif Has_Private_Component (T)
2093 and then not Is_Generic_Type (Root_Type (T))
2094 and then not In_Spec_Expression
2095 then
2096 -- Special case: if T is the anonymous type created for a single
2097 -- task or protected object, use the name of the source object.
2098
2099 if Is_Concurrent_Type (T)
2100 and then not Comes_From_Source (T)
2101 and then Nkind (N) = N_Object_Declaration
2102 then
2103 Error_Msg_NE
2104 ("type of& has incomplete component",
2105 N, Defining_Identifier (N));
2106 else
2107 Error_Msg_NE
2108 ("premature usage of incomplete}",
2109 N, First_Subtype (T));
2110 end if;
2111 end if;
2112 end Check_Fully_Declared;
2113
2114 -------------------------------------------
2115 -- Check_Function_With_Address_Parameter --
2116 -------------------------------------------
2117
2118 procedure Check_Function_With_Address_Parameter (Subp_Id : Entity_Id) is
2119 F : Entity_Id;
2120 T : Entity_Id;
2121
2122 begin
2123 F := First_Formal (Subp_Id);
2124 while Present (F) loop
2125 T := Etype (F);
2126
2127 if Is_Private_Type (T) and then Present (Full_View (T)) then
2128 T := Full_View (T);
2129 end if;
2130
2131 if Is_Descendent_Of_Address (T) or else Is_Limited_Type (T) then
2132 Set_Is_Pure (Subp_Id, False);
2133 exit;
2134 end if;
2135
2136 Next_Formal (F);
2137 end loop;
2138 end Check_Function_With_Address_Parameter;
2139
2140 -------------------------------------
2141 -- Check_Function_Writable_Actuals --
2142 -------------------------------------
2143
2144 procedure Check_Function_Writable_Actuals (N : Node_Id) is
2145 Writable_Actuals_List : Elist_Id := No_Elist;
2146 Identifiers_List : Elist_Id := No_Elist;
2147 Aggr_Error_Node : Node_Id := Empty;
2148 Error_Node : Node_Id := Empty;
2149
2150 procedure Collect_Identifiers (N : Node_Id);
2151 -- In a single traversal of subtree N collect in Writable_Actuals_List
2152 -- all the actuals of functions with writable actuals, and in the list
2153 -- Identifiers_List collect all the identifiers that are not actuals of
2154 -- functions with writable actuals. If a writable actual is referenced
2155 -- twice as writable actual then Error_Node is set to reference its
2156 -- second occurrence, the error is reported, and the tree traversal
2157 -- is abandoned.
2158
2159 function Get_Function_Id (Call : Node_Id) return Entity_Id;
2160 -- Return the entity associated with the function call
2161
2162 procedure Preanalyze_Without_Errors (N : Node_Id);
2163 -- Preanalyze N without reporting errors. Very dubious, you can't just
2164 -- go analyzing things more than once???
2165
2166 -------------------------
2167 -- Collect_Identifiers --
2168 -------------------------
2169
2170 procedure Collect_Identifiers (N : Node_Id) is
2171
2172 function Check_Node (N : Node_Id) return Traverse_Result;
2173 -- Process a single node during the tree traversal to collect the
2174 -- writable actuals of functions and all the identifiers which are
2175 -- not writable actuals of functions.
2176
2177 function Contains (List : Elist_Id; N : Node_Id) return Boolean;
2178 -- Returns True if List has a node whose Entity is Entity (N)
2179
2180 -------------------------
2181 -- Check_Function_Call --
2182 -------------------------
2183
2184 function Check_Node (N : Node_Id) return Traverse_Result is
2185 Is_Writable_Actual : Boolean := False;
2186 Id : Entity_Id;
2187
2188 begin
2189 if Nkind (N) = N_Identifier then
2190
2191 -- No analysis possible if the entity is not decorated
2192
2193 if No (Entity (N)) then
2194 return Skip;
2195
2196 -- Don't collect identifiers of packages, called functions, etc
2197
2198 elsif Ekind_In (Entity (N), E_Package,
2199 E_Function,
2200 E_Procedure,
2201 E_Entry)
2202 then
2203 return Skip;
2204
2205 -- For rewritten nodes, continue the traversal in the original
2206 -- subtree. Needed to handle aggregates in original expressions
2207 -- extracted from the tree by Remove_Side_Effects.
2208
2209 elsif Is_Rewrite_Substitution (N) then
2210 Collect_Identifiers (Original_Node (N));
2211 return Skip;
2212
2213 -- For now we skip aggregate discriminants, since they require
2214 -- performing the analysis in two phases to identify conflicts:
2215 -- first one analyzing discriminants and second one analyzing
2216 -- the rest of components (since at run time, discriminants are
2217 -- evaluated prior to components): too much computation cost
2218 -- to identify a corner case???
2219
2220 elsif Nkind (Parent (N)) = N_Component_Association
2221 and then Nkind_In (Parent (Parent (N)),
2222 N_Aggregate,
2223 N_Extension_Aggregate)
2224 then
2225 declare
2226 Choice : constant Node_Id := First (Choices (Parent (N)));
2227
2228 begin
2229 if Ekind (Entity (N)) = E_Discriminant then
2230 return Skip;
2231
2232 elsif Expression (Parent (N)) = N
2233 and then Nkind (Choice) = N_Identifier
2234 and then Ekind (Entity (Choice)) = E_Discriminant
2235 then
2236 return Skip;
2237 end if;
2238 end;
2239
2240 -- Analyze if N is a writable actual of a function
2241
2242 elsif Nkind (Parent (N)) = N_Function_Call then
2243 declare
2244 Call : constant Node_Id := Parent (N);
2245 Actual : Node_Id;
2246 Formal : Node_Id;
2247
2248 begin
2249 Id := Get_Function_Id (Call);
2250
2251 -- In case of previous error, no check is possible
2252
2253 if No (Id) then
2254 return Abandon;
2255 end if;
2256
2257 if Ekind_In (Id, E_Function, E_Generic_Function)
2258 and then Has_Out_Or_In_Out_Parameter (Id)
2259 then
2260 Formal := First_Formal (Id);
2261 Actual := First_Actual (Call);
2262 while Present (Actual) and then Present (Formal) loop
2263 if Actual = N then
2264 if Ekind_In (Formal, E_Out_Parameter,
2265 E_In_Out_Parameter)
2266 then
2267 Is_Writable_Actual := True;
2268 end if;
2269
2270 exit;
2271 end if;
2272
2273 Next_Formal (Formal);
2274 Next_Actual (Actual);
2275 end loop;
2276 end if;
2277 end;
2278 end if;
2279
2280 if Is_Writable_Actual then
2281
2282 -- Skip checking the error in non-elementary types since
2283 -- RM 6.4.1(6.15/3) is restricted to elementary types, but
2284 -- store this actual in Writable_Actuals_List since it is
2285 -- needed to perform checks on other constructs that have
2286 -- arbitrary order of evaluation (for example, aggregates).
2287
2288 if not Is_Elementary_Type (Etype (N)) then
2289 if not Contains (Writable_Actuals_List, N) then
2290 Append_New_Elmt (N, To => Writable_Actuals_List);
2291 end if;
2292
2293 -- Second occurrence of an elementary type writable actual
2294
2295 elsif Contains (Writable_Actuals_List, N) then
2296
2297 -- Report the error on the second occurrence of the
2298 -- identifier. We cannot assume that N is the second
2299 -- occurrence (according to their location in the
2300 -- sources), since Traverse_Func walks through Field2
2301 -- last (see comment in the body of Traverse_Func).
2302
2303 declare
2304 Elmt : Elmt_Id;
2305
2306 begin
2307 Elmt := First_Elmt (Writable_Actuals_List);
2308 while Present (Elmt)
2309 and then Entity (Node (Elmt)) /= Entity (N)
2310 loop
2311 Next_Elmt (Elmt);
2312 end loop;
2313
2314 if Sloc (N) > Sloc (Node (Elmt)) then
2315 Error_Node := N;
2316 else
2317 Error_Node := Node (Elmt);
2318 end if;
2319
2320 Error_Msg_NE
2321 ("value may be affected by call to & "
2322 & "because order of evaluation is arbitrary",
2323 Error_Node, Id);
2324 return Abandon;
2325 end;
2326
2327 -- First occurrence of a elementary type writable actual
2328
2329 else
2330 Append_New_Elmt (N, To => Writable_Actuals_List);
2331 end if;
2332
2333 else
2334 if Identifiers_List = No_Elist then
2335 Identifiers_List := New_Elmt_List;
2336 end if;
2337
2338 Append_Unique_Elmt (N, Identifiers_List);
2339 end if;
2340 end if;
2341
2342 return OK;
2343 end Check_Node;
2344
2345 --------------
2346 -- Contains --
2347 --------------
2348
2349 function Contains
2350 (List : Elist_Id;
2351 N : Node_Id) return Boolean
2352 is
2353 pragma Assert (Nkind (N) in N_Has_Entity);
2354
2355 Elmt : Elmt_Id;
2356
2357 begin
2358 if List = No_Elist then
2359 return False;
2360 end if;
2361
2362 Elmt := First_Elmt (List);
2363 while Present (Elmt) loop
2364 if Entity (Node (Elmt)) = Entity (N) then
2365 return True;
2366 else
2367 Next_Elmt (Elmt);
2368 end if;
2369 end loop;
2370
2371 return False;
2372 end Contains;
2373
2374 ------------------
2375 -- Do_Traversal --
2376 ------------------
2377
2378 procedure Do_Traversal is new Traverse_Proc (Check_Node);
2379 -- The traversal procedure
2380
2381 -- Start of processing for Collect_Identifiers
2382
2383 begin
2384 if Present (Error_Node) then
2385 return;
2386 end if;
2387
2388 if Nkind (N) in N_Subexpr and then Is_OK_Static_Expression (N) then
2389 return;
2390 end if;
2391
2392 Do_Traversal (N);
2393 end Collect_Identifiers;
2394
2395 ---------------------
2396 -- Get_Function_Id --
2397 ---------------------
2398
2399 function Get_Function_Id (Call : Node_Id) return Entity_Id is
2400 Nam : constant Node_Id := Name (Call);
2401 Id : Entity_Id;
2402
2403 begin
2404 if Nkind (Nam) = N_Explicit_Dereference then
2405 Id := Etype (Nam);
2406 pragma Assert (Ekind (Id) = E_Subprogram_Type);
2407
2408 elsif Nkind (Nam) = N_Selected_Component then
2409 Id := Entity (Selector_Name (Nam));
2410
2411 elsif Nkind (Nam) = N_Indexed_Component then
2412 Id := Entity (Selector_Name (Prefix (Nam)));
2413
2414 else
2415 Id := Entity (Nam);
2416 end if;
2417
2418 return Id;
2419 end Get_Function_Id;
2420
2421 -------------------------------
2422 -- Preanalyze_Without_Errors --
2423 -------------------------------
2424
2425 procedure Preanalyze_Without_Errors (N : Node_Id) is
2426 Status : constant Boolean := Get_Ignore_Errors;
2427 begin
2428 Set_Ignore_Errors (True);
2429 Preanalyze (N);
2430 Set_Ignore_Errors (Status);
2431 end Preanalyze_Without_Errors;
2432
2433 -- Start of processing for Check_Function_Writable_Actuals
2434
2435 begin
2436 -- The check only applies to Ada 2012 code on which Check_Actuals has
2437 -- been set, and only to constructs that have multiple constituents
2438 -- whose order of evaluation is not specified by the language.
2439
2440 if Ada_Version < Ada_2012
2441 or else not Check_Actuals (N)
2442 or else (not (Nkind (N) in N_Op)
2443 and then not (Nkind (N) in N_Membership_Test)
2444 and then not Nkind_In (N, N_Range,
2445 N_Aggregate,
2446 N_Extension_Aggregate,
2447 N_Full_Type_Declaration,
2448 N_Function_Call,
2449 N_Procedure_Call_Statement,
2450 N_Entry_Call_Statement))
2451 or else (Nkind (N) = N_Full_Type_Declaration
2452 and then not Is_Record_Type (Defining_Identifier (N)))
2453
2454 -- In addition, this check only applies to source code, not to code
2455 -- generated by constraint checks.
2456
2457 or else not Comes_From_Source (N)
2458 then
2459 return;
2460 end if;
2461
2462 -- If a construct C has two or more direct constituents that are names
2463 -- or expressions whose evaluation may occur in an arbitrary order, at
2464 -- least one of which contains a function call with an in out or out
2465 -- parameter, then the construct is legal only if: for each name N that
2466 -- is passed as a parameter of mode in out or out to some inner function
2467 -- call C2 (not including the construct C itself), there is no other
2468 -- name anywhere within a direct constituent of the construct C other
2469 -- than the one containing C2, that is known to refer to the same
2470 -- object (RM 6.4.1(6.17/3)).
2471
2472 case Nkind (N) is
2473 when N_Range =>
2474 Collect_Identifiers (Low_Bound (N));
2475 Collect_Identifiers (High_Bound (N));
2476
2477 when N_Op | N_Membership_Test =>
2478 declare
2479 Expr : Node_Id;
2480
2481 begin
2482 Collect_Identifiers (Left_Opnd (N));
2483
2484 if Present (Right_Opnd (N)) then
2485 Collect_Identifiers (Right_Opnd (N));
2486 end if;
2487
2488 if Nkind_In (N, N_In, N_Not_In)
2489 and then Present (Alternatives (N))
2490 then
2491 Expr := First (Alternatives (N));
2492 while Present (Expr) loop
2493 Collect_Identifiers (Expr);
2494
2495 Next (Expr);
2496 end loop;
2497 end if;
2498 end;
2499
2500 when N_Full_Type_Declaration =>
2501 declare
2502 function Get_Record_Part (N : Node_Id) return Node_Id;
2503 -- Return the record part of this record type definition
2504
2505 function Get_Record_Part (N : Node_Id) return Node_Id is
2506 Type_Def : constant Node_Id := Type_Definition (N);
2507 begin
2508 if Nkind (Type_Def) = N_Derived_Type_Definition then
2509 return Record_Extension_Part (Type_Def);
2510 else
2511 return Type_Def;
2512 end if;
2513 end Get_Record_Part;
2514
2515 Comp : Node_Id;
2516 Def_Id : Entity_Id := Defining_Identifier (N);
2517 Rec : Node_Id := Get_Record_Part (N);
2518
2519 begin
2520 -- No need to perform any analysis if the record has no
2521 -- components
2522
2523 if No (Rec) or else No (Component_List (Rec)) then
2524 return;
2525 end if;
2526
2527 -- Collect the identifiers starting from the deepest
2528 -- derivation. Done to report the error in the deepest
2529 -- derivation.
2530
2531 loop
2532 if Present (Component_List (Rec)) then
2533 Comp := First (Component_Items (Component_List (Rec)));
2534 while Present (Comp) loop
2535 if Nkind (Comp) = N_Component_Declaration
2536 and then Present (Expression (Comp))
2537 then
2538 Collect_Identifiers (Expression (Comp));
2539 end if;
2540
2541 Next (Comp);
2542 end loop;
2543 end if;
2544
2545 exit when No (Underlying_Type (Etype (Def_Id)))
2546 or else Base_Type (Underlying_Type (Etype (Def_Id)))
2547 = Def_Id;
2548
2549 Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
2550 Rec := Get_Record_Part (Parent (Def_Id));
2551 end loop;
2552 end;
2553
2554 when N_Subprogram_Call |
2555 N_Entry_Call_Statement =>
2556 declare
2557 Id : constant Entity_Id := Get_Function_Id (N);
2558 Formal : Node_Id;
2559 Actual : Node_Id;
2560
2561 begin
2562 Formal := First_Formal (Id);
2563 Actual := First_Actual (N);
2564 while Present (Actual) and then Present (Formal) loop
2565 if Ekind_In (Formal, E_Out_Parameter,
2566 E_In_Out_Parameter)
2567 then
2568 Collect_Identifiers (Actual);
2569 end if;
2570
2571 Next_Formal (Formal);
2572 Next_Actual (Actual);
2573 end loop;
2574 end;
2575
2576 when N_Aggregate |
2577 N_Extension_Aggregate =>
2578 declare
2579 Assoc : Node_Id;
2580 Choice : Node_Id;
2581 Comp_Expr : Node_Id;
2582
2583 begin
2584 -- Handle the N_Others_Choice of array aggregates with static
2585 -- bounds. There is no need to perform this analysis in
2586 -- aggregates without static bounds since we cannot evaluate
2587 -- if the N_Others_Choice covers several elements. There is
2588 -- no need to handle the N_Others choice of record aggregates
2589 -- since at this stage it has been already expanded by
2590 -- Resolve_Record_Aggregate.
2591
2592 if Is_Array_Type (Etype (N))
2593 and then Nkind (N) = N_Aggregate
2594 and then Present (Aggregate_Bounds (N))
2595 and then Compile_Time_Known_Bounds (Etype (N))
2596 and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
2597 >
2598 Expr_Value (Low_Bound (Aggregate_Bounds (N)))
2599 then
2600 declare
2601 Count_Components : Uint := Uint_0;
2602 Num_Components : Uint;
2603 Others_Assoc : Node_Id;
2604 Others_Choice : Node_Id := Empty;
2605 Others_Box_Present : Boolean := False;
2606
2607 begin
2608 -- Count positional associations
2609
2610 if Present (Expressions (N)) then
2611 Comp_Expr := First (Expressions (N));
2612 while Present (Comp_Expr) loop
2613 Count_Components := Count_Components + 1;
2614 Next (Comp_Expr);
2615 end loop;
2616 end if;
2617
2618 -- Count the rest of elements and locate the N_Others
2619 -- choice (if any)
2620
2621 Assoc := First (Component_Associations (N));
2622 while Present (Assoc) loop
2623 Choice := First (Choices (Assoc));
2624 while Present (Choice) loop
2625 if Nkind (Choice) = N_Others_Choice then
2626 Others_Assoc := Assoc;
2627 Others_Choice := Choice;
2628 Others_Box_Present := Box_Present (Assoc);
2629
2630 -- Count several components
2631
2632 elsif Nkind_In (Choice, N_Range,
2633 N_Subtype_Indication)
2634 or else (Is_Entity_Name (Choice)
2635 and then Is_Type (Entity (Choice)))
2636 then
2637 declare
2638 L, H : Node_Id;
2639 begin
2640 Get_Index_Bounds (Choice, L, H);
2641 pragma Assert
2642 (Compile_Time_Known_Value (L)
2643 and then Compile_Time_Known_Value (H));
2644 Count_Components :=
2645 Count_Components
2646 + Expr_Value (H) - Expr_Value (L) + 1;
2647 end;
2648
2649 -- Count single component. No other case available
2650 -- since we are handling an aggregate with static
2651 -- bounds.
2652
2653 else
2654 pragma Assert (Is_OK_Static_Expression (Choice)
2655 or else Nkind (Choice) = N_Identifier
2656 or else Nkind (Choice) = N_Integer_Literal);
2657
2658 Count_Components := Count_Components + 1;
2659 end if;
2660
2661 Next (Choice);
2662 end loop;
2663
2664 Next (Assoc);
2665 end loop;
2666
2667 Num_Components :=
2668 Expr_Value (High_Bound (Aggregate_Bounds (N))) -
2669 Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
2670
2671 pragma Assert (Count_Components <= Num_Components);
2672
2673 -- Handle the N_Others choice if it covers several
2674 -- components
2675
2676 if Present (Others_Choice)
2677 and then (Num_Components - Count_Components) > 1
2678 then
2679 if not Others_Box_Present then
2680
2681 -- At this stage, if expansion is active, the
2682 -- expression of the others choice has not been
2683 -- analyzed. Hence we generate a duplicate and
2684 -- we analyze it silently to have available the
2685 -- minimum decoration required to collect the
2686 -- identifiers.
2687
2688 if not Expander_Active then
2689 Comp_Expr := Expression (Others_Assoc);
2690 else
2691 Comp_Expr :=
2692 New_Copy_Tree (Expression (Others_Assoc));
2693 Preanalyze_Without_Errors (Comp_Expr);
2694 end if;
2695
2696 Collect_Identifiers (Comp_Expr);
2697
2698 if Writable_Actuals_List /= No_Elist then
2699
2700 -- As suggested by Robert, at current stage we
2701 -- report occurrences of this case as warnings.
2702
2703 Error_Msg_N
2704 ("writable function parameter may affect "
2705 & "value in other component because order "
2706 & "of evaluation is unspecified??",
2707 Node (First_Elmt (Writable_Actuals_List)));
2708 end if;
2709 end if;
2710 end if;
2711 end;
2712
2713 -- For an array aggregate, a discrete_choice_list that has
2714 -- a nonstatic range is considered as two or more separate
2715 -- occurrences of the expression (RM 6.4.1(20/3)).
2716
2717 elsif Is_Array_Type (Etype (N))
2718 and then Nkind (N) = N_Aggregate
2719 and then Present (Aggregate_Bounds (N))
2720 and then not Compile_Time_Known_Bounds (Etype (N))
2721 then
2722 -- Collect identifiers found in the dynamic bounds
2723
2724 declare
2725 Count_Components : Natural := 0;
2726 Low, High : Node_Id;
2727
2728 begin
2729 Assoc := First (Component_Associations (N));
2730 while Present (Assoc) loop
2731 Choice := First (Choices (Assoc));
2732 while Present (Choice) loop
2733 if Nkind_In (Choice, N_Range,
2734 N_Subtype_Indication)
2735 or else (Is_Entity_Name (Choice)
2736 and then Is_Type (Entity (Choice)))
2737 then
2738 Get_Index_Bounds (Choice, Low, High);
2739
2740 if not Compile_Time_Known_Value (Low) then
2741 Collect_Identifiers (Low);
2742
2743 if No (Aggr_Error_Node) then
2744 Aggr_Error_Node := Low;
2745 end if;
2746 end if;
2747
2748 if not Compile_Time_Known_Value (High) then
2749 Collect_Identifiers (High);
2750
2751 if No (Aggr_Error_Node) then
2752 Aggr_Error_Node := High;
2753 end if;
2754 end if;
2755
2756 -- The RM rule is violated if there is more than
2757 -- a single choice in a component association.
2758
2759 else
2760 Count_Components := Count_Components + 1;
2761
2762 if No (Aggr_Error_Node)
2763 and then Count_Components > 1
2764 then
2765 Aggr_Error_Node := Choice;
2766 end if;
2767
2768 if not Compile_Time_Known_Value (Choice) then
2769 Collect_Identifiers (Choice);
2770 end if;
2771 end if;
2772
2773 Next (Choice);
2774 end loop;
2775
2776 Next (Assoc);
2777 end loop;
2778 end;
2779 end if;
2780
2781 -- Handle ancestor part of extension aggregates
2782
2783 if Nkind (N) = N_Extension_Aggregate then
2784 Collect_Identifiers (Ancestor_Part (N));
2785 end if;
2786
2787 -- Handle positional associations
2788
2789 if Present (Expressions (N)) then
2790 Comp_Expr := First (Expressions (N));
2791 while Present (Comp_Expr) loop
2792 if not Is_OK_Static_Expression (Comp_Expr) then
2793 Collect_Identifiers (Comp_Expr);
2794 end if;
2795
2796 Next (Comp_Expr);
2797 end loop;
2798 end if;
2799
2800 -- Handle discrete associations
2801
2802 if Present (Component_Associations (N)) then
2803 Assoc := First (Component_Associations (N));
2804 while Present (Assoc) loop
2805
2806 if not Box_Present (Assoc) then
2807 Choice := First (Choices (Assoc));
2808 while Present (Choice) loop
2809
2810 -- For now we skip discriminants since it requires
2811 -- performing the analysis in two phases: first one
2812 -- analyzing discriminants and second one analyzing
2813 -- the rest of components since discriminants are
2814 -- evaluated prior to components: too much extra
2815 -- work to detect a corner case???
2816
2817 if Nkind (Choice) in N_Has_Entity
2818 and then Present (Entity (Choice))
2819 and then Ekind (Entity (Choice)) = E_Discriminant
2820 then
2821 null;
2822
2823 elsif Box_Present (Assoc) then
2824 null;
2825
2826 else
2827 if not Analyzed (Expression (Assoc)) then
2828 Comp_Expr :=
2829 New_Copy_Tree (Expression (Assoc));
2830 Set_Parent (Comp_Expr, Parent (N));
2831 Preanalyze_Without_Errors (Comp_Expr);
2832 else
2833 Comp_Expr := Expression (Assoc);
2834 end if;
2835
2836 Collect_Identifiers (Comp_Expr);
2837 end if;
2838
2839 Next (Choice);
2840 end loop;
2841 end if;
2842
2843 Next (Assoc);
2844 end loop;
2845 end if;
2846 end;
2847
2848 when others =>
2849 return;
2850 end case;
2851
2852 -- No further action needed if we already reported an error
2853
2854 if Present (Error_Node) then
2855 return;
2856 end if;
2857
2858 -- Check violation of RM 6.20/3 in aggregates
2859
2860 if Present (Aggr_Error_Node)
2861 and then Writable_Actuals_List /= No_Elist
2862 then
2863 Error_Msg_N
2864 ("value may be affected by call in other component because they "
2865 & "are evaluated in unspecified order",
2866 Node (First_Elmt (Writable_Actuals_List)));
2867 return;
2868 end if;
2869
2870 -- Check if some writable argument of a function is referenced
2871
2872 if Writable_Actuals_List /= No_Elist
2873 and then Identifiers_List /= No_Elist
2874 then
2875 declare
2876 Elmt_1 : Elmt_Id;
2877 Elmt_2 : Elmt_Id;
2878
2879 begin
2880 Elmt_1 := First_Elmt (Writable_Actuals_List);
2881 while Present (Elmt_1) loop
2882 Elmt_2 := First_Elmt (Identifiers_List);
2883 while Present (Elmt_2) loop
2884 if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
2885 case Nkind (Parent (Node (Elmt_2))) is
2886 when N_Aggregate |
2887 N_Component_Association |
2888 N_Component_Declaration =>
2889 Error_Msg_N
2890 ("value may be affected by call in other "
2891 & "component because they are evaluated "
2892 & "in unspecified order",
2893 Node (Elmt_2));
2894
2895 when N_In | N_Not_In =>
2896 Error_Msg_N
2897 ("value may be affected by call in other "
2898 & "alternative because they are evaluated "
2899 & "in unspecified order",
2900 Node (Elmt_2));
2901
2902 when others =>
2903 Error_Msg_N
2904 ("value of actual may be affected by call in "
2905 & "other actual because they are evaluated "
2906 & "in unspecified order",
2907 Node (Elmt_2));
2908 end case;
2909 end if;
2910
2911 Next_Elmt (Elmt_2);
2912 end loop;
2913
2914 Next_Elmt (Elmt_1);
2915 end loop;
2916 end;
2917 end if;
2918 end Check_Function_Writable_Actuals;
2919
2920 --------------------------------
2921 -- Check_Implicit_Dereference --
2922 --------------------------------
2923
2924 procedure Check_Implicit_Dereference (N : Node_Id; Typ : Entity_Id) is
2925 Disc : Entity_Id;
2926 Desig : Entity_Id;
2927 Nam : Node_Id;
2928
2929 begin
2930 if Nkind (N) = N_Indexed_Component
2931 and then Present (Generalized_Indexing (N))
2932 then
2933 Nam := Generalized_Indexing (N);
2934 else
2935 Nam := N;
2936 end if;
2937
2938 if Ada_Version < Ada_2012
2939 or else not Has_Implicit_Dereference (Base_Type (Typ))
2940 then
2941 return;
2942
2943 elsif not Comes_From_Source (N)
2944 and then Nkind (N) /= N_Indexed_Component
2945 then
2946 return;
2947
2948 elsif Is_Entity_Name (Nam) and then Is_Type (Entity (Nam)) then
2949 null;
2950
2951 else
2952 Disc := First_Discriminant (Typ);
2953 while Present (Disc) loop
2954 if Has_Implicit_Dereference (Disc) then
2955 Desig := Designated_Type (Etype (Disc));
2956 Add_One_Interp (Nam, Disc, Desig);
2957
2958 -- If the node is a generalized indexing, add interpretation
2959 -- to that node as well, for subsequent resolution.
2960
2961 if Nkind (N) = N_Indexed_Component then
2962 Add_One_Interp (N, Disc, Desig);
2963 end if;
2964
2965 -- If the operation comes from a generic unit and the context
2966 -- is a selected component, the selector name may be global
2967 -- and set in the instance already. Remove the entity to
2968 -- force resolution of the selected component, and the
2969 -- generation of an explicit dereference if needed.
2970
2971 if In_Instance
2972 and then Nkind (Parent (Nam)) = N_Selected_Component
2973 then
2974 Set_Entity (Selector_Name (Parent (Nam)), Empty);
2975 end if;
2976
2977 exit;
2978 end if;
2979
2980 Next_Discriminant (Disc);
2981 end loop;
2982 end if;
2983 end Check_Implicit_Dereference;
2984
2985 ----------------------------------
2986 -- Check_Internal_Protected_Use --
2987 ----------------------------------
2988
2989 procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
2990 S : Entity_Id;
2991 Prot : Entity_Id;
2992
2993 begin
2994 S := Current_Scope;
2995 while Present (S) loop
2996 if S = Standard_Standard then
2997 return;
2998
2999 elsif Ekind (S) = E_Function
3000 and then Ekind (Scope (S)) = E_Protected_Type
3001 then
3002 Prot := Scope (S);
3003 exit;
3004 end if;
3005
3006 S := Scope (S);
3007 end loop;
3008
3009 if Scope (Nam) = Prot and then Ekind (Nam) /= E_Function then
3010
3011 -- An indirect function call (e.g. a callback within a protected
3012 -- function body) is not statically illegal. If the access type is
3013 -- anonymous and is the type of an access parameter, the scope of Nam
3014 -- will be the protected type, but it is not a protected operation.
3015
3016 if Ekind (Nam) = E_Subprogram_Type
3017 and then
3018 Nkind (Associated_Node_For_Itype (Nam)) = N_Function_Specification
3019 then
3020 null;
3021
3022 elsif Nkind (N) = N_Subprogram_Renaming_Declaration then
3023 Error_Msg_N
3024 ("within protected function cannot use protected "
3025 & "procedure in renaming or as generic actual", N);
3026
3027 elsif Nkind (N) = N_Attribute_Reference then
3028 Error_Msg_N
3029 ("within protected function cannot take access of "
3030 & " protected procedure", N);
3031
3032 else
3033 Error_Msg_N
3034 ("within protected function, protected object is constant", N);
3035 Error_Msg_N
3036 ("\cannot call operation that may modify it", N);
3037 end if;
3038 end if;
3039 end Check_Internal_Protected_Use;
3040
3041 ---------------------------------------
3042 -- Check_Later_Vs_Basic_Declarations --
3043 ---------------------------------------
3044
3045 procedure Check_Later_Vs_Basic_Declarations
3046 (Decls : List_Id;
3047 During_Parsing : Boolean)
3048 is
3049 Body_Sloc : Source_Ptr;
3050 Decl : Node_Id;
3051
3052 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
3053 -- Return whether Decl is considered as a declarative item.
3054 -- When During_Parsing is True, the semantics of Ada 83 is followed.
3055 -- When During_Parsing is False, the semantics of SPARK is followed.
3056
3057 -------------------------------
3058 -- Is_Later_Declarative_Item --
3059 -------------------------------
3060
3061 function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
3062 begin
3063 if Nkind (Decl) in N_Later_Decl_Item then
3064 return True;
3065
3066 elsif Nkind (Decl) = N_Pragma then
3067 return True;
3068
3069 elsif During_Parsing then
3070 return False;
3071
3072 -- In SPARK, a package declaration is not considered as a later
3073 -- declarative item.
3074
3075 elsif Nkind (Decl) = N_Package_Declaration then
3076 return False;
3077
3078 -- In SPARK, a renaming is considered as a later declarative item
3079
3080 elsif Nkind (Decl) in N_Renaming_Declaration then
3081 return True;
3082
3083 else
3084 return False;
3085 end if;
3086 end Is_Later_Declarative_Item;
3087
3088 -- Start of processing for Check_Later_Vs_Basic_Declarations
3089
3090 begin
3091 Decl := First (Decls);
3092
3093 -- Loop through sequence of basic declarative items
3094
3095 Outer : while Present (Decl) loop
3096 if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
3097 and then Nkind (Decl) not in N_Body_Stub
3098 then
3099 Next (Decl);
3100
3101 -- Once a body is encountered, we only allow later declarative
3102 -- items. The inner loop checks the rest of the list.
3103
3104 else
3105 Body_Sloc := Sloc (Decl);
3106
3107 Inner : while Present (Decl) loop
3108 if not Is_Later_Declarative_Item (Decl) then
3109 if During_Parsing then
3110 if Ada_Version = Ada_83 then
3111 Error_Msg_Sloc := Body_Sloc;
3112 Error_Msg_N
3113 ("(Ada 83) decl cannot appear after body#", Decl);
3114 end if;
3115 else
3116 Error_Msg_Sloc := Body_Sloc;
3117 Check_SPARK_05_Restriction
3118 ("decl cannot appear after body#", Decl);
3119 end if;
3120 end if;
3121
3122 Next (Decl);
3123 end loop Inner;
3124 end if;
3125 end loop Outer;
3126 end Check_Later_Vs_Basic_Declarations;
3127
3128 ---------------------------
3129 -- Check_No_Hidden_State --
3130 ---------------------------
3131
3132 procedure Check_No_Hidden_State (Id : Entity_Id) is
3133 function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean;
3134 -- Determine whether the entity of a package denoted by Pkg has a null
3135 -- abstract state.
3136
3137 -----------------------------
3138 -- Has_Null_Abstract_State --
3139 -----------------------------
3140
3141 function Has_Null_Abstract_State (Pkg : Entity_Id) return Boolean is
3142 States : constant Elist_Id := Abstract_States (Pkg);
3143
3144 begin
3145 -- Check first available state of related package. A null abstract
3146 -- state always appears as the sole element of the state list.
3147
3148 return
3149 Present (States)
3150 and then Is_Null_State (Node (First_Elmt (States)));
3151 end Has_Null_Abstract_State;
3152
3153 -- Local variables
3154
3155 Context : Entity_Id := Empty;
3156 Not_Visible : Boolean := False;
3157 Scop : Entity_Id;
3158
3159 -- Start of processing for Check_No_Hidden_State
3160
3161 begin
3162 pragma Assert (Ekind_In (Id, E_Abstract_State, E_Variable));
3163
3164 -- Find the proper context where the object or state appears
3165
3166 Scop := Scope (Id);
3167 while Present (Scop) loop
3168 Context := Scop;
3169
3170 -- Keep track of the context's visibility
3171
3172 Not_Visible := Not_Visible or else In_Private_Part (Context);
3173
3174 -- Prevent the search from going too far
3175
3176 if Context = Standard_Standard then
3177 return;
3178
3179 -- Objects and states that appear immediately within a subprogram or
3180 -- inside a construct nested within a subprogram do not introduce a
3181 -- hidden state. They behave as local variable declarations.
3182
3183 elsif Is_Subprogram (Context) then
3184 return;
3185
3186 -- When examining a package body, use the entity of the spec as it
3187 -- carries the abstract state declarations.
3188
3189 elsif Ekind (Context) = E_Package_Body then
3190 Context := Spec_Entity (Context);
3191 end if;
3192
3193 -- Stop the traversal when a package subject to a null abstract state
3194 -- has been found.
3195
3196 if Ekind_In (Context, E_Generic_Package, E_Package)
3197 and then Has_Null_Abstract_State (Context)
3198 then
3199 exit;
3200 end if;
3201
3202 Scop := Scope (Scop);
3203 end loop;
3204
3205 -- At this point we know that there is at least one package with a null
3206 -- abstract state in visibility. Emit an error message unconditionally
3207 -- if the entity being processed is a state because the placement of the
3208 -- related package is irrelevant. This is not the case for objects as
3209 -- the intermediate context matters.
3210
3211 if Present (Context)
3212 and then (Ekind (Id) = E_Abstract_State or else Not_Visible)
3213 then
3214 Error_Msg_N ("cannot introduce hidden state &", Id);
3215 Error_Msg_NE ("\package & has null abstract state", Id, Context);
3216 end if;
3217 end Check_No_Hidden_State;
3218
3219 ----------------------------------------
3220 -- Check_Nonvolatile_Function_Profile --
3221 ----------------------------------------
3222
3223 procedure Check_Nonvolatile_Function_Profile (Func_Id : Entity_Id) is
3224 Formal : Entity_Id;
3225
3226 begin
3227 -- Inspect all formal parameters
3228
3229 Formal := First_Formal (Func_Id);
3230 while Present (Formal) loop
3231 if Is_Effectively_Volatile (Etype (Formal)) then
3232 Error_Msg_NE
3233 ("nonvolatile function & cannot have a volatile parameter",
3234 Formal, Func_Id);
3235 end if;
3236
3237 Next_Formal (Formal);
3238 end loop;
3239
3240 -- Inspect the return type
3241
3242 if Is_Effectively_Volatile (Etype (Func_Id)) then
3243 Error_Msg_NE
3244 ("nonvolatile function & cannot have a volatile return type",
3245 Result_Definition (Parent (Func_Id)), Func_Id);
3246 end if;
3247 end Check_Nonvolatile_Function_Profile;
3248
3249 ------------------------------------------
3250 -- Check_Potentially_Blocking_Operation --
3251 ------------------------------------------
3252
3253 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
3254 S : Entity_Id;
3255
3256 begin
3257 -- N is one of the potentially blocking operations listed in 9.5.1(8).
3258 -- When pragma Detect_Blocking is active, the run time will raise
3259 -- Program_Error. Here we only issue a warning, since we generally
3260 -- support the use of potentially blocking operations in the absence
3261 -- of the pragma.
3262
3263 -- Indirect blocking through a subprogram call cannot be diagnosed
3264 -- statically without interprocedural analysis, so we do not attempt
3265 -- to do it here.
3266
3267 S := Scope (Current_Scope);
3268 while Present (S) and then S /= Standard_Standard loop
3269 if Is_Protected_Type (S) then
3270 Error_Msg_N
3271 ("potentially blocking operation in protected operation??", N);
3272 return;
3273 end if;
3274
3275 S := Scope (S);
3276 end loop;
3277 end Check_Potentially_Blocking_Operation;
3278
3279 ---------------------------------
3280 -- Check_Result_And_Post_State --
3281 ---------------------------------
3282
3283 procedure Check_Result_And_Post_State (Subp_Id : Entity_Id) is
3284 procedure Check_Result_And_Post_State_In_Pragma
3285 (Prag : Node_Id;
3286 Result_Seen : in out Boolean);
3287 -- Determine whether pragma Prag mentions attribute 'Result and whether
3288 -- the pragma contains an expression that evaluates differently in pre-
3289 -- and post-state. Prag is a [refined] postcondition or a contract-cases
3290 -- pragma. Result_Seen is set when the pragma mentions attribute 'Result
3291
3292 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean;
3293 -- Determine whether subprogram Subp_Id contains at least one IN OUT
3294 -- formal parameter.
3295
3296 -------------------------------------------
3297 -- Check_Result_And_Post_State_In_Pragma --
3298 -------------------------------------------
3299
3300 procedure Check_Result_And_Post_State_In_Pragma
3301 (Prag : Node_Id;
3302 Result_Seen : in out Boolean)
3303 is
3304 procedure Check_Expression (Expr : Node_Id);
3305 -- Perform the 'Result and post-state checks on a given expression
3306
3307 function Is_Function_Result (N : Node_Id) return Traverse_Result;
3308 -- Attempt to find attribute 'Result in a subtree denoted by N
3309
3310 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
3311 -- Determine whether source node N denotes "True" or "False"
3312
3313 function Mentions_Post_State (N : Node_Id) return Boolean;
3314 -- Determine whether a subtree denoted by N mentions any construct
3315 -- that denotes a post-state.
3316
3317 procedure Check_Function_Result is
3318 new Traverse_Proc (Is_Function_Result);
3319
3320 ----------------------
3321 -- Check_Expression --
3322 ----------------------
3323
3324 procedure Check_Expression (Expr : Node_Id) is
3325 begin
3326 if not Is_Trivial_Boolean (Expr) then
3327 Check_Function_Result (Expr);
3328
3329 if not Mentions_Post_State (Expr) then
3330 if Pragma_Name (Prag) = Name_Contract_Cases then
3331 Error_Msg_NE
3332 ("contract case does not check the outcome of calling "
3333 & "&?T?", Expr, Subp_Id);
3334
3335 elsif Pragma_Name (Prag) = Name_Refined_Post then
3336 Error_Msg_NE
3337 ("refined postcondition does not check the outcome of "
3338 & "calling &?T?", Prag, Subp_Id);
3339
3340 else
3341 Error_Msg_NE
3342 ("postcondition does not check the outcome of calling "
3343 & "&?T?", Prag, Subp_Id);
3344 end if;
3345 end if;
3346 end if;
3347 end Check_Expression;
3348
3349 ------------------------
3350 -- Is_Function_Result --
3351 ------------------------
3352
3353 function Is_Function_Result (N : Node_Id) return Traverse_Result is
3354 begin
3355 if Is_Attribute_Result (N) then
3356 Result_Seen := True;
3357 return Abandon;
3358
3359 -- Continue the traversal
3360
3361 else
3362 return OK;
3363 end if;
3364 end Is_Function_Result;
3365
3366 ------------------------
3367 -- Is_Trivial_Boolean --
3368 ------------------------
3369
3370 function Is_Trivial_Boolean (N : Node_Id) return Boolean is
3371 begin
3372 return
3373 Comes_From_Source (N)
3374 and then Is_Entity_Name (N)
3375 and then (Entity (N) = Standard_True
3376 or else
3377 Entity (N) = Standard_False);
3378 end Is_Trivial_Boolean;
3379
3380 -------------------------
3381 -- Mentions_Post_State --
3382 -------------------------
3383
3384 function Mentions_Post_State (N : Node_Id) return Boolean is
3385 Post_State_Seen : Boolean := False;
3386
3387 function Is_Post_State (N : Node_Id) return Traverse_Result;
3388 -- Attempt to find a construct that denotes a post-state. If this
3389 -- is the case, set flag Post_State_Seen.
3390
3391 -------------------
3392 -- Is_Post_State --
3393 -------------------
3394
3395 function Is_Post_State (N : Node_Id) return Traverse_Result is
3396 Ent : Entity_Id;
3397
3398 begin
3399 if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
3400 Post_State_Seen := True;
3401 return Abandon;
3402
3403 elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
3404 Ent := Entity (N);
3405
3406 -- The entity may be modifiable through an implicit
3407 -- dereference.
3408
3409 if No (Ent)
3410 or else Ekind (Ent) in Assignable_Kind
3411 or else (Is_Access_Type (Etype (Ent))
3412 and then Nkind (Parent (N)) =
3413 N_Selected_Component)
3414 then
3415 Post_State_Seen := True;
3416 return Abandon;
3417 end if;
3418
3419 elsif Nkind (N) = N_Attribute_Reference then
3420 if Attribute_Name (N) = Name_Old then
3421 return Skip;
3422
3423 elsif Attribute_Name (N) = Name_Result then
3424 Post_State_Seen := True;
3425 return Abandon;
3426 end if;
3427 end if;
3428
3429 return OK;
3430 end Is_Post_State;
3431
3432 procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
3433
3434 -- Start of processing for Mentions_Post_State
3435
3436 begin
3437 Find_Post_State (N);
3438
3439 return Post_State_Seen;
3440 end Mentions_Post_State;
3441
3442 -- Local variables
3443
3444 Expr : constant Node_Id :=
3445 Get_Pragma_Arg
3446 (First (Pragma_Argument_Associations (Prag)));
3447 Nam : constant Name_Id := Pragma_Name (Prag);
3448 CCase : Node_Id;
3449
3450 -- Start of processing for Check_Result_And_Post_State_In_Pragma
3451
3452 begin
3453 -- Examine all consequences
3454
3455 if Nam = Name_Contract_Cases then
3456 CCase := First (Component_Associations (Expr));
3457 while Present (CCase) loop
3458 Check_Expression (Expression (CCase));
3459
3460 Next (CCase);
3461 end loop;
3462
3463 -- Examine the expression of a postcondition
3464
3465 else pragma Assert (Nam_In (Nam, Name_Postcondition,
3466 Name_Refined_Post));
3467 Check_Expression (Expr);
3468 end if;
3469 end Check_Result_And_Post_State_In_Pragma;
3470
3471 --------------------------
3472 -- Has_In_Out_Parameter --
3473 --------------------------
3474
3475 function Has_In_Out_Parameter (Subp_Id : Entity_Id) return Boolean is
3476 Formal : Entity_Id;
3477
3478 begin
3479 -- Traverse the formals looking for an IN OUT parameter
3480
3481 Formal := First_Formal (Subp_Id);
3482 while Present (Formal) loop
3483 if Ekind (Formal) = E_In_Out_Parameter then
3484 return True;
3485 end if;
3486
3487 Next_Formal (Formal);
3488 end loop;
3489
3490 return False;
3491 end Has_In_Out_Parameter;
3492
3493 -- Local variables
3494
3495 Items : constant Node_Id := Contract (Subp_Id);
3496 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
3497 Case_Prag : Node_Id := Empty;
3498 Post_Prag : Node_Id := Empty;
3499 Prag : Node_Id;
3500 Seen_In_Case : Boolean := False;
3501 Seen_In_Post : Boolean := False;
3502 Spec_Id : Entity_Id;
3503
3504 -- Start of processing for Check_Result_And_Post_State
3505
3506 begin
3507 -- The lack of attribute 'Result or a post-state is classified as a
3508 -- suspicious contract. Do not perform the check if the corresponding
3509 -- swich is not set.
3510
3511 if not Warn_On_Suspicious_Contract then
3512 return;
3513
3514 -- Nothing to do if there is no contract
3515
3516 elsif No (Items) then
3517 return;
3518 end if;
3519
3520 -- Retrieve the entity of the subprogram spec (if any)
3521
3522 if Nkind (Subp_Decl) = N_Subprogram_Body
3523 and then Present (Corresponding_Spec (Subp_Decl))
3524 then
3525 Spec_Id := Corresponding_Spec (Subp_Decl);
3526
3527 elsif Nkind (Subp_Decl) = N_Subprogram_Body_Stub
3528 and then Present (Corresponding_Spec_Of_Stub (Subp_Decl))
3529 then
3530 Spec_Id := Corresponding_Spec_Of_Stub (Subp_Decl);
3531
3532 else
3533 Spec_Id := Subp_Id;
3534 end if;
3535
3536 -- Examine all postconditions for attribute 'Result and a post-state
3537
3538 Prag := Pre_Post_Conditions (Items);
3539 while Present (Prag) loop
3540 if Nam_In (Pragma_Name (Prag), Name_Postcondition,
3541 Name_Refined_Post)
3542 and then not Error_Posted (Prag)
3543 then
3544 Post_Prag := Prag;
3545 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Post);
3546 end if;
3547
3548 Prag := Next_Pragma (Prag);
3549 end loop;
3550
3551 -- Examine the contract cases of the subprogram for attribute 'Result
3552 -- and a post-state.
3553
3554 Prag := Contract_Test_Cases (Items);
3555 while Present (Prag) loop
3556 if Pragma_Name (Prag) = Name_Contract_Cases
3557 and then not Error_Posted (Prag)
3558 then
3559 Case_Prag := Prag;
3560 Check_Result_And_Post_State_In_Pragma (Prag, Seen_In_Case);
3561 end if;
3562
3563 Prag := Next_Pragma (Prag);
3564 end loop;
3565
3566 -- Do not emit any errors if the subprogram is not a function
3567
3568 if not Ekind_In (Spec_Id, E_Function, E_Generic_Function) then
3569 null;
3570
3571 -- Regardless of whether the function has postconditions or contract
3572 -- cases, or whether they mention attribute 'Result, an IN OUT formal
3573 -- parameter is always treated as a result.
3574
3575 elsif Has_In_Out_Parameter (Spec_Id) then
3576 null;
3577
3578 -- The function has both a postcondition and contract cases and they do
3579 -- not mention attribute 'Result.
3580
3581 elsif Present (Case_Prag)
3582 and then not Seen_In_Case
3583 and then Present (Post_Prag)
3584 and then not Seen_In_Post
3585 then
3586 Error_Msg_N
3587 ("neither postcondition nor contract cases mention function "
3588 & "result?T?", Post_Prag);
3589
3590 -- The function has contract cases only and they do not mention
3591 -- attribute 'Result.
3592
3593 elsif Present (Case_Prag) and then not Seen_In_Case then
3594 Error_Msg_N ("contract cases do not mention result?T?", Case_Prag);
3595
3596 -- The function has postconditions only and they do not mention
3597 -- attribute 'Result.
3598
3599 elsif Present (Post_Prag) and then not Seen_In_Post then
3600 Error_Msg_N
3601 ("postcondition does not mention function result?T?", Post_Prag);
3602 end if;
3603 end Check_Result_And_Post_State;
3604
3605 ------------------------------
3606 -- Check_Unprotected_Access --
3607 ------------------------------
3608
3609 procedure Check_Unprotected_Access
3610 (Context : Node_Id;
3611 Expr : Node_Id)
3612 is
3613 Cont_Encl_Typ : Entity_Id;
3614 Pref_Encl_Typ : Entity_Id;
3615
3616 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
3617 -- Check whether Obj is a private component of a protected object.
3618 -- Return the protected type where the component resides, Empty
3619 -- otherwise.
3620
3621 function Is_Public_Operation return Boolean;
3622 -- Verify that the enclosing operation is callable from outside the
3623 -- protected object, to minimize false positives.
3624
3625 ------------------------------
3626 -- Enclosing_Protected_Type --
3627 ------------------------------
3628
3629 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
3630 begin
3631 if Is_Entity_Name (Obj) then
3632 declare
3633 Ent : Entity_Id := Entity (Obj);
3634
3635 begin
3636 -- The object can be a renaming of a private component, use
3637 -- the original record component.
3638
3639 if Is_Prival (Ent) then
3640 Ent := Prival_Link (Ent);
3641 end if;
3642
3643 if Is_Protected_Type (Scope (Ent)) then
3644 return Scope (Ent);
3645 end if;
3646 end;
3647 end if;
3648
3649 -- For indexed and selected components, recursively check the prefix
3650
3651 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
3652 return Enclosing_Protected_Type (Prefix (Obj));
3653
3654 -- The object does not denote a protected component
3655
3656 else
3657 return Empty;
3658 end if;
3659 end Enclosing_Protected_Type;
3660
3661 -------------------------
3662 -- Is_Public_Operation --
3663 -------------------------
3664
3665 function Is_Public_Operation return Boolean is
3666 S : Entity_Id;
3667 E : Entity_Id;
3668
3669 begin
3670 S := Current_Scope;
3671 while Present (S) and then S /= Pref_Encl_Typ loop
3672 if Scope (S) = Pref_Encl_Typ then
3673 E := First_Entity (Pref_Encl_Typ);
3674 while Present (E)
3675 and then E /= First_Private_Entity (Pref_Encl_Typ)
3676 loop
3677 if E = S then
3678 return True;
3679 end if;
3680
3681 Next_Entity (E);
3682 end loop;
3683 end if;
3684
3685 S := Scope (S);
3686 end loop;
3687
3688 return False;
3689 end Is_Public_Operation;
3690
3691 -- Start of processing for Check_Unprotected_Access
3692
3693 begin
3694 if Nkind (Expr) = N_Attribute_Reference
3695 and then Attribute_Name (Expr) = Name_Unchecked_Access
3696 then
3697 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
3698 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
3699
3700 -- Check whether we are trying to export a protected component to a
3701 -- context with an equal or lower access level.
3702
3703 if Present (Pref_Encl_Typ)
3704 and then No (Cont_Encl_Typ)
3705 and then Is_Public_Operation
3706 and then Scope_Depth (Pref_Encl_Typ) >=
3707 Object_Access_Level (Context)
3708 then
3709 Error_Msg_N
3710 ("??possible unprotected access to protected data", Expr);
3711 end if;
3712 end if;
3713 end Check_Unprotected_Access;
3714
3715 ------------------------------
3716 -- Check_Unused_Body_States --
3717 ------------------------------
3718
3719 procedure Check_Unused_Body_States (Body_Id : Entity_Id) is
3720 procedure Process_Refinement_Clause
3721 (Clause : Node_Id;
3722 States : Elist_Id);
3723 -- Inspect all constituents of refinement clause Clause and remove any
3724 -- matches from body state list States.
3725
3726 procedure Report_Unused_Body_States (States : Elist_Id);
3727 -- Emit errors for each abstract state or object found in list States
3728
3729 -------------------------------
3730 -- Process_Refinement_Clause --
3731 -------------------------------
3732
3733 procedure Process_Refinement_Clause
3734 (Clause : Node_Id;
3735 States : Elist_Id)
3736 is
3737 procedure Process_Constituent (Constit : Node_Id);
3738 -- Remove constituent Constit from body state list States
3739
3740 -------------------------
3741 -- Process_Constituent --
3742 -------------------------
3743
3744 procedure Process_Constituent (Constit : Node_Id) is
3745 Constit_Id : Entity_Id;
3746
3747 begin
3748 -- Guard against illegal constituents. Only abstract states and
3749 -- objects can appear on the right hand side of a refinement.
3750
3751 if Is_Entity_Name (Constit) then
3752 Constit_Id := Entity_Of (Constit);
3753
3754 if Present (Constit_Id)
3755 and then Ekind_In (Constit_Id, E_Abstract_State,
3756 E_Constant,
3757 E_Variable)
3758 then
3759 Remove (States, Constit_Id);
3760 end if;
3761 end if;
3762 end Process_Constituent;
3763
3764 -- Local variables
3765
3766 Constit : Node_Id;
3767
3768 -- Start of processing for Process_Refinement_Clause
3769
3770 begin
3771 if Nkind (Clause) = N_Component_Association then
3772 Constit := Expression (Clause);
3773
3774 -- Multiple constituents appear as an aggregate
3775
3776 if Nkind (Constit) = N_Aggregate then
3777 Constit := First (Expressions (Constit));
3778 while Present (Constit) loop
3779 Process_Constituent (Constit);
3780 Next (Constit);
3781 end loop;
3782
3783 -- Various forms of a single constituent
3784
3785 else
3786 Process_Constituent (Constit);
3787 end if;
3788 end if;
3789 end Process_Refinement_Clause;
3790
3791 -------------------------------
3792 -- Report_Unused_Body_States --
3793 -------------------------------
3794
3795 procedure Report_Unused_Body_States (States : Elist_Id) is
3796 Posted : Boolean := False;
3797 State_Elmt : Elmt_Id;
3798 State_Id : Entity_Id;
3799
3800 begin
3801 if Present (States) then
3802 State_Elmt := First_Elmt (States);
3803 while Present (State_Elmt) loop
3804 State_Id := Node (State_Elmt);
3805
3806 -- Constants are part of the hidden state of a package, but the
3807 -- compiler cannot determine whether they have variable input
3808 -- (SPARK RM 7.1.1(2)) and cannot classify them properly as a
3809 -- hidden state. Do not emit an error when a constant does not
3810 -- participate in a state refinement, even though it acts as a
3811 -- hidden state.
3812
3813 if Ekind (State_Id) = E_Constant then
3814 null;
3815
3816 -- Generate an error message of the form:
3817
3818 -- body of package ... has unused hidden states
3819 -- abstract state ... defined at ...
3820 -- variable ... defined at ...
3821
3822 else
3823 if not Posted then
3824 Posted := True;
3825 SPARK_Msg_N
3826 ("body of package & has unused hidden states", Body_Id);
3827 end if;
3828
3829 Error_Msg_Sloc := Sloc (State_Id);
3830
3831 if Ekind (State_Id) = E_Abstract_State then
3832 SPARK_Msg_NE
3833 ("\abstract state & defined #", Body_Id, State_Id);
3834
3835 else
3836 SPARK_Msg_NE ("\variable & defined #", Body_Id, State_Id);
3837 end if;
3838 end if;
3839
3840 Next_Elmt (State_Elmt);
3841 end loop;
3842 end if;
3843 end Report_Unused_Body_States;
3844
3845 -- Local variables
3846
3847 Prag : constant Node_Id := Get_Pragma (Body_Id, Pragma_Refined_State);
3848 Spec_Id : constant Entity_Id := Spec_Entity (Body_Id);
3849 Clause : Node_Id;
3850 States : Elist_Id;
3851
3852 -- Start of processing for Check_Unused_Body_States
3853
3854 begin
3855 -- Inspect the clauses of pragma Refined_State and determine whether all
3856 -- visible states declared within the package body participate in the
3857 -- refinement.
3858
3859 if Present (Prag) then
3860 Clause := Expression (Get_Argument (Prag, Spec_Id));
3861 States := Collect_Body_States (Body_Id);
3862
3863 -- Multiple non-null state refinements appear as an aggregate
3864
3865 if Nkind (Clause) = N_Aggregate then
3866 Clause := First (Component_Associations (Clause));
3867 while Present (Clause) loop
3868 Process_Refinement_Clause (Clause, States);
3869 Next (Clause);
3870 end loop;
3871
3872 -- Various forms of a single state refinement
3873
3874 else
3875 Process_Refinement_Clause (Clause, States);
3876 end if;
3877
3878 -- Ensure that all abstract states and objects declared in the
3879 -- package body state space are utilized as constituents.
3880
3881 Report_Unused_Body_States (States);
3882 end if;
3883 end Check_Unused_Body_States;
3884
3885 -------------------------
3886 -- Collect_Body_States --
3887 -------------------------
3888
3889 function Collect_Body_States (Body_Id : Entity_Id) return Elist_Id is
3890 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean;
3891 -- Determine whether object Obj_Id is a suitable visible state of a
3892 -- package body.
3893
3894 procedure Collect_Visible_States
3895 (Pack_Id : Entity_Id;
3896 States : in out Elist_Id);
3897 -- Gather the entities of all abstract states and objects declared in
3898 -- the visible state space of package Pack_Id.
3899
3900 ----------------------------
3901 -- Collect_Visible_States --
3902 ----------------------------
3903
3904 procedure Collect_Visible_States
3905 (Pack_Id : Entity_Id;
3906 States : in out Elist_Id)
3907 is
3908 Item_Id : Entity_Id;
3909
3910 begin
3911 -- Traverse the entity chain of the package and inspect all visible
3912 -- items.
3913
3914 Item_Id := First_Entity (Pack_Id);
3915 while Present (Item_Id) and then not In_Private_Part (Item_Id) loop
3916
3917 -- Do not consider internally generated items as those cannot be
3918 -- named and participate in refinement.
3919
3920 if not Comes_From_Source (Item_Id) then
3921 null;
3922
3923 elsif Ekind (Item_Id) = E_Abstract_State then
3924 Append_New_Elmt (Item_Id, States);
3925
3926 elsif Ekind_In (Item_Id, E_Constant, E_Variable)
3927 and then Is_Visible_Object (Item_Id)
3928 then
3929 Append_New_Elmt (Item_Id, States);
3930
3931 -- Recursively gather the visible states of a nested package
3932
3933 elsif Ekind (Item_Id) = E_Package then
3934 Collect_Visible_States (Item_Id, States);
3935 end if;
3936
3937 Next_Entity (Item_Id);
3938 end loop;
3939 end Collect_Visible_States;
3940
3941 -----------------------
3942 -- Is_Visible_Object --
3943 -----------------------
3944
3945 function Is_Visible_Object (Obj_Id : Entity_Id) return Boolean is
3946 begin
3947 -- Objects that map generic formals to their actuals are not visible
3948 -- from outside the generic instantiation.
3949
3950 if Present (Corresponding_Generic_Association
3951 (Declaration_Node (Obj_Id)))
3952 then
3953 return False;
3954
3955 -- Constituents of a single protected/task type act as components of
3956 -- the type and are not visible from outside the type.
3957
3958 elsif Ekind (Obj_Id) = E_Variable
3959 and then Present (Encapsulating_State (Obj_Id))
3960 and then Is_Single_Concurrent_Object (Encapsulating_State (Obj_Id))
3961 then
3962 return False;
3963
3964 else
3965 return True;
3966 end if;
3967 end Is_Visible_Object;
3968
3969 -- Local variables
3970
3971 Body_Decl : constant Node_Id := Unit_Declaration_Node (Body_Id);
3972 Decl : Node_Id;
3973 Item_Id : Entity_Id;
3974 States : Elist_Id := No_Elist;
3975
3976 -- Start of processing for Collect_Body_States
3977
3978 begin
3979 -- Inspect the declarations of the body looking for source objects,
3980 -- packages and package instantiations. Note that even though this
3981 -- processing is very similar to Collect_Visible_States, a package
3982 -- body does not have a First/Next_Entity list.
3983
3984 Decl := First (Declarations (Body_Decl));
3985 while Present (Decl) loop
3986
3987 -- Capture source objects as internally generated temporaries cannot
3988 -- be named and participate in refinement.
3989
3990 if Nkind (Decl) = N_Object_Declaration then
3991 Item_Id := Defining_Entity (Decl);
3992
3993 if Comes_From_Source (Item_Id)
3994 and then Is_Visible_Object (Item_Id)
3995 then
3996 Append_New_Elmt (Item_Id, States);
3997 end if;
3998
3999 -- Capture the visible abstract states and objects of a source
4000 -- package [instantiation].
4001
4002 elsif Nkind (Decl) = N_Package_Declaration then
4003 Item_Id := Defining_Entity (Decl);
4004
4005 if Comes_From_Source (Item_Id) then
4006 Collect_Visible_States (Item_Id, States);
4007 end if;
4008 end if;
4009
4010 Next (Decl);
4011 end loop;
4012
4013 return States;
4014 end Collect_Body_States;
4015
4016 ------------------------
4017 -- Collect_Interfaces --
4018 ------------------------
4019
4020 procedure Collect_Interfaces
4021 (T : Entity_Id;
4022 Ifaces_List : out Elist_Id;
4023 Exclude_Parents : Boolean := False;
4024 Use_Full_View : Boolean := True)
4025 is
4026 procedure Collect (Typ : Entity_Id);
4027 -- Subsidiary subprogram used to traverse the whole list
4028 -- of directly and indirectly implemented interfaces
4029
4030 -------------
4031 -- Collect --
4032 -------------
4033
4034 procedure Collect (Typ : Entity_Id) is
4035 Ancestor : Entity_Id;
4036 Full_T : Entity_Id;
4037 Id : Node_Id;
4038 Iface : Entity_Id;
4039
4040 begin
4041 Full_T := Typ;
4042
4043 -- Handle private types and subtypes
4044
4045 if Use_Full_View
4046 and then Is_Private_Type (Typ)
4047 and then Present (Full_View (Typ))
4048 then
4049 Full_T := Full_View (Typ);
4050
4051 if Ekind (Full_T) = E_Record_Subtype then
4052 Full_T := Full_View (Etype (Typ));
4053 end if;
4054 end if;
4055
4056 -- Include the ancestor if we are generating the whole list of
4057 -- abstract interfaces.
4058
4059 if Etype (Full_T) /= Typ
4060
4061 -- Protect the frontend against wrong sources. For example:
4062
4063 -- package P is
4064 -- type A is tagged null record;
4065 -- type B is new A with private;
4066 -- type C is new A with private;
4067 -- private
4068 -- type B is new C with null record;
4069 -- type C is new B with null record;
4070 -- end P;
4071
4072 and then Etype (Full_T) /= T
4073 then
4074 Ancestor := Etype (Full_T);
4075 Collect (Ancestor);
4076
4077 if Is_Interface (Ancestor) and then not Exclude_Parents then
4078 Append_Unique_Elmt (Ancestor, Ifaces_List);
4079 end if;
4080 end if;
4081
4082 -- Traverse the graph of ancestor interfaces
4083
4084 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
4085 Id := First (Abstract_Interface_List (Full_T));
4086 while Present (Id) loop
4087 Iface := Etype (Id);
4088
4089 -- Protect against wrong uses. For example:
4090 -- type I is interface;
4091 -- type O is tagged null record;
4092 -- type Wrong is new I and O with null record; -- ERROR
4093
4094 if Is_Interface (Iface) then
4095 if Exclude_Parents
4096 and then Etype (T) /= T
4097 and then Interface_Present_In_Ancestor (Etype (T), Iface)
4098 then
4099 null;
4100 else
4101 Collect (Iface);
4102 Append_Unique_Elmt (Iface, Ifaces_List);
4103 end if;
4104 end if;
4105
4106 Next (Id);
4107 end loop;
4108 end if;
4109 end Collect;
4110
4111 -- Start of processing for Collect_Interfaces
4112
4113 begin
4114 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
4115 Ifaces_List := New_Elmt_List;
4116 Collect (T);
4117 end Collect_Interfaces;
4118
4119 ----------------------------------
4120 -- Collect_Interface_Components --
4121 ----------------------------------
4122
4123 procedure Collect_Interface_Components
4124 (Tagged_Type : Entity_Id;
4125 Components_List : out Elist_Id)
4126 is
4127 procedure Collect (Typ : Entity_Id);
4128 -- Subsidiary subprogram used to climb to the parents
4129
4130 -------------
4131 -- Collect --
4132 -------------
4133
4134 procedure Collect (Typ : Entity_Id) is
4135 Tag_Comp : Entity_Id;
4136 Parent_Typ : Entity_Id;
4137
4138 begin
4139 -- Handle private types
4140
4141 if Present (Full_View (Etype (Typ))) then
4142 Parent_Typ := Full_View (Etype (Typ));
4143 else
4144 Parent_Typ := Etype (Typ);
4145 end if;
4146
4147 if Parent_Typ /= Typ
4148
4149 -- Protect the frontend against wrong sources. For example:
4150
4151 -- package P is
4152 -- type A is tagged null record;
4153 -- type B is new A with private;
4154 -- type C is new A with private;
4155 -- private
4156 -- type B is new C with null record;
4157 -- type C is new B with null record;
4158 -- end P;
4159
4160 and then Parent_Typ /= Tagged_Type
4161 then
4162 Collect (Parent_Typ);
4163 end if;
4164
4165 -- Collect the components containing tags of secondary dispatch
4166 -- tables.
4167
4168 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
4169 while Present (Tag_Comp) loop
4170 pragma Assert (Present (Related_Type (Tag_Comp)));
4171 Append_Elmt (Tag_Comp, Components_List);
4172
4173 Tag_Comp := Next_Tag_Component (Tag_Comp);
4174 end loop;
4175 end Collect;
4176
4177 -- Start of processing for Collect_Interface_Components
4178
4179 begin
4180 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
4181 and then Is_Tagged_Type (Tagged_Type));
4182
4183 Components_List := New_Elmt_List;
4184 Collect (Tagged_Type);
4185 end Collect_Interface_Components;
4186
4187 -----------------------------
4188 -- Collect_Interfaces_Info --
4189 -----------------------------
4190
4191 procedure Collect_Interfaces_Info
4192 (T : Entity_Id;
4193 Ifaces_List : out Elist_Id;
4194 Components_List : out Elist_Id;
4195 Tags_List : out Elist_Id)
4196 is
4197 Comps_List : Elist_Id;
4198 Comp_Elmt : Elmt_Id;
4199 Comp_Iface : Entity_Id;
4200 Iface_Elmt : Elmt_Id;
4201 Iface : Entity_Id;
4202
4203 function Search_Tag (Iface : Entity_Id) return Entity_Id;
4204 -- Search for the secondary tag associated with the interface type
4205 -- Iface that is implemented by T.
4206
4207 ----------------
4208 -- Search_Tag --
4209 ----------------
4210
4211 function Search_Tag (Iface : Entity_Id) return Entity_Id is
4212 ADT : Elmt_Id;
4213 begin
4214 if not Is_CPP_Class (T) then
4215 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
4216 else
4217 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
4218 end if;
4219
4220 while Present (ADT)
4221 and then Is_Tag (Node (ADT))
4222 and then Related_Type (Node (ADT)) /= Iface
4223 loop
4224 -- Skip secondary dispatch table referencing thunks to user
4225 -- defined primitives covered by this interface.
4226
4227 pragma Assert (Has_Suffix (Node (ADT), 'P'));
4228 Next_Elmt (ADT);
4229
4230 -- Skip secondary dispatch tables of Ada types
4231
4232 if not Is_CPP_Class (T) then
4233
4234 -- Skip secondary dispatch table referencing thunks to
4235 -- predefined primitives.
4236
4237 pragma Assert (Has_Suffix (Node (ADT), 'Y'));
4238 Next_Elmt (ADT);
4239
4240 -- Skip secondary dispatch table referencing user-defined
4241 -- primitives covered by this interface.
4242
4243 pragma Assert (Has_Suffix (Node (ADT), 'D'));
4244 Next_Elmt (ADT);
4245
4246 -- Skip secondary dispatch table referencing predefined
4247 -- primitives.
4248
4249 pragma Assert (Has_Suffix (Node (ADT), 'Z'));
4250 Next_Elmt (ADT);
4251 end if;
4252 end loop;
4253
4254 pragma Assert (Is_Tag (Node (ADT)));
4255 return Node (ADT);
4256 end Search_Tag;
4257
4258 -- Start of processing for Collect_Interfaces_Info
4259
4260 begin
4261 Collect_Interfaces (T, Ifaces_List);
4262 Collect_Interface_Components (T, Comps_List);
4263
4264 -- Search for the record component and tag associated with each
4265 -- interface type of T.
4266
4267 Components_List := New_Elmt_List;
4268 Tags_List := New_Elmt_List;
4269
4270 Iface_Elmt := First_Elmt (Ifaces_List);
4271 while Present (Iface_Elmt) loop
4272 Iface := Node (Iface_Elmt);
4273
4274 -- Associate the primary tag component and the primary dispatch table
4275 -- with all the interfaces that are parents of T
4276
4277 if Is_Ancestor (Iface, T, Use_Full_View => True) then
4278 Append_Elmt (First_Tag_Component (T), Components_List);
4279 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
4280
4281 -- Otherwise search for the tag component and secondary dispatch
4282 -- table of Iface
4283
4284 else
4285 Comp_Elmt := First_Elmt (Comps_List);
4286 while Present (Comp_Elmt) loop
4287 Comp_Iface := Related_Type (Node (Comp_Elmt));
4288
4289 if Comp_Iface = Iface
4290 or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
4291 then
4292 Append_Elmt (Node (Comp_Elmt), Components_List);
4293 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
4294 exit;
4295 end if;
4296
4297 Next_Elmt (Comp_Elmt);
4298 end loop;
4299 pragma Assert (Present (Comp_Elmt));
4300 end if;
4301
4302 Next_Elmt (Iface_Elmt);
4303 end loop;
4304 end Collect_Interfaces_Info;
4305
4306 ---------------------
4307 -- Collect_Parents --
4308 ---------------------
4309
4310 procedure Collect_Parents
4311 (T : Entity_Id;
4312 List : out Elist_Id;
4313 Use_Full_View : Boolean := True)
4314 is
4315 Current_Typ : Entity_Id := T;
4316 Parent_Typ : Entity_Id;
4317
4318 begin
4319 List := New_Elmt_List;
4320
4321 -- No action if the if the type has no parents
4322
4323 if T = Etype (T) then
4324 return;
4325 end if;
4326
4327 loop
4328 Parent_Typ := Etype (Current_Typ);
4329
4330 if Is_Private_Type (Parent_Typ)
4331 and then Present (Full_View (Parent_Typ))
4332 and then Use_Full_View
4333 then
4334 Parent_Typ := Full_View (Base_Type (Parent_Typ));
4335 end if;
4336
4337 Append_Elmt (Parent_Typ, List);
4338
4339 exit when Parent_Typ = Current_Typ;
4340 Current_Typ := Parent_Typ;
4341 end loop;
4342 end Collect_Parents;
4343
4344 ----------------------------------
4345 -- Collect_Primitive_Operations --
4346 ----------------------------------
4347
4348 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
4349 B_Type : constant Entity_Id := Base_Type (T);
4350 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
4351 B_Scope : Entity_Id := Scope (B_Type);
4352 Op_List : Elist_Id;
4353 Formal : Entity_Id;
4354 Is_Prim : Boolean;
4355 Is_Type_In_Pkg : Boolean;
4356 Formal_Derived : Boolean := False;
4357 Id : Entity_Id;
4358
4359 function Match (E : Entity_Id) return Boolean;
4360 -- True if E's base type is B_Type, or E is of an anonymous access type
4361 -- and the base type of its designated type is B_Type.
4362
4363 -----------
4364 -- Match --
4365 -----------
4366
4367 function Match (E : Entity_Id) return Boolean is
4368 Etyp : Entity_Id := Etype (E);
4369
4370 begin
4371 if Ekind (Etyp) = E_Anonymous_Access_Type then
4372 Etyp := Designated_Type (Etyp);
4373 end if;
4374
4375 -- In Ada 2012 a primitive operation may have a formal of an
4376 -- incomplete view of the parent type.
4377
4378 return Base_Type (Etyp) = B_Type
4379 or else
4380 (Ada_Version >= Ada_2012
4381 and then Ekind (Etyp) = E_Incomplete_Type
4382 and then Full_View (Etyp) = B_Type);
4383 end Match;
4384
4385 -- Start of processing for Collect_Primitive_Operations
4386
4387 begin
4388 -- For tagged types, the primitive operations are collected as they
4389 -- are declared, and held in an explicit list which is simply returned.
4390
4391 if Is_Tagged_Type (B_Type) then
4392 return Primitive_Operations (B_Type);
4393
4394 -- An untagged generic type that is a derived type inherits the
4395 -- primitive operations of its parent type. Other formal types only
4396 -- have predefined operators, which are not explicitly represented.
4397
4398 elsif Is_Generic_Type (B_Type) then
4399 if Nkind (B_Decl) = N_Formal_Type_Declaration
4400 and then Nkind (Formal_Type_Definition (B_Decl)) =
4401 N_Formal_Derived_Type_Definition
4402 then
4403 Formal_Derived := True;
4404 else
4405 return New_Elmt_List;
4406 end if;
4407 end if;
4408
4409 Op_List := New_Elmt_List;
4410
4411 if B_Scope = Standard_Standard then
4412 if B_Type = Standard_String then
4413 Append_Elmt (Standard_Op_Concat, Op_List);
4414
4415 elsif B_Type = Standard_Wide_String then
4416 Append_Elmt (Standard_Op_Concatw, Op_List);
4417
4418 else
4419 null;
4420 end if;
4421
4422 -- Locate the primitive subprograms of the type
4423
4424 else
4425 -- The primitive operations appear after the base type, except
4426 -- if the derivation happens within the private part of B_Scope
4427 -- and the type is a private type, in which case both the type
4428 -- and some primitive operations may appear before the base
4429 -- type, and the list of candidates starts after the type.
4430
4431 if In_Open_Scopes (B_Scope)
4432 and then Scope (T) = B_Scope
4433 and then In_Private_Part (B_Scope)
4434 then
4435 Id := Next_Entity (T);
4436
4437 -- In Ada 2012, If the type has an incomplete partial view, there
4438 -- may be primitive operations declared before the full view, so
4439 -- we need to start scanning from the incomplete view, which is
4440 -- earlier on the entity chain.
4441
4442 elsif Nkind (Parent (B_Type)) = N_Full_Type_Declaration
4443 and then Present (Incomplete_View (Parent (B_Type)))
4444 then
4445 Id := Defining_Entity (Incomplete_View (Parent (B_Type)));
4446
4447 -- If T is a derived from a type with an incomplete view declared
4448 -- elsewhere, that incomplete view is irrelevant, we want the
4449 -- operations in the scope of T.
4450
4451 if Scope (Id) /= Scope (B_Type) then
4452 Id := Next_Entity (B_Type);
4453 end if;
4454
4455 else
4456 Id := Next_Entity (B_Type);
4457 end if;
4458
4459 -- Set flag if this is a type in a package spec
4460
4461 Is_Type_In_Pkg :=
4462 Is_Package_Or_Generic_Package (B_Scope)
4463 and then
4464 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
4465 N_Package_Body;
4466
4467 while Present (Id) loop
4468
4469 -- Test whether the result type or any of the parameter types of
4470 -- each subprogram following the type match that type when the
4471 -- type is declared in a package spec, is a derived type, or the
4472 -- subprogram is marked as primitive. (The Is_Primitive test is
4473 -- needed to find primitives of nonderived types in declarative
4474 -- parts that happen to override the predefined "=" operator.)
4475
4476 -- Note that generic formal subprograms are not considered to be
4477 -- primitive operations and thus are never inherited.
4478
4479 if Is_Overloadable (Id)
4480 and then (Is_Type_In_Pkg
4481 or else Is_Derived_Type (B_Type)
4482 or else Is_Primitive (Id))
4483 and then Nkind (Parent (Parent (Id)))
4484 not in N_Formal_Subprogram_Declaration
4485 then
4486 Is_Prim := False;
4487
4488 if Match (Id) then
4489 Is_Prim := True;
4490
4491 else
4492 Formal := First_Formal (Id);
4493 while Present (Formal) loop
4494 if Match (Formal) then
4495 Is_Prim := True;
4496 exit;
4497 end if;
4498
4499 Next_Formal (Formal);
4500 end loop;
4501 end if;
4502
4503 -- For a formal derived type, the only primitives are the ones
4504 -- inherited from the parent type. Operations appearing in the
4505 -- package declaration are not primitive for it.
4506
4507 if Is_Prim
4508 and then (not Formal_Derived or else Present (Alias (Id)))
4509 then
4510 -- In the special case of an equality operator aliased to
4511 -- an overriding dispatching equality belonging to the same
4512 -- type, we don't include it in the list of primitives.
4513 -- This avoids inheriting multiple equality operators when
4514 -- deriving from untagged private types whose full type is
4515 -- tagged, which can otherwise cause ambiguities. Note that
4516 -- this should only happen for this kind of untagged parent
4517 -- type, since normally dispatching operations are inherited
4518 -- using the type's Primitive_Operations list.
4519
4520 if Chars (Id) = Name_Op_Eq
4521 and then Is_Dispatching_Operation (Id)
4522 and then Present (Alias (Id))
4523 and then Present (Overridden_Operation (Alias (Id)))
4524 and then Base_Type (Etype (First_Entity (Id))) =
4525 Base_Type (Etype (First_Entity (Alias (Id))))
4526 then
4527 null;
4528
4529 -- Include the subprogram in the list of primitives
4530
4531 else
4532 Append_Elmt (Id, Op_List);
4533 end if;
4534 end if;
4535 end if;
4536
4537 Next_Entity (Id);
4538
4539 -- For a type declared in System, some of its operations may
4540 -- appear in the target-specific extension to System.
4541
4542 if No (Id)
4543 and then B_Scope = RTU_Entity (System)
4544 and then Present_System_Aux
4545 then
4546 B_Scope := System_Aux_Id;
4547 Id := First_Entity (System_Aux_Id);
4548 end if;
4549 end loop;
4550 end if;
4551
4552 return Op_List;
4553 end Collect_Primitive_Operations;
4554
4555 -----------------------------------
4556 -- Compile_Time_Constraint_Error --
4557 -----------------------------------
4558
4559 function Compile_Time_Constraint_Error
4560 (N : Node_Id;
4561 Msg : String;
4562 Ent : Entity_Id := Empty;
4563 Loc : Source_Ptr := No_Location;
4564 Warn : Boolean := False) return Node_Id
4565 is
4566 Msgc : String (1 .. Msg'Length + 3);
4567 -- Copy of message, with room for possible ?? or << and ! at end
4568
4569 Msgl : Natural;
4570 Wmsg : Boolean;
4571 Eloc : Source_Ptr;
4572
4573 -- Start of processing for Compile_Time_Constraint_Error
4574
4575 begin
4576 -- If this is a warning, convert it into an error if we are in code
4577 -- subject to SPARK_Mode being set ON.
4578
4579 Error_Msg_Warn := SPARK_Mode /= On;
4580
4581 -- A static constraint error in an instance body is not a fatal error.
4582 -- we choose to inhibit the message altogether, because there is no
4583 -- obvious node (for now) on which to post it. On the other hand the
4584 -- offending node must be replaced with a constraint_error in any case.
4585
4586 -- No messages are generated if we already posted an error on this node
4587
4588 if not Error_Posted (N) then
4589 if Loc /= No_Location then
4590 Eloc := Loc;
4591 else
4592 Eloc := Sloc (N);
4593 end if;
4594
4595 -- Copy message to Msgc, converting any ? in the message into
4596 -- < instead, so that we have an error in GNATprove mode.
4597
4598 Msgl := Msg'Length;
4599
4600 for J in 1 .. Msgl loop
4601 if Msg (J) = '?' and then (J = 1 or else Msg (J) /= ''') then
4602 Msgc (J) := '<';
4603 else
4604 Msgc (J) := Msg (J);
4605 end if;
4606 end loop;
4607
4608 -- Message is a warning, even in Ada 95 case
4609
4610 if Msg (Msg'Last) = '?' or else Msg (Msg'Last) = '<' then
4611 Wmsg := True;
4612
4613 -- In Ada 83, all messages are warnings. In the private part and
4614 -- the body of an instance, constraint_checks are only warnings.
4615 -- We also make this a warning if the Warn parameter is set.
4616
4617 elsif Warn
4618 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
4619 then
4620 Msgl := Msgl + 1;
4621 Msgc (Msgl) := '<';
4622 Msgl := Msgl + 1;
4623 Msgc (Msgl) := '<';
4624 Wmsg := True;
4625
4626 elsif In_Instance_Not_Visible then
4627 Msgl := Msgl + 1;
4628 Msgc (Msgl) := '<';
4629 Msgl := Msgl + 1;
4630 Msgc (Msgl) := '<';
4631 Wmsg := True;
4632
4633 -- Otherwise we have a real error message (Ada 95 static case)
4634 -- and we make this an unconditional message. Note that in the
4635 -- warning case we do not make the message unconditional, it seems
4636 -- quite reasonable to delete messages like this (about exceptions
4637 -- that will be raised) in dead code.
4638
4639 else
4640 Wmsg := False;
4641 Msgl := Msgl + 1;
4642 Msgc (Msgl) := '!';
4643 end if;
4644
4645 -- One more test, skip the warning if the related expression is
4646 -- statically unevaluated, since we don't want to warn about what
4647 -- will happen when something is evaluated if it never will be
4648 -- evaluated.
4649
4650 if not Is_Statically_Unevaluated (N) then
4651 Error_Msg_Warn := SPARK_Mode /= On;
4652
4653 if Present (Ent) then
4654 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
4655 else
4656 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
4657 end if;
4658
4659 if Wmsg then
4660
4661 -- Check whether the context is an Init_Proc
4662
4663 if Inside_Init_Proc then
4664 declare
4665 Conc_Typ : constant Entity_Id :=
4666 Corresponding_Concurrent_Type
4667 (Entity (Parameter_Type (First
4668 (Parameter_Specifications
4669 (Parent (Current_Scope))))));
4670
4671 begin
4672 -- Don't complain if the corresponding concurrent type
4673 -- doesn't come from source (i.e. a single task/protected
4674 -- object).
4675
4676 if Present (Conc_Typ)
4677 and then not Comes_From_Source (Conc_Typ)
4678 then
4679 Error_Msg_NEL
4680 ("\& [<<", N, Standard_Constraint_Error, Eloc);
4681
4682 else
4683 if GNATprove_Mode then
4684 Error_Msg_NEL
4685 ("\& would have been raised for objects of this "
4686 & "type", N, Standard_Constraint_Error, Eloc);
4687 else
4688 Error_Msg_NEL
4689 ("\& will be raised for objects of this type??",
4690 N, Standard_Constraint_Error, Eloc);
4691 end if;
4692 end if;
4693 end;
4694
4695 else
4696 Error_Msg_NEL ("\& [<<", N, Standard_Constraint_Error, Eloc);
4697 end if;
4698
4699 else
4700 Error_Msg ("\static expression fails Constraint_Check", Eloc);
4701 Set_Error_Posted (N);
4702 end if;
4703 end if;
4704 end if;
4705
4706 return N;
4707 end Compile_Time_Constraint_Error;
4708
4709 -----------------------
4710 -- Conditional_Delay --
4711 -----------------------
4712
4713 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
4714 begin
4715 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
4716 Set_Has_Delayed_Freeze (New_Ent);
4717 end if;
4718 end Conditional_Delay;
4719
4720 ----------------------------
4721 -- Contains_Refined_State --
4722 ----------------------------
4723
4724 function Contains_Refined_State (Prag : Node_Id) return Boolean is
4725 function Has_State_In_Dependency (List : Node_Id) return Boolean;
4726 -- Determine whether a dependency list mentions a state with a visible
4727 -- refinement.
4728
4729 function Has_State_In_Global (List : Node_Id) return Boolean;
4730 -- Determine whether a global list mentions a state with a visible
4731 -- refinement.
4732
4733 function Is_Refined_State (Item : Node_Id) return Boolean;
4734 -- Determine whether Item is a reference to an abstract state with a
4735 -- visible refinement.
4736
4737 -----------------------------
4738 -- Has_State_In_Dependency --
4739 -----------------------------
4740
4741 function Has_State_In_Dependency (List : Node_Id) return Boolean is
4742 Clause : Node_Id;
4743 Output : Node_Id;
4744
4745 begin
4746 -- A null dependency list does not mention any states
4747
4748 if Nkind (List) = N_Null then
4749 return False;
4750
4751 -- Dependency clauses appear as component associations of an
4752 -- aggregate.
4753
4754 elsif Nkind (List) = N_Aggregate
4755 and then Present (Component_Associations (List))
4756 then
4757 Clause := First (Component_Associations (List));
4758 while Present (Clause) loop
4759
4760 -- Inspect the outputs of a dependency clause
4761
4762 Output := First (Choices (Clause));
4763 while Present (Output) loop
4764 if Is_Refined_State (Output) then
4765 return True;
4766 end if;
4767
4768 Next (Output);
4769 end loop;
4770
4771 -- Inspect the outputs of a dependency clause
4772
4773 if Is_Refined_State (Expression (Clause)) then
4774 return True;
4775 end if;
4776
4777 Next (Clause);
4778 end loop;
4779
4780 -- If we get here, then none of the dependency clauses mention a
4781 -- state with visible refinement.
4782
4783 return False;
4784
4785 -- An illegal pragma managed to sneak in
4786
4787 else
4788 raise Program_Error;
4789 end if;
4790 end Has_State_In_Dependency;
4791
4792 -------------------------
4793 -- Has_State_In_Global --
4794 -------------------------
4795
4796 function Has_State_In_Global (List : Node_Id) return Boolean is
4797 Item : Node_Id;
4798
4799 begin
4800 -- A null global list does not mention any states
4801
4802 if Nkind (List) = N_Null then
4803 return False;
4804
4805 -- Simple global list or moded global list declaration
4806
4807 elsif Nkind (List) = N_Aggregate then
4808
4809 -- The declaration of a simple global list appear as a collection
4810 -- of expressions.
4811
4812 if Present (Expressions (List)) then
4813 Item := First (Expressions (List));
4814 while Present (Item) loop
4815 if Is_Refined_State (Item) then
4816 return True;
4817 end if;
4818
4819 Next (Item);
4820 end loop;
4821
4822 -- The declaration of a moded global list appears as a collection
4823 -- of component associations where individual choices denote
4824 -- modes.
4825
4826 else
4827 Item := First (Component_Associations (List));
4828 while Present (Item) loop
4829 if Has_State_In_Global (Expression (Item)) then
4830 return True;
4831 end if;
4832
4833 Next (Item);
4834 end loop;
4835 end if;
4836
4837 -- If we get here, then the simple/moded global list did not
4838 -- mention any states with a visible refinement.
4839
4840 return False;
4841
4842 -- Single global item declaration
4843
4844 elsif Is_Entity_Name (List) then
4845 return Is_Refined_State (List);
4846
4847 -- An illegal pragma managed to sneak in
4848
4849 else
4850 raise Program_Error;
4851 end if;
4852 end Has_State_In_Global;
4853
4854 ----------------------
4855 -- Is_Refined_State --
4856 ----------------------
4857
4858 function Is_Refined_State (Item : Node_Id) return Boolean is
4859 Elmt : Node_Id;
4860 Item_Id : Entity_Id;
4861
4862 begin
4863 if Nkind (Item) = N_Null then
4864 return False;
4865
4866 -- States cannot be subject to attribute 'Result. This case arises
4867 -- in dependency relations.
4868
4869 elsif Nkind (Item) = N_Attribute_Reference
4870 and then Attribute_Name (Item) = Name_Result
4871 then
4872 return False;
4873
4874 -- Multiple items appear as an aggregate. This case arises in
4875 -- dependency relations.
4876
4877 elsif Nkind (Item) = N_Aggregate
4878 and then Present (Expressions (Item))
4879 then
4880 Elmt := First (Expressions (Item));
4881 while Present (Elmt) loop
4882 if Is_Refined_State (Elmt) then
4883 return True;
4884 end if;
4885
4886 Next (Elmt);
4887 end loop;
4888
4889 -- If we get here, then none of the inputs or outputs reference a
4890 -- state with visible refinement.
4891
4892 return False;
4893
4894 -- Single item
4895
4896 else
4897 Item_Id := Entity_Of (Item);
4898
4899 return
4900 Present (Item_Id)
4901 and then Ekind (Item_Id) = E_Abstract_State
4902 and then Has_Visible_Refinement (Item_Id);
4903 end if;
4904 end Is_Refined_State;
4905
4906 -- Local variables
4907
4908 Arg : constant Node_Id :=
4909 Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
4910 Nam : constant Name_Id := Pragma_Name (Prag);
4911
4912 -- Start of processing for Contains_Refined_State
4913
4914 begin
4915 if Nam = Name_Depends then
4916 return Has_State_In_Dependency (Arg);
4917
4918 else pragma Assert (Nam = Name_Global);
4919 return Has_State_In_Global (Arg);
4920 end if;
4921 end Contains_Refined_State;
4922
4923 -------------------------
4924 -- Copy_Component_List --
4925 -------------------------
4926
4927 function Copy_Component_List
4928 (R_Typ : Entity_Id;
4929 Loc : Source_Ptr) return List_Id
4930 is
4931 Comp : Node_Id;
4932 Comps : constant List_Id := New_List;
4933
4934 begin
4935 Comp := First_Component (Underlying_Type (R_Typ));
4936 while Present (Comp) loop
4937 if Comes_From_Source (Comp) then
4938 declare
4939 Comp_Decl : constant Node_Id := Declaration_Node (Comp);
4940 begin
4941 Append_To (Comps,
4942 Make_Component_Declaration (Loc,
4943 Defining_Identifier =>
4944 Make_Defining_Identifier (Loc, Chars (Comp)),
4945 Component_Definition =>
4946 New_Copy_Tree
4947 (Component_Definition (Comp_Decl), New_Sloc => Loc)));
4948 end;
4949 end if;
4950
4951 Next_Component (Comp);
4952 end loop;
4953
4954 return Comps;
4955 end Copy_Component_List;
4956
4957 -------------------------
4958 -- Copy_Parameter_List --
4959 -------------------------
4960
4961 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
4962 Loc : constant Source_Ptr := Sloc (Subp_Id);
4963 Plist : List_Id;
4964 Formal : Entity_Id;
4965
4966 begin
4967 if No (First_Formal (Subp_Id)) then
4968 return No_List;
4969 else
4970 Plist := New_List;
4971 Formal := First_Formal (Subp_Id);
4972 while Present (Formal) loop
4973 Append_To (Plist,
4974 Make_Parameter_Specification (Loc,
4975 Defining_Identifier =>
4976 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
4977 In_Present => In_Present (Parent (Formal)),
4978 Out_Present => Out_Present (Parent (Formal)),
4979 Parameter_Type =>
4980 New_Occurrence_Of (Etype (Formal), Loc),
4981 Expression =>
4982 New_Copy_Tree (Expression (Parent (Formal)))));
4983
4984 Next_Formal (Formal);
4985 end loop;
4986 end if;
4987
4988 return Plist;
4989 end Copy_Parameter_List;
4990
4991 --------------------------
4992 -- Copy_Subprogram_Spec --
4993 --------------------------
4994
4995 function Copy_Subprogram_Spec (Spec : Node_Id) return Node_Id is
4996 Def_Id : Node_Id;
4997 Formal_Spec : Node_Id;
4998 Result : Node_Id;
4999
5000 begin
5001 -- The structure of the original tree must be replicated without any
5002 -- alterations. Use New_Copy_Tree for this purpose.
5003
5004 Result := New_Copy_Tree (Spec);
5005
5006 -- Create a new entity for the defining unit name
5007
5008 Def_Id := Defining_Unit_Name (Result);
5009 Set_Defining_Unit_Name (Result,
5010 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
5011
5012 -- Create new entities for the formal parameters
5013
5014 if Present (Parameter_Specifications (Result)) then
5015 Formal_Spec := First (Parameter_Specifications (Result));
5016 while Present (Formal_Spec) loop
5017 Def_Id := Defining_Identifier (Formal_Spec);
5018 Set_Defining_Identifier (Formal_Spec,
5019 Make_Defining_Identifier (Sloc (Def_Id), Chars (Def_Id)));
5020
5021 Next (Formal_Spec);
5022 end loop;
5023 end if;
5024
5025 return Result;
5026 end Copy_Subprogram_Spec;
5027
5028 --------------------------------
5029 -- Corresponding_Generic_Type --
5030 --------------------------------
5031
5032 function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
5033 Inst : Entity_Id;
5034 Gen : Entity_Id;
5035 Typ : Entity_Id;
5036
5037 begin
5038 if not Is_Generic_Actual_Type (T) then
5039 return Any_Type;
5040
5041 -- If the actual is the actual of an enclosing instance, resolution
5042 -- was correct in the generic.
5043
5044 elsif Nkind (Parent (T)) = N_Subtype_Declaration
5045 and then Is_Entity_Name (Subtype_Indication (Parent (T)))
5046 and then
5047 Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
5048 then
5049 return Any_Type;
5050
5051 else
5052 Inst := Scope (T);
5053
5054 if Is_Wrapper_Package (Inst) then
5055 Inst := Related_Instance (Inst);
5056 end if;
5057
5058 Gen :=
5059 Generic_Parent
5060 (Specification (Unit_Declaration_Node (Inst)));
5061
5062 -- Generic actual has the same name as the corresponding formal
5063
5064 Typ := First_Entity (Gen);
5065 while Present (Typ) loop
5066 if Chars (Typ) = Chars (T) then
5067 return Typ;
5068 end if;
5069
5070 Next_Entity (Typ);
5071 end loop;
5072
5073 return Any_Type;
5074 end if;
5075 end Corresponding_Generic_Type;
5076
5077 --------------------
5078 -- Current_Entity --
5079 --------------------
5080
5081 -- The currently visible definition for a given identifier is the
5082 -- one most chained at the start of the visibility chain, i.e. the
5083 -- one that is referenced by the Node_Id value of the name of the
5084 -- given identifier.
5085
5086 function Current_Entity (N : Node_Id) return Entity_Id is
5087 begin
5088 return Get_Name_Entity_Id (Chars (N));
5089 end Current_Entity;
5090
5091 -----------------------------
5092 -- Current_Entity_In_Scope --
5093 -----------------------------
5094
5095 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
5096 E : Entity_Id;
5097 CS : constant Entity_Id := Current_Scope;
5098
5099 Transient_Case : constant Boolean := Scope_Is_Transient;
5100
5101 begin
5102 E := Get_Name_Entity_Id (Chars (N));
5103 while Present (E)
5104 and then Scope (E) /= CS
5105 and then (not Transient_Case or else Scope (E) /= Scope (CS))
5106 loop
5107 E := Homonym (E);
5108 end loop;
5109
5110 return E;
5111 end Current_Entity_In_Scope;
5112
5113 -------------------
5114 -- Current_Scope --
5115 -------------------
5116
5117 function Current_Scope return Entity_Id is
5118 begin
5119 if Scope_Stack.Last = -1 then
5120 return Standard_Standard;
5121 else
5122 declare
5123 C : constant Entity_Id :=
5124 Scope_Stack.Table (Scope_Stack.Last).Entity;
5125 begin
5126 if Present (C) then
5127 return C;
5128 else
5129 return Standard_Standard;
5130 end if;
5131 end;
5132 end if;
5133 end Current_Scope;
5134
5135 ------------------------
5136 -- Current_Subprogram --
5137 ------------------------
5138
5139 function Current_Subprogram return Entity_Id is
5140 Scop : constant Entity_Id := Current_Scope;
5141 begin
5142 if Is_Subprogram_Or_Generic_Subprogram (Scop) then
5143 return Scop;
5144 else
5145 return Enclosing_Subprogram (Scop);
5146 end if;
5147 end Current_Subprogram;
5148
5149 ----------------------------------
5150 -- Deepest_Type_Access_Level --
5151 ----------------------------------
5152
5153 function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
5154 begin
5155 if Ekind (Typ) = E_Anonymous_Access_Type
5156 and then not Is_Local_Anonymous_Access (Typ)
5157 and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
5158 then
5159 -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
5160 -- access type.
5161
5162 return
5163 Scope_Depth (Enclosing_Dynamic_Scope
5164 (Defining_Identifier
5165 (Associated_Node_For_Itype (Typ))));
5166
5167 -- For generic formal type, return Int'Last (infinite).
5168 -- See comment preceding Is_Generic_Type call in Type_Access_Level.
5169
5170 elsif Is_Generic_Type (Root_Type (Typ)) then
5171 return UI_From_Int (Int'Last);
5172
5173 else
5174 return Type_Access_Level (Typ);
5175 end if;
5176 end Deepest_Type_Access_Level;
5177
5178 ---------------------
5179 -- Defining_Entity --
5180 ---------------------
5181
5182 function Defining_Entity
5183 (N : Node_Id;
5184 Empty_On_Errors : Boolean := False) return Entity_Id
5185 is
5186 Err : Entity_Id := Empty;
5187
5188 begin
5189 case Nkind (N) is
5190 when N_Abstract_Subprogram_Declaration |
5191 N_Expression_Function |
5192 N_Formal_Subprogram_Declaration |
5193 N_Generic_Package_Declaration |
5194 N_Generic_Subprogram_Declaration |
5195 N_Package_Declaration |
5196 N_Subprogram_Body |
5197 N_Subprogram_Body_Stub |
5198 N_Subprogram_Declaration |
5199 N_Subprogram_Renaming_Declaration
5200 =>
5201 return Defining_Entity (Specification (N));
5202
5203 when N_Component_Declaration |
5204 N_Defining_Program_Unit_Name |
5205 N_Discriminant_Specification |
5206 N_Entry_Body |
5207 N_Entry_Declaration |
5208 N_Entry_Index_Specification |
5209 N_Exception_Declaration |
5210 N_Exception_Renaming_Declaration |
5211 N_Formal_Object_Declaration |
5212 N_Formal_Package_Declaration |
5213 N_Formal_Type_Declaration |
5214 N_Full_Type_Declaration |
5215 N_Implicit_Label_Declaration |
5216 N_Incomplete_Type_Declaration |
5217 N_Loop_Parameter_Specification |
5218 N_Number_Declaration |
5219 N_Object_Declaration |
5220 N_Object_Renaming_Declaration |
5221 N_Package_Body_Stub |
5222 N_Parameter_Specification |
5223 N_Private_Extension_Declaration |
5224 N_Private_Type_Declaration |
5225 N_Protected_Body |
5226 N_Protected_Body_Stub |
5227 N_Protected_Type_Declaration |
5228 N_Single_Protected_Declaration |
5229 N_Single_Task_Declaration |
5230 N_Subtype_Declaration |
5231 N_Task_Body |
5232 N_Task_Body_Stub |
5233 N_Task_Type_Declaration
5234 =>
5235 return Defining_Identifier (N);
5236
5237 when N_Subunit =>
5238 return Defining_Entity (Proper_Body (N));
5239
5240 when N_Function_Instantiation |
5241 N_Function_Specification |
5242 N_Generic_Function_Renaming_Declaration |
5243 N_Generic_Package_Renaming_Declaration |
5244 N_Generic_Procedure_Renaming_Declaration |
5245 N_Package_Body |
5246 N_Package_Instantiation |
5247 N_Package_Renaming_Declaration |
5248 N_Package_Specification |
5249 N_Procedure_Instantiation |
5250 N_Procedure_Specification
5251 =>
5252 declare
5253 Nam : constant Node_Id := Defining_Unit_Name (N);
5254
5255 begin
5256 if Nkind (Nam) in N_Entity then
5257 return Nam;
5258
5259 -- For Error, make up a name and attach to declaration so we
5260 -- can continue semantic analysis.
5261
5262 elsif Nam = Error then
5263 if Empty_On_Errors then
5264 return Empty;
5265 else
5266 Err := Make_Temporary (Sloc (N), 'T');
5267 Set_Defining_Unit_Name (N, Err);
5268
5269 return Err;
5270 end if;
5271
5272 -- If not an entity, get defining identifier
5273
5274 else
5275 return Defining_Identifier (Nam);
5276 end if;
5277 end;
5278
5279 when N_Block_Statement |
5280 N_Loop_Statement =>
5281 return Entity (Identifier (N));
5282
5283 when others =>
5284 if Empty_On_Errors then
5285 return Empty;
5286 else
5287 raise Program_Error;
5288 end if;
5289
5290 end case;
5291 end Defining_Entity;
5292
5293 --------------------------
5294 -- Denotes_Discriminant --
5295 --------------------------
5296
5297 function Denotes_Discriminant
5298 (N : Node_Id;
5299 Check_Concurrent : Boolean := False) return Boolean
5300 is
5301 E : Entity_Id;
5302
5303 begin
5304 if not Is_Entity_Name (N) or else No (Entity (N)) then
5305 return False;
5306 else
5307 E := Entity (N);
5308 end if;
5309
5310 -- If we are checking for a protected type, the discriminant may have
5311 -- been rewritten as the corresponding discriminal of the original type
5312 -- or of the corresponding concurrent record, depending on whether we
5313 -- are in the spec or body of the protected type.
5314
5315 return Ekind (E) = E_Discriminant
5316 or else
5317 (Check_Concurrent
5318 and then Ekind (E) = E_In_Parameter
5319 and then Present (Discriminal_Link (E))
5320 and then
5321 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
5322 or else
5323 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
5324 end Denotes_Discriminant;
5325
5326 -------------------------
5327 -- Denotes_Same_Object --
5328 -------------------------
5329
5330 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
5331 Obj1 : Node_Id := A1;
5332 Obj2 : Node_Id := A2;
5333
5334 function Has_Prefix (N : Node_Id) return Boolean;
5335 -- Return True if N has attribute Prefix
5336
5337 function Is_Renaming (N : Node_Id) return Boolean;
5338 -- Return true if N names a renaming entity
5339
5340 function Is_Valid_Renaming (N : Node_Id) return Boolean;
5341 -- For renamings, return False if the prefix of any dereference within
5342 -- the renamed object_name is a variable, or any expression within the
5343 -- renamed object_name contains references to variables or calls on
5344 -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
5345
5346 ----------------
5347 -- Has_Prefix --
5348 ----------------
5349
5350 function Has_Prefix (N : Node_Id) return Boolean is
5351 begin
5352 return
5353 Nkind_In (N,
5354 N_Attribute_Reference,
5355 N_Expanded_Name,
5356 N_Explicit_Dereference,
5357 N_Indexed_Component,
5358 N_Reference,
5359 N_Selected_Component,
5360 N_Slice);
5361 end Has_Prefix;
5362
5363 -----------------
5364 -- Is_Renaming --
5365 -----------------
5366
5367 function Is_Renaming (N : Node_Id) return Boolean is
5368 begin
5369 return Is_Entity_Name (N)
5370 and then Present (Renamed_Entity (Entity (N)));
5371 end Is_Renaming;
5372
5373 -----------------------
5374 -- Is_Valid_Renaming --
5375 -----------------------
5376
5377 function Is_Valid_Renaming (N : Node_Id) return Boolean is
5378
5379 function Check_Renaming (N : Node_Id) return Boolean;
5380 -- Recursive function used to traverse all the prefixes of N
5381
5382 function Check_Renaming (N : Node_Id) return Boolean is
5383 begin
5384 if Is_Renaming (N)
5385 and then not Check_Renaming (Renamed_Entity (Entity (N)))
5386 then
5387 return False;
5388 end if;
5389
5390 if Nkind (N) = N_Indexed_Component then
5391 declare
5392 Indx : Node_Id;
5393
5394 begin
5395 Indx := First (Expressions (N));
5396 while Present (Indx) loop
5397 if not Is_OK_Static_Expression (Indx) then
5398 return False;
5399 end if;
5400
5401 Next_Index (Indx);
5402 end loop;
5403 end;
5404 end if;
5405
5406 if Has_Prefix (N) then
5407 declare
5408 P : constant Node_Id := Prefix (N);
5409
5410 begin
5411 if Nkind (N) = N_Explicit_Dereference
5412 and then Is_Variable (P)
5413 then
5414 return False;
5415
5416 elsif Is_Entity_Name (P)
5417 and then Ekind (Entity (P)) = E_Function
5418 then
5419 return False;
5420
5421 elsif Nkind (P) = N_Function_Call then
5422 return False;
5423 end if;
5424
5425 -- Recursion to continue traversing the prefix of the
5426 -- renaming expression
5427
5428 return Check_Renaming (P);
5429 end;
5430 end if;
5431
5432 return True;
5433 end Check_Renaming;
5434
5435 -- Start of processing for Is_Valid_Renaming
5436
5437 begin
5438 return Check_Renaming (N);
5439 end Is_Valid_Renaming;
5440
5441 -- Start of processing for Denotes_Same_Object
5442
5443 begin
5444 -- Both names statically denote the same stand-alone object or parameter
5445 -- (RM 6.4.1(6.5/3))
5446
5447 if Is_Entity_Name (Obj1)
5448 and then Is_Entity_Name (Obj2)
5449 and then Entity (Obj1) = Entity (Obj2)
5450 then
5451 return True;
5452 end if;
5453
5454 -- For renamings, the prefix of any dereference within the renamed
5455 -- object_name is not a variable, and any expression within the
5456 -- renamed object_name contains no references to variables nor
5457 -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
5458
5459 if Is_Renaming (Obj1) then
5460 if Is_Valid_Renaming (Obj1) then
5461 Obj1 := Renamed_Entity (Entity (Obj1));
5462 else
5463 return False;
5464 end if;
5465 end if;
5466
5467 if Is_Renaming (Obj2) then
5468 if Is_Valid_Renaming (Obj2) then
5469 Obj2 := Renamed_Entity (Entity (Obj2));
5470 else
5471 return False;
5472 end if;
5473 end if;
5474
5475 -- No match if not same node kind (such cases are handled by
5476 -- Denotes_Same_Prefix)
5477
5478 if Nkind (Obj1) /= Nkind (Obj2) then
5479 return False;
5480
5481 -- After handling valid renamings, one of the two names statically
5482 -- denoted a renaming declaration whose renamed object_name is known
5483 -- to denote the same object as the other (RM 6.4.1(6.10/3))
5484
5485 elsif Is_Entity_Name (Obj1) then
5486 if Is_Entity_Name (Obj2) then
5487 return Entity (Obj1) = Entity (Obj2);
5488 else
5489 return False;
5490 end if;
5491
5492 -- Both names are selected_components, their prefixes are known to
5493 -- denote the same object, and their selector_names denote the same
5494 -- component (RM 6.4.1(6.6/3)).
5495
5496 elsif Nkind (Obj1) = N_Selected_Component then
5497 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
5498 and then
5499 Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
5500
5501 -- Both names are dereferences and the dereferenced names are known to
5502 -- denote the same object (RM 6.4.1(6.7/3))
5503
5504 elsif Nkind (Obj1) = N_Explicit_Dereference then
5505 return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
5506
5507 -- Both names are indexed_components, their prefixes are known to denote
5508 -- the same object, and each of the pairs of corresponding index values
5509 -- are either both static expressions with the same static value or both
5510 -- names that are known to denote the same object (RM 6.4.1(6.8/3))
5511
5512 elsif Nkind (Obj1) = N_Indexed_Component then
5513 if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
5514 return False;
5515 else
5516 declare
5517 Indx1 : Node_Id;
5518 Indx2 : Node_Id;
5519
5520 begin
5521 Indx1 := First (Expressions (Obj1));
5522 Indx2 := First (Expressions (Obj2));
5523 while Present (Indx1) loop
5524
5525 -- Indexes must denote the same static value or same object
5526
5527 if Is_OK_Static_Expression (Indx1) then
5528 if not Is_OK_Static_Expression (Indx2) then
5529 return False;
5530
5531 elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
5532 return False;
5533 end if;
5534
5535 elsif not Denotes_Same_Object (Indx1, Indx2) then
5536 return False;
5537 end if;
5538
5539 Next (Indx1);
5540 Next (Indx2);
5541 end loop;
5542
5543 return True;
5544 end;
5545 end if;
5546
5547 -- Both names are slices, their prefixes are known to denote the same
5548 -- object, and the two slices have statically matching index constraints
5549 -- (RM 6.4.1(6.9/3))
5550
5551 elsif Nkind (Obj1) = N_Slice
5552 and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
5553 then
5554 declare
5555 Lo1, Lo2, Hi1, Hi2 : Node_Id;
5556
5557 begin
5558 Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
5559 Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
5560
5561 -- Check whether bounds are statically identical. There is no
5562 -- attempt to detect partial overlap of slices.
5563
5564 return Denotes_Same_Object (Lo1, Lo2)
5565 and then
5566 Denotes_Same_Object (Hi1, Hi2);
5567 end;
5568
5569 -- In the recursion, literals appear as indexes
5570
5571 elsif Nkind (Obj1) = N_Integer_Literal
5572 and then
5573 Nkind (Obj2) = N_Integer_Literal
5574 then
5575 return Intval (Obj1) = Intval (Obj2);
5576
5577 else
5578 return False;
5579 end if;
5580 end Denotes_Same_Object;
5581
5582 -------------------------
5583 -- Denotes_Same_Prefix --
5584 -------------------------
5585
5586 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
5587 begin
5588 if Is_Entity_Name (A1) then
5589 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
5590 and then not Is_Access_Type (Etype (A1))
5591 then
5592 return Denotes_Same_Object (A1, Prefix (A2))
5593 or else Denotes_Same_Prefix (A1, Prefix (A2));
5594 else
5595 return False;
5596 end if;
5597
5598 elsif Is_Entity_Name (A2) then
5599 return Denotes_Same_Prefix (A1 => A2, A2 => A1);
5600
5601 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
5602 and then
5603 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
5604 then
5605 declare
5606 Root1, Root2 : Node_Id;
5607 Depth1, Depth2 : Int := 0;
5608
5609 begin
5610 Root1 := Prefix (A1);
5611 while not Is_Entity_Name (Root1) loop
5612 if not Nkind_In
5613 (Root1, N_Selected_Component, N_Indexed_Component)
5614 then
5615 return False;
5616 else
5617 Root1 := Prefix (Root1);
5618 end if;
5619
5620 Depth1 := Depth1 + 1;
5621 end loop;
5622
5623 Root2 := Prefix (A2);
5624 while not Is_Entity_Name (Root2) loop
5625 if not Nkind_In (Root2, N_Selected_Component,
5626 N_Indexed_Component)
5627 then
5628 return False;
5629 else
5630 Root2 := Prefix (Root2);
5631 end if;
5632
5633 Depth2 := Depth2 + 1;
5634 end loop;
5635
5636 -- If both have the same depth and they do not denote the same
5637 -- object, they are disjoint and no warning is needed.
5638
5639 if Depth1 = Depth2 then
5640 return False;
5641
5642 elsif Depth1 > Depth2 then
5643 Root1 := Prefix (A1);
5644 for J in 1 .. Depth1 - Depth2 - 1 loop
5645 Root1 := Prefix (Root1);
5646 end loop;
5647
5648 return Denotes_Same_Object (Root1, A2);
5649
5650 else
5651 Root2 := Prefix (A2);
5652 for J in 1 .. Depth2 - Depth1 - 1 loop
5653 Root2 := Prefix (Root2);
5654 end loop;
5655
5656 return Denotes_Same_Object (A1, Root2);
5657 end if;
5658 end;
5659
5660 else
5661 return False;
5662 end if;
5663 end Denotes_Same_Prefix;
5664
5665 ----------------------
5666 -- Denotes_Variable --
5667 ----------------------
5668
5669 function Denotes_Variable (N : Node_Id) return Boolean is
5670 begin
5671 return Is_Variable (N) and then Paren_Count (N) = 0;
5672 end Denotes_Variable;
5673
5674 -----------------------------
5675 -- Depends_On_Discriminant --
5676 -----------------------------
5677
5678 function Depends_On_Discriminant (N : Node_Id) return Boolean is
5679 L : Node_Id;
5680 H : Node_Id;
5681
5682 begin
5683 Get_Index_Bounds (N, L, H);
5684 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
5685 end Depends_On_Discriminant;
5686
5687 -------------------------
5688 -- Designate_Same_Unit --
5689 -------------------------
5690
5691 function Designate_Same_Unit
5692 (Name1 : Node_Id;
5693 Name2 : Node_Id) return Boolean
5694 is
5695 K1 : constant Node_Kind := Nkind (Name1);
5696 K2 : constant Node_Kind := Nkind (Name2);
5697
5698 function Prefix_Node (N : Node_Id) return Node_Id;
5699 -- Returns the parent unit name node of a defining program unit name
5700 -- or the prefix if N is a selected component or an expanded name.
5701
5702 function Select_Node (N : Node_Id) return Node_Id;
5703 -- Returns the defining identifier node of a defining program unit
5704 -- name or the selector node if N is a selected component or an
5705 -- expanded name.
5706
5707 -----------------
5708 -- Prefix_Node --
5709 -----------------
5710
5711 function Prefix_Node (N : Node_Id) return Node_Id is
5712 begin
5713 if Nkind (N) = N_Defining_Program_Unit_Name then
5714 return Name (N);
5715 else
5716 return Prefix (N);
5717 end if;
5718 end Prefix_Node;
5719
5720 -----------------
5721 -- Select_Node --
5722 -----------------
5723
5724 function Select_Node (N : Node_Id) return Node_Id is
5725 begin
5726 if Nkind (N) = N_Defining_Program_Unit_Name then
5727 return Defining_Identifier (N);
5728 else
5729 return Selector_Name (N);
5730 end if;
5731 end Select_Node;
5732
5733 -- Start of processing for Designate_Same_Unit
5734
5735 begin
5736 if Nkind_In (K1, N_Identifier, N_Defining_Identifier)
5737 and then
5738 Nkind_In (K2, N_Identifier, N_Defining_Identifier)
5739 then
5740 return Chars (Name1) = Chars (Name2);
5741
5742 elsif Nkind_In (K1, N_Expanded_Name,
5743 N_Selected_Component,
5744 N_Defining_Program_Unit_Name)
5745 and then
5746 Nkind_In (K2, N_Expanded_Name,
5747 N_Selected_Component,
5748 N_Defining_Program_Unit_Name)
5749 then
5750 return
5751 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
5752 and then
5753 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
5754
5755 else
5756 return False;
5757 end if;
5758 end Designate_Same_Unit;
5759
5760 ------------------------------------------
5761 -- function Dynamic_Accessibility_Level --
5762 ------------------------------------------
5763
5764 function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
5765 E : Entity_Id;
5766 Loc : constant Source_Ptr := Sloc (Expr);
5767
5768 function Make_Level_Literal (Level : Uint) return Node_Id;
5769 -- Construct an integer literal representing an accessibility level
5770 -- with its type set to Natural.
5771
5772 ------------------------
5773 -- Make_Level_Literal --
5774 ------------------------
5775
5776 function Make_Level_Literal (Level : Uint) return Node_Id is
5777 Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
5778 begin
5779 Set_Etype (Result, Standard_Natural);
5780 return Result;
5781 end Make_Level_Literal;
5782
5783 -- Start of processing for Dynamic_Accessibility_Level
5784
5785 begin
5786 if Is_Entity_Name (Expr) then
5787 E := Entity (Expr);
5788
5789 if Present (Renamed_Object (E)) then
5790 return Dynamic_Accessibility_Level (Renamed_Object (E));
5791 end if;
5792
5793 if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
5794 if Present (Extra_Accessibility (E)) then
5795 return New_Occurrence_Of (Extra_Accessibility (E), Loc);
5796 end if;
5797 end if;
5798 end if;
5799
5800 -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
5801
5802 case Nkind (Expr) is
5803
5804 -- For access discriminant, the level of the enclosing object
5805
5806 when N_Selected_Component =>
5807 if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
5808 and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
5809 E_Anonymous_Access_Type
5810 then
5811 return Make_Level_Literal (Object_Access_Level (Expr));
5812 end if;
5813
5814 when N_Attribute_Reference =>
5815 case Get_Attribute_Id (Attribute_Name (Expr)) is
5816
5817 -- For X'Access, the level of the prefix X
5818
5819 when Attribute_Access =>
5820 return Make_Level_Literal
5821 (Object_Access_Level (Prefix (Expr)));
5822
5823 -- Treat the unchecked attributes as library-level
5824
5825 when Attribute_Unchecked_Access |
5826 Attribute_Unrestricted_Access =>
5827 return Make_Level_Literal (Scope_Depth (Standard_Standard));
5828
5829 -- No other access-valued attributes
5830
5831 when others =>
5832 raise Program_Error;
5833 end case;
5834
5835 when N_Allocator =>
5836
5837 -- Unimplemented: depends on context. As an actual parameter where
5838 -- formal type is anonymous, use
5839 -- Scope_Depth (Current_Scope) + 1.
5840 -- For other cases, see 3.10.2(14/3) and following. ???
5841
5842 null;
5843
5844 when N_Type_Conversion =>
5845 if not Is_Local_Anonymous_Access (Etype (Expr)) then
5846
5847 -- Handle type conversions introduced for a rename of an
5848 -- Ada 2012 stand-alone object of an anonymous access type.
5849
5850 return Dynamic_Accessibility_Level (Expression (Expr));
5851 end if;
5852
5853 when others =>
5854 null;
5855 end case;
5856
5857 return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
5858 end Dynamic_Accessibility_Level;
5859
5860 -----------------------------------
5861 -- Effective_Extra_Accessibility --
5862 -----------------------------------
5863
5864 function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
5865 begin
5866 if Present (Renamed_Object (Id))
5867 and then Is_Entity_Name (Renamed_Object (Id))
5868 then
5869 return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
5870 else
5871 return Extra_Accessibility (Id);
5872 end if;
5873 end Effective_Extra_Accessibility;
5874
5875 -----------------------------
5876 -- Effective_Reads_Enabled --
5877 -----------------------------
5878
5879 function Effective_Reads_Enabled (Id : Entity_Id) return Boolean is
5880 begin
5881 return Has_Enabled_Property (Id, Name_Effective_Reads);
5882 end Effective_Reads_Enabled;
5883
5884 ------------------------------
5885 -- Effective_Writes_Enabled --
5886 ------------------------------
5887
5888 function Effective_Writes_Enabled (Id : Entity_Id) return Boolean is
5889 begin
5890 return Has_Enabled_Property (Id, Name_Effective_Writes);
5891 end Effective_Writes_Enabled;
5892
5893 ------------------------------
5894 -- Enclosing_Comp_Unit_Node --
5895 ------------------------------
5896
5897 function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
5898 Current_Node : Node_Id;
5899
5900 begin
5901 Current_Node := N;
5902 while Present (Current_Node)
5903 and then Nkind (Current_Node) /= N_Compilation_Unit
5904 loop
5905 Current_Node := Parent (Current_Node);
5906 end loop;
5907
5908 if Nkind (Current_Node) /= N_Compilation_Unit then
5909 return Empty;
5910 else
5911 return Current_Node;
5912 end if;
5913 end Enclosing_Comp_Unit_Node;
5914
5915 --------------------------
5916 -- Enclosing_CPP_Parent --
5917 --------------------------
5918
5919 function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
5920 Parent_Typ : Entity_Id := Typ;
5921
5922 begin
5923 while not Is_CPP_Class (Parent_Typ)
5924 and then Etype (Parent_Typ) /= Parent_Typ
5925 loop
5926 Parent_Typ := Etype (Parent_Typ);
5927
5928 if Is_Private_Type (Parent_Typ) then
5929 Parent_Typ := Full_View (Base_Type (Parent_Typ));
5930 end if;
5931 end loop;
5932
5933 pragma Assert (Is_CPP_Class (Parent_Typ));
5934 return Parent_Typ;
5935 end Enclosing_CPP_Parent;
5936
5937 ---------------------------
5938 -- Enclosing_Declaration --
5939 ---------------------------
5940
5941 function Enclosing_Declaration (N : Node_Id) return Node_Id is
5942 Decl : Node_Id := N;
5943
5944 begin
5945 while Present (Decl)
5946 and then not (Nkind (Decl) in N_Declaration
5947 or else
5948 Nkind (Decl) in N_Later_Decl_Item)
5949 loop
5950 Decl := Parent (Decl);
5951 end loop;
5952
5953 return Decl;
5954 end Enclosing_Declaration;
5955
5956 ----------------------------
5957 -- Enclosing_Generic_Body --
5958 ----------------------------
5959
5960 function Enclosing_Generic_Body
5961 (N : Node_Id) return Node_Id
5962 is
5963 P : Node_Id;
5964 Decl : Node_Id;
5965 Spec : Node_Id;
5966
5967 begin
5968 P := Parent (N);
5969 while Present (P) loop
5970 if Nkind (P) = N_Package_Body
5971 or else Nkind (P) = N_Subprogram_Body
5972 then
5973 Spec := Corresponding_Spec (P);
5974
5975 if Present (Spec) then
5976 Decl := Unit_Declaration_Node (Spec);
5977
5978 if Nkind (Decl) = N_Generic_Package_Declaration
5979 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
5980 then
5981 return P;
5982 end if;
5983 end if;
5984 end if;
5985
5986 P := Parent (P);
5987 end loop;
5988
5989 return Empty;
5990 end Enclosing_Generic_Body;
5991
5992 ----------------------------
5993 -- Enclosing_Generic_Unit --
5994 ----------------------------
5995
5996 function Enclosing_Generic_Unit
5997 (N : Node_Id) return Node_Id
5998 is
5999 P : Node_Id;
6000 Decl : Node_Id;
6001 Spec : Node_Id;
6002
6003 begin
6004 P := Parent (N);
6005 while Present (P) loop
6006 if Nkind (P) = N_Generic_Package_Declaration
6007 or else Nkind (P) = N_Generic_Subprogram_Declaration
6008 then
6009 return P;
6010
6011 elsif Nkind (P) = N_Package_Body
6012 or else Nkind (P) = N_Subprogram_Body
6013 then
6014 Spec := Corresponding_Spec (P);
6015
6016 if Present (Spec) then
6017 Decl := Unit_Declaration_Node (Spec);
6018
6019 if Nkind (Decl) = N_Generic_Package_Declaration
6020 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
6021 then
6022 return Decl;
6023 end if;
6024 end if;
6025 end if;
6026
6027 P := Parent (P);
6028 end loop;
6029
6030 return Empty;
6031 end Enclosing_Generic_Unit;
6032
6033 -------------------------------
6034 -- Enclosing_Lib_Unit_Entity --
6035 -------------------------------
6036
6037 function Enclosing_Lib_Unit_Entity
6038 (E : Entity_Id := Current_Scope) return Entity_Id
6039 is
6040 Unit_Entity : Entity_Id;
6041
6042 begin
6043 -- Look for enclosing library unit entity by following scope links.
6044 -- Equivalent to, but faster than indexing through the scope stack.
6045
6046 Unit_Entity := E;
6047 while (Present (Scope (Unit_Entity))
6048 and then Scope (Unit_Entity) /= Standard_Standard)
6049 and not Is_Child_Unit (Unit_Entity)
6050 loop
6051 Unit_Entity := Scope (Unit_Entity);
6052 end loop;
6053
6054 return Unit_Entity;
6055 end Enclosing_Lib_Unit_Entity;
6056
6057 -----------------------------
6058 -- Enclosing_Lib_Unit_Node --
6059 -----------------------------
6060
6061 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
6062 Encl_Unit : Node_Id;
6063
6064 begin
6065 Encl_Unit := Enclosing_Comp_Unit_Node (N);
6066 while Present (Encl_Unit)
6067 and then Nkind (Unit (Encl_Unit)) = N_Subunit
6068 loop
6069 Encl_Unit := Library_Unit (Encl_Unit);
6070 end loop;
6071
6072 return Encl_Unit;
6073 end Enclosing_Lib_Unit_Node;
6074
6075 -----------------------
6076 -- Enclosing_Package --
6077 -----------------------
6078
6079 function Enclosing_Package (E : Entity_Id) return Entity_Id is
6080 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6081
6082 begin
6083 if Dynamic_Scope = Standard_Standard then
6084 return Standard_Standard;
6085
6086 elsif Dynamic_Scope = Empty then
6087 return Empty;
6088
6089 elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
6090 E_Generic_Package)
6091 then
6092 return Dynamic_Scope;
6093
6094 else
6095 return Enclosing_Package (Dynamic_Scope);
6096 end if;
6097 end Enclosing_Package;
6098
6099 -------------------------------------
6100 -- Enclosing_Package_Or_Subprogram --
6101 -------------------------------------
6102
6103 function Enclosing_Package_Or_Subprogram (E : Entity_Id) return Entity_Id is
6104 S : Entity_Id;
6105
6106 begin
6107 S := Scope (E);
6108 while Present (S) loop
6109 if Is_Package_Or_Generic_Package (S)
6110 or else Ekind (S) = E_Package_Body
6111 then
6112 return S;
6113
6114 elsif Is_Subprogram_Or_Generic_Subprogram (S)
6115 or else Ekind (S) = E_Subprogram_Body
6116 then
6117 return S;
6118
6119 else
6120 S := Scope (S);
6121 end if;
6122 end loop;
6123
6124 return Empty;
6125 end Enclosing_Package_Or_Subprogram;
6126
6127 --------------------------
6128 -- Enclosing_Subprogram --
6129 --------------------------
6130
6131 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
6132 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
6133
6134 begin
6135 if Dynamic_Scope = Standard_Standard then
6136 return Empty;
6137
6138 elsif Dynamic_Scope = Empty then
6139 return Empty;
6140
6141 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
6142 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
6143
6144 elsif Ekind (Dynamic_Scope) = E_Block
6145 or else Ekind (Dynamic_Scope) = E_Return_Statement
6146 then
6147 return Enclosing_Subprogram (Dynamic_Scope);
6148
6149 elsif Ekind (Dynamic_Scope) = E_Task_Type then
6150 return Get_Task_Body_Procedure (Dynamic_Scope);
6151
6152 elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
6153 and then Present (Full_View (Dynamic_Scope))
6154 and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
6155 then
6156 return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
6157
6158 -- No body is generated if the protected operation is eliminated
6159
6160 elsif Convention (Dynamic_Scope) = Convention_Protected
6161 and then not Is_Eliminated (Dynamic_Scope)
6162 and then Present (Protected_Body_Subprogram (Dynamic_Scope))
6163 then
6164 return Protected_Body_Subprogram (Dynamic_Scope);
6165
6166 else
6167 return Dynamic_Scope;
6168 end if;
6169 end Enclosing_Subprogram;
6170
6171 ------------------------
6172 -- Ensure_Freeze_Node --
6173 ------------------------
6174
6175 procedure Ensure_Freeze_Node (E : Entity_Id) is
6176 FN : Node_Id;
6177 begin
6178 if No (Freeze_Node (E)) then
6179 FN := Make_Freeze_Entity (Sloc (E));
6180 Set_Has_Delayed_Freeze (E);
6181 Set_Freeze_Node (E, FN);
6182 Set_Access_Types_To_Process (FN, No_Elist);
6183 Set_TSS_Elist (FN, No_Elist);
6184 Set_Entity (FN, E);
6185 end if;
6186 end Ensure_Freeze_Node;
6187
6188 ----------------
6189 -- Enter_Name --
6190 ----------------
6191
6192 procedure Enter_Name (Def_Id : Entity_Id) is
6193 C : constant Entity_Id := Current_Entity (Def_Id);
6194 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
6195 S : constant Entity_Id := Current_Scope;
6196
6197 begin
6198 Generate_Definition (Def_Id);
6199
6200 -- Add new name to current scope declarations. Check for duplicate
6201 -- declaration, which may or may not be a genuine error.
6202
6203 if Present (E) then
6204
6205 -- Case of previous entity entered because of a missing declaration
6206 -- or else a bad subtype indication. Best is to use the new entity,
6207 -- and make the previous one invisible.
6208
6209 if Etype (E) = Any_Type then
6210 Set_Is_Immediately_Visible (E, False);
6211
6212 -- Case of renaming declaration constructed for package instances.
6213 -- if there is an explicit declaration with the same identifier,
6214 -- the renaming is not immediately visible any longer, but remains
6215 -- visible through selected component notation.
6216
6217 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
6218 and then not Comes_From_Source (E)
6219 then
6220 Set_Is_Immediately_Visible (E, False);
6221
6222 -- The new entity may be the package renaming, which has the same
6223 -- same name as a generic formal which has been seen already.
6224
6225 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
6226 and then not Comes_From_Source (Def_Id)
6227 then
6228 Set_Is_Immediately_Visible (E, False);
6229
6230 -- For a fat pointer corresponding to a remote access to subprogram,
6231 -- we use the same identifier as the RAS type, so that the proper
6232 -- name appears in the stub. This type is only retrieved through
6233 -- the RAS type and never by visibility, and is not added to the
6234 -- visibility list (see below).
6235
6236 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
6237 and then Ekind (Def_Id) = E_Record_Type
6238 and then Present (Corresponding_Remote_Type (Def_Id))
6239 then
6240 null;
6241
6242 -- Case of an implicit operation or derived literal. The new entity
6243 -- hides the implicit one, which is removed from all visibility,
6244 -- i.e. the entity list of its scope, and homonym chain of its name.
6245
6246 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
6247 or else Is_Internal (E)
6248 then
6249 declare
6250 Prev : Entity_Id;
6251 Prev_Vis : Entity_Id;
6252 Decl : constant Node_Id := Parent (E);
6253
6254 begin
6255 -- If E is an implicit declaration, it cannot be the first
6256 -- entity in the scope.
6257
6258 Prev := First_Entity (Current_Scope);
6259 while Present (Prev) and then Next_Entity (Prev) /= E loop
6260 Next_Entity (Prev);
6261 end loop;
6262
6263 if No (Prev) then
6264
6265 -- If E is not on the entity chain of the current scope,
6266 -- it is an implicit declaration in the generic formal
6267 -- part of a generic subprogram. When analyzing the body,
6268 -- the generic formals are visible but not on the entity
6269 -- chain of the subprogram. The new entity will become
6270 -- the visible one in the body.
6271
6272 pragma Assert
6273 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
6274 null;
6275
6276 else
6277 Set_Next_Entity (Prev, Next_Entity (E));
6278
6279 if No (Next_Entity (Prev)) then
6280 Set_Last_Entity (Current_Scope, Prev);
6281 end if;
6282
6283 if E = Current_Entity (E) then
6284 Prev_Vis := Empty;
6285
6286 else
6287 Prev_Vis := Current_Entity (E);
6288 while Homonym (Prev_Vis) /= E loop
6289 Prev_Vis := Homonym (Prev_Vis);
6290 end loop;
6291 end if;
6292
6293 if Present (Prev_Vis) then
6294
6295 -- Skip E in the visibility chain
6296
6297 Set_Homonym (Prev_Vis, Homonym (E));
6298
6299 else
6300 Set_Name_Entity_Id (Chars (E), Homonym (E));
6301 end if;
6302 end if;
6303 end;
6304
6305 -- This section of code could use a comment ???
6306
6307 elsif Present (Etype (E))
6308 and then Is_Concurrent_Type (Etype (E))
6309 and then E = Def_Id
6310 then
6311 return;
6312
6313 -- If the homograph is a protected component renaming, it should not
6314 -- be hiding the current entity. Such renamings are treated as weak
6315 -- declarations.
6316
6317 elsif Is_Prival (E) then
6318 Set_Is_Immediately_Visible (E, False);
6319
6320 -- In this case the current entity is a protected component renaming.
6321 -- Perform minimal decoration by setting the scope and return since
6322 -- the prival should not be hiding other visible entities.
6323
6324 elsif Is_Prival (Def_Id) then
6325 Set_Scope (Def_Id, Current_Scope);
6326 return;
6327
6328 -- Analogous to privals, the discriminal generated for an entry index
6329 -- parameter acts as a weak declaration. Perform minimal decoration
6330 -- to avoid bogus errors.
6331
6332 elsif Is_Discriminal (Def_Id)
6333 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
6334 then
6335 Set_Scope (Def_Id, Current_Scope);
6336 return;
6337
6338 -- In the body or private part of an instance, a type extension may
6339 -- introduce a component with the same name as that of an actual. The
6340 -- legality rule is not enforced, but the semantics of the full type
6341 -- with two components of same name are not clear at this point???
6342
6343 elsif In_Instance_Not_Visible then
6344 null;
6345
6346 -- When compiling a package body, some child units may have become
6347 -- visible. They cannot conflict with local entities that hide them.
6348
6349 elsif Is_Child_Unit (E)
6350 and then In_Open_Scopes (Scope (E))
6351 and then not Is_Immediately_Visible (E)
6352 then
6353 null;
6354
6355 -- Conversely, with front-end inlining we may compile the parent body
6356 -- first, and a child unit subsequently. The context is now the
6357 -- parent spec, and body entities are not visible.
6358
6359 elsif Is_Child_Unit (Def_Id)
6360 and then Is_Package_Body_Entity (E)
6361 and then not In_Package_Body (Current_Scope)
6362 then
6363 null;
6364
6365 -- Case of genuine duplicate declaration
6366
6367 else
6368 Error_Msg_Sloc := Sloc (E);
6369
6370 -- If the previous declaration is an incomplete type declaration
6371 -- this may be an attempt to complete it with a private type. The
6372 -- following avoids confusing cascaded errors.
6373
6374 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
6375 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
6376 then
6377 Error_Msg_N
6378 ("incomplete type cannot be completed with a private " &
6379 "declaration", Parent (Def_Id));
6380 Set_Is_Immediately_Visible (E, False);
6381 Set_Full_View (E, Def_Id);
6382
6383 -- An inherited component of a record conflicts with a new
6384 -- discriminant. The discriminant is inserted first in the scope,
6385 -- but the error should be posted on it, not on the component.
6386
6387 elsif Ekind (E) = E_Discriminant
6388 and then Present (Scope (Def_Id))
6389 and then Scope (Def_Id) /= Current_Scope
6390 then
6391 Error_Msg_Sloc := Sloc (Def_Id);
6392 Error_Msg_N ("& conflicts with declaration#", E);
6393 return;
6394
6395 -- If the name of the unit appears in its own context clause, a
6396 -- dummy package with the name has already been created, and the
6397 -- error emitted. Try to continue quietly.
6398
6399 elsif Error_Posted (E)
6400 and then Sloc (E) = No_Location
6401 and then Nkind (Parent (E)) = N_Package_Specification
6402 and then Current_Scope = Standard_Standard
6403 then
6404 Set_Scope (Def_Id, Current_Scope);
6405 return;
6406
6407 else
6408 Error_Msg_N ("& conflicts with declaration#", Def_Id);
6409
6410 -- Avoid cascaded messages with duplicate components in
6411 -- derived types.
6412
6413 if Ekind_In (E, E_Component, E_Discriminant) then
6414 return;
6415 end if;
6416 end if;
6417
6418 if Nkind (Parent (Parent (Def_Id))) =
6419 N_Generic_Subprogram_Declaration
6420 and then Def_Id =
6421 Defining_Entity (Specification (Parent (Parent (Def_Id))))
6422 then
6423 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
6424 end if;
6425
6426 -- If entity is in standard, then we are in trouble, because it
6427 -- means that we have a library package with a duplicated name.
6428 -- That's hard to recover from, so abort.
6429
6430 if S = Standard_Standard then
6431 raise Unrecoverable_Error;
6432
6433 -- Otherwise we continue with the declaration. Having two
6434 -- identical declarations should not cause us too much trouble.
6435
6436 else
6437 null;
6438 end if;
6439 end if;
6440 end if;
6441
6442 -- If we fall through, declaration is OK, at least OK enough to continue
6443
6444 -- If Def_Id is a discriminant or a record component we are in the midst
6445 -- of inheriting components in a derived record definition. Preserve
6446 -- their Ekind and Etype.
6447
6448 if Ekind_In (Def_Id, E_Discriminant, E_Component) then
6449 null;
6450
6451 -- If a type is already set, leave it alone (happens when a type
6452 -- declaration is reanalyzed following a call to the optimizer).
6453
6454 elsif Present (Etype (Def_Id)) then
6455 null;
6456
6457 -- Otherwise, the kind E_Void insures that premature uses of the entity
6458 -- will be detected. Any_Type insures that no cascaded errors will occur
6459
6460 else
6461 Set_Ekind (Def_Id, E_Void);
6462 Set_Etype (Def_Id, Any_Type);
6463 end if;
6464
6465 -- Inherited discriminants and components in derived record types are
6466 -- immediately visible. Itypes are not.
6467
6468 -- Unless the Itype is for a record type with a corresponding remote
6469 -- type (what is that about, it was not commented ???)
6470
6471 if Ekind_In (Def_Id, E_Discriminant, E_Component)
6472 or else
6473 ((not Is_Record_Type (Def_Id)
6474 or else No (Corresponding_Remote_Type (Def_Id)))
6475 and then not Is_Itype (Def_Id))
6476 then
6477 Set_Is_Immediately_Visible (Def_Id);
6478 Set_Current_Entity (Def_Id);
6479 end if;
6480
6481 Set_Homonym (Def_Id, C);
6482 Append_Entity (Def_Id, S);
6483 Set_Public_Status (Def_Id);
6484
6485 -- Declaring a homonym is not allowed in SPARK ...
6486
6487 if Present (C) and then Restriction_Check_Required (SPARK_05) then
6488 declare
6489 Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
6490 Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
6491 Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
6492
6493 begin
6494 -- ... unless the new declaration is in a subprogram, and the
6495 -- visible declaration is a variable declaration or a parameter
6496 -- specification outside that subprogram.
6497
6498 if Present (Enclosing_Subp)
6499 and then Nkind_In (Parent (C), N_Object_Declaration,
6500 N_Parameter_Specification)
6501 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
6502 then
6503 null;
6504
6505 -- ... or the new declaration is in a package, and the visible
6506 -- declaration occurs outside that package.
6507
6508 elsif Present (Enclosing_Pack)
6509 and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
6510 then
6511 null;
6512
6513 -- ... or the new declaration is a component declaration in a
6514 -- record type definition.
6515
6516 elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
6517 null;
6518
6519 -- Don't issue error for non-source entities
6520
6521 elsif Comes_From_Source (Def_Id)
6522 and then Comes_From_Source (C)
6523 then
6524 Error_Msg_Sloc := Sloc (C);
6525 Check_SPARK_05_Restriction
6526 ("redeclaration of identifier &#", Def_Id);
6527 end if;
6528 end;
6529 end if;
6530
6531 -- Warn if new entity hides an old one
6532
6533 if Warn_On_Hiding and then Present (C)
6534
6535 -- Don't warn for record components since they always have a well
6536 -- defined scope which does not confuse other uses. Note that in
6537 -- some cases, Ekind has not been set yet.
6538
6539 and then Ekind (C) /= E_Component
6540 and then Ekind (C) /= E_Discriminant
6541 and then Nkind (Parent (C)) /= N_Component_Declaration
6542 and then Ekind (Def_Id) /= E_Component
6543 and then Ekind (Def_Id) /= E_Discriminant
6544 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
6545
6546 -- Don't warn for one character variables. It is too common to use
6547 -- such variables as locals and will just cause too many false hits.
6548
6549 and then Length_Of_Name (Chars (C)) /= 1
6550
6551 -- Don't warn for non-source entities
6552
6553 and then Comes_From_Source (C)
6554 and then Comes_From_Source (Def_Id)
6555
6556 -- Don't warn unless entity in question is in extended main source
6557
6558 and then In_Extended_Main_Source_Unit (Def_Id)
6559
6560 -- Finally, the hidden entity must be either immediately visible or
6561 -- use visible (i.e. from a used package).
6562
6563 and then
6564 (Is_Immediately_Visible (C)
6565 or else
6566 Is_Potentially_Use_Visible (C))
6567 then
6568 Error_Msg_Sloc := Sloc (C);
6569 Error_Msg_N ("declaration hides &#?h?", Def_Id);
6570 end if;
6571 end Enter_Name;
6572
6573 ---------------
6574 -- Entity_Of --
6575 ---------------
6576
6577 function Entity_Of (N : Node_Id) return Entity_Id is
6578 Id : Entity_Id;
6579
6580 begin
6581 Id := Empty;
6582
6583 if Is_Entity_Name (N) then
6584 Id := Entity (N);
6585
6586 -- Follow a possible chain of renamings to reach the root renamed
6587 -- object.
6588
6589 while Present (Id)
6590 and then Is_Object (Id)
6591 and then Present (Renamed_Object (Id))
6592 loop
6593 if Is_Entity_Name (Renamed_Object (Id)) then
6594 Id := Entity (Renamed_Object (Id));
6595 else
6596 Id := Empty;
6597 exit;
6598 end if;
6599 end loop;
6600 end if;
6601
6602 return Id;
6603 end Entity_Of;
6604
6605 --------------------------
6606 -- Explain_Limited_Type --
6607 --------------------------
6608
6609 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
6610 C : Entity_Id;
6611
6612 begin
6613 -- For array, component type must be limited
6614
6615 if Is_Array_Type (T) then
6616 Error_Msg_Node_2 := T;
6617 Error_Msg_NE
6618 ("\component type& of type& is limited", N, Component_Type (T));
6619 Explain_Limited_Type (Component_Type (T), N);
6620
6621 elsif Is_Record_Type (T) then
6622
6623 -- No need for extra messages if explicit limited record
6624
6625 if Is_Limited_Record (Base_Type (T)) then
6626 return;
6627 end if;
6628
6629 -- Otherwise find a limited component. Check only components that
6630 -- come from source, or inherited components that appear in the
6631 -- source of the ancestor.
6632
6633 C := First_Component (T);
6634 while Present (C) loop
6635 if Is_Limited_Type (Etype (C))
6636 and then
6637 (Comes_From_Source (C)
6638 or else
6639 (Present (Original_Record_Component (C))
6640 and then
6641 Comes_From_Source (Original_Record_Component (C))))
6642 then
6643 Error_Msg_Node_2 := T;
6644 Error_Msg_NE ("\component& of type& has limited type", N, C);
6645 Explain_Limited_Type (Etype (C), N);
6646 return;
6647 end if;
6648
6649 Next_Component (C);
6650 end loop;
6651
6652 -- The type may be declared explicitly limited, even if no component
6653 -- of it is limited, in which case we fall out of the loop.
6654 return;
6655 end if;
6656 end Explain_Limited_Type;
6657
6658 -------------------------------
6659 -- Extensions_Visible_Status --
6660 -------------------------------
6661
6662 function Extensions_Visible_Status
6663 (Id : Entity_Id) return Extensions_Visible_Mode
6664 is
6665 Arg : Node_Id;
6666 Decl : Node_Id;
6667 Expr : Node_Id;
6668 Prag : Node_Id;
6669 Subp : Entity_Id;
6670
6671 begin
6672 -- When a formal parameter is subject to Extensions_Visible, the pragma
6673 -- is stored in the contract of related subprogram.
6674
6675 if Is_Formal (Id) then
6676 Subp := Scope (Id);
6677
6678 elsif Is_Subprogram_Or_Generic_Subprogram (Id) then
6679 Subp := Id;
6680
6681 -- No other construct carries this pragma
6682
6683 else
6684 return Extensions_Visible_None;
6685 end if;
6686
6687 Prag := Get_Pragma (Subp, Pragma_Extensions_Visible);
6688
6689 -- In certain cases analysis may request the Extensions_Visible status
6690 -- of an expression function before the pragma has been analyzed yet.
6691 -- Inspect the declarative items after the expression function looking
6692 -- for the pragma (if any).
6693
6694 if No (Prag) and then Is_Expression_Function (Subp) then
6695 Decl := Next (Unit_Declaration_Node (Subp));
6696 while Present (Decl) loop
6697 if Nkind (Decl) = N_Pragma
6698 and then Pragma_Name (Decl) = Name_Extensions_Visible
6699 then
6700 Prag := Decl;
6701 exit;
6702
6703 -- A source construct ends the region where Extensions_Visible may
6704 -- appear, stop the traversal. An expanded expression function is
6705 -- no longer a source construct, but it must still be recognized.
6706
6707 elsif Comes_From_Source (Decl)
6708 or else
6709 (Nkind_In (Decl, N_Subprogram_Body,
6710 N_Subprogram_Declaration)
6711 and then Is_Expression_Function (Defining_Entity (Decl)))
6712 then
6713 exit;
6714 end if;
6715
6716 Next (Decl);
6717 end loop;
6718 end if;
6719
6720 -- Extract the value from the Boolean expression (if any)
6721
6722 if Present (Prag) then
6723 Arg := First (Pragma_Argument_Associations (Prag));
6724
6725 if Present (Arg) then
6726 Expr := Get_Pragma_Arg (Arg);
6727
6728 -- When the associated subprogram is an expression function, the
6729 -- argument of the pragma may not have been analyzed.
6730
6731 if not Analyzed (Expr) then
6732 Preanalyze_And_Resolve (Expr, Standard_Boolean);
6733 end if;
6734
6735 -- Guard against cascading errors when the argument of pragma
6736 -- Extensions_Visible is not a valid static Boolean expression.
6737
6738 if Error_Posted (Expr) then
6739 return Extensions_Visible_None;
6740
6741 elsif Is_True (Expr_Value (Expr)) then
6742 return Extensions_Visible_True;
6743
6744 else
6745 return Extensions_Visible_False;
6746 end if;
6747
6748 -- Otherwise the aspect or pragma defaults to True
6749
6750 else
6751 return Extensions_Visible_True;
6752 end if;
6753
6754 -- Otherwise aspect or pragma Extensions_Visible is not inherited or
6755 -- directly specified. In SPARK code, its value defaults to "False".
6756
6757 elsif SPARK_Mode = On then
6758 return Extensions_Visible_False;
6759
6760 -- In non-SPARK code, aspect or pragma Extensions_Visible defaults to
6761 -- "True".
6762
6763 else
6764 return Extensions_Visible_True;
6765 end if;
6766 end Extensions_Visible_Status;
6767
6768 -----------------
6769 -- Find_Actual --
6770 -----------------
6771
6772 procedure Find_Actual
6773 (N : Node_Id;
6774 Formal : out Entity_Id;
6775 Call : out Node_Id)
6776 is
6777 Context : constant Node_Id := Parent (N);
6778 Actual : Node_Id;
6779 Call_Nam : Node_Id;
6780
6781 begin
6782 if Nkind_In (Context, N_Indexed_Component, N_Selected_Component)
6783 and then N = Prefix (Context)
6784 then
6785 Find_Actual (Context, Formal, Call);
6786 return;
6787
6788 elsif Nkind (Context) = N_Parameter_Association
6789 and then N = Explicit_Actual_Parameter (Context)
6790 then
6791 Call := Parent (Context);
6792
6793 elsif Nkind_In (Context, N_Entry_Call_Statement,
6794 N_Function_Call,
6795 N_Procedure_Call_Statement)
6796 then
6797 Call := Context;
6798
6799 else
6800 Formal := Empty;
6801 Call := Empty;
6802 return;
6803 end if;
6804
6805 -- If we have a call to a subprogram look for the parameter. Note that
6806 -- we exclude overloaded calls, since we don't know enough to be sure
6807 -- of giving the right answer in this case.
6808
6809 if Nkind_In (Call, N_Entry_Call_Statement,
6810 N_Function_Call,
6811 N_Procedure_Call_Statement)
6812 then
6813 Call_Nam := Name (Call);
6814
6815 -- A call to a protected or task entry appears as a selected
6816 -- component rather than an expanded name.
6817
6818 if Nkind (Call_Nam) = N_Selected_Component then
6819 Call_Nam := Selector_Name (Call_Nam);
6820 end if;
6821
6822 if Is_Entity_Name (Call_Nam)
6823 and then Present (Entity (Call_Nam))
6824 and then Is_Overloadable (Entity (Call_Nam))
6825 and then not Is_Overloaded (Call_Nam)
6826 then
6827 -- If node is name in call it is not an actual
6828
6829 if N = Call_Nam then
6830 Formal := Empty;
6831 Call := Empty;
6832 return;
6833 end if;
6834
6835 -- Fall here if we are definitely a parameter
6836
6837 Actual := First_Actual (Call);
6838 Formal := First_Formal (Entity (Call_Nam));
6839 while Present (Formal) and then Present (Actual) loop
6840 if Actual = N then
6841 return;
6842
6843 -- An actual that is the prefix in a prefixed call may have
6844 -- been rewritten in the call, after the deferred reference
6845 -- was collected. Check if sloc and kinds and names match.
6846
6847 elsif Sloc (Actual) = Sloc (N)
6848 and then Nkind (Actual) = N_Identifier
6849 and then Nkind (Actual) = Nkind (N)
6850 and then Chars (Actual) = Chars (N)
6851 then
6852 return;
6853
6854 else
6855 Actual := Next_Actual (Actual);
6856 Formal := Next_Formal (Formal);
6857 end if;
6858 end loop;
6859 end if;
6860 end if;
6861
6862 -- Fall through here if we did not find matching actual
6863
6864 Formal := Empty;
6865 Call := Empty;
6866 end Find_Actual;
6867
6868 ---------------------------
6869 -- Find_Body_Discriminal --
6870 ---------------------------
6871
6872 function Find_Body_Discriminal
6873 (Spec_Discriminant : Entity_Id) return Entity_Id
6874 is
6875 Tsk : Entity_Id;
6876 Disc : Entity_Id;
6877
6878 begin
6879 -- If expansion is suppressed, then the scope can be the concurrent type
6880 -- itself rather than a corresponding concurrent record type.
6881
6882 if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
6883 Tsk := Scope (Spec_Discriminant);
6884
6885 else
6886 pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
6887
6888 Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
6889 end if;
6890
6891 -- Find discriminant of original concurrent type, and use its current
6892 -- discriminal, which is the renaming within the task/protected body.
6893
6894 Disc := First_Discriminant (Tsk);
6895 while Present (Disc) loop
6896 if Chars (Disc) = Chars (Spec_Discriminant) then
6897 return Discriminal (Disc);
6898 end if;
6899
6900 Next_Discriminant (Disc);
6901 end loop;
6902
6903 -- That loop should always succeed in finding a matching entry and
6904 -- returning. Fatal error if not.
6905
6906 raise Program_Error;
6907 end Find_Body_Discriminal;
6908
6909 -------------------------------------
6910 -- Find_Corresponding_Discriminant --
6911 -------------------------------------
6912
6913 function Find_Corresponding_Discriminant
6914 (Id : Node_Id;
6915 Typ : Entity_Id) return Entity_Id
6916 is
6917 Par_Disc : Entity_Id;
6918 Old_Disc : Entity_Id;
6919 New_Disc : Entity_Id;
6920
6921 begin
6922 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
6923
6924 -- The original type may currently be private, and the discriminant
6925 -- only appear on its full view.
6926
6927 if Is_Private_Type (Scope (Par_Disc))
6928 and then not Has_Discriminants (Scope (Par_Disc))
6929 and then Present (Full_View (Scope (Par_Disc)))
6930 then
6931 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
6932 else
6933 Old_Disc := First_Discriminant (Scope (Par_Disc));
6934 end if;
6935
6936 if Is_Class_Wide_Type (Typ) then
6937 New_Disc := First_Discriminant (Root_Type (Typ));
6938 else
6939 New_Disc := First_Discriminant (Typ);
6940 end if;
6941
6942 while Present (Old_Disc) and then Present (New_Disc) loop
6943 if Old_Disc = Par_Disc then
6944 return New_Disc;
6945 end if;
6946
6947 Next_Discriminant (Old_Disc);
6948 Next_Discriminant (New_Disc);
6949 end loop;
6950
6951 -- Should always find it
6952
6953 raise Program_Error;
6954 end Find_Corresponding_Discriminant;
6955
6956 ----------------------------------
6957 -- Find_Enclosing_Iterator_Loop --
6958 ----------------------------------
6959
6960 function Find_Enclosing_Iterator_Loop (Id : Entity_Id) return Entity_Id is
6961 Constr : Node_Id;
6962 S : Entity_Id;
6963
6964 begin
6965 -- Traverse the scope chain looking for an iterator loop. Such loops are
6966 -- usually transformed into blocks, hence the use of Original_Node.
6967
6968 S := Id;
6969 while Present (S) and then S /= Standard_Standard loop
6970 if Ekind (S) = E_Loop
6971 and then Nkind (Parent (S)) = N_Implicit_Label_Declaration
6972 then
6973 Constr := Original_Node (Label_Construct (Parent (S)));
6974
6975 if Nkind (Constr) = N_Loop_Statement
6976 and then Present (Iteration_Scheme (Constr))
6977 and then Nkind (Iterator_Specification
6978 (Iteration_Scheme (Constr))) =
6979 N_Iterator_Specification
6980 then
6981 return S;
6982 end if;
6983 end if;
6984
6985 S := Scope (S);
6986 end loop;
6987
6988 return Empty;
6989 end Find_Enclosing_Iterator_Loop;
6990
6991 ------------------------------------
6992 -- Find_Loop_In_Conditional_Block --
6993 ------------------------------------
6994
6995 function Find_Loop_In_Conditional_Block (N : Node_Id) return Node_Id is
6996 Stmt : Node_Id;
6997
6998 begin
6999 Stmt := N;
7000
7001 if Nkind (Stmt) = N_If_Statement then
7002 Stmt := First (Then_Statements (Stmt));
7003 end if;
7004
7005 pragma Assert (Nkind (Stmt) = N_Block_Statement);
7006
7007 -- Inspect the statements of the conditional block. In general the loop
7008 -- should be the first statement in the statement sequence of the block,
7009 -- but the finalization machinery may have introduced extra object
7010 -- declarations.
7011
7012 Stmt := First (Statements (Handled_Statement_Sequence (Stmt)));
7013 while Present (Stmt) loop
7014 if Nkind (Stmt) = N_Loop_Statement then
7015 return Stmt;
7016 end if;
7017
7018 Next (Stmt);
7019 end loop;
7020
7021 -- The expansion of attribute 'Loop_Entry produced a malformed block
7022
7023 raise Program_Error;
7024 end Find_Loop_In_Conditional_Block;
7025
7026 --------------------------
7027 -- Find_Overlaid_Entity --
7028 --------------------------
7029
7030 procedure Find_Overlaid_Entity
7031 (N : Node_Id;
7032 Ent : out Entity_Id;
7033 Off : out Boolean)
7034 is
7035 Expr : Node_Id;
7036
7037 begin
7038 -- We are looking for one of the two following forms:
7039
7040 -- for X'Address use Y'Address
7041
7042 -- or
7043
7044 -- Const : constant Address := expr;
7045 -- ...
7046 -- for X'Address use Const;
7047
7048 -- In the second case, the expr is either Y'Address, or recursively a
7049 -- constant that eventually references Y'Address.
7050
7051 Ent := Empty;
7052 Off := False;
7053
7054 if Nkind (N) = N_Attribute_Definition_Clause
7055 and then Chars (N) = Name_Address
7056 then
7057 Expr := Expression (N);
7058
7059 -- This loop checks the form of the expression for Y'Address,
7060 -- using recursion to deal with intermediate constants.
7061
7062 loop
7063 -- Check for Y'Address
7064
7065 if Nkind (Expr) = N_Attribute_Reference
7066 and then Attribute_Name (Expr) = Name_Address
7067 then
7068 Expr := Prefix (Expr);
7069 exit;
7070
7071 -- Check for Const where Const is a constant entity
7072
7073 elsif Is_Entity_Name (Expr)
7074 and then Ekind (Entity (Expr)) = E_Constant
7075 then
7076 Expr := Constant_Value (Entity (Expr));
7077
7078 -- Anything else does not need checking
7079
7080 else
7081 return;
7082 end if;
7083 end loop;
7084
7085 -- This loop checks the form of the prefix for an entity, using
7086 -- recursion to deal with intermediate components.
7087
7088 loop
7089 -- Check for Y where Y is an entity
7090
7091 if Is_Entity_Name (Expr) then
7092 Ent := Entity (Expr);
7093 return;
7094
7095 -- Check for components
7096
7097 elsif
7098 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
7099 then
7100 Expr := Prefix (Expr);
7101 Off := True;
7102
7103 -- Anything else does not need checking
7104
7105 else
7106 return;
7107 end if;
7108 end loop;
7109 end if;
7110 end Find_Overlaid_Entity;
7111
7112 -------------------------
7113 -- Find_Parameter_Type --
7114 -------------------------
7115
7116 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
7117 begin
7118 if Nkind (Param) /= N_Parameter_Specification then
7119 return Empty;
7120
7121 -- For an access parameter, obtain the type from the formal entity
7122 -- itself, because access to subprogram nodes do not carry a type.
7123 -- Shouldn't we always use the formal entity ???
7124
7125 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
7126 return Etype (Defining_Identifier (Param));
7127
7128 else
7129 return Etype (Parameter_Type (Param));
7130 end if;
7131 end Find_Parameter_Type;
7132
7133 -----------------------------------
7134 -- Find_Placement_In_State_Space --
7135 -----------------------------------
7136
7137 procedure Find_Placement_In_State_Space
7138 (Item_Id : Entity_Id;
7139 Placement : out State_Space_Kind;
7140 Pack_Id : out Entity_Id)
7141 is
7142 Context : Entity_Id;
7143
7144 begin
7145 -- Assume that the item does not appear in the state space of a package
7146
7147 Placement := Not_In_Package;
7148 Pack_Id := Empty;
7149
7150 -- Climb the scope stack and examine the enclosing context
7151
7152 Context := Scope (Item_Id);
7153 while Present (Context) and then Context /= Standard_Standard loop
7154 if Ekind (Context) = E_Package then
7155 Pack_Id := Context;
7156
7157 -- A package body is a cut off point for the traversal as the item
7158 -- cannot be visible to the outside from this point on. Note that
7159 -- this test must be done first as a body is also classified as a
7160 -- private part.
7161
7162 if In_Package_Body (Context) then
7163 Placement := Body_State_Space;
7164 return;
7165
7166 -- The private part of a package is a cut off point for the
7167 -- traversal as the item cannot be visible to the outside from
7168 -- this point on.
7169
7170 elsif In_Private_Part (Context) then
7171 Placement := Private_State_Space;
7172 return;
7173
7174 -- When the item appears in the visible state space of a package,
7175 -- continue to climb the scope stack as this may not be the final
7176 -- state space.
7177
7178 else
7179 Placement := Visible_State_Space;
7180
7181 -- The visible state space of a child unit acts as the proper
7182 -- placement of an item.
7183
7184 if Is_Child_Unit (Context) then
7185 return;
7186 end if;
7187 end if;
7188
7189 -- The item or its enclosing package appear in a construct that has
7190 -- no state space.
7191
7192 else
7193 Placement := Not_In_Package;
7194 return;
7195 end if;
7196
7197 Context := Scope (Context);
7198 end loop;
7199 end Find_Placement_In_State_Space;
7200
7201 ------------------------
7202 -- Find_Specific_Type --
7203 ------------------------
7204
7205 function Find_Specific_Type (CW : Entity_Id) return Entity_Id is
7206 Typ : Entity_Id := Root_Type (CW);
7207
7208 begin
7209 if Ekind (Typ) = E_Incomplete_Type then
7210 if From_Limited_With (Typ) then
7211 Typ := Non_Limited_View (Typ);
7212 else
7213 Typ := Full_View (Typ);
7214 end if;
7215 end if;
7216
7217 if Is_Private_Type (Typ)
7218 and then not Is_Tagged_Type (Typ)
7219 and then Present (Full_View (Typ))
7220 then
7221 return Full_View (Typ);
7222 else
7223 return Typ;
7224 end if;
7225 end Find_Specific_Type;
7226
7227 -----------------------------
7228 -- Find_Static_Alternative --
7229 -----------------------------
7230
7231 function Find_Static_Alternative (N : Node_Id) return Node_Id is
7232 Expr : constant Node_Id := Expression (N);
7233 Val : constant Uint := Expr_Value (Expr);
7234 Alt : Node_Id;
7235 Choice : Node_Id;
7236
7237 begin
7238 Alt := First (Alternatives (N));
7239
7240 Search : loop
7241 if Nkind (Alt) /= N_Pragma then
7242 Choice := First (Discrete_Choices (Alt));
7243 while Present (Choice) loop
7244
7245 -- Others choice, always matches
7246
7247 if Nkind (Choice) = N_Others_Choice then
7248 exit Search;
7249
7250 -- Range, check if value is in the range
7251
7252 elsif Nkind (Choice) = N_Range then
7253 exit Search when
7254 Val >= Expr_Value (Low_Bound (Choice))
7255 and then
7256 Val <= Expr_Value (High_Bound (Choice));
7257
7258 -- Choice is a subtype name. Note that we know it must
7259 -- be a static subtype, since otherwise it would have
7260 -- been diagnosed as illegal.
7261
7262 elsif Is_Entity_Name (Choice)
7263 and then Is_Type (Entity (Choice))
7264 then
7265 exit Search when Is_In_Range (Expr, Etype (Choice),
7266 Assume_Valid => False);
7267
7268 -- Choice is a subtype indication
7269
7270 elsif Nkind (Choice) = N_Subtype_Indication then
7271 declare
7272 C : constant Node_Id := Constraint (Choice);
7273 R : constant Node_Id := Range_Expression (C);
7274
7275 begin
7276 exit Search when
7277 Val >= Expr_Value (Low_Bound (R))
7278 and then
7279 Val <= Expr_Value (High_Bound (R));
7280 end;
7281
7282 -- Choice is a simple expression
7283
7284 else
7285 exit Search when Val = Expr_Value (Choice);
7286 end if;
7287
7288 Next (Choice);
7289 end loop;
7290 end if;
7291
7292 Next (Alt);
7293 pragma Assert (Present (Alt));
7294 end loop Search;
7295
7296 -- The above loop *must* terminate by finding a match, since
7297 -- we know the case statement is valid, and the value of the
7298 -- expression is known at compile time. When we fall out of
7299 -- the loop, Alt points to the alternative that we know will
7300 -- be selected at run time.
7301
7302 return Alt;
7303 end Find_Static_Alternative;
7304
7305 ------------------
7306 -- First_Actual --
7307 ------------------
7308
7309 function First_Actual (Node : Node_Id) return Node_Id is
7310 N : Node_Id;
7311
7312 begin
7313 if No (Parameter_Associations (Node)) then
7314 return Empty;
7315 end if;
7316
7317 N := First (Parameter_Associations (Node));
7318
7319 if Nkind (N) = N_Parameter_Association then
7320 return First_Named_Actual (Node);
7321 else
7322 return N;
7323 end if;
7324 end First_Actual;
7325
7326 -------------
7327 -- Fix_Msg --
7328 -------------
7329
7330 function Fix_Msg (Id : Entity_Id; Msg : String) return String is
7331 Is_Task : constant Boolean :=
7332 Ekind_In (Id, E_Task_Body, E_Task_Type)
7333 or else Is_Single_Task_Object (Id);
7334 Msg_Last : constant Natural := Msg'Last;
7335 Msg_Index : Natural;
7336 Res : String (Msg'Range) := (others => ' ');
7337 Res_Index : Natural;
7338
7339 begin
7340 -- Copy all characters from the input message Msg to result Res with
7341 -- suitable replacements.
7342
7343 Msg_Index := Msg'First;
7344 Res_Index := Res'First;
7345 while Msg_Index <= Msg_Last loop
7346
7347 -- Replace "subprogram" with a different word
7348
7349 if Msg_Index <= Msg_Last - 10
7350 and then Msg (Msg_Index .. Msg_Index + 9) = "subprogram"
7351 then
7352 if Ekind_In (Id, E_Entry, E_Entry_Family) then
7353 Res (Res_Index .. Res_Index + 4) := "entry";
7354 Res_Index := Res_Index + 5;
7355
7356 elsif Is_Task then
7357 Res (Res_Index .. Res_Index + 8) := "task type";
7358 Res_Index := Res_Index + 9;
7359
7360 else
7361 Res (Res_Index .. Res_Index + 9) := "subprogram";
7362 Res_Index := Res_Index + 10;
7363 end if;
7364
7365 Msg_Index := Msg_Index + 10;
7366
7367 -- Replace "protected" with a different word
7368
7369 elsif Msg_Index <= Msg_Last - 9
7370 and then Msg (Msg_Index .. Msg_Index + 8) = "protected"
7371 and then Is_Task
7372 then
7373 Res (Res_Index .. Res_Index + 3) := "task";
7374 Res_Index := Res_Index + 4;
7375 Msg_Index := Msg_Index + 9;
7376
7377 -- Otherwise copy the character
7378
7379 else
7380 Res (Res_Index) := Msg (Msg_Index);
7381 Msg_Index := Msg_Index + 1;
7382 Res_Index := Res_Index + 1;
7383 end if;
7384 end loop;
7385
7386 return Res (Res'First .. Res_Index - 1);
7387 end Fix_Msg;
7388
7389 -----------------------
7390 -- Gather_Components --
7391 -----------------------
7392
7393 procedure Gather_Components
7394 (Typ : Entity_Id;
7395 Comp_List : Node_Id;
7396 Governed_By : List_Id;
7397 Into : Elist_Id;
7398 Report_Errors : out Boolean)
7399 is
7400 Assoc : Node_Id;
7401 Variant : Node_Id;
7402 Discrete_Choice : Node_Id;
7403 Comp_Item : Node_Id;
7404
7405 Discrim : Entity_Id;
7406 Discrim_Name : Node_Id;
7407 Discrim_Value : Node_Id;
7408
7409 begin
7410 Report_Errors := False;
7411
7412 if No (Comp_List) or else Null_Present (Comp_List) then
7413 return;
7414
7415 elsif Present (Component_Items (Comp_List)) then
7416 Comp_Item := First (Component_Items (Comp_List));
7417
7418 else
7419 Comp_Item := Empty;
7420 end if;
7421
7422 while Present (Comp_Item) loop
7423
7424 -- Skip the tag of a tagged record, the interface tags, as well
7425 -- as all items that are not user components (anonymous types,
7426 -- rep clauses, Parent field, controller field).
7427
7428 if Nkind (Comp_Item) = N_Component_Declaration then
7429 declare
7430 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
7431 begin
7432 if not Is_Tag (Comp) and then Chars (Comp) /= Name_uParent then
7433 Append_Elmt (Comp, Into);
7434 end if;
7435 end;
7436 end if;
7437
7438 Next (Comp_Item);
7439 end loop;
7440
7441 if No (Variant_Part (Comp_List)) then
7442 return;
7443 else
7444 Discrim_Name := Name (Variant_Part (Comp_List));
7445 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
7446 end if;
7447
7448 -- Look for the discriminant that governs this variant part.
7449 -- The discriminant *must* be in the Governed_By List
7450
7451 Assoc := First (Governed_By);
7452 Find_Constraint : loop
7453 Discrim := First (Choices (Assoc));
7454 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
7455 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
7456 and then
7457 Chars (Corresponding_Discriminant (Entity (Discrim))) =
7458 Chars (Discrim_Name))
7459 or else Chars (Original_Record_Component (Entity (Discrim)))
7460 = Chars (Discrim_Name);
7461
7462 if No (Next (Assoc)) then
7463 if not Is_Constrained (Typ)
7464 and then Is_Derived_Type (Typ)
7465 and then Present (Stored_Constraint (Typ))
7466 then
7467 -- If the type is a tagged type with inherited discriminants,
7468 -- use the stored constraint on the parent in order to find
7469 -- the values of discriminants that are otherwise hidden by an
7470 -- explicit constraint. Renamed discriminants are handled in
7471 -- the code above.
7472
7473 -- If several parent discriminants are renamed by a single
7474 -- discriminant of the derived type, the call to obtain the
7475 -- Corresponding_Discriminant field only retrieves the last
7476 -- of them. We recover the constraint on the others from the
7477 -- Stored_Constraint as well.
7478
7479 declare
7480 D : Entity_Id;
7481 C : Elmt_Id;
7482
7483 begin
7484 D := First_Discriminant (Etype (Typ));
7485 C := First_Elmt (Stored_Constraint (Typ));
7486 while Present (D) and then Present (C) loop
7487 if Chars (Discrim_Name) = Chars (D) then
7488 if Is_Entity_Name (Node (C))
7489 and then Entity (Node (C)) = Entity (Discrim)
7490 then
7491 -- D is renamed by Discrim, whose value is given in
7492 -- Assoc.
7493
7494 null;
7495
7496 else
7497 Assoc :=
7498 Make_Component_Association (Sloc (Typ),
7499 New_List
7500 (New_Occurrence_Of (D, Sloc (Typ))),
7501 Duplicate_Subexpr_No_Checks (Node (C)));
7502 end if;
7503 exit Find_Constraint;
7504 end if;
7505
7506 Next_Discriminant (D);
7507 Next_Elmt (C);
7508 end loop;
7509 end;
7510 end if;
7511 end if;
7512
7513 if No (Next (Assoc)) then
7514 Error_Msg_NE (" missing value for discriminant&",
7515 First (Governed_By), Discrim_Name);
7516 Report_Errors := True;
7517 return;
7518 end if;
7519
7520 Next (Assoc);
7521 end loop Find_Constraint;
7522
7523 Discrim_Value := Expression (Assoc);
7524
7525 if not Is_OK_Static_Expression (Discrim_Value) then
7526
7527 -- If the variant part is governed by a discriminant of the type
7528 -- this is an error. If the variant part and the discriminant are
7529 -- inherited from an ancestor this is legal (AI05-120) unless the
7530 -- components are being gathered for an aggregate, in which case
7531 -- the caller must check Report_Errors.
7532
7533 if Scope (Original_Record_Component
7534 ((Entity (First (Choices (Assoc)))))) = Typ
7535 then
7536 Error_Msg_FE
7537 ("value for discriminant & must be static!",
7538 Discrim_Value, Discrim);
7539 Why_Not_Static (Discrim_Value);
7540 end if;
7541
7542 Report_Errors := True;
7543 return;
7544 end if;
7545
7546 Search_For_Discriminant_Value : declare
7547 Low : Node_Id;
7548 High : Node_Id;
7549
7550 UI_High : Uint;
7551 UI_Low : Uint;
7552 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
7553
7554 begin
7555 Find_Discrete_Value : while Present (Variant) loop
7556 Discrete_Choice := First (Discrete_Choices (Variant));
7557 while Present (Discrete_Choice) loop
7558 exit Find_Discrete_Value when
7559 Nkind (Discrete_Choice) = N_Others_Choice;
7560
7561 Get_Index_Bounds (Discrete_Choice, Low, High);
7562
7563 UI_Low := Expr_Value (Low);
7564 UI_High := Expr_Value (High);
7565
7566 exit Find_Discrete_Value when
7567 UI_Low <= UI_Discrim_Value
7568 and then
7569 UI_High >= UI_Discrim_Value;
7570
7571 Next (Discrete_Choice);
7572 end loop;
7573
7574 Next_Non_Pragma (Variant);
7575 end loop Find_Discrete_Value;
7576 end Search_For_Discriminant_Value;
7577
7578 if No (Variant) then
7579 Error_Msg_NE
7580 ("value of discriminant & is out of range", Discrim_Value, Discrim);
7581 Report_Errors := True;
7582 return;
7583 end if;
7584
7585 -- If we have found the corresponding choice, recursively add its
7586 -- components to the Into list. The nested components are part of
7587 -- the same record type.
7588
7589 Gather_Components
7590 (Typ, Component_List (Variant), Governed_By, Into, Report_Errors);
7591 end Gather_Components;
7592
7593 ------------------------
7594 -- Get_Actual_Subtype --
7595 ------------------------
7596
7597 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
7598 Typ : constant Entity_Id := Etype (N);
7599 Utyp : Entity_Id := Underlying_Type (Typ);
7600 Decl : Node_Id;
7601 Atyp : Entity_Id;
7602
7603 begin
7604 if No (Utyp) then
7605 Utyp := Typ;
7606 end if;
7607
7608 -- If what we have is an identifier that references a subprogram
7609 -- formal, or a variable or constant object, then we get the actual
7610 -- subtype from the referenced entity if one has been built.
7611
7612 if Nkind (N) = N_Identifier
7613 and then
7614 (Is_Formal (Entity (N))
7615 or else Ekind (Entity (N)) = E_Constant
7616 or else Ekind (Entity (N)) = E_Variable)
7617 and then Present (Actual_Subtype (Entity (N)))
7618 then
7619 return Actual_Subtype (Entity (N));
7620
7621 -- Actual subtype of unchecked union is always itself. We never need
7622 -- the "real" actual subtype. If we did, we couldn't get it anyway
7623 -- because the discriminant is not available. The restrictions on
7624 -- Unchecked_Union are designed to make sure that this is OK.
7625
7626 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
7627 return Typ;
7628
7629 -- Here for the unconstrained case, we must find actual subtype
7630 -- No actual subtype is available, so we must build it on the fly.
7631
7632 -- Checking the type, not the underlying type, for constrainedness
7633 -- seems to be necessary. Maybe all the tests should be on the type???
7634
7635 elsif (not Is_Constrained (Typ))
7636 and then (Is_Array_Type (Utyp)
7637 or else (Is_Record_Type (Utyp)
7638 and then Has_Discriminants (Utyp)))
7639 and then not Has_Unknown_Discriminants (Utyp)
7640 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
7641 then
7642 -- Nothing to do if in spec expression (why not???)
7643
7644 if In_Spec_Expression then
7645 return Typ;
7646
7647 elsif Is_Private_Type (Typ) and then not Has_Discriminants (Typ) then
7648
7649 -- If the type has no discriminants, there is no subtype to
7650 -- build, even if the underlying type is discriminated.
7651
7652 return Typ;
7653
7654 -- Else build the actual subtype
7655
7656 else
7657 Decl := Build_Actual_Subtype (Typ, N);
7658 Atyp := Defining_Identifier (Decl);
7659
7660 -- If Build_Actual_Subtype generated a new declaration then use it
7661
7662 if Atyp /= Typ then
7663
7664 -- The actual subtype is an Itype, so analyze the declaration,
7665 -- but do not attach it to the tree, to get the type defined.
7666
7667 Set_Parent (Decl, N);
7668 Set_Is_Itype (Atyp);
7669 Analyze (Decl, Suppress => All_Checks);
7670 Set_Associated_Node_For_Itype (Atyp, N);
7671 Set_Has_Delayed_Freeze (Atyp, False);
7672
7673 -- We need to freeze the actual subtype immediately. This is
7674 -- needed, because otherwise this Itype will not get frozen
7675 -- at all, and it is always safe to freeze on creation because
7676 -- any associated types must be frozen at this point.
7677
7678 Freeze_Itype (Atyp, N);
7679 return Atyp;
7680
7681 -- Otherwise we did not build a declaration, so return original
7682
7683 else
7684 return Typ;
7685 end if;
7686 end if;
7687
7688 -- For all remaining cases, the actual subtype is the same as
7689 -- the nominal type.
7690
7691 else
7692 return Typ;
7693 end if;
7694 end Get_Actual_Subtype;
7695
7696 -------------------------------------
7697 -- Get_Actual_Subtype_If_Available --
7698 -------------------------------------
7699
7700 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
7701 Typ : constant Entity_Id := Etype (N);
7702
7703 begin
7704 -- If what we have is an identifier that references a subprogram
7705 -- formal, or a variable or constant object, then we get the actual
7706 -- subtype from the referenced entity if one has been built.
7707
7708 if Nkind (N) = N_Identifier
7709 and then
7710 (Is_Formal (Entity (N))
7711 or else Ekind (Entity (N)) = E_Constant
7712 or else Ekind (Entity (N)) = E_Variable)
7713 and then Present (Actual_Subtype (Entity (N)))
7714 then
7715 return Actual_Subtype (Entity (N));
7716
7717 -- Otherwise the Etype of N is returned unchanged
7718
7719 else
7720 return Typ;
7721 end if;
7722 end Get_Actual_Subtype_If_Available;
7723
7724 ------------------------
7725 -- Get_Body_From_Stub --
7726 ------------------------
7727
7728 function Get_Body_From_Stub (N : Node_Id) return Node_Id is
7729 begin
7730 return Proper_Body (Unit (Library_Unit (N)));
7731 end Get_Body_From_Stub;
7732
7733 ---------------------
7734 -- Get_Cursor_Type --
7735 ---------------------
7736
7737 function Get_Cursor_Type
7738 (Aspect : Node_Id;
7739 Typ : Entity_Id) return Entity_Id
7740 is
7741 Assoc : Node_Id;
7742 Func : Entity_Id;
7743 First_Op : Entity_Id;
7744 Cursor : Entity_Id;
7745
7746 begin
7747 -- If error already detected, return
7748
7749 if Error_Posted (Aspect) then
7750 return Any_Type;
7751 end if;
7752
7753 -- The cursor type for an Iterable aspect is the return type of a
7754 -- non-overloaded First primitive operation. Locate association for
7755 -- First.
7756
7757 Assoc := First (Component_Associations (Expression (Aspect)));
7758 First_Op := Any_Id;
7759 while Present (Assoc) loop
7760 if Chars (First (Choices (Assoc))) = Name_First then
7761 First_Op := Expression (Assoc);
7762 exit;
7763 end if;
7764
7765 Next (Assoc);
7766 end loop;
7767
7768 if First_Op = Any_Id then
7769 Error_Msg_N ("aspect Iterable must specify First operation", Aspect);
7770 return Any_Type;
7771 end if;
7772
7773 Cursor := Any_Type;
7774
7775 -- Locate function with desired name and profile in scope of type
7776 -- In the rare case where the type is an integer type, a base type
7777 -- is created for it, check that the base type of the first formal
7778 -- of First matches the base type of the domain.
7779
7780 Func := First_Entity (Scope (Typ));
7781 while Present (Func) loop
7782 if Chars (Func) = Chars (First_Op)
7783 and then Ekind (Func) = E_Function
7784 and then Present (First_Formal (Func))
7785 and then Base_Type (Etype (First_Formal (Func))) = Base_Type (Typ)
7786 and then No (Next_Formal (First_Formal (Func)))
7787 then
7788 if Cursor /= Any_Type then
7789 Error_Msg_N
7790 ("Operation First for iterable type must be unique", Aspect);
7791 return Any_Type;
7792 else
7793 Cursor := Etype (Func);
7794 end if;
7795 end if;
7796
7797 Next_Entity (Func);
7798 end loop;
7799
7800 -- If not found, no way to resolve remaining primitives.
7801
7802 if Cursor = Any_Type then
7803 Error_Msg_N
7804 ("No legal primitive operation First for Iterable type", Aspect);
7805 end if;
7806
7807 return Cursor;
7808 end Get_Cursor_Type;
7809
7810 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
7811 begin
7812 return Etype (Get_Iterable_Type_Primitive (Typ, Name_First));
7813 end Get_Cursor_Type;
7814
7815 -------------------------------
7816 -- Get_Default_External_Name --
7817 -------------------------------
7818
7819 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
7820 begin
7821 Get_Decoded_Name_String (Chars (E));
7822
7823 if Opt.External_Name_Imp_Casing = Uppercase then
7824 Set_Casing (All_Upper_Case);
7825 else
7826 Set_Casing (All_Lower_Case);
7827 end if;
7828
7829 return
7830 Make_String_Literal (Sloc (E),
7831 Strval => String_From_Name_Buffer);
7832 end Get_Default_External_Name;
7833
7834 --------------------------
7835 -- Get_Enclosing_Object --
7836 --------------------------
7837
7838 function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
7839 begin
7840 if Is_Entity_Name (N) then
7841 return Entity (N);
7842 else
7843 case Nkind (N) is
7844 when N_Indexed_Component |
7845 N_Slice |
7846 N_Selected_Component =>
7847
7848 -- If not generating code, a dereference may be left implicit.
7849 -- In thoses cases, return Empty.
7850
7851 if Is_Access_Type (Etype (Prefix (N))) then
7852 return Empty;
7853 else
7854 return Get_Enclosing_Object (Prefix (N));
7855 end if;
7856
7857 when N_Type_Conversion =>
7858 return Get_Enclosing_Object (Expression (N));
7859
7860 when others =>
7861 return Empty;
7862 end case;
7863 end if;
7864 end Get_Enclosing_Object;
7865
7866 ---------------------------
7867 -- Get_Enum_Lit_From_Pos --
7868 ---------------------------
7869
7870 function Get_Enum_Lit_From_Pos
7871 (T : Entity_Id;
7872 Pos : Uint;
7873 Loc : Source_Ptr) return Node_Id
7874 is
7875 Btyp : Entity_Id := Base_Type (T);
7876 Lit : Node_Id;
7877
7878 begin
7879 -- In the case where the literal is of type Character, Wide_Character
7880 -- or Wide_Wide_Character or of a type derived from them, there needs
7881 -- to be some special handling since there is no explicit chain of
7882 -- literals to search. Instead, an N_Character_Literal node is created
7883 -- with the appropriate Char_Code and Chars fields.
7884
7885 if Is_Standard_Character_Type (T) then
7886 Set_Character_Literal_Name (UI_To_CC (Pos));
7887 return
7888 Make_Character_Literal (Loc,
7889 Chars => Name_Find,
7890 Char_Literal_Value => Pos);
7891
7892 -- For all other cases, we have a complete table of literals, and
7893 -- we simply iterate through the chain of literal until the one
7894 -- with the desired position value is found.
7895
7896 else
7897 if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
7898 Btyp := Full_View (Btyp);
7899 end if;
7900
7901 Lit := First_Literal (Btyp);
7902 for J in 1 .. UI_To_Int (Pos) loop
7903 Next_Literal (Lit);
7904 end loop;
7905
7906 return New_Occurrence_Of (Lit, Loc);
7907 end if;
7908 end Get_Enum_Lit_From_Pos;
7909
7910 ------------------------
7911 -- Get_Generic_Entity --
7912 ------------------------
7913
7914 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
7915 Ent : constant Entity_Id := Entity (Name (N));
7916 begin
7917 if Present (Renamed_Object (Ent)) then
7918 return Renamed_Object (Ent);
7919 else
7920 return Ent;
7921 end if;
7922 end Get_Generic_Entity;
7923
7924 -------------------------------------
7925 -- Get_Incomplete_View_Of_Ancestor --
7926 -------------------------------------
7927
7928 function Get_Incomplete_View_Of_Ancestor (E : Entity_Id) return Entity_Id is
7929 Cur_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
7930 Par_Scope : Entity_Id;
7931 Par_Type : Entity_Id;
7932
7933 begin
7934 -- The incomplete view of an ancestor is only relevant for private
7935 -- derived types in child units.
7936
7937 if not Is_Derived_Type (E)
7938 or else not Is_Child_Unit (Cur_Unit)
7939 then
7940 return Empty;
7941
7942 else
7943 Par_Scope := Scope (Cur_Unit);
7944 if No (Par_Scope) then
7945 return Empty;
7946 end if;
7947
7948 Par_Type := Etype (Base_Type (E));
7949
7950 -- Traverse list of ancestor types until we find one declared in
7951 -- a parent or grandparent unit (two levels seem sufficient).
7952
7953 while Present (Par_Type) loop
7954 if Scope (Par_Type) = Par_Scope
7955 or else Scope (Par_Type) = Scope (Par_Scope)
7956 then
7957 return Par_Type;
7958
7959 elsif not Is_Derived_Type (Par_Type) then
7960 return Empty;
7961
7962 else
7963 Par_Type := Etype (Base_Type (Par_Type));
7964 end if;
7965 end loop;
7966
7967 -- If none found, there is no relevant ancestor type.
7968
7969 return Empty;
7970 end if;
7971 end Get_Incomplete_View_Of_Ancestor;
7972
7973 ----------------------
7974 -- Get_Index_Bounds --
7975 ----------------------
7976
7977 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
7978 Kind : constant Node_Kind := Nkind (N);
7979 R : Node_Id;
7980
7981 begin
7982 if Kind = N_Range then
7983 L := Low_Bound (N);
7984 H := High_Bound (N);
7985
7986 elsif Kind = N_Subtype_Indication then
7987 R := Range_Expression (Constraint (N));
7988
7989 if R = Error then
7990 L := Error;
7991 H := Error;
7992 return;
7993
7994 else
7995 L := Low_Bound (Range_Expression (Constraint (N)));
7996 H := High_Bound (Range_Expression (Constraint (N)));
7997 end if;
7998
7999 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
8000 if Error_Posted (Scalar_Range (Entity (N))) then
8001 L := Error;
8002 H := Error;
8003
8004 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
8005 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
8006
8007 else
8008 L := Low_Bound (Scalar_Range (Entity (N)));
8009 H := High_Bound (Scalar_Range (Entity (N)));
8010 end if;
8011
8012 else
8013 -- N is an expression, indicating a range with one value
8014
8015 L := N;
8016 H := N;
8017 end if;
8018 end Get_Index_Bounds;
8019
8020 ---------------------------------
8021 -- Get_Iterable_Type_Primitive --
8022 ---------------------------------
8023
8024 function Get_Iterable_Type_Primitive
8025 (Typ : Entity_Id;
8026 Nam : Name_Id) return Entity_Id
8027 is
8028 Funcs : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Iterable);
8029 Assoc : Node_Id;
8030
8031 begin
8032 if No (Funcs) then
8033 return Empty;
8034
8035 else
8036 Assoc := First (Component_Associations (Funcs));
8037 while Present (Assoc) loop
8038 if Chars (First (Choices (Assoc))) = Nam then
8039 return Entity (Expression (Assoc));
8040 end if;
8041
8042 Assoc := Next (Assoc);
8043 end loop;
8044
8045 return Empty;
8046 end if;
8047 end Get_Iterable_Type_Primitive;
8048
8049 ----------------------------------
8050 -- Get_Library_Unit_Name_string --
8051 ----------------------------------
8052
8053 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
8054 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
8055
8056 begin
8057 Get_Unit_Name_String (Unit_Name_Id);
8058
8059 -- Remove seven last character (" (spec)" or " (body)")
8060
8061 Name_Len := Name_Len - 7;
8062 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
8063 end Get_Library_Unit_Name_String;
8064
8065 ------------------------
8066 -- Get_Name_Entity_Id --
8067 ------------------------
8068
8069 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
8070 begin
8071 return Entity_Id (Get_Name_Table_Int (Id));
8072 end Get_Name_Entity_Id;
8073
8074 ------------------------------
8075 -- Get_Name_From_CTC_Pragma --
8076 ------------------------------
8077
8078 function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
8079 Arg : constant Node_Id :=
8080 Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
8081 begin
8082 return Strval (Expr_Value_S (Arg));
8083 end Get_Name_From_CTC_Pragma;
8084
8085 -----------------------
8086 -- Get_Parent_Entity --
8087 -----------------------
8088
8089 function Get_Parent_Entity (Unit : Node_Id) return Entity_Id is
8090 begin
8091 if Nkind (Unit) = N_Package_Body
8092 and then Nkind (Original_Node (Unit)) = N_Package_Instantiation
8093 then
8094 return Defining_Entity
8095 (Specification (Instance_Spec (Original_Node (Unit))));
8096 elsif Nkind (Unit) = N_Package_Instantiation then
8097 return Defining_Entity (Specification (Instance_Spec (Unit)));
8098 else
8099 return Defining_Entity (Unit);
8100 end if;
8101 end Get_Parent_Entity;
8102
8103 -------------------
8104 -- Get_Pragma_Id --
8105 -------------------
8106
8107 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
8108 begin
8109 return Get_Pragma_Id (Pragma_Name (N));
8110 end Get_Pragma_Id;
8111
8112 -----------------------
8113 -- Get_Reason_String --
8114 -----------------------
8115
8116 procedure Get_Reason_String (N : Node_Id) is
8117 begin
8118 if Nkind (N) = N_String_Literal then
8119 Store_String_Chars (Strval (N));
8120
8121 elsif Nkind (N) = N_Op_Concat then
8122 Get_Reason_String (Left_Opnd (N));
8123 Get_Reason_String (Right_Opnd (N));
8124
8125 -- If not of required form, error
8126
8127 else
8128 Error_Msg_N
8129 ("Reason for pragma Warnings has wrong form", N);
8130 Error_Msg_N
8131 ("\must be string literal or concatenation of string literals", N);
8132 return;
8133 end if;
8134 end Get_Reason_String;
8135
8136 --------------------------------
8137 -- Get_Reference_Discriminant --
8138 --------------------------------
8139
8140 function Get_Reference_Discriminant (Typ : Entity_Id) return Entity_Id is
8141 D : Entity_Id;
8142
8143 begin
8144 D := First_Discriminant (Typ);
8145 while Present (D) loop
8146 if Has_Implicit_Dereference (D) then
8147 return D;
8148 end if;
8149 Next_Discriminant (D);
8150 end loop;
8151
8152 return Empty;
8153 end Get_Reference_Discriminant;
8154
8155 ---------------------------
8156 -- Get_Referenced_Object --
8157 ---------------------------
8158
8159 function Get_Referenced_Object (N : Node_Id) return Node_Id is
8160 R : Node_Id;
8161
8162 begin
8163 R := N;
8164 while Is_Entity_Name (R)
8165 and then Present (Renamed_Object (Entity (R)))
8166 loop
8167 R := Renamed_Object (Entity (R));
8168 end loop;
8169
8170 return R;
8171 end Get_Referenced_Object;
8172
8173 ------------------------
8174 -- Get_Renamed_Entity --
8175 ------------------------
8176
8177 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
8178 R : Entity_Id;
8179
8180 begin
8181 R := E;
8182 while Present (Renamed_Entity (R)) loop
8183 R := Renamed_Entity (R);
8184 end loop;
8185
8186 return R;
8187 end Get_Renamed_Entity;
8188
8189 -----------------------
8190 -- Get_Return_Object --
8191 -----------------------
8192
8193 function Get_Return_Object (N : Node_Id) return Entity_Id is
8194 Decl : Node_Id;
8195
8196 begin
8197 Decl := First (Return_Object_Declarations (N));
8198 while Present (Decl) loop
8199 exit when Nkind (Decl) = N_Object_Declaration
8200 and then Is_Return_Object (Defining_Identifier (Decl));
8201 Next (Decl);
8202 end loop;
8203
8204 pragma Assert (Present (Decl));
8205 return Defining_Identifier (Decl);
8206 end Get_Return_Object;
8207
8208 ---------------------------
8209 -- Get_Subprogram_Entity --
8210 ---------------------------
8211
8212 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
8213 Subp : Node_Id;
8214 Subp_Id : Entity_Id;
8215
8216 begin
8217 if Nkind (Nod) = N_Accept_Statement then
8218 Subp := Entry_Direct_Name (Nod);
8219
8220 elsif Nkind (Nod) = N_Slice then
8221 Subp := Prefix (Nod);
8222
8223 else
8224 Subp := Name (Nod);
8225 end if;
8226
8227 -- Strip the subprogram call
8228
8229 loop
8230 if Nkind_In (Subp, N_Explicit_Dereference,
8231 N_Indexed_Component,
8232 N_Selected_Component)
8233 then
8234 Subp := Prefix (Subp);
8235
8236 elsif Nkind_In (Subp, N_Type_Conversion,
8237 N_Unchecked_Type_Conversion)
8238 then
8239 Subp := Expression (Subp);
8240
8241 else
8242 exit;
8243 end if;
8244 end loop;
8245
8246 -- Extract the entity of the subprogram call
8247
8248 if Is_Entity_Name (Subp) then
8249 Subp_Id := Entity (Subp);
8250
8251 if Ekind (Subp_Id) = E_Access_Subprogram_Type then
8252 Subp_Id := Directly_Designated_Type (Subp_Id);
8253 end if;
8254
8255 if Is_Subprogram (Subp_Id) then
8256 return Subp_Id;
8257 else
8258 return Empty;
8259 end if;
8260
8261 -- The search did not find a construct that denotes a subprogram
8262
8263 else
8264 return Empty;
8265 end if;
8266 end Get_Subprogram_Entity;
8267
8268 -----------------------------
8269 -- Get_Task_Body_Procedure --
8270 -----------------------------
8271
8272 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
8273 begin
8274 -- Note: A task type may be the completion of a private type with
8275 -- discriminants. When performing elaboration checks on a task
8276 -- declaration, the current view of the type may be the private one,
8277 -- and the procedure that holds the body of the task is held in its
8278 -- underlying type.
8279
8280 -- This is an odd function, why not have Task_Body_Procedure do
8281 -- the following digging???
8282
8283 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
8284 end Get_Task_Body_Procedure;
8285
8286 -------------------------
8287 -- Get_User_Defined_Eq --
8288 -------------------------
8289
8290 function Get_User_Defined_Eq (E : Entity_Id) return Entity_Id is
8291 Prim : Elmt_Id;
8292 Op : Entity_Id;
8293
8294 begin
8295 Prim := First_Elmt (Collect_Primitive_Operations (E));
8296 while Present (Prim) loop
8297 Op := Node (Prim);
8298
8299 if Chars (Op) = Name_Op_Eq
8300 and then Etype (Op) = Standard_Boolean
8301 and then Etype (First_Formal (Op)) = E
8302 and then Etype (Next_Formal (First_Formal (Op))) = E
8303 then
8304 return Op;
8305 end if;
8306
8307 Next_Elmt (Prim);
8308 end loop;
8309
8310 return Empty;
8311 end Get_User_Defined_Eq;
8312
8313 -----------------------
8314 -- Has_Access_Values --
8315 -----------------------
8316
8317 function Has_Access_Values (T : Entity_Id) return Boolean is
8318 Typ : constant Entity_Id := Underlying_Type (T);
8319
8320 begin
8321 -- Case of a private type which is not completed yet. This can only
8322 -- happen in the case of a generic format type appearing directly, or
8323 -- as a component of the type to which this function is being applied
8324 -- at the top level. Return False in this case, since we certainly do
8325 -- not know that the type contains access types.
8326
8327 if No (Typ) then
8328 return False;
8329
8330 elsif Is_Access_Type (Typ) then
8331 return True;
8332
8333 elsif Is_Array_Type (Typ) then
8334 return Has_Access_Values (Component_Type (Typ));
8335
8336 elsif Is_Record_Type (Typ) then
8337 declare
8338 Comp : Entity_Id;
8339
8340 begin
8341 -- Loop to Check components
8342
8343 Comp := First_Component_Or_Discriminant (Typ);
8344 while Present (Comp) loop
8345
8346 -- Check for access component, tag field does not count, even
8347 -- though it is implemented internally using an access type.
8348
8349 if Has_Access_Values (Etype (Comp))
8350 and then Chars (Comp) /= Name_uTag
8351 then
8352 return True;
8353 end if;
8354
8355 Next_Component_Or_Discriminant (Comp);
8356 end loop;
8357 end;
8358
8359 return False;
8360
8361 else
8362 return False;
8363 end if;
8364 end Has_Access_Values;
8365
8366 ------------------------------
8367 -- Has_Compatible_Alignment --
8368 ------------------------------
8369
8370 function Has_Compatible_Alignment
8371 (Obj : Entity_Id;
8372 Expr : Node_Id) return Alignment_Result
8373 is
8374 function Has_Compatible_Alignment_Internal
8375 (Obj : Entity_Id;
8376 Expr : Node_Id;
8377 Default : Alignment_Result) return Alignment_Result;
8378 -- This is the internal recursive function that actually does the work.
8379 -- There is one additional parameter, which says what the result should
8380 -- be if no alignment information is found, and there is no definite
8381 -- indication of compatible alignments. At the outer level, this is set
8382 -- to Unknown, but for internal recursive calls in the case where types
8383 -- are known to be correct, it is set to Known_Compatible.
8384
8385 ---------------------------------------
8386 -- Has_Compatible_Alignment_Internal --
8387 ---------------------------------------
8388
8389 function Has_Compatible_Alignment_Internal
8390 (Obj : Entity_Id;
8391 Expr : Node_Id;
8392 Default : Alignment_Result) return Alignment_Result
8393 is
8394 Result : Alignment_Result := Known_Compatible;
8395 -- Holds the current status of the result. Note that once a value of
8396 -- Known_Incompatible is set, it is sticky and does not get changed
8397 -- to Unknown (the value in Result only gets worse as we go along,
8398 -- never better).
8399
8400 Offs : Uint := No_Uint;
8401 -- Set to a factor of the offset from the base object when Expr is a
8402 -- selected or indexed component, based on Component_Bit_Offset and
8403 -- Component_Size respectively. A negative value is used to represent
8404 -- a value which is not known at compile time.
8405
8406 procedure Check_Prefix;
8407 -- Checks the prefix recursively in the case where the expression
8408 -- is an indexed or selected component.
8409
8410 procedure Set_Result (R : Alignment_Result);
8411 -- If R represents a worse outcome (unknown instead of known
8412 -- compatible, or known incompatible), then set Result to R.
8413
8414 ------------------
8415 -- Check_Prefix --
8416 ------------------
8417
8418 procedure Check_Prefix is
8419 begin
8420 -- The subtlety here is that in doing a recursive call to check
8421 -- the prefix, we have to decide what to do in the case where we
8422 -- don't find any specific indication of an alignment problem.
8423
8424 -- At the outer level, we normally set Unknown as the result in
8425 -- this case, since we can only set Known_Compatible if we really
8426 -- know that the alignment value is OK, but for the recursive
8427 -- call, in the case where the types match, and we have not
8428 -- specified a peculiar alignment for the object, we are only
8429 -- concerned about suspicious rep clauses, the default case does
8430 -- not affect us, since the compiler will, in the absence of such
8431 -- rep clauses, ensure that the alignment is correct.
8432
8433 if Default = Known_Compatible
8434 or else
8435 (Etype (Obj) = Etype (Expr)
8436 and then (Unknown_Alignment (Obj)
8437 or else
8438 Alignment (Obj) = Alignment (Etype (Obj))))
8439 then
8440 Set_Result
8441 (Has_Compatible_Alignment_Internal
8442 (Obj, Prefix (Expr), Known_Compatible));
8443
8444 -- In all other cases, we need a full check on the prefix
8445
8446 else
8447 Set_Result
8448 (Has_Compatible_Alignment_Internal
8449 (Obj, Prefix (Expr), Unknown));
8450 end if;
8451 end Check_Prefix;
8452
8453 ----------------
8454 -- Set_Result --
8455 ----------------
8456
8457 procedure Set_Result (R : Alignment_Result) is
8458 begin
8459 if R > Result then
8460 Result := R;
8461 end if;
8462 end Set_Result;
8463
8464 -- Start of processing for Has_Compatible_Alignment_Internal
8465
8466 begin
8467 -- If Expr is a selected component, we must make sure there is no
8468 -- potentially troublesome component clause, and that the record is
8469 -- not packed.
8470
8471 if Nkind (Expr) = N_Selected_Component then
8472
8473 -- Packed record always generate unknown alignment
8474
8475 if Is_Packed (Etype (Prefix (Expr))) then
8476 Set_Result (Unknown);
8477 end if;
8478
8479 -- Check prefix and component offset
8480
8481 Check_Prefix;
8482 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
8483
8484 -- If Expr is an indexed component, we must make sure there is no
8485 -- potentially troublesome Component_Size clause and that the array
8486 -- is not bit-packed.
8487
8488 elsif Nkind (Expr) = N_Indexed_Component then
8489 declare
8490 Typ : constant Entity_Id := Etype (Prefix (Expr));
8491 Ind : constant Node_Id := First_Index (Typ);
8492
8493 begin
8494 -- Bit packed array always generates unknown alignment
8495
8496 if Is_Bit_Packed_Array (Typ) then
8497 Set_Result (Unknown);
8498 end if;
8499
8500 -- Check prefix and component offset
8501
8502 Check_Prefix;
8503 Offs := Component_Size (Typ);
8504
8505 -- Small optimization: compute the full offset when possible
8506
8507 if Offs /= No_Uint
8508 and then Offs > Uint_0
8509 and then Present (Ind)
8510 and then Nkind (Ind) = N_Range
8511 and then Compile_Time_Known_Value (Low_Bound (Ind))
8512 and then Compile_Time_Known_Value (First (Expressions (Expr)))
8513 then
8514 Offs := Offs * (Expr_Value (First (Expressions (Expr)))
8515 - Expr_Value (Low_Bound ((Ind))));
8516 end if;
8517 end;
8518 end if;
8519
8520 -- If we have a null offset, the result is entirely determined by
8521 -- the base object and has already been computed recursively.
8522
8523 if Offs = Uint_0 then
8524 null;
8525
8526 -- Case where we know the alignment of the object
8527
8528 elsif Known_Alignment (Obj) then
8529 declare
8530 ObjA : constant Uint := Alignment (Obj);
8531 ExpA : Uint := No_Uint;
8532 SizA : Uint := No_Uint;
8533
8534 begin
8535 -- If alignment of Obj is 1, then we are always OK
8536
8537 if ObjA = 1 then
8538 Set_Result (Known_Compatible);
8539
8540 -- Alignment of Obj is greater than 1, so we need to check
8541
8542 else
8543 -- If we have an offset, see if it is compatible
8544
8545 if Offs /= No_Uint and Offs > Uint_0 then
8546 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
8547 Set_Result (Known_Incompatible);
8548 end if;
8549
8550 -- See if Expr is an object with known alignment
8551
8552 elsif Is_Entity_Name (Expr)
8553 and then Known_Alignment (Entity (Expr))
8554 then
8555 ExpA := Alignment (Entity (Expr));
8556
8557 -- Otherwise, we can use the alignment of the type of
8558 -- Expr given that we already checked for
8559 -- discombobulating rep clauses for the cases of indexed
8560 -- and selected components above.
8561
8562 elsif Known_Alignment (Etype (Expr)) then
8563 ExpA := Alignment (Etype (Expr));
8564
8565 -- Otherwise the alignment is unknown
8566
8567 else
8568 Set_Result (Default);
8569 end if;
8570
8571 -- If we got an alignment, see if it is acceptable
8572
8573 if ExpA /= No_Uint and then ExpA < ObjA then
8574 Set_Result (Known_Incompatible);
8575 end if;
8576
8577 -- If Expr is not a piece of a larger object, see if size
8578 -- is given. If so, check that it is not too small for the
8579 -- required alignment.
8580
8581 if Offs /= No_Uint then
8582 null;
8583
8584 -- See if Expr is an object with known size
8585
8586 elsif Is_Entity_Name (Expr)
8587 and then Known_Static_Esize (Entity (Expr))
8588 then
8589 SizA := Esize (Entity (Expr));
8590
8591 -- Otherwise, we check the object size of the Expr type
8592
8593 elsif Known_Static_Esize (Etype (Expr)) then
8594 SizA := Esize (Etype (Expr));
8595 end if;
8596
8597 -- If we got a size, see if it is a multiple of the Obj
8598 -- alignment, if not, then the alignment cannot be
8599 -- acceptable, since the size is always a multiple of the
8600 -- alignment.
8601
8602 if SizA /= No_Uint then
8603 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
8604 Set_Result (Known_Incompatible);
8605 end if;
8606 end if;
8607 end if;
8608 end;
8609
8610 -- If we do not know required alignment, any non-zero offset is a
8611 -- potential problem (but certainly may be OK, so result is unknown).
8612
8613 elsif Offs /= No_Uint then
8614 Set_Result (Unknown);
8615
8616 -- If we can't find the result by direct comparison of alignment
8617 -- values, then there is still one case that we can determine known
8618 -- result, and that is when we can determine that the types are the
8619 -- same, and no alignments are specified. Then we known that the
8620 -- alignments are compatible, even if we don't know the alignment
8621 -- value in the front end.
8622
8623 elsif Etype (Obj) = Etype (Expr) then
8624
8625 -- Types are the same, but we have to check for possible size
8626 -- and alignments on the Expr object that may make the alignment
8627 -- different, even though the types are the same.
8628
8629 if Is_Entity_Name (Expr) then
8630
8631 -- First check alignment of the Expr object. Any alignment less
8632 -- than Maximum_Alignment is worrisome since this is the case
8633 -- where we do not know the alignment of Obj.
8634
8635 if Known_Alignment (Entity (Expr))
8636 and then UI_To_Int (Alignment (Entity (Expr))) <
8637 Ttypes.Maximum_Alignment
8638 then
8639 Set_Result (Unknown);
8640
8641 -- Now check size of Expr object. Any size that is not an
8642 -- even multiple of Maximum_Alignment is also worrisome
8643 -- since it may cause the alignment of the object to be less
8644 -- than the alignment of the type.
8645
8646 elsif Known_Static_Esize (Entity (Expr))
8647 and then
8648 (UI_To_Int (Esize (Entity (Expr))) mod
8649 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
8650 /= 0
8651 then
8652 Set_Result (Unknown);
8653
8654 -- Otherwise same type is decisive
8655
8656 else
8657 Set_Result (Known_Compatible);
8658 end if;
8659 end if;
8660
8661 -- Another case to deal with is when there is an explicit size or
8662 -- alignment clause when the types are not the same. If so, then the
8663 -- result is Unknown. We don't need to do this test if the Default is
8664 -- Unknown, since that result will be set in any case.
8665
8666 elsif Default /= Unknown
8667 and then (Has_Size_Clause (Etype (Expr))
8668 or else
8669 Has_Alignment_Clause (Etype (Expr)))
8670 then
8671 Set_Result (Unknown);
8672
8673 -- If no indication found, set default
8674
8675 else
8676 Set_Result (Default);
8677 end if;
8678
8679 -- Return worst result found
8680
8681 return Result;
8682 end Has_Compatible_Alignment_Internal;
8683
8684 -- Start of processing for Has_Compatible_Alignment
8685
8686 begin
8687 -- If Obj has no specified alignment, then set alignment from the type
8688 -- alignment. Perhaps we should always do this, but for sure we should
8689 -- do it when there is an address clause since we can do more if the
8690 -- alignment is known.
8691
8692 if Unknown_Alignment (Obj) then
8693 Set_Alignment (Obj, Alignment (Etype (Obj)));
8694 end if;
8695
8696 -- Now do the internal call that does all the work
8697
8698 return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
8699 end Has_Compatible_Alignment;
8700
8701 ----------------------
8702 -- Has_Declarations --
8703 ----------------------
8704
8705 function Has_Declarations (N : Node_Id) return Boolean is
8706 begin
8707 return Nkind_In (Nkind (N), N_Accept_Statement,
8708 N_Block_Statement,
8709 N_Compilation_Unit_Aux,
8710 N_Entry_Body,
8711 N_Package_Body,
8712 N_Protected_Body,
8713 N_Subprogram_Body,
8714 N_Task_Body,
8715 N_Package_Specification);
8716 end Has_Declarations;
8717
8718 ---------------------------------
8719 -- Has_Defaulted_Discriminants --
8720 ---------------------------------
8721
8722 function Has_Defaulted_Discriminants (Typ : Entity_Id) return Boolean is
8723 begin
8724 return Has_Discriminants (Typ)
8725 and then Present (First_Discriminant (Typ))
8726 and then Present (Discriminant_Default_Value
8727 (First_Discriminant (Typ)));
8728 end Has_Defaulted_Discriminants;
8729
8730 -------------------
8731 -- Has_Denormals --
8732 -------------------
8733
8734 function Has_Denormals (E : Entity_Id) return Boolean is
8735 begin
8736 return Is_Floating_Point_Type (E) and then Denorm_On_Target;
8737 end Has_Denormals;
8738
8739 -------------------------------------------
8740 -- Has_Discriminant_Dependent_Constraint --
8741 -------------------------------------------
8742
8743 function Has_Discriminant_Dependent_Constraint
8744 (Comp : Entity_Id) return Boolean
8745 is
8746 Comp_Decl : constant Node_Id := Parent (Comp);
8747 Subt_Indic : Node_Id;
8748 Constr : Node_Id;
8749 Assn : Node_Id;
8750
8751 begin
8752 -- Discriminants can't depend on discriminants
8753
8754 if Ekind (Comp) = E_Discriminant then
8755 return False;
8756
8757 else
8758 Subt_Indic := Subtype_Indication (Component_Definition (Comp_Decl));
8759
8760 if Nkind (Subt_Indic) = N_Subtype_Indication then
8761 Constr := Constraint (Subt_Indic);
8762
8763 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
8764 Assn := First (Constraints (Constr));
8765 while Present (Assn) loop
8766 case Nkind (Assn) is
8767 when N_Subtype_Indication |
8768 N_Range |
8769 N_Identifier
8770 =>
8771 if Depends_On_Discriminant (Assn) then
8772 return True;
8773 end if;
8774
8775 when N_Discriminant_Association =>
8776 if Depends_On_Discriminant (Expression (Assn)) then
8777 return True;
8778 end if;
8779
8780 when others =>
8781 null;
8782 end case;
8783
8784 Next (Assn);
8785 end loop;
8786 end if;
8787 end if;
8788 end if;
8789
8790 return False;
8791 end Has_Discriminant_Dependent_Constraint;
8792
8793 --------------------------------------
8794 -- Has_Effectively_Volatile_Profile --
8795 --------------------------------------
8796
8797 function Has_Effectively_Volatile_Profile
8798 (Subp_Id : Entity_Id) return Boolean
8799 is
8800 Formal : Entity_Id;
8801
8802 begin
8803 -- Inspect the formal parameters looking for an effectively volatile
8804 -- type.
8805
8806 Formal := First_Formal (Subp_Id);
8807 while Present (Formal) loop
8808 if Is_Effectively_Volatile (Etype (Formal)) then
8809 return True;
8810 end if;
8811
8812 Next_Formal (Formal);
8813 end loop;
8814
8815 -- Inspect the return type of functions
8816
8817 if Ekind_In (Subp_Id, E_Function, E_Generic_Function)
8818 and then Is_Effectively_Volatile (Etype (Subp_Id))
8819 then
8820 return True;
8821 end if;
8822
8823 return False;
8824 end Has_Effectively_Volatile_Profile;
8825
8826 --------------------------
8827 -- Has_Enabled_Property --
8828 --------------------------
8829
8830 function Has_Enabled_Property
8831 (Item_Id : Entity_Id;
8832 Property : Name_Id) return Boolean
8833 is
8834 function State_Has_Enabled_Property return Boolean;
8835 -- Determine whether a state denoted by Item_Id has the property enabled
8836
8837 function Variable_Has_Enabled_Property return Boolean;
8838 -- Determine whether a variable denoted by Item_Id has the property
8839 -- enabled.
8840
8841 --------------------------------
8842 -- State_Has_Enabled_Property --
8843 --------------------------------
8844
8845 function State_Has_Enabled_Property return Boolean is
8846 Decl : constant Node_Id := Parent (Item_Id);
8847 Opt : Node_Id;
8848 Opt_Nam : Node_Id;
8849 Prop : Node_Id;
8850 Prop_Nam : Node_Id;
8851 Props : Node_Id;
8852
8853 begin
8854 -- The declaration of an external abstract state appears as an
8855 -- extension aggregate. If this is not the case, properties can never
8856 -- be set.
8857
8858 if Nkind (Decl) /= N_Extension_Aggregate then
8859 return False;
8860 end if;
8861
8862 -- When External appears as a simple option, it automatically enables
8863 -- all properties.
8864
8865 Opt := First (Expressions (Decl));
8866 while Present (Opt) loop
8867 if Nkind (Opt) = N_Identifier
8868 and then Chars (Opt) = Name_External
8869 then
8870 return True;
8871 end if;
8872
8873 Next (Opt);
8874 end loop;
8875
8876 -- When External specifies particular properties, inspect those and
8877 -- find the desired one (if any).
8878
8879 Opt := First (Component_Associations (Decl));
8880 while Present (Opt) loop
8881 Opt_Nam := First (Choices (Opt));
8882
8883 if Nkind (Opt_Nam) = N_Identifier
8884 and then Chars (Opt_Nam) = Name_External
8885 then
8886 Props := Expression (Opt);
8887
8888 -- Multiple properties appear as an aggregate
8889
8890 if Nkind (Props) = N_Aggregate then
8891
8892 -- Simple property form
8893
8894 Prop := First (Expressions (Props));
8895 while Present (Prop) loop
8896 if Chars (Prop) = Property then
8897 return True;
8898 end if;
8899
8900 Next (Prop);
8901 end loop;
8902
8903 -- Property with expression form
8904
8905 Prop := First (Component_Associations (Props));
8906 while Present (Prop) loop
8907 Prop_Nam := First (Choices (Prop));
8908
8909 -- The property can be represented in two ways:
8910 -- others => <value>
8911 -- <property> => <value>
8912
8913 if Nkind (Prop_Nam) = N_Others_Choice
8914 or else (Nkind (Prop_Nam) = N_Identifier
8915 and then Chars (Prop_Nam) = Property)
8916 then
8917 return Is_True (Expr_Value (Expression (Prop)));
8918 end if;
8919
8920 Next (Prop);
8921 end loop;
8922
8923 -- Single property
8924
8925 else
8926 return Chars (Props) = Property;
8927 end if;
8928 end if;
8929
8930 Next (Opt);
8931 end loop;
8932
8933 return False;
8934 end State_Has_Enabled_Property;
8935
8936 -----------------------------------
8937 -- Variable_Has_Enabled_Property --
8938 -----------------------------------
8939
8940 function Variable_Has_Enabled_Property return Boolean is
8941 function Is_Enabled (Prag : Node_Id) return Boolean;
8942 -- Determine whether property pragma Prag (if present) denotes an
8943 -- enabled property.
8944
8945 ----------------
8946 -- Is_Enabled --
8947 ----------------
8948
8949 function Is_Enabled (Prag : Node_Id) return Boolean is
8950 Arg1 : Node_Id;
8951
8952 begin
8953 if Present (Prag) then
8954 Arg1 := First (Pragma_Argument_Associations (Prag));
8955
8956 -- The pragma has an optional Boolean expression, the related
8957 -- property is enabled only when the expression evaluates to
8958 -- True.
8959
8960 if Present (Arg1) then
8961 return Is_True (Expr_Value (Get_Pragma_Arg (Arg1)));
8962
8963 -- Otherwise the lack of expression enables the property by
8964 -- default.
8965
8966 else
8967 return True;
8968 end if;
8969
8970 -- The property was never set in the first place
8971
8972 else
8973 return False;
8974 end if;
8975 end Is_Enabled;
8976
8977 -- Local variables
8978
8979 AR : constant Node_Id :=
8980 Get_Pragma (Item_Id, Pragma_Async_Readers);
8981 AW : constant Node_Id :=
8982 Get_Pragma (Item_Id, Pragma_Async_Writers);
8983 ER : constant Node_Id :=
8984 Get_Pragma (Item_Id, Pragma_Effective_Reads);
8985 EW : constant Node_Id :=
8986 Get_Pragma (Item_Id, Pragma_Effective_Writes);
8987
8988 -- Start of processing for Variable_Has_Enabled_Property
8989
8990 begin
8991 -- A non-effectively volatile object can never possess external
8992 -- properties.
8993
8994 if not Is_Effectively_Volatile (Item_Id) then
8995 return False;
8996
8997 -- External properties related to variables come in two flavors -
8998 -- explicit and implicit. The explicit case is characterized by the
8999 -- presence of a property pragma with an optional Boolean flag. The
9000 -- property is enabled when the flag evaluates to True or the flag is
9001 -- missing altogether.
9002
9003 elsif Property = Name_Async_Readers and then Is_Enabled (AR) then
9004 return True;
9005
9006 elsif Property = Name_Async_Writers and then Is_Enabled (AW) then
9007 return True;
9008
9009 elsif Property = Name_Effective_Reads and then Is_Enabled (ER) then
9010 return True;
9011
9012 elsif Property = Name_Effective_Writes and then Is_Enabled (EW) then
9013 return True;
9014
9015 -- The implicit case lacks all property pragmas
9016
9017 elsif No (AR) and then No (AW) and then No (ER) and then No (EW) then
9018 return True;
9019
9020 else
9021 return False;
9022 end if;
9023 end Variable_Has_Enabled_Property;
9024
9025 -- Start of processing for Has_Enabled_Property
9026
9027 begin
9028 -- Abstract states and variables have a flexible scheme of specifying
9029 -- external properties.
9030
9031 if Ekind (Item_Id) = E_Abstract_State then
9032 return State_Has_Enabled_Property;
9033
9034 elsif Ekind (Item_Id) = E_Variable then
9035 return Variable_Has_Enabled_Property;
9036
9037 -- Otherwise a property is enabled when the related item is effectively
9038 -- volatile.
9039
9040 else
9041 return Is_Effectively_Volatile (Item_Id);
9042 end if;
9043 end Has_Enabled_Property;
9044
9045 -------------------------------------
9046 -- Has_Full_Default_Initialization --
9047 -------------------------------------
9048
9049 function Has_Full_Default_Initialization (Typ : Entity_Id) return Boolean is
9050 Arg : Node_Id;
9051 Comp : Entity_Id;
9052 Prag : Node_Id;
9053
9054 begin
9055 -- A private type and its full view is fully default initialized when it
9056 -- is subject to pragma Default_Initial_Condition without an argument or
9057 -- with a non-null argument. Since any type may act as the full view of
9058 -- a private type, this check must be performed prior to the specialized
9059 -- tests below.
9060
9061 if Has_Default_Init_Cond (Typ)
9062 or else Has_Inherited_Default_Init_Cond (Typ)
9063 then
9064 Prag := Get_Pragma (Typ, Pragma_Default_Initial_Condition);
9065
9066 -- Pragma Default_Initial_Condition must be present if one of the
9067 -- related entity flags is set.
9068
9069 pragma Assert (Present (Prag));
9070 Arg := First (Pragma_Argument_Associations (Prag));
9071
9072 -- A non-null argument guarantees full default initialization
9073
9074 if Present (Arg) then
9075 return Nkind (Arg) /= N_Null;
9076
9077 -- Otherwise the missing argument defaults the pragma to "True" which
9078 -- is considered a non-null argument (see above).
9079
9080 else
9081 return True;
9082 end if;
9083 end if;
9084
9085 -- A scalar type is fully default initialized if it is subject to aspect
9086 -- Default_Value.
9087
9088 if Is_Scalar_Type (Typ) then
9089 return Has_Default_Aspect (Typ);
9090
9091 -- An array type is fully default initialized if its element type is
9092 -- scalar and the array type carries aspect Default_Component_Value or
9093 -- the element type is fully default initialized.
9094
9095 elsif Is_Array_Type (Typ) then
9096 return
9097 Has_Default_Aspect (Typ)
9098 or else Has_Full_Default_Initialization (Component_Type (Typ));
9099
9100 -- A protected type, record type or type extension is fully default
9101 -- initialized if all its components either carry an initialization
9102 -- expression or have a type that is fully default initialized. The
9103 -- parent type of a type extension must be fully default initialized.
9104
9105 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
9106
9107 -- Inspect all entities defined in the scope of the type, looking for
9108 -- uninitialized components.
9109
9110 Comp := First_Entity (Typ);
9111 while Present (Comp) loop
9112 if Ekind (Comp) = E_Component
9113 and then Comes_From_Source (Comp)
9114 and then No (Expression (Parent (Comp)))
9115 and then not Has_Full_Default_Initialization (Etype (Comp))
9116 then
9117 return False;
9118 end if;
9119
9120 Next_Entity (Comp);
9121 end loop;
9122
9123 -- Ensure that the parent type of a type extension is fully default
9124 -- initialized.
9125
9126 if Etype (Typ) /= Typ
9127 and then not Has_Full_Default_Initialization (Etype (Typ))
9128 then
9129 return False;
9130 end if;
9131
9132 -- If we get here, then all components and parent portion are fully
9133 -- default initialized.
9134
9135 return True;
9136
9137 -- A task type is fully default initialized by default
9138
9139 elsif Is_Task_Type (Typ) then
9140 return True;
9141
9142 -- Otherwise the type is not fully default initialized
9143
9144 else
9145 return False;
9146 end if;
9147 end Has_Full_Default_Initialization;
9148
9149 --------------------
9150 -- Has_Infinities --
9151 --------------------
9152
9153 function Has_Infinities (E : Entity_Id) return Boolean is
9154 begin
9155 return
9156 Is_Floating_Point_Type (E)
9157 and then Nkind (Scalar_Range (E)) = N_Range
9158 and then Includes_Infinities (Scalar_Range (E));
9159 end Has_Infinities;
9160
9161 --------------------
9162 -- Has_Interfaces --
9163 --------------------
9164
9165 function Has_Interfaces
9166 (T : Entity_Id;
9167 Use_Full_View : Boolean := True) return Boolean
9168 is
9169 Typ : Entity_Id := Base_Type (T);
9170
9171 begin
9172 -- Handle concurrent types
9173
9174 if Is_Concurrent_Type (Typ) then
9175 Typ := Corresponding_Record_Type (Typ);
9176 end if;
9177
9178 if not Present (Typ)
9179 or else not Is_Record_Type (Typ)
9180 or else not Is_Tagged_Type (Typ)
9181 then
9182 return False;
9183 end if;
9184
9185 -- Handle private types
9186
9187 if Use_Full_View and then Present (Full_View (Typ)) then
9188 Typ := Full_View (Typ);
9189 end if;
9190
9191 -- Handle concurrent record types
9192
9193 if Is_Concurrent_Record_Type (Typ)
9194 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
9195 then
9196 return True;
9197 end if;
9198
9199 loop
9200 if Is_Interface (Typ)
9201 or else
9202 (Is_Record_Type (Typ)
9203 and then Present (Interfaces (Typ))
9204 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
9205 then
9206 return True;
9207 end if;
9208
9209 exit when Etype (Typ) = Typ
9210
9211 -- Handle private types
9212
9213 or else (Present (Full_View (Etype (Typ)))
9214 and then Full_View (Etype (Typ)) = Typ)
9215
9216 -- Protect frontend against wrong sources with cyclic derivations
9217
9218 or else Etype (Typ) = T;
9219
9220 -- Climb to the ancestor type handling private types
9221
9222 if Present (Full_View (Etype (Typ))) then
9223 Typ := Full_View (Etype (Typ));
9224 else
9225 Typ := Etype (Typ);
9226 end if;
9227 end loop;
9228
9229 return False;
9230 end Has_Interfaces;
9231
9232 ---------------------------------
9233 -- Has_No_Obvious_Side_Effects --
9234 ---------------------------------
9235
9236 function Has_No_Obvious_Side_Effects (N : Node_Id) return Boolean is
9237 begin
9238 -- For now, just handle literals, constants, and non-volatile
9239 -- variables and expressions combining these with operators or
9240 -- short circuit forms.
9241
9242 if Nkind (N) in N_Numeric_Or_String_Literal then
9243 return True;
9244
9245 elsif Nkind (N) = N_Character_Literal then
9246 return True;
9247
9248 elsif Nkind (N) in N_Unary_Op then
9249 return Has_No_Obvious_Side_Effects (Right_Opnd (N));
9250
9251 elsif Nkind (N) in N_Binary_Op or else Nkind (N) in N_Short_Circuit then
9252 return Has_No_Obvious_Side_Effects (Left_Opnd (N))
9253 and then
9254 Has_No_Obvious_Side_Effects (Right_Opnd (N));
9255
9256 elsif Nkind (N) = N_Expression_With_Actions
9257 and then Is_Empty_List (Actions (N))
9258 then
9259 return Has_No_Obvious_Side_Effects (Expression (N));
9260
9261 elsif Nkind (N) in N_Has_Entity then
9262 return Present (Entity (N))
9263 and then Ekind_In (Entity (N), E_Variable,
9264 E_Constant,
9265 E_Enumeration_Literal,
9266 E_In_Parameter,
9267 E_Out_Parameter,
9268 E_In_Out_Parameter)
9269 and then not Is_Volatile (Entity (N));
9270
9271 else
9272 return False;
9273 end if;
9274 end Has_No_Obvious_Side_Effects;
9275
9276 -----------------------------
9277 -- Has_Non_Null_Refinement --
9278 -----------------------------
9279
9280 function Has_Non_Null_Refinement (Id : Entity_Id) return Boolean is
9281 begin
9282 pragma Assert (Ekind (Id) = E_Abstract_State);
9283
9284 -- For a refinement to be non-null, the first constituent must be
9285 -- anything other than null.
9286
9287 if Present (Refinement_Constituents (Id)) then
9288 return
9289 Nkind (Node (First_Elmt (Refinement_Constituents (Id)))) /= N_Null;
9290 end if;
9291
9292 return False;
9293 end Has_Non_Null_Refinement;
9294
9295 ------------------------
9296 -- Has_Null_Exclusion --
9297 ------------------------
9298
9299 function Has_Null_Exclusion (N : Node_Id) return Boolean is
9300 begin
9301 case Nkind (N) is
9302 when N_Access_Definition |
9303 N_Access_Function_Definition |
9304 N_Access_Procedure_Definition |
9305 N_Access_To_Object_Definition |
9306 N_Allocator |
9307 N_Derived_Type_Definition |
9308 N_Function_Specification |
9309 N_Subtype_Declaration =>
9310 return Null_Exclusion_Present (N);
9311
9312 when N_Component_Definition |
9313 N_Formal_Object_Declaration |
9314 N_Object_Renaming_Declaration =>
9315 if Present (Subtype_Mark (N)) then
9316 return Null_Exclusion_Present (N);
9317 else pragma Assert (Present (Access_Definition (N)));
9318 return Null_Exclusion_Present (Access_Definition (N));
9319 end if;
9320
9321 when N_Discriminant_Specification =>
9322 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
9323 return Null_Exclusion_Present (Discriminant_Type (N));
9324 else
9325 return Null_Exclusion_Present (N);
9326 end if;
9327
9328 when N_Object_Declaration =>
9329 if Nkind (Object_Definition (N)) = N_Access_Definition then
9330 return Null_Exclusion_Present (Object_Definition (N));
9331 else
9332 return Null_Exclusion_Present (N);
9333 end if;
9334
9335 when N_Parameter_Specification =>
9336 if Nkind (Parameter_Type (N)) = N_Access_Definition then
9337 return Null_Exclusion_Present (Parameter_Type (N));
9338 else
9339 return Null_Exclusion_Present (N);
9340 end if;
9341
9342 when others =>
9343 return False;
9344
9345 end case;
9346 end Has_Null_Exclusion;
9347
9348 ------------------------
9349 -- Has_Null_Extension --
9350 ------------------------
9351
9352 function Has_Null_Extension (T : Entity_Id) return Boolean is
9353 B : constant Entity_Id := Base_Type (T);
9354 Comps : Node_Id;
9355 Ext : Node_Id;
9356
9357 begin
9358 if Nkind (Parent (B)) = N_Full_Type_Declaration
9359 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
9360 then
9361 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
9362
9363 if Present (Ext) then
9364 if Null_Present (Ext) then
9365 return True;
9366 else
9367 Comps := Component_List (Ext);
9368
9369 -- The null component list is rewritten during analysis to
9370 -- include the parent component. Any other component indicates
9371 -- that the extension was not originally null.
9372
9373 return Null_Present (Comps)
9374 or else No (Next (First (Component_Items (Comps))));
9375 end if;
9376 else
9377 return False;
9378 end if;
9379
9380 else
9381 return False;
9382 end if;
9383 end Has_Null_Extension;
9384
9385 -------------------------
9386 -- Has_Null_Refinement --
9387 -------------------------
9388
9389 function Has_Null_Refinement (Id : Entity_Id) return Boolean is
9390 begin
9391 pragma Assert (Ekind (Id) = E_Abstract_State);
9392
9393 -- For a refinement to be null, the state's sole constituent must be a
9394 -- null.
9395
9396 if Present (Refinement_Constituents (Id)) then
9397 return
9398 Nkind (Node (First_Elmt (Refinement_Constituents (Id)))) = N_Null;
9399 end if;
9400
9401 return False;
9402 end Has_Null_Refinement;
9403
9404 -------------------------------
9405 -- Has_Overriding_Initialize --
9406 -------------------------------
9407
9408 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
9409 BT : constant Entity_Id := Base_Type (T);
9410 P : Elmt_Id;
9411
9412 begin
9413 if Is_Controlled (BT) then
9414 if Is_RTU (Scope (BT), Ada_Finalization) then
9415 return False;
9416
9417 elsif Present (Primitive_Operations (BT)) then
9418 P := First_Elmt (Primitive_Operations (BT));
9419 while Present (P) loop
9420 declare
9421 Init : constant Entity_Id := Node (P);
9422 Formal : constant Entity_Id := First_Formal (Init);
9423 begin
9424 if Ekind (Init) = E_Procedure
9425 and then Chars (Init) = Name_Initialize
9426 and then Comes_From_Source (Init)
9427 and then Present (Formal)
9428 and then Etype (Formal) = BT
9429 and then No (Next_Formal (Formal))
9430 and then (Ada_Version < Ada_2012
9431 or else not Null_Present (Parent (Init)))
9432 then
9433 return True;
9434 end if;
9435 end;
9436
9437 Next_Elmt (P);
9438 end loop;
9439 end if;
9440
9441 -- Here if type itself does not have a non-null Initialize operation:
9442 -- check immediate ancestor.
9443
9444 if Is_Derived_Type (BT)
9445 and then Has_Overriding_Initialize (Etype (BT))
9446 then
9447 return True;
9448 end if;
9449 end if;
9450
9451 return False;
9452 end Has_Overriding_Initialize;
9453
9454 --------------------------------------
9455 -- Has_Preelaborable_Initialization --
9456 --------------------------------------
9457
9458 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
9459 Has_PE : Boolean;
9460
9461 procedure Check_Components (E : Entity_Id);
9462 -- Check component/discriminant chain, sets Has_PE False if a component
9463 -- or discriminant does not meet the preelaborable initialization rules.
9464
9465 ----------------------
9466 -- Check_Components --
9467 ----------------------
9468
9469 procedure Check_Components (E : Entity_Id) is
9470 Ent : Entity_Id;
9471 Exp : Node_Id;
9472
9473 function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
9474 -- Returns True if and only if the expression denoted by N does not
9475 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
9476
9477 ---------------------------------
9478 -- Is_Preelaborable_Expression --
9479 ---------------------------------
9480
9481 function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
9482 Exp : Node_Id;
9483 Assn : Node_Id;
9484 Choice : Node_Id;
9485 Comp_Type : Entity_Id;
9486 Is_Array_Aggr : Boolean;
9487
9488 begin
9489 if Is_OK_Static_Expression (N) then
9490 return True;
9491
9492 elsif Nkind (N) = N_Null then
9493 return True;
9494
9495 -- Attributes are allowed in general, even if their prefix is a
9496 -- formal type. (It seems that certain attributes known not to be
9497 -- static might not be allowed, but there are no rules to prevent
9498 -- them.)
9499
9500 elsif Nkind (N) = N_Attribute_Reference then
9501 return True;
9502
9503 -- The name of a discriminant evaluated within its parent type is
9504 -- defined to be preelaborable (10.2.1(8)). Note that we test for
9505 -- names that denote discriminals as well as discriminants to
9506 -- catch references occurring within init procs.
9507
9508 elsif Is_Entity_Name (N)
9509 and then
9510 (Ekind (Entity (N)) = E_Discriminant
9511 or else (Ekind_In (Entity (N), E_Constant, E_In_Parameter)
9512 and then Present (Discriminal_Link (Entity (N)))))
9513 then
9514 return True;
9515
9516 elsif Nkind (N) = N_Qualified_Expression then
9517 return Is_Preelaborable_Expression (Expression (N));
9518
9519 -- For aggregates we have to check that each of the associations
9520 -- is preelaborable.
9521
9522 elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
9523 Is_Array_Aggr := Is_Array_Type (Etype (N));
9524
9525 if Is_Array_Aggr then
9526 Comp_Type := Component_Type (Etype (N));
9527 end if;
9528
9529 -- Check the ancestor part of extension aggregates, which must
9530 -- be either the name of a type that has preelaborable init or
9531 -- an expression that is preelaborable.
9532
9533 if Nkind (N) = N_Extension_Aggregate then
9534 declare
9535 Anc_Part : constant Node_Id := Ancestor_Part (N);
9536
9537 begin
9538 if Is_Entity_Name (Anc_Part)
9539 and then Is_Type (Entity (Anc_Part))
9540 then
9541 if not Has_Preelaborable_Initialization
9542 (Entity (Anc_Part))
9543 then
9544 return False;
9545 end if;
9546
9547 elsif not Is_Preelaborable_Expression (Anc_Part) then
9548 return False;
9549 end if;
9550 end;
9551 end if;
9552
9553 -- Check positional associations
9554
9555 Exp := First (Expressions (N));
9556 while Present (Exp) loop
9557 if not Is_Preelaborable_Expression (Exp) then
9558 return False;
9559 end if;
9560
9561 Next (Exp);
9562 end loop;
9563
9564 -- Check named associations
9565
9566 Assn := First (Component_Associations (N));
9567 while Present (Assn) loop
9568 Choice := First (Choices (Assn));
9569 while Present (Choice) loop
9570 if Is_Array_Aggr then
9571 if Nkind (Choice) = N_Others_Choice then
9572 null;
9573
9574 elsif Nkind (Choice) = N_Range then
9575 if not Is_OK_Static_Range (Choice) then
9576 return False;
9577 end if;
9578
9579 elsif not Is_OK_Static_Expression (Choice) then
9580 return False;
9581 end if;
9582
9583 else
9584 Comp_Type := Etype (Choice);
9585 end if;
9586
9587 Next (Choice);
9588 end loop;
9589
9590 -- If the association has a <> at this point, then we have
9591 -- to check whether the component's type has preelaborable
9592 -- initialization. Note that this only occurs when the
9593 -- association's corresponding component does not have a
9594 -- default expression, the latter case having already been
9595 -- expanded as an expression for the association.
9596
9597 if Box_Present (Assn) then
9598 if not Has_Preelaborable_Initialization (Comp_Type) then
9599 return False;
9600 end if;
9601
9602 -- In the expression case we check whether the expression
9603 -- is preelaborable.
9604
9605 elsif
9606 not Is_Preelaborable_Expression (Expression (Assn))
9607 then
9608 return False;
9609 end if;
9610
9611 Next (Assn);
9612 end loop;
9613
9614 -- If we get here then aggregate as a whole is preelaborable
9615
9616 return True;
9617
9618 -- All other cases are not preelaborable
9619
9620 else
9621 return False;
9622 end if;
9623 end Is_Preelaborable_Expression;
9624
9625 -- Start of processing for Check_Components
9626
9627 begin
9628 -- Loop through entities of record or protected type
9629
9630 Ent := E;
9631 while Present (Ent) loop
9632
9633 -- We are interested only in components and discriminants
9634
9635 Exp := Empty;
9636
9637 case Ekind (Ent) is
9638 when E_Component =>
9639
9640 -- Get default expression if any. If there is no declaration
9641 -- node, it means we have an internal entity. The parent and
9642 -- tag fields are examples of such entities. For such cases,
9643 -- we just test the type of the entity.
9644
9645 if Present (Declaration_Node (Ent)) then
9646 Exp := Expression (Declaration_Node (Ent));
9647 end if;
9648
9649 when E_Discriminant =>
9650
9651 -- Note: for a renamed discriminant, the Declaration_Node
9652 -- may point to the one from the ancestor, and have a
9653 -- different expression, so use the proper attribute to
9654 -- retrieve the expression from the derived constraint.
9655
9656 Exp := Discriminant_Default_Value (Ent);
9657
9658 when others =>
9659 goto Check_Next_Entity;
9660 end case;
9661
9662 -- A component has PI if it has no default expression and the
9663 -- component type has PI.
9664
9665 if No (Exp) then
9666 if not Has_Preelaborable_Initialization (Etype (Ent)) then
9667 Has_PE := False;
9668 exit;
9669 end if;
9670
9671 -- Require the default expression to be preelaborable
9672
9673 elsif not Is_Preelaborable_Expression (Exp) then
9674 Has_PE := False;
9675 exit;
9676 end if;
9677
9678 <<Check_Next_Entity>>
9679 Next_Entity (Ent);
9680 end loop;
9681 end Check_Components;
9682
9683 -- Start of processing for Has_Preelaborable_Initialization
9684
9685 begin
9686 -- Immediate return if already marked as known preelaborable init. This
9687 -- covers types for which this function has already been called once
9688 -- and returned True (in which case the result is cached), and also
9689 -- types to which a pragma Preelaborable_Initialization applies.
9690
9691 if Known_To_Have_Preelab_Init (E) then
9692 return True;
9693 end if;
9694
9695 -- If the type is a subtype representing a generic actual type, then
9696 -- test whether its base type has preelaborable initialization since
9697 -- the subtype representing the actual does not inherit this attribute
9698 -- from the actual or formal. (but maybe it should???)
9699
9700 if Is_Generic_Actual_Type (E) then
9701 return Has_Preelaborable_Initialization (Base_Type (E));
9702 end if;
9703
9704 -- All elementary types have preelaborable initialization
9705
9706 if Is_Elementary_Type (E) then
9707 Has_PE := True;
9708
9709 -- Array types have PI if the component type has PI
9710
9711 elsif Is_Array_Type (E) then
9712 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
9713
9714 -- A derived type has preelaborable initialization if its parent type
9715 -- has preelaborable initialization and (in the case of a derived record
9716 -- extension) if the non-inherited components all have preelaborable
9717 -- initialization. However, a user-defined controlled type with an
9718 -- overriding Initialize procedure does not have preelaborable
9719 -- initialization.
9720
9721 elsif Is_Derived_Type (E) then
9722
9723 -- If the derived type is a private extension then it doesn't have
9724 -- preelaborable initialization.
9725
9726 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
9727 return False;
9728 end if;
9729
9730 -- First check whether ancestor type has preelaborable initialization
9731
9732 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
9733
9734 -- If OK, check extension components (if any)
9735
9736 if Has_PE and then Is_Record_Type (E) then
9737 Check_Components (First_Entity (E));
9738 end if;
9739
9740 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
9741 -- with a user defined Initialize procedure does not have PI. If
9742 -- the type is untagged, the control primitives come from a component
9743 -- that has already been checked.
9744
9745 if Has_PE
9746 and then Is_Controlled (E)
9747 and then Is_Tagged_Type (E)
9748 and then Has_Overriding_Initialize (E)
9749 then
9750 Has_PE := False;
9751 end if;
9752
9753 -- Private types not derived from a type having preelaborable init and
9754 -- that are not marked with pragma Preelaborable_Initialization do not
9755 -- have preelaborable initialization.
9756
9757 elsif Is_Private_Type (E) then
9758 return False;
9759
9760 -- Record type has PI if it is non private and all components have PI
9761
9762 elsif Is_Record_Type (E) then
9763 Has_PE := True;
9764 Check_Components (First_Entity (E));
9765
9766 -- Protected types must not have entries, and components must meet
9767 -- same set of rules as for record components.
9768
9769 elsif Is_Protected_Type (E) then
9770 if Has_Entries (E) then
9771 Has_PE := False;
9772 else
9773 Has_PE := True;
9774 Check_Components (First_Entity (E));
9775 Check_Components (First_Private_Entity (E));
9776 end if;
9777
9778 -- Type System.Address always has preelaborable initialization
9779
9780 elsif Is_RTE (E, RE_Address) then
9781 Has_PE := True;
9782
9783 -- In all other cases, type does not have preelaborable initialization
9784
9785 else
9786 return False;
9787 end if;
9788
9789 -- If type has preelaborable initialization, cache result
9790
9791 if Has_PE then
9792 Set_Known_To_Have_Preelab_Init (E);
9793 end if;
9794
9795 return Has_PE;
9796 end Has_Preelaborable_Initialization;
9797
9798 ---------------------------
9799 -- Has_Private_Component --
9800 ---------------------------
9801
9802 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
9803 Btype : Entity_Id := Base_Type (Type_Id);
9804 Component : Entity_Id;
9805
9806 begin
9807 if Error_Posted (Type_Id)
9808 or else Error_Posted (Btype)
9809 then
9810 return False;
9811 end if;
9812
9813 if Is_Class_Wide_Type (Btype) then
9814 Btype := Root_Type (Btype);
9815 end if;
9816
9817 if Is_Private_Type (Btype) then
9818 declare
9819 UT : constant Entity_Id := Underlying_Type (Btype);
9820 begin
9821 if No (UT) then
9822 if No (Full_View (Btype)) then
9823 return not Is_Generic_Type (Btype)
9824 and then
9825 not Is_Generic_Type (Root_Type (Btype));
9826 else
9827 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
9828 end if;
9829 else
9830 return not Is_Frozen (UT) and then Has_Private_Component (UT);
9831 end if;
9832 end;
9833
9834 elsif Is_Array_Type (Btype) then
9835 return Has_Private_Component (Component_Type (Btype));
9836
9837 elsif Is_Record_Type (Btype) then
9838 Component := First_Component (Btype);
9839 while Present (Component) loop
9840 if Has_Private_Component (Etype (Component)) then
9841 return True;
9842 end if;
9843
9844 Next_Component (Component);
9845 end loop;
9846
9847 return False;
9848
9849 elsif Is_Protected_Type (Btype)
9850 and then Present (Corresponding_Record_Type (Btype))
9851 then
9852 return Has_Private_Component (Corresponding_Record_Type (Btype));
9853
9854 else
9855 return False;
9856 end if;
9857 end Has_Private_Component;
9858
9859 ----------------------
9860 -- Has_Signed_Zeros --
9861 ----------------------
9862
9863 function Has_Signed_Zeros (E : Entity_Id) return Boolean is
9864 begin
9865 return Is_Floating_Point_Type (E) and then Signed_Zeros_On_Target;
9866 end Has_Signed_Zeros;
9867
9868 ------------------------------
9869 -- Has_Significant_Contract --
9870 ------------------------------
9871
9872 function Has_Significant_Contract (Subp_Id : Entity_Id) return Boolean is
9873 Subp_Nam : constant Name_Id := Chars (Subp_Id);
9874
9875 begin
9876 -- _Finalizer procedure
9877
9878 if Subp_Nam = Name_uFinalizer then
9879 return False;
9880
9881 -- _Postconditions procedure
9882
9883 elsif Subp_Nam = Name_uPostconditions then
9884 return False;
9885
9886 -- Predicate function
9887
9888 elsif Ekind (Subp_Id) = E_Function
9889 and then Is_Predicate_Function (Subp_Id)
9890 then
9891 return False;
9892
9893 -- TSS subprogram
9894
9895 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
9896 return False;
9897
9898 else
9899 return True;
9900 end if;
9901 end Has_Significant_Contract;
9902
9903 -----------------------------
9904 -- Has_Static_Array_Bounds --
9905 -----------------------------
9906
9907 function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
9908 Ndims : constant Nat := Number_Dimensions (Typ);
9909
9910 Index : Node_Id;
9911 Low : Node_Id;
9912 High : Node_Id;
9913
9914 begin
9915 -- Unconstrained types do not have static bounds
9916
9917 if not Is_Constrained (Typ) then
9918 return False;
9919 end if;
9920
9921 -- First treat string literals specially, as the lower bound and length
9922 -- of string literals are not stored like those of arrays.
9923
9924 -- A string literal always has static bounds
9925
9926 if Ekind (Typ) = E_String_Literal_Subtype then
9927 return True;
9928 end if;
9929
9930 -- Treat all dimensions in turn
9931
9932 Index := First_Index (Typ);
9933 for Indx in 1 .. Ndims loop
9934
9935 -- In case of an illegal index which is not a discrete type, return
9936 -- that the type is not static.
9937
9938 if not Is_Discrete_Type (Etype (Index))
9939 or else Etype (Index) = Any_Type
9940 then
9941 return False;
9942 end if;
9943
9944 Get_Index_Bounds (Index, Low, High);
9945
9946 if Error_Posted (Low) or else Error_Posted (High) then
9947 return False;
9948 end if;
9949
9950 if Is_OK_Static_Expression (Low)
9951 and then
9952 Is_OK_Static_Expression (High)
9953 then
9954 null;
9955 else
9956 return False;
9957 end if;
9958
9959 Next (Index);
9960 end loop;
9961
9962 -- If we fall through the loop, all indexes matched
9963
9964 return True;
9965 end Has_Static_Array_Bounds;
9966
9967 ----------------
9968 -- Has_Stream --
9969 ----------------
9970
9971 function Has_Stream (T : Entity_Id) return Boolean is
9972 E : Entity_Id;
9973
9974 begin
9975 if No (T) then
9976 return False;
9977
9978 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
9979 return True;
9980
9981 elsif Is_Array_Type (T) then
9982 return Has_Stream (Component_Type (T));
9983
9984 elsif Is_Record_Type (T) then
9985 E := First_Component (T);
9986 while Present (E) loop
9987 if Has_Stream (Etype (E)) then
9988 return True;
9989 else
9990 Next_Component (E);
9991 end if;
9992 end loop;
9993
9994 return False;
9995
9996 elsif Is_Private_Type (T) then
9997 return Has_Stream (Underlying_Type (T));
9998
9999 else
10000 return False;
10001 end if;
10002 end Has_Stream;
10003
10004 ----------------
10005 -- Has_Suffix --
10006 ----------------
10007
10008 function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
10009 begin
10010 Get_Name_String (Chars (E));
10011 return Name_Buffer (Name_Len) = Suffix;
10012 end Has_Suffix;
10013
10014 ----------------
10015 -- Add_Suffix --
10016 ----------------
10017
10018 function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
10019 begin
10020 Get_Name_String (Chars (E));
10021 Add_Char_To_Name_Buffer (Suffix);
10022 return Name_Find;
10023 end Add_Suffix;
10024
10025 -------------------
10026 -- Remove_Suffix --
10027 -------------------
10028
10029 function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
10030 begin
10031 pragma Assert (Has_Suffix (E, Suffix));
10032 Get_Name_String (Chars (E));
10033 Name_Len := Name_Len - 1;
10034 return Name_Find;
10035 end Remove_Suffix;
10036
10037 --------------------------
10038 -- Has_Tagged_Component --
10039 --------------------------
10040
10041 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
10042 Comp : Entity_Id;
10043
10044 begin
10045 if Is_Private_Type (Typ) and then Present (Underlying_Type (Typ)) then
10046 return Has_Tagged_Component (Underlying_Type (Typ));
10047
10048 elsif Is_Array_Type (Typ) then
10049 return Has_Tagged_Component (Component_Type (Typ));
10050
10051 elsif Is_Tagged_Type (Typ) then
10052 return True;
10053
10054 elsif Is_Record_Type (Typ) then
10055 Comp := First_Component (Typ);
10056 while Present (Comp) loop
10057 if Has_Tagged_Component (Etype (Comp)) then
10058 return True;
10059 end if;
10060
10061 Next_Component (Comp);
10062 end loop;
10063
10064 return False;
10065
10066 else
10067 return False;
10068 end if;
10069 end Has_Tagged_Component;
10070
10071 -----------------------------
10072 -- Has_Undefined_Reference --
10073 -----------------------------
10074
10075 function Has_Undefined_Reference (Expr : Node_Id) return Boolean is
10076 Has_Undef_Ref : Boolean := False;
10077 -- Flag set when expression Expr contains at least one undefined
10078 -- reference.
10079
10080 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result;
10081 -- Determine whether N denotes a reference and if it does, whether it is
10082 -- undefined.
10083
10084 ----------------------------
10085 -- Is_Undefined_Reference --
10086 ----------------------------
10087
10088 function Is_Undefined_Reference (N : Node_Id) return Traverse_Result is
10089 begin
10090 if Is_Entity_Name (N)
10091 and then Present (Entity (N))
10092 and then Entity (N) = Any_Id
10093 then
10094 Has_Undef_Ref := True;
10095 return Abandon;
10096 end if;
10097
10098 return OK;
10099 end Is_Undefined_Reference;
10100
10101 procedure Find_Undefined_References is
10102 new Traverse_Proc (Is_Undefined_Reference);
10103
10104 -- Start of processing for Has_Undefined_Reference
10105
10106 begin
10107 Find_Undefined_References (Expr);
10108
10109 return Has_Undef_Ref;
10110 end Has_Undefined_Reference;
10111
10112 ----------------------------
10113 -- Has_Volatile_Component --
10114 ----------------------------
10115
10116 function Has_Volatile_Component (Typ : Entity_Id) return Boolean is
10117 Comp : Entity_Id;
10118
10119 begin
10120 if Has_Volatile_Components (Typ) then
10121 return True;
10122
10123 elsif Is_Array_Type (Typ) then
10124 return Is_Volatile (Component_Type (Typ));
10125
10126 elsif Is_Record_Type (Typ) then
10127 Comp := First_Component (Typ);
10128 while Present (Comp) loop
10129 if Is_Volatile_Object (Comp) then
10130 return True;
10131 end if;
10132
10133 Comp := Next_Component (Comp);
10134 end loop;
10135 end if;
10136
10137 return False;
10138 end Has_Volatile_Component;
10139
10140 -------------------------
10141 -- Implementation_Kind --
10142 -------------------------
10143
10144 function Implementation_Kind (Subp : Entity_Id) return Name_Id is
10145 Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
10146 Arg : Node_Id;
10147 begin
10148 pragma Assert (Present (Impl_Prag));
10149 Arg := Last (Pragma_Argument_Associations (Impl_Prag));
10150 return Chars (Get_Pragma_Arg (Arg));
10151 end Implementation_Kind;
10152
10153 --------------------------
10154 -- Implements_Interface --
10155 --------------------------
10156
10157 function Implements_Interface
10158 (Typ_Ent : Entity_Id;
10159 Iface_Ent : Entity_Id;
10160 Exclude_Parents : Boolean := False) return Boolean
10161 is
10162 Ifaces_List : Elist_Id;
10163 Elmt : Elmt_Id;
10164 Iface : Entity_Id := Base_Type (Iface_Ent);
10165 Typ : Entity_Id := Base_Type (Typ_Ent);
10166
10167 begin
10168 if Is_Class_Wide_Type (Typ) then
10169 Typ := Root_Type (Typ);
10170 end if;
10171
10172 if not Has_Interfaces (Typ) then
10173 return False;
10174 end if;
10175
10176 if Is_Class_Wide_Type (Iface) then
10177 Iface := Root_Type (Iface);
10178 end if;
10179
10180 Collect_Interfaces (Typ, Ifaces_List);
10181
10182 Elmt := First_Elmt (Ifaces_List);
10183 while Present (Elmt) loop
10184 if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
10185 and then Exclude_Parents
10186 then
10187 null;
10188
10189 elsif Node (Elmt) = Iface then
10190 return True;
10191 end if;
10192
10193 Next_Elmt (Elmt);
10194 end loop;
10195
10196 return False;
10197 end Implements_Interface;
10198
10199 ------------------------------------
10200 -- In_Assertion_Expression_Pragma --
10201 ------------------------------------
10202
10203 function In_Assertion_Expression_Pragma (N : Node_Id) return Boolean is
10204 Par : Node_Id;
10205 Prag : Node_Id := Empty;
10206
10207 begin
10208 -- Climb the parent chain looking for an enclosing pragma
10209
10210 Par := N;
10211 while Present (Par) loop
10212 if Nkind (Par) = N_Pragma then
10213 Prag := Par;
10214 exit;
10215
10216 -- Precondition-like pragmas are expanded into if statements, check
10217 -- the original node instead.
10218
10219 elsif Nkind (Original_Node (Par)) = N_Pragma then
10220 Prag := Original_Node (Par);
10221 exit;
10222
10223 -- The expansion of attribute 'Old generates a constant to capture
10224 -- the result of the prefix. If the parent traversal reaches
10225 -- one of these constants, then the node technically came from a
10226 -- postcondition-like pragma. Note that the Ekind is not tested here
10227 -- because N may be the expression of an object declaration which is
10228 -- currently being analyzed. Such objects carry Ekind of E_Void.
10229
10230 elsif Nkind (Par) = N_Object_Declaration
10231 and then Constant_Present (Par)
10232 and then Stores_Attribute_Old_Prefix (Defining_Entity (Par))
10233 then
10234 return True;
10235
10236 -- Prevent the search from going too far
10237
10238 elsif Is_Body_Or_Package_Declaration (Par) then
10239 return False;
10240 end if;
10241
10242 Par := Parent (Par);
10243 end loop;
10244
10245 return
10246 Present (Prag)
10247 and then Assertion_Expression_Pragma (Get_Pragma_Id (Prag));
10248 end In_Assertion_Expression_Pragma;
10249
10250 -----------------
10251 -- In_Instance --
10252 -----------------
10253
10254 function In_Instance return Boolean is
10255 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
10256 S : Entity_Id;
10257
10258 begin
10259 S := Current_Scope;
10260 while Present (S) and then S /= Standard_Standard loop
10261 if Ekind_In (S, E_Function, E_Package, E_Procedure)
10262 and then Is_Generic_Instance (S)
10263 then
10264 -- A child instance is always compiled in the context of a parent
10265 -- instance. Nevertheless, the actuals are not analyzed in an
10266 -- instance context. We detect this case by examining the current
10267 -- compilation unit, which must be a child instance, and checking
10268 -- that it is not currently on the scope stack.
10269
10270 if Is_Child_Unit (Curr_Unit)
10271 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
10272 N_Package_Instantiation
10273 and then not In_Open_Scopes (Curr_Unit)
10274 then
10275 return False;
10276 else
10277 return True;
10278 end if;
10279 end if;
10280
10281 S := Scope (S);
10282 end loop;
10283
10284 return False;
10285 end In_Instance;
10286
10287 ----------------------
10288 -- In_Instance_Body --
10289 ----------------------
10290
10291 function In_Instance_Body return Boolean is
10292 S : Entity_Id;
10293
10294 begin
10295 S := Current_Scope;
10296 while Present (S) and then S /= Standard_Standard loop
10297 if Ekind_In (S, E_Function, E_Procedure)
10298 and then Is_Generic_Instance (S)
10299 then
10300 return True;
10301
10302 elsif Ekind (S) = E_Package
10303 and then In_Package_Body (S)
10304 and then Is_Generic_Instance (S)
10305 then
10306 return True;
10307 end if;
10308
10309 S := Scope (S);
10310 end loop;
10311
10312 return False;
10313 end In_Instance_Body;
10314
10315 -----------------------------
10316 -- In_Instance_Not_Visible --
10317 -----------------------------
10318
10319 function In_Instance_Not_Visible return Boolean is
10320 S : Entity_Id;
10321
10322 begin
10323 S := Current_Scope;
10324 while Present (S) and then S /= Standard_Standard loop
10325 if Ekind_In (S, E_Function, E_Procedure)
10326 and then Is_Generic_Instance (S)
10327 then
10328 return True;
10329
10330 elsif Ekind (S) = E_Package
10331 and then (In_Package_Body (S) or else In_Private_Part (S))
10332 and then Is_Generic_Instance (S)
10333 then
10334 return True;
10335 end if;
10336
10337 S := Scope (S);
10338 end loop;
10339
10340 return False;
10341 end In_Instance_Not_Visible;
10342
10343 ------------------------------
10344 -- In_Instance_Visible_Part --
10345 ------------------------------
10346
10347 function In_Instance_Visible_Part return Boolean is
10348 S : Entity_Id;
10349
10350 begin
10351 S := Current_Scope;
10352 while Present (S) and then S /= Standard_Standard loop
10353 if Ekind (S) = E_Package
10354 and then Is_Generic_Instance (S)
10355 and then not In_Package_Body (S)
10356 and then not In_Private_Part (S)
10357 then
10358 return True;
10359 end if;
10360
10361 S := Scope (S);
10362 end loop;
10363
10364 return False;
10365 end In_Instance_Visible_Part;
10366
10367 ---------------------
10368 -- In_Package_Body --
10369 ---------------------
10370
10371 function In_Package_Body return Boolean is
10372 S : Entity_Id;
10373
10374 begin
10375 S := Current_Scope;
10376 while Present (S) and then S /= Standard_Standard loop
10377 if Ekind (S) = E_Package and then In_Package_Body (S) then
10378 return True;
10379 else
10380 S := Scope (S);
10381 end if;
10382 end loop;
10383
10384 return False;
10385 end In_Package_Body;
10386
10387 --------------------------------
10388 -- In_Parameter_Specification --
10389 --------------------------------
10390
10391 function In_Parameter_Specification (N : Node_Id) return Boolean is
10392 PN : Node_Id;
10393
10394 begin
10395 PN := Parent (N);
10396 while Present (PN) loop
10397 if Nkind (PN) = N_Parameter_Specification then
10398 return True;
10399 end if;
10400
10401 PN := Parent (PN);
10402 end loop;
10403
10404 return False;
10405 end In_Parameter_Specification;
10406
10407 --------------------------
10408 -- In_Pragma_Expression --
10409 --------------------------
10410
10411 function In_Pragma_Expression (N : Node_Id; Nam : Name_Id) return Boolean is
10412 P : Node_Id;
10413 begin
10414 P := Parent (N);
10415 loop
10416 if No (P) then
10417 return False;
10418 elsif Nkind (P) = N_Pragma and then Pragma_Name (P) = Nam then
10419 return True;
10420 else
10421 P := Parent (P);
10422 end if;
10423 end loop;
10424 end In_Pragma_Expression;
10425
10426 -------------------------------------
10427 -- In_Reverse_Storage_Order_Object --
10428 -------------------------------------
10429
10430 function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
10431 Pref : Node_Id;
10432 Btyp : Entity_Id := Empty;
10433
10434 begin
10435 -- Climb up indexed components
10436
10437 Pref := N;
10438 loop
10439 case Nkind (Pref) is
10440 when N_Selected_Component =>
10441 Pref := Prefix (Pref);
10442 exit;
10443
10444 when N_Indexed_Component =>
10445 Pref := Prefix (Pref);
10446
10447 when others =>
10448 Pref := Empty;
10449 exit;
10450 end case;
10451 end loop;
10452
10453 if Present (Pref) then
10454 Btyp := Base_Type (Etype (Pref));
10455 end if;
10456
10457 return Present (Btyp)
10458 and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
10459 and then Reverse_Storage_Order (Btyp);
10460 end In_Reverse_Storage_Order_Object;
10461
10462 --------------------------------------
10463 -- In_Subprogram_Or_Concurrent_Unit --
10464 --------------------------------------
10465
10466 function In_Subprogram_Or_Concurrent_Unit return Boolean is
10467 E : Entity_Id;
10468 K : Entity_Kind;
10469
10470 begin
10471 -- Use scope chain to check successively outer scopes
10472
10473 E := Current_Scope;
10474 loop
10475 K := Ekind (E);
10476
10477 if K in Subprogram_Kind
10478 or else K in Concurrent_Kind
10479 or else K in Generic_Subprogram_Kind
10480 then
10481 return True;
10482
10483 elsif E = Standard_Standard then
10484 return False;
10485 end if;
10486
10487 E := Scope (E);
10488 end loop;
10489 end In_Subprogram_Or_Concurrent_Unit;
10490
10491 ---------------------
10492 -- In_Visible_Part --
10493 ---------------------
10494
10495 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
10496 begin
10497 return Is_Package_Or_Generic_Package (Scope_Id)
10498 and then In_Open_Scopes (Scope_Id)
10499 and then not In_Package_Body (Scope_Id)
10500 and then not In_Private_Part (Scope_Id);
10501 end In_Visible_Part;
10502
10503 --------------------------------
10504 -- Incomplete_Or_Partial_View --
10505 --------------------------------
10506
10507 function Incomplete_Or_Partial_View (Id : Entity_Id) return Entity_Id is
10508 function Inspect_Decls
10509 (Decls : List_Id;
10510 Taft : Boolean := False) return Entity_Id;
10511 -- Check whether a declarative region contains the incomplete or partial
10512 -- view of Id.
10513
10514 -------------------
10515 -- Inspect_Decls --
10516 -------------------
10517
10518 function Inspect_Decls
10519 (Decls : List_Id;
10520 Taft : Boolean := False) return Entity_Id
10521 is
10522 Decl : Node_Id;
10523 Match : Node_Id;
10524
10525 begin
10526 Decl := First (Decls);
10527 while Present (Decl) loop
10528 Match := Empty;
10529
10530 if Taft then
10531 if Nkind (Decl) = N_Incomplete_Type_Declaration then
10532 Match := Defining_Identifier (Decl);
10533 end if;
10534
10535 else
10536 if Nkind_In (Decl, N_Private_Extension_Declaration,
10537 N_Private_Type_Declaration)
10538 then
10539 Match := Defining_Identifier (Decl);
10540 end if;
10541 end if;
10542
10543 if Present (Match)
10544 and then Present (Full_View (Match))
10545 and then Full_View (Match) = Id
10546 then
10547 return Match;
10548 end if;
10549
10550 Next (Decl);
10551 end loop;
10552
10553 return Empty;
10554 end Inspect_Decls;
10555
10556 -- Local variables
10557
10558 Prev : Entity_Id;
10559
10560 -- Start of processing for Incomplete_Or_Partial_View
10561
10562 begin
10563 -- Deferred constant or incomplete type case
10564
10565 Prev := Current_Entity_In_Scope (Id);
10566
10567 if Present (Prev)
10568 and then (Is_Incomplete_Type (Prev) or else Ekind (Prev) = E_Constant)
10569 and then Present (Full_View (Prev))
10570 and then Full_View (Prev) = Id
10571 then
10572 return Prev;
10573 end if;
10574
10575 -- Private or Taft amendment type case
10576
10577 declare
10578 Pkg : constant Entity_Id := Scope (Id);
10579 Pkg_Decl : Node_Id := Pkg;
10580
10581 begin
10582 if Present (Pkg) and then Ekind (Pkg) = E_Package then
10583 while Nkind (Pkg_Decl) /= N_Package_Specification loop
10584 Pkg_Decl := Parent (Pkg_Decl);
10585 end loop;
10586
10587 -- It is knows that Typ has a private view, look for it in the
10588 -- visible declarations of the enclosing scope. A special case
10589 -- of this is when the two views have been exchanged - the full
10590 -- appears earlier than the private.
10591
10592 if Has_Private_Declaration (Id) then
10593 Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
10594
10595 -- Exchanged view case, look in the private declarations
10596
10597 if No (Prev) then
10598 Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
10599 end if;
10600
10601 return Prev;
10602
10603 -- Otherwise if this is the package body, then Typ is a potential
10604 -- Taft amendment type. The incomplete view should be located in
10605 -- the private declarations of the enclosing scope.
10606
10607 elsif In_Package_Body (Pkg) then
10608 return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
10609 end if;
10610 end if;
10611 end;
10612
10613 -- The type has no incomplete or private view
10614
10615 return Empty;
10616 end Incomplete_Or_Partial_View;
10617
10618 -----------------------------------------
10619 -- Inherit_Default_Init_Cond_Procedure --
10620 -----------------------------------------
10621
10622 procedure Inherit_Default_Init_Cond_Procedure (Typ : Entity_Id) is
10623 Par_Typ : constant Entity_Id := Etype (Typ);
10624
10625 begin
10626 -- A derived type inherits the default initial condition procedure of
10627 -- its parent type.
10628
10629 if No (Default_Init_Cond_Procedure (Typ)) then
10630 Set_Default_Init_Cond_Procedure
10631 (Typ, Default_Init_Cond_Procedure (Par_Typ));
10632 end if;
10633 end Inherit_Default_Init_Cond_Procedure;
10634
10635 ----------------------------
10636 -- Inherit_Rep_Item_Chain --
10637 ----------------------------
10638
10639 procedure Inherit_Rep_Item_Chain (Typ : Entity_Id; From_Typ : Entity_Id) is
10640 From_Item : constant Node_Id := First_Rep_Item (From_Typ);
10641 Item : Node_Id := Empty;
10642 Last_Item : Node_Id := Empty;
10643
10644 begin
10645 -- Reach the end of the destination type's chain (if any) and capture
10646 -- the last item.
10647
10648 Item := First_Rep_Item (Typ);
10649 while Present (Item) loop
10650
10651 -- Do not inherit a chain that has been inherited already
10652
10653 if Item = From_Item then
10654 return;
10655 end if;
10656
10657 Last_Item := Item;
10658 Item := Next_Rep_Item (Item);
10659 end loop;
10660
10661 Item := First_Rep_Item (From_Typ);
10662
10663 -- Additional check when both parent and current type have rep.
10664 -- items, to prevent circularities when the derivation completes
10665 -- a private declaration and inherits from both views of the parent.
10666 -- There may be a remaining problem with the proper ordering of
10667 -- attribute specifications and aspects on the chains of the four
10668 -- entities involved. ???
10669
10670 if Present (Item) and then Present (From_Item) then
10671 while Present (Item) loop
10672 if Item = First_Rep_Item (Typ) then
10673 return;
10674 end if;
10675
10676 Item := Next_Rep_Item (Item);
10677 end loop;
10678 end if;
10679
10680 -- When the destination type has a rep item chain, the chain of the
10681 -- source type is appended to it.
10682
10683 if Present (Last_Item) then
10684 Set_Next_Rep_Item (Last_Item, From_Item);
10685
10686 -- Otherwise the destination type directly inherits the rep item chain
10687 -- of the source type (if any).
10688
10689 else
10690 Set_First_Rep_Item (Typ, From_Item);
10691 end if;
10692 end Inherit_Rep_Item_Chain;
10693
10694 ---------------------------------
10695 -- Insert_Explicit_Dereference --
10696 ---------------------------------
10697
10698 procedure Insert_Explicit_Dereference (N : Node_Id) is
10699 New_Prefix : constant Node_Id := Relocate_Node (N);
10700 Ent : Entity_Id := Empty;
10701 Pref : Node_Id;
10702 I : Interp_Index;
10703 It : Interp;
10704 T : Entity_Id;
10705
10706 begin
10707 Save_Interps (N, New_Prefix);
10708
10709 Rewrite (N,
10710 Make_Explicit_Dereference (Sloc (Parent (N)),
10711 Prefix => New_Prefix));
10712
10713 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
10714
10715 if Is_Overloaded (New_Prefix) then
10716
10717 -- The dereference is also overloaded, and its interpretations are
10718 -- the designated types of the interpretations of the original node.
10719
10720 Set_Etype (N, Any_Type);
10721
10722 Get_First_Interp (New_Prefix, I, It);
10723 while Present (It.Nam) loop
10724 T := It.Typ;
10725
10726 if Is_Access_Type (T) then
10727 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
10728 end if;
10729
10730 Get_Next_Interp (I, It);
10731 end loop;
10732
10733 End_Interp_List;
10734
10735 else
10736 -- Prefix is unambiguous: mark the original prefix (which might
10737 -- Come_From_Source) as a reference, since the new (relocated) one
10738 -- won't be taken into account.
10739
10740 if Is_Entity_Name (New_Prefix) then
10741 Ent := Entity (New_Prefix);
10742 Pref := New_Prefix;
10743
10744 -- For a retrieval of a subcomponent of some composite object,
10745 -- retrieve the ultimate entity if there is one.
10746
10747 elsif Nkind_In (New_Prefix, N_Selected_Component,
10748 N_Indexed_Component)
10749 then
10750 Pref := Prefix (New_Prefix);
10751 while Present (Pref)
10752 and then Nkind_In (Pref, N_Selected_Component,
10753 N_Indexed_Component)
10754 loop
10755 Pref := Prefix (Pref);
10756 end loop;
10757
10758 if Present (Pref) and then Is_Entity_Name (Pref) then
10759 Ent := Entity (Pref);
10760 end if;
10761 end if;
10762
10763 -- Place the reference on the entity node
10764
10765 if Present (Ent) then
10766 Generate_Reference (Ent, Pref);
10767 end if;
10768 end if;
10769 end Insert_Explicit_Dereference;
10770
10771 ------------------------------------------
10772 -- Inspect_Deferred_Constant_Completion --
10773 ------------------------------------------
10774
10775 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
10776 Decl : Node_Id;
10777
10778 begin
10779 Decl := First (Decls);
10780 while Present (Decl) loop
10781
10782 -- Deferred constant signature
10783
10784 if Nkind (Decl) = N_Object_Declaration
10785 and then Constant_Present (Decl)
10786 and then No (Expression (Decl))
10787
10788 -- No need to check internally generated constants
10789
10790 and then Comes_From_Source (Decl)
10791
10792 -- The constant is not completed. A full object declaration or a
10793 -- pragma Import complete a deferred constant.
10794
10795 and then not Has_Completion (Defining_Identifier (Decl))
10796 then
10797 Error_Msg_N
10798 ("constant declaration requires initialization expression",
10799 Defining_Identifier (Decl));
10800 end if;
10801
10802 Decl := Next (Decl);
10803 end loop;
10804 end Inspect_Deferred_Constant_Completion;
10805
10806 -----------------------------
10807 -- Install_Generic_Formals --
10808 -----------------------------
10809
10810 procedure Install_Generic_Formals (Subp_Id : Entity_Id) is
10811 E : Entity_Id;
10812
10813 begin
10814 pragma Assert (Is_Generic_Subprogram (Subp_Id));
10815
10816 E := First_Entity (Subp_Id);
10817 while Present (E) loop
10818 Install_Entity (E);
10819 Next_Entity (E);
10820 end loop;
10821 end Install_Generic_Formals;
10822
10823 -----------------------------
10824 -- Is_Actual_Out_Parameter --
10825 -----------------------------
10826
10827 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
10828 Formal : Entity_Id;
10829 Call : Node_Id;
10830 begin
10831 Find_Actual (N, Formal, Call);
10832 return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
10833 end Is_Actual_Out_Parameter;
10834
10835 -------------------------
10836 -- Is_Actual_Parameter --
10837 -------------------------
10838
10839 function Is_Actual_Parameter (N : Node_Id) return Boolean is
10840 PK : constant Node_Kind := Nkind (Parent (N));
10841
10842 begin
10843 case PK is
10844 when N_Parameter_Association =>
10845 return N = Explicit_Actual_Parameter (Parent (N));
10846
10847 when N_Subprogram_Call =>
10848 return Is_List_Member (N)
10849 and then
10850 List_Containing (N) = Parameter_Associations (Parent (N));
10851
10852 when others =>
10853 return False;
10854 end case;
10855 end Is_Actual_Parameter;
10856
10857 --------------------------------
10858 -- Is_Actual_Tagged_Parameter --
10859 --------------------------------
10860
10861 function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
10862 Formal : Entity_Id;
10863 Call : Node_Id;
10864 begin
10865 Find_Actual (N, Formal, Call);
10866 return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
10867 end Is_Actual_Tagged_Parameter;
10868
10869 ---------------------
10870 -- Is_Aliased_View --
10871 ---------------------
10872
10873 function Is_Aliased_View (Obj : Node_Id) return Boolean is
10874 E : Entity_Id;
10875
10876 begin
10877 if Is_Entity_Name (Obj) then
10878 E := Entity (Obj);
10879
10880 return
10881 (Is_Object (E)
10882 and then
10883 (Is_Aliased (E)
10884 or else (Present (Renamed_Object (E))
10885 and then Is_Aliased_View (Renamed_Object (E)))))
10886
10887 or else ((Is_Formal (E)
10888 or else Ekind_In (E, E_Generic_In_Out_Parameter,
10889 E_Generic_In_Parameter))
10890 and then Is_Tagged_Type (Etype (E)))
10891
10892 or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
10893
10894 -- Current instance of type, either directly or as rewritten
10895 -- reference to the current object.
10896
10897 or else (Is_Entity_Name (Original_Node (Obj))
10898 and then Present (Entity (Original_Node (Obj)))
10899 and then Is_Type (Entity (Original_Node (Obj))))
10900
10901 or else (Is_Type (E) and then E = Current_Scope)
10902
10903 or else (Is_Incomplete_Or_Private_Type (E)
10904 and then Full_View (E) = Current_Scope)
10905
10906 -- Ada 2012 AI05-0053: the return object of an extended return
10907 -- statement is aliased if its type is immutably limited.
10908
10909 or else (Is_Return_Object (E)
10910 and then Is_Limited_View (Etype (E)));
10911
10912 elsif Nkind (Obj) = N_Selected_Component then
10913 return Is_Aliased (Entity (Selector_Name (Obj)));
10914
10915 elsif Nkind (Obj) = N_Indexed_Component then
10916 return Has_Aliased_Components (Etype (Prefix (Obj)))
10917 or else
10918 (Is_Access_Type (Etype (Prefix (Obj)))
10919 and then Has_Aliased_Components
10920 (Designated_Type (Etype (Prefix (Obj)))));
10921
10922 elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
10923 return Is_Tagged_Type (Etype (Obj))
10924 and then Is_Aliased_View (Expression (Obj));
10925
10926 elsif Nkind (Obj) = N_Explicit_Dereference then
10927 return Nkind (Original_Node (Obj)) /= N_Function_Call;
10928
10929 else
10930 return False;
10931 end if;
10932 end Is_Aliased_View;
10933
10934 -------------------------
10935 -- Is_Ancestor_Package --
10936 -------------------------
10937
10938 function Is_Ancestor_Package
10939 (E1 : Entity_Id;
10940 E2 : Entity_Id) return Boolean
10941 is
10942 Par : Entity_Id;
10943
10944 begin
10945 Par := E2;
10946 while Present (Par) and then Par /= Standard_Standard loop
10947 if Par = E1 then
10948 return True;
10949 end if;
10950
10951 Par := Scope (Par);
10952 end loop;
10953
10954 return False;
10955 end Is_Ancestor_Package;
10956
10957 ----------------------
10958 -- Is_Atomic_Object --
10959 ----------------------
10960
10961 function Is_Atomic_Object (N : Node_Id) return Boolean is
10962
10963 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
10964 -- Determines if given object has atomic components
10965
10966 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
10967 -- If prefix is an implicit dereference, examine designated type
10968
10969 ----------------------
10970 -- Is_Atomic_Prefix --
10971 ----------------------
10972
10973 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
10974 begin
10975 if Is_Access_Type (Etype (N)) then
10976 return
10977 Has_Atomic_Components (Designated_Type (Etype (N)));
10978 else
10979 return Object_Has_Atomic_Components (N);
10980 end if;
10981 end Is_Atomic_Prefix;
10982
10983 ----------------------------------
10984 -- Object_Has_Atomic_Components --
10985 ----------------------------------
10986
10987 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
10988 begin
10989 if Has_Atomic_Components (Etype (N))
10990 or else Is_Atomic (Etype (N))
10991 then
10992 return True;
10993
10994 elsif Is_Entity_Name (N)
10995 and then (Has_Atomic_Components (Entity (N))
10996 or else Is_Atomic (Entity (N)))
10997 then
10998 return True;
10999
11000 elsif Nkind (N) = N_Selected_Component
11001 and then Is_Atomic (Entity (Selector_Name (N)))
11002 then
11003 return True;
11004
11005 elsif Nkind (N) = N_Indexed_Component
11006 or else Nkind (N) = N_Selected_Component
11007 then
11008 return Is_Atomic_Prefix (Prefix (N));
11009
11010 else
11011 return False;
11012 end if;
11013 end Object_Has_Atomic_Components;
11014
11015 -- Start of processing for Is_Atomic_Object
11016
11017 begin
11018 -- Predicate is not relevant to subprograms
11019
11020 if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
11021 return False;
11022
11023 elsif Is_Atomic (Etype (N))
11024 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
11025 then
11026 return True;
11027
11028 elsif Nkind (N) = N_Selected_Component
11029 and then Is_Atomic (Entity (Selector_Name (N)))
11030 then
11031 return True;
11032
11033 elsif Nkind (N) = N_Indexed_Component
11034 or else Nkind (N) = N_Selected_Component
11035 then
11036 return Is_Atomic_Prefix (Prefix (N));
11037
11038 else
11039 return False;
11040 end if;
11041 end Is_Atomic_Object;
11042
11043 -----------------------------
11044 -- Is_Atomic_Or_VFA_Object --
11045 -----------------------------
11046
11047 function Is_Atomic_Or_VFA_Object (N : Node_Id) return Boolean is
11048 begin
11049 return Is_Atomic_Object (N)
11050 or else (Is_Object_Reference (N)
11051 and then Is_Entity_Name (N)
11052 and then (Is_Volatile_Full_Access (Entity (N))
11053 or else
11054 Is_Volatile_Full_Access (Etype (Entity (N)))));
11055 end Is_Atomic_Or_VFA_Object;
11056
11057 -------------------------
11058 -- Is_Attribute_Result --
11059 -------------------------
11060
11061 function Is_Attribute_Result (N : Node_Id) return Boolean is
11062 begin
11063 return Nkind (N) = N_Attribute_Reference
11064 and then Attribute_Name (N) = Name_Result;
11065 end Is_Attribute_Result;
11066
11067 -------------------------
11068 -- Is_Attribute_Update --
11069 -------------------------
11070
11071 function Is_Attribute_Update (N : Node_Id) return Boolean is
11072 begin
11073 return Nkind (N) = N_Attribute_Reference
11074 and then Attribute_Name (N) = Name_Update;
11075 end Is_Attribute_Update;
11076
11077 ------------------------------------
11078 -- Is_Body_Or_Package_Declaration --
11079 ------------------------------------
11080
11081 function Is_Body_Or_Package_Declaration (N : Node_Id) return Boolean is
11082 begin
11083 return Nkind_In (N, N_Entry_Body,
11084 N_Package_Body,
11085 N_Package_Declaration,
11086 N_Protected_Body,
11087 N_Subprogram_Body,
11088 N_Task_Body);
11089 end Is_Body_Or_Package_Declaration;
11090
11091 -----------------------
11092 -- Is_Bounded_String --
11093 -----------------------
11094
11095 function Is_Bounded_String (T : Entity_Id) return Boolean is
11096 Under : constant Entity_Id := Underlying_Type (Root_Type (T));
11097
11098 begin
11099 -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
11100 -- Super_String, or one of the [Wide_]Wide_ versions. This will
11101 -- be True for all the Bounded_String types in instances of the
11102 -- Generic_Bounded_Length generics, and for types derived from those.
11103
11104 return Present (Under)
11105 and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
11106 Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
11107 Is_RTE (Root_Type (Under), RO_WW_Super_String));
11108 end Is_Bounded_String;
11109
11110 -------------------------
11111 -- Is_Child_Or_Sibling --
11112 -------------------------
11113
11114 function Is_Child_Or_Sibling
11115 (Pack_1 : Entity_Id;
11116 Pack_2 : Entity_Id) return Boolean
11117 is
11118 function Distance_From_Standard (Pack : Entity_Id) return Nat;
11119 -- Given an arbitrary package, return the number of "climbs" necessary
11120 -- to reach scope Standard_Standard.
11121
11122 procedure Equalize_Depths
11123 (Pack : in out Entity_Id;
11124 Depth : in out Nat;
11125 Depth_To_Reach : Nat);
11126 -- Given an arbitrary package, its depth and a target depth to reach,
11127 -- climb the scope chain until the said depth is reached. The pointer
11128 -- to the package and its depth a modified during the climb.
11129
11130 ----------------------------
11131 -- Distance_From_Standard --
11132 ----------------------------
11133
11134 function Distance_From_Standard (Pack : Entity_Id) return Nat is
11135 Dist : Nat;
11136 Scop : Entity_Id;
11137
11138 begin
11139 Dist := 0;
11140 Scop := Pack;
11141 while Present (Scop) and then Scop /= Standard_Standard loop
11142 Dist := Dist + 1;
11143 Scop := Scope (Scop);
11144 end loop;
11145
11146 return Dist;
11147 end Distance_From_Standard;
11148
11149 ---------------------
11150 -- Equalize_Depths --
11151 ---------------------
11152
11153 procedure Equalize_Depths
11154 (Pack : in out Entity_Id;
11155 Depth : in out Nat;
11156 Depth_To_Reach : Nat)
11157 is
11158 begin
11159 -- The package must be at a greater or equal depth
11160
11161 if Depth < Depth_To_Reach then
11162 raise Program_Error;
11163 end if;
11164
11165 -- Climb the scope chain until the desired depth is reached
11166
11167 while Present (Pack) and then Depth /= Depth_To_Reach loop
11168 Pack := Scope (Pack);
11169 Depth := Depth - 1;
11170 end loop;
11171 end Equalize_Depths;
11172
11173 -- Local variables
11174
11175 P_1 : Entity_Id := Pack_1;
11176 P_1_Child : Boolean := False;
11177 P_1_Depth : Nat := Distance_From_Standard (P_1);
11178 P_2 : Entity_Id := Pack_2;
11179 P_2_Child : Boolean := False;
11180 P_2_Depth : Nat := Distance_From_Standard (P_2);
11181
11182 -- Start of processing for Is_Child_Or_Sibling
11183
11184 begin
11185 pragma Assert
11186 (Ekind (Pack_1) = E_Package and then Ekind (Pack_2) = E_Package);
11187
11188 -- Both packages denote the same entity, therefore they cannot be
11189 -- children or siblings.
11190
11191 if P_1 = P_2 then
11192 return False;
11193
11194 -- One of the packages is at a deeper level than the other. Note that
11195 -- both may still come from differen hierarchies.
11196
11197 -- (root) P_2
11198 -- / \ :
11199 -- X P_2 or X
11200 -- : :
11201 -- P_1 P_1
11202
11203 elsif P_1_Depth > P_2_Depth then
11204 Equalize_Depths
11205 (Pack => P_1,
11206 Depth => P_1_Depth,
11207 Depth_To_Reach => P_2_Depth);
11208 P_1_Child := True;
11209
11210 -- (root) P_1
11211 -- / \ :
11212 -- P_1 X or X
11213 -- : :
11214 -- P_2 P_2
11215
11216 elsif P_2_Depth > P_1_Depth then
11217 Equalize_Depths
11218 (Pack => P_2,
11219 Depth => P_2_Depth,
11220 Depth_To_Reach => P_1_Depth);
11221 P_2_Child := True;
11222 end if;
11223
11224 -- At this stage the package pointers have been elevated to the same
11225 -- depth. If the related entities are the same, then one package is a
11226 -- potential child of the other:
11227
11228 -- P_1
11229 -- :
11230 -- X became P_1 P_2 or vica versa
11231 -- :
11232 -- P_2
11233
11234 if P_1 = P_2 then
11235 if P_1_Child then
11236 return Is_Child_Unit (Pack_1);
11237
11238 else pragma Assert (P_2_Child);
11239 return Is_Child_Unit (Pack_2);
11240 end if;
11241
11242 -- The packages may come from the same package chain or from entirely
11243 -- different hierarcies. To determine this, climb the scope stack until
11244 -- a common root is found.
11245
11246 -- (root) (root 1) (root 2)
11247 -- / \ | |
11248 -- P_1 P_2 P_1 P_2
11249
11250 else
11251 while Present (P_1) and then Present (P_2) loop
11252
11253 -- The two packages may be siblings
11254
11255 if P_1 = P_2 then
11256 return Is_Child_Unit (Pack_1) and then Is_Child_Unit (Pack_2);
11257 end if;
11258
11259 P_1 := Scope (P_1);
11260 P_2 := Scope (P_2);
11261 end loop;
11262 end if;
11263
11264 return False;
11265 end Is_Child_Or_Sibling;
11266
11267 -----------------------------
11268 -- Is_Concurrent_Interface --
11269 -----------------------------
11270
11271 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
11272 begin
11273 return Is_Interface (T)
11274 and then
11275 (Is_Protected_Interface (T)
11276 or else Is_Synchronized_Interface (T)
11277 or else Is_Task_Interface (T));
11278 end Is_Concurrent_Interface;
11279
11280 -----------------------
11281 -- Is_Constant_Bound --
11282 -----------------------
11283
11284 function Is_Constant_Bound (Exp : Node_Id) return Boolean is
11285 begin
11286 if Compile_Time_Known_Value (Exp) then
11287 return True;
11288
11289 elsif Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
11290 return Is_Constant_Object (Entity (Exp))
11291 or else Ekind (Entity (Exp)) = E_Enumeration_Literal;
11292
11293 elsif Nkind (Exp) in N_Binary_Op then
11294 return Is_Constant_Bound (Left_Opnd (Exp))
11295 and then Is_Constant_Bound (Right_Opnd (Exp))
11296 and then Scope (Entity (Exp)) = Standard_Standard;
11297
11298 else
11299 return False;
11300 end if;
11301 end Is_Constant_Bound;
11302
11303 ---------------------------
11304 -- Is_Container_Element --
11305 ---------------------------
11306
11307 function Is_Container_Element (Exp : Node_Id) return Boolean is
11308 Loc : constant Source_Ptr := Sloc (Exp);
11309 Pref : constant Node_Id := Prefix (Exp);
11310
11311 Call : Node_Id;
11312 -- Call to an indexing aspect
11313
11314 Cont_Typ : Entity_Id;
11315 -- The type of the container being accessed
11316
11317 Elem_Typ : Entity_Id;
11318 -- Its element type
11319
11320 Indexing : Entity_Id;
11321 Is_Const : Boolean;
11322 -- Indicates that constant indexing is used, and the element is thus
11323 -- a constant.
11324
11325 Ref_Typ : Entity_Id;
11326 -- The reference type returned by the indexing operation
11327
11328 begin
11329 -- If C is a container, in a context that imposes the element type of
11330 -- that container, the indexing notation C (X) is rewritten as:
11331
11332 -- Indexing (C, X).Discr.all
11333
11334 -- where Indexing is one of the indexing aspects of the container.
11335 -- If the context does not require a reference, the construct can be
11336 -- rewritten as
11337
11338 -- Element (C, X)
11339
11340 -- First, verify that the construct has the proper form
11341
11342 if not Expander_Active then
11343 return False;
11344
11345 elsif Nkind (Pref) /= N_Selected_Component then
11346 return False;
11347
11348 elsif Nkind (Prefix (Pref)) /= N_Function_Call then
11349 return False;
11350
11351 else
11352 Call := Prefix (Pref);
11353 Ref_Typ := Etype (Call);
11354 end if;
11355
11356 if not Has_Implicit_Dereference (Ref_Typ)
11357 or else No (First (Parameter_Associations (Call)))
11358 or else not Is_Entity_Name (Name (Call))
11359 then
11360 return False;
11361 end if;
11362
11363 -- Retrieve type of container object, and its iterator aspects
11364
11365 Cont_Typ := Etype (First (Parameter_Associations (Call)));
11366 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Constant_Indexing);
11367 Is_Const := False;
11368
11369 if No (Indexing) then
11370
11371 -- Container should have at least one indexing operation
11372
11373 return False;
11374
11375 elsif Entity (Name (Call)) /= Entity (Indexing) then
11376
11377 -- This may be a variable indexing operation
11378
11379 Indexing := Find_Value_Of_Aspect (Cont_Typ, Aspect_Variable_Indexing);
11380
11381 if No (Indexing)
11382 or else Entity (Name (Call)) /= Entity (Indexing)
11383 then
11384 return False;
11385 end if;
11386
11387 else
11388 Is_Const := True;
11389 end if;
11390
11391 Elem_Typ := Find_Value_Of_Aspect (Cont_Typ, Aspect_Iterator_Element);
11392
11393 if No (Elem_Typ) or else Entity (Elem_Typ) /= Etype (Exp) then
11394 return False;
11395 end if;
11396
11397 -- Check that the expression is not the target of an assignment, in
11398 -- which case the rewriting is not possible.
11399
11400 if not Is_Const then
11401 declare
11402 Par : Node_Id;
11403
11404 begin
11405 Par := Exp;
11406 while Present (Par)
11407 loop
11408 if Nkind (Parent (Par)) = N_Assignment_Statement
11409 and then Par = Name (Parent (Par))
11410 then
11411 return False;
11412
11413 -- A renaming produces a reference, and the transformation
11414 -- does not apply.
11415
11416 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
11417 return False;
11418
11419 elsif Nkind_In
11420 (Nkind (Parent (Par)), N_Function_Call,
11421 N_Procedure_Call_Statement,
11422 N_Entry_Call_Statement)
11423 then
11424 -- Check that the element is not part of an actual for an
11425 -- in-out parameter.
11426
11427 declare
11428 F : Entity_Id;
11429 A : Node_Id;
11430
11431 begin
11432 F := First_Formal (Entity (Name (Parent (Par))));
11433 A := First (Parameter_Associations (Parent (Par)));
11434 while Present (F) loop
11435 if A = Par and then Ekind (F) /= E_In_Parameter then
11436 return False;
11437 end if;
11438
11439 Next_Formal (F);
11440 Next (A);
11441 end loop;
11442 end;
11443
11444 -- E_In_Parameter in a call: element is not modified.
11445
11446 exit;
11447 end if;
11448
11449 Par := Parent (Par);
11450 end loop;
11451 end;
11452 end if;
11453
11454 -- The expression has the proper form and the context requires the
11455 -- element type. Retrieve the Element function of the container and
11456 -- rewrite the construct as a call to it.
11457
11458 declare
11459 Op : Elmt_Id;
11460
11461 begin
11462 Op := First_Elmt (Primitive_Operations (Cont_Typ));
11463 while Present (Op) loop
11464 exit when Chars (Node (Op)) = Name_Element;
11465 Next_Elmt (Op);
11466 end loop;
11467
11468 if No (Op) then
11469 return False;
11470
11471 else
11472 Rewrite (Exp,
11473 Make_Function_Call (Loc,
11474 Name => New_Occurrence_Of (Node (Op), Loc),
11475 Parameter_Associations => Parameter_Associations (Call)));
11476 Analyze_And_Resolve (Exp, Entity (Elem_Typ));
11477 return True;
11478 end if;
11479 end;
11480 end Is_Container_Element;
11481
11482 ----------------------------
11483 -- Is_Contract_Annotation --
11484 ----------------------------
11485
11486 function Is_Contract_Annotation (Item : Node_Id) return Boolean is
11487 begin
11488 return Is_Package_Contract_Annotation (Item)
11489 or else
11490 Is_Subprogram_Contract_Annotation (Item);
11491 end Is_Contract_Annotation;
11492
11493 --------------------------------------
11494 -- Is_Controlling_Limited_Procedure --
11495 --------------------------------------
11496
11497 function Is_Controlling_Limited_Procedure
11498 (Proc_Nam : Entity_Id) return Boolean
11499 is
11500 Param_Typ : Entity_Id := Empty;
11501
11502 begin
11503 if Ekind (Proc_Nam) = E_Procedure
11504 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
11505 then
11506 Param_Typ := Etype (Parameter_Type (First (
11507 Parameter_Specifications (Parent (Proc_Nam)))));
11508
11509 -- In this case where an Itype was created, the procedure call has been
11510 -- rewritten.
11511
11512 elsif Present (Associated_Node_For_Itype (Proc_Nam))
11513 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
11514 and then
11515 Present (Parameter_Associations
11516 (Associated_Node_For_Itype (Proc_Nam)))
11517 then
11518 Param_Typ :=
11519 Etype (First (Parameter_Associations
11520 (Associated_Node_For_Itype (Proc_Nam))));
11521 end if;
11522
11523 if Present (Param_Typ) then
11524 return
11525 Is_Interface (Param_Typ)
11526 and then Is_Limited_Record (Param_Typ);
11527 end if;
11528
11529 return False;
11530 end Is_Controlling_Limited_Procedure;
11531
11532 -----------------------------
11533 -- Is_CPP_Constructor_Call --
11534 -----------------------------
11535
11536 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
11537 begin
11538 return Nkind (N) = N_Function_Call
11539 and then Is_CPP_Class (Etype (Etype (N)))
11540 and then Is_Constructor (Entity (Name (N)))
11541 and then Is_Imported (Entity (Name (N)));
11542 end Is_CPP_Constructor_Call;
11543
11544 -------------------------
11545 -- Is_Current_Instance --
11546 -------------------------
11547
11548 function Is_Current_Instance (N : Node_Id) return Boolean is
11549 Typ : constant Entity_Id := Entity (N);
11550 P : Node_Id;
11551
11552 begin
11553 -- Simplest case: entity is a concurrent type and we are currently
11554 -- inside the body. This will eventually be expanded into a
11555 -- call to Self (for tasks) or _object (for protected objects).
11556
11557 if Is_Concurrent_Type (Typ) and then In_Open_Scopes (Typ) then
11558 return True;
11559
11560 else
11561 -- Check whether the context is a (sub)type declaration for the
11562 -- type entity.
11563
11564 P := Parent (N);
11565 while Present (P) loop
11566 if Nkind_In (P, N_Full_Type_Declaration,
11567 N_Private_Type_Declaration,
11568 N_Subtype_Declaration)
11569 and then Comes_From_Source (P)
11570 and then Defining_Entity (P) = Typ
11571 then
11572 return True;
11573 end if;
11574
11575 P := Parent (P);
11576 end loop;
11577 end if;
11578
11579 -- In any other context this is not a current occurrence
11580
11581 return False;
11582 end Is_Current_Instance;
11583
11584 --------------------
11585 -- Is_Declaration --
11586 --------------------
11587
11588 function Is_Declaration (N : Node_Id) return Boolean is
11589 begin
11590 case Nkind (N) is
11591 when N_Abstract_Subprogram_Declaration |
11592 N_Exception_Declaration |
11593 N_Exception_Renaming_Declaration |
11594 N_Full_Type_Declaration |
11595 N_Generic_Function_Renaming_Declaration |
11596 N_Generic_Package_Declaration |
11597 N_Generic_Package_Renaming_Declaration |
11598 N_Generic_Procedure_Renaming_Declaration |
11599 N_Generic_Subprogram_Declaration |
11600 N_Number_Declaration |
11601 N_Object_Declaration |
11602 N_Object_Renaming_Declaration |
11603 N_Package_Declaration |
11604 N_Package_Renaming_Declaration |
11605 N_Private_Extension_Declaration |
11606 N_Private_Type_Declaration |
11607 N_Subprogram_Declaration |
11608 N_Subprogram_Renaming_Declaration |
11609 N_Subtype_Declaration =>
11610 return True;
11611
11612 when others =>
11613 return False;
11614 end case;
11615 end Is_Declaration;
11616
11617 --------------------------------
11618 -- Is_Declared_Within_Variant --
11619 --------------------------------
11620
11621 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
11622 Comp_Decl : constant Node_Id := Parent (Comp);
11623 Comp_List : constant Node_Id := Parent (Comp_Decl);
11624 begin
11625 return Nkind (Parent (Comp_List)) = N_Variant;
11626 end Is_Declared_Within_Variant;
11627
11628 ----------------------------------------------
11629 -- Is_Dependent_Component_Of_Mutable_Object --
11630 ----------------------------------------------
11631
11632 function Is_Dependent_Component_Of_Mutable_Object
11633 (Object : Node_Id) return Boolean
11634 is
11635 P : Node_Id;
11636 Prefix_Type : Entity_Id;
11637 P_Aliased : Boolean := False;
11638 Comp : Entity_Id;
11639
11640 Deref : Node_Id := Object;
11641 -- Dereference node, in something like X.all.Y(2)
11642
11643 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
11644
11645 begin
11646 -- Find the dereference node if any
11647
11648 while Nkind_In (Deref, N_Indexed_Component,
11649 N_Selected_Component,
11650 N_Slice)
11651 loop
11652 Deref := Prefix (Deref);
11653 end loop;
11654
11655 -- Ada 2005: If we have a component or slice of a dereference,
11656 -- something like X.all.Y (2), and the type of X is access-to-constant,
11657 -- Is_Variable will return False, because it is indeed a constant
11658 -- view. But it might be a view of a variable object, so we want the
11659 -- following condition to be True in that case.
11660
11661 if Is_Variable (Object)
11662 or else (Ada_Version >= Ada_2005
11663 and then Nkind (Deref) = N_Explicit_Dereference)
11664 then
11665 if Nkind (Object) = N_Selected_Component then
11666 P := Prefix (Object);
11667 Prefix_Type := Etype (P);
11668
11669 if Is_Entity_Name (P) then
11670 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
11671 Prefix_Type := Base_Type (Prefix_Type);
11672 end if;
11673
11674 if Is_Aliased (Entity (P)) then
11675 P_Aliased := True;
11676 end if;
11677
11678 -- A discriminant check on a selected component may be expanded
11679 -- into a dereference when removing side-effects. Recover the
11680 -- original node and its type, which may be unconstrained.
11681
11682 elsif Nkind (P) = N_Explicit_Dereference
11683 and then not (Comes_From_Source (P))
11684 then
11685 P := Original_Node (P);
11686 Prefix_Type := Etype (P);
11687
11688 else
11689 -- Check for prefix being an aliased component???
11690
11691 null;
11692
11693 end if;
11694
11695 -- A heap object is constrained by its initial value
11696
11697 -- Ada 2005 (AI-363): Always assume the object could be mutable in
11698 -- the dereferenced case, since the access value might denote an
11699 -- unconstrained aliased object, whereas in Ada 95 the designated
11700 -- object is guaranteed to be constrained. A worst-case assumption
11701 -- has to apply in Ada 2005 because we can't tell at compile
11702 -- time whether the object is "constrained by its initial value"
11703 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are semantic
11704 -- rules (these rules are acknowledged to need fixing).
11705
11706 if Ada_Version < Ada_2005 then
11707 if Is_Access_Type (Prefix_Type)
11708 or else Nkind (P) = N_Explicit_Dereference
11709 then
11710 return False;
11711 end if;
11712
11713 else pragma Assert (Ada_Version >= Ada_2005);
11714 if Is_Access_Type (Prefix_Type) then
11715
11716 -- If the access type is pool-specific, and there is no
11717 -- constrained partial view of the designated type, then the
11718 -- designated object is known to be constrained.
11719
11720 if Ekind (Prefix_Type) = E_Access_Type
11721 and then not Object_Type_Has_Constrained_Partial_View
11722 (Typ => Designated_Type (Prefix_Type),
11723 Scop => Current_Scope)
11724 then
11725 return False;
11726
11727 -- Otherwise (general access type, or there is a constrained
11728 -- partial view of the designated type), we need to check
11729 -- based on the designated type.
11730
11731 else
11732 Prefix_Type := Designated_Type (Prefix_Type);
11733 end if;
11734 end if;
11735 end if;
11736
11737 Comp :=
11738 Original_Record_Component (Entity (Selector_Name (Object)));
11739
11740 -- As per AI-0017, the renaming is illegal in a generic body, even
11741 -- if the subtype is indefinite.
11742
11743 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
11744
11745 if not Is_Constrained (Prefix_Type)
11746 and then (Is_Definite_Subtype (Prefix_Type)
11747 or else
11748 (Is_Generic_Type (Prefix_Type)
11749 and then Ekind (Current_Scope) = E_Generic_Package
11750 and then In_Package_Body (Current_Scope)))
11751
11752 and then (Is_Declared_Within_Variant (Comp)
11753 or else Has_Discriminant_Dependent_Constraint (Comp))
11754 and then (not P_Aliased or else Ada_Version >= Ada_2005)
11755 then
11756 return True;
11757
11758 -- If the prefix is of an access type at this point, then we want
11759 -- to return False, rather than calling this function recursively
11760 -- on the access object (which itself might be a discriminant-
11761 -- dependent component of some other object, but that isn't
11762 -- relevant to checking the object passed to us). This avoids
11763 -- issuing wrong errors when compiling with -gnatc, where there
11764 -- can be implicit dereferences that have not been expanded.
11765
11766 elsif Is_Access_Type (Etype (Prefix (Object))) then
11767 return False;
11768
11769 else
11770 return
11771 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
11772 end if;
11773
11774 elsif Nkind (Object) = N_Indexed_Component
11775 or else Nkind (Object) = N_Slice
11776 then
11777 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
11778
11779 -- A type conversion that Is_Variable is a view conversion:
11780 -- go back to the denoted object.
11781
11782 elsif Nkind (Object) = N_Type_Conversion then
11783 return
11784 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
11785 end if;
11786 end if;
11787
11788 return False;
11789 end Is_Dependent_Component_Of_Mutable_Object;
11790
11791 ---------------------
11792 -- Is_Dereferenced --
11793 ---------------------
11794
11795 function Is_Dereferenced (N : Node_Id) return Boolean is
11796 P : constant Node_Id := Parent (N);
11797 begin
11798 return Nkind_In (P, N_Selected_Component,
11799 N_Explicit_Dereference,
11800 N_Indexed_Component,
11801 N_Slice)
11802 and then Prefix (P) = N;
11803 end Is_Dereferenced;
11804
11805 ----------------------
11806 -- Is_Descendent_Of --
11807 ----------------------
11808
11809 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
11810 T : Entity_Id;
11811 Etyp : Entity_Id;
11812
11813 begin
11814 pragma Assert (Nkind (T1) in N_Entity);
11815 pragma Assert (Nkind (T2) in N_Entity);
11816
11817 T := Base_Type (T1);
11818
11819 -- Immediate return if the types match
11820
11821 if T = T2 then
11822 return True;
11823
11824 -- Comment needed here ???
11825
11826 elsif Ekind (T) = E_Class_Wide_Type then
11827 return Etype (T) = T2;
11828
11829 -- All other cases
11830
11831 else
11832 loop
11833 Etyp := Etype (T);
11834
11835 -- Done if we found the type we are looking for
11836
11837 if Etyp = T2 then
11838 return True;
11839
11840 -- Done if no more derivations to check
11841
11842 elsif T = T1
11843 or else T = Etyp
11844 then
11845 return False;
11846
11847 -- Following test catches error cases resulting from prev errors
11848
11849 elsif No (Etyp) then
11850 return False;
11851
11852 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
11853 return False;
11854
11855 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
11856 return False;
11857 end if;
11858
11859 T := Base_Type (Etyp);
11860 end loop;
11861 end if;
11862 end Is_Descendent_Of;
11863
11864 ----------------------------------------
11865 -- Is_Descendant_Of_Suspension_Object --
11866 ----------------------------------------
11867
11868 function Is_Descendant_Of_Suspension_Object
11869 (Typ : Entity_Id) return Boolean
11870 is
11871 Cur_Typ : Entity_Id;
11872 Par_Typ : Entity_Id;
11873
11874 begin
11875 -- Climb the type derivation chain checking each parent type against
11876 -- Suspension_Object.
11877
11878 Cur_Typ := Base_Type (Typ);
11879 while Present (Cur_Typ) loop
11880 Par_Typ := Etype (Cur_Typ);
11881
11882 -- The current type is a match
11883
11884 if Is_Suspension_Object (Cur_Typ) then
11885 return True;
11886
11887 -- Stop the traversal once the root of the derivation chain has been
11888 -- reached. In that case the current type is its own base type.
11889
11890 elsif Cur_Typ = Par_Typ then
11891 exit;
11892 end if;
11893
11894 Cur_Typ := Base_Type (Par_Typ);
11895 end loop;
11896
11897 return False;
11898 end Is_Descendant_Of_Suspension_Object;
11899
11900 ---------------------------------------------
11901 -- Is_Double_Precision_Floating_Point_Type --
11902 ---------------------------------------------
11903
11904 function Is_Double_Precision_Floating_Point_Type
11905 (E : Entity_Id) return Boolean is
11906 begin
11907 return Is_Floating_Point_Type (E)
11908 and then Machine_Radix_Value (E) = Uint_2
11909 and then Machine_Mantissa_Value (E) = UI_From_Int (53)
11910 and then Machine_Emax_Value (E) = Uint_2 ** Uint_10
11911 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_10);
11912 end Is_Double_Precision_Floating_Point_Type;
11913
11914 -----------------------------
11915 -- Is_Effectively_Volatile --
11916 -----------------------------
11917
11918 function Is_Effectively_Volatile (Id : Entity_Id) return Boolean is
11919 begin
11920 if Is_Type (Id) then
11921
11922 -- An arbitrary type is effectively volatile when it is subject to
11923 -- pragma Atomic or Volatile.
11924
11925 if Is_Volatile (Id) then
11926 return True;
11927
11928 -- An array type is effectively volatile when it is subject to pragma
11929 -- Atomic_Components or Volatile_Components or its compolent type is
11930 -- effectively volatile.
11931
11932 elsif Is_Array_Type (Id) then
11933 return
11934 Has_Volatile_Components (Id)
11935 or else
11936 Is_Effectively_Volatile (Component_Type (Base_Type (Id)));
11937
11938 -- A protected type is always volatile
11939
11940 elsif Is_Protected_Type (Id) then
11941 return True;
11942
11943 -- A descendant of Ada.Synchronous_Task_Control.Suspension_Object is
11944 -- automatically volatile.
11945
11946 elsif Is_Descendant_Of_Suspension_Object (Id) then
11947 return True;
11948
11949 -- Otherwise the type is not effectively volatile
11950
11951 else
11952 return False;
11953 end if;
11954
11955 -- Otherwise Id denotes an object
11956
11957 else
11958 return
11959 Is_Volatile (Id)
11960 or else Has_Volatile_Components (Id)
11961 or else Is_Effectively_Volatile (Etype (Id));
11962 end if;
11963 end Is_Effectively_Volatile;
11964
11965 ------------------------------------
11966 -- Is_Effectively_Volatile_Object --
11967 ------------------------------------
11968
11969 function Is_Effectively_Volatile_Object (N : Node_Id) return Boolean is
11970 begin
11971 if Is_Entity_Name (N) then
11972 return Is_Effectively_Volatile (Entity (N));
11973
11974 elsif Nkind (N) = N_Expanded_Name then
11975 return Is_Effectively_Volatile (Entity (N));
11976
11977 elsif Nkind (N) = N_Indexed_Component then
11978 return Is_Effectively_Volatile_Object (Prefix (N));
11979
11980 elsif Nkind (N) = N_Selected_Component then
11981 return
11982 Is_Effectively_Volatile_Object (Prefix (N))
11983 or else
11984 Is_Effectively_Volatile_Object (Selector_Name (N));
11985
11986 else
11987 return False;
11988 end if;
11989 end Is_Effectively_Volatile_Object;
11990
11991 -------------------
11992 -- Is_Entry_Body --
11993 -------------------
11994
11995 function Is_Entry_Body (Id : Entity_Id) return Boolean is
11996 begin
11997 return
11998 Ekind_In (Id, E_Entry, E_Entry_Family)
11999 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Body;
12000 end Is_Entry_Body;
12001
12002 --------------------------
12003 -- Is_Entry_Declaration --
12004 --------------------------
12005
12006 function Is_Entry_Declaration (Id : Entity_Id) return Boolean is
12007 begin
12008 return
12009 Ekind_In (Id, E_Entry, E_Entry_Family)
12010 and then Nkind (Unit_Declaration_Node (Id)) = N_Entry_Declaration;
12011 end Is_Entry_Declaration;
12012
12013 ----------------------------
12014 -- Is_Expression_Function --
12015 ----------------------------
12016
12017 function Is_Expression_Function (Subp : Entity_Id) return Boolean is
12018 begin
12019 if Ekind_In (Subp, E_Function, E_Subprogram_Body) then
12020 return
12021 Nkind (Original_Node (Unit_Declaration_Node (Subp))) =
12022 N_Expression_Function;
12023 else
12024 return False;
12025 end if;
12026 end Is_Expression_Function;
12027
12028 ------------------------------------------
12029 -- Is_Expression_Function_Or_Completion --
12030 ------------------------------------------
12031
12032 function Is_Expression_Function_Or_Completion
12033 (Subp : Entity_Id) return Boolean
12034 is
12035 Subp_Decl : Node_Id;
12036
12037 begin
12038 if Ekind (Subp) = E_Function then
12039 Subp_Decl := Unit_Declaration_Node (Subp);
12040
12041 -- The function declaration is either an expression function or is
12042 -- completed by an expression function body.
12043
12044 return
12045 Is_Expression_Function (Subp)
12046 or else (Nkind (Subp_Decl) = N_Subprogram_Declaration
12047 and then Present (Corresponding_Body (Subp_Decl))
12048 and then Is_Expression_Function
12049 (Corresponding_Body (Subp_Decl)));
12050
12051 elsif Ekind (Subp) = E_Subprogram_Body then
12052 return Is_Expression_Function (Subp);
12053
12054 else
12055 return False;
12056 end if;
12057 end Is_Expression_Function_Or_Completion;
12058
12059 -----------------------
12060 -- Is_EVF_Expression --
12061 -----------------------
12062
12063 function Is_EVF_Expression (N : Node_Id) return Boolean is
12064 Orig_N : constant Node_Id := Original_Node (N);
12065 Alt : Node_Id;
12066 Expr : Node_Id;
12067 Id : Entity_Id;
12068
12069 begin
12070 -- Detect a reference to a formal parameter of a specific tagged type
12071 -- whose related subprogram is subject to pragma Expresions_Visible with
12072 -- value "False".
12073
12074 if Is_Entity_Name (N) and then Present (Entity (N)) then
12075 Id := Entity (N);
12076
12077 return
12078 Is_Formal (Id)
12079 and then Is_Specific_Tagged_Type (Etype (Id))
12080 and then Extensions_Visible_Status (Id) =
12081 Extensions_Visible_False;
12082
12083 -- A case expression is an EVF expression when it contains at least one
12084 -- EVF dependent_expression. Note that a case expression may have been
12085 -- expanded, hence the use of Original_Node.
12086
12087 elsif Nkind (Orig_N) = N_Case_Expression then
12088 Alt := First (Alternatives (Orig_N));
12089 while Present (Alt) loop
12090 if Is_EVF_Expression (Expression (Alt)) then
12091 return True;
12092 end if;
12093
12094 Next (Alt);
12095 end loop;
12096
12097 -- An if expression is an EVF expression when it contains at least one
12098 -- EVF dependent_expression. Note that an if expression may have been
12099 -- expanded, hence the use of Original_Node.
12100
12101 elsif Nkind (Orig_N) = N_If_Expression then
12102 Expr := Next (First (Expressions (Orig_N)));
12103 while Present (Expr) loop
12104 if Is_EVF_Expression (Expr) then
12105 return True;
12106 end if;
12107
12108 Next (Expr);
12109 end loop;
12110
12111 -- A qualified expression or a type conversion is an EVF expression when
12112 -- its operand is an EVF expression.
12113
12114 elsif Nkind_In (N, N_Qualified_Expression,
12115 N_Unchecked_Type_Conversion,
12116 N_Type_Conversion)
12117 then
12118 return Is_EVF_Expression (Expression (N));
12119
12120 -- Attributes 'Loop_Entry, 'Old, and 'Update are EVF expressions when
12121 -- their prefix denotes an EVF expression.
12122
12123 elsif Nkind (N) = N_Attribute_Reference
12124 and then Nam_In (Attribute_Name (N), Name_Loop_Entry,
12125 Name_Old,
12126 Name_Update)
12127 then
12128 return Is_EVF_Expression (Prefix (N));
12129 end if;
12130
12131 return False;
12132 end Is_EVF_Expression;
12133
12134 --------------
12135 -- Is_False --
12136 --------------
12137
12138 function Is_False (U : Uint) return Boolean is
12139 begin
12140 return (U = 0);
12141 end Is_False;
12142
12143 ---------------------------
12144 -- Is_Fixed_Model_Number --
12145 ---------------------------
12146
12147 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
12148 S : constant Ureal := Small_Value (T);
12149 M : Urealp.Save_Mark;
12150 R : Boolean;
12151 begin
12152 M := Urealp.Mark;
12153 R := (U = UR_Trunc (U / S) * S);
12154 Urealp.Release (M);
12155 return R;
12156 end Is_Fixed_Model_Number;
12157
12158 -------------------------------
12159 -- Is_Fully_Initialized_Type --
12160 -------------------------------
12161
12162 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
12163 begin
12164 -- Scalar types
12165
12166 if Is_Scalar_Type (Typ) then
12167
12168 -- A scalar type with an aspect Default_Value is fully initialized
12169
12170 -- Note: Iniitalize/Normalize_Scalars also ensure full initialization
12171 -- of a scalar type, but we don't take that into account here, since
12172 -- we don't want these to affect warnings.
12173
12174 return Has_Default_Aspect (Typ);
12175
12176 elsif Is_Access_Type (Typ) then
12177 return True;
12178
12179 elsif Is_Array_Type (Typ) then
12180 if Is_Fully_Initialized_Type (Component_Type (Typ))
12181 or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
12182 then
12183 return True;
12184 end if;
12185
12186 -- An interesting case, if we have a constrained type one of whose
12187 -- bounds is known to be null, then there are no elements to be
12188 -- initialized, so all the elements are initialized.
12189
12190 if Is_Constrained (Typ) then
12191 declare
12192 Indx : Node_Id;
12193 Indx_Typ : Entity_Id;
12194 Lbd, Hbd : Node_Id;
12195
12196 begin
12197 Indx := First_Index (Typ);
12198 while Present (Indx) loop
12199 if Etype (Indx) = Any_Type then
12200 return False;
12201
12202 -- If index is a range, use directly
12203
12204 elsif Nkind (Indx) = N_Range then
12205 Lbd := Low_Bound (Indx);
12206 Hbd := High_Bound (Indx);
12207
12208 else
12209 Indx_Typ := Etype (Indx);
12210
12211 if Is_Private_Type (Indx_Typ) then
12212 Indx_Typ := Full_View (Indx_Typ);
12213 end if;
12214
12215 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
12216 return False;
12217 else
12218 Lbd := Type_Low_Bound (Indx_Typ);
12219 Hbd := Type_High_Bound (Indx_Typ);
12220 end if;
12221 end if;
12222
12223 if Compile_Time_Known_Value (Lbd)
12224 and then
12225 Compile_Time_Known_Value (Hbd)
12226 then
12227 if Expr_Value (Hbd) < Expr_Value (Lbd) then
12228 return True;
12229 end if;
12230 end if;
12231
12232 Next_Index (Indx);
12233 end loop;
12234 end;
12235 end if;
12236
12237 -- If no null indexes, then type is not fully initialized
12238
12239 return False;
12240
12241 -- Record types
12242
12243 elsif Is_Record_Type (Typ) then
12244 if Has_Discriminants (Typ)
12245 and then
12246 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
12247 and then Is_Fully_Initialized_Variant (Typ)
12248 then
12249 return True;
12250 end if;
12251
12252 -- We consider bounded string types to be fully initialized, because
12253 -- otherwise we get false alarms when the Data component is not
12254 -- default-initialized.
12255
12256 if Is_Bounded_String (Typ) then
12257 return True;
12258 end if;
12259
12260 -- Controlled records are considered to be fully initialized if
12261 -- there is a user defined Initialize routine. This may not be
12262 -- entirely correct, but as the spec notes, we are guessing here
12263 -- what is best from the point of view of issuing warnings.
12264
12265 if Is_Controlled (Typ) then
12266 declare
12267 Utyp : constant Entity_Id := Underlying_Type (Typ);
12268
12269 begin
12270 if Present (Utyp) then
12271 declare
12272 Init : constant Entity_Id :=
12273 (Find_Optional_Prim_Op
12274 (Underlying_Type (Typ), Name_Initialize));
12275
12276 begin
12277 if Present (Init)
12278 and then Comes_From_Source (Init)
12279 and then not
12280 Is_Predefined_File_Name
12281 (File_Name (Get_Source_File_Index (Sloc (Init))))
12282 then
12283 return True;
12284
12285 elsif Has_Null_Extension (Typ)
12286 and then
12287 Is_Fully_Initialized_Type
12288 (Etype (Base_Type (Typ)))
12289 then
12290 return True;
12291 end if;
12292 end;
12293 end if;
12294 end;
12295 end if;
12296
12297 -- Otherwise see if all record components are initialized
12298
12299 declare
12300 Ent : Entity_Id;
12301
12302 begin
12303 Ent := First_Entity (Typ);
12304 while Present (Ent) loop
12305 if Ekind (Ent) = E_Component
12306 and then (No (Parent (Ent))
12307 or else No (Expression (Parent (Ent))))
12308 and then not Is_Fully_Initialized_Type (Etype (Ent))
12309
12310 -- Special VM case for tag components, which need to be
12311 -- defined in this case, but are never initialized as VMs
12312 -- are using other dispatching mechanisms. Ignore this
12313 -- uninitialized case. Note that this applies both to the
12314 -- uTag entry and the main vtable pointer (CPP_Class case).
12315
12316 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
12317 then
12318 return False;
12319 end if;
12320
12321 Next_Entity (Ent);
12322 end loop;
12323 end;
12324
12325 -- No uninitialized components, so type is fully initialized.
12326 -- Note that this catches the case of no components as well.
12327
12328 return True;
12329
12330 elsif Is_Concurrent_Type (Typ) then
12331 return True;
12332
12333 elsif Is_Private_Type (Typ) then
12334 declare
12335 U : constant Entity_Id := Underlying_Type (Typ);
12336
12337 begin
12338 if No (U) then
12339 return False;
12340 else
12341 return Is_Fully_Initialized_Type (U);
12342 end if;
12343 end;
12344
12345 else
12346 return False;
12347 end if;
12348 end Is_Fully_Initialized_Type;
12349
12350 ----------------------------------
12351 -- Is_Fully_Initialized_Variant --
12352 ----------------------------------
12353
12354 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
12355 Loc : constant Source_Ptr := Sloc (Typ);
12356 Constraints : constant List_Id := New_List;
12357 Components : constant Elist_Id := New_Elmt_List;
12358 Comp_Elmt : Elmt_Id;
12359 Comp_Id : Node_Id;
12360 Comp_List : Node_Id;
12361 Discr : Entity_Id;
12362 Discr_Val : Node_Id;
12363
12364 Report_Errors : Boolean;
12365 pragma Warnings (Off, Report_Errors);
12366
12367 begin
12368 if Serious_Errors_Detected > 0 then
12369 return False;
12370 end if;
12371
12372 if Is_Record_Type (Typ)
12373 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
12374 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
12375 then
12376 Comp_List := Component_List (Type_Definition (Parent (Typ)));
12377
12378 Discr := First_Discriminant (Typ);
12379 while Present (Discr) loop
12380 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
12381 Discr_Val := Expression (Parent (Discr));
12382
12383 if Present (Discr_Val)
12384 and then Is_OK_Static_Expression (Discr_Val)
12385 then
12386 Append_To (Constraints,
12387 Make_Component_Association (Loc,
12388 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
12389 Expression => New_Copy (Discr_Val)));
12390 else
12391 return False;
12392 end if;
12393 else
12394 return False;
12395 end if;
12396
12397 Next_Discriminant (Discr);
12398 end loop;
12399
12400 Gather_Components
12401 (Typ => Typ,
12402 Comp_List => Comp_List,
12403 Governed_By => Constraints,
12404 Into => Components,
12405 Report_Errors => Report_Errors);
12406
12407 -- Check that each component present is fully initialized
12408
12409 Comp_Elmt := First_Elmt (Components);
12410 while Present (Comp_Elmt) loop
12411 Comp_Id := Node (Comp_Elmt);
12412
12413 if Ekind (Comp_Id) = E_Component
12414 and then (No (Parent (Comp_Id))
12415 or else No (Expression (Parent (Comp_Id))))
12416 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
12417 then
12418 return False;
12419 end if;
12420
12421 Next_Elmt (Comp_Elmt);
12422 end loop;
12423
12424 return True;
12425
12426 elsif Is_Private_Type (Typ) then
12427 declare
12428 U : constant Entity_Id := Underlying_Type (Typ);
12429
12430 begin
12431 if No (U) then
12432 return False;
12433 else
12434 return Is_Fully_Initialized_Variant (U);
12435 end if;
12436 end;
12437
12438 else
12439 return False;
12440 end if;
12441 end Is_Fully_Initialized_Variant;
12442
12443 ------------------------------------
12444 -- Is_Generic_Declaration_Or_Body --
12445 ------------------------------------
12446
12447 function Is_Generic_Declaration_Or_Body (Decl : Node_Id) return Boolean is
12448 Spec_Decl : Node_Id;
12449
12450 begin
12451 -- Package/subprogram body
12452
12453 if Nkind_In (Decl, N_Package_Body, N_Subprogram_Body)
12454 and then Present (Corresponding_Spec (Decl))
12455 then
12456 Spec_Decl := Unit_Declaration_Node (Corresponding_Spec (Decl));
12457
12458 -- Package/subprogram body stub
12459
12460 elsif Nkind_In (Decl, N_Package_Body_Stub, N_Subprogram_Body_Stub)
12461 and then Present (Corresponding_Spec_Of_Stub (Decl))
12462 then
12463 Spec_Decl :=
12464 Unit_Declaration_Node (Corresponding_Spec_Of_Stub (Decl));
12465
12466 -- All other cases
12467
12468 else
12469 Spec_Decl := Decl;
12470 end if;
12471
12472 -- Rather than inspecting the defining entity of the spec declaration,
12473 -- look at its Nkind. This takes care of the case where the analysis of
12474 -- a generic body modifies the Ekind of its spec to allow for recursive
12475 -- calls.
12476
12477 return
12478 Nkind_In (Spec_Decl, N_Generic_Package_Declaration,
12479 N_Generic_Subprogram_Declaration);
12480 end Is_Generic_Declaration_Or_Body;
12481
12482 ----------------------------
12483 -- Is_Inherited_Operation --
12484 ----------------------------
12485
12486 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
12487 pragma Assert (Is_Overloadable (E));
12488 Kind : constant Node_Kind := Nkind (Parent (E));
12489 begin
12490 return Kind = N_Full_Type_Declaration
12491 or else Kind = N_Private_Extension_Declaration
12492 or else Kind = N_Subtype_Declaration
12493 or else (Ekind (E) = E_Enumeration_Literal
12494 and then Is_Derived_Type (Etype (E)));
12495 end Is_Inherited_Operation;
12496
12497 -------------------------------------
12498 -- Is_Inherited_Operation_For_Type --
12499 -------------------------------------
12500
12501 function Is_Inherited_Operation_For_Type
12502 (E : Entity_Id;
12503 Typ : Entity_Id) return Boolean
12504 is
12505 begin
12506 -- Check that the operation has been created by the type declaration
12507
12508 return Is_Inherited_Operation (E)
12509 and then Defining_Identifier (Parent (E)) = Typ;
12510 end Is_Inherited_Operation_For_Type;
12511
12512 -----------------
12513 -- Is_Iterator --
12514 -----------------
12515
12516 function Is_Iterator (Typ : Entity_Id) return Boolean is
12517 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean;
12518 -- Determine whether type Iter_Typ is a predefined forward or reversible
12519 -- iterator.
12520
12521 ----------------------
12522 -- Denotes_Iterator --
12523 ----------------------
12524
12525 function Denotes_Iterator (Iter_Typ : Entity_Id) return Boolean is
12526 begin
12527 return
12528 Nam_In (Chars (Iter_Typ), Name_Forward_Iterator,
12529 Name_Reversible_Iterator)
12530 and then Is_Predefined_File_Name
12531 (Unit_File_Name (Get_Source_Unit (Iter_Typ)));
12532 end Denotes_Iterator;
12533
12534 -- Local variables
12535
12536 Iface_Elmt : Elmt_Id;
12537 Ifaces : Elist_Id;
12538
12539 -- Start of processing for Is_Iterator
12540
12541 begin
12542 -- The type may be a subtype of a descendant of the proper instance of
12543 -- the predefined interface type, so we must use the root type of the
12544 -- given type. The same is done for Is_Reversible_Iterator.
12545
12546 if Is_Class_Wide_Type (Typ)
12547 and then Denotes_Iterator (Root_Type (Typ))
12548 then
12549 return True;
12550
12551 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
12552 return False;
12553
12554 elsif Present (Find_Value_Of_Aspect (Typ, Aspect_Iterable)) then
12555 return True;
12556
12557 else
12558 Collect_Interfaces (Typ, Ifaces);
12559
12560 Iface_Elmt := First_Elmt (Ifaces);
12561 while Present (Iface_Elmt) loop
12562 if Denotes_Iterator (Node (Iface_Elmt)) then
12563 return True;
12564 end if;
12565
12566 Next_Elmt (Iface_Elmt);
12567 end loop;
12568
12569 return False;
12570 end if;
12571 end Is_Iterator;
12572
12573 ----------------------------
12574 -- Is_Iterator_Over_Array --
12575 ----------------------------
12576
12577 function Is_Iterator_Over_Array (N : Node_Id) return Boolean is
12578 Container : constant Node_Id := Name (N);
12579 Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
12580 begin
12581 return Is_Array_Type (Container_Typ);
12582 end Is_Iterator_Over_Array;
12583
12584 ------------
12585 -- Is_LHS --
12586 ------------
12587
12588 -- We seem to have a lot of overlapping functions that do similar things
12589 -- (testing for left hand sides or lvalues???).
12590
12591 function Is_LHS (N : Node_Id) return Is_LHS_Result is
12592 P : constant Node_Id := Parent (N);
12593
12594 begin
12595 -- Return True if we are the left hand side of an assignment statement
12596
12597 if Nkind (P) = N_Assignment_Statement then
12598 if Name (P) = N then
12599 return Yes;
12600 else
12601 return No;
12602 end if;
12603
12604 -- Case of prefix of indexed or selected component or slice
12605
12606 elsif Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
12607 and then N = Prefix (P)
12608 then
12609 -- Here we have the case where the parent P is N.Q or N(Q .. R).
12610 -- If P is an LHS, then N is also effectively an LHS, but there
12611 -- is an important exception. If N is of an access type, then
12612 -- what we really have is N.all.Q (or N.all(Q .. R)). In either
12613 -- case this makes N.all a left hand side but not N itself.
12614
12615 -- If we don't know the type yet, this is the case where we return
12616 -- Unknown, since the answer depends on the type which is unknown.
12617
12618 if No (Etype (N)) then
12619 return Unknown;
12620
12621 -- We have an Etype set, so we can check it
12622
12623 elsif Is_Access_Type (Etype (N)) then
12624 return No;
12625
12626 -- OK, not access type case, so just test whole expression
12627
12628 else
12629 return Is_LHS (P);
12630 end if;
12631
12632 -- All other cases are not left hand sides
12633
12634 else
12635 return No;
12636 end if;
12637 end Is_LHS;
12638
12639 -----------------------------
12640 -- Is_Library_Level_Entity --
12641 -----------------------------
12642
12643 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
12644 begin
12645 -- The following is a small optimization, and it also properly handles
12646 -- discriminals, which in task bodies might appear in expressions before
12647 -- the corresponding procedure has been created, and which therefore do
12648 -- not have an assigned scope.
12649
12650 if Is_Formal (E) then
12651 return False;
12652 end if;
12653
12654 -- Normal test is simply that the enclosing dynamic scope is Standard
12655
12656 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
12657 end Is_Library_Level_Entity;
12658
12659 --------------------------------
12660 -- Is_Limited_Class_Wide_Type --
12661 --------------------------------
12662
12663 function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
12664 begin
12665 return
12666 Is_Class_Wide_Type (Typ)
12667 and then (Is_Limited_Type (Typ) or else From_Limited_With (Typ));
12668 end Is_Limited_Class_Wide_Type;
12669
12670 ---------------------------------
12671 -- Is_Local_Variable_Reference --
12672 ---------------------------------
12673
12674 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
12675 begin
12676 if not Is_Entity_Name (Expr) then
12677 return False;
12678
12679 else
12680 declare
12681 Ent : constant Entity_Id := Entity (Expr);
12682 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
12683 begin
12684 if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
12685 return False;
12686 else
12687 return Present (Sub) and then Sub = Current_Subprogram;
12688 end if;
12689 end;
12690 end if;
12691 end Is_Local_Variable_Reference;
12692
12693 -----------------------------------------------
12694 -- Is_Nontrivial_Default_Init_Cond_Procedure --
12695 -----------------------------------------------
12696
12697 function Is_Nontrivial_Default_Init_Cond_Procedure
12698 (Id : Entity_Id) return Boolean
12699 is
12700 Body_Decl : Node_Id;
12701 Stmt : Node_Id;
12702
12703 begin
12704 if Ekind (Id) = E_Procedure
12705 and then Is_Default_Init_Cond_Procedure (Id)
12706 then
12707 Body_Decl :=
12708 Unit_Declaration_Node
12709 (Corresponding_Body (Unit_Declaration_Node (Id)));
12710
12711 -- The body of the Default_Initial_Condition procedure must contain
12712 -- at least one statement, otherwise the generation of the subprogram
12713 -- body failed.
12714
12715 pragma Assert (Present (Handled_Statement_Sequence (Body_Decl)));
12716
12717 -- To qualify as nontrivial, the first statement of the procedure
12718 -- must be a check in the form of an if statement. If the original
12719 -- Default_Initial_Condition expression was folded, then the first
12720 -- statement is not a check.
12721
12722 Stmt := First (Statements (Handled_Statement_Sequence (Body_Decl)));
12723
12724 return
12725 Nkind (Stmt) = N_If_Statement
12726 and then Nkind (Original_Node (Stmt)) = N_Pragma;
12727 end if;
12728
12729 return False;
12730 end Is_Nontrivial_Default_Init_Cond_Procedure;
12731
12732 -------------------------
12733 -- Is_Object_Reference --
12734 -------------------------
12735
12736 function Is_Object_Reference (N : Node_Id) return Boolean is
12737 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
12738 -- Determine whether N is the name of an internally-generated renaming
12739
12740 --------------------------------------
12741 -- Is_Internally_Generated_Renaming --
12742 --------------------------------------
12743
12744 function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
12745 P : Node_Id;
12746
12747 begin
12748 P := N;
12749 while Present (P) loop
12750 if Nkind (P) = N_Object_Renaming_Declaration then
12751 return not Comes_From_Source (P);
12752 elsif Is_List_Member (P) then
12753 return False;
12754 end if;
12755
12756 P := Parent (P);
12757 end loop;
12758
12759 return False;
12760 end Is_Internally_Generated_Renaming;
12761
12762 -- Start of processing for Is_Object_Reference
12763
12764 begin
12765 if Is_Entity_Name (N) then
12766 return Present (Entity (N)) and then Is_Object (Entity (N));
12767
12768 else
12769 case Nkind (N) is
12770 when N_Indexed_Component | N_Slice =>
12771 return
12772 Is_Object_Reference (Prefix (N))
12773 or else Is_Access_Type (Etype (Prefix (N)));
12774
12775 -- In Ada 95, a function call is a constant object; a procedure
12776 -- call is not.
12777
12778 when N_Function_Call =>
12779 return Etype (N) /= Standard_Void_Type;
12780
12781 -- Attributes 'Input, 'Loop_Entry, 'Old and 'Result produce
12782 -- objects.
12783
12784 when N_Attribute_Reference =>
12785 return
12786 Nam_In (Attribute_Name (N), Name_Input,
12787 Name_Loop_Entry,
12788 Name_Old,
12789 Name_Result);
12790
12791 when N_Selected_Component =>
12792 return
12793 Is_Object_Reference (Selector_Name (N))
12794 and then
12795 (Is_Object_Reference (Prefix (N))
12796 or else Is_Access_Type (Etype (Prefix (N))));
12797
12798 when N_Explicit_Dereference =>
12799 return True;
12800
12801 -- A view conversion of a tagged object is an object reference
12802
12803 when N_Type_Conversion =>
12804 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
12805 and then Is_Tagged_Type (Etype (Expression (N)))
12806 and then Is_Object_Reference (Expression (N));
12807
12808 -- An unchecked type conversion is considered to be an object if
12809 -- the operand is an object (this construction arises only as a
12810 -- result of expansion activities).
12811
12812 when N_Unchecked_Type_Conversion =>
12813 return True;
12814
12815 -- Allow string literals to act as objects as long as they appear
12816 -- in internally-generated renamings. The expansion of iterators
12817 -- may generate such renamings when the range involves a string
12818 -- literal.
12819
12820 when N_String_Literal =>
12821 return Is_Internally_Generated_Renaming (Parent (N));
12822
12823 -- AI05-0003: In Ada 2012 a qualified expression is a name.
12824 -- This allows disambiguation of function calls and the use
12825 -- of aggregates in more contexts.
12826
12827 when N_Qualified_Expression =>
12828 if Ada_Version < Ada_2012 then
12829 return False;
12830 else
12831 return Is_Object_Reference (Expression (N))
12832 or else Nkind (Expression (N)) = N_Aggregate;
12833 end if;
12834
12835 when others =>
12836 return False;
12837 end case;
12838 end if;
12839 end Is_Object_Reference;
12840
12841 -----------------------------------
12842 -- Is_OK_Variable_For_Out_Formal --
12843 -----------------------------------
12844
12845 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
12846 begin
12847 Note_Possible_Modification (AV, Sure => True);
12848
12849 -- We must reject parenthesized variable names. Comes_From_Source is
12850 -- checked because there are currently cases where the compiler violates
12851 -- this rule (e.g. passing a task object to its controlled Initialize
12852 -- routine). This should be properly documented in sinfo???
12853
12854 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
12855 return False;
12856
12857 -- A variable is always allowed
12858
12859 elsif Is_Variable (AV) then
12860 return True;
12861
12862 -- Generalized indexing operations are rewritten as explicit
12863 -- dereferences, and it is only during resolution that we can
12864 -- check whether the context requires an access_to_variable type.
12865
12866 elsif Nkind (AV) = N_Explicit_Dereference
12867 and then Ada_Version >= Ada_2012
12868 and then Nkind (Original_Node (AV)) = N_Indexed_Component
12869 and then Present (Etype (Original_Node (AV)))
12870 and then Has_Implicit_Dereference (Etype (Original_Node (AV)))
12871 then
12872 return not Is_Access_Constant (Etype (Prefix (AV)));
12873
12874 -- Unchecked conversions are allowed only if they come from the
12875 -- generated code, which sometimes uses unchecked conversions for out
12876 -- parameters in cases where code generation is unaffected. We tell
12877 -- source unchecked conversions by seeing if they are rewrites of
12878 -- an original Unchecked_Conversion function call, or of an explicit
12879 -- conversion of a function call or an aggregate (as may happen in the
12880 -- expansion of a packed array aggregate).
12881
12882 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
12883 if Nkind_In (Original_Node (AV), N_Function_Call, N_Aggregate) then
12884 return False;
12885
12886 elsif Comes_From_Source (AV)
12887 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
12888 then
12889 return False;
12890
12891 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
12892 return Is_OK_Variable_For_Out_Formal (Expression (AV));
12893
12894 else
12895 return True;
12896 end if;
12897
12898 -- Normal type conversions are allowed if argument is a variable
12899
12900 elsif Nkind (AV) = N_Type_Conversion then
12901 if Is_Variable (Expression (AV))
12902 and then Paren_Count (Expression (AV)) = 0
12903 then
12904 Note_Possible_Modification (Expression (AV), Sure => True);
12905 return True;
12906
12907 -- We also allow a non-parenthesized expression that raises
12908 -- constraint error if it rewrites what used to be a variable
12909
12910 elsif Raises_Constraint_Error (Expression (AV))
12911 and then Paren_Count (Expression (AV)) = 0
12912 and then Is_Variable (Original_Node (Expression (AV)))
12913 then
12914 return True;
12915
12916 -- Type conversion of something other than a variable
12917
12918 else
12919 return False;
12920 end if;
12921
12922 -- If this node is rewritten, then test the original form, if that is
12923 -- OK, then we consider the rewritten node OK (for example, if the
12924 -- original node is a conversion, then Is_Variable will not be true
12925 -- but we still want to allow the conversion if it converts a variable).
12926
12927 elsif Original_Node (AV) /= AV then
12928
12929 -- In Ada 2012, the explicit dereference may be a rewritten call to a
12930 -- Reference function.
12931
12932 if Ada_Version >= Ada_2012
12933 and then Nkind (Original_Node (AV)) = N_Function_Call
12934 and then
12935 Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
12936 then
12937
12938 -- Check that this is not a constant reference.
12939
12940 return not Is_Access_Constant (Etype (Prefix (AV)));
12941
12942 elsif Has_Implicit_Dereference (Etype (Original_Node (AV))) then
12943 return
12944 not Is_Access_Constant (Etype
12945 (Get_Reference_Discriminant (Etype (Original_Node (AV)))));
12946
12947 else
12948 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
12949 end if;
12950
12951 -- All other non-variables are rejected
12952
12953 else
12954 return False;
12955 end if;
12956 end Is_OK_Variable_For_Out_Formal;
12957
12958 ------------------------------------
12959 -- Is_Package_Contract_Annotation --
12960 ------------------------------------
12961
12962 function Is_Package_Contract_Annotation (Item : Node_Id) return Boolean is
12963 Nam : Name_Id;
12964
12965 begin
12966 if Nkind (Item) = N_Aspect_Specification then
12967 Nam := Chars (Identifier (Item));
12968
12969 else pragma Assert (Nkind (Item) = N_Pragma);
12970 Nam := Pragma_Name (Item);
12971 end if;
12972
12973 return Nam = Name_Abstract_State
12974 or else Nam = Name_Initial_Condition
12975 or else Nam = Name_Initializes
12976 or else Nam = Name_Refined_State;
12977 end Is_Package_Contract_Annotation;
12978
12979 -----------------------------------
12980 -- Is_Partially_Initialized_Type --
12981 -----------------------------------
12982
12983 function Is_Partially_Initialized_Type
12984 (Typ : Entity_Id;
12985 Include_Implicit : Boolean := True) return Boolean
12986 is
12987 begin
12988 if Is_Scalar_Type (Typ) then
12989 return False;
12990
12991 elsif Is_Access_Type (Typ) then
12992 return Include_Implicit;
12993
12994 elsif Is_Array_Type (Typ) then
12995
12996 -- If component type is partially initialized, so is array type
12997
12998 if Is_Partially_Initialized_Type
12999 (Component_Type (Typ), Include_Implicit)
13000 then
13001 return True;
13002
13003 -- Otherwise we are only partially initialized if we are fully
13004 -- initialized (this is the empty array case, no point in us
13005 -- duplicating that code here).
13006
13007 else
13008 return Is_Fully_Initialized_Type (Typ);
13009 end if;
13010
13011 elsif Is_Record_Type (Typ) then
13012
13013 -- A discriminated type is always partially initialized if in
13014 -- all mode
13015
13016 if Has_Discriminants (Typ) and then Include_Implicit then
13017 return True;
13018
13019 -- A tagged type is always partially initialized
13020
13021 elsif Is_Tagged_Type (Typ) then
13022 return True;
13023
13024 -- Case of non-discriminated record
13025
13026 else
13027 declare
13028 Ent : Entity_Id;
13029
13030 Component_Present : Boolean := False;
13031 -- Set True if at least one component is present. If no
13032 -- components are present, then record type is fully
13033 -- initialized (another odd case, like the null array).
13034
13035 begin
13036 -- Loop through components
13037
13038 Ent := First_Entity (Typ);
13039 while Present (Ent) loop
13040 if Ekind (Ent) = E_Component then
13041 Component_Present := True;
13042
13043 -- If a component has an initialization expression then
13044 -- the enclosing record type is partially initialized
13045
13046 if Present (Parent (Ent))
13047 and then Present (Expression (Parent (Ent)))
13048 then
13049 return True;
13050
13051 -- If a component is of a type which is itself partially
13052 -- initialized, then the enclosing record type is also.
13053
13054 elsif Is_Partially_Initialized_Type
13055 (Etype (Ent), Include_Implicit)
13056 then
13057 return True;
13058 end if;
13059 end if;
13060
13061 Next_Entity (Ent);
13062 end loop;
13063
13064 -- No initialized components found. If we found any components
13065 -- they were all uninitialized so the result is false.
13066
13067 if Component_Present then
13068 return False;
13069
13070 -- But if we found no components, then all the components are
13071 -- initialized so we consider the type to be initialized.
13072
13073 else
13074 return True;
13075 end if;
13076 end;
13077 end if;
13078
13079 -- Concurrent types are always fully initialized
13080
13081 elsif Is_Concurrent_Type (Typ) then
13082 return True;
13083
13084 -- For a private type, go to underlying type. If there is no underlying
13085 -- type then just assume this partially initialized. Not clear if this
13086 -- can happen in a non-error case, but no harm in testing for this.
13087
13088 elsif Is_Private_Type (Typ) then
13089 declare
13090 U : constant Entity_Id := Underlying_Type (Typ);
13091 begin
13092 if No (U) then
13093 return True;
13094 else
13095 return Is_Partially_Initialized_Type (U, Include_Implicit);
13096 end if;
13097 end;
13098
13099 -- For any other type (are there any?) assume partially initialized
13100
13101 else
13102 return True;
13103 end if;
13104 end Is_Partially_Initialized_Type;
13105
13106 ------------------------------------
13107 -- Is_Potentially_Persistent_Type --
13108 ------------------------------------
13109
13110 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
13111 Comp : Entity_Id;
13112 Indx : Node_Id;
13113
13114 begin
13115 -- For private type, test corresponding full type
13116
13117 if Is_Private_Type (T) then
13118 return Is_Potentially_Persistent_Type (Full_View (T));
13119
13120 -- Scalar types are potentially persistent
13121
13122 elsif Is_Scalar_Type (T) then
13123 return True;
13124
13125 -- Record type is potentially persistent if not tagged and the types of
13126 -- all it components are potentially persistent, and no component has
13127 -- an initialization expression.
13128
13129 elsif Is_Record_Type (T)
13130 and then not Is_Tagged_Type (T)
13131 and then not Is_Partially_Initialized_Type (T)
13132 then
13133 Comp := First_Component (T);
13134 while Present (Comp) loop
13135 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
13136 return False;
13137 else
13138 Next_Entity (Comp);
13139 end if;
13140 end loop;
13141
13142 return True;
13143
13144 -- Array type is potentially persistent if its component type is
13145 -- potentially persistent and if all its constraints are static.
13146
13147 elsif Is_Array_Type (T) then
13148 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
13149 return False;
13150 end if;
13151
13152 Indx := First_Index (T);
13153 while Present (Indx) loop
13154 if not Is_OK_Static_Subtype (Etype (Indx)) then
13155 return False;
13156 else
13157 Next_Index (Indx);
13158 end if;
13159 end loop;
13160
13161 return True;
13162
13163 -- All other types are not potentially persistent
13164
13165 else
13166 return False;
13167 end if;
13168 end Is_Potentially_Persistent_Type;
13169
13170 --------------------------------
13171 -- Is_Potentially_Unevaluated --
13172 --------------------------------
13173
13174 function Is_Potentially_Unevaluated (N : Node_Id) return Boolean is
13175 Par : Node_Id;
13176 Expr : Node_Id;
13177
13178 begin
13179 Expr := N;
13180 Par := Parent (N);
13181
13182 -- A postcondition whose expression is a short-circuit is broken down
13183 -- into individual aspects for better exception reporting. The original
13184 -- short-circuit expression is rewritten as the second operand, and an
13185 -- occurrence of 'Old in that operand is potentially unevaluated.
13186 -- See Sem_ch13.adb for details of this transformation.
13187
13188 if Nkind (Original_Node (Par)) = N_And_Then then
13189 return True;
13190 end if;
13191
13192 while not Nkind_In (Par, N_If_Expression,
13193 N_Case_Expression,
13194 N_And_Then,
13195 N_Or_Else,
13196 N_In,
13197 N_Not_In)
13198 loop
13199 Expr := Par;
13200 Par := Parent (Par);
13201
13202 -- If the context is not an expression, or if is the result of
13203 -- expansion of an enclosing construct (such as another attribute)
13204 -- the predicate does not apply.
13205
13206 if Nkind (Par) not in N_Subexpr
13207 or else not Comes_From_Source (Par)
13208 then
13209 return False;
13210 end if;
13211 end loop;
13212
13213 if Nkind (Par) = N_If_Expression then
13214 return Is_Elsif (Par) or else Expr /= First (Expressions (Par));
13215
13216 elsif Nkind (Par) = N_Case_Expression then
13217 return Expr /= Expression (Par);
13218
13219 elsif Nkind_In (Par, N_And_Then, N_Or_Else) then
13220 return Expr = Right_Opnd (Par);
13221
13222 elsif Nkind_In (Par, N_In, N_Not_In) then
13223 return Expr /= Left_Opnd (Par);
13224
13225 else
13226 return False;
13227 end if;
13228 end Is_Potentially_Unevaluated;
13229
13230 ---------------------------------
13231 -- Is_Protected_Self_Reference --
13232 ---------------------------------
13233
13234 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
13235
13236 function In_Access_Definition (N : Node_Id) return Boolean;
13237 -- Returns true if N belongs to an access definition
13238
13239 --------------------------
13240 -- In_Access_Definition --
13241 --------------------------
13242
13243 function In_Access_Definition (N : Node_Id) return Boolean is
13244 P : Node_Id;
13245
13246 begin
13247 P := Parent (N);
13248 while Present (P) loop
13249 if Nkind (P) = N_Access_Definition then
13250 return True;
13251 end if;
13252
13253 P := Parent (P);
13254 end loop;
13255
13256 return False;
13257 end In_Access_Definition;
13258
13259 -- Start of processing for Is_Protected_Self_Reference
13260
13261 begin
13262 -- Verify that prefix is analyzed and has the proper form. Note that
13263 -- the attributes Elab_Spec, Elab_Body and Elab_Subp_Body which also
13264 -- produce the address of an entity, do not analyze their prefix
13265 -- because they denote entities that are not necessarily visible.
13266 -- Neither of them can apply to a protected type.
13267
13268 return Ada_Version >= Ada_2005
13269 and then Is_Entity_Name (N)
13270 and then Present (Entity (N))
13271 and then Is_Protected_Type (Entity (N))
13272 and then In_Open_Scopes (Entity (N))
13273 and then not In_Access_Definition (N);
13274 end Is_Protected_Self_Reference;
13275
13276 -----------------------------
13277 -- Is_RCI_Pkg_Spec_Or_Body --
13278 -----------------------------
13279
13280 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
13281
13282 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
13283 -- Return True if the unit of Cunit is an RCI package declaration
13284
13285 ---------------------------
13286 -- Is_RCI_Pkg_Decl_Cunit --
13287 ---------------------------
13288
13289 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
13290 The_Unit : constant Node_Id := Unit (Cunit);
13291
13292 begin
13293 if Nkind (The_Unit) /= N_Package_Declaration then
13294 return False;
13295 end if;
13296
13297 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
13298 end Is_RCI_Pkg_Decl_Cunit;
13299
13300 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
13301
13302 begin
13303 return Is_RCI_Pkg_Decl_Cunit (Cunit)
13304 or else
13305 (Nkind (Unit (Cunit)) = N_Package_Body
13306 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
13307 end Is_RCI_Pkg_Spec_Or_Body;
13308
13309 -----------------------------------------
13310 -- Is_Remote_Access_To_Class_Wide_Type --
13311 -----------------------------------------
13312
13313 function Is_Remote_Access_To_Class_Wide_Type
13314 (E : Entity_Id) return Boolean
13315 is
13316 begin
13317 -- A remote access to class-wide type is a general access to object type
13318 -- declared in the visible part of a Remote_Types or Remote_Call_
13319 -- Interface unit.
13320
13321 return Ekind (E) = E_General_Access_Type
13322 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
13323 end Is_Remote_Access_To_Class_Wide_Type;
13324
13325 -----------------------------------------
13326 -- Is_Remote_Access_To_Subprogram_Type --
13327 -----------------------------------------
13328
13329 function Is_Remote_Access_To_Subprogram_Type
13330 (E : Entity_Id) return Boolean
13331 is
13332 begin
13333 return (Ekind (E) = E_Access_Subprogram_Type
13334 or else (Ekind (E) = E_Record_Type
13335 and then Present (Corresponding_Remote_Type (E))))
13336 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
13337 end Is_Remote_Access_To_Subprogram_Type;
13338
13339 --------------------
13340 -- Is_Remote_Call --
13341 --------------------
13342
13343 function Is_Remote_Call (N : Node_Id) return Boolean is
13344 begin
13345 if Nkind (N) not in N_Subprogram_Call then
13346
13347 -- An entry call cannot be remote
13348
13349 return False;
13350
13351 elsif Nkind (Name (N)) in N_Has_Entity
13352 and then Is_Remote_Call_Interface (Entity (Name (N)))
13353 then
13354 -- A subprogram declared in the spec of a RCI package is remote
13355
13356 return True;
13357
13358 elsif Nkind (Name (N)) = N_Explicit_Dereference
13359 and then Is_Remote_Access_To_Subprogram_Type
13360 (Etype (Prefix (Name (N))))
13361 then
13362 -- The dereference of a RAS is a remote call
13363
13364 return True;
13365
13366 elsif Present (Controlling_Argument (N))
13367 and then Is_Remote_Access_To_Class_Wide_Type
13368 (Etype (Controlling_Argument (N)))
13369 then
13370 -- Any primitive operation call with a controlling argument of
13371 -- a RACW type is a remote call.
13372
13373 return True;
13374 end if;
13375
13376 -- All other calls are local calls
13377
13378 return False;
13379 end Is_Remote_Call;
13380
13381 ----------------------
13382 -- Is_Renamed_Entry --
13383 ----------------------
13384
13385 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
13386 Orig_Node : Node_Id := Empty;
13387 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
13388
13389 function Is_Entry (Nam : Node_Id) return Boolean;
13390 -- Determine whether Nam is an entry. Traverse selectors if there are
13391 -- nested selected components.
13392
13393 --------------
13394 -- Is_Entry --
13395 --------------
13396
13397 function Is_Entry (Nam : Node_Id) return Boolean is
13398 begin
13399 if Nkind (Nam) = N_Selected_Component then
13400 return Is_Entry (Selector_Name (Nam));
13401 end if;
13402
13403 return Ekind (Entity (Nam)) = E_Entry;
13404 end Is_Entry;
13405
13406 -- Start of processing for Is_Renamed_Entry
13407
13408 begin
13409 if Present (Alias (Proc_Nam)) then
13410 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
13411 end if;
13412
13413 -- Look for a rewritten subprogram renaming declaration
13414
13415 if Nkind (Subp_Decl) = N_Subprogram_Declaration
13416 and then Present (Original_Node (Subp_Decl))
13417 then
13418 Orig_Node := Original_Node (Subp_Decl);
13419 end if;
13420
13421 -- The rewritten subprogram is actually an entry
13422
13423 if Present (Orig_Node)
13424 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
13425 and then Is_Entry (Name (Orig_Node))
13426 then
13427 return True;
13428 end if;
13429
13430 return False;
13431 end Is_Renamed_Entry;
13432
13433 -----------------------------
13434 -- Is_Renaming_Declaration --
13435 -----------------------------
13436
13437 function Is_Renaming_Declaration (N : Node_Id) return Boolean is
13438 begin
13439 case Nkind (N) is
13440 when N_Exception_Renaming_Declaration |
13441 N_Generic_Function_Renaming_Declaration |
13442 N_Generic_Package_Renaming_Declaration |
13443 N_Generic_Procedure_Renaming_Declaration |
13444 N_Object_Renaming_Declaration |
13445 N_Package_Renaming_Declaration |
13446 N_Subprogram_Renaming_Declaration =>
13447 return True;
13448
13449 when others =>
13450 return False;
13451 end case;
13452 end Is_Renaming_Declaration;
13453
13454 ----------------------------
13455 -- Is_Reversible_Iterator --
13456 ----------------------------
13457
13458 function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
13459 Ifaces_List : Elist_Id;
13460 Iface_Elmt : Elmt_Id;
13461 Iface : Entity_Id;
13462
13463 begin
13464 if Is_Class_Wide_Type (Typ)
13465 and then Chars (Root_Type (Typ)) = Name_Reversible_Iterator
13466 and then Is_Predefined_File_Name
13467 (Unit_File_Name (Get_Source_Unit (Root_Type (Typ))))
13468 then
13469 return True;
13470
13471 elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
13472 return False;
13473
13474 else
13475 Collect_Interfaces (Typ, Ifaces_List);
13476
13477 Iface_Elmt := First_Elmt (Ifaces_List);
13478 while Present (Iface_Elmt) loop
13479 Iface := Node (Iface_Elmt);
13480 if Chars (Iface) = Name_Reversible_Iterator
13481 and then
13482 Is_Predefined_File_Name
13483 (Unit_File_Name (Get_Source_Unit (Iface)))
13484 then
13485 return True;
13486 end if;
13487
13488 Next_Elmt (Iface_Elmt);
13489 end loop;
13490 end if;
13491
13492 return False;
13493 end Is_Reversible_Iterator;
13494
13495 ----------------------
13496 -- Is_Selector_Name --
13497 ----------------------
13498
13499 function Is_Selector_Name (N : Node_Id) return Boolean is
13500 begin
13501 if not Is_List_Member (N) then
13502 declare
13503 P : constant Node_Id := Parent (N);
13504 begin
13505 return Nkind_In (P, N_Expanded_Name,
13506 N_Generic_Association,
13507 N_Parameter_Association,
13508 N_Selected_Component)
13509 and then Selector_Name (P) = N;
13510 end;
13511
13512 else
13513 declare
13514 L : constant List_Id := List_Containing (N);
13515 P : constant Node_Id := Parent (L);
13516 begin
13517 return (Nkind (P) = N_Discriminant_Association
13518 and then Selector_Names (P) = L)
13519 or else
13520 (Nkind (P) = N_Component_Association
13521 and then Choices (P) = L);
13522 end;
13523 end if;
13524 end Is_Selector_Name;
13525
13526 ---------------------------------
13527 -- Is_Single_Concurrent_Object --
13528 ---------------------------------
13529
13530 function Is_Single_Concurrent_Object (Id : Entity_Id) return Boolean is
13531 begin
13532 return
13533 Is_Single_Protected_Object (Id) or else Is_Single_Task_Object (Id);
13534 end Is_Single_Concurrent_Object;
13535
13536 -------------------------------
13537 -- Is_Single_Concurrent_Type --
13538 -------------------------------
13539
13540 function Is_Single_Concurrent_Type (Id : Entity_Id) return Boolean is
13541 begin
13542 return
13543 Ekind_In (Id, E_Protected_Type, E_Task_Type)
13544 and then Is_Single_Concurrent_Type_Declaration
13545 (Declaration_Node (Id));
13546 end Is_Single_Concurrent_Type;
13547
13548 -------------------------------------------
13549 -- Is_Single_Concurrent_Type_Declaration --
13550 -------------------------------------------
13551
13552 function Is_Single_Concurrent_Type_Declaration
13553 (N : Node_Id) return Boolean
13554 is
13555 begin
13556 return Nkind_In (Original_Node (N), N_Single_Protected_Declaration,
13557 N_Single_Task_Declaration);
13558 end Is_Single_Concurrent_Type_Declaration;
13559
13560 ---------------------------------------------
13561 -- Is_Single_Precision_Floating_Point_Type --
13562 ---------------------------------------------
13563
13564 function Is_Single_Precision_Floating_Point_Type
13565 (E : Entity_Id) return Boolean is
13566 begin
13567 return Is_Floating_Point_Type (E)
13568 and then Machine_Radix_Value (E) = Uint_2
13569 and then Machine_Mantissa_Value (E) = Uint_24
13570 and then Machine_Emax_Value (E) = Uint_2 ** Uint_7
13571 and then Machine_Emin_Value (E) = Uint_3 - (Uint_2 ** Uint_7);
13572 end Is_Single_Precision_Floating_Point_Type;
13573
13574 --------------------------------
13575 -- Is_Single_Protected_Object --
13576 --------------------------------
13577
13578 function Is_Single_Protected_Object (Id : Entity_Id) return Boolean is
13579 begin
13580 return
13581 Ekind (Id) = E_Variable
13582 and then Ekind (Etype (Id)) = E_Protected_Type
13583 and then Is_Single_Concurrent_Type (Etype (Id));
13584 end Is_Single_Protected_Object;
13585
13586 ---------------------------
13587 -- Is_Single_Task_Object --
13588 ---------------------------
13589
13590 function Is_Single_Task_Object (Id : Entity_Id) return Boolean is
13591 begin
13592 return
13593 Ekind (Id) = E_Variable
13594 and then Ekind (Etype (Id)) = E_Task_Type
13595 and then Is_Single_Concurrent_Type (Etype (Id));
13596 end Is_Single_Task_Object;
13597
13598 -------------------------------------
13599 -- Is_SPARK_05_Initialization_Expr --
13600 -------------------------------------
13601
13602 function Is_SPARK_05_Initialization_Expr (N : Node_Id) return Boolean is
13603 Is_Ok : Boolean;
13604 Expr : Node_Id;
13605 Comp_Assn : Node_Id;
13606 Orig_N : constant Node_Id := Original_Node (N);
13607
13608 begin
13609 Is_Ok := True;
13610
13611 if not Comes_From_Source (Orig_N) then
13612 goto Done;
13613 end if;
13614
13615 pragma Assert (Nkind (Orig_N) in N_Subexpr);
13616
13617 case Nkind (Orig_N) is
13618 when N_Character_Literal |
13619 N_Integer_Literal |
13620 N_Real_Literal |
13621 N_String_Literal =>
13622 null;
13623
13624 when N_Identifier |
13625 N_Expanded_Name =>
13626 if Is_Entity_Name (Orig_N)
13627 and then Present (Entity (Orig_N)) -- needed in some cases
13628 then
13629 case Ekind (Entity (Orig_N)) is
13630 when E_Constant |
13631 E_Enumeration_Literal |
13632 E_Named_Integer |
13633 E_Named_Real =>
13634 null;
13635 when others =>
13636 if Is_Type (Entity (Orig_N)) then
13637 null;
13638 else
13639 Is_Ok := False;
13640 end if;
13641 end case;
13642 end if;
13643
13644 when N_Qualified_Expression |
13645 N_Type_Conversion =>
13646 Is_Ok := Is_SPARK_05_Initialization_Expr (Expression (Orig_N));
13647
13648 when N_Unary_Op =>
13649 Is_Ok := Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
13650
13651 when N_Binary_Op |
13652 N_Short_Circuit |
13653 N_Membership_Test =>
13654 Is_Ok := Is_SPARK_05_Initialization_Expr (Left_Opnd (Orig_N))
13655 and then
13656 Is_SPARK_05_Initialization_Expr (Right_Opnd (Orig_N));
13657
13658 when N_Aggregate |
13659 N_Extension_Aggregate =>
13660 if Nkind (Orig_N) = N_Extension_Aggregate then
13661 Is_Ok :=
13662 Is_SPARK_05_Initialization_Expr (Ancestor_Part (Orig_N));
13663 end if;
13664
13665 Expr := First (Expressions (Orig_N));
13666 while Present (Expr) loop
13667 if not Is_SPARK_05_Initialization_Expr (Expr) then
13668 Is_Ok := False;
13669 goto Done;
13670 end if;
13671
13672 Next (Expr);
13673 end loop;
13674
13675 Comp_Assn := First (Component_Associations (Orig_N));
13676 while Present (Comp_Assn) loop
13677 Expr := Expression (Comp_Assn);
13678
13679 -- Note: test for Present here needed for box assocation
13680
13681 if Present (Expr)
13682 and then not Is_SPARK_05_Initialization_Expr (Expr)
13683 then
13684 Is_Ok := False;
13685 goto Done;
13686 end if;
13687
13688 Next (Comp_Assn);
13689 end loop;
13690
13691 when N_Attribute_Reference =>
13692 if Nkind (Prefix (Orig_N)) in N_Subexpr then
13693 Is_Ok := Is_SPARK_05_Initialization_Expr (Prefix (Orig_N));
13694 end if;
13695
13696 Expr := First (Expressions (Orig_N));
13697 while Present (Expr) loop
13698 if not Is_SPARK_05_Initialization_Expr (Expr) then
13699 Is_Ok := False;
13700 goto Done;
13701 end if;
13702
13703 Next (Expr);
13704 end loop;
13705
13706 -- Selected components might be expanded named not yet resolved, so
13707 -- default on the safe side. (Eg on sparklex.ads)
13708
13709 when N_Selected_Component =>
13710 null;
13711
13712 when others =>
13713 Is_Ok := False;
13714 end case;
13715
13716 <<Done>>
13717 return Is_Ok;
13718 end Is_SPARK_05_Initialization_Expr;
13719
13720 ----------------------------------
13721 -- Is_SPARK_05_Object_Reference --
13722 ----------------------------------
13723
13724 function Is_SPARK_05_Object_Reference (N : Node_Id) return Boolean is
13725 begin
13726 if Is_Entity_Name (N) then
13727 return Present (Entity (N))
13728 and then
13729 (Ekind_In (Entity (N), E_Constant, E_Variable)
13730 or else Ekind (Entity (N)) in Formal_Kind);
13731
13732 else
13733 case Nkind (N) is
13734 when N_Selected_Component =>
13735 return Is_SPARK_05_Object_Reference (Prefix (N));
13736
13737 when others =>
13738 return False;
13739 end case;
13740 end if;
13741 end Is_SPARK_05_Object_Reference;
13742
13743 -----------------------------
13744 -- Is_Specific_Tagged_Type --
13745 -----------------------------
13746
13747 function Is_Specific_Tagged_Type (Typ : Entity_Id) return Boolean is
13748 Full_Typ : Entity_Id;
13749
13750 begin
13751 -- Handle private types
13752
13753 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
13754 Full_Typ := Full_View (Typ);
13755 else
13756 Full_Typ := Typ;
13757 end if;
13758
13759 -- A specific tagged type is a non-class-wide tagged type
13760
13761 return Is_Tagged_Type (Full_Typ) and not Is_Class_Wide_Type (Full_Typ);
13762 end Is_Specific_Tagged_Type;
13763
13764 ------------------
13765 -- Is_Statement --
13766 ------------------
13767
13768 function Is_Statement (N : Node_Id) return Boolean is
13769 begin
13770 return
13771 Nkind (N) in N_Statement_Other_Than_Procedure_Call
13772 or else Nkind (N) = N_Procedure_Call_Statement;
13773 end Is_Statement;
13774
13775 ---------------------------------------
13776 -- Is_Subprogram_Contract_Annotation --
13777 ---------------------------------------
13778
13779 function Is_Subprogram_Contract_Annotation
13780 (Item : Node_Id) return Boolean
13781 is
13782 Nam : Name_Id;
13783
13784 begin
13785 if Nkind (Item) = N_Aspect_Specification then
13786 Nam := Chars (Identifier (Item));
13787
13788 else pragma Assert (Nkind (Item) = N_Pragma);
13789 Nam := Pragma_Name (Item);
13790 end if;
13791
13792 return Nam = Name_Contract_Cases
13793 or else Nam = Name_Depends
13794 or else Nam = Name_Extensions_Visible
13795 or else Nam = Name_Global
13796 or else Nam = Name_Post
13797 or else Nam = Name_Post_Class
13798 or else Nam = Name_Postcondition
13799 or else Nam = Name_Pre
13800 or else Nam = Name_Pre_Class
13801 or else Nam = Name_Precondition
13802 or else Nam = Name_Refined_Depends
13803 or else Nam = Name_Refined_Global
13804 or else Nam = Name_Refined_Post
13805 or else Nam = Name_Test_Case;
13806 end Is_Subprogram_Contract_Annotation;
13807
13808 --------------------------------------------------
13809 -- Is_Subprogram_Stub_Without_Prior_Declaration --
13810 --------------------------------------------------
13811
13812 function Is_Subprogram_Stub_Without_Prior_Declaration
13813 (N : Node_Id) return Boolean
13814 is
13815 begin
13816 -- A subprogram stub without prior declaration serves as declaration for
13817 -- the actual subprogram body. As such, it has an attached defining
13818 -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
13819
13820 return Nkind (N) = N_Subprogram_Body_Stub
13821 and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
13822 end Is_Subprogram_Stub_Without_Prior_Declaration;
13823
13824 --------------------------
13825 -- Is_Suspension_Object --
13826 --------------------------
13827
13828 function Is_Suspension_Object (Id : Entity_Id) return Boolean is
13829 begin
13830 -- This approach does an exact name match rather than to rely on
13831 -- RTSfind. Routine Is_Effectively_Volatile is used by clients of the
13832 -- front end at point where all auxiliary tables are locked and any
13833 -- modifications to them are treated as violations. Do not tamper with
13834 -- the tables, instead examine the Chars fields of all the scopes of Id.
13835
13836 return
13837 Chars (Id) = Name_Suspension_Object
13838 and then Present (Scope (Id))
13839 and then Chars (Scope (Id)) = Name_Synchronous_Task_Control
13840 and then Present (Scope (Scope (Id)))
13841 and then Chars (Scope (Scope (Id))) = Name_Ada
13842 and then Present (Scope (Scope (Scope (Id))))
13843 and then Scope (Scope (Scope (Id))) = Standard_Standard;
13844 end Is_Suspension_Object;
13845
13846 ----------------------------
13847 -- Is_Synchronized_Object --
13848 ----------------------------
13849
13850 function Is_Synchronized_Object (Id : Entity_Id) return Boolean is
13851 Prag : Node_Id;
13852
13853 begin
13854 if Is_Object (Id) then
13855
13856 -- The object is synchronized if it is of a type that yields a
13857 -- synchronized object.
13858
13859 if Yields_Synchronized_Object (Etype (Id)) then
13860 return True;
13861
13862 -- The object is synchronized if it is atomic and Async_Writers is
13863 -- enabled.
13864
13865 elsif Is_Atomic (Id) and then Async_Writers_Enabled (Id) then
13866 return True;
13867
13868 -- A constant is a synchronized object by default
13869
13870 elsif Ekind (Id) = E_Constant then
13871 return True;
13872
13873 -- A variable is a synchronized object if it is subject to pragma
13874 -- Constant_After_Elaboration.
13875
13876 elsif Ekind (Id) = E_Variable then
13877 Prag := Get_Pragma (Id, Pragma_Constant_After_Elaboration);
13878
13879 return Present (Prag) and then Is_Enabled_Pragma (Prag);
13880 end if;
13881 end if;
13882
13883 -- Otherwise the input is not an object or it does not qualify as a
13884 -- synchronized object.
13885
13886 return False;
13887 end Is_Synchronized_Object;
13888
13889 ---------------------------------
13890 -- Is_Synchronized_Tagged_Type --
13891 ---------------------------------
13892
13893 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
13894 Kind : constant Entity_Kind := Ekind (Base_Type (E));
13895
13896 begin
13897 -- A task or protected type derived from an interface is a tagged type.
13898 -- Such a tagged type is called a synchronized tagged type, as are
13899 -- synchronized interfaces and private extensions whose declaration
13900 -- includes the reserved word synchronized.
13901
13902 return (Is_Tagged_Type (E)
13903 and then (Kind = E_Task_Type
13904 or else
13905 Kind = E_Protected_Type))
13906 or else
13907 (Is_Interface (E)
13908 and then Is_Synchronized_Interface (E))
13909 or else
13910 (Ekind (E) = E_Record_Type_With_Private
13911 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
13912 and then (Synchronized_Present (Parent (E))
13913 or else Is_Synchronized_Interface (Etype (E))));
13914 end Is_Synchronized_Tagged_Type;
13915
13916 -----------------
13917 -- Is_Transfer --
13918 -----------------
13919
13920 function Is_Transfer (N : Node_Id) return Boolean is
13921 Kind : constant Node_Kind := Nkind (N);
13922
13923 begin
13924 if Kind = N_Simple_Return_Statement
13925 or else
13926 Kind = N_Extended_Return_Statement
13927 or else
13928 Kind = N_Goto_Statement
13929 or else
13930 Kind = N_Raise_Statement
13931 or else
13932 Kind = N_Requeue_Statement
13933 then
13934 return True;
13935
13936 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
13937 and then No (Condition (N))
13938 then
13939 return True;
13940
13941 elsif Kind = N_Procedure_Call_Statement
13942 and then Is_Entity_Name (Name (N))
13943 and then Present (Entity (Name (N)))
13944 and then No_Return (Entity (Name (N)))
13945 then
13946 return True;
13947
13948 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
13949 return True;
13950
13951 else
13952 return False;
13953 end if;
13954 end Is_Transfer;
13955
13956 -------------
13957 -- Is_True --
13958 -------------
13959
13960 function Is_True (U : Uint) return Boolean is
13961 begin
13962 return (U /= 0);
13963 end Is_True;
13964
13965 --------------------------------------
13966 -- Is_Unchecked_Conversion_Instance --
13967 --------------------------------------
13968
13969 function Is_Unchecked_Conversion_Instance (Id : Entity_Id) return Boolean is
13970 Gen_Par : Entity_Id;
13971
13972 begin
13973 -- Look for a function whose generic parent is the predefined intrinsic
13974 -- function Unchecked_Conversion.
13975
13976 if Ekind (Id) = E_Function then
13977 Gen_Par := Generic_Parent (Parent (Id));
13978
13979 return
13980 Present (Gen_Par)
13981 and then Chars (Gen_Par) = Name_Unchecked_Conversion
13982 and then Is_Intrinsic_Subprogram (Gen_Par)
13983 and then Is_Predefined_File_Name
13984 (Unit_File_Name (Get_Source_Unit (Gen_Par)));
13985 end if;
13986
13987 return False;
13988 end Is_Unchecked_Conversion_Instance;
13989
13990 -------------------------------
13991 -- Is_Universal_Numeric_Type --
13992 -------------------------------
13993
13994 function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
13995 begin
13996 return T = Universal_Integer or else T = Universal_Real;
13997 end Is_Universal_Numeric_Type;
13998
13999 ----------------------------
14000 -- Is_Variable_Size_Array --
14001 ----------------------------
14002
14003 function Is_Variable_Size_Array (E : Entity_Id) return Boolean is
14004 Idx : Node_Id;
14005
14006 begin
14007 pragma Assert (Is_Array_Type (E));
14008
14009 -- Check if some index is initialized with a non-constant value
14010
14011 Idx := First_Index (E);
14012 while Present (Idx) loop
14013 if Nkind (Idx) = N_Range then
14014 if not Is_Constant_Bound (Low_Bound (Idx))
14015 or else not Is_Constant_Bound (High_Bound (Idx))
14016 then
14017 return True;
14018 end if;
14019 end if;
14020
14021 Idx := Next_Index (Idx);
14022 end loop;
14023
14024 return False;
14025 end Is_Variable_Size_Array;
14026
14027 -----------------------------
14028 -- Is_Variable_Size_Record --
14029 -----------------------------
14030
14031 function Is_Variable_Size_Record (E : Entity_Id) return Boolean is
14032 Comp : Entity_Id;
14033 Comp_Typ : Entity_Id;
14034
14035 begin
14036 pragma Assert (Is_Record_Type (E));
14037
14038 Comp := First_Entity (E);
14039 while Present (Comp) loop
14040 Comp_Typ := Etype (Comp);
14041
14042 -- Recursive call if the record type has discriminants
14043
14044 if Is_Record_Type (Comp_Typ)
14045 and then Has_Discriminants (Comp_Typ)
14046 and then Is_Variable_Size_Record (Comp_Typ)
14047 then
14048 return True;
14049
14050 elsif Is_Array_Type (Comp_Typ)
14051 and then Is_Variable_Size_Array (Comp_Typ)
14052 then
14053 return True;
14054 end if;
14055
14056 Next_Entity (Comp);
14057 end loop;
14058
14059 return False;
14060 end Is_Variable_Size_Record;
14061
14062 -----------------
14063 -- Is_Variable --
14064 -----------------
14065
14066 function Is_Variable
14067 (N : Node_Id;
14068 Use_Original_Node : Boolean := True) return Boolean
14069 is
14070 Orig_Node : Node_Id;
14071
14072 function In_Protected_Function (E : Entity_Id) return Boolean;
14073 -- Within a protected function, the private components of the enclosing
14074 -- protected type are constants. A function nested within a (protected)
14075 -- procedure is not itself protected. Within the body of a protected
14076 -- function the current instance of the protected type is a constant.
14077
14078 function Is_Variable_Prefix (P : Node_Id) return Boolean;
14079 -- Prefixes can involve implicit dereferences, in which case we must
14080 -- test for the case of a reference of a constant access type, which can
14081 -- can never be a variable.
14082
14083 ---------------------------
14084 -- In_Protected_Function --
14085 ---------------------------
14086
14087 function In_Protected_Function (E : Entity_Id) return Boolean is
14088 Prot : Entity_Id;
14089 S : Entity_Id;
14090
14091 begin
14092 -- E is the current instance of a type
14093
14094 if Is_Type (E) then
14095 Prot := E;
14096
14097 -- E is an object
14098
14099 else
14100 Prot := Scope (E);
14101 end if;
14102
14103 if not Is_Protected_Type (Prot) then
14104 return False;
14105
14106 else
14107 S := Current_Scope;
14108 while Present (S) and then S /= Prot loop
14109 if Ekind (S) = E_Function and then Scope (S) = Prot then
14110 return True;
14111 end if;
14112
14113 S := Scope (S);
14114 end loop;
14115
14116 return False;
14117 end if;
14118 end In_Protected_Function;
14119
14120 ------------------------
14121 -- Is_Variable_Prefix --
14122 ------------------------
14123
14124 function Is_Variable_Prefix (P : Node_Id) return Boolean is
14125 begin
14126 if Is_Access_Type (Etype (P)) then
14127 return not Is_Access_Constant (Root_Type (Etype (P)));
14128
14129 -- For the case of an indexed component whose prefix has a packed
14130 -- array type, the prefix has been rewritten into a type conversion.
14131 -- Determine variable-ness from the converted expression.
14132
14133 elsif Nkind (P) = N_Type_Conversion
14134 and then not Comes_From_Source (P)
14135 and then Is_Array_Type (Etype (P))
14136 and then Is_Packed (Etype (P))
14137 then
14138 return Is_Variable (Expression (P));
14139
14140 else
14141 return Is_Variable (P);
14142 end if;
14143 end Is_Variable_Prefix;
14144
14145 -- Start of processing for Is_Variable
14146
14147 begin
14148 -- Special check, allow x'Deref(expr) as a variable
14149
14150 if Nkind (N) = N_Attribute_Reference
14151 and then Attribute_Name (N) = Name_Deref
14152 then
14153 return True;
14154 end if;
14155
14156 -- Check if we perform the test on the original node since this may be a
14157 -- test of syntactic categories which must not be disturbed by whatever
14158 -- rewriting might have occurred. For example, an aggregate, which is
14159 -- certainly NOT a variable, could be turned into a variable by
14160 -- expansion.
14161
14162 if Use_Original_Node then
14163 Orig_Node := Original_Node (N);
14164 else
14165 Orig_Node := N;
14166 end if;
14167
14168 -- Definitely OK if Assignment_OK is set. Since this is something that
14169 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
14170
14171 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
14172 return True;
14173
14174 -- Normally we go to the original node, but there is one exception where
14175 -- we use the rewritten node, namely when it is an explicit dereference.
14176 -- The generated code may rewrite a prefix which is an access type with
14177 -- an explicit dereference. The dereference is a variable, even though
14178 -- the original node may not be (since it could be a constant of the
14179 -- access type).
14180
14181 -- In Ada 2005 we have a further case to consider: the prefix may be a
14182 -- function call given in prefix notation. The original node appears to
14183 -- be a selected component, but we need to examine the call.
14184
14185 elsif Nkind (N) = N_Explicit_Dereference
14186 and then Nkind (Orig_Node) /= N_Explicit_Dereference
14187 and then Present (Etype (Orig_Node))
14188 and then Is_Access_Type (Etype (Orig_Node))
14189 then
14190 -- Note that if the prefix is an explicit dereference that does not
14191 -- come from source, we must check for a rewritten function call in
14192 -- prefixed notation before other forms of rewriting, to prevent a
14193 -- compiler crash.
14194
14195 return
14196 (Nkind (Orig_Node) = N_Function_Call
14197 and then not Is_Access_Constant (Etype (Prefix (N))))
14198 or else
14199 Is_Variable_Prefix (Original_Node (Prefix (N)));
14200
14201 -- in Ada 2012, the dereference may have been added for a type with
14202 -- a declared implicit dereference aspect. Check that it is not an
14203 -- access to constant.
14204
14205 elsif Nkind (N) = N_Explicit_Dereference
14206 and then Present (Etype (Orig_Node))
14207 and then Ada_Version >= Ada_2012
14208 and then Has_Implicit_Dereference (Etype (Orig_Node))
14209 then
14210 return not Is_Access_Constant (Etype (Prefix (N)));
14211
14212 -- A function call is never a variable
14213
14214 elsif Nkind (N) = N_Function_Call then
14215 return False;
14216
14217 -- All remaining checks use the original node
14218
14219 elsif Is_Entity_Name (Orig_Node)
14220 and then Present (Entity (Orig_Node))
14221 then
14222 declare
14223 E : constant Entity_Id := Entity (Orig_Node);
14224 K : constant Entity_Kind := Ekind (E);
14225
14226 begin
14227 return (K = E_Variable
14228 and then Nkind (Parent (E)) /= N_Exception_Handler)
14229 or else (K = E_Component
14230 and then not In_Protected_Function (E))
14231 or else K = E_Out_Parameter
14232 or else K = E_In_Out_Parameter
14233 or else K = E_Generic_In_Out_Parameter
14234
14235 -- Current instance of type. If this is a protected type, check
14236 -- we are not within the body of one of its protected functions.
14237
14238 or else (Is_Type (E)
14239 and then In_Open_Scopes (E)
14240 and then not In_Protected_Function (E))
14241
14242 or else (Is_Incomplete_Or_Private_Type (E)
14243 and then In_Open_Scopes (Full_View (E)));
14244 end;
14245
14246 else
14247 case Nkind (Orig_Node) is
14248 when N_Indexed_Component | N_Slice =>
14249 return Is_Variable_Prefix (Prefix (Orig_Node));
14250
14251 when N_Selected_Component =>
14252 return (Is_Variable (Selector_Name (Orig_Node))
14253 and then Is_Variable_Prefix (Prefix (Orig_Node)))
14254 or else
14255 (Nkind (N) = N_Expanded_Name
14256 and then Scope (Entity (N)) = Entity (Prefix (N)));
14257
14258 -- For an explicit dereference, the type of the prefix cannot
14259 -- be an access to constant or an access to subprogram.
14260
14261 when N_Explicit_Dereference =>
14262 declare
14263 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
14264 begin
14265 return Is_Access_Type (Typ)
14266 and then not Is_Access_Constant (Root_Type (Typ))
14267 and then Ekind (Typ) /= E_Access_Subprogram_Type;
14268 end;
14269
14270 -- The type conversion is the case where we do not deal with the
14271 -- context dependent special case of an actual parameter. Thus
14272 -- the type conversion is only considered a variable for the
14273 -- purposes of this routine if the target type is tagged. However,
14274 -- a type conversion is considered to be a variable if it does not
14275 -- come from source (this deals for example with the conversions
14276 -- of expressions to their actual subtypes).
14277
14278 when N_Type_Conversion =>
14279 return Is_Variable (Expression (Orig_Node))
14280 and then
14281 (not Comes_From_Source (Orig_Node)
14282 or else
14283 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
14284 and then
14285 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
14286
14287 -- GNAT allows an unchecked type conversion as a variable. This
14288 -- only affects the generation of internal expanded code, since
14289 -- calls to instantiations of Unchecked_Conversion are never
14290 -- considered variables (since they are function calls).
14291
14292 when N_Unchecked_Type_Conversion =>
14293 return Is_Variable (Expression (Orig_Node));
14294
14295 when others =>
14296 return False;
14297 end case;
14298 end if;
14299 end Is_Variable;
14300
14301 ---------------------------
14302 -- Is_Visibly_Controlled --
14303 ---------------------------
14304
14305 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
14306 Root : constant Entity_Id := Root_Type (T);
14307 begin
14308 return Chars (Scope (Root)) = Name_Finalization
14309 and then Chars (Scope (Scope (Root))) = Name_Ada
14310 and then Scope (Scope (Scope (Root))) = Standard_Standard;
14311 end Is_Visibly_Controlled;
14312
14313 --------------------------
14314 -- Is_Volatile_Function --
14315 --------------------------
14316
14317 function Is_Volatile_Function (Func_Id : Entity_Id) return Boolean is
14318 begin
14319 -- The caller must ensure that Func_Id denotes a function
14320
14321 pragma Assert (Ekind_In (Func_Id, E_Function, E_Generic_Function));
14322
14323 -- A protected function is automatically volatile
14324
14325 if Is_Primitive (Func_Id)
14326 and then Present (First_Formal (Func_Id))
14327 and then Is_Protected_Type (Etype (First_Formal (Func_Id)))
14328 and then Etype (First_Formal (Func_Id)) = Scope (Func_Id)
14329 then
14330 return True;
14331
14332 -- An instance of Ada.Unchecked_Conversion is a volatile function if
14333 -- either the source or the target are effectively volatile.
14334
14335 elsif Is_Unchecked_Conversion_Instance (Func_Id)
14336 and then Has_Effectively_Volatile_Profile (Func_Id)
14337 then
14338 return True;
14339
14340 -- Otherwise the function is treated as volatile if it is subject to
14341 -- enabled pragma Volatile_Function.
14342
14343 else
14344 return
14345 Is_Enabled_Pragma (Get_Pragma (Func_Id, Pragma_Volatile_Function));
14346 end if;
14347 end Is_Volatile_Function;
14348
14349 ------------------------
14350 -- Is_Volatile_Object --
14351 ------------------------
14352
14353 function Is_Volatile_Object (N : Node_Id) return Boolean is
14354
14355 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
14356 -- If prefix is an implicit dereference, examine designated type
14357
14358 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
14359 -- Determines if given object has volatile components
14360
14361 ------------------------
14362 -- Is_Volatile_Prefix --
14363 ------------------------
14364
14365 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
14366 Typ : constant Entity_Id := Etype (N);
14367
14368 begin
14369 if Is_Access_Type (Typ) then
14370 declare
14371 Dtyp : constant Entity_Id := Designated_Type (Typ);
14372
14373 begin
14374 return Is_Volatile (Dtyp)
14375 or else Has_Volatile_Components (Dtyp);
14376 end;
14377
14378 else
14379 return Object_Has_Volatile_Components (N);
14380 end if;
14381 end Is_Volatile_Prefix;
14382
14383 ------------------------------------
14384 -- Object_Has_Volatile_Components --
14385 ------------------------------------
14386
14387 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
14388 Typ : constant Entity_Id := Etype (N);
14389
14390 begin
14391 if Is_Volatile (Typ)
14392 or else Has_Volatile_Components (Typ)
14393 then
14394 return True;
14395
14396 elsif Is_Entity_Name (N)
14397 and then (Has_Volatile_Components (Entity (N))
14398 or else Is_Volatile (Entity (N)))
14399 then
14400 return True;
14401
14402 elsif Nkind (N) = N_Indexed_Component
14403 or else Nkind (N) = N_Selected_Component
14404 then
14405 return Is_Volatile_Prefix (Prefix (N));
14406
14407 else
14408 return False;
14409 end if;
14410 end Object_Has_Volatile_Components;
14411
14412 -- Start of processing for Is_Volatile_Object
14413
14414 begin
14415 if Nkind (N) = N_Defining_Identifier then
14416 return Is_Volatile (N) or else Is_Volatile (Etype (N));
14417
14418 elsif Nkind (N) = N_Expanded_Name then
14419 return Is_Volatile_Object (Entity (N));
14420
14421 elsif Is_Volatile (Etype (N))
14422 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
14423 then
14424 return True;
14425
14426 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
14427 and then Is_Volatile_Prefix (Prefix (N))
14428 then
14429 return True;
14430
14431 elsif Nkind (N) = N_Selected_Component
14432 and then Is_Volatile (Entity (Selector_Name (N)))
14433 then
14434 return True;
14435
14436 else
14437 return False;
14438 end if;
14439 end Is_Volatile_Object;
14440
14441 ---------------------------
14442 -- Itype_Has_Declaration --
14443 ---------------------------
14444
14445 function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
14446 begin
14447 pragma Assert (Is_Itype (Id));
14448 return Present (Parent (Id))
14449 and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
14450 N_Subtype_Declaration)
14451 and then Defining_Entity (Parent (Id)) = Id;
14452 end Itype_Has_Declaration;
14453
14454 -------------------------
14455 -- Kill_Current_Values --
14456 -------------------------
14457
14458 procedure Kill_Current_Values
14459 (Ent : Entity_Id;
14460 Last_Assignment_Only : Boolean := False)
14461 is
14462 begin
14463 if Is_Assignable (Ent) then
14464 Set_Last_Assignment (Ent, Empty);
14465 end if;
14466
14467 if Is_Object (Ent) then
14468 if not Last_Assignment_Only then
14469 Kill_Checks (Ent);
14470 Set_Current_Value (Ent, Empty);
14471
14472 -- Do not reset the Is_Known_[Non_]Null and Is_Known_Valid flags
14473 -- for a constant. Once the constant is elaborated, its value is
14474 -- not changed, therefore the associated flags that describe the
14475 -- value should not be modified either.
14476
14477 if Ekind (Ent) = E_Constant then
14478 null;
14479
14480 -- Non-constant entities
14481
14482 else
14483 if not Can_Never_Be_Null (Ent) then
14484 Set_Is_Known_Non_Null (Ent, False);
14485 end if;
14486
14487 Set_Is_Known_Null (Ent, False);
14488
14489 -- Reset the Is_Known_Valid flag unless the type is always
14490 -- valid. This does not apply to a loop parameter because its
14491 -- bounds are defined by the loop header and therefore always
14492 -- valid.
14493
14494 if not Is_Known_Valid (Etype (Ent))
14495 and then Ekind (Ent) /= E_Loop_Parameter
14496 then
14497 Set_Is_Known_Valid (Ent, False);
14498 end if;
14499 end if;
14500 end if;
14501 end if;
14502 end Kill_Current_Values;
14503
14504 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
14505 S : Entity_Id;
14506
14507 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
14508 -- Clear current value for entity E and all entities chained to E
14509
14510 ------------------------------------------
14511 -- Kill_Current_Values_For_Entity_Chain --
14512 ------------------------------------------
14513
14514 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
14515 Ent : Entity_Id;
14516 begin
14517 Ent := E;
14518 while Present (Ent) loop
14519 Kill_Current_Values (Ent, Last_Assignment_Only);
14520 Next_Entity (Ent);
14521 end loop;
14522 end Kill_Current_Values_For_Entity_Chain;
14523
14524 -- Start of processing for Kill_Current_Values
14525
14526 begin
14527 -- Kill all saved checks, a special case of killing saved values
14528
14529 if not Last_Assignment_Only then
14530 Kill_All_Checks;
14531 end if;
14532
14533 -- Loop through relevant scopes, which includes the current scope and
14534 -- any parent scopes if the current scope is a block or a package.
14535
14536 S := Current_Scope;
14537 Scope_Loop : loop
14538
14539 -- Clear current values of all entities in current scope
14540
14541 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
14542
14543 -- If scope is a package, also clear current values of all private
14544 -- entities in the scope.
14545
14546 if Is_Package_Or_Generic_Package (S)
14547 or else Is_Concurrent_Type (S)
14548 then
14549 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
14550 end if;
14551
14552 -- If this is a not a subprogram, deal with parents
14553
14554 if not Is_Subprogram (S) then
14555 S := Scope (S);
14556 exit Scope_Loop when S = Standard_Standard;
14557 else
14558 exit Scope_Loop;
14559 end if;
14560 end loop Scope_Loop;
14561 end Kill_Current_Values;
14562
14563 --------------------------
14564 -- Kill_Size_Check_Code --
14565 --------------------------
14566
14567 procedure Kill_Size_Check_Code (E : Entity_Id) is
14568 begin
14569 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
14570 and then Present (Size_Check_Code (E))
14571 then
14572 Remove (Size_Check_Code (E));
14573 Set_Size_Check_Code (E, Empty);
14574 end if;
14575 end Kill_Size_Check_Code;
14576
14577 --------------------------
14578 -- Known_To_Be_Assigned --
14579 --------------------------
14580
14581 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
14582 P : constant Node_Id := Parent (N);
14583
14584 begin
14585 case Nkind (P) is
14586
14587 -- Test left side of assignment
14588
14589 when N_Assignment_Statement =>
14590 return N = Name (P);
14591
14592 -- Function call arguments are never lvalues
14593
14594 when N_Function_Call =>
14595 return False;
14596
14597 -- Positional parameter for procedure or accept call
14598
14599 when N_Procedure_Call_Statement |
14600 N_Accept_Statement
14601 =>
14602 declare
14603 Proc : Entity_Id;
14604 Form : Entity_Id;
14605 Act : Node_Id;
14606
14607 begin
14608 Proc := Get_Subprogram_Entity (P);
14609
14610 if No (Proc) then
14611 return False;
14612 end if;
14613
14614 -- If we are not a list member, something is strange, so
14615 -- be conservative and return False.
14616
14617 if not Is_List_Member (N) then
14618 return False;
14619 end if;
14620
14621 -- We are going to find the right formal by stepping forward
14622 -- through the formals, as we step backwards in the actuals.
14623
14624 Form := First_Formal (Proc);
14625 Act := N;
14626 loop
14627 -- If no formal, something is weird, so be conservative
14628 -- and return False.
14629
14630 if No (Form) then
14631 return False;
14632 end if;
14633
14634 Prev (Act);
14635 exit when No (Act);
14636 Next_Formal (Form);
14637 end loop;
14638
14639 return Ekind (Form) /= E_In_Parameter;
14640 end;
14641
14642 -- Named parameter for procedure or accept call
14643
14644 when N_Parameter_Association =>
14645 declare
14646 Proc : Entity_Id;
14647 Form : Entity_Id;
14648
14649 begin
14650 Proc := Get_Subprogram_Entity (Parent (P));
14651
14652 if No (Proc) then
14653 return False;
14654 end if;
14655
14656 -- Loop through formals to find the one that matches
14657
14658 Form := First_Formal (Proc);
14659 loop
14660 -- If no matching formal, that's peculiar, some kind of
14661 -- previous error, so return False to be conservative.
14662 -- Actually this also happens in legal code in the case
14663 -- where P is a parameter association for an Extra_Formal???
14664
14665 if No (Form) then
14666 return False;
14667 end if;
14668
14669 -- Else test for match
14670
14671 if Chars (Form) = Chars (Selector_Name (P)) then
14672 return Ekind (Form) /= E_In_Parameter;
14673 end if;
14674
14675 Next_Formal (Form);
14676 end loop;
14677 end;
14678
14679 -- Test for appearing in a conversion that itself appears
14680 -- in an lvalue context, since this should be an lvalue.
14681
14682 when N_Type_Conversion =>
14683 return Known_To_Be_Assigned (P);
14684
14685 -- All other references are definitely not known to be modifications
14686
14687 when others =>
14688 return False;
14689
14690 end case;
14691 end Known_To_Be_Assigned;
14692
14693 ---------------------------
14694 -- Last_Source_Statement --
14695 ---------------------------
14696
14697 function Last_Source_Statement (HSS : Node_Id) return Node_Id is
14698 N : Node_Id;
14699
14700 begin
14701 N := Last (Statements (HSS));
14702 while Present (N) loop
14703 exit when Comes_From_Source (N);
14704 Prev (N);
14705 end loop;
14706
14707 return N;
14708 end Last_Source_Statement;
14709
14710 ----------------------------------
14711 -- Matching_Static_Array_Bounds --
14712 ----------------------------------
14713
14714 function Matching_Static_Array_Bounds
14715 (L_Typ : Node_Id;
14716 R_Typ : Node_Id) return Boolean
14717 is
14718 L_Ndims : constant Nat := Number_Dimensions (L_Typ);
14719 R_Ndims : constant Nat := Number_Dimensions (R_Typ);
14720
14721 L_Index : Node_Id;
14722 R_Index : Node_Id;
14723 L_Low : Node_Id;
14724 L_High : Node_Id;
14725 L_Len : Uint;
14726 R_Low : Node_Id;
14727 R_High : Node_Id;
14728 R_Len : Uint;
14729
14730 begin
14731 if L_Ndims /= R_Ndims then
14732 return False;
14733 end if;
14734
14735 -- Unconstrained types do not have static bounds
14736
14737 if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
14738 return False;
14739 end if;
14740
14741 -- First treat specially the first dimension, as the lower bound and
14742 -- length of string literals are not stored like those of arrays.
14743
14744 if Ekind (L_Typ) = E_String_Literal_Subtype then
14745 L_Low := String_Literal_Low_Bound (L_Typ);
14746 L_Len := String_Literal_Length (L_Typ);
14747 else
14748 L_Index := First_Index (L_Typ);
14749 Get_Index_Bounds (L_Index, L_Low, L_High);
14750
14751 if Is_OK_Static_Expression (L_Low)
14752 and then
14753 Is_OK_Static_Expression (L_High)
14754 then
14755 if Expr_Value (L_High) < Expr_Value (L_Low) then
14756 L_Len := Uint_0;
14757 else
14758 L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
14759 end if;
14760 else
14761 return False;
14762 end if;
14763 end if;
14764
14765 if Ekind (R_Typ) = E_String_Literal_Subtype then
14766 R_Low := String_Literal_Low_Bound (R_Typ);
14767 R_Len := String_Literal_Length (R_Typ);
14768 else
14769 R_Index := First_Index (R_Typ);
14770 Get_Index_Bounds (R_Index, R_Low, R_High);
14771
14772 if Is_OK_Static_Expression (R_Low)
14773 and then
14774 Is_OK_Static_Expression (R_High)
14775 then
14776 if Expr_Value (R_High) < Expr_Value (R_Low) then
14777 R_Len := Uint_0;
14778 else
14779 R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
14780 end if;
14781 else
14782 return False;
14783 end if;
14784 end if;
14785
14786 if (Is_OK_Static_Expression (L_Low)
14787 and then
14788 Is_OK_Static_Expression (R_Low))
14789 and then Expr_Value (L_Low) = Expr_Value (R_Low)
14790 and then L_Len = R_Len
14791 then
14792 null;
14793 else
14794 return False;
14795 end if;
14796
14797 -- Then treat all other dimensions
14798
14799 for Indx in 2 .. L_Ndims loop
14800 Next (L_Index);
14801 Next (R_Index);
14802
14803 Get_Index_Bounds (L_Index, L_Low, L_High);
14804 Get_Index_Bounds (R_Index, R_Low, R_High);
14805
14806 if (Is_OK_Static_Expression (L_Low) and then
14807 Is_OK_Static_Expression (L_High) and then
14808 Is_OK_Static_Expression (R_Low) and then
14809 Is_OK_Static_Expression (R_High))
14810 and then (Expr_Value (L_Low) = Expr_Value (R_Low)
14811 and then
14812 Expr_Value (L_High) = Expr_Value (R_High))
14813 then
14814 null;
14815 else
14816 return False;
14817 end if;
14818 end loop;
14819
14820 -- If we fall through the loop, all indexes matched
14821
14822 return True;
14823 end Matching_Static_Array_Bounds;
14824
14825 -------------------
14826 -- May_Be_Lvalue --
14827 -------------------
14828
14829 function May_Be_Lvalue (N : Node_Id) return Boolean is
14830 P : constant Node_Id := Parent (N);
14831
14832 begin
14833 case Nkind (P) is
14834
14835 -- Test left side of assignment
14836
14837 when N_Assignment_Statement =>
14838 return N = Name (P);
14839
14840 -- Test prefix of component or attribute. Note that the prefix of an
14841 -- explicit or implicit dereference cannot be an l-value.
14842
14843 when N_Attribute_Reference =>
14844 return N = Prefix (P)
14845 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
14846
14847 -- For an expanded name, the name is an lvalue if the expanded name
14848 -- is an lvalue, but the prefix is never an lvalue, since it is just
14849 -- the scope where the name is found.
14850
14851 when N_Expanded_Name =>
14852 if N = Prefix (P) then
14853 return May_Be_Lvalue (P);
14854 else
14855 return False;
14856 end if;
14857
14858 -- For a selected component A.B, A is certainly an lvalue if A.B is.
14859 -- B is a little interesting, if we have A.B := 3, there is some
14860 -- discussion as to whether B is an lvalue or not, we choose to say
14861 -- it is. Note however that A is not an lvalue if it is of an access
14862 -- type since this is an implicit dereference.
14863
14864 when N_Selected_Component =>
14865 if N = Prefix (P)
14866 and then Present (Etype (N))
14867 and then Is_Access_Type (Etype (N))
14868 then
14869 return False;
14870 else
14871 return May_Be_Lvalue (P);
14872 end if;
14873
14874 -- For an indexed component or slice, the index or slice bounds is
14875 -- never an lvalue. The prefix is an lvalue if the indexed component
14876 -- or slice is an lvalue, except if it is an access type, where we
14877 -- have an implicit dereference.
14878
14879 when N_Indexed_Component | N_Slice =>
14880 if N /= Prefix (P)
14881 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
14882 then
14883 return False;
14884 else
14885 return May_Be_Lvalue (P);
14886 end if;
14887
14888 -- Prefix of a reference is an lvalue if the reference is an lvalue
14889
14890 when N_Reference =>
14891 return May_Be_Lvalue (P);
14892
14893 -- Prefix of explicit dereference is never an lvalue
14894
14895 when N_Explicit_Dereference =>
14896 return False;
14897
14898 -- Positional parameter for subprogram, entry, or accept call.
14899 -- In older versions of Ada function call arguments are never
14900 -- lvalues. In Ada 2012 functions can have in-out parameters.
14901
14902 when N_Subprogram_Call |
14903 N_Entry_Call_Statement |
14904 N_Accept_Statement
14905 =>
14906 if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
14907 return False;
14908 end if;
14909
14910 -- The following mechanism is clumsy and fragile. A single flag
14911 -- set in Resolve_Actuals would be preferable ???
14912
14913 declare
14914 Proc : Entity_Id;
14915 Form : Entity_Id;
14916 Act : Node_Id;
14917
14918 begin
14919 Proc := Get_Subprogram_Entity (P);
14920
14921 if No (Proc) then
14922 return True;
14923 end if;
14924
14925 -- If we are not a list member, something is strange, so be
14926 -- conservative and return True.
14927
14928 if not Is_List_Member (N) then
14929 return True;
14930 end if;
14931
14932 -- We are going to find the right formal by stepping forward
14933 -- through the formals, as we step backwards in the actuals.
14934
14935 Form := First_Formal (Proc);
14936 Act := N;
14937 loop
14938 -- If no formal, something is weird, so be conservative and
14939 -- return True.
14940
14941 if No (Form) then
14942 return True;
14943 end if;
14944
14945 Prev (Act);
14946 exit when No (Act);
14947 Next_Formal (Form);
14948 end loop;
14949
14950 return Ekind (Form) /= E_In_Parameter;
14951 end;
14952
14953 -- Named parameter for procedure or accept call
14954
14955 when N_Parameter_Association =>
14956 declare
14957 Proc : Entity_Id;
14958 Form : Entity_Id;
14959
14960 begin
14961 Proc := Get_Subprogram_Entity (Parent (P));
14962
14963 if No (Proc) then
14964 return True;
14965 end if;
14966
14967 -- Loop through formals to find the one that matches
14968
14969 Form := First_Formal (Proc);
14970 loop
14971 -- If no matching formal, that's peculiar, some kind of
14972 -- previous error, so return True to be conservative.
14973 -- Actually happens with legal code for an unresolved call
14974 -- where we may get the wrong homonym???
14975
14976 if No (Form) then
14977 return True;
14978 end if;
14979
14980 -- Else test for match
14981
14982 if Chars (Form) = Chars (Selector_Name (P)) then
14983 return Ekind (Form) /= E_In_Parameter;
14984 end if;
14985
14986 Next_Formal (Form);
14987 end loop;
14988 end;
14989
14990 -- Test for appearing in a conversion that itself appears in an
14991 -- lvalue context, since this should be an lvalue.
14992
14993 when N_Type_Conversion =>
14994 return May_Be_Lvalue (P);
14995
14996 -- Test for appearance in object renaming declaration
14997
14998 when N_Object_Renaming_Declaration =>
14999 return True;
15000
15001 -- All other references are definitely not lvalues
15002
15003 when others =>
15004 return False;
15005
15006 end case;
15007 end May_Be_Lvalue;
15008
15009 -----------------------
15010 -- Mark_Coextensions --
15011 -----------------------
15012
15013 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
15014 Is_Dynamic : Boolean;
15015 -- Indicates whether the context causes nested coextensions to be
15016 -- dynamic or static
15017
15018 function Mark_Allocator (N : Node_Id) return Traverse_Result;
15019 -- Recognize an allocator node and label it as a dynamic coextension
15020
15021 --------------------
15022 -- Mark_Allocator --
15023 --------------------
15024
15025 function Mark_Allocator (N : Node_Id) return Traverse_Result is
15026 begin
15027 if Nkind (N) = N_Allocator then
15028 if Is_Dynamic then
15029 Set_Is_Dynamic_Coextension (N);
15030
15031 -- If the allocator expression is potentially dynamic, it may
15032 -- be expanded out of order and require dynamic allocation
15033 -- anyway, so we treat the coextension itself as dynamic.
15034 -- Potential optimization ???
15035
15036 elsif Nkind (Expression (N)) = N_Qualified_Expression
15037 and then Nkind (Expression (Expression (N))) = N_Op_Concat
15038 then
15039 Set_Is_Dynamic_Coextension (N);
15040 else
15041 Set_Is_Static_Coextension (N);
15042 end if;
15043 end if;
15044
15045 return OK;
15046 end Mark_Allocator;
15047
15048 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
15049
15050 -- Start of processing for Mark_Coextensions
15051
15052 begin
15053 -- An allocator that appears on the right-hand side of an assignment is
15054 -- treated as a potentially dynamic coextension when the right-hand side
15055 -- is an allocator or a qualified expression.
15056
15057 -- Obj := new ...'(new Coextension ...);
15058
15059 if Nkind (Context_Nod) = N_Assignment_Statement then
15060 Is_Dynamic :=
15061 Nkind_In (Expression (Context_Nod), N_Allocator,
15062 N_Qualified_Expression);
15063
15064 -- An allocator that appears within the expression of a simple return
15065 -- statement is treated as a potentially dynamic coextension when the
15066 -- expression is either aggregate, allocator, or qualified expression.
15067
15068 -- return (new Coextension ...);
15069 -- return new ...'(new Coextension ...);
15070
15071 elsif Nkind (Context_Nod) = N_Simple_Return_Statement then
15072 Is_Dynamic :=
15073 Nkind_In (Expression (Context_Nod), N_Aggregate,
15074 N_Allocator,
15075 N_Qualified_Expression);
15076
15077 -- An alloctor that appears within the initialization expression of an
15078 -- object declaration is considered a potentially dynamic coextension
15079 -- when the initialization expression is an allocator or a qualified
15080 -- expression.
15081
15082 -- Obj : ... := new ...'(new Coextension ...);
15083
15084 -- A similar case arises when the object declaration is part of an
15085 -- extended return statement.
15086
15087 -- return Obj : ... := new ...'(new Coextension ...);
15088 -- return Obj : ... := (new Coextension ...);
15089
15090 elsif Nkind (Context_Nod) = N_Object_Declaration then
15091 Is_Dynamic :=
15092 Nkind_In (Root_Nod, N_Allocator, N_Qualified_Expression)
15093 or else
15094 Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
15095
15096 -- This routine should not be called with constructs that cannot contain
15097 -- coextensions.
15098
15099 else
15100 raise Program_Error;
15101 end if;
15102
15103 Mark_Allocators (Root_Nod);
15104 end Mark_Coextensions;
15105
15106 ----------------------
15107 -- Needs_One_Actual --
15108 ----------------------
15109
15110 function Needs_One_Actual (E : Entity_Id) return Boolean is
15111 Formal : Entity_Id;
15112
15113 begin
15114 -- Ada 2005 or later, and formals present
15115
15116 if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then
15117 Formal := Next_Formal (First_Formal (E));
15118 while Present (Formal) loop
15119 if No (Default_Value (Formal)) then
15120 return False;
15121 end if;
15122
15123 Next_Formal (Formal);
15124 end loop;
15125
15126 return True;
15127
15128 -- Ada 83/95 or no formals
15129
15130 else
15131 return False;
15132 end if;
15133 end Needs_One_Actual;
15134
15135 ------------------------
15136 -- New_Copy_List_Tree --
15137 ------------------------
15138
15139 function New_Copy_List_Tree (List : List_Id) return List_Id is
15140 NL : List_Id;
15141 E : Node_Id;
15142
15143 begin
15144 if List = No_List then
15145 return No_List;
15146
15147 else
15148 NL := New_List;
15149 E := First (List);
15150
15151 while Present (E) loop
15152 Append (New_Copy_Tree (E), NL);
15153 E := Next (E);
15154 end loop;
15155
15156 return NL;
15157 end if;
15158 end New_Copy_List_Tree;
15159
15160 --------------------------------------------------
15161 -- New_Copy_Tree Auxiliary Data and Subprograms --
15162 --------------------------------------------------
15163
15164 use Atree.Unchecked_Access;
15165 use Atree_Private_Part;
15166
15167 -- Our approach here requires a two pass traversal of the tree. The
15168 -- first pass visits all nodes that eventually will be copied looking
15169 -- for defining Itypes. If any defining Itypes are found, then they are
15170 -- copied, and an entry is added to the replacement map. In the second
15171 -- phase, the tree is copied, using the replacement map to replace any
15172 -- Itype references within the copied tree.
15173
15174 -- The following hash tables are used if the Map supplied has more
15175 -- than hash threshold entries to speed up access to the map. If
15176 -- there are fewer entries, then the map is searched sequentially
15177 -- (because setting up a hash table for only a few entries takes
15178 -- more time than it saves.
15179
15180 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
15181 -- Hash function used for hash operations
15182
15183 -------------------
15184 -- New_Copy_Hash --
15185 -------------------
15186
15187 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
15188 begin
15189 return Nat (E) mod (NCT_Header_Num'Last + 1);
15190 end New_Copy_Hash;
15191
15192 ---------------
15193 -- NCT_Assoc --
15194 ---------------
15195
15196 -- The hash table NCT_Assoc associates old entities in the table
15197 -- with their corresponding new entities (i.e. the pairs of entries
15198 -- presented in the original Map argument are Key-Element pairs).
15199
15200 package NCT_Assoc is new Simple_HTable (
15201 Header_Num => NCT_Header_Num,
15202 Element => Entity_Id,
15203 No_Element => Empty,
15204 Key => Entity_Id,
15205 Hash => New_Copy_Hash,
15206 Equal => Types."=");
15207
15208 ---------------------
15209 -- NCT_Itype_Assoc --
15210 ---------------------
15211
15212 -- The hash table NCT_Itype_Assoc contains entries only for those
15213 -- old nodes which have a non-empty Associated_Node_For_Itype set.
15214 -- The key is the associated node, and the element is the new node
15215 -- itself (NOT the associated node for the new node).
15216
15217 package NCT_Itype_Assoc is new Simple_HTable (
15218 Header_Num => NCT_Header_Num,
15219 Element => Entity_Id,
15220 No_Element => Empty,
15221 Key => Entity_Id,
15222 Hash => New_Copy_Hash,
15223 Equal => Types."=");
15224
15225 -------------------
15226 -- New_Copy_Tree --
15227 -------------------
15228
15229 function New_Copy_Tree
15230 (Source : Node_Id;
15231 Map : Elist_Id := No_Elist;
15232 New_Sloc : Source_Ptr := No_Location;
15233 New_Scope : Entity_Id := Empty) return Node_Id
15234 is
15235 Actual_Map : Elist_Id := Map;
15236 -- This is the actual map for the copy. It is initialized with the
15237 -- given elements, and then enlarged as required for Itypes that are
15238 -- copied during the first phase of the copy operation. The visit
15239 -- procedures add elements to this map as Itypes are encountered.
15240 -- The reason we cannot use Map directly, is that it may well be
15241 -- (and normally is) initialized to No_Elist, and if we have mapped
15242 -- entities, we have to reset it to point to a real Elist.
15243
15244 function Assoc (N : Node_Or_Entity_Id) return Node_Id;
15245 -- Called during second phase to map entities into their corresponding
15246 -- copies using Actual_Map. If the argument is not an entity, or is not
15247 -- in Actual_Map, then it is returned unchanged.
15248
15249 procedure Build_NCT_Hash_Tables;
15250 -- Builds hash tables (number of elements >= threshold value)
15251
15252 function Copy_Elist_With_Replacement
15253 (Old_Elist : Elist_Id) return Elist_Id;
15254 -- Called during second phase to copy element list doing replacements
15255
15256 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
15257 -- Called during the second phase to process a copied Itype. The actual
15258 -- copy happened during the first phase (so that we could make the entry
15259 -- in the mapping), but we still have to deal with the descendents of
15260 -- the copied Itype and copy them where necessary.
15261
15262 function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
15263 -- Called during second phase to copy list doing replacements
15264
15265 function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
15266 -- Called during second phase to copy node doing replacements
15267
15268 procedure Visit_Elist (E : Elist_Id);
15269 -- Called during first phase to visit all elements of an Elist
15270
15271 procedure Visit_Field (F : Union_Id; N : Node_Id);
15272 -- Visit a single field, recursing to call Visit_Node or Visit_List
15273 -- if the field is a syntactic descendent of the current node (i.e.
15274 -- its parent is Node N).
15275
15276 procedure Visit_Itype (Old_Itype : Entity_Id);
15277 -- Called during first phase to visit subsidiary fields of a defining
15278 -- Itype, and also create a copy and make an entry in the replacement
15279 -- map for the new copy.
15280
15281 procedure Visit_List (L : List_Id);
15282 -- Called during first phase to visit all elements of a List
15283
15284 procedure Visit_Node (N : Node_Or_Entity_Id);
15285 -- Called during first phase to visit a node and all its subtrees
15286
15287 -----------
15288 -- Assoc --
15289 -----------
15290
15291 function Assoc (N : Node_Or_Entity_Id) return Node_Id is
15292 E : Elmt_Id;
15293 Ent : Entity_Id;
15294
15295 begin
15296 if not Has_Extension (N) or else No (Actual_Map) then
15297 return N;
15298
15299 elsif NCT_Hash_Tables_Used then
15300 Ent := NCT_Assoc.Get (Entity_Id (N));
15301
15302 if Present (Ent) then
15303 return Ent;
15304 else
15305 return N;
15306 end if;
15307
15308 -- No hash table used, do serial search
15309
15310 else
15311 E := First_Elmt (Actual_Map);
15312 while Present (E) loop
15313 if Node (E) = N then
15314 return Node (Next_Elmt (E));
15315 else
15316 E := Next_Elmt (Next_Elmt (E));
15317 end if;
15318 end loop;
15319 end if;
15320
15321 return N;
15322 end Assoc;
15323
15324 ---------------------------
15325 -- Build_NCT_Hash_Tables --
15326 ---------------------------
15327
15328 procedure Build_NCT_Hash_Tables is
15329 Elmt : Elmt_Id;
15330 Ent : Entity_Id;
15331 begin
15332 if NCT_Hash_Table_Setup then
15333 NCT_Assoc.Reset;
15334 NCT_Itype_Assoc.Reset;
15335 end if;
15336
15337 Elmt := First_Elmt (Actual_Map);
15338 while Present (Elmt) loop
15339 Ent := Node (Elmt);
15340
15341 -- Get new entity, and associate old and new
15342
15343 Next_Elmt (Elmt);
15344 NCT_Assoc.Set (Ent, Node (Elmt));
15345
15346 if Is_Type (Ent) then
15347 declare
15348 Anode : constant Entity_Id :=
15349 Associated_Node_For_Itype (Ent);
15350
15351 begin
15352 if Present (Anode) then
15353
15354 -- Enter a link between the associated node of the
15355 -- old Itype and the new Itype, for updating later
15356 -- when node is copied.
15357
15358 NCT_Itype_Assoc.Set (Anode, Node (Elmt));
15359 end if;
15360 end;
15361 end if;
15362
15363 Next_Elmt (Elmt);
15364 end loop;
15365
15366 NCT_Hash_Tables_Used := True;
15367 NCT_Hash_Table_Setup := True;
15368 end Build_NCT_Hash_Tables;
15369
15370 ---------------------------------
15371 -- Copy_Elist_With_Replacement --
15372 ---------------------------------
15373
15374 function Copy_Elist_With_Replacement
15375 (Old_Elist : Elist_Id) return Elist_Id
15376 is
15377 M : Elmt_Id;
15378 New_Elist : Elist_Id;
15379
15380 begin
15381 if No (Old_Elist) then
15382 return No_Elist;
15383
15384 else
15385 New_Elist := New_Elmt_List;
15386
15387 M := First_Elmt (Old_Elist);
15388 while Present (M) loop
15389 Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
15390 Next_Elmt (M);
15391 end loop;
15392 end if;
15393
15394 return New_Elist;
15395 end Copy_Elist_With_Replacement;
15396
15397 ---------------------------------
15398 -- Copy_Itype_With_Replacement --
15399 ---------------------------------
15400
15401 -- This routine exactly parallels its phase one analog Visit_Itype,
15402
15403 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
15404 begin
15405 -- Translate Next_Entity, Scope and Etype fields, in case they
15406 -- reference entities that have been mapped into copies.
15407
15408 Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
15409 Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
15410
15411 if Present (New_Scope) then
15412 Set_Scope (New_Itype, New_Scope);
15413 else
15414 Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
15415 end if;
15416
15417 -- Copy referenced fields
15418
15419 if Is_Discrete_Type (New_Itype) then
15420 Set_Scalar_Range (New_Itype,
15421 Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
15422
15423 elsif Has_Discriminants (Base_Type (New_Itype)) then
15424 Set_Discriminant_Constraint (New_Itype,
15425 Copy_Elist_With_Replacement
15426 (Discriminant_Constraint (New_Itype)));
15427
15428 elsif Is_Array_Type (New_Itype) then
15429 if Present (First_Index (New_Itype)) then
15430 Set_First_Index (New_Itype,
15431 First (Copy_List_With_Replacement
15432 (List_Containing (First_Index (New_Itype)))));
15433 end if;
15434
15435 if Is_Packed (New_Itype) then
15436 Set_Packed_Array_Impl_Type (New_Itype,
15437 Copy_Node_With_Replacement
15438 (Packed_Array_Impl_Type (New_Itype)));
15439 end if;
15440 end if;
15441 end Copy_Itype_With_Replacement;
15442
15443 --------------------------------
15444 -- Copy_List_With_Replacement --
15445 --------------------------------
15446
15447 function Copy_List_With_Replacement
15448 (Old_List : List_Id) return List_Id
15449 is
15450 New_List : List_Id;
15451 E : Node_Id;
15452
15453 begin
15454 if Old_List = No_List then
15455 return No_List;
15456
15457 else
15458 New_List := Empty_List;
15459
15460 E := First (Old_List);
15461 while Present (E) loop
15462 Append (Copy_Node_With_Replacement (E), New_List);
15463 Next (E);
15464 end loop;
15465
15466 return New_List;
15467 end if;
15468 end Copy_List_With_Replacement;
15469
15470 --------------------------------
15471 -- Copy_Node_With_Replacement --
15472 --------------------------------
15473
15474 function Copy_Node_With_Replacement
15475 (Old_Node : Node_Id) return Node_Id
15476 is
15477 New_Node : Node_Id;
15478
15479 procedure Adjust_Named_Associations
15480 (Old_Node : Node_Id;
15481 New_Node : Node_Id);
15482 -- If a call node has named associations, these are chained through
15483 -- the First_Named_Actual, Next_Named_Actual links. These must be
15484 -- propagated separately to the new parameter list, because these
15485 -- are not syntactic fields.
15486
15487 function Copy_Field_With_Replacement
15488 (Field : Union_Id) return Union_Id;
15489 -- Given Field, which is a field of Old_Node, return a copy of it
15490 -- if it is a syntactic field (i.e. its parent is Node), setting
15491 -- the parent of the copy to poit to New_Node. Otherwise returns
15492 -- the field (possibly mapped if it is an entity).
15493
15494 -------------------------------
15495 -- Adjust_Named_Associations --
15496 -------------------------------
15497
15498 procedure Adjust_Named_Associations
15499 (Old_Node : Node_Id;
15500 New_Node : Node_Id)
15501 is
15502 Old_E : Node_Id;
15503 New_E : Node_Id;
15504
15505 Old_Next : Node_Id;
15506 New_Next : Node_Id;
15507
15508 begin
15509 Old_E := First (Parameter_Associations (Old_Node));
15510 New_E := First (Parameter_Associations (New_Node));
15511 while Present (Old_E) loop
15512 if Nkind (Old_E) = N_Parameter_Association
15513 and then Present (Next_Named_Actual (Old_E))
15514 then
15515 if First_Named_Actual (Old_Node)
15516 = Explicit_Actual_Parameter (Old_E)
15517 then
15518 Set_First_Named_Actual
15519 (New_Node, Explicit_Actual_Parameter (New_E));
15520 end if;
15521
15522 -- Now scan parameter list from the beginning,to locate
15523 -- next named actual, which can be out of order.
15524
15525 Old_Next := First (Parameter_Associations (Old_Node));
15526 New_Next := First (Parameter_Associations (New_Node));
15527
15528 while Nkind (Old_Next) /= N_Parameter_Association
15529 or else Explicit_Actual_Parameter (Old_Next) /=
15530 Next_Named_Actual (Old_E)
15531 loop
15532 Next (Old_Next);
15533 Next (New_Next);
15534 end loop;
15535
15536 Set_Next_Named_Actual
15537 (New_E, Explicit_Actual_Parameter (New_Next));
15538 end if;
15539
15540 Next (Old_E);
15541 Next (New_E);
15542 end loop;
15543 end Adjust_Named_Associations;
15544
15545 ---------------------------------
15546 -- Copy_Field_With_Replacement --
15547 ---------------------------------
15548
15549 function Copy_Field_With_Replacement
15550 (Field : Union_Id) return Union_Id
15551 is
15552 begin
15553 if Field = Union_Id (Empty) then
15554 return Field;
15555
15556 elsif Field in Node_Range then
15557 declare
15558 Old_N : constant Node_Id := Node_Id (Field);
15559 New_N : Node_Id;
15560
15561 begin
15562 -- If syntactic field, as indicated by the parent pointer
15563 -- being set, then copy the referenced node recursively.
15564
15565 if Parent (Old_N) = Old_Node then
15566 New_N := Copy_Node_With_Replacement (Old_N);
15567
15568 if New_N /= Old_N then
15569 Set_Parent (New_N, New_Node);
15570 end if;
15571
15572 -- For semantic fields, update possible entity reference
15573 -- from the replacement map.
15574
15575 else
15576 New_N := Assoc (Old_N);
15577 end if;
15578
15579 return Union_Id (New_N);
15580 end;
15581
15582 elsif Field in List_Range then
15583 declare
15584 Old_L : constant List_Id := List_Id (Field);
15585 New_L : List_Id;
15586
15587 begin
15588 -- If syntactic field, as indicated by the parent pointer,
15589 -- then recursively copy the entire referenced list.
15590
15591 if Parent (Old_L) = Old_Node then
15592 New_L := Copy_List_With_Replacement (Old_L);
15593 Set_Parent (New_L, New_Node);
15594
15595 -- For semantic list, just returned unchanged
15596
15597 else
15598 New_L := Old_L;
15599 end if;
15600
15601 return Union_Id (New_L);
15602 end;
15603
15604 -- Anything other than a list or a node is returned unchanged
15605
15606 else
15607 return Field;
15608 end if;
15609 end Copy_Field_With_Replacement;
15610
15611 -- Start of processing for Copy_Node_With_Replacement
15612
15613 begin
15614 if Old_Node <= Empty_Or_Error then
15615 return Old_Node;
15616
15617 elsif Has_Extension (Old_Node) then
15618 return Assoc (Old_Node);
15619
15620 else
15621 New_Node := New_Copy (Old_Node);
15622
15623 -- If the node we are copying is the associated node of a
15624 -- previously copied Itype, then adjust the associated node
15625 -- of the copy of that Itype accordingly.
15626
15627 if Present (Actual_Map) then
15628 declare
15629 E : Elmt_Id;
15630 Ent : Entity_Id;
15631
15632 begin
15633 -- Case of hash table used
15634
15635 if NCT_Hash_Tables_Used then
15636 Ent := NCT_Itype_Assoc.Get (Old_Node);
15637
15638 if Present (Ent) then
15639 Set_Associated_Node_For_Itype (Ent, New_Node);
15640 end if;
15641
15642 -- Case of no hash table used
15643
15644 else
15645 E := First_Elmt (Actual_Map);
15646 while Present (E) loop
15647 if Is_Itype (Node (E))
15648 and then
15649 Old_Node = Associated_Node_For_Itype (Node (E))
15650 then
15651 Set_Associated_Node_For_Itype
15652 (Node (Next_Elmt (E)), New_Node);
15653 end if;
15654
15655 E := Next_Elmt (Next_Elmt (E));
15656 end loop;
15657 end if;
15658 end;
15659 end if;
15660
15661 -- Recursively copy descendents
15662
15663 Set_Field1
15664 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
15665 Set_Field2
15666 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
15667 Set_Field3
15668 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
15669 Set_Field4
15670 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
15671 Set_Field5
15672 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
15673
15674 -- Adjust Sloc of new node if necessary
15675
15676 if New_Sloc /= No_Location then
15677 Set_Sloc (New_Node, New_Sloc);
15678
15679 -- If we adjust the Sloc, then we are essentially making
15680 -- a completely new node, so the Comes_From_Source flag
15681 -- should be reset to the proper default value.
15682
15683 Nodes.Table (New_Node).Comes_From_Source :=
15684 Default_Node.Comes_From_Source;
15685 end if;
15686
15687 -- If the node is call and has named associations,
15688 -- set the corresponding links in the copy.
15689
15690 if (Nkind (Old_Node) = N_Function_Call
15691 or else Nkind (Old_Node) = N_Entry_Call_Statement
15692 or else
15693 Nkind (Old_Node) = N_Procedure_Call_Statement)
15694 and then Present (First_Named_Actual (Old_Node))
15695 then
15696 Adjust_Named_Associations (Old_Node, New_Node);
15697 end if;
15698
15699 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
15700 -- The replacement mechanism applies to entities, and is not used
15701 -- here. Eventually we may need a more general graph-copying
15702 -- routine. For now, do a sequential search to find desired node.
15703
15704 if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
15705 and then Present (First_Real_Statement (Old_Node))
15706 then
15707 declare
15708 Old_F : constant Node_Id := First_Real_Statement (Old_Node);
15709 N1, N2 : Node_Id;
15710
15711 begin
15712 N1 := First (Statements (Old_Node));
15713 N2 := First (Statements (New_Node));
15714
15715 while N1 /= Old_F loop
15716 Next (N1);
15717 Next (N2);
15718 end loop;
15719
15720 Set_First_Real_Statement (New_Node, N2);
15721 end;
15722 end if;
15723 end if;
15724
15725 -- All done, return copied node
15726
15727 return New_Node;
15728 end Copy_Node_With_Replacement;
15729
15730 -----------------
15731 -- Visit_Elist --
15732 -----------------
15733
15734 procedure Visit_Elist (E : Elist_Id) is
15735 Elmt : Elmt_Id;
15736 begin
15737 if Present (E) then
15738 Elmt := First_Elmt (E);
15739
15740 while Elmt /= No_Elmt loop
15741 Visit_Node (Node (Elmt));
15742 Next_Elmt (Elmt);
15743 end loop;
15744 end if;
15745 end Visit_Elist;
15746
15747 -----------------
15748 -- Visit_Field --
15749 -----------------
15750
15751 procedure Visit_Field (F : Union_Id; N : Node_Id) is
15752 begin
15753 if F = Union_Id (Empty) then
15754 return;
15755
15756 elsif F in Node_Range then
15757
15758 -- Copy node if it is syntactic, i.e. its parent pointer is
15759 -- set to point to the field that referenced it (certain
15760 -- Itypes will also meet this criterion, which is fine, since
15761 -- these are clearly Itypes that do need to be copied, since
15762 -- we are copying their parent.)
15763
15764 if Parent (Node_Id (F)) = N then
15765 Visit_Node (Node_Id (F));
15766 return;
15767
15768 -- Another case, if we are pointing to an Itype, then we want
15769 -- to copy it if its associated node is somewhere in the tree
15770 -- being copied.
15771
15772 -- Note: the exclusion of self-referential copies is just an
15773 -- optimization, since the search of the already copied list
15774 -- would catch it, but it is a common case (Etype pointing
15775 -- to itself for an Itype that is a base type).
15776
15777 elsif Has_Extension (Node_Id (F))
15778 and then Is_Itype (Entity_Id (F))
15779 and then Node_Id (F) /= N
15780 then
15781 declare
15782 P : Node_Id;
15783
15784 begin
15785 P := Associated_Node_For_Itype (Node_Id (F));
15786 while Present (P) loop
15787 if P = Source then
15788 Visit_Node (Node_Id (F));
15789 return;
15790 else
15791 P := Parent (P);
15792 end if;
15793 end loop;
15794
15795 -- An Itype whose parent is not being copied definitely
15796 -- should NOT be copied, since it does not belong in any
15797 -- sense to the copied subtree.
15798
15799 return;
15800 end;
15801 end if;
15802
15803 elsif F in List_Range and then Parent (List_Id (F)) = N then
15804 Visit_List (List_Id (F));
15805 return;
15806 end if;
15807 end Visit_Field;
15808
15809 -----------------
15810 -- Visit_Itype --
15811 -----------------
15812
15813 procedure Visit_Itype (Old_Itype : Entity_Id) is
15814 New_Itype : Entity_Id;
15815 E : Elmt_Id;
15816 Ent : Entity_Id;
15817
15818 begin
15819 -- Itypes that describe the designated type of access to subprograms
15820 -- have the structure of subprogram declarations, with signatures,
15821 -- etc. Either we duplicate the signatures completely, or choose to
15822 -- share such itypes, which is fine because their elaboration will
15823 -- have no side effects.
15824
15825 if Ekind (Old_Itype) = E_Subprogram_Type then
15826 return;
15827 end if;
15828
15829 New_Itype := New_Copy (Old_Itype);
15830
15831 -- The new Itype has all the attributes of the old one, and
15832 -- we just copy the contents of the entity. However, the back-end
15833 -- needs different names for debugging purposes, so we create a
15834 -- new internal name for it in all cases.
15835
15836 Set_Chars (New_Itype, New_Internal_Name ('T'));
15837
15838 -- If our associated node is an entity that has already been copied,
15839 -- then set the associated node of the copy to point to the right
15840 -- copy. If we have copied an Itype that is itself the associated
15841 -- node of some previously copied Itype, then we set the right
15842 -- pointer in the other direction.
15843
15844 if Present (Actual_Map) then
15845
15846 -- Case of hash tables used
15847
15848 if NCT_Hash_Tables_Used then
15849
15850 Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
15851
15852 if Present (Ent) then
15853 Set_Associated_Node_For_Itype (New_Itype, Ent);
15854 end if;
15855
15856 Ent := NCT_Itype_Assoc.Get (Old_Itype);
15857 if Present (Ent) then
15858 Set_Associated_Node_For_Itype (Ent, New_Itype);
15859
15860 -- If the hash table has no association for this Itype and
15861 -- its associated node, enter one now.
15862
15863 else
15864 NCT_Itype_Assoc.Set
15865 (Associated_Node_For_Itype (Old_Itype), New_Itype);
15866 end if;
15867
15868 -- Case of hash tables not used
15869
15870 else
15871 E := First_Elmt (Actual_Map);
15872 while Present (E) loop
15873 if Associated_Node_For_Itype (Old_Itype) = Node (E) then
15874 Set_Associated_Node_For_Itype
15875 (New_Itype, Node (Next_Elmt (E)));
15876 end if;
15877
15878 if Is_Type (Node (E))
15879 and then Old_Itype = Associated_Node_For_Itype (Node (E))
15880 then
15881 Set_Associated_Node_For_Itype
15882 (Node (Next_Elmt (E)), New_Itype);
15883 end if;
15884
15885 E := Next_Elmt (Next_Elmt (E));
15886 end loop;
15887 end if;
15888 end if;
15889
15890 if Present (Freeze_Node (New_Itype)) then
15891 Set_Is_Frozen (New_Itype, False);
15892 Set_Freeze_Node (New_Itype, Empty);
15893 end if;
15894
15895 -- Add new association to map
15896
15897 if No (Actual_Map) then
15898 Actual_Map := New_Elmt_List;
15899 end if;
15900
15901 Append_Elmt (Old_Itype, Actual_Map);
15902 Append_Elmt (New_Itype, Actual_Map);
15903
15904 if NCT_Hash_Tables_Used then
15905 NCT_Assoc.Set (Old_Itype, New_Itype);
15906
15907 else
15908 NCT_Table_Entries := NCT_Table_Entries + 1;
15909
15910 if NCT_Table_Entries > NCT_Hash_Threshold then
15911 Build_NCT_Hash_Tables;
15912 end if;
15913 end if;
15914
15915 -- If a record subtype is simply copied, the entity list will be
15916 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
15917
15918 if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
15919 Set_Cloned_Subtype (New_Itype, Old_Itype);
15920 end if;
15921
15922 -- Visit descendents that eventually get copied
15923
15924 Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
15925
15926 if Is_Discrete_Type (Old_Itype) then
15927 Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
15928
15929 elsif Has_Discriminants (Base_Type (Old_Itype)) then
15930 -- ??? This should involve call to Visit_Field
15931 Visit_Elist (Discriminant_Constraint (Old_Itype));
15932
15933 elsif Is_Array_Type (Old_Itype) then
15934 if Present (First_Index (Old_Itype)) then
15935 Visit_Field (Union_Id (List_Containing
15936 (First_Index (Old_Itype))),
15937 Old_Itype);
15938 end if;
15939
15940 if Is_Packed (Old_Itype) then
15941 Visit_Field (Union_Id (Packed_Array_Impl_Type (Old_Itype)),
15942 Old_Itype);
15943 end if;
15944 end if;
15945 end Visit_Itype;
15946
15947 ----------------
15948 -- Visit_List --
15949 ----------------
15950
15951 procedure Visit_List (L : List_Id) is
15952 N : Node_Id;
15953 begin
15954 if L /= No_List then
15955 N := First (L);
15956
15957 while Present (N) loop
15958 Visit_Node (N);
15959 Next (N);
15960 end loop;
15961 end if;
15962 end Visit_List;
15963
15964 ----------------
15965 -- Visit_Node --
15966 ----------------
15967
15968 procedure Visit_Node (N : Node_Or_Entity_Id) is
15969
15970 -- Start of processing for Visit_Node
15971
15972 begin
15973 -- Handle case of an Itype, which must be copied
15974
15975 if Has_Extension (N) and then Is_Itype (N) then
15976
15977 -- Nothing to do if already in the list. This can happen with an
15978 -- Itype entity that appears more than once in the tree.
15979 -- Note that we do not want to visit descendents in this case.
15980
15981 -- Test for already in list when hash table is used
15982
15983 if NCT_Hash_Tables_Used then
15984 if Present (NCT_Assoc.Get (Entity_Id (N))) then
15985 return;
15986 end if;
15987
15988 -- Test for already in list when hash table not used
15989
15990 else
15991 declare
15992 E : Elmt_Id;
15993 begin
15994 if Present (Actual_Map) then
15995 E := First_Elmt (Actual_Map);
15996 while Present (E) loop
15997 if Node (E) = N then
15998 return;
15999 else
16000 E := Next_Elmt (Next_Elmt (E));
16001 end if;
16002 end loop;
16003 end if;
16004 end;
16005 end if;
16006
16007 Visit_Itype (N);
16008 end if;
16009
16010 -- Visit descendents
16011
16012 Visit_Field (Field1 (N), N);
16013 Visit_Field (Field2 (N), N);
16014 Visit_Field (Field3 (N), N);
16015 Visit_Field (Field4 (N), N);
16016 Visit_Field (Field5 (N), N);
16017 end Visit_Node;
16018
16019 -- Start of processing for New_Copy_Tree
16020
16021 begin
16022 Actual_Map := Map;
16023
16024 -- See if we should use hash table
16025
16026 if No (Actual_Map) then
16027 NCT_Hash_Tables_Used := False;
16028
16029 else
16030 declare
16031 Elmt : Elmt_Id;
16032
16033 begin
16034 NCT_Table_Entries := 0;
16035
16036 Elmt := First_Elmt (Actual_Map);
16037 while Present (Elmt) loop
16038 NCT_Table_Entries := NCT_Table_Entries + 1;
16039 Next_Elmt (Elmt);
16040 Next_Elmt (Elmt);
16041 end loop;
16042
16043 if NCT_Table_Entries > NCT_Hash_Threshold then
16044 Build_NCT_Hash_Tables;
16045 else
16046 NCT_Hash_Tables_Used := False;
16047 end if;
16048 end;
16049 end if;
16050
16051 -- Hash table set up if required, now start phase one by visiting
16052 -- top node (we will recursively visit the descendents).
16053
16054 Visit_Node (Source);
16055
16056 -- Now the second phase of the copy can start. First we process
16057 -- all the mapped entities, copying their descendents.
16058
16059 if Present (Actual_Map) then
16060 declare
16061 Elmt : Elmt_Id;
16062 New_Itype : Entity_Id;
16063 begin
16064 Elmt := First_Elmt (Actual_Map);
16065 while Present (Elmt) loop
16066 Next_Elmt (Elmt);
16067 New_Itype := Node (Elmt);
16068
16069 if Is_Itype (New_Itype) then
16070 Copy_Itype_With_Replacement (New_Itype);
16071 end if;
16072 Next_Elmt (Elmt);
16073 end loop;
16074 end;
16075 end if;
16076
16077 -- Now we can copy the actual tree
16078
16079 return Copy_Node_With_Replacement (Source);
16080 end New_Copy_Tree;
16081
16082 -------------------------
16083 -- New_External_Entity --
16084 -------------------------
16085
16086 function New_External_Entity
16087 (Kind : Entity_Kind;
16088 Scope_Id : Entity_Id;
16089 Sloc_Value : Source_Ptr;
16090 Related_Id : Entity_Id;
16091 Suffix : Character;
16092 Suffix_Index : Nat := 0;
16093 Prefix : Character := ' ') return Entity_Id
16094 is
16095 N : constant Entity_Id :=
16096 Make_Defining_Identifier (Sloc_Value,
16097 New_External_Name
16098 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
16099
16100 begin
16101 Set_Ekind (N, Kind);
16102 Set_Is_Internal (N, True);
16103 Append_Entity (N, Scope_Id);
16104 Set_Public_Status (N);
16105
16106 if Kind in Type_Kind then
16107 Init_Size_Align (N);
16108 end if;
16109
16110 return N;
16111 end New_External_Entity;
16112
16113 -------------------------
16114 -- New_Internal_Entity --
16115 -------------------------
16116
16117 function New_Internal_Entity
16118 (Kind : Entity_Kind;
16119 Scope_Id : Entity_Id;
16120 Sloc_Value : Source_Ptr;
16121 Id_Char : Character) return Entity_Id
16122 is
16123 N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
16124
16125 begin
16126 Set_Ekind (N, Kind);
16127 Set_Is_Internal (N, True);
16128 Append_Entity (N, Scope_Id);
16129
16130 if Kind in Type_Kind then
16131 Init_Size_Align (N);
16132 end if;
16133
16134 return N;
16135 end New_Internal_Entity;
16136
16137 -----------------
16138 -- Next_Actual --
16139 -----------------
16140
16141 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
16142 N : Node_Id;
16143
16144 begin
16145 -- If we are pointing at a positional parameter, it is a member of a
16146 -- node list (the list of parameters), and the next parameter is the
16147 -- next node on the list, unless we hit a parameter association, then
16148 -- we shift to using the chain whose head is the First_Named_Actual in
16149 -- the parent, and then is threaded using the Next_Named_Actual of the
16150 -- Parameter_Association. All this fiddling is because the original node
16151 -- list is in the textual call order, and what we need is the
16152 -- declaration order.
16153
16154 if Is_List_Member (Actual_Id) then
16155 N := Next (Actual_Id);
16156
16157 if Nkind (N) = N_Parameter_Association then
16158 return First_Named_Actual (Parent (Actual_Id));
16159 else
16160 return N;
16161 end if;
16162
16163 else
16164 return Next_Named_Actual (Parent (Actual_Id));
16165 end if;
16166 end Next_Actual;
16167
16168 procedure Next_Actual (Actual_Id : in out Node_Id) is
16169 begin
16170 Actual_Id := Next_Actual (Actual_Id);
16171 end Next_Actual;
16172
16173 -----------------------
16174 -- Normalize_Actuals --
16175 -----------------------
16176
16177 -- Chain actuals according to formals of subprogram. If there are no named
16178 -- associations, the chain is simply the list of Parameter Associations,
16179 -- since the order is the same as the declaration order. If there are named
16180 -- associations, then the First_Named_Actual field in the N_Function_Call
16181 -- or N_Procedure_Call_Statement node points to the Parameter_Association
16182 -- node for the parameter that comes first in declaration order. The
16183 -- remaining named parameters are then chained in declaration order using
16184 -- Next_Named_Actual.
16185
16186 -- This routine also verifies that the number of actuals is compatible with
16187 -- the number and default values of formals, but performs no type checking
16188 -- (type checking is done by the caller).
16189
16190 -- If the matching succeeds, Success is set to True and the caller proceeds
16191 -- with type-checking. If the match is unsuccessful, then Success is set to
16192 -- False, and the caller attempts a different interpretation, if there is
16193 -- one.
16194
16195 -- If the flag Report is on, the call is not overloaded, and a failure to
16196 -- match can be reported here, rather than in the caller.
16197
16198 procedure Normalize_Actuals
16199 (N : Node_Id;
16200 S : Entity_Id;
16201 Report : Boolean;
16202 Success : out Boolean)
16203 is
16204 Actuals : constant List_Id := Parameter_Associations (N);
16205 Actual : Node_Id := Empty;
16206 Formal : Entity_Id;
16207 Last : Node_Id := Empty;
16208 First_Named : Node_Id := Empty;
16209 Found : Boolean;
16210
16211 Formals_To_Match : Integer := 0;
16212 Actuals_To_Match : Integer := 0;
16213
16214 procedure Chain (A : Node_Id);
16215 -- Add named actual at the proper place in the list, using the
16216 -- Next_Named_Actual link.
16217
16218 function Reporting return Boolean;
16219 -- Determines if an error is to be reported. To report an error, we
16220 -- need Report to be True, and also we do not report errors caused
16221 -- by calls to init procs that occur within other init procs. Such
16222 -- errors must always be cascaded errors, since if all the types are
16223 -- declared correctly, the compiler will certainly build decent calls.
16224
16225 -----------
16226 -- Chain --
16227 -----------
16228
16229 procedure Chain (A : Node_Id) is
16230 begin
16231 if No (Last) then
16232
16233 -- Call node points to first actual in list
16234
16235 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
16236
16237 else
16238 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
16239 end if;
16240
16241 Last := A;
16242 Set_Next_Named_Actual (Last, Empty);
16243 end Chain;
16244
16245 ---------------
16246 -- Reporting --
16247 ---------------
16248
16249 function Reporting return Boolean is
16250 begin
16251 if not Report then
16252 return False;
16253
16254 elsif not Within_Init_Proc then
16255 return True;
16256
16257 elsif Is_Init_Proc (Entity (Name (N))) then
16258 return False;
16259
16260 else
16261 return True;
16262 end if;
16263 end Reporting;
16264
16265 -- Start of processing for Normalize_Actuals
16266
16267 begin
16268 if Is_Access_Type (S) then
16269
16270 -- The name in the call is a function call that returns an access
16271 -- to subprogram. The designated type has the list of formals.
16272
16273 Formal := First_Formal (Designated_Type (S));
16274 else
16275 Formal := First_Formal (S);
16276 end if;
16277
16278 while Present (Formal) loop
16279 Formals_To_Match := Formals_To_Match + 1;
16280 Next_Formal (Formal);
16281 end loop;
16282
16283 -- Find if there is a named association, and verify that no positional
16284 -- associations appear after named ones.
16285
16286 if Present (Actuals) then
16287 Actual := First (Actuals);
16288 end if;
16289
16290 while Present (Actual)
16291 and then Nkind (Actual) /= N_Parameter_Association
16292 loop
16293 Actuals_To_Match := Actuals_To_Match + 1;
16294 Next (Actual);
16295 end loop;
16296
16297 if No (Actual) and Actuals_To_Match = Formals_To_Match then
16298
16299 -- Most common case: positional notation, no defaults
16300
16301 Success := True;
16302 return;
16303
16304 elsif Actuals_To_Match > Formals_To_Match then
16305
16306 -- Too many actuals: will not work
16307
16308 if Reporting then
16309 if Is_Entity_Name (Name (N)) then
16310 Error_Msg_N ("too many arguments in call to&", Name (N));
16311 else
16312 Error_Msg_N ("too many arguments in call", N);
16313 end if;
16314 end if;
16315
16316 Success := False;
16317 return;
16318 end if;
16319
16320 First_Named := Actual;
16321
16322 while Present (Actual) loop
16323 if Nkind (Actual) /= N_Parameter_Association then
16324 Error_Msg_N
16325 ("positional parameters not allowed after named ones", Actual);
16326 Success := False;
16327 return;
16328
16329 else
16330 Actuals_To_Match := Actuals_To_Match + 1;
16331 end if;
16332
16333 Next (Actual);
16334 end loop;
16335
16336 if Present (Actuals) then
16337 Actual := First (Actuals);
16338 end if;
16339
16340 Formal := First_Formal (S);
16341 while Present (Formal) loop
16342
16343 -- Match the formals in order. If the corresponding actual is
16344 -- positional, nothing to do. Else scan the list of named actuals
16345 -- to find the one with the right name.
16346
16347 if Present (Actual)
16348 and then Nkind (Actual) /= N_Parameter_Association
16349 then
16350 Next (Actual);
16351 Actuals_To_Match := Actuals_To_Match - 1;
16352 Formals_To_Match := Formals_To_Match - 1;
16353
16354 else
16355 -- For named parameters, search the list of actuals to find
16356 -- one that matches the next formal name.
16357
16358 Actual := First_Named;
16359 Found := False;
16360 while Present (Actual) loop
16361 if Chars (Selector_Name (Actual)) = Chars (Formal) then
16362 Found := True;
16363 Chain (Actual);
16364 Actuals_To_Match := Actuals_To_Match - 1;
16365 Formals_To_Match := Formals_To_Match - 1;
16366 exit;
16367 end if;
16368
16369 Next (Actual);
16370 end loop;
16371
16372 if not Found then
16373 if Ekind (Formal) /= E_In_Parameter
16374 or else No (Default_Value (Formal))
16375 then
16376 if Reporting then
16377 if (Comes_From_Source (S)
16378 or else Sloc (S) = Standard_Location)
16379 and then Is_Overloadable (S)
16380 then
16381 if No (Actuals)
16382 and then
16383 Nkind_In (Parent (N), N_Procedure_Call_Statement,
16384 N_Function_Call,
16385 N_Parameter_Association)
16386 and then Ekind (S) /= E_Function
16387 then
16388 Set_Etype (N, Etype (S));
16389
16390 else
16391 Error_Msg_Name_1 := Chars (S);
16392 Error_Msg_Sloc := Sloc (S);
16393 Error_Msg_NE
16394 ("missing argument for parameter & "
16395 & "in call to % declared #", N, Formal);
16396 end if;
16397
16398 elsif Is_Overloadable (S) then
16399 Error_Msg_Name_1 := Chars (S);
16400
16401 -- Point to type derivation that generated the
16402 -- operation.
16403
16404 Error_Msg_Sloc := Sloc (Parent (S));
16405
16406 Error_Msg_NE
16407 ("missing argument for parameter & "
16408 & "in call to % (inherited) #", N, Formal);
16409
16410 else
16411 Error_Msg_NE
16412 ("missing argument for parameter &", N, Formal);
16413 end if;
16414 end if;
16415
16416 Success := False;
16417 return;
16418
16419 else
16420 Formals_To_Match := Formals_To_Match - 1;
16421 end if;
16422 end if;
16423 end if;
16424
16425 Next_Formal (Formal);
16426 end loop;
16427
16428 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
16429 Success := True;
16430 return;
16431
16432 else
16433 if Reporting then
16434
16435 -- Find some superfluous named actual that did not get
16436 -- attached to the list of associations.
16437
16438 Actual := First (Actuals);
16439 while Present (Actual) loop
16440 if Nkind (Actual) = N_Parameter_Association
16441 and then Actual /= Last
16442 and then No (Next_Named_Actual (Actual))
16443 then
16444 Error_Msg_N ("unmatched actual & in call",
16445 Selector_Name (Actual));
16446 exit;
16447 end if;
16448
16449 Next (Actual);
16450 end loop;
16451 end if;
16452
16453 Success := False;
16454 return;
16455 end if;
16456 end Normalize_Actuals;
16457
16458 --------------------------------
16459 -- Note_Possible_Modification --
16460 --------------------------------
16461
16462 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
16463 Modification_Comes_From_Source : constant Boolean :=
16464 Comes_From_Source (Parent (N));
16465
16466 Ent : Entity_Id;
16467 Exp : Node_Id;
16468
16469 begin
16470 -- Loop to find referenced entity, if there is one
16471
16472 Exp := N;
16473 loop
16474 Ent := Empty;
16475
16476 if Is_Entity_Name (Exp) then
16477 Ent := Entity (Exp);
16478
16479 -- If the entity is missing, it is an undeclared identifier,
16480 -- and there is nothing to annotate.
16481
16482 if No (Ent) then
16483 return;
16484 end if;
16485
16486 elsif Nkind (Exp) = N_Explicit_Dereference then
16487 declare
16488 P : constant Node_Id := Prefix (Exp);
16489
16490 begin
16491 -- In formal verification mode, keep track of all reads and
16492 -- writes through explicit dereferences.
16493
16494 if GNATprove_Mode then
16495 SPARK_Specific.Generate_Dereference (N, 'm');
16496 end if;
16497
16498 if Nkind (P) = N_Selected_Component
16499 and then Present (Entry_Formal (Entity (Selector_Name (P))))
16500 then
16501 -- Case of a reference to an entry formal
16502
16503 Ent := Entry_Formal (Entity (Selector_Name (P)));
16504
16505 elsif Nkind (P) = N_Identifier
16506 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
16507 and then Present (Expression (Parent (Entity (P))))
16508 and then Nkind (Expression (Parent (Entity (P)))) =
16509 N_Reference
16510 then
16511 -- Case of a reference to a value on which side effects have
16512 -- been removed.
16513
16514 Exp := Prefix (Expression (Parent (Entity (P))));
16515 goto Continue;
16516
16517 else
16518 return;
16519 end if;
16520 end;
16521
16522 elsif Nkind_In (Exp, N_Type_Conversion,
16523 N_Unchecked_Type_Conversion)
16524 then
16525 Exp := Expression (Exp);
16526 goto Continue;
16527
16528 elsif Nkind_In (Exp, N_Slice,
16529 N_Indexed_Component,
16530 N_Selected_Component)
16531 then
16532 -- Special check, if the prefix is an access type, then return
16533 -- since we are modifying the thing pointed to, not the prefix.
16534 -- When we are expanding, most usually the prefix is replaced
16535 -- by an explicit dereference, and this test is not needed, but
16536 -- in some cases (notably -gnatc mode and generics) when we do
16537 -- not do full expansion, we need this special test.
16538
16539 if Is_Access_Type (Etype (Prefix (Exp))) then
16540 return;
16541
16542 -- Otherwise go to prefix and keep going
16543
16544 else
16545 Exp := Prefix (Exp);
16546 goto Continue;
16547 end if;
16548
16549 -- All other cases, not a modification
16550
16551 else
16552 return;
16553 end if;
16554
16555 -- Now look for entity being referenced
16556
16557 if Present (Ent) then
16558 if Is_Object (Ent) then
16559 if Comes_From_Source (Exp)
16560 or else Modification_Comes_From_Source
16561 then
16562 -- Give warning if pragma unmodified given and we are
16563 -- sure this is a modification.
16564
16565 if Has_Pragma_Unmodified (Ent) and then Sure then
16566 Error_Msg_NE ("??pragma Unmodified given for &!", N, Ent);
16567 end if;
16568
16569 Set_Never_Set_In_Source (Ent, False);
16570 end if;
16571
16572 Set_Is_True_Constant (Ent, False);
16573 Set_Current_Value (Ent, Empty);
16574 Set_Is_Known_Null (Ent, False);
16575
16576 if not Can_Never_Be_Null (Ent) then
16577 Set_Is_Known_Non_Null (Ent, False);
16578 end if;
16579
16580 -- Follow renaming chain
16581
16582 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
16583 and then Present (Renamed_Object (Ent))
16584 then
16585 Exp := Renamed_Object (Ent);
16586
16587 -- If the entity is the loop variable in an iteration over
16588 -- a container, retrieve container expression to indicate
16589 -- possible modification.
16590
16591 if Present (Related_Expression (Ent))
16592 and then Nkind (Parent (Related_Expression (Ent))) =
16593 N_Iterator_Specification
16594 then
16595 Exp := Original_Node (Related_Expression (Ent));
16596 end if;
16597
16598 goto Continue;
16599
16600 -- The expression may be the renaming of a subcomponent of an
16601 -- array or container. The assignment to the subcomponent is
16602 -- a modification of the container.
16603
16604 elsif Comes_From_Source (Original_Node (Exp))
16605 and then Nkind_In (Original_Node (Exp), N_Selected_Component,
16606 N_Indexed_Component)
16607 then
16608 Exp := Prefix (Original_Node (Exp));
16609 goto Continue;
16610 end if;
16611
16612 -- Generate a reference only if the assignment comes from
16613 -- source. This excludes, for example, calls to a dispatching
16614 -- assignment operation when the left-hand side is tagged. In
16615 -- GNATprove mode, we need those references also on generated
16616 -- code, as these are used to compute the local effects of
16617 -- subprograms.
16618
16619 if Modification_Comes_From_Source or GNATprove_Mode then
16620 Generate_Reference (Ent, Exp, 'm');
16621
16622 -- If the target of the assignment is the bound variable
16623 -- in an iterator, indicate that the corresponding array
16624 -- or container is also modified.
16625
16626 if Ada_Version >= Ada_2012
16627 and then Nkind (Parent (Ent)) = N_Iterator_Specification
16628 then
16629 declare
16630 Domain : constant Node_Id := Name (Parent (Ent));
16631
16632 begin
16633 -- TBD : in the full version of the construct, the
16634 -- domain of iteration can be given by an expression.
16635
16636 if Is_Entity_Name (Domain) then
16637 Generate_Reference (Entity (Domain), Exp, 'm');
16638 Set_Is_True_Constant (Entity (Domain), False);
16639 Set_Never_Set_In_Source (Entity (Domain), False);
16640 end if;
16641 end;
16642 end if;
16643 end if;
16644 end if;
16645
16646 Kill_Checks (Ent);
16647
16648 -- If we are sure this is a modification from source, and we know
16649 -- this modifies a constant, then give an appropriate warning.
16650
16651 if Sure
16652 and then Modification_Comes_From_Source
16653 and then Overlays_Constant (Ent)
16654 and then Address_Clause_Overlay_Warnings
16655 then
16656 declare
16657 Addr : constant Node_Id := Address_Clause (Ent);
16658 O_Ent : Entity_Id;
16659 Off : Boolean;
16660
16661 begin
16662 Find_Overlaid_Entity (Addr, O_Ent, Off);
16663
16664 Error_Msg_Sloc := Sloc (Addr);
16665 Error_Msg_NE
16666 ("??constant& may be modified via address clause#",
16667 N, O_Ent);
16668 end;
16669 end if;
16670
16671 return;
16672 end if;
16673
16674 <<Continue>>
16675 null;
16676 end loop;
16677 end Note_Possible_Modification;
16678
16679 -------------------------
16680 -- Object_Access_Level --
16681 -------------------------
16682
16683 -- Returns the static accessibility level of the view denoted by Obj. Note
16684 -- that the value returned is the result of a call to Scope_Depth. Only
16685 -- scope depths associated with dynamic scopes can actually be returned.
16686 -- Since only relative levels matter for accessibility checking, the fact
16687 -- that the distance between successive levels of accessibility is not
16688 -- always one is immaterial (invariant: if level(E2) is deeper than
16689 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
16690
16691 function Object_Access_Level (Obj : Node_Id) return Uint is
16692 function Is_Interface_Conversion (N : Node_Id) return Boolean;
16693 -- Determine whether N is a construct of the form
16694 -- Some_Type (Operand._tag'Address)
16695 -- This construct appears in the context of dispatching calls.
16696
16697 function Reference_To (Obj : Node_Id) return Node_Id;
16698 -- An explicit dereference is created when removing side-effects from
16699 -- expressions for constraint checking purposes. In this case a local
16700 -- access type is created for it. The correct access level is that of
16701 -- the original source node. We detect this case by noting that the
16702 -- prefix of the dereference is created by an object declaration whose
16703 -- initial expression is a reference.
16704
16705 -----------------------------
16706 -- Is_Interface_Conversion --
16707 -----------------------------
16708
16709 function Is_Interface_Conversion (N : Node_Id) return Boolean is
16710 begin
16711 return Nkind (N) = N_Unchecked_Type_Conversion
16712 and then Nkind (Expression (N)) = N_Attribute_Reference
16713 and then Attribute_Name (Expression (N)) = Name_Address;
16714 end Is_Interface_Conversion;
16715
16716 ------------------
16717 -- Reference_To --
16718 ------------------
16719
16720 function Reference_To (Obj : Node_Id) return Node_Id is
16721 Pref : constant Node_Id := Prefix (Obj);
16722 begin
16723 if Is_Entity_Name (Pref)
16724 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
16725 and then Present (Expression (Parent (Entity (Pref))))
16726 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
16727 then
16728 return (Prefix (Expression (Parent (Entity (Pref)))));
16729 else
16730 return Empty;
16731 end if;
16732 end Reference_To;
16733
16734 -- Local variables
16735
16736 E : Entity_Id;
16737
16738 -- Start of processing for Object_Access_Level
16739
16740 begin
16741 if Nkind (Obj) = N_Defining_Identifier
16742 or else Is_Entity_Name (Obj)
16743 then
16744 if Nkind (Obj) = N_Defining_Identifier then
16745 E := Obj;
16746 else
16747 E := Entity (Obj);
16748 end if;
16749
16750 if Is_Prival (E) then
16751 E := Prival_Link (E);
16752 end if;
16753
16754 -- If E is a type then it denotes a current instance. For this case
16755 -- we add one to the normal accessibility level of the type to ensure
16756 -- that current instances are treated as always being deeper than
16757 -- than the level of any visible named access type (see 3.10.2(21)).
16758
16759 if Is_Type (E) then
16760 return Type_Access_Level (E) + 1;
16761
16762 elsif Present (Renamed_Object (E)) then
16763 return Object_Access_Level (Renamed_Object (E));
16764
16765 -- Similarly, if E is a component of the current instance of a
16766 -- protected type, any instance of it is assumed to be at a deeper
16767 -- level than the type. For a protected object (whose type is an
16768 -- anonymous protected type) its components are at the same level
16769 -- as the type itself.
16770
16771 elsif not Is_Overloadable (E)
16772 and then Ekind (Scope (E)) = E_Protected_Type
16773 and then Comes_From_Source (Scope (E))
16774 then
16775 return Type_Access_Level (Scope (E)) + 1;
16776
16777 else
16778 -- Aliased formals of functions take their access level from the
16779 -- point of call, i.e. require a dynamic check. For static check
16780 -- purposes, this is smaller than the level of the subprogram
16781 -- itself. For procedures the aliased makes no difference.
16782
16783 if Is_Formal (E)
16784 and then Is_Aliased (E)
16785 and then Ekind (Scope (E)) = E_Function
16786 then
16787 return Type_Access_Level (Etype (E));
16788
16789 else
16790 return Scope_Depth (Enclosing_Dynamic_Scope (E));
16791 end if;
16792 end if;
16793
16794 elsif Nkind (Obj) = N_Selected_Component then
16795 if Is_Access_Type (Etype (Prefix (Obj))) then
16796 return Type_Access_Level (Etype (Prefix (Obj)));
16797 else
16798 return Object_Access_Level (Prefix (Obj));
16799 end if;
16800
16801 elsif Nkind (Obj) = N_Indexed_Component then
16802 if Is_Access_Type (Etype (Prefix (Obj))) then
16803 return Type_Access_Level (Etype (Prefix (Obj)));
16804 else
16805 return Object_Access_Level (Prefix (Obj));
16806 end if;
16807
16808 elsif Nkind (Obj) = N_Explicit_Dereference then
16809
16810 -- If the prefix is a selected access discriminant then we make a
16811 -- recursive call on the prefix, which will in turn check the level
16812 -- of the prefix object of the selected discriminant.
16813
16814 -- In Ada 2012, if the discriminant has implicit dereference and
16815 -- the context is a selected component, treat this as an object of
16816 -- unknown scope (see below). This is necessary in compile-only mode;
16817 -- otherwise expansion will already have transformed the prefix into
16818 -- a temporary.
16819
16820 if Nkind (Prefix (Obj)) = N_Selected_Component
16821 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
16822 and then
16823 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
16824 and then
16825 (not Has_Implicit_Dereference
16826 (Entity (Selector_Name (Prefix (Obj))))
16827 or else Nkind (Parent (Obj)) /= N_Selected_Component)
16828 then
16829 return Object_Access_Level (Prefix (Obj));
16830
16831 -- Detect an interface conversion in the context of a dispatching
16832 -- call. Use the original form of the conversion to find the access
16833 -- level of the operand.
16834
16835 elsif Is_Interface (Etype (Obj))
16836 and then Is_Interface_Conversion (Prefix (Obj))
16837 and then Nkind (Original_Node (Obj)) = N_Type_Conversion
16838 then
16839 return Object_Access_Level (Original_Node (Obj));
16840
16841 elsif not Comes_From_Source (Obj) then
16842 declare
16843 Ref : constant Node_Id := Reference_To (Obj);
16844 begin
16845 if Present (Ref) then
16846 return Object_Access_Level (Ref);
16847 else
16848 return Type_Access_Level (Etype (Prefix (Obj)));
16849 end if;
16850 end;
16851
16852 else
16853 return Type_Access_Level (Etype (Prefix (Obj)));
16854 end if;
16855
16856 elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
16857 return Object_Access_Level (Expression (Obj));
16858
16859 elsif Nkind (Obj) = N_Function_Call then
16860
16861 -- Function results are objects, so we get either the access level of
16862 -- the function or, in the case of an indirect call, the level of the
16863 -- access-to-subprogram type. (This code is used for Ada 95, but it
16864 -- looks wrong, because it seems that we should be checking the level
16865 -- of the call itself, even for Ada 95. However, using the Ada 2005
16866 -- version of the code causes regressions in several tests that are
16867 -- compiled with -gnat95. ???)
16868
16869 if Ada_Version < Ada_2005 then
16870 if Is_Entity_Name (Name (Obj)) then
16871 return Subprogram_Access_Level (Entity (Name (Obj)));
16872 else
16873 return Type_Access_Level (Etype (Prefix (Name (Obj))));
16874 end if;
16875
16876 -- For Ada 2005, the level of the result object of a function call is
16877 -- defined to be the level of the call's innermost enclosing master.
16878 -- We determine that by querying the depth of the innermost enclosing
16879 -- dynamic scope.
16880
16881 else
16882 Return_Master_Scope_Depth_Of_Call : declare
16883
16884 function Innermost_Master_Scope_Depth
16885 (N : Node_Id) return Uint;
16886 -- Returns the scope depth of the given node's innermost
16887 -- enclosing dynamic scope (effectively the accessibility
16888 -- level of the innermost enclosing master).
16889
16890 ----------------------------------
16891 -- Innermost_Master_Scope_Depth --
16892 ----------------------------------
16893
16894 function Innermost_Master_Scope_Depth
16895 (N : Node_Id) return Uint
16896 is
16897 Node_Par : Node_Id := Parent (N);
16898
16899 begin
16900 -- Locate the nearest enclosing node (by traversing Parents)
16901 -- that Defining_Entity can be applied to, and return the
16902 -- depth of that entity's nearest enclosing dynamic scope.
16903
16904 while Present (Node_Par) loop
16905 case Nkind (Node_Par) is
16906 when N_Component_Declaration |
16907 N_Entry_Declaration |
16908 N_Formal_Object_Declaration |
16909 N_Formal_Type_Declaration |
16910 N_Full_Type_Declaration |
16911 N_Incomplete_Type_Declaration |
16912 N_Loop_Parameter_Specification |
16913 N_Object_Declaration |
16914 N_Protected_Type_Declaration |
16915 N_Private_Extension_Declaration |
16916 N_Private_Type_Declaration |
16917 N_Subtype_Declaration |
16918 N_Function_Specification |
16919 N_Procedure_Specification |
16920 N_Task_Type_Declaration |
16921 N_Body_Stub |
16922 N_Generic_Instantiation |
16923 N_Proper_Body |
16924 N_Implicit_Label_Declaration |
16925 N_Package_Declaration |
16926 N_Single_Task_Declaration |
16927 N_Subprogram_Declaration |
16928 N_Generic_Declaration |
16929 N_Renaming_Declaration |
16930 N_Block_Statement |
16931 N_Formal_Subprogram_Declaration |
16932 N_Abstract_Subprogram_Declaration |
16933 N_Entry_Body |
16934 N_Exception_Declaration |
16935 N_Formal_Package_Declaration |
16936 N_Number_Declaration |
16937 N_Package_Specification |
16938 N_Parameter_Specification |
16939 N_Single_Protected_Declaration |
16940 N_Subunit =>
16941
16942 return Scope_Depth
16943 (Nearest_Dynamic_Scope
16944 (Defining_Entity (Node_Par)));
16945
16946 when others =>
16947 null;
16948 end case;
16949
16950 Node_Par := Parent (Node_Par);
16951 end loop;
16952
16953 pragma Assert (False);
16954
16955 -- Should never reach the following return
16956
16957 return Scope_Depth (Current_Scope) + 1;
16958 end Innermost_Master_Scope_Depth;
16959
16960 -- Start of processing for Return_Master_Scope_Depth_Of_Call
16961
16962 begin
16963 return Innermost_Master_Scope_Depth (Obj);
16964 end Return_Master_Scope_Depth_Of_Call;
16965 end if;
16966
16967 -- For convenience we handle qualified expressions, even though they
16968 -- aren't technically object names.
16969
16970 elsif Nkind (Obj) = N_Qualified_Expression then
16971 return Object_Access_Level (Expression (Obj));
16972
16973 -- Ditto for aggregates. They have the level of the temporary that
16974 -- will hold their value.
16975
16976 elsif Nkind (Obj) = N_Aggregate then
16977 return Object_Access_Level (Current_Scope);
16978
16979 -- Otherwise return the scope level of Standard. (If there are cases
16980 -- that fall through to this point they will be treated as having
16981 -- global accessibility for now. ???)
16982
16983 else
16984 return Scope_Depth (Standard_Standard);
16985 end if;
16986 end Object_Access_Level;
16987
16988 ---------------------------------
16989 -- Original_Aspect_Pragma_Name --
16990 ---------------------------------
16991
16992 function Original_Aspect_Pragma_Name (N : Node_Id) return Name_Id is
16993 Item : Node_Id;
16994 Item_Nam : Name_Id;
16995
16996 begin
16997 pragma Assert (Nkind_In (N, N_Aspect_Specification, N_Pragma));
16998
16999 Item := N;
17000
17001 -- The pragma was generated to emulate an aspect, use the original
17002 -- aspect specification.
17003
17004 if Nkind (Item) = N_Pragma and then From_Aspect_Specification (Item) then
17005 Item := Corresponding_Aspect (Item);
17006 end if;
17007
17008 -- Retrieve the name of the aspect/pragma. Note that Pre, Pre_Class,
17009 -- Post and Post_Class rewrite their pragma identifier to preserve the
17010 -- original name.
17011 -- ??? this is kludgey
17012
17013 if Nkind (Item) = N_Pragma then
17014 Item_Nam := Chars (Original_Node (Pragma_Identifier (Item)));
17015
17016 else
17017 pragma Assert (Nkind (Item) = N_Aspect_Specification);
17018 Item_Nam := Chars (Identifier (Item));
17019 end if;
17020
17021 -- Deal with 'Class by converting the name to its _XXX form
17022
17023 if Class_Present (Item) then
17024 if Item_Nam = Name_Invariant then
17025 Item_Nam := Name_uInvariant;
17026
17027 elsif Item_Nam = Name_Post then
17028 Item_Nam := Name_uPost;
17029
17030 elsif Item_Nam = Name_Pre then
17031 Item_Nam := Name_uPre;
17032
17033 elsif Nam_In (Item_Nam, Name_Type_Invariant,
17034 Name_Type_Invariant_Class)
17035 then
17036 Item_Nam := Name_uType_Invariant;
17037
17038 -- Nothing to do for other cases (e.g. a Check that derived from
17039 -- Pre_Class and has the flag set). Also we do nothing if the name
17040 -- is already in special _xxx form.
17041
17042 end if;
17043 end if;
17044
17045 return Item_Nam;
17046 end Original_Aspect_Pragma_Name;
17047
17048 --------------------------------------
17049 -- Original_Corresponding_Operation --
17050 --------------------------------------
17051
17052 function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
17053 is
17054 Typ : constant Entity_Id := Find_Dispatching_Type (S);
17055
17056 begin
17057 -- If S is an inherited primitive S2 the original corresponding
17058 -- operation of S is the original corresponding operation of S2
17059
17060 if Present (Alias (S))
17061 and then Find_Dispatching_Type (Alias (S)) /= Typ
17062 then
17063 return Original_Corresponding_Operation (Alias (S));
17064
17065 -- If S overrides an inherited subprogram S2 the original corresponding
17066 -- operation of S is the original corresponding operation of S2
17067
17068 elsif Present (Overridden_Operation (S)) then
17069 return Original_Corresponding_Operation (Overridden_Operation (S));
17070
17071 -- otherwise it is S itself
17072
17073 else
17074 return S;
17075 end if;
17076 end Original_Corresponding_Operation;
17077
17078 ----------------------
17079 -- Policy_In_Effect --
17080 ----------------------
17081
17082 function Policy_In_Effect (Policy : Name_Id) return Name_Id is
17083 function Policy_In_List (List : Node_Id) return Name_Id;
17084 -- Determine the mode of a policy in a N_Pragma list
17085
17086 --------------------
17087 -- Policy_In_List --
17088 --------------------
17089
17090 function Policy_In_List (List : Node_Id) return Name_Id is
17091 Arg1 : Node_Id;
17092 Arg2 : Node_Id;
17093 Prag : Node_Id;
17094
17095 begin
17096 Prag := List;
17097 while Present (Prag) loop
17098 Arg1 := First (Pragma_Argument_Associations (Prag));
17099 Arg2 := Next (Arg1);
17100
17101 Arg1 := Get_Pragma_Arg (Arg1);
17102 Arg2 := Get_Pragma_Arg (Arg2);
17103
17104 -- The current Check_Policy pragma matches the requested policy or
17105 -- appears in the single argument form (Assertion, policy_id).
17106
17107 if Nam_In (Chars (Arg1), Name_Assertion, Policy) then
17108 return Chars (Arg2);
17109 end if;
17110
17111 Prag := Next_Pragma (Prag);
17112 end loop;
17113
17114 return No_Name;
17115 end Policy_In_List;
17116
17117 -- Local variables
17118
17119 Kind : Name_Id;
17120
17121 -- Start of processing for Policy_In_Effect
17122
17123 begin
17124 if not Is_Valid_Assertion_Kind (Policy) then
17125 raise Program_Error;
17126 end if;
17127
17128 -- Inspect all policy pragmas that appear within scopes (if any)
17129
17130 Kind := Policy_In_List (Check_Policy_List);
17131
17132 -- Inspect all configuration policy pragmas (if any)
17133
17134 if Kind = No_Name then
17135 Kind := Policy_In_List (Check_Policy_List_Config);
17136 end if;
17137
17138 -- The context lacks policy pragmas, determine the mode based on whether
17139 -- assertions are enabled at the configuration level. This ensures that
17140 -- the policy is preserved when analyzing generics.
17141
17142 if Kind = No_Name then
17143 if Assertions_Enabled_Config then
17144 Kind := Name_Check;
17145 else
17146 Kind := Name_Ignore;
17147 end if;
17148 end if;
17149
17150 return Kind;
17151 end Policy_In_Effect;
17152
17153 ----------------------------------
17154 -- Predicate_Tests_On_Arguments --
17155 ----------------------------------
17156
17157 function Predicate_Tests_On_Arguments (Subp : Entity_Id) return Boolean is
17158 begin
17159 -- Always test predicates on indirect call
17160
17161 if Ekind (Subp) = E_Subprogram_Type then
17162 return True;
17163
17164 -- Do not test predicates on call to generated default Finalize, since
17165 -- we are not interested in whether something we are finalizing (and
17166 -- typically destroying) satisfies its predicates.
17167
17168 elsif Chars (Subp) = Name_Finalize
17169 and then not Comes_From_Source (Subp)
17170 then
17171 return False;
17172
17173 -- Do not test predicates on any internally generated routines
17174
17175 elsif Is_Internal_Name (Chars (Subp)) then
17176 return False;
17177
17178 -- Do not test predicates on call to Init_Proc, since if needed the
17179 -- predicate test will occur at some other point.
17180
17181 elsif Is_Init_Proc (Subp) then
17182 return False;
17183
17184 -- Do not test predicates on call to predicate function, since this
17185 -- would cause infinite recursion.
17186
17187 elsif Ekind (Subp) = E_Function
17188 and then (Is_Predicate_Function (Subp)
17189 or else
17190 Is_Predicate_Function_M (Subp))
17191 then
17192 return False;
17193
17194 -- For now, no other exceptions
17195
17196 else
17197 return True;
17198 end if;
17199 end Predicate_Tests_On_Arguments;
17200
17201 -----------------------
17202 -- Private_Component --
17203 -----------------------
17204
17205 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
17206 Ancestor : constant Entity_Id := Base_Type (Type_Id);
17207
17208 function Trace_Components
17209 (T : Entity_Id;
17210 Check : Boolean) return Entity_Id;
17211 -- Recursive function that does the work, and checks against circular
17212 -- definition for each subcomponent type.
17213
17214 ----------------------
17215 -- Trace_Components --
17216 ----------------------
17217
17218 function Trace_Components
17219 (T : Entity_Id;
17220 Check : Boolean) return Entity_Id
17221 is
17222 Btype : constant Entity_Id := Base_Type (T);
17223 Component : Entity_Id;
17224 P : Entity_Id;
17225 Candidate : Entity_Id := Empty;
17226
17227 begin
17228 if Check and then Btype = Ancestor then
17229 Error_Msg_N ("circular type definition", Type_Id);
17230 return Any_Type;
17231 end if;
17232
17233 if Is_Private_Type (Btype) and then not Is_Generic_Type (Btype) then
17234 if Present (Full_View (Btype))
17235 and then Is_Record_Type (Full_View (Btype))
17236 and then not Is_Frozen (Btype)
17237 then
17238 -- To indicate that the ancestor depends on a private type, the
17239 -- current Btype is sufficient. However, to check for circular
17240 -- definition we must recurse on the full view.
17241
17242 Candidate := Trace_Components (Full_View (Btype), True);
17243
17244 if Candidate = Any_Type then
17245 return Any_Type;
17246 else
17247 return Btype;
17248 end if;
17249
17250 else
17251 return Btype;
17252 end if;
17253
17254 elsif Is_Array_Type (Btype) then
17255 return Trace_Components (Component_Type (Btype), True);
17256
17257 elsif Is_Record_Type (Btype) then
17258 Component := First_Entity (Btype);
17259 while Present (Component)
17260 and then Comes_From_Source (Component)
17261 loop
17262 -- Skip anonymous types generated by constrained components
17263
17264 if not Is_Type (Component) then
17265 P := Trace_Components (Etype (Component), True);
17266
17267 if Present (P) then
17268 if P = Any_Type then
17269 return P;
17270 else
17271 Candidate := P;
17272 end if;
17273 end if;
17274 end if;
17275
17276 Next_Entity (Component);
17277 end loop;
17278
17279 return Candidate;
17280
17281 else
17282 return Empty;
17283 end if;
17284 end Trace_Components;
17285
17286 -- Start of processing for Private_Component
17287
17288 begin
17289 return Trace_Components (Type_Id, False);
17290 end Private_Component;
17291
17292 ---------------------------
17293 -- Primitive_Names_Match --
17294 ---------------------------
17295
17296 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
17297
17298 function Non_Internal_Name (E : Entity_Id) return Name_Id;
17299 -- Given an internal name, returns the corresponding non-internal name
17300
17301 ------------------------
17302 -- Non_Internal_Name --
17303 ------------------------
17304
17305 function Non_Internal_Name (E : Entity_Id) return Name_Id is
17306 begin
17307 Get_Name_String (Chars (E));
17308 Name_Len := Name_Len - 1;
17309 return Name_Find;
17310 end Non_Internal_Name;
17311
17312 -- Start of processing for Primitive_Names_Match
17313
17314 begin
17315 pragma Assert (Present (E1) and then Present (E2));
17316
17317 return Chars (E1) = Chars (E2)
17318 or else
17319 (not Is_Internal_Name (Chars (E1))
17320 and then Is_Internal_Name (Chars (E2))
17321 and then Non_Internal_Name (E2) = Chars (E1))
17322 or else
17323 (not Is_Internal_Name (Chars (E2))
17324 and then Is_Internal_Name (Chars (E1))
17325 and then Non_Internal_Name (E1) = Chars (E2))
17326 or else
17327 (Is_Predefined_Dispatching_Operation (E1)
17328 and then Is_Predefined_Dispatching_Operation (E2)
17329 and then Same_TSS (E1, E2))
17330 or else
17331 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
17332 end Primitive_Names_Match;
17333
17334 -----------------------
17335 -- Process_End_Label --
17336 -----------------------
17337
17338 procedure Process_End_Label
17339 (N : Node_Id;
17340 Typ : Character;
17341 Ent : Entity_Id)
17342 is
17343 Loc : Source_Ptr;
17344 Nam : Node_Id;
17345 Scop : Entity_Id;
17346
17347 Label_Ref : Boolean;
17348 -- Set True if reference to end label itself is required
17349
17350 Endl : Node_Id;
17351 -- Gets set to the operator symbol or identifier that references the
17352 -- entity Ent. For the child unit case, this is the identifier from the
17353 -- designator. For other cases, this is simply Endl.
17354
17355 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
17356 -- N is an identifier node that appears as a parent unit reference in
17357 -- the case where Ent is a child unit. This procedure generates an
17358 -- appropriate cross-reference entry. E is the corresponding entity.
17359
17360 -------------------------
17361 -- Generate_Parent_Ref --
17362 -------------------------
17363
17364 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
17365 begin
17366 -- If names do not match, something weird, skip reference
17367
17368 if Chars (E) = Chars (N) then
17369
17370 -- Generate the reference. We do NOT consider this as a reference
17371 -- for unreferenced symbol purposes.
17372
17373 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
17374
17375 if Style_Check then
17376 Style.Check_Identifier (N, E);
17377 end if;
17378 end if;
17379 end Generate_Parent_Ref;
17380
17381 -- Start of processing for Process_End_Label
17382
17383 begin
17384 -- If no node, ignore. This happens in some error situations, and
17385 -- also for some internally generated structures where no end label
17386 -- references are required in any case.
17387
17388 if No (N) then
17389 return;
17390 end if;
17391
17392 -- Nothing to do if no End_Label, happens for internally generated
17393 -- constructs where we don't want an end label reference anyway. Also
17394 -- nothing to do if Endl is a string literal, which means there was
17395 -- some prior error (bad operator symbol)
17396
17397 Endl := End_Label (N);
17398
17399 if No (Endl) or else Nkind (Endl) = N_String_Literal then
17400 return;
17401 end if;
17402
17403 -- Reference node is not in extended main source unit
17404
17405 if not In_Extended_Main_Source_Unit (N) then
17406
17407 -- Generally we do not collect references except for the extended
17408 -- main source unit. The one exception is the 'e' entry for a
17409 -- package spec, where it is useful for a client to have the
17410 -- ending information to define scopes.
17411
17412 if Typ /= 'e' then
17413 return;
17414
17415 else
17416 Label_Ref := False;
17417
17418 -- For this case, we can ignore any parent references, but we
17419 -- need the package name itself for the 'e' entry.
17420
17421 if Nkind (Endl) = N_Designator then
17422 Endl := Identifier (Endl);
17423 end if;
17424 end if;
17425
17426 -- Reference is in extended main source unit
17427
17428 else
17429 Label_Ref := True;
17430
17431 -- For designator, generate references for the parent entries
17432
17433 if Nkind (Endl) = N_Designator then
17434
17435 -- Generate references for the prefix if the END line comes from
17436 -- source (otherwise we do not need these references) We climb the
17437 -- scope stack to find the expected entities.
17438
17439 if Comes_From_Source (Endl) then
17440 Nam := Name (Endl);
17441 Scop := Current_Scope;
17442 while Nkind (Nam) = N_Selected_Component loop
17443 Scop := Scope (Scop);
17444 exit when No (Scop);
17445 Generate_Parent_Ref (Selector_Name (Nam), Scop);
17446 Nam := Prefix (Nam);
17447 end loop;
17448
17449 if Present (Scop) then
17450 Generate_Parent_Ref (Nam, Scope (Scop));
17451 end if;
17452 end if;
17453
17454 Endl := Identifier (Endl);
17455 end if;
17456 end if;
17457
17458 -- If the end label is not for the given entity, then either we have
17459 -- some previous error, or this is a generic instantiation for which
17460 -- we do not need to make a cross-reference in this case anyway. In
17461 -- either case we simply ignore the call.
17462
17463 if Chars (Ent) /= Chars (Endl) then
17464 return;
17465 end if;
17466
17467 -- If label was really there, then generate a normal reference and then
17468 -- adjust the location in the end label to point past the name (which
17469 -- should almost always be the semicolon).
17470
17471 Loc := Sloc (Endl);
17472
17473 if Comes_From_Source (Endl) then
17474
17475 -- If a label reference is required, then do the style check and
17476 -- generate an l-type cross-reference entry for the label
17477
17478 if Label_Ref then
17479 if Style_Check then
17480 Style.Check_Identifier (Endl, Ent);
17481 end if;
17482
17483 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
17484 end if;
17485
17486 -- Set the location to point past the label (normally this will
17487 -- mean the semicolon immediately following the label). This is
17488 -- done for the sake of the 'e' or 't' entry generated below.
17489
17490 Get_Decoded_Name_String (Chars (Endl));
17491 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
17492
17493 else
17494 -- In SPARK mode, no missing label is allowed for packages and
17495 -- subprogram bodies. Detect those cases by testing whether
17496 -- Process_End_Label was called for a body (Typ = 't') or a package.
17497
17498 if Restriction_Check_Required (SPARK_05)
17499 and then (Typ = 't' or else Ekind (Ent) = E_Package)
17500 then
17501 Error_Msg_Node_1 := Endl;
17502 Check_SPARK_05_Restriction
17503 ("`END &` required", Endl, Force => True);
17504 end if;
17505 end if;
17506
17507 -- Now generate the e/t reference
17508
17509 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
17510
17511 -- Restore Sloc, in case modified above, since we have an identifier
17512 -- and the normal Sloc should be left set in the tree.
17513
17514 Set_Sloc (Endl, Loc);
17515 end Process_End_Label;
17516
17517 ---------------------------------------
17518 -- Record_Possible_Part_Of_Reference --
17519 ---------------------------------------
17520
17521 procedure Record_Possible_Part_Of_Reference
17522 (Var_Id : Entity_Id;
17523 Ref : Node_Id)
17524 is
17525 Encap : constant Entity_Id := Encapsulating_State (Var_Id);
17526 Refs : Elist_Id;
17527
17528 begin
17529 -- The variable is a constituent of a single protected/task type. Such
17530 -- a variable acts as a component of the type and must appear within a
17531 -- specific region (SPARK RM 9.3). Instead of recording the reference,
17532 -- verify its legality now.
17533
17534 if Present (Encap) and then Is_Single_Concurrent_Object (Encap) then
17535 Check_Part_Of_Reference (Var_Id, Ref);
17536
17537 -- The variable is subject to pragma Part_Of and may eventually become a
17538 -- constituent of a single protected/task type. Record the reference to
17539 -- verify its placement when the contract of the variable is analyzed.
17540
17541 elsif Present (Get_Pragma (Var_Id, Pragma_Part_Of)) then
17542 Refs := Part_Of_References (Var_Id);
17543
17544 if No (Refs) then
17545 Refs := New_Elmt_List;
17546 Set_Part_Of_References (Var_Id, Refs);
17547 end if;
17548
17549 Append_Elmt (Ref, Refs);
17550 end if;
17551 end Record_Possible_Part_Of_Reference;
17552
17553 ----------------
17554 -- Referenced --
17555 ----------------
17556
17557 function Referenced (Id : Entity_Id; Expr : Node_Id) return Boolean is
17558 Seen : Boolean := False;
17559
17560 function Is_Reference (N : Node_Id) return Traverse_Result;
17561 -- Determine whether node N denotes a reference to Id. If this is the
17562 -- case, set global flag Seen to True and stop the traversal.
17563
17564 ------------------
17565 -- Is_Reference --
17566 ------------------
17567
17568 function Is_Reference (N : Node_Id) return Traverse_Result is
17569 begin
17570 if Is_Entity_Name (N)
17571 and then Present (Entity (N))
17572 and then Entity (N) = Id
17573 then
17574 Seen := True;
17575 return Abandon;
17576 else
17577 return OK;
17578 end if;
17579 end Is_Reference;
17580
17581 procedure Inspect_Expression is new Traverse_Proc (Is_Reference);
17582
17583 -- Start of processing for Referenced
17584
17585 begin
17586 Inspect_Expression (Expr);
17587 return Seen;
17588 end Referenced;
17589
17590 ------------------------------------
17591 -- References_Generic_Formal_Type --
17592 ------------------------------------
17593
17594 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
17595
17596 function Process (N : Node_Id) return Traverse_Result;
17597 -- Process one node in search for generic formal type
17598
17599 -------------
17600 -- Process --
17601 -------------
17602
17603 function Process (N : Node_Id) return Traverse_Result is
17604 begin
17605 if Nkind (N) in N_Has_Entity then
17606 declare
17607 E : constant Entity_Id := Entity (N);
17608 begin
17609 if Present (E) then
17610 if Is_Generic_Type (E) then
17611 return Abandon;
17612 elsif Present (Etype (E))
17613 and then Is_Generic_Type (Etype (E))
17614 then
17615 return Abandon;
17616 end if;
17617 end if;
17618 end;
17619 end if;
17620
17621 return Atree.OK;
17622 end Process;
17623
17624 function Traverse is new Traverse_Func (Process);
17625 -- Traverse tree to look for generic type
17626
17627 begin
17628 if Inside_A_Generic then
17629 return Traverse (N) = Abandon;
17630 else
17631 return False;
17632 end if;
17633 end References_Generic_Formal_Type;
17634
17635 --------------------
17636 -- Remove_Homonym --
17637 --------------------
17638
17639 procedure Remove_Homonym (E : Entity_Id) is
17640 Prev : Entity_Id := Empty;
17641 H : Entity_Id;
17642
17643 begin
17644 if E = Current_Entity (E) then
17645 if Present (Homonym (E)) then
17646 Set_Current_Entity (Homonym (E));
17647 else
17648 Set_Name_Entity_Id (Chars (E), Empty);
17649 end if;
17650
17651 else
17652 H := Current_Entity (E);
17653 while Present (H) and then H /= E loop
17654 Prev := H;
17655 H := Homonym (H);
17656 end loop;
17657
17658 -- If E is not on the homonym chain, nothing to do
17659
17660 if Present (H) then
17661 Set_Homonym (Prev, Homonym (E));
17662 end if;
17663 end if;
17664 end Remove_Homonym;
17665
17666 ------------------------------
17667 -- Remove_Overloaded_Entity --
17668 ------------------------------
17669
17670 procedure Remove_Overloaded_Entity (Id : Entity_Id) is
17671 procedure Remove_Primitive_Of (Typ : Entity_Id);
17672 -- Remove primitive subprogram Id from the list of primitives that
17673 -- belong to type Typ.
17674
17675 -------------------------
17676 -- Remove_Primitive_Of --
17677 -------------------------
17678
17679 procedure Remove_Primitive_Of (Typ : Entity_Id) is
17680 Prims : Elist_Id;
17681
17682 begin
17683 if Is_Tagged_Type (Typ) then
17684 Prims := Direct_Primitive_Operations (Typ);
17685
17686 if Present (Prims) then
17687 Remove (Prims, Id);
17688 end if;
17689 end if;
17690 end Remove_Primitive_Of;
17691
17692 -- Local variables
17693
17694 Scop : constant Entity_Id := Scope (Id);
17695 Formal : Entity_Id;
17696 Prev_Id : Entity_Id;
17697
17698 -- Start of processing for Remove_Overloaded_Entity
17699
17700 begin
17701 -- Remove the entity from the homonym chain. When the entity is the
17702 -- head of the chain, associate the entry in the name table with its
17703 -- homonym effectively making it the new head of the chain.
17704
17705 if Current_Entity (Id) = Id then
17706 Set_Name_Entity_Id (Chars (Id), Homonym (Id));
17707
17708 -- Otherwise link the previous and next homonyms
17709
17710 else
17711 Prev_Id := Current_Entity (Id);
17712 while Present (Prev_Id) and then Homonym (Prev_Id) /= Id loop
17713 Prev_Id := Homonym (Prev_Id);
17714 end loop;
17715
17716 Set_Homonym (Prev_Id, Homonym (Id));
17717 end if;
17718
17719 -- Remove the entity from the scope entity chain. When the entity is
17720 -- the head of the chain, set the next entity as the new head of the
17721 -- chain.
17722
17723 if First_Entity (Scop) = Id then
17724 Prev_Id := Empty;
17725 Set_First_Entity (Scop, Next_Entity (Id));
17726
17727 -- Otherwise the entity is either in the middle of the chain or it acts
17728 -- as its tail. Traverse and link the previous and next entities.
17729
17730 else
17731 Prev_Id := First_Entity (Scop);
17732 while Present (Prev_Id) and then Next_Entity (Prev_Id) /= Id loop
17733 Next_Entity (Prev_Id);
17734 end loop;
17735
17736 Set_Next_Entity (Prev_Id, Next_Entity (Id));
17737 end if;
17738
17739 -- Handle the case where the entity acts as the tail of the scope entity
17740 -- chain.
17741
17742 if Last_Entity (Scop) = Id then
17743 Set_Last_Entity (Scop, Prev_Id);
17744 end if;
17745
17746 -- The entity denotes a primitive subprogram. Remove it from the list of
17747 -- primitives of the associated controlling type.
17748
17749 if Ekind_In (Id, E_Function, E_Procedure) and then Is_Primitive (Id) then
17750 Formal := First_Formal (Id);
17751 while Present (Formal) loop
17752 if Is_Controlling_Formal (Formal) then
17753 Remove_Primitive_Of (Etype (Formal));
17754 exit;
17755 end if;
17756
17757 Next_Formal (Formal);
17758 end loop;
17759
17760 if Ekind (Id) = E_Function and then Has_Controlling_Result (Id) then
17761 Remove_Primitive_Of (Etype (Id));
17762 end if;
17763 end if;
17764 end Remove_Overloaded_Entity;
17765
17766 ---------------------
17767 -- Rep_To_Pos_Flag --
17768 ---------------------
17769
17770 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
17771 begin
17772 return New_Occurrence_Of
17773 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
17774 end Rep_To_Pos_Flag;
17775
17776 --------------------
17777 -- Require_Entity --
17778 --------------------
17779
17780 procedure Require_Entity (N : Node_Id) is
17781 begin
17782 if Is_Entity_Name (N) and then No (Entity (N)) then
17783 if Total_Errors_Detected /= 0 then
17784 Set_Entity (N, Any_Id);
17785 else
17786 raise Program_Error;
17787 end if;
17788 end if;
17789 end Require_Entity;
17790
17791 -------------------------------
17792 -- Requires_State_Refinement --
17793 -------------------------------
17794
17795 function Requires_State_Refinement
17796 (Spec_Id : Entity_Id;
17797 Body_Id : Entity_Id) return Boolean
17798 is
17799 function Mode_Is_Off (Prag : Node_Id) return Boolean;
17800 -- Given pragma SPARK_Mode, determine whether the mode is Off
17801
17802 -----------------
17803 -- Mode_Is_Off --
17804 -----------------
17805
17806 function Mode_Is_Off (Prag : Node_Id) return Boolean is
17807 Mode : Node_Id;
17808
17809 begin
17810 -- The default SPARK mode is On
17811
17812 if No (Prag) then
17813 return False;
17814 end if;
17815
17816 Mode := Get_Pragma_Arg (First (Pragma_Argument_Associations (Prag)));
17817
17818 -- Then the pragma lacks an argument, the default mode is On
17819
17820 if No (Mode) then
17821 return False;
17822 else
17823 return Chars (Mode) = Name_Off;
17824 end if;
17825 end Mode_Is_Off;
17826
17827 -- Start of processing for Requires_State_Refinement
17828
17829 begin
17830 -- A package that does not define at least one abstract state cannot
17831 -- possibly require refinement.
17832
17833 if No (Abstract_States (Spec_Id)) then
17834 return False;
17835
17836 -- The package instroduces a single null state which does not merit
17837 -- refinement.
17838
17839 elsif Has_Null_Abstract_State (Spec_Id) then
17840 return False;
17841
17842 -- Check whether the package body is subject to pragma SPARK_Mode. If
17843 -- it is and the mode is Off, the package body is considered to be in
17844 -- regular Ada and does not require refinement.
17845
17846 elsif Mode_Is_Off (SPARK_Pragma (Body_Id)) then
17847 return False;
17848
17849 -- The body's SPARK_Mode may be inherited from a similar pragma that
17850 -- appears in the private declarations of the spec. The pragma we are
17851 -- interested appears as the second entry in SPARK_Pragma.
17852
17853 elsif Present (SPARK_Pragma (Spec_Id))
17854 and then Mode_Is_Off (Next_Pragma (SPARK_Pragma (Spec_Id)))
17855 then
17856 return False;
17857
17858 -- The spec defines at least one abstract state and the body has no way
17859 -- of circumventing the refinement.
17860
17861 else
17862 return True;
17863 end if;
17864 end Requires_State_Refinement;
17865
17866 ------------------------------
17867 -- Requires_Transient_Scope --
17868 ------------------------------
17869
17870 -- A transient scope is required when variable-sized temporaries are
17871 -- allocated on the secondary stack, or when finalization actions must be
17872 -- generated before the next instruction.
17873
17874 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
17875 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean;
17876 -- ???We retain the old and new algorithms for Requires_Transient_Scope for
17877 -- the time being. New_Requires_Transient_Scope is used by default; the
17878 -- debug switch -gnatdQ can be used to do Old_Requires_Transient_Scope
17879 -- instead. The intent is to use this temporarily to measure before/after
17880 -- efficiency. Note: when this temporary code is removed, the documentation
17881 -- of dQ in debug.adb should be removed.
17882
17883 procedure Results_Differ (Id : Entity_Id);
17884 -- ???Debugging code. Called when the Old_ and New_ results differ. Will be
17885 -- removed when New_Requires_Transient_Scope becomes
17886 -- Requires_Transient_Scope and Old_Requires_Transient_Scope is eliminated.
17887
17888 procedure Results_Differ (Id : Entity_Id) is
17889 begin
17890 if False then -- False to disable; True for debugging
17891 Treepr.Print_Tree_Node (Id);
17892
17893 if Old_Requires_Transient_Scope (Id) =
17894 New_Requires_Transient_Scope (Id)
17895 then
17896 raise Program_Error;
17897 end if;
17898 end if;
17899 end Results_Differ;
17900
17901 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
17902 Old_Result : constant Boolean := Old_Requires_Transient_Scope (Id);
17903
17904 begin
17905 if Debug_Flag_QQ then
17906 return Old_Result;
17907 end if;
17908
17909 declare
17910 New_Result : constant Boolean := New_Requires_Transient_Scope (Id);
17911
17912 begin
17913 -- Assert that we're not putting things on the secondary stack if we
17914 -- didn't before; we are trying to AVOID secondary stack when
17915 -- possible.
17916
17917 if not Old_Result then
17918 pragma Assert (not New_Result);
17919 null;
17920 end if;
17921
17922 if New_Result /= Old_Result then
17923 Results_Differ (Id);
17924 end if;
17925
17926 return New_Result;
17927 end;
17928 end Requires_Transient_Scope;
17929
17930 ----------------------------------
17931 -- Old_Requires_Transient_Scope --
17932 ----------------------------------
17933
17934 function Old_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
17935 Typ : constant Entity_Id := Underlying_Type (Id);
17936
17937 begin
17938 -- This is a private type which is not completed yet. This can only
17939 -- happen in a default expression (of a formal parameter or of a
17940 -- record component). Do not expand transient scope in this case.
17941
17942 if No (Typ) then
17943 return False;
17944
17945 -- Do not expand transient scope for non-existent procedure return
17946
17947 elsif Typ = Standard_Void_Type then
17948 return False;
17949
17950 -- Elementary types do not require a transient scope
17951
17952 elsif Is_Elementary_Type (Typ) then
17953 return False;
17954
17955 -- Generally, indefinite subtypes require a transient scope, since the
17956 -- back end cannot generate temporaries, since this is not a valid type
17957 -- for declaring an object. It might be possible to relax this in the
17958 -- future, e.g. by declaring the maximum possible space for the type.
17959
17960 elsif not Is_Definite_Subtype (Typ) then
17961 return True;
17962
17963 -- Functions returning tagged types may dispatch on result so their
17964 -- returned value is allocated on the secondary stack. Controlled
17965 -- type temporaries need finalization.
17966
17967 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
17968 return True;
17969
17970 -- Record type
17971
17972 elsif Is_Record_Type (Typ) then
17973 declare
17974 Comp : Entity_Id;
17975
17976 begin
17977 Comp := First_Entity (Typ);
17978 while Present (Comp) loop
17979 if Ekind (Comp) = E_Component then
17980
17981 -- ???It's not clear we need a full recursive call to
17982 -- Old_Requires_Transient_Scope here. Note that the
17983 -- following can't happen.
17984
17985 pragma Assert (Is_Definite_Subtype (Etype (Comp)));
17986 pragma Assert (not Has_Controlled_Component (Etype (Comp)));
17987
17988 if Old_Requires_Transient_Scope (Etype (Comp)) then
17989 return True;
17990 end if;
17991 end if;
17992
17993 Next_Entity (Comp);
17994 end loop;
17995 end;
17996
17997 return False;
17998
17999 -- String literal types never require transient scope
18000
18001 elsif Ekind (Typ) = E_String_Literal_Subtype then
18002 return False;
18003
18004 -- Array type. Note that we already know that this is a constrained
18005 -- array, since unconstrained arrays will fail the indefinite test.
18006
18007 elsif Is_Array_Type (Typ) then
18008
18009 -- If component type requires a transient scope, the array does too
18010
18011 if Old_Requires_Transient_Scope (Component_Type (Typ)) then
18012 return True;
18013
18014 -- Otherwise, we only need a transient scope if the size depends on
18015 -- the value of one or more discriminants.
18016
18017 else
18018 return Size_Depends_On_Discriminant (Typ);
18019 end if;
18020
18021 -- All other cases do not require a transient scope
18022
18023 else
18024 pragma Assert (Is_Protected_Type (Typ) or else Is_Task_Type (Typ));
18025 return False;
18026 end if;
18027 end Old_Requires_Transient_Scope;
18028
18029 ----------------------------------
18030 -- New_Requires_Transient_Scope --
18031 ----------------------------------
18032
18033 function New_Requires_Transient_Scope (Id : Entity_Id) return Boolean is
18034
18035 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean;
18036 -- This is called for untagged records and protected types, with
18037 -- nondefaulted discriminants. Returns True if the size of function
18038 -- results is known at the call site, False otherwise. Returns False
18039 -- if there is a variant part that depends on the discriminants of
18040 -- this type, or if there is an array constrained by the discriminants
18041 -- of this type. ???Currently, this is overly conservative (the array
18042 -- could be nested inside some other record that is constrained by
18043 -- nondiscriminants). That is, the recursive calls are too conservative.
18044
18045 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean;
18046 -- Returns True if Typ is a nonlimited record with defaulted
18047 -- discriminants whose max size makes it unsuitable for allocating on
18048 -- the primary stack.
18049
18050 ------------------------------
18051 -- Caller_Known_Size_Record --
18052 ------------------------------
18053
18054 function Caller_Known_Size_Record (Typ : Entity_Id) return Boolean is
18055 pragma Assert (Typ = Underlying_Type (Typ));
18056
18057 begin
18058 if Has_Variant_Part (Typ) and then not Is_Definite_Subtype (Typ) then
18059 return False;
18060 end if;
18061
18062 declare
18063 Comp : Entity_Id;
18064
18065 begin
18066 Comp := First_Entity (Typ);
18067 while Present (Comp) loop
18068
18069 -- Only look at E_Component entities. No need to look at
18070 -- E_Discriminant entities, and we must ignore internal
18071 -- subtypes generated for constrained components.
18072
18073 if Ekind (Comp) = E_Component then
18074 declare
18075 Comp_Type : constant Entity_Id :=
18076 Underlying_Type (Etype (Comp));
18077
18078 begin
18079 if Is_Record_Type (Comp_Type)
18080 or else
18081 Is_Protected_Type (Comp_Type)
18082 then
18083 if not Caller_Known_Size_Record (Comp_Type) then
18084 return False;
18085 end if;
18086
18087 elsif Is_Array_Type (Comp_Type) then
18088 if Size_Depends_On_Discriminant (Comp_Type) then
18089 return False;
18090 end if;
18091 end if;
18092 end;
18093 end if;
18094
18095 Next_Entity (Comp);
18096 end loop;
18097 end;
18098
18099 return True;
18100 end Caller_Known_Size_Record;
18101
18102 ------------------------------
18103 -- Large_Max_Size_Mutable --
18104 ------------------------------
18105
18106 function Large_Max_Size_Mutable (Typ : Entity_Id) return Boolean is
18107 pragma Assert (Typ = Underlying_Type (Typ));
18108
18109 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean;
18110 -- Returns true if the discrete type T has a large range
18111
18112 ----------------------------
18113 -- Is_Large_Discrete_Type --
18114 ----------------------------
18115
18116 function Is_Large_Discrete_Type (T : Entity_Id) return Boolean is
18117 Threshold : constant Int := 16;
18118 -- Arbitrary threshold above which we consider it "large". We want
18119 -- a fairly large threshold, because these large types really
18120 -- shouldn't have default discriminants in the first place, in
18121 -- most cases.
18122
18123 begin
18124 return UI_To_Int (RM_Size (T)) > Threshold;
18125 end Is_Large_Discrete_Type;
18126
18127 begin
18128 if Is_Record_Type (Typ)
18129 and then not Is_Limited_View (Typ)
18130 and then Has_Defaulted_Discriminants (Typ)
18131 then
18132 -- Loop through the components, looking for an array whose upper
18133 -- bound(s) depends on discriminants, where both the subtype of
18134 -- the discriminant and the index subtype are too large.
18135
18136 declare
18137 Comp : Entity_Id;
18138
18139 begin
18140 Comp := First_Entity (Typ);
18141 while Present (Comp) loop
18142 if Ekind (Comp) = E_Component then
18143 declare
18144 Comp_Type : constant Entity_Id :=
18145 Underlying_Type (Etype (Comp));
18146 Indx : Node_Id;
18147 Ityp : Entity_Id;
18148 Hi : Node_Id;
18149
18150 begin
18151 if Is_Array_Type (Comp_Type) then
18152 Indx := First_Index (Comp_Type);
18153
18154 while Present (Indx) loop
18155 Ityp := Etype (Indx);
18156 Hi := Type_High_Bound (Ityp);
18157
18158 if Nkind (Hi) = N_Identifier
18159 and then Ekind (Entity (Hi)) = E_Discriminant
18160 and then Is_Large_Discrete_Type (Ityp)
18161 and then Is_Large_Discrete_Type
18162 (Etype (Entity (Hi)))
18163 then
18164 return True;
18165 end if;
18166
18167 Next_Index (Indx);
18168 end loop;
18169 end if;
18170 end;
18171 end if;
18172
18173 Next_Entity (Comp);
18174 end loop;
18175 end;
18176 end if;
18177
18178 return False;
18179 end Large_Max_Size_Mutable;
18180
18181 -- Local declarations
18182
18183 Typ : constant Entity_Id := Underlying_Type (Id);
18184
18185 -- Start of processing for New_Requires_Transient_Scope
18186
18187 begin
18188 -- This is a private type which is not completed yet. This can only
18189 -- happen in a default expression (of a formal parameter or of a
18190 -- record component). Do not expand transient scope in this case.
18191
18192 if No (Typ) then
18193 return False;
18194
18195 -- Do not expand transient scope for non-existent procedure return or
18196 -- string literal types.
18197
18198 elsif Typ = Standard_Void_Type
18199 or else Ekind (Typ) = E_String_Literal_Subtype
18200 then
18201 return False;
18202
18203 -- If Typ is a generic formal incomplete type, then we want to look at
18204 -- the actual type.
18205
18206 elsif Ekind (Typ) = E_Record_Subtype
18207 and then Present (Cloned_Subtype (Typ))
18208 then
18209 return New_Requires_Transient_Scope (Cloned_Subtype (Typ));
18210
18211 -- Functions returning specific tagged types may dispatch on result, so
18212 -- their returned value is allocated on the secondary stack, even in the
18213 -- definite case. We must treat nondispatching functions the same way,
18214 -- because access-to-function types can point at both, so the calling
18215 -- conventions must be compatible. Is_Tagged_Type includes controlled
18216 -- types and class-wide types. Controlled type temporaries need
18217 -- finalization.
18218
18219 -- ???It's not clear why we need to return noncontrolled types with
18220 -- controlled components on the secondary stack.
18221
18222 elsif Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
18223 return True;
18224
18225 -- Untagged definite subtypes are known size. This includes all
18226 -- elementary [sub]types. Tasks are known size even if they have
18227 -- discriminants. So we return False here, with one exception:
18228 -- For a type like:
18229 -- type T (Last : Natural := 0) is
18230 -- X : String (1 .. Last);
18231 -- end record;
18232 -- we return True. That's because for "P(F(...));", where F returns T,
18233 -- we don't know the size of the result at the call site, so if we
18234 -- allocated it on the primary stack, we would have to allocate the
18235 -- maximum size, which is way too big.
18236
18237 elsif Is_Definite_Subtype (Typ) or else Is_Task_Type (Typ) then
18238 return Large_Max_Size_Mutable (Typ);
18239
18240 -- Indefinite (discriminated) untagged record or protected type
18241
18242 elsif Is_Record_Type (Typ) or else Is_Protected_Type (Typ) then
18243 return not Caller_Known_Size_Record (Typ);
18244
18245 -- Unconstrained array
18246
18247 else
18248 pragma Assert (Is_Array_Type (Typ) and not Is_Definite_Subtype (Typ));
18249 return True;
18250 end if;
18251 end New_Requires_Transient_Scope;
18252
18253 --------------------------
18254 -- Reset_Analyzed_Flags --
18255 --------------------------
18256
18257 procedure Reset_Analyzed_Flags (N : Node_Id) is
18258
18259 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
18260 -- Function used to reset Analyzed flags in tree. Note that we do
18261 -- not reset Analyzed flags in entities, since there is no need to
18262 -- reanalyze entities, and indeed, it is wrong to do so, since it
18263 -- can result in generating auxiliary stuff more than once.
18264
18265 --------------------
18266 -- Clear_Analyzed --
18267 --------------------
18268
18269 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
18270 begin
18271 if not Has_Extension (N) then
18272 Set_Analyzed (N, False);
18273 end if;
18274
18275 return OK;
18276 end Clear_Analyzed;
18277
18278 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
18279
18280 -- Start of processing for Reset_Analyzed_Flags
18281
18282 begin
18283 Reset_Analyzed (N);
18284 end Reset_Analyzed_Flags;
18285
18286 ------------------------
18287 -- Restore_SPARK_Mode --
18288 ------------------------
18289
18290 procedure Restore_SPARK_Mode (Mode : SPARK_Mode_Type) is
18291 begin
18292 SPARK_Mode := Mode;
18293 end Restore_SPARK_Mode;
18294
18295 --------------------------------
18296 -- Returns_Unconstrained_Type --
18297 --------------------------------
18298
18299 function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
18300 begin
18301 return Ekind (Subp) = E_Function
18302 and then not Is_Scalar_Type (Etype (Subp))
18303 and then not Is_Access_Type (Etype (Subp))
18304 and then not Is_Constrained (Etype (Subp));
18305 end Returns_Unconstrained_Type;
18306
18307 ----------------------------
18308 -- Root_Type_Of_Full_View --
18309 ----------------------------
18310
18311 function Root_Type_Of_Full_View (T : Entity_Id) return Entity_Id is
18312 Rtyp : constant Entity_Id := Root_Type (T);
18313
18314 begin
18315 -- The root type of the full view may itself be a private type. Keep
18316 -- looking for the ultimate derivation parent.
18317
18318 if Is_Private_Type (Rtyp) and then Present (Full_View (Rtyp)) then
18319 return Root_Type_Of_Full_View (Full_View (Rtyp));
18320 else
18321 return Rtyp;
18322 end if;
18323 end Root_Type_Of_Full_View;
18324
18325 ---------------------------
18326 -- Safe_To_Capture_Value --
18327 ---------------------------
18328
18329 function Safe_To_Capture_Value
18330 (N : Node_Id;
18331 Ent : Entity_Id;
18332 Cond : Boolean := False) return Boolean
18333 is
18334 begin
18335 -- The only entities for which we track constant values are variables
18336 -- which are not renamings, constants, out parameters, and in out
18337 -- parameters, so check if we have this case.
18338
18339 -- Note: it may seem odd to track constant values for constants, but in
18340 -- fact this routine is used for other purposes than simply capturing
18341 -- the value. In particular, the setting of Known[_Non]_Null.
18342
18343 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
18344 or else
18345 Ekind_In (Ent, E_Constant, E_Out_Parameter, E_In_Out_Parameter)
18346 then
18347 null;
18348
18349 -- For conditionals, we also allow loop parameters and all formals,
18350 -- including in parameters.
18351
18352 elsif Cond and then Ekind_In (Ent, E_Loop_Parameter, E_In_Parameter) then
18353 null;
18354
18355 -- For all other cases, not just unsafe, but impossible to capture
18356 -- Current_Value, since the above are the only entities which have
18357 -- Current_Value fields.
18358
18359 else
18360 return False;
18361 end if;
18362
18363 -- Skip if volatile or aliased, since funny things might be going on in
18364 -- these cases which we cannot necessarily track. Also skip any variable
18365 -- for which an address clause is given, or whose address is taken. Also
18366 -- never capture value of library level variables (an attempt to do so
18367 -- can occur in the case of package elaboration code).
18368
18369 if Treat_As_Volatile (Ent)
18370 or else Is_Aliased (Ent)
18371 or else Present (Address_Clause (Ent))
18372 or else Address_Taken (Ent)
18373 or else (Is_Library_Level_Entity (Ent)
18374 and then Ekind (Ent) = E_Variable)
18375 then
18376 return False;
18377 end if;
18378
18379 -- OK, all above conditions are met. We also require that the scope of
18380 -- the reference be the same as the scope of the entity, not counting
18381 -- packages and blocks and loops.
18382
18383 declare
18384 E_Scope : constant Entity_Id := Scope (Ent);
18385 R_Scope : Entity_Id;
18386
18387 begin
18388 R_Scope := Current_Scope;
18389 while R_Scope /= Standard_Standard loop
18390 exit when R_Scope = E_Scope;
18391
18392 if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
18393 return False;
18394 else
18395 R_Scope := Scope (R_Scope);
18396 end if;
18397 end loop;
18398 end;
18399
18400 -- We also require that the reference does not appear in a context
18401 -- where it is not sure to be executed (i.e. a conditional context
18402 -- or an exception handler). We skip this if Cond is True, since the
18403 -- capturing of values from conditional tests handles this ok.
18404
18405 if Cond then
18406 return True;
18407 end if;
18408
18409 declare
18410 Desc : Node_Id;
18411 P : Node_Id;
18412
18413 begin
18414 Desc := N;
18415
18416 -- Seems dubious that case expressions are not handled here ???
18417
18418 P := Parent (N);
18419 while Present (P) loop
18420 if Nkind (P) = N_If_Statement
18421 or else Nkind (P) = N_Case_Statement
18422 or else (Nkind (P) in N_Short_Circuit
18423 and then Desc = Right_Opnd (P))
18424 or else (Nkind (P) = N_If_Expression
18425 and then Desc /= First (Expressions (P)))
18426 or else Nkind (P) = N_Exception_Handler
18427 or else Nkind (P) = N_Selective_Accept
18428 or else Nkind (P) = N_Conditional_Entry_Call
18429 or else Nkind (P) = N_Timed_Entry_Call
18430 or else Nkind (P) = N_Asynchronous_Select
18431 then
18432 return False;
18433
18434 else
18435 Desc := P;
18436 P := Parent (P);
18437
18438 -- A special Ada 2012 case: the original node may be part
18439 -- of the else_actions of a conditional expression, in which
18440 -- case it might not have been expanded yet, and appears in
18441 -- a non-syntactic list of actions. In that case it is clearly
18442 -- not safe to save a value.
18443
18444 if No (P)
18445 and then Is_List_Member (Desc)
18446 and then No (Parent (List_Containing (Desc)))
18447 then
18448 return False;
18449 end if;
18450 end if;
18451 end loop;
18452 end;
18453
18454 -- OK, looks safe to set value
18455
18456 return True;
18457 end Safe_To_Capture_Value;
18458
18459 ---------------
18460 -- Same_Name --
18461 ---------------
18462
18463 function Same_Name (N1, N2 : Node_Id) return Boolean is
18464 K1 : constant Node_Kind := Nkind (N1);
18465 K2 : constant Node_Kind := Nkind (N2);
18466
18467 begin
18468 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
18469 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
18470 then
18471 return Chars (N1) = Chars (N2);
18472
18473 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
18474 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
18475 then
18476 return Same_Name (Selector_Name (N1), Selector_Name (N2))
18477 and then Same_Name (Prefix (N1), Prefix (N2));
18478
18479 else
18480 return False;
18481 end if;
18482 end Same_Name;
18483
18484 -----------------
18485 -- Same_Object --
18486 -----------------
18487
18488 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
18489 N1 : constant Node_Id := Original_Node (Node1);
18490 N2 : constant Node_Id := Original_Node (Node2);
18491 -- We do the tests on original nodes, since we are most interested
18492 -- in the original source, not any expansion that got in the way.
18493
18494 K1 : constant Node_Kind := Nkind (N1);
18495 K2 : constant Node_Kind := Nkind (N2);
18496
18497 begin
18498 -- First case, both are entities with same entity
18499
18500 if K1 in N_Has_Entity and then K2 in N_Has_Entity then
18501 declare
18502 EN1 : constant Entity_Id := Entity (N1);
18503 EN2 : constant Entity_Id := Entity (N2);
18504 begin
18505 if Present (EN1) and then Present (EN2)
18506 and then (Ekind_In (EN1, E_Variable, E_Constant)
18507 or else Is_Formal (EN1))
18508 and then EN1 = EN2
18509 then
18510 return True;
18511 end if;
18512 end;
18513 end if;
18514
18515 -- Second case, selected component with same selector, same record
18516
18517 if K1 = N_Selected_Component
18518 and then K2 = N_Selected_Component
18519 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
18520 then
18521 return Same_Object (Prefix (N1), Prefix (N2));
18522
18523 -- Third case, indexed component with same subscripts, same array
18524
18525 elsif K1 = N_Indexed_Component
18526 and then K2 = N_Indexed_Component
18527 and then Same_Object (Prefix (N1), Prefix (N2))
18528 then
18529 declare
18530 E1, E2 : Node_Id;
18531 begin
18532 E1 := First (Expressions (N1));
18533 E2 := First (Expressions (N2));
18534 while Present (E1) loop
18535 if not Same_Value (E1, E2) then
18536 return False;
18537 else
18538 Next (E1);
18539 Next (E2);
18540 end if;
18541 end loop;
18542
18543 return True;
18544 end;
18545
18546 -- Fourth case, slice of same array with same bounds
18547
18548 elsif K1 = N_Slice
18549 and then K2 = N_Slice
18550 and then Nkind (Discrete_Range (N1)) = N_Range
18551 and then Nkind (Discrete_Range (N2)) = N_Range
18552 and then Same_Value (Low_Bound (Discrete_Range (N1)),
18553 Low_Bound (Discrete_Range (N2)))
18554 and then Same_Value (High_Bound (Discrete_Range (N1)),
18555 High_Bound (Discrete_Range (N2)))
18556 then
18557 return Same_Name (Prefix (N1), Prefix (N2));
18558
18559 -- All other cases, not clearly the same object
18560
18561 else
18562 return False;
18563 end if;
18564 end Same_Object;
18565
18566 ---------------
18567 -- Same_Type --
18568 ---------------
18569
18570 function Same_Type (T1, T2 : Entity_Id) return Boolean is
18571 begin
18572 if T1 = T2 then
18573 return True;
18574
18575 elsif not Is_Constrained (T1)
18576 and then not Is_Constrained (T2)
18577 and then Base_Type (T1) = Base_Type (T2)
18578 then
18579 return True;
18580
18581 -- For now don't bother with case of identical constraints, to be
18582 -- fiddled with later on perhaps (this is only used for optimization
18583 -- purposes, so it is not critical to do a best possible job)
18584
18585 else
18586 return False;
18587 end if;
18588 end Same_Type;
18589
18590 ----------------
18591 -- Same_Value --
18592 ----------------
18593
18594 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
18595 begin
18596 if Compile_Time_Known_Value (Node1)
18597 and then Compile_Time_Known_Value (Node2)
18598 and then Expr_Value (Node1) = Expr_Value (Node2)
18599 then
18600 return True;
18601 elsif Same_Object (Node1, Node2) then
18602 return True;
18603 else
18604 return False;
18605 end if;
18606 end Same_Value;
18607
18608 -----------------------------
18609 -- Save_SPARK_Mode_And_Set --
18610 -----------------------------
18611
18612 procedure Save_SPARK_Mode_And_Set
18613 (Context : Entity_Id;
18614 Mode : out SPARK_Mode_Type)
18615 is
18616 begin
18617 -- Save the current mode in effect
18618
18619 Mode := SPARK_Mode;
18620
18621 -- Do not consider illegal or partially decorated constructs
18622
18623 if Ekind (Context) = E_Void or else Error_Posted (Context) then
18624 null;
18625
18626 elsif Present (SPARK_Pragma (Context)) then
18627 SPARK_Mode := Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Context));
18628 end if;
18629 end Save_SPARK_Mode_And_Set;
18630
18631 -------------------------
18632 -- Scalar_Part_Present --
18633 -------------------------
18634
18635 function Scalar_Part_Present (T : Entity_Id) return Boolean is
18636 C : Entity_Id;
18637
18638 begin
18639 if Is_Scalar_Type (T) then
18640 return True;
18641
18642 elsif Is_Array_Type (T) then
18643 return Scalar_Part_Present (Component_Type (T));
18644
18645 elsif Is_Record_Type (T) or else Has_Discriminants (T) then
18646 C := First_Component_Or_Discriminant (T);
18647 while Present (C) loop
18648 if Scalar_Part_Present (Etype (C)) then
18649 return True;
18650 else
18651 Next_Component_Or_Discriminant (C);
18652 end if;
18653 end loop;
18654 end if;
18655
18656 return False;
18657 end Scalar_Part_Present;
18658
18659 ------------------------
18660 -- Scope_Is_Transient --
18661 ------------------------
18662
18663 function Scope_Is_Transient return Boolean is
18664 begin
18665 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
18666 end Scope_Is_Transient;
18667
18668 ------------------
18669 -- Scope_Within --
18670 ------------------
18671
18672 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
18673 Scop : Entity_Id;
18674
18675 begin
18676 Scop := Scope1;
18677 while Scop /= Standard_Standard loop
18678 Scop := Scope (Scop);
18679
18680 if Scop = Scope2 then
18681 return True;
18682 end if;
18683 end loop;
18684
18685 return False;
18686 end Scope_Within;
18687
18688 --------------------------
18689 -- Scope_Within_Or_Same --
18690 --------------------------
18691
18692 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
18693 Scop : Entity_Id;
18694
18695 begin
18696 Scop := Scope1;
18697 while Scop /= Standard_Standard loop
18698 if Scop = Scope2 then
18699 return True;
18700 else
18701 Scop := Scope (Scop);
18702 end if;
18703 end loop;
18704
18705 return False;
18706 end Scope_Within_Or_Same;
18707
18708 --------------------
18709 -- Set_Convention --
18710 --------------------
18711
18712 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
18713 begin
18714 Basic_Set_Convention (E, Val);
18715
18716 if Is_Type (E)
18717 and then Is_Access_Subprogram_Type (Base_Type (E))
18718 and then Has_Foreign_Convention (E)
18719 then
18720
18721 -- A pragma Convention in an instance may apply to the subtype
18722 -- created for a formal, in which case we have already verified
18723 -- that conventions of actual and formal match and there is nothing
18724 -- to flag on the subtype.
18725
18726 if In_Instance then
18727 null;
18728 else
18729 Set_Can_Use_Internal_Rep (E, False);
18730 end if;
18731 end if;
18732
18733 -- If E is an object or component, and the type of E is an anonymous
18734 -- access type with no convention set, then also set the convention of
18735 -- the anonymous access type. We do not do this for anonymous protected
18736 -- types, since protected types always have the default convention.
18737
18738 if Present (Etype (E))
18739 and then (Is_Object (E)
18740 or else Ekind (E) = E_Component
18741
18742 -- Allow E_Void (happens for pragma Convention appearing
18743 -- in the middle of a record applying to a component)
18744
18745 or else Ekind (E) = E_Void)
18746 then
18747 declare
18748 Typ : constant Entity_Id := Etype (E);
18749
18750 begin
18751 if Ekind_In (Typ, E_Anonymous_Access_Type,
18752 E_Anonymous_Access_Subprogram_Type)
18753 and then not Has_Convention_Pragma (Typ)
18754 then
18755 Basic_Set_Convention (Typ, Val);
18756 Set_Has_Convention_Pragma (Typ);
18757
18758 -- And for the access subprogram type, deal similarly with the
18759 -- designated E_Subprogram_Type if it is also internal (which
18760 -- it always is?)
18761
18762 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
18763 declare
18764 Dtype : constant Entity_Id := Designated_Type (Typ);
18765 begin
18766 if Ekind (Dtype) = E_Subprogram_Type
18767 and then Is_Itype (Dtype)
18768 and then not Has_Convention_Pragma (Dtype)
18769 then
18770 Basic_Set_Convention (Dtype, Val);
18771 Set_Has_Convention_Pragma (Dtype);
18772 end if;
18773 end;
18774 end if;
18775 end if;
18776 end;
18777 end if;
18778 end Set_Convention;
18779
18780 ------------------------
18781 -- Set_Current_Entity --
18782 ------------------------
18783
18784 -- The given entity is to be set as the currently visible definition of its
18785 -- associated name (i.e. the Node_Id associated with its name). All we have
18786 -- to do is to get the name from the identifier, and then set the
18787 -- associated Node_Id to point to the given entity.
18788
18789 procedure Set_Current_Entity (E : Entity_Id) is
18790 begin
18791 Set_Name_Entity_Id (Chars (E), E);
18792 end Set_Current_Entity;
18793
18794 ---------------------------
18795 -- Set_Debug_Info_Needed --
18796 ---------------------------
18797
18798 procedure Set_Debug_Info_Needed (T : Entity_Id) is
18799
18800 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
18801 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
18802 -- Used to set debug info in a related node if not set already
18803
18804 --------------------------------------
18805 -- Set_Debug_Info_Needed_If_Not_Set --
18806 --------------------------------------
18807
18808 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
18809 begin
18810 if Present (E) and then not Needs_Debug_Info (E) then
18811 Set_Debug_Info_Needed (E);
18812
18813 -- For a private type, indicate that the full view also needs
18814 -- debug information.
18815
18816 if Is_Type (E)
18817 and then Is_Private_Type (E)
18818 and then Present (Full_View (E))
18819 then
18820 Set_Debug_Info_Needed (Full_View (E));
18821 end if;
18822 end if;
18823 end Set_Debug_Info_Needed_If_Not_Set;
18824
18825 -- Start of processing for Set_Debug_Info_Needed
18826
18827 begin
18828 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
18829 -- indicates that Debug_Info_Needed is never required for the entity.
18830 -- Nothing to do if entity comes from a predefined file. Library files
18831 -- are compiled without debug information, but inlined bodies of these
18832 -- routines may appear in user code, and debug information on them ends
18833 -- up complicating debugging the user code.
18834
18835 if No (T)
18836 or else Debug_Info_Off (T)
18837 then
18838 return;
18839
18840 elsif In_Inlined_Body
18841 and then Is_Predefined_File_Name
18842 (Unit_File_Name (Get_Source_Unit (Sloc (T))))
18843 then
18844 Set_Needs_Debug_Info (T, False);
18845 end if;
18846
18847 -- Set flag in entity itself. Note that we will go through the following
18848 -- circuitry even if the flag is already set on T. That's intentional,
18849 -- it makes sure that the flag will be set in subsidiary entities.
18850
18851 Set_Needs_Debug_Info (T);
18852
18853 -- Set flag on subsidiary entities if not set already
18854
18855 if Is_Object (T) then
18856 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
18857
18858 elsif Is_Type (T) then
18859 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
18860
18861 if Is_Record_Type (T) then
18862 declare
18863 Ent : Entity_Id := First_Entity (T);
18864 begin
18865 while Present (Ent) loop
18866 Set_Debug_Info_Needed_If_Not_Set (Ent);
18867 Next_Entity (Ent);
18868 end loop;
18869 end;
18870
18871 -- For a class wide subtype, we also need debug information
18872 -- for the equivalent type.
18873
18874 if Ekind (T) = E_Class_Wide_Subtype then
18875 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
18876 end if;
18877
18878 elsif Is_Array_Type (T) then
18879 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
18880
18881 declare
18882 Indx : Node_Id := First_Index (T);
18883 begin
18884 while Present (Indx) loop
18885 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
18886 Indx := Next_Index (Indx);
18887 end loop;
18888 end;
18889
18890 -- For a packed array type, we also need debug information for
18891 -- the type used to represent the packed array. Conversely, we
18892 -- also need it for the former if we need it for the latter.
18893
18894 if Is_Packed (T) then
18895 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Impl_Type (T));
18896 end if;
18897
18898 if Is_Packed_Array_Impl_Type (T) then
18899 Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
18900 end if;
18901
18902 elsif Is_Access_Type (T) then
18903 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
18904
18905 elsif Is_Private_Type (T) then
18906 declare
18907 FV : constant Entity_Id := Full_View (T);
18908
18909 begin
18910 Set_Debug_Info_Needed_If_Not_Set (FV);
18911
18912 -- If the full view is itself a derived private type, we need
18913 -- debug information on its underlying type.
18914
18915 if Present (FV)
18916 and then Is_Private_Type (FV)
18917 and then Present (Underlying_Full_View (FV))
18918 then
18919 Set_Needs_Debug_Info (Underlying_Full_View (FV));
18920 end if;
18921 end;
18922
18923 elsif Is_Protected_Type (T) then
18924 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
18925
18926 elsif Is_Scalar_Type (T) then
18927
18928 -- If the subrange bounds are materialized by dedicated constant
18929 -- objects, also include them in the debug info to make sure the
18930 -- debugger can properly use them.
18931
18932 if Present (Scalar_Range (T))
18933 and then Nkind (Scalar_Range (T)) = N_Range
18934 then
18935 declare
18936 Low_Bnd : constant Node_Id := Type_Low_Bound (T);
18937 High_Bnd : constant Node_Id := Type_High_Bound (T);
18938
18939 begin
18940 if Is_Entity_Name (Low_Bnd) then
18941 Set_Debug_Info_Needed_If_Not_Set (Entity (Low_Bnd));
18942 end if;
18943
18944 if Is_Entity_Name (High_Bnd) then
18945 Set_Debug_Info_Needed_If_Not_Set (Entity (High_Bnd));
18946 end if;
18947 end;
18948 end if;
18949 end if;
18950 end if;
18951 end Set_Debug_Info_Needed;
18952
18953 ----------------------------
18954 -- Set_Entity_With_Checks --
18955 ----------------------------
18956
18957 procedure Set_Entity_With_Checks (N : Node_Id; Val : Entity_Id) is
18958 Val_Actual : Entity_Id;
18959 Nod : Node_Id;
18960 Post_Node : Node_Id;
18961
18962 begin
18963 -- Unconditionally set the entity
18964
18965 Set_Entity (N, Val);
18966
18967 -- The node to post on is the selector in the case of an expanded name,
18968 -- and otherwise the node itself.
18969
18970 if Nkind (N) = N_Expanded_Name then
18971 Post_Node := Selector_Name (N);
18972 else
18973 Post_Node := N;
18974 end if;
18975
18976 -- Check for violation of No_Fixed_IO
18977
18978 if Restriction_Check_Required (No_Fixed_IO)
18979 and then
18980 ((RTU_Loaded (Ada_Text_IO)
18981 and then (Is_RTE (Val, RE_Decimal_IO)
18982 or else
18983 Is_RTE (Val, RE_Fixed_IO)))
18984
18985 or else
18986 (RTU_Loaded (Ada_Wide_Text_IO)
18987 and then (Is_RTE (Val, RO_WT_Decimal_IO)
18988 or else
18989 Is_RTE (Val, RO_WT_Fixed_IO)))
18990
18991 or else
18992 (RTU_Loaded (Ada_Wide_Wide_Text_IO)
18993 and then (Is_RTE (Val, RO_WW_Decimal_IO)
18994 or else
18995 Is_RTE (Val, RO_WW_Fixed_IO))))
18996
18997 -- A special extra check, don't complain about a reference from within
18998 -- the Ada.Interrupts package itself!
18999
19000 and then not In_Same_Extended_Unit (N, Val)
19001 then
19002 Check_Restriction (No_Fixed_IO, Post_Node);
19003 end if;
19004
19005 -- Remaining checks are only done on source nodes. Note that we test
19006 -- for violation of No_Fixed_IO even on non-source nodes, because the
19007 -- cases for checking violations of this restriction are instantiations
19008 -- where the reference in the instance has Comes_From_Source False.
19009
19010 if not Comes_From_Source (N) then
19011 return;
19012 end if;
19013
19014 -- Check for violation of No_Abort_Statements, which is triggered by
19015 -- call to Ada.Task_Identification.Abort_Task.
19016
19017 if Restriction_Check_Required (No_Abort_Statements)
19018 and then (Is_RTE (Val, RE_Abort_Task))
19019
19020 -- A special extra check, don't complain about a reference from within
19021 -- the Ada.Task_Identification package itself!
19022
19023 and then not In_Same_Extended_Unit (N, Val)
19024 then
19025 Check_Restriction (No_Abort_Statements, Post_Node);
19026 end if;
19027
19028 if Val = Standard_Long_Long_Integer then
19029 Check_Restriction (No_Long_Long_Integers, Post_Node);
19030 end if;
19031
19032 -- Check for violation of No_Dynamic_Attachment
19033
19034 if Restriction_Check_Required (No_Dynamic_Attachment)
19035 and then RTU_Loaded (Ada_Interrupts)
19036 and then (Is_RTE (Val, RE_Is_Reserved) or else
19037 Is_RTE (Val, RE_Is_Attached) or else
19038 Is_RTE (Val, RE_Current_Handler) or else
19039 Is_RTE (Val, RE_Attach_Handler) or else
19040 Is_RTE (Val, RE_Exchange_Handler) or else
19041 Is_RTE (Val, RE_Detach_Handler) or else
19042 Is_RTE (Val, RE_Reference))
19043
19044 -- A special extra check, don't complain about a reference from within
19045 -- the Ada.Interrupts package itself!
19046
19047 and then not In_Same_Extended_Unit (N, Val)
19048 then
19049 Check_Restriction (No_Dynamic_Attachment, Post_Node);
19050 end if;
19051
19052 -- Check for No_Implementation_Identifiers
19053
19054 if Restriction_Check_Required (No_Implementation_Identifiers) then
19055
19056 -- We have an implementation defined entity if it is marked as
19057 -- implementation defined, or is defined in a package marked as
19058 -- implementation defined. However, library packages themselves
19059 -- are excluded (we don't want to flag Interfaces itself, just
19060 -- the entities within it).
19061
19062 if (Is_Implementation_Defined (Val)
19063 or else
19064 (Present (Scope (Val))
19065 and then Is_Implementation_Defined (Scope (Val))))
19066 and then not (Ekind_In (Val, E_Package, E_Generic_Package)
19067 and then Is_Library_Level_Entity (Val))
19068 then
19069 Check_Restriction (No_Implementation_Identifiers, Post_Node);
19070 end if;
19071 end if;
19072
19073 -- Do the style check
19074
19075 if Style_Check
19076 and then not Suppress_Style_Checks (Val)
19077 and then not In_Instance
19078 then
19079 if Nkind (N) = N_Identifier then
19080 Nod := N;
19081 elsif Nkind (N) = N_Expanded_Name then
19082 Nod := Selector_Name (N);
19083 else
19084 return;
19085 end if;
19086
19087 -- A special situation arises for derived operations, where we want
19088 -- to do the check against the parent (since the Sloc of the derived
19089 -- operation points to the derived type declaration itself).
19090
19091 Val_Actual := Val;
19092 while not Comes_From_Source (Val_Actual)
19093 and then Nkind (Val_Actual) in N_Entity
19094 and then (Ekind (Val_Actual) = E_Enumeration_Literal
19095 or else Is_Subprogram_Or_Generic_Subprogram (Val_Actual))
19096 and then Present (Alias (Val_Actual))
19097 loop
19098 Val_Actual := Alias (Val_Actual);
19099 end loop;
19100
19101 -- Renaming declarations for generic actuals do not come from source,
19102 -- and have a different name from that of the entity they rename, so
19103 -- there is no style check to perform here.
19104
19105 if Chars (Nod) = Chars (Val_Actual) then
19106 Style.Check_Identifier (Nod, Val_Actual);
19107 end if;
19108 end if;
19109
19110 Set_Entity (N, Val);
19111 end Set_Entity_With_Checks;
19112
19113 ------------------------
19114 -- Set_Name_Entity_Id --
19115 ------------------------
19116
19117 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
19118 begin
19119 Set_Name_Table_Int (Id, Int (Val));
19120 end Set_Name_Entity_Id;
19121
19122 ---------------------
19123 -- Set_Next_Actual --
19124 ---------------------
19125
19126 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
19127 begin
19128 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
19129 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
19130 end if;
19131 end Set_Next_Actual;
19132
19133 ----------------------------------
19134 -- Set_Optimize_Alignment_Flags --
19135 ----------------------------------
19136
19137 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
19138 begin
19139 if Optimize_Alignment = 'S' then
19140 Set_Optimize_Alignment_Space (E);
19141 elsif Optimize_Alignment = 'T' then
19142 Set_Optimize_Alignment_Time (E);
19143 end if;
19144 end Set_Optimize_Alignment_Flags;
19145
19146 -----------------------
19147 -- Set_Public_Status --
19148 -----------------------
19149
19150 procedure Set_Public_Status (Id : Entity_Id) is
19151 S : constant Entity_Id := Current_Scope;
19152
19153 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
19154 -- Determines if E is defined within handled statement sequence or
19155 -- an if statement, returns True if so, False otherwise.
19156
19157 ----------------------
19158 -- Within_HSS_Or_If --
19159 ----------------------
19160
19161 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
19162 N : Node_Id;
19163 begin
19164 N := Declaration_Node (E);
19165 loop
19166 N := Parent (N);
19167
19168 if No (N) then
19169 return False;
19170
19171 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
19172 N_If_Statement)
19173 then
19174 return True;
19175 end if;
19176 end loop;
19177 end Within_HSS_Or_If;
19178
19179 -- Start of processing for Set_Public_Status
19180
19181 begin
19182 -- Everything in the scope of Standard is public
19183
19184 if S = Standard_Standard then
19185 Set_Is_Public (Id);
19186
19187 -- Entity is definitely not public if enclosing scope is not public
19188
19189 elsif not Is_Public (S) then
19190 return;
19191
19192 -- An object or function declaration that occurs in a handled sequence
19193 -- of statements or within an if statement is the declaration for a
19194 -- temporary object or local subprogram generated by the expander. It
19195 -- never needs to be made public and furthermore, making it public can
19196 -- cause back end problems.
19197
19198 elsif Nkind_In (Parent (Id), N_Object_Declaration,
19199 N_Function_Specification)
19200 and then Within_HSS_Or_If (Id)
19201 then
19202 return;
19203
19204 -- Entities in public packages or records are public
19205
19206 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
19207 Set_Is_Public (Id);
19208
19209 -- The bounds of an entry family declaration can generate object
19210 -- declarations that are visible to the back-end, e.g. in the
19211 -- the declaration of a composite type that contains tasks.
19212
19213 elsif Is_Concurrent_Type (S)
19214 and then not Has_Completion (S)
19215 and then Nkind (Parent (Id)) = N_Object_Declaration
19216 then
19217 Set_Is_Public (Id);
19218 end if;
19219 end Set_Public_Status;
19220
19221 -----------------------------
19222 -- Set_Referenced_Modified --
19223 -----------------------------
19224
19225 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
19226 Pref : Node_Id;
19227
19228 begin
19229 -- Deal with indexed or selected component where prefix is modified
19230
19231 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
19232 Pref := Prefix (N);
19233
19234 -- If prefix is access type, then it is the designated object that is
19235 -- being modified, which means we have no entity to set the flag on.
19236
19237 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
19238 return;
19239
19240 -- Otherwise chase the prefix
19241
19242 else
19243 Set_Referenced_Modified (Pref, Out_Param);
19244 end if;
19245
19246 -- Otherwise see if we have an entity name (only other case to process)
19247
19248 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
19249 Set_Referenced_As_LHS (Entity (N), not Out_Param);
19250 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
19251 end if;
19252 end Set_Referenced_Modified;
19253
19254 ----------------------------
19255 -- Set_Scope_Is_Transient --
19256 ----------------------------
19257
19258 procedure Set_Scope_Is_Transient (V : Boolean := True) is
19259 begin
19260 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
19261 end Set_Scope_Is_Transient;
19262
19263 -------------------
19264 -- Set_Size_Info --
19265 -------------------
19266
19267 procedure Set_Size_Info (T1, T2 : Entity_Id) is
19268 begin
19269 -- We copy Esize, but not RM_Size, since in general RM_Size is
19270 -- subtype specific and does not get inherited by all subtypes.
19271
19272 Set_Esize (T1, Esize (T2));
19273 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
19274
19275 if Is_Discrete_Or_Fixed_Point_Type (T1)
19276 and then
19277 Is_Discrete_Or_Fixed_Point_Type (T2)
19278 then
19279 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
19280 end if;
19281
19282 Set_Alignment (T1, Alignment (T2));
19283 end Set_Size_Info;
19284
19285 --------------------
19286 -- Static_Boolean --
19287 --------------------
19288
19289 function Static_Boolean (N : Node_Id) return Uint is
19290 begin
19291 Analyze_And_Resolve (N, Standard_Boolean);
19292
19293 if N = Error
19294 or else Error_Posted (N)
19295 or else Etype (N) = Any_Type
19296 then
19297 return No_Uint;
19298 end if;
19299
19300 if Is_OK_Static_Expression (N) then
19301 if not Raises_Constraint_Error (N) then
19302 return Expr_Value (N);
19303 else
19304 return No_Uint;
19305 end if;
19306
19307 elsif Etype (N) = Any_Type then
19308 return No_Uint;
19309
19310 else
19311 Flag_Non_Static_Expr
19312 ("static boolean expression required here", N);
19313 return No_Uint;
19314 end if;
19315 end Static_Boolean;
19316
19317 --------------------
19318 -- Static_Integer --
19319 --------------------
19320
19321 function Static_Integer (N : Node_Id) return Uint is
19322 begin
19323 Analyze_And_Resolve (N, Any_Integer);
19324
19325 if N = Error
19326 or else Error_Posted (N)
19327 or else Etype (N) = Any_Type
19328 then
19329 return No_Uint;
19330 end if;
19331
19332 if Is_OK_Static_Expression (N) then
19333 if not Raises_Constraint_Error (N) then
19334 return Expr_Value (N);
19335 else
19336 return No_Uint;
19337 end if;
19338
19339 elsif Etype (N) = Any_Type then
19340 return No_Uint;
19341
19342 else
19343 Flag_Non_Static_Expr
19344 ("static integer expression required here", N);
19345 return No_Uint;
19346 end if;
19347 end Static_Integer;
19348
19349 --------------------------
19350 -- Statically_Different --
19351 --------------------------
19352
19353 function Statically_Different (E1, E2 : Node_Id) return Boolean is
19354 R1 : constant Node_Id := Get_Referenced_Object (E1);
19355 R2 : constant Node_Id := Get_Referenced_Object (E2);
19356 begin
19357 return Is_Entity_Name (R1)
19358 and then Is_Entity_Name (R2)
19359 and then Entity (R1) /= Entity (R2)
19360 and then not Is_Formal (Entity (R1))
19361 and then not Is_Formal (Entity (R2));
19362 end Statically_Different;
19363
19364 --------------------------------------
19365 -- Subject_To_Loop_Entry_Attributes --
19366 --------------------------------------
19367
19368 function Subject_To_Loop_Entry_Attributes (N : Node_Id) return Boolean is
19369 Stmt : Node_Id;
19370
19371 begin
19372 Stmt := N;
19373
19374 -- The expansion mechanism transform a loop subject to at least one
19375 -- 'Loop_Entry attribute into a conditional block. Infinite loops lack
19376 -- the conditional part.
19377
19378 if Nkind_In (Stmt, N_Block_Statement, N_If_Statement)
19379 and then Nkind (Original_Node (N)) = N_Loop_Statement
19380 then
19381 Stmt := Original_Node (N);
19382 end if;
19383
19384 return
19385 Nkind (Stmt) = N_Loop_Statement
19386 and then Present (Identifier (Stmt))
19387 and then Present (Entity (Identifier (Stmt)))
19388 and then Has_Loop_Entry_Attributes (Entity (Identifier (Stmt)));
19389 end Subject_To_Loop_Entry_Attributes;
19390
19391 -----------------------------
19392 -- Subprogram_Access_Level --
19393 -----------------------------
19394
19395 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
19396 begin
19397 if Present (Alias (Subp)) then
19398 return Subprogram_Access_Level (Alias (Subp));
19399 else
19400 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
19401 end if;
19402 end Subprogram_Access_Level;
19403
19404 -------------------------------
19405 -- Support_Atomic_Primitives --
19406 -------------------------------
19407
19408 function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
19409 Size : Int;
19410
19411 begin
19412 -- Verify the alignment of Typ is known
19413
19414 if not Known_Alignment (Typ) then
19415 return False;
19416 end if;
19417
19418 if Known_Static_Esize (Typ) then
19419 Size := UI_To_Int (Esize (Typ));
19420
19421 -- If the Esize (Object_Size) is unknown at compile time, look at the
19422 -- RM_Size (Value_Size) which may have been set by an explicit rep item.
19423
19424 elsif Known_Static_RM_Size (Typ) then
19425 Size := UI_To_Int (RM_Size (Typ));
19426
19427 -- Otherwise, the size is considered to be unknown.
19428
19429 else
19430 return False;
19431 end if;
19432
19433 -- Check that the size of the component is 8, 16, 32 or 64 bits and that
19434 -- Typ is properly aligned.
19435
19436 case Size is
19437 when 8 | 16 | 32 | 64 =>
19438 return Size = UI_To_Int (Alignment (Typ)) * 8;
19439 when others =>
19440 return False;
19441 end case;
19442 end Support_Atomic_Primitives;
19443
19444 -----------------
19445 -- Trace_Scope --
19446 -----------------
19447
19448 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
19449 begin
19450 if Debug_Flag_W then
19451 for J in 0 .. Scope_Stack.Last loop
19452 Write_Str (" ");
19453 end loop;
19454
19455 Write_Str (Msg);
19456 Write_Name (Chars (E));
19457 Write_Str (" from ");
19458 Write_Location (Sloc (N));
19459 Write_Eol;
19460 end if;
19461 end Trace_Scope;
19462
19463 -----------------------
19464 -- Transfer_Entities --
19465 -----------------------
19466
19467 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
19468 procedure Set_Public_Status_Of (Id : Entity_Id);
19469 -- Set the Is_Public attribute of arbitrary entity Id by calling routine
19470 -- Set_Public_Status. If successfull and Id denotes a record type, set
19471 -- the Is_Public attribute of its fields.
19472
19473 --------------------------
19474 -- Set_Public_Status_Of --
19475 --------------------------
19476
19477 procedure Set_Public_Status_Of (Id : Entity_Id) is
19478 Field : Entity_Id;
19479
19480 begin
19481 if not Is_Public (Id) then
19482 Set_Public_Status (Id);
19483
19484 -- When the input entity is a public record type, ensure that all
19485 -- its internal fields are also exposed to the linker. The fields
19486 -- of a class-wide type are never made public.
19487
19488 if Is_Public (Id)
19489 and then Is_Record_Type (Id)
19490 and then not Is_Class_Wide_Type (Id)
19491 then
19492 Field := First_Entity (Id);
19493 while Present (Field) loop
19494 Set_Is_Public (Field);
19495 Next_Entity (Field);
19496 end loop;
19497 end if;
19498 end if;
19499 end Set_Public_Status_Of;
19500
19501 -- Local variables
19502
19503 Full_Id : Entity_Id;
19504 Id : Entity_Id;
19505
19506 -- Start of processing for Transfer_Entities
19507
19508 begin
19509 Id := First_Entity (From);
19510
19511 if Present (Id) then
19512
19513 -- Merge the entity chain of the source scope with that of the
19514 -- destination scope.
19515
19516 if Present (Last_Entity (To)) then
19517 Set_Next_Entity (Last_Entity (To), Id);
19518 else
19519 Set_First_Entity (To, Id);
19520 end if;
19521
19522 Set_Last_Entity (To, Last_Entity (From));
19523
19524 -- Inspect the entities of the source scope and update their Scope
19525 -- attribute.
19526
19527 while Present (Id) loop
19528 Set_Scope (Id, To);
19529 Set_Public_Status_Of (Id);
19530
19531 -- Handle an internally generated full view for a private type
19532
19533 if Is_Private_Type (Id)
19534 and then Present (Full_View (Id))
19535 and then Is_Itype (Full_View (Id))
19536 then
19537 Full_Id := Full_View (Id);
19538
19539 Set_Scope (Full_Id, To);
19540 Set_Public_Status_Of (Full_Id);
19541 end if;
19542
19543 Next_Entity (Id);
19544 end loop;
19545
19546 Set_First_Entity (From, Empty);
19547 Set_Last_Entity (From, Empty);
19548 end if;
19549 end Transfer_Entities;
19550
19551 -----------------------
19552 -- Type_Access_Level --
19553 -----------------------
19554
19555 function Type_Access_Level (Typ : Entity_Id) return Uint is
19556 Btyp : Entity_Id;
19557
19558 begin
19559 Btyp := Base_Type (Typ);
19560
19561 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
19562 -- simply use the level where the type is declared. This is true for
19563 -- stand-alone object declarations, and for anonymous access types
19564 -- associated with components the level is the same as that of the
19565 -- enclosing composite type. However, special treatment is needed for
19566 -- the cases of access parameters, return objects of an anonymous access
19567 -- type, and, in Ada 95, access discriminants of limited types.
19568
19569 if Is_Access_Type (Btyp) then
19570 if Ekind (Btyp) = E_Anonymous_Access_Type then
19571
19572 -- If the type is a nonlocal anonymous access type (such as for
19573 -- an access parameter) we treat it as being declared at the
19574 -- library level to ensure that names such as X.all'access don't
19575 -- fail static accessibility checks.
19576
19577 if not Is_Local_Anonymous_Access (Typ) then
19578 return Scope_Depth (Standard_Standard);
19579
19580 -- If this is a return object, the accessibility level is that of
19581 -- the result subtype of the enclosing function. The test here is
19582 -- little complicated, because we have to account for extended
19583 -- return statements that have been rewritten as blocks, in which
19584 -- case we have to find and the Is_Return_Object attribute of the
19585 -- itype's associated object. It would be nice to find a way to
19586 -- simplify this test, but it doesn't seem worthwhile to add a new
19587 -- flag just for purposes of this test. ???
19588
19589 elsif Ekind (Scope (Btyp)) = E_Return_Statement
19590 or else
19591 (Is_Itype (Btyp)
19592 and then Nkind (Associated_Node_For_Itype (Btyp)) =
19593 N_Object_Declaration
19594 and then Is_Return_Object
19595 (Defining_Identifier
19596 (Associated_Node_For_Itype (Btyp))))
19597 then
19598 declare
19599 Scop : Entity_Id;
19600
19601 begin
19602 Scop := Scope (Scope (Btyp));
19603 while Present (Scop) loop
19604 exit when Ekind (Scop) = E_Function;
19605 Scop := Scope (Scop);
19606 end loop;
19607
19608 -- Treat the return object's type as having the level of the
19609 -- function's result subtype (as per RM05-6.5(5.3/2)).
19610
19611 return Type_Access_Level (Etype (Scop));
19612 end;
19613 end if;
19614 end if;
19615
19616 Btyp := Root_Type (Btyp);
19617
19618 -- The accessibility level of anonymous access types associated with
19619 -- discriminants is that of the current instance of the type, and
19620 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
19621
19622 -- AI-402: access discriminants have accessibility based on the
19623 -- object rather than the type in Ada 2005, so the above paragraph
19624 -- doesn't apply.
19625
19626 -- ??? Needs completion with rules from AI-416
19627
19628 if Ada_Version <= Ada_95
19629 and then Ekind (Typ) = E_Anonymous_Access_Type
19630 and then Present (Associated_Node_For_Itype (Typ))
19631 and then Nkind (Associated_Node_For_Itype (Typ)) =
19632 N_Discriminant_Specification
19633 then
19634 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
19635 end if;
19636 end if;
19637
19638 -- Return library level for a generic formal type. This is done because
19639 -- RM(10.3.2) says that "The statically deeper relationship does not
19640 -- apply to ... a descendant of a generic formal type". Rather than
19641 -- checking at each point where a static accessibility check is
19642 -- performed to see if we are dealing with a formal type, this rule is
19643 -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
19644 -- return extreme values for a formal type; Deepest_Type_Access_Level
19645 -- returns Int'Last. By calling the appropriate function from among the
19646 -- two, we ensure that the static accessibility check will pass if we
19647 -- happen to run into a formal type. More specifically, we should call
19648 -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
19649 -- call occurs as part of a static accessibility check and the error
19650 -- case is the case where the type's level is too shallow (as opposed
19651 -- to too deep).
19652
19653 if Is_Generic_Type (Root_Type (Btyp)) then
19654 return Scope_Depth (Standard_Standard);
19655 end if;
19656
19657 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
19658 end Type_Access_Level;
19659
19660 ------------------------------------
19661 -- Type_Without_Stream_Operation --
19662 ------------------------------------
19663
19664 function Type_Without_Stream_Operation
19665 (T : Entity_Id;
19666 Op : TSS_Name_Type := TSS_Null) return Entity_Id
19667 is
19668 BT : constant Entity_Id := Base_Type (T);
19669 Op_Missing : Boolean;
19670
19671 begin
19672 if not Restriction_Active (No_Default_Stream_Attributes) then
19673 return Empty;
19674 end if;
19675
19676 if Is_Elementary_Type (T) then
19677 if Op = TSS_Null then
19678 Op_Missing :=
19679 No (TSS (BT, TSS_Stream_Read))
19680 or else No (TSS (BT, TSS_Stream_Write));
19681
19682 else
19683 Op_Missing := No (TSS (BT, Op));
19684 end if;
19685
19686 if Op_Missing then
19687 return T;
19688 else
19689 return Empty;
19690 end if;
19691
19692 elsif Is_Array_Type (T) then
19693 return Type_Without_Stream_Operation (Component_Type (T), Op);
19694
19695 elsif Is_Record_Type (T) then
19696 declare
19697 Comp : Entity_Id;
19698 C_Typ : Entity_Id;
19699
19700 begin
19701 Comp := First_Component (T);
19702 while Present (Comp) loop
19703 C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
19704
19705 if Present (C_Typ) then
19706 return C_Typ;
19707 end if;
19708
19709 Next_Component (Comp);
19710 end loop;
19711
19712 return Empty;
19713 end;
19714
19715 elsif Is_Private_Type (T) and then Present (Full_View (T)) then
19716 return Type_Without_Stream_Operation (Full_View (T), Op);
19717 else
19718 return Empty;
19719 end if;
19720 end Type_Without_Stream_Operation;
19721
19722 ----------------------------
19723 -- Unique_Defining_Entity --
19724 ----------------------------
19725
19726 function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
19727 begin
19728 return Unique_Entity (Defining_Entity (N));
19729 end Unique_Defining_Entity;
19730
19731 -------------------
19732 -- Unique_Entity --
19733 -------------------
19734
19735 function Unique_Entity (E : Entity_Id) return Entity_Id is
19736 U : Entity_Id := E;
19737 P : Node_Id;
19738
19739 begin
19740 case Ekind (E) is
19741 when E_Constant =>
19742 if Present (Full_View (E)) then
19743 U := Full_View (E);
19744 end if;
19745
19746 when Entry_Kind =>
19747 if Nkind (Parent (E)) = N_Entry_Body then
19748 declare
19749 Prot_Item : Entity_Id;
19750 begin
19751 -- Traverse the entity list of the protected type and locate
19752 -- an entry declaration which matches the entry body.
19753
19754 Prot_Item := First_Entity (Scope (E));
19755 while Present (Prot_Item) loop
19756 if Ekind (Prot_Item) = E_Entry
19757 and then Corresponding_Body (Parent (Prot_Item)) = E
19758 then
19759 U := Prot_Item;
19760 exit;
19761 end if;
19762
19763 Next_Entity (Prot_Item);
19764 end loop;
19765 end;
19766 end if;
19767
19768 when Formal_Kind =>
19769 if Present (Spec_Entity (E)) then
19770 U := Spec_Entity (E);
19771 end if;
19772
19773 when E_Package_Body =>
19774 P := Parent (E);
19775
19776 if Nkind (P) = N_Defining_Program_Unit_Name then
19777 P := Parent (P);
19778 end if;
19779
19780 if Nkind (P) = N_Package_Body
19781 and then Present (Corresponding_Spec (P))
19782 then
19783 U := Corresponding_Spec (P);
19784
19785 elsif Nkind (P) = N_Package_Body_Stub
19786 and then Present (Corresponding_Spec_Of_Stub (P))
19787 then
19788 U := Corresponding_Spec_Of_Stub (P);
19789 end if;
19790
19791 when E_Protected_Body =>
19792 P := Parent (E);
19793
19794 if Nkind (P) = N_Protected_Body
19795 and then Present (Corresponding_Spec (P))
19796 then
19797 U := Corresponding_Spec (P);
19798
19799 elsif Nkind (P) = N_Protected_Body_Stub
19800 and then Present (Corresponding_Spec_Of_Stub (P))
19801 then
19802 U := Corresponding_Spec_Of_Stub (P);
19803 end if;
19804
19805 when E_Subprogram_Body =>
19806 P := Parent (E);
19807
19808 if Nkind (P) = N_Defining_Program_Unit_Name then
19809 P := Parent (P);
19810 end if;
19811
19812 P := Parent (P);
19813
19814 if Nkind (P) = N_Subprogram_Body
19815 and then Present (Corresponding_Spec (P))
19816 then
19817 U := Corresponding_Spec (P);
19818
19819 elsif Nkind (P) = N_Subprogram_Body_Stub
19820 and then Present (Corresponding_Spec_Of_Stub (P))
19821 then
19822 U := Corresponding_Spec_Of_Stub (P);
19823 end if;
19824
19825 when E_Task_Body =>
19826 P := Parent (E);
19827
19828 if Nkind (P) = N_Task_Body
19829 and then Present (Corresponding_Spec (P))
19830 then
19831 U := Corresponding_Spec (P);
19832
19833 elsif Nkind (P) = N_Task_Body_Stub
19834 and then Present (Corresponding_Spec_Of_Stub (P))
19835 then
19836 U := Corresponding_Spec_Of_Stub (P);
19837 end if;
19838
19839 when Type_Kind =>
19840 if Present (Full_View (E)) then
19841 U := Full_View (E);
19842 end if;
19843
19844 when others =>
19845 null;
19846 end case;
19847
19848 return U;
19849 end Unique_Entity;
19850
19851 -----------------
19852 -- Unique_Name --
19853 -----------------
19854
19855 function Unique_Name (E : Entity_Id) return String is
19856
19857 -- Names of E_Subprogram_Body or E_Package_Body entities are not
19858 -- reliable, as they may not include the overloading suffix. Instead,
19859 -- when looking for the name of E or one of its enclosing scope, we get
19860 -- the name of the corresponding Unique_Entity.
19861
19862 function Get_Scoped_Name (E : Entity_Id) return String;
19863 -- Return the name of E prefixed by all the names of the scopes to which
19864 -- E belongs, except for Standard.
19865
19866 ---------------------
19867 -- Get_Scoped_Name --
19868 ---------------------
19869
19870 function Get_Scoped_Name (E : Entity_Id) return String is
19871 Name : constant String := Get_Name_String (Chars (E));
19872 begin
19873 if Has_Fully_Qualified_Name (E)
19874 or else Scope (E) = Standard_Standard
19875 then
19876 return Name;
19877 else
19878 return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name;
19879 end if;
19880 end Get_Scoped_Name;
19881
19882 -- Start of processing for Unique_Name
19883
19884 begin
19885 if E = Standard_Standard then
19886 return Get_Name_String (Name_Standard);
19887
19888 elsif Scope (E) = Standard_Standard
19889 and then not (Ekind (E) = E_Package or else Is_Subprogram (E))
19890 then
19891 return Get_Name_String (Name_Standard) & "__" &
19892 Get_Name_String (Chars (E));
19893
19894 elsif Ekind (E) = E_Enumeration_Literal then
19895 return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E));
19896
19897 else
19898 return Get_Scoped_Name (Unique_Entity (E));
19899 end if;
19900 end Unique_Name;
19901
19902 ---------------------
19903 -- Unit_Is_Visible --
19904 ---------------------
19905
19906 function Unit_Is_Visible (U : Entity_Id) return Boolean is
19907 Curr : constant Node_Id := Cunit (Current_Sem_Unit);
19908 Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
19909
19910 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
19911 -- For a child unit, check whether unit appears in a with_clause
19912 -- of a parent.
19913
19914 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
19915 -- Scan the context clause of one compilation unit looking for a
19916 -- with_clause for the unit in question.
19917
19918 ----------------------------
19919 -- Unit_In_Parent_Context --
19920 ----------------------------
19921
19922 function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
19923 begin
19924 if Unit_In_Context (Par_Unit) then
19925 return True;
19926
19927 elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
19928 return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
19929
19930 else
19931 return False;
19932 end if;
19933 end Unit_In_Parent_Context;
19934
19935 ---------------------
19936 -- Unit_In_Context --
19937 ---------------------
19938
19939 function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
19940 Clause : Node_Id;
19941
19942 begin
19943 Clause := First (Context_Items (Comp_Unit));
19944 while Present (Clause) loop
19945 if Nkind (Clause) = N_With_Clause then
19946 if Library_Unit (Clause) = U then
19947 return True;
19948
19949 -- The with_clause may denote a renaming of the unit we are
19950 -- looking for, eg. Text_IO which renames Ada.Text_IO.
19951
19952 elsif
19953 Renamed_Entity (Entity (Name (Clause))) =
19954 Defining_Entity (Unit (U))
19955 then
19956 return True;
19957 end if;
19958 end if;
19959
19960 Next (Clause);
19961 end loop;
19962
19963 return False;
19964 end Unit_In_Context;
19965
19966 -- Start of processing for Unit_Is_Visible
19967
19968 begin
19969 -- The currrent unit is directly visible
19970
19971 if Curr = U then
19972 return True;
19973
19974 elsif Unit_In_Context (Curr) then
19975 return True;
19976
19977 -- If the current unit is a body, check the context of the spec
19978
19979 elsif Nkind (Unit (Curr)) = N_Package_Body
19980 or else
19981 (Nkind (Unit (Curr)) = N_Subprogram_Body
19982 and then not Acts_As_Spec (Unit (Curr)))
19983 then
19984 if Unit_In_Context (Library_Unit (Curr)) then
19985 return True;
19986 end if;
19987 end if;
19988
19989 -- If the spec is a child unit, examine the parents
19990
19991 if Is_Child_Unit (Curr_Entity) then
19992 if Nkind (Unit (Curr)) in N_Unit_Body then
19993 return
19994 Unit_In_Parent_Context
19995 (Parent_Spec (Unit (Library_Unit (Curr))));
19996 else
19997 return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
19998 end if;
19999
20000 else
20001 return False;
20002 end if;
20003 end Unit_Is_Visible;
20004
20005 ------------------------------
20006 -- Universal_Interpretation --
20007 ------------------------------
20008
20009 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
20010 Index : Interp_Index;
20011 It : Interp;
20012
20013 begin
20014 -- The argument may be a formal parameter of an operator or subprogram
20015 -- with multiple interpretations, or else an expression for an actual.
20016
20017 if Nkind (Opnd) = N_Defining_Identifier
20018 or else not Is_Overloaded (Opnd)
20019 then
20020 if Etype (Opnd) = Universal_Integer
20021 or else Etype (Opnd) = Universal_Real
20022 then
20023 return Etype (Opnd);
20024 else
20025 return Empty;
20026 end if;
20027
20028 else
20029 Get_First_Interp (Opnd, Index, It);
20030 while Present (It.Typ) loop
20031 if It.Typ = Universal_Integer
20032 or else It.Typ = Universal_Real
20033 then
20034 return It.Typ;
20035 end if;
20036
20037 Get_Next_Interp (Index, It);
20038 end loop;
20039
20040 return Empty;
20041 end if;
20042 end Universal_Interpretation;
20043
20044 ---------------
20045 -- Unqualify --
20046 ---------------
20047
20048 function Unqualify (Expr : Node_Id) return Node_Id is
20049 begin
20050 -- Recurse to handle unlikely case of multiple levels of qualification
20051
20052 if Nkind (Expr) = N_Qualified_Expression then
20053 return Unqualify (Expression (Expr));
20054
20055 -- Normal case, not a qualified expression
20056
20057 else
20058 return Expr;
20059 end if;
20060 end Unqualify;
20061
20062 -----------------------
20063 -- Visible_Ancestors --
20064 -----------------------
20065
20066 function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
20067 List_1 : Elist_Id;
20068 List_2 : Elist_Id;
20069 Elmt : Elmt_Id;
20070
20071 begin
20072 pragma Assert (Is_Record_Type (Typ) and then Is_Tagged_Type (Typ));
20073
20074 -- Collect all the parents and progenitors of Typ. If the full-view of
20075 -- private parents and progenitors is available then it is used to
20076 -- generate the list of visible ancestors; otherwise their partial
20077 -- view is added to the resulting list.
20078
20079 Collect_Parents
20080 (T => Typ,
20081 List => List_1,
20082 Use_Full_View => True);
20083
20084 Collect_Interfaces
20085 (T => Typ,
20086 Ifaces_List => List_2,
20087 Exclude_Parents => True,
20088 Use_Full_View => True);
20089
20090 -- Join the two lists. Avoid duplications because an interface may
20091 -- simultaneously be parent and progenitor of a type.
20092
20093 Elmt := First_Elmt (List_2);
20094 while Present (Elmt) loop
20095 Append_Unique_Elmt (Node (Elmt), List_1);
20096 Next_Elmt (Elmt);
20097 end loop;
20098
20099 return List_1;
20100 end Visible_Ancestors;
20101
20102 ----------------------
20103 -- Within_Init_Proc --
20104 ----------------------
20105
20106 function Within_Init_Proc return Boolean is
20107 S : Entity_Id;
20108
20109 begin
20110 S := Current_Scope;
20111 while not Is_Overloadable (S) loop
20112 if S = Standard_Standard then
20113 return False;
20114 else
20115 S := Scope (S);
20116 end if;
20117 end loop;
20118
20119 return Is_Init_Proc (S);
20120 end Within_Init_Proc;
20121
20122 ------------------
20123 -- Within_Scope --
20124 ------------------
20125
20126 function Within_Scope (E : Entity_Id; S : Entity_Id) return Boolean is
20127 SE : Entity_Id;
20128 begin
20129 SE := Scope (E);
20130 loop
20131 if SE = S then
20132 return True;
20133 elsif SE = Standard_Standard then
20134 return False;
20135 else
20136 SE := Scope (SE);
20137 end if;
20138 end loop;
20139 end Within_Scope;
20140
20141 ----------------
20142 -- Wrong_Type --
20143 ----------------
20144
20145 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
20146 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
20147 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
20148
20149 Matching_Field : Entity_Id;
20150 -- Entity to give a more precise suggestion on how to write a one-
20151 -- element positional aggregate.
20152
20153 function Has_One_Matching_Field return Boolean;
20154 -- Determines if Expec_Type is a record type with a single component or
20155 -- discriminant whose type matches the found type or is one dimensional
20156 -- array whose component type matches the found type. In the case of
20157 -- one discriminant, we ignore the variant parts. That's not accurate,
20158 -- but good enough for the warning.
20159
20160 ----------------------------
20161 -- Has_One_Matching_Field --
20162 ----------------------------
20163
20164 function Has_One_Matching_Field return Boolean is
20165 E : Entity_Id;
20166
20167 begin
20168 Matching_Field := Empty;
20169
20170 if Is_Array_Type (Expec_Type)
20171 and then Number_Dimensions (Expec_Type) = 1
20172 and then Covers (Etype (Component_Type (Expec_Type)), Found_Type)
20173 then
20174 -- Use type name if available. This excludes multidimensional
20175 -- arrays and anonymous arrays.
20176
20177 if Comes_From_Source (Expec_Type) then
20178 Matching_Field := Expec_Type;
20179
20180 -- For an assignment, use name of target
20181
20182 elsif Nkind (Parent (Expr)) = N_Assignment_Statement
20183 and then Is_Entity_Name (Name (Parent (Expr)))
20184 then
20185 Matching_Field := Entity (Name (Parent (Expr)));
20186 end if;
20187
20188 return True;
20189
20190 elsif not Is_Record_Type (Expec_Type) then
20191 return False;
20192
20193 else
20194 E := First_Entity (Expec_Type);
20195 loop
20196 if No (E) then
20197 return False;
20198
20199 elsif not Ekind_In (E, E_Discriminant, E_Component)
20200 or else Nam_In (Chars (E), Name_uTag, Name_uParent)
20201 then
20202 Next_Entity (E);
20203
20204 else
20205 exit;
20206 end if;
20207 end loop;
20208
20209 if not Covers (Etype (E), Found_Type) then
20210 return False;
20211
20212 elsif Present (Next_Entity (E))
20213 and then (Ekind (E) = E_Component
20214 or else Ekind (Next_Entity (E)) = E_Discriminant)
20215 then
20216 return False;
20217
20218 else
20219 Matching_Field := E;
20220 return True;
20221 end if;
20222 end if;
20223 end Has_One_Matching_Field;
20224
20225 -- Start of processing for Wrong_Type
20226
20227 begin
20228 -- Don't output message if either type is Any_Type, or if a message
20229 -- has already been posted for this node. We need to do the latter
20230 -- check explicitly (it is ordinarily done in Errout), because we
20231 -- are using ! to force the output of the error messages.
20232
20233 if Expec_Type = Any_Type
20234 or else Found_Type = Any_Type
20235 or else Error_Posted (Expr)
20236 then
20237 return;
20238
20239 -- If one of the types is a Taft-Amendment type and the other it its
20240 -- completion, it must be an illegal use of a TAT in the spec, for
20241 -- which an error was already emitted. Avoid cascaded errors.
20242
20243 elsif Is_Incomplete_Type (Expec_Type)
20244 and then Has_Completion_In_Body (Expec_Type)
20245 and then Full_View (Expec_Type) = Etype (Expr)
20246 then
20247 return;
20248
20249 elsif Is_Incomplete_Type (Etype (Expr))
20250 and then Has_Completion_In_Body (Etype (Expr))
20251 and then Full_View (Etype (Expr)) = Expec_Type
20252 then
20253 return;
20254
20255 -- In an instance, there is an ongoing problem with completion of
20256 -- type derived from private types. Their structure is what Gigi
20257 -- expects, but the Etype is the parent type rather than the
20258 -- derived private type itself. Do not flag error in this case. The
20259 -- private completion is an entity without a parent, like an Itype.
20260 -- Similarly, full and partial views may be incorrect in the instance.
20261 -- There is no simple way to insure that it is consistent ???
20262
20263 -- A similar view discrepancy can happen in an inlined body, for the
20264 -- same reason: inserted body may be outside of the original package
20265 -- and only partial views are visible at the point of insertion.
20266
20267 elsif In_Instance or else In_Inlined_Body then
20268 if Etype (Etype (Expr)) = Etype (Expected_Type)
20269 and then
20270 (Has_Private_Declaration (Expected_Type)
20271 or else Has_Private_Declaration (Etype (Expr)))
20272 and then No (Parent (Expected_Type))
20273 then
20274 return;
20275
20276 elsif Nkind (Parent (Expr)) = N_Qualified_Expression
20277 and then Entity (Subtype_Mark (Parent (Expr))) = Expected_Type
20278 then
20279 return;
20280
20281 elsif Is_Private_Type (Expected_Type)
20282 and then Present (Full_View (Expected_Type))
20283 and then Covers (Full_View (Expected_Type), Etype (Expr))
20284 then
20285 return;
20286
20287 -- Conversely, type of expression may be the private one
20288
20289 elsif Is_Private_Type (Base_Type (Etype (Expr)))
20290 and then Full_View (Base_Type (Etype (Expr))) = Expected_Type
20291 then
20292 return;
20293 end if;
20294 end if;
20295
20296 -- An interesting special check. If the expression is parenthesized
20297 -- and its type corresponds to the type of the sole component of the
20298 -- expected record type, or to the component type of the expected one
20299 -- dimensional array type, then assume we have a bad aggregate attempt.
20300
20301 if Nkind (Expr) in N_Subexpr
20302 and then Paren_Count (Expr) /= 0
20303 and then Has_One_Matching_Field
20304 then
20305 Error_Msg_N ("positional aggregate cannot have one component", Expr);
20306
20307 if Present (Matching_Field) then
20308 if Is_Array_Type (Expec_Type) then
20309 Error_Msg_NE
20310 ("\write instead `&''First ='> ...`", Expr, Matching_Field);
20311 else
20312 Error_Msg_NE
20313 ("\write instead `& ='> ...`", Expr, Matching_Field);
20314 end if;
20315 end if;
20316
20317 -- Another special check, if we are looking for a pool-specific access
20318 -- type and we found an E_Access_Attribute_Type, then we have the case
20319 -- of an Access attribute being used in a context which needs a pool-
20320 -- specific type, which is never allowed. The one extra check we make
20321 -- is that the expected designated type covers the Found_Type.
20322
20323 elsif Is_Access_Type (Expec_Type)
20324 and then Ekind (Found_Type) = E_Access_Attribute_Type
20325 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
20326 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
20327 and then Covers
20328 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
20329 then
20330 Error_Msg_N -- CODEFIX
20331 ("result must be general access type!", Expr);
20332 Error_Msg_NE -- CODEFIX
20333 ("add ALL to }!", Expr, Expec_Type);
20334
20335 -- Another special check, if the expected type is an integer type,
20336 -- but the expression is of type System.Address, and the parent is
20337 -- an addition or subtraction operation whose left operand is the
20338 -- expression in question and whose right operand is of an integral
20339 -- type, then this is an attempt at address arithmetic, so give
20340 -- appropriate message.
20341
20342 elsif Is_Integer_Type (Expec_Type)
20343 and then Is_RTE (Found_Type, RE_Address)
20344 and then Nkind_In (Parent (Expr), N_Op_Add, N_Op_Subtract)
20345 and then Expr = Left_Opnd (Parent (Expr))
20346 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
20347 then
20348 Error_Msg_N
20349 ("address arithmetic not predefined in package System",
20350 Parent (Expr));
20351 Error_Msg_N
20352 ("\possible missing with/use of System.Storage_Elements",
20353 Parent (Expr));
20354 return;
20355
20356 -- If the expected type is an anonymous access type, as for access
20357 -- parameters and discriminants, the error is on the designated types.
20358
20359 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
20360 if Comes_From_Source (Expec_Type) then
20361 Error_Msg_NE ("expected}!", Expr, Expec_Type);
20362 else
20363 Error_Msg_NE
20364 ("expected an access type with designated}",
20365 Expr, Designated_Type (Expec_Type));
20366 end if;
20367
20368 if Is_Access_Type (Found_Type)
20369 and then not Comes_From_Source (Found_Type)
20370 then
20371 Error_Msg_NE
20372 ("\\found an access type with designated}!",
20373 Expr, Designated_Type (Found_Type));
20374 else
20375 if From_Limited_With (Found_Type) then
20376 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
20377 Error_Msg_Qual_Level := 99;
20378 Error_Msg_NE -- CODEFIX
20379 ("\\missing `WITH &;", Expr, Scope (Found_Type));
20380 Error_Msg_Qual_Level := 0;
20381 else
20382 Error_Msg_NE ("found}!", Expr, Found_Type);
20383 end if;
20384 end if;
20385
20386 -- Normal case of one type found, some other type expected
20387
20388 else
20389 -- If the names of the two types are the same, see if some number
20390 -- of levels of qualification will help. Don't try more than three
20391 -- levels, and if we get to standard, it's no use (and probably
20392 -- represents an error in the compiler) Also do not bother with
20393 -- internal scope names.
20394
20395 declare
20396 Expec_Scope : Entity_Id;
20397 Found_Scope : Entity_Id;
20398
20399 begin
20400 Expec_Scope := Expec_Type;
20401 Found_Scope := Found_Type;
20402
20403 for Levels in Nat range 0 .. 3 loop
20404 if Chars (Expec_Scope) /= Chars (Found_Scope) then
20405 Error_Msg_Qual_Level := Levels;
20406 exit;
20407 end if;
20408
20409 Expec_Scope := Scope (Expec_Scope);
20410 Found_Scope := Scope (Found_Scope);
20411
20412 exit when Expec_Scope = Standard_Standard
20413 or else Found_Scope = Standard_Standard
20414 or else not Comes_From_Source (Expec_Scope)
20415 or else not Comes_From_Source (Found_Scope);
20416 end loop;
20417 end;
20418
20419 if Is_Record_Type (Expec_Type)
20420 and then Present (Corresponding_Remote_Type (Expec_Type))
20421 then
20422 Error_Msg_NE ("expected}!", Expr,
20423 Corresponding_Remote_Type (Expec_Type));
20424 else
20425 Error_Msg_NE ("expected}!", Expr, Expec_Type);
20426 end if;
20427
20428 if Is_Entity_Name (Expr)
20429 and then Is_Package_Or_Generic_Package (Entity (Expr))
20430 then
20431 Error_Msg_N ("\\found package name!", Expr);
20432
20433 elsif Is_Entity_Name (Expr)
20434 and then Ekind_In (Entity (Expr), E_Procedure, E_Generic_Procedure)
20435 then
20436 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
20437 Error_Msg_N
20438 ("found procedure name, possibly missing Access attribute!",
20439 Expr);
20440 else
20441 Error_Msg_N
20442 ("\\found procedure name instead of function!", Expr);
20443 end if;
20444
20445 elsif Nkind (Expr) = N_Function_Call
20446 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
20447 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
20448 and then No (Parameter_Associations (Expr))
20449 then
20450 Error_Msg_N
20451 ("found function name, possibly missing Access attribute!",
20452 Expr);
20453
20454 -- Catch common error: a prefix or infix operator which is not
20455 -- directly visible because the type isn't.
20456
20457 elsif Nkind (Expr) in N_Op
20458 and then Is_Overloaded (Expr)
20459 and then not Is_Immediately_Visible (Expec_Type)
20460 and then not Is_Potentially_Use_Visible (Expec_Type)
20461 and then not In_Use (Expec_Type)
20462 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
20463 then
20464 Error_Msg_N
20465 ("operator of the type is not directly visible!", Expr);
20466
20467 elsif Ekind (Found_Type) = E_Void
20468 and then Present (Parent (Found_Type))
20469 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
20470 then
20471 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
20472
20473 else
20474 Error_Msg_NE ("\\found}!", Expr, Found_Type);
20475 end if;
20476
20477 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
20478 -- of the same modular type, and (M1 and M2) = 0 was intended.
20479
20480 if Expec_Type = Standard_Boolean
20481 and then Is_Modular_Integer_Type (Found_Type)
20482 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
20483 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
20484 then
20485 declare
20486 Op : constant Node_Id := Right_Opnd (Parent (Expr));
20487 L : constant Node_Id := Left_Opnd (Op);
20488 R : constant Node_Id := Right_Opnd (Op);
20489
20490 begin
20491 -- The case for the message is when the left operand of the
20492 -- comparison is the same modular type, or when it is an
20493 -- integer literal (or other universal integer expression),
20494 -- which would have been typed as the modular type if the
20495 -- parens had been there.
20496
20497 if (Etype (L) = Found_Type
20498 or else
20499 Etype (L) = Universal_Integer)
20500 and then Is_Integer_Type (Etype (R))
20501 then
20502 Error_Msg_N
20503 ("\\possible missing parens for modular operation", Expr);
20504 end if;
20505 end;
20506 end if;
20507
20508 -- Reset error message qualification indication
20509
20510 Error_Msg_Qual_Level := 0;
20511 end if;
20512 end Wrong_Type;
20513
20514 --------------------------------
20515 -- Yields_Synchronized_Object --
20516 --------------------------------
20517
20518 function Yields_Synchronized_Object (Typ : Entity_Id) return Boolean is
20519 Has_Sync_Comp : Boolean := False;
20520 Id : Entity_Id;
20521
20522 begin
20523 -- An array type yields a synchronized object if its component type
20524 -- yields a synchronized object.
20525
20526 if Is_Array_Type (Typ) then
20527 return Yields_Synchronized_Object (Component_Type (Typ));
20528
20529 -- A descendant of type Ada.Synchronous_Task_Control.Suspension_Object
20530 -- yields a synchronized object by default.
20531
20532 elsif Is_Descendant_Of_Suspension_Object (Typ) then
20533 return True;
20534
20535 -- A protected type yields a synchronized object by default
20536
20537 elsif Is_Protected_Type (Typ) then
20538 return True;
20539
20540 -- A record type or type extension yields a synchronized object when its
20541 -- discriminants (if any) lack default values and all components are of
20542 -- a type that yelds a synchronized object.
20543
20544 elsif Is_Record_Type (Typ) then
20545
20546 -- Inspect all entities defined in the scope of the type, looking for
20547 -- components of a type that does not yeld a synchronized object or
20548 -- for discriminants with default values.
20549
20550 Id := First_Entity (Typ);
20551 while Present (Id) loop
20552 if Comes_From_Source (Id) then
20553 if Ekind (Id) = E_Component then
20554 if Yields_Synchronized_Object (Etype (Id)) then
20555 Has_Sync_Comp := True;
20556
20557 -- The component does not yield a synchronized object
20558
20559 else
20560 return False;
20561 end if;
20562
20563 elsif Ekind (Id) = E_Discriminant
20564 and then Present (Expression (Parent (Id)))
20565 then
20566 return False;
20567 end if;
20568 end if;
20569
20570 Next_Entity (Id);
20571 end loop;
20572
20573 -- Ensure that the parent type of a type extension yields a
20574 -- synchronized object.
20575
20576 if Etype (Typ) /= Typ
20577 and then not Yields_Synchronized_Object (Etype (Typ))
20578 then
20579 return False;
20580 end if;
20581
20582 -- If we get here, then all discriminants lack default values and all
20583 -- components are of a type that yields a synchronized object.
20584
20585 return Has_Sync_Comp;
20586
20587 -- A synchronized interface type yields a synchronized object by default
20588
20589 elsif Is_Synchronized_Interface (Typ) then
20590 return True;
20591
20592 -- A task type yelds a synchronized object by default
20593
20594 elsif Is_Task_Type (Typ) then
20595 return True;
20596
20597 -- Otherwise the type does not yield a synchronized object
20598
20599 else
20600 return False;
20601 end if;
20602 end Yields_Synchronized_Object;
20603
20604 end Sem_Util;
This page took 0.949302 seconds and 6 git commands to generate.