]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_util.adb
[multiple changes]
[gcc.git] / gcc / ada / sem_util.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Fname; use Fname;
37 with Freeze; use Freeze;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Nlists; use Nlists;
41 with Output; use Output;
42 with Opt; use Opt;
43 with Rtsfind; use Rtsfind;
44 with Scans; use Scans;
45 with Scn; use Scn;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Attr; use Sem_Attr;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Disp; use Sem_Disp;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_SCIL; use Sem_SCIL;
54 with Sem_Type; use Sem_Type;
55 with Sinfo; use Sinfo;
56 with Sinput; use Sinput;
57 with Stand; use Stand;
58 with Style;
59 with Stringt; use Stringt;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uname; use Uname;
64
65 with GNAT.HTable; use GNAT.HTable;
66 package body Sem_Util is
67
68 ----------------------------------------
69 -- Global_Variables for New_Copy_Tree --
70 ----------------------------------------
71
72 -- These global variables are used by New_Copy_Tree. See description
73 -- of the body of this subprogram for details. Global variables can be
74 -- safely used by New_Copy_Tree, since there is no case of a recursive
75 -- call from the processing inside New_Copy_Tree.
76
77 NCT_Hash_Threshhold : constant := 20;
78 -- If there are more than this number of pairs of entries in the
79 -- map, then Hash_Tables_Used will be set, and the hash tables will
80 -- be initialized and used for the searches.
81
82 NCT_Hash_Tables_Used : Boolean := False;
83 -- Set to True if hash tables are in use
84
85 NCT_Table_Entries : Nat;
86 -- Count entries in table to see if threshhold is reached
87
88 NCT_Hash_Table_Setup : Boolean := False;
89 -- Set to True if hash table contains data. We set this True if we
90 -- setup the hash table with data, and leave it set permanently
91 -- from then on, this is a signal that second and subsequent users
92 -- of the hash table must clear the old entries before reuse.
93
94 subtype NCT_Header_Num is Int range 0 .. 511;
95 -- Defines range of headers in hash tables (512 headers)
96
97 -----------------------
98 -- Local Subprograms --
99 -----------------------
100
101 function Build_Component_Subtype
102 (C : List_Id;
103 Loc : Source_Ptr;
104 T : Entity_Id) return Node_Id;
105 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
106 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
107 -- Loc is the source location, T is the original subtype.
108
109 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
110 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
111 -- with discriminants whose default values are static, examine only the
112 -- components in the selected variant to determine whether all of them
113 -- have a default.
114
115 function Has_Null_Extension (T : Entity_Id) return Boolean;
116 -- T is a derived tagged type. Check whether the type extension is null.
117 -- If the parent type is fully initialized, T can be treated as such.
118
119 ------------------------------
120 -- Abstract_Interface_List --
121 ------------------------------
122
123 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
124 Nod : Node_Id;
125
126 begin
127 if Is_Concurrent_Type (Typ) then
128
129 -- If we are dealing with a synchronized subtype, go to the base
130 -- type, whose declaration has the interface list.
131
132 -- Shouldn't this be Declaration_Node???
133
134 Nod := Parent (Base_Type (Typ));
135
136 if Nkind (Nod) = N_Full_Type_Declaration then
137 return Empty_List;
138 end if;
139
140 elsif Ekind (Typ) = E_Record_Type_With_Private then
141 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
142 Nod := Type_Definition (Parent (Typ));
143
144 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
145 if Present (Full_View (Typ)) then
146 Nod := Type_Definition (Parent (Full_View (Typ)));
147
148 -- If the full-view is not available we cannot do anything else
149 -- here (the source has errors).
150
151 else
152 return Empty_List;
153 end if;
154
155 -- Support for generic formals with interfaces is still missing ???
156
157 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
158 return Empty_List;
159
160 else
161 pragma Assert
162 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
163 Nod := Parent (Typ);
164 end if;
165
166 elsif Ekind (Typ) = E_Record_Subtype then
167 Nod := Type_Definition (Parent (Etype (Typ)));
168
169 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
170
171 -- Recurse, because parent may still be a private extension. Also
172 -- note that the full view of the subtype or the full view of its
173 -- base type may (both) be unavailable.
174
175 return Abstract_Interface_List (Etype (Typ));
176
177 else pragma Assert ((Ekind (Typ)) = E_Record_Type);
178 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
179 Nod := Formal_Type_Definition (Parent (Typ));
180 else
181 Nod := Type_Definition (Parent (Typ));
182 end if;
183 end if;
184
185 return Interface_List (Nod);
186 end Abstract_Interface_List;
187
188 --------------------------------
189 -- Add_Access_Type_To_Process --
190 --------------------------------
191
192 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
193 L : Elist_Id;
194
195 begin
196 Ensure_Freeze_Node (E);
197 L := Access_Types_To_Process (Freeze_Node (E));
198
199 if No (L) then
200 L := New_Elmt_List;
201 Set_Access_Types_To_Process (Freeze_Node (E), L);
202 end if;
203
204 Append_Elmt (A, L);
205 end Add_Access_Type_To_Process;
206
207 ----------------------------
208 -- Add_Global_Declaration --
209 ----------------------------
210
211 procedure Add_Global_Declaration (N : Node_Id) is
212 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
213
214 begin
215 if No (Declarations (Aux_Node)) then
216 Set_Declarations (Aux_Node, New_List);
217 end if;
218
219 Append_To (Declarations (Aux_Node), N);
220 Analyze (N);
221 end Add_Global_Declaration;
222
223 -----------------------
224 -- Alignment_In_Bits --
225 -----------------------
226
227 function Alignment_In_Bits (E : Entity_Id) return Uint is
228 begin
229 return Alignment (E) * System_Storage_Unit;
230 end Alignment_In_Bits;
231
232 -----------------------------------------
233 -- Apply_Compile_Time_Constraint_Error --
234 -----------------------------------------
235
236 procedure Apply_Compile_Time_Constraint_Error
237 (N : Node_Id;
238 Msg : String;
239 Reason : RT_Exception_Code;
240 Ent : Entity_Id := Empty;
241 Typ : Entity_Id := Empty;
242 Loc : Source_Ptr := No_Location;
243 Rep : Boolean := True;
244 Warn : Boolean := False)
245 is
246 Stat : constant Boolean := Is_Static_Expression (N);
247 R_Stat : constant Node_Id :=
248 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
249 Rtyp : Entity_Id;
250
251 begin
252 if No (Typ) then
253 Rtyp := Etype (N);
254 else
255 Rtyp := Typ;
256 end if;
257
258 Discard_Node
259 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
260
261 if not Rep then
262 return;
263 end if;
264
265 -- Now we replace the node by an N_Raise_Constraint_Error node
266 -- This does not need reanalyzing, so set it as analyzed now.
267
268 Rewrite (N, R_Stat);
269 Set_Analyzed (N, True);
270
271 Set_Etype (N, Rtyp);
272 Set_Raises_Constraint_Error (N);
273
274 -- Now deal with possible local raise handling
275
276 Possible_Local_Raise (N, Standard_Constraint_Error);
277
278 -- If the original expression was marked as static, the result is
279 -- still marked as static, but the Raises_Constraint_Error flag is
280 -- always set so that further static evaluation is not attempted.
281
282 if Stat then
283 Set_Is_Static_Expression (N);
284 end if;
285 end Apply_Compile_Time_Constraint_Error;
286
287 --------------------------
288 -- Build_Actual_Subtype --
289 --------------------------
290
291 function Build_Actual_Subtype
292 (T : Entity_Id;
293 N : Node_Or_Entity_Id) return Node_Id
294 is
295 Loc : Source_Ptr;
296 -- Normally Sloc (N), but may point to corresponding body in some cases
297
298 Constraints : List_Id;
299 Decl : Node_Id;
300 Discr : Entity_Id;
301 Hi : Node_Id;
302 Lo : Node_Id;
303 Subt : Entity_Id;
304 Disc_Type : Entity_Id;
305 Obj : Node_Id;
306
307 begin
308 Loc := Sloc (N);
309
310 if Nkind (N) = N_Defining_Identifier then
311 Obj := New_Reference_To (N, Loc);
312
313 -- If this is a formal parameter of a subprogram declaration, and
314 -- we are compiling the body, we want the declaration for the
315 -- actual subtype to carry the source position of the body, to
316 -- prevent anomalies in gdb when stepping through the code.
317
318 if Is_Formal (N) then
319 declare
320 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
321 begin
322 if Nkind (Decl) = N_Subprogram_Declaration
323 and then Present (Corresponding_Body (Decl))
324 then
325 Loc := Sloc (Corresponding_Body (Decl));
326 end if;
327 end;
328 end if;
329
330 else
331 Obj := N;
332 end if;
333
334 if Is_Array_Type (T) then
335 Constraints := New_List;
336 for J in 1 .. Number_Dimensions (T) loop
337
338 -- Build an array subtype declaration with the nominal subtype and
339 -- the bounds of the actual. Add the declaration in front of the
340 -- local declarations for the subprogram, for analysis before any
341 -- reference to the formal in the body.
342
343 Lo :=
344 Make_Attribute_Reference (Loc,
345 Prefix =>
346 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
347 Attribute_Name => Name_First,
348 Expressions => New_List (
349 Make_Integer_Literal (Loc, J)));
350
351 Hi :=
352 Make_Attribute_Reference (Loc,
353 Prefix =>
354 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
355 Attribute_Name => Name_Last,
356 Expressions => New_List (
357 Make_Integer_Literal (Loc, J)));
358
359 Append (Make_Range (Loc, Lo, Hi), Constraints);
360 end loop;
361
362 -- If the type has unknown discriminants there is no constrained
363 -- subtype to build. This is never called for a formal or for a
364 -- lhs, so returning the type is ok ???
365
366 elsif Has_Unknown_Discriminants (T) then
367 return T;
368
369 else
370 Constraints := New_List;
371
372 -- Type T is a generic derived type, inherit the discriminants from
373 -- the parent type.
374
375 if Is_Private_Type (T)
376 and then No (Full_View (T))
377
378 -- T was flagged as an error if it was declared as a formal
379 -- derived type with known discriminants. In this case there
380 -- is no need to look at the parent type since T already carries
381 -- its own discriminants.
382
383 and then not Error_Posted (T)
384 then
385 Disc_Type := Etype (Base_Type (T));
386 else
387 Disc_Type := T;
388 end if;
389
390 Discr := First_Discriminant (Disc_Type);
391 while Present (Discr) loop
392 Append_To (Constraints,
393 Make_Selected_Component (Loc,
394 Prefix =>
395 Duplicate_Subexpr_No_Checks (Obj),
396 Selector_Name => New_Occurrence_Of (Discr, Loc)));
397 Next_Discriminant (Discr);
398 end loop;
399 end if;
400
401 Subt := Make_Temporary (Loc, 'S');
402 Set_Is_Internal (Subt);
403
404 Decl :=
405 Make_Subtype_Declaration (Loc,
406 Defining_Identifier => Subt,
407 Subtype_Indication =>
408 Make_Subtype_Indication (Loc,
409 Subtype_Mark => New_Reference_To (T, Loc),
410 Constraint =>
411 Make_Index_Or_Discriminant_Constraint (Loc,
412 Constraints => Constraints)));
413
414 Mark_Rewrite_Insertion (Decl);
415 return Decl;
416 end Build_Actual_Subtype;
417
418 ---------------------------------------
419 -- Build_Actual_Subtype_Of_Component --
420 ---------------------------------------
421
422 function Build_Actual_Subtype_Of_Component
423 (T : Entity_Id;
424 N : Node_Id) return Node_Id
425 is
426 Loc : constant Source_Ptr := Sloc (N);
427 P : constant Node_Id := Prefix (N);
428 D : Elmt_Id;
429 Id : Node_Id;
430 Indx_Type : Entity_Id;
431
432 Deaccessed_T : Entity_Id;
433 -- This is either a copy of T, or if T is an access type, then it is
434 -- the directly designated type of this access type.
435
436 function Build_Actual_Array_Constraint return List_Id;
437 -- If one or more of the bounds of the component depends on
438 -- discriminants, build actual constraint using the discriminants
439 -- of the prefix.
440
441 function Build_Actual_Record_Constraint return List_Id;
442 -- Similar to previous one, for discriminated components constrained
443 -- by the discriminant of the enclosing object.
444
445 -----------------------------------
446 -- Build_Actual_Array_Constraint --
447 -----------------------------------
448
449 function Build_Actual_Array_Constraint return List_Id is
450 Constraints : constant List_Id := New_List;
451 Indx : Node_Id;
452 Hi : Node_Id;
453 Lo : Node_Id;
454 Old_Hi : Node_Id;
455 Old_Lo : Node_Id;
456
457 begin
458 Indx := First_Index (Deaccessed_T);
459 while Present (Indx) loop
460 Old_Lo := Type_Low_Bound (Etype (Indx));
461 Old_Hi := Type_High_Bound (Etype (Indx));
462
463 if Denotes_Discriminant (Old_Lo) then
464 Lo :=
465 Make_Selected_Component (Loc,
466 Prefix => New_Copy_Tree (P),
467 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
468
469 else
470 Lo := New_Copy_Tree (Old_Lo);
471
472 -- The new bound will be reanalyzed in the enclosing
473 -- declaration. For literal bounds that come from a type
474 -- declaration, the type of the context must be imposed, so
475 -- insure that analysis will take place. For non-universal
476 -- types this is not strictly necessary.
477
478 Set_Analyzed (Lo, False);
479 end if;
480
481 if Denotes_Discriminant (Old_Hi) then
482 Hi :=
483 Make_Selected_Component (Loc,
484 Prefix => New_Copy_Tree (P),
485 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
486
487 else
488 Hi := New_Copy_Tree (Old_Hi);
489 Set_Analyzed (Hi, False);
490 end if;
491
492 Append (Make_Range (Loc, Lo, Hi), Constraints);
493 Next_Index (Indx);
494 end loop;
495
496 return Constraints;
497 end Build_Actual_Array_Constraint;
498
499 ------------------------------------
500 -- Build_Actual_Record_Constraint --
501 ------------------------------------
502
503 function Build_Actual_Record_Constraint return List_Id is
504 Constraints : constant List_Id := New_List;
505 D : Elmt_Id;
506 D_Val : Node_Id;
507
508 begin
509 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
510 while Present (D) loop
511 if Denotes_Discriminant (Node (D)) then
512 D_Val := Make_Selected_Component (Loc,
513 Prefix => New_Copy_Tree (P),
514 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
515
516 else
517 D_Val := New_Copy_Tree (Node (D));
518 end if;
519
520 Append (D_Val, Constraints);
521 Next_Elmt (D);
522 end loop;
523
524 return Constraints;
525 end Build_Actual_Record_Constraint;
526
527 -- Start of processing for Build_Actual_Subtype_Of_Component
528
529 begin
530 -- Why the test for Spec_Expression mode here???
531
532 if In_Spec_Expression then
533 return Empty;
534
535 -- More comments for the rest of this body would be good ???
536
537 elsif Nkind (N) = N_Explicit_Dereference then
538 if Is_Composite_Type (T)
539 and then not Is_Constrained (T)
540 and then not (Is_Class_Wide_Type (T)
541 and then Is_Constrained (Root_Type (T)))
542 and then not Has_Unknown_Discriminants (T)
543 then
544 -- If the type of the dereference is already constrained, it is an
545 -- actual subtype.
546
547 if Is_Array_Type (Etype (N))
548 and then Is_Constrained (Etype (N))
549 then
550 return Empty;
551 else
552 Remove_Side_Effects (P);
553 return Build_Actual_Subtype (T, N);
554 end if;
555 else
556 return Empty;
557 end if;
558 end if;
559
560 if Ekind (T) = E_Access_Subtype then
561 Deaccessed_T := Designated_Type (T);
562 else
563 Deaccessed_T := T;
564 end if;
565
566 if Ekind (Deaccessed_T) = E_Array_Subtype then
567 Id := First_Index (Deaccessed_T);
568 while Present (Id) loop
569 Indx_Type := Underlying_Type (Etype (Id));
570
571 if Denotes_Discriminant (Type_Low_Bound (Indx_Type))
572 or else
573 Denotes_Discriminant (Type_High_Bound (Indx_Type))
574 then
575 Remove_Side_Effects (P);
576 return
577 Build_Component_Subtype
578 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
579 end if;
580
581 Next_Index (Id);
582 end loop;
583
584 elsif Is_Composite_Type (Deaccessed_T)
585 and then Has_Discriminants (Deaccessed_T)
586 and then not Has_Unknown_Discriminants (Deaccessed_T)
587 then
588 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
589 while Present (D) loop
590 if Denotes_Discriminant (Node (D)) then
591 Remove_Side_Effects (P);
592 return
593 Build_Component_Subtype (
594 Build_Actual_Record_Constraint, Loc, Base_Type (T));
595 end if;
596
597 Next_Elmt (D);
598 end loop;
599 end if;
600
601 -- If none of the above, the actual and nominal subtypes are the same
602
603 return Empty;
604 end Build_Actual_Subtype_Of_Component;
605
606 -----------------------------
607 -- Build_Component_Subtype --
608 -----------------------------
609
610 function Build_Component_Subtype
611 (C : List_Id;
612 Loc : Source_Ptr;
613 T : Entity_Id) return Node_Id
614 is
615 Subt : Entity_Id;
616 Decl : Node_Id;
617
618 begin
619 -- Unchecked_Union components do not require component subtypes
620
621 if Is_Unchecked_Union (T) then
622 return Empty;
623 end if;
624
625 Subt := Make_Temporary (Loc, 'S');
626 Set_Is_Internal (Subt);
627
628 Decl :=
629 Make_Subtype_Declaration (Loc,
630 Defining_Identifier => Subt,
631 Subtype_Indication =>
632 Make_Subtype_Indication (Loc,
633 Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
634 Constraint =>
635 Make_Index_Or_Discriminant_Constraint (Loc,
636 Constraints => C)));
637
638 Mark_Rewrite_Insertion (Decl);
639 return Decl;
640 end Build_Component_Subtype;
641
642 ---------------------------
643 -- Build_Default_Subtype --
644 ---------------------------
645
646 function Build_Default_Subtype
647 (T : Entity_Id;
648 N : Node_Id) return Entity_Id
649 is
650 Loc : constant Source_Ptr := Sloc (N);
651 Disc : Entity_Id;
652
653 begin
654 if not Has_Discriminants (T) or else Is_Constrained (T) then
655 return T;
656 end if;
657
658 Disc := First_Discriminant (T);
659
660 if No (Discriminant_Default_Value (Disc)) then
661 return T;
662 end if;
663
664 declare
665 Act : constant Entity_Id := Make_Temporary (Loc, 'S');
666 Constraints : constant List_Id := New_List;
667 Decl : Node_Id;
668
669 begin
670 while Present (Disc) loop
671 Append_To (Constraints,
672 New_Copy_Tree (Discriminant_Default_Value (Disc)));
673 Next_Discriminant (Disc);
674 end loop;
675
676 Decl :=
677 Make_Subtype_Declaration (Loc,
678 Defining_Identifier => Act,
679 Subtype_Indication =>
680 Make_Subtype_Indication (Loc,
681 Subtype_Mark => New_Occurrence_Of (T, Loc),
682 Constraint =>
683 Make_Index_Or_Discriminant_Constraint (Loc,
684 Constraints => Constraints)));
685
686 Insert_Action (N, Decl);
687 Analyze (Decl);
688 return Act;
689 end;
690 end Build_Default_Subtype;
691
692 --------------------------------------------
693 -- Build_Discriminal_Subtype_Of_Component --
694 --------------------------------------------
695
696 function Build_Discriminal_Subtype_Of_Component
697 (T : Entity_Id) return Node_Id
698 is
699 Loc : constant Source_Ptr := Sloc (T);
700 D : Elmt_Id;
701 Id : Node_Id;
702
703 function Build_Discriminal_Array_Constraint return List_Id;
704 -- If one or more of the bounds of the component depends on
705 -- discriminants, build actual constraint using the discriminants
706 -- of the prefix.
707
708 function Build_Discriminal_Record_Constraint return List_Id;
709 -- Similar to previous one, for discriminated components constrained
710 -- by the discriminant of the enclosing object.
711
712 ----------------------------------------
713 -- Build_Discriminal_Array_Constraint --
714 ----------------------------------------
715
716 function Build_Discriminal_Array_Constraint return List_Id is
717 Constraints : constant List_Id := New_List;
718 Indx : Node_Id;
719 Hi : Node_Id;
720 Lo : Node_Id;
721 Old_Hi : Node_Id;
722 Old_Lo : Node_Id;
723
724 begin
725 Indx := First_Index (T);
726 while Present (Indx) loop
727 Old_Lo := Type_Low_Bound (Etype (Indx));
728 Old_Hi := Type_High_Bound (Etype (Indx));
729
730 if Denotes_Discriminant (Old_Lo) then
731 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
732
733 else
734 Lo := New_Copy_Tree (Old_Lo);
735 end if;
736
737 if Denotes_Discriminant (Old_Hi) then
738 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
739
740 else
741 Hi := New_Copy_Tree (Old_Hi);
742 end if;
743
744 Append (Make_Range (Loc, Lo, Hi), Constraints);
745 Next_Index (Indx);
746 end loop;
747
748 return Constraints;
749 end Build_Discriminal_Array_Constraint;
750
751 -----------------------------------------
752 -- Build_Discriminal_Record_Constraint --
753 -----------------------------------------
754
755 function Build_Discriminal_Record_Constraint return List_Id is
756 Constraints : constant List_Id := New_List;
757 D : Elmt_Id;
758 D_Val : Node_Id;
759
760 begin
761 D := First_Elmt (Discriminant_Constraint (T));
762 while Present (D) loop
763 if Denotes_Discriminant (Node (D)) then
764 D_Val :=
765 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
766
767 else
768 D_Val := New_Copy_Tree (Node (D));
769 end if;
770
771 Append (D_Val, Constraints);
772 Next_Elmt (D);
773 end loop;
774
775 return Constraints;
776 end Build_Discriminal_Record_Constraint;
777
778 -- Start of processing for Build_Discriminal_Subtype_Of_Component
779
780 begin
781 if Ekind (T) = E_Array_Subtype then
782 Id := First_Index (T);
783 while Present (Id) loop
784 if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
785 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
786 then
787 return Build_Component_Subtype
788 (Build_Discriminal_Array_Constraint, Loc, T);
789 end if;
790
791 Next_Index (Id);
792 end loop;
793
794 elsif Ekind (T) = E_Record_Subtype
795 and then Has_Discriminants (T)
796 and then not Has_Unknown_Discriminants (T)
797 then
798 D := First_Elmt (Discriminant_Constraint (T));
799 while Present (D) loop
800 if Denotes_Discriminant (Node (D)) then
801 return Build_Component_Subtype
802 (Build_Discriminal_Record_Constraint, Loc, T);
803 end if;
804
805 Next_Elmt (D);
806 end loop;
807 end if;
808
809 -- If none of the above, the actual and nominal subtypes are the same
810
811 return Empty;
812 end Build_Discriminal_Subtype_Of_Component;
813
814 ------------------------------
815 -- Build_Elaboration_Entity --
816 ------------------------------
817
818 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
819 Loc : constant Source_Ptr := Sloc (N);
820 Decl : Node_Id;
821 Elab_Ent : Entity_Id;
822
823 procedure Set_Package_Name (Ent : Entity_Id);
824 -- Given an entity, sets the fully qualified name of the entity in
825 -- Name_Buffer, with components separated by double underscores. This
826 -- is a recursive routine that climbs the scope chain to Standard.
827
828 ----------------------
829 -- Set_Package_Name --
830 ----------------------
831
832 procedure Set_Package_Name (Ent : Entity_Id) is
833 begin
834 if Scope (Ent) /= Standard_Standard then
835 Set_Package_Name (Scope (Ent));
836
837 declare
838 Nam : constant String := Get_Name_String (Chars (Ent));
839 begin
840 Name_Buffer (Name_Len + 1) := '_';
841 Name_Buffer (Name_Len + 2) := '_';
842 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
843 Name_Len := Name_Len + Nam'Length + 2;
844 end;
845
846 else
847 Get_Name_String (Chars (Ent));
848 end if;
849 end Set_Package_Name;
850
851 -- Start of processing for Build_Elaboration_Entity
852
853 begin
854 -- Ignore if already constructed
855
856 if Present (Elaboration_Entity (Spec_Id)) then
857 return;
858 end if;
859
860 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
861 -- name with dots replaced by double underscore. We have to manually
862 -- construct this name, since it will be elaborated in the outer scope,
863 -- and thus will not have the unit name automatically prepended.
864
865 Set_Package_Name (Spec_Id);
866
867 -- Append _E
868
869 Name_Buffer (Name_Len + 1) := '_';
870 Name_Buffer (Name_Len + 2) := 'E';
871 Name_Len := Name_Len + 2;
872
873 -- Create elaboration flag
874
875 Elab_Ent :=
876 Make_Defining_Identifier (Loc, Chars => Name_Find);
877 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
878
879 Decl :=
880 Make_Object_Declaration (Loc,
881 Defining_Identifier => Elab_Ent,
882 Object_Definition =>
883 New_Occurrence_Of (Standard_Boolean, Loc),
884 Expression =>
885 New_Occurrence_Of (Standard_False, Loc));
886
887 Push_Scope (Standard_Standard);
888 Add_Global_Declaration (Decl);
889 Pop_Scope;
890
891 -- Reset True_Constant indication, since we will indeed assign a value
892 -- to the variable in the binder main. We also kill the Current_Value
893 -- and Last_Assignment fields for the same reason.
894
895 Set_Is_True_Constant (Elab_Ent, False);
896 Set_Current_Value (Elab_Ent, Empty);
897 Set_Last_Assignment (Elab_Ent, Empty);
898
899 -- We do not want any further qualification of the name (if we did
900 -- not do this, we would pick up the name of the generic package
901 -- in the case of a library level generic instantiation).
902
903 Set_Has_Qualified_Name (Elab_Ent);
904 Set_Has_Fully_Qualified_Name (Elab_Ent);
905 end Build_Elaboration_Entity;
906
907 -----------------------------------
908 -- Cannot_Raise_Constraint_Error --
909 -----------------------------------
910
911 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
912 begin
913 if Compile_Time_Known_Value (Expr) then
914 return True;
915
916 elsif Do_Range_Check (Expr) then
917 return False;
918
919 elsif Raises_Constraint_Error (Expr) then
920 return False;
921
922 else
923 case Nkind (Expr) is
924 when N_Identifier =>
925 return True;
926
927 when N_Expanded_Name =>
928 return True;
929
930 when N_Selected_Component =>
931 return not Do_Discriminant_Check (Expr);
932
933 when N_Attribute_Reference =>
934 if Do_Overflow_Check (Expr) then
935 return False;
936
937 elsif No (Expressions (Expr)) then
938 return True;
939
940 else
941 declare
942 N : Node_Id;
943
944 begin
945 N := First (Expressions (Expr));
946 while Present (N) loop
947 if Cannot_Raise_Constraint_Error (N) then
948 Next (N);
949 else
950 return False;
951 end if;
952 end loop;
953
954 return True;
955 end;
956 end if;
957
958 when N_Type_Conversion =>
959 if Do_Overflow_Check (Expr)
960 or else Do_Length_Check (Expr)
961 or else Do_Tag_Check (Expr)
962 then
963 return False;
964 else
965 return
966 Cannot_Raise_Constraint_Error (Expression (Expr));
967 end if;
968
969 when N_Unchecked_Type_Conversion =>
970 return Cannot_Raise_Constraint_Error (Expression (Expr));
971
972 when N_Unary_Op =>
973 if Do_Overflow_Check (Expr) then
974 return False;
975 else
976 return
977 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
978 end if;
979
980 when N_Op_Divide |
981 N_Op_Mod |
982 N_Op_Rem
983 =>
984 if Do_Division_Check (Expr)
985 or else Do_Overflow_Check (Expr)
986 then
987 return False;
988 else
989 return
990 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
991 and then
992 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
993 end if;
994
995 when N_Op_Add |
996 N_Op_And |
997 N_Op_Concat |
998 N_Op_Eq |
999 N_Op_Expon |
1000 N_Op_Ge |
1001 N_Op_Gt |
1002 N_Op_Le |
1003 N_Op_Lt |
1004 N_Op_Multiply |
1005 N_Op_Ne |
1006 N_Op_Or |
1007 N_Op_Rotate_Left |
1008 N_Op_Rotate_Right |
1009 N_Op_Shift_Left |
1010 N_Op_Shift_Right |
1011 N_Op_Shift_Right_Arithmetic |
1012 N_Op_Subtract |
1013 N_Op_Xor
1014 =>
1015 if Do_Overflow_Check (Expr) then
1016 return False;
1017 else
1018 return
1019 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1020 and then
1021 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1022 end if;
1023
1024 when others =>
1025 return False;
1026 end case;
1027 end if;
1028 end Cannot_Raise_Constraint_Error;
1029
1030 -----------------------------------------
1031 -- Check_Dynamically_Tagged_Expression --
1032 -----------------------------------------
1033
1034 procedure Check_Dynamically_Tagged_Expression
1035 (Expr : Node_Id;
1036 Typ : Entity_Id;
1037 Related_Nod : Node_Id)
1038 is
1039 begin
1040 pragma Assert (Is_Tagged_Type (Typ));
1041
1042 -- In order to avoid spurious errors when analyzing the expanded code,
1043 -- this check is done only for nodes that come from source and for
1044 -- actuals of generic instantiations.
1045
1046 if (Comes_From_Source (Related_Nod)
1047 or else In_Generic_Actual (Expr))
1048 and then (Is_Class_Wide_Type (Etype (Expr))
1049 or else Is_Dynamically_Tagged (Expr))
1050 and then Is_Tagged_Type (Typ)
1051 and then not Is_Class_Wide_Type (Typ)
1052 then
1053 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
1054 end if;
1055 end Check_Dynamically_Tagged_Expression;
1056
1057 --------------------------
1058 -- Check_Fully_Declared --
1059 --------------------------
1060
1061 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
1062 begin
1063 if Ekind (T) = E_Incomplete_Type then
1064
1065 -- Ada 2005 (AI-50217): If the type is available through a limited
1066 -- with_clause, verify that its full view has been analyzed.
1067
1068 if From_With_Type (T)
1069 and then Present (Non_Limited_View (T))
1070 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
1071 then
1072 -- The non-limited view is fully declared
1073 null;
1074
1075 else
1076 Error_Msg_NE
1077 ("premature usage of incomplete}", N, First_Subtype (T));
1078 end if;
1079
1080 -- Need comments for these tests ???
1081
1082 elsif Has_Private_Component (T)
1083 and then not Is_Generic_Type (Root_Type (T))
1084 and then not In_Spec_Expression
1085 then
1086 -- Special case: if T is the anonymous type created for a single
1087 -- task or protected object, use the name of the source object.
1088
1089 if Is_Concurrent_Type (T)
1090 and then not Comes_From_Source (T)
1091 and then Nkind (N) = N_Object_Declaration
1092 then
1093 Error_Msg_NE ("type of& has incomplete component", N,
1094 Defining_Identifier (N));
1095
1096 else
1097 Error_Msg_NE
1098 ("premature usage of incomplete}", N, First_Subtype (T));
1099 end if;
1100 end if;
1101 end Check_Fully_Declared;
1102
1103 -------------------------
1104 -- Check_Nested_Access --
1105 -------------------------
1106
1107 procedure Check_Nested_Access (Ent : Entity_Id) is
1108 Scop : constant Entity_Id := Current_Scope;
1109 Current_Subp : Entity_Id;
1110 Enclosing : Entity_Id;
1111
1112 begin
1113 -- Currently only enabled for VM back-ends for efficiency, should we
1114 -- enable it more systematically ???
1115
1116 -- Check for Is_Imported needs commenting below ???
1117
1118 if VM_Target /= No_VM
1119 and then (Ekind (Ent) = E_Variable
1120 or else
1121 Ekind (Ent) = E_Constant
1122 or else
1123 Ekind (Ent) = E_Loop_Parameter)
1124 and then Scope (Ent) /= Empty
1125 and then not Is_Library_Level_Entity (Ent)
1126 and then not Is_Imported (Ent)
1127 then
1128 if Is_Subprogram (Scop)
1129 or else Is_Generic_Subprogram (Scop)
1130 or else Is_Entry (Scop)
1131 then
1132 Current_Subp := Scop;
1133 else
1134 Current_Subp := Current_Subprogram;
1135 end if;
1136
1137 Enclosing := Enclosing_Subprogram (Ent);
1138
1139 if Enclosing /= Empty
1140 and then Enclosing /= Current_Subp
1141 then
1142 Set_Has_Up_Level_Access (Ent, True);
1143 end if;
1144 end if;
1145 end Check_Nested_Access;
1146
1147 ------------------------------------------
1148 -- Check_Potentially_Blocking_Operation --
1149 ------------------------------------------
1150
1151 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
1152 S : Entity_Id;
1153 begin
1154 -- N is one of the potentially blocking operations listed in 9.5.1(8).
1155 -- When pragma Detect_Blocking is active, the run time will raise
1156 -- Program_Error. Here we only issue a warning, since we generally
1157 -- support the use of potentially blocking operations in the absence
1158 -- of the pragma.
1159
1160 -- Indirect blocking through a subprogram call cannot be diagnosed
1161 -- statically without interprocedural analysis, so we do not attempt
1162 -- to do it here.
1163
1164 S := Scope (Current_Scope);
1165 while Present (S) and then S /= Standard_Standard loop
1166 if Is_Protected_Type (S) then
1167 Error_Msg_N
1168 ("potentially blocking operation in protected operation?", N);
1169
1170 return;
1171 end if;
1172
1173 S := Scope (S);
1174 end loop;
1175 end Check_Potentially_Blocking_Operation;
1176
1177 ------------------------------
1178 -- Check_Unprotected_Access --
1179 ------------------------------
1180
1181 procedure Check_Unprotected_Access
1182 (Context : Node_Id;
1183 Expr : Node_Id)
1184 is
1185 Cont_Encl_Typ : Entity_Id;
1186 Pref_Encl_Typ : Entity_Id;
1187
1188 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
1189 -- Check whether Obj is a private component of a protected object.
1190 -- Return the protected type where the component resides, Empty
1191 -- otherwise.
1192
1193 function Is_Public_Operation return Boolean;
1194 -- Verify that the enclosing operation is callable from outside the
1195 -- protected object, to minimize false positives.
1196
1197 ------------------------------
1198 -- Enclosing_Protected_Type --
1199 ------------------------------
1200
1201 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
1202 begin
1203 if Is_Entity_Name (Obj) then
1204 declare
1205 Ent : Entity_Id := Entity (Obj);
1206
1207 begin
1208 -- The object can be a renaming of a private component, use
1209 -- the original record component.
1210
1211 if Is_Prival (Ent) then
1212 Ent := Prival_Link (Ent);
1213 end if;
1214
1215 if Is_Protected_Type (Scope (Ent)) then
1216 return Scope (Ent);
1217 end if;
1218 end;
1219 end if;
1220
1221 -- For indexed and selected components, recursively check the prefix
1222
1223 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
1224 return Enclosing_Protected_Type (Prefix (Obj));
1225
1226 -- The object does not denote a protected component
1227
1228 else
1229 return Empty;
1230 end if;
1231 end Enclosing_Protected_Type;
1232
1233 -------------------------
1234 -- Is_Public_Operation --
1235 -------------------------
1236
1237 function Is_Public_Operation return Boolean is
1238 S : Entity_Id;
1239 E : Entity_Id;
1240
1241 begin
1242 S := Current_Scope;
1243 while Present (S)
1244 and then S /= Pref_Encl_Typ
1245 loop
1246 if Scope (S) = Pref_Encl_Typ then
1247 E := First_Entity (Pref_Encl_Typ);
1248 while Present (E)
1249 and then E /= First_Private_Entity (Pref_Encl_Typ)
1250 loop
1251 if E = S then
1252 return True;
1253 end if;
1254 Next_Entity (E);
1255 end loop;
1256 end if;
1257
1258 S := Scope (S);
1259 end loop;
1260
1261 return False;
1262 end Is_Public_Operation;
1263
1264 -- Start of processing for Check_Unprotected_Access
1265
1266 begin
1267 if Nkind (Expr) = N_Attribute_Reference
1268 and then Attribute_Name (Expr) = Name_Unchecked_Access
1269 then
1270 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
1271 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
1272
1273 -- Check whether we are trying to export a protected component to a
1274 -- context with an equal or lower access level.
1275
1276 if Present (Pref_Encl_Typ)
1277 and then No (Cont_Encl_Typ)
1278 and then Is_Public_Operation
1279 and then Scope_Depth (Pref_Encl_Typ) >=
1280 Object_Access_Level (Context)
1281 then
1282 Error_Msg_N
1283 ("?possible unprotected access to protected data", Expr);
1284 end if;
1285 end if;
1286 end Check_Unprotected_Access;
1287
1288 ---------------
1289 -- Check_VMS --
1290 ---------------
1291
1292 procedure Check_VMS (Construct : Node_Id) is
1293 begin
1294 if not OpenVMS_On_Target then
1295 Error_Msg_N
1296 ("this construct is allowed only in Open'V'M'S", Construct);
1297 end if;
1298 end Check_VMS;
1299
1300 ------------------------
1301 -- Collect_Interfaces --
1302 ------------------------
1303
1304 procedure Collect_Interfaces
1305 (T : Entity_Id;
1306 Ifaces_List : out Elist_Id;
1307 Exclude_Parents : Boolean := False;
1308 Use_Full_View : Boolean := True)
1309 is
1310 procedure Collect (Typ : Entity_Id);
1311 -- Subsidiary subprogram used to traverse the whole list
1312 -- of directly and indirectly implemented interfaces
1313
1314 -------------
1315 -- Collect --
1316 -------------
1317
1318 procedure Collect (Typ : Entity_Id) is
1319 Ancestor : Entity_Id;
1320 Full_T : Entity_Id;
1321 Id : Node_Id;
1322 Iface : Entity_Id;
1323
1324 begin
1325 Full_T := Typ;
1326
1327 -- Handle private types
1328
1329 if Use_Full_View
1330 and then Is_Private_Type (Typ)
1331 and then Present (Full_View (Typ))
1332 then
1333 Full_T := Full_View (Typ);
1334 end if;
1335
1336 -- Include the ancestor if we are generating the whole list of
1337 -- abstract interfaces.
1338
1339 if Etype (Full_T) /= Typ
1340
1341 -- Protect the frontend against wrong sources. For example:
1342
1343 -- package P is
1344 -- type A is tagged null record;
1345 -- type B is new A with private;
1346 -- type C is new A with private;
1347 -- private
1348 -- type B is new C with null record;
1349 -- type C is new B with null record;
1350 -- end P;
1351
1352 and then Etype (Full_T) /= T
1353 then
1354 Ancestor := Etype (Full_T);
1355 Collect (Ancestor);
1356
1357 if Is_Interface (Ancestor)
1358 and then not Exclude_Parents
1359 then
1360 Append_Unique_Elmt (Ancestor, Ifaces_List);
1361 end if;
1362 end if;
1363
1364 -- Traverse the graph of ancestor interfaces
1365
1366 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
1367 Id := First (Abstract_Interface_List (Full_T));
1368 while Present (Id) loop
1369 Iface := Etype (Id);
1370
1371 -- Protect against wrong uses. For example:
1372 -- type I is interface;
1373 -- type O is tagged null record;
1374 -- type Wrong is new I and O with null record; -- ERROR
1375
1376 if Is_Interface (Iface) then
1377 if Exclude_Parents
1378 and then Etype (T) /= T
1379 and then Interface_Present_In_Ancestor (Etype (T), Iface)
1380 then
1381 null;
1382 else
1383 Collect (Iface);
1384 Append_Unique_Elmt (Iface, Ifaces_List);
1385 end if;
1386 end if;
1387
1388 Next (Id);
1389 end loop;
1390 end if;
1391 end Collect;
1392
1393 -- Start of processing for Collect_Interfaces
1394
1395 begin
1396 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
1397 Ifaces_List := New_Elmt_List;
1398 Collect (T);
1399 end Collect_Interfaces;
1400
1401 ----------------------------------
1402 -- Collect_Interface_Components --
1403 ----------------------------------
1404
1405 procedure Collect_Interface_Components
1406 (Tagged_Type : Entity_Id;
1407 Components_List : out Elist_Id)
1408 is
1409 procedure Collect (Typ : Entity_Id);
1410 -- Subsidiary subprogram used to climb to the parents
1411
1412 -------------
1413 -- Collect --
1414 -------------
1415
1416 procedure Collect (Typ : Entity_Id) is
1417 Tag_Comp : Entity_Id;
1418 Parent_Typ : Entity_Id;
1419
1420 begin
1421 -- Handle private types
1422
1423 if Present (Full_View (Etype (Typ))) then
1424 Parent_Typ := Full_View (Etype (Typ));
1425 else
1426 Parent_Typ := Etype (Typ);
1427 end if;
1428
1429 if Parent_Typ /= Typ
1430
1431 -- Protect the frontend against wrong sources. For example:
1432
1433 -- package P is
1434 -- type A is tagged null record;
1435 -- type B is new A with private;
1436 -- type C is new A with private;
1437 -- private
1438 -- type B is new C with null record;
1439 -- type C is new B with null record;
1440 -- end P;
1441
1442 and then Parent_Typ /= Tagged_Type
1443 then
1444 Collect (Parent_Typ);
1445 end if;
1446
1447 -- Collect the components containing tags of secondary dispatch
1448 -- tables.
1449
1450 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
1451 while Present (Tag_Comp) loop
1452 pragma Assert (Present (Related_Type (Tag_Comp)));
1453 Append_Elmt (Tag_Comp, Components_List);
1454
1455 Tag_Comp := Next_Tag_Component (Tag_Comp);
1456 end loop;
1457 end Collect;
1458
1459 -- Start of processing for Collect_Interface_Components
1460
1461 begin
1462 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
1463 and then Is_Tagged_Type (Tagged_Type));
1464
1465 Components_List := New_Elmt_List;
1466 Collect (Tagged_Type);
1467 end Collect_Interface_Components;
1468
1469 -----------------------------
1470 -- Collect_Interfaces_Info --
1471 -----------------------------
1472
1473 procedure Collect_Interfaces_Info
1474 (T : Entity_Id;
1475 Ifaces_List : out Elist_Id;
1476 Components_List : out Elist_Id;
1477 Tags_List : out Elist_Id)
1478 is
1479 Comps_List : Elist_Id;
1480 Comp_Elmt : Elmt_Id;
1481 Comp_Iface : Entity_Id;
1482 Iface_Elmt : Elmt_Id;
1483 Iface : Entity_Id;
1484
1485 function Search_Tag (Iface : Entity_Id) return Entity_Id;
1486 -- Search for the secondary tag associated with the interface type
1487 -- Iface that is implemented by T.
1488
1489 ----------------
1490 -- Search_Tag --
1491 ----------------
1492
1493 function Search_Tag (Iface : Entity_Id) return Entity_Id is
1494 ADT : Elmt_Id;
1495
1496 begin
1497 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
1498 while Present (ADT)
1499 and then Ekind (Node (ADT)) = E_Constant
1500 and then Related_Type (Node (ADT)) /= Iface
1501 loop
1502 -- Skip the secondary dispatch tables of Iface
1503
1504 Next_Elmt (ADT);
1505 Next_Elmt (ADT);
1506 Next_Elmt (ADT);
1507 Next_Elmt (ADT);
1508 end loop;
1509
1510 pragma Assert (Ekind (Node (ADT)) = E_Constant);
1511 return Node (ADT);
1512 end Search_Tag;
1513
1514 -- Start of processing for Collect_Interfaces_Info
1515
1516 begin
1517 Collect_Interfaces (T, Ifaces_List);
1518 Collect_Interface_Components (T, Comps_List);
1519
1520 -- Search for the record component and tag associated with each
1521 -- interface type of T.
1522
1523 Components_List := New_Elmt_List;
1524 Tags_List := New_Elmt_List;
1525
1526 Iface_Elmt := First_Elmt (Ifaces_List);
1527 while Present (Iface_Elmt) loop
1528 Iface := Node (Iface_Elmt);
1529
1530 -- Associate the primary tag component and the primary dispatch table
1531 -- with all the interfaces that are parents of T
1532
1533 if Is_Ancestor (Iface, T) then
1534 Append_Elmt (First_Tag_Component (T), Components_List);
1535 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
1536
1537 -- Otherwise search for the tag component and secondary dispatch
1538 -- table of Iface
1539
1540 else
1541 Comp_Elmt := First_Elmt (Comps_List);
1542 while Present (Comp_Elmt) loop
1543 Comp_Iface := Related_Type (Node (Comp_Elmt));
1544
1545 if Comp_Iface = Iface
1546 or else Is_Ancestor (Iface, Comp_Iface)
1547 then
1548 Append_Elmt (Node (Comp_Elmt), Components_List);
1549 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
1550 exit;
1551 end if;
1552
1553 Next_Elmt (Comp_Elmt);
1554 end loop;
1555 pragma Assert (Present (Comp_Elmt));
1556 end if;
1557
1558 Next_Elmt (Iface_Elmt);
1559 end loop;
1560 end Collect_Interfaces_Info;
1561
1562 ----------------------------------
1563 -- Collect_Primitive_Operations --
1564 ----------------------------------
1565
1566 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
1567 B_Type : constant Entity_Id := Base_Type (T);
1568 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
1569 B_Scope : Entity_Id := Scope (B_Type);
1570 Op_List : Elist_Id;
1571 Formal : Entity_Id;
1572 Is_Prim : Boolean;
1573 Formal_Derived : Boolean := False;
1574 Id : Entity_Id;
1575
1576 begin
1577 -- For tagged types, the primitive operations are collected as they
1578 -- are declared, and held in an explicit list which is simply returned.
1579
1580 if Is_Tagged_Type (B_Type) then
1581 return Primitive_Operations (B_Type);
1582
1583 -- An untagged generic type that is a derived type inherits the
1584 -- primitive operations of its parent type. Other formal types only
1585 -- have predefined operators, which are not explicitly represented.
1586
1587 elsif Is_Generic_Type (B_Type) then
1588 if Nkind (B_Decl) = N_Formal_Type_Declaration
1589 and then Nkind (Formal_Type_Definition (B_Decl))
1590 = N_Formal_Derived_Type_Definition
1591 then
1592 Formal_Derived := True;
1593 else
1594 return New_Elmt_List;
1595 end if;
1596 end if;
1597
1598 Op_List := New_Elmt_List;
1599
1600 if B_Scope = Standard_Standard then
1601 if B_Type = Standard_String then
1602 Append_Elmt (Standard_Op_Concat, Op_List);
1603
1604 elsif B_Type = Standard_Wide_String then
1605 Append_Elmt (Standard_Op_Concatw, Op_List);
1606
1607 else
1608 null;
1609 end if;
1610
1611 elsif (Is_Package_Or_Generic_Package (B_Scope)
1612 and then
1613 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
1614 N_Package_Body)
1615 or else Is_Derived_Type (B_Type)
1616 then
1617 -- The primitive operations appear after the base type, except
1618 -- if the derivation happens within the private part of B_Scope
1619 -- and the type is a private type, in which case both the type
1620 -- and some primitive operations may appear before the base
1621 -- type, and the list of candidates starts after the type.
1622
1623 if In_Open_Scopes (B_Scope)
1624 and then Scope (T) = B_Scope
1625 and then In_Private_Part (B_Scope)
1626 then
1627 Id := Next_Entity (T);
1628 else
1629 Id := Next_Entity (B_Type);
1630 end if;
1631
1632 while Present (Id) loop
1633
1634 -- Note that generic formal subprograms are not
1635 -- considered to be primitive operations and thus
1636 -- are never inherited.
1637
1638 if Is_Overloadable (Id)
1639 and then Nkind (Parent (Parent (Id)))
1640 not in N_Formal_Subprogram_Declaration
1641 then
1642 Is_Prim := False;
1643
1644 if Base_Type (Etype (Id)) = B_Type then
1645 Is_Prim := True;
1646 else
1647 Formal := First_Formal (Id);
1648 while Present (Formal) loop
1649 if Base_Type (Etype (Formal)) = B_Type then
1650 Is_Prim := True;
1651 exit;
1652
1653 elsif Ekind (Etype (Formal)) = E_Anonymous_Access_Type
1654 and then Base_Type
1655 (Designated_Type (Etype (Formal))) = B_Type
1656 then
1657 Is_Prim := True;
1658 exit;
1659 end if;
1660
1661 Next_Formal (Formal);
1662 end loop;
1663 end if;
1664
1665 -- For a formal derived type, the only primitives are the
1666 -- ones inherited from the parent type. Operations appearing
1667 -- in the package declaration are not primitive for it.
1668
1669 if Is_Prim
1670 and then (not Formal_Derived
1671 or else Present (Alias (Id)))
1672 then
1673 -- In the special case of an equality operator aliased to
1674 -- an overriding dispatching equality belonging to the same
1675 -- type, we don't include it in the list of primitives.
1676 -- This avoids inheriting multiple equality operators when
1677 -- deriving from untagged private types whose full type is
1678 -- tagged, which can otherwise cause ambiguities. Note that
1679 -- this should only happen for this kind of untagged parent
1680 -- type, since normally dispatching operations are inherited
1681 -- using the type's Primitive_Operations list.
1682
1683 if Chars (Id) = Name_Op_Eq
1684 and then Is_Dispatching_Operation (Id)
1685 and then Present (Alias (Id))
1686 and then Is_Overriding_Operation (Alias (Id))
1687 and then Base_Type (Etype (First_Entity (Id))) =
1688 Base_Type (Etype (First_Entity (Alias (Id))))
1689 then
1690 null;
1691
1692 -- Include the subprogram in the list of primitives
1693
1694 else
1695 Append_Elmt (Id, Op_List);
1696 end if;
1697 end if;
1698 end if;
1699
1700 Next_Entity (Id);
1701
1702 -- For a type declared in System, some of its operations
1703 -- may appear in the target-specific extension to System.
1704
1705 if No (Id)
1706 and then Chars (B_Scope) = Name_System
1707 and then Scope (B_Scope) = Standard_Standard
1708 and then Present_System_Aux
1709 then
1710 B_Scope := System_Aux_Id;
1711 Id := First_Entity (System_Aux_Id);
1712 end if;
1713 end loop;
1714 end if;
1715
1716 return Op_List;
1717 end Collect_Primitive_Operations;
1718
1719 -----------------------------------
1720 -- Compile_Time_Constraint_Error --
1721 -----------------------------------
1722
1723 function Compile_Time_Constraint_Error
1724 (N : Node_Id;
1725 Msg : String;
1726 Ent : Entity_Id := Empty;
1727 Loc : Source_Ptr := No_Location;
1728 Warn : Boolean := False) return Node_Id
1729 is
1730 Msgc : String (1 .. Msg'Length + 2);
1731 -- Copy of message, with room for possible ? and ! at end
1732
1733 Msgl : Natural;
1734 Wmsg : Boolean;
1735 P : Node_Id;
1736 OldP : Node_Id;
1737 Msgs : Boolean;
1738 Eloc : Source_Ptr;
1739
1740 begin
1741 -- A static constraint error in an instance body is not a fatal error.
1742 -- we choose to inhibit the message altogether, because there is no
1743 -- obvious node (for now) on which to post it. On the other hand the
1744 -- offending node must be replaced with a constraint_error in any case.
1745
1746 -- No messages are generated if we already posted an error on this node
1747
1748 if not Error_Posted (N) then
1749 if Loc /= No_Location then
1750 Eloc := Loc;
1751 else
1752 Eloc := Sloc (N);
1753 end if;
1754
1755 Msgc (1 .. Msg'Length) := Msg;
1756 Msgl := Msg'Length;
1757
1758 -- Message is a warning, even in Ada 95 case
1759
1760 if Msg (Msg'Last) = '?' then
1761 Wmsg := True;
1762
1763 -- In Ada 83, all messages are warnings. In the private part and
1764 -- the body of an instance, constraint_checks are only warnings.
1765 -- We also make this a warning if the Warn parameter is set.
1766
1767 elsif Warn
1768 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
1769 then
1770 Msgl := Msgl + 1;
1771 Msgc (Msgl) := '?';
1772 Wmsg := True;
1773
1774 elsif In_Instance_Not_Visible then
1775 Msgl := Msgl + 1;
1776 Msgc (Msgl) := '?';
1777 Wmsg := True;
1778
1779 -- Otherwise we have a real error message (Ada 95 static case)
1780 -- and we make this an unconditional message. Note that in the
1781 -- warning case we do not make the message unconditional, it seems
1782 -- quite reasonable to delete messages like this (about exceptions
1783 -- that will be raised) in dead code.
1784
1785 else
1786 Wmsg := False;
1787 Msgl := Msgl + 1;
1788 Msgc (Msgl) := '!';
1789 end if;
1790
1791 -- Should we generate a warning? The answer is not quite yes. The
1792 -- very annoying exception occurs in the case of a short circuit
1793 -- operator where the left operand is static and decisive. Climb
1794 -- parents to see if that is the case we have here. Conditional
1795 -- expressions with decisive conditions are a similar situation.
1796
1797 Msgs := True;
1798 P := N;
1799 loop
1800 OldP := P;
1801 P := Parent (P);
1802
1803 -- And then with False as left operand
1804
1805 if Nkind (P) = N_And_Then
1806 and then Compile_Time_Known_Value (Left_Opnd (P))
1807 and then Is_False (Expr_Value (Left_Opnd (P)))
1808 then
1809 Msgs := False;
1810 exit;
1811
1812 -- OR ELSE with True as left operand
1813
1814 elsif Nkind (P) = N_Or_Else
1815 and then Compile_Time_Known_Value (Left_Opnd (P))
1816 and then Is_True (Expr_Value (Left_Opnd (P)))
1817 then
1818 Msgs := False;
1819 exit;
1820
1821 -- Conditional expression
1822
1823 elsif Nkind (P) = N_Conditional_Expression then
1824 declare
1825 Cond : constant Node_Id := First (Expressions (P));
1826 Texp : constant Node_Id := Next (Cond);
1827 Fexp : constant Node_Id := Next (Texp);
1828
1829 begin
1830 if Compile_Time_Known_Value (Cond) then
1831
1832 -- Condition is True and we are in the right operand
1833
1834 if Is_True (Expr_Value (Cond))
1835 and then OldP = Fexp
1836 then
1837 Msgs := False;
1838 exit;
1839
1840 -- Condition is False and we are in the left operand
1841
1842 elsif Is_False (Expr_Value (Cond))
1843 and then OldP = Texp
1844 then
1845 Msgs := False;
1846 exit;
1847 end if;
1848 end if;
1849 end;
1850
1851 -- Special case for component association in aggregates, where
1852 -- we want to keep climbing up to the parent aggregate.
1853
1854 elsif Nkind (P) = N_Component_Association
1855 and then Nkind (Parent (P)) = N_Aggregate
1856 then
1857 null;
1858
1859 -- Keep going if within subexpression
1860
1861 else
1862 exit when Nkind (P) not in N_Subexpr;
1863 end if;
1864 end loop;
1865
1866 if Msgs then
1867 if Present (Ent) then
1868 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
1869 else
1870 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
1871 end if;
1872
1873 if Wmsg then
1874 if Inside_Init_Proc then
1875 Error_Msg_NEL
1876 ("\?& will be raised for objects of this type",
1877 N, Standard_Constraint_Error, Eloc);
1878 else
1879 Error_Msg_NEL
1880 ("\?& will be raised at run time",
1881 N, Standard_Constraint_Error, Eloc);
1882 end if;
1883
1884 else
1885 Error_Msg
1886 ("\static expression fails Constraint_Check", Eloc);
1887 Set_Error_Posted (N);
1888 end if;
1889 end if;
1890 end if;
1891
1892 return N;
1893 end Compile_Time_Constraint_Error;
1894
1895 -----------------------
1896 -- Conditional_Delay --
1897 -----------------------
1898
1899 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
1900 begin
1901 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
1902 Set_Has_Delayed_Freeze (New_Ent);
1903 end if;
1904 end Conditional_Delay;
1905
1906 -------------------------
1907 -- Copy_Parameter_List --
1908 -------------------------
1909
1910 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
1911 Loc : constant Source_Ptr := Sloc (Subp_Id);
1912 Plist : List_Id;
1913 Formal : Entity_Id;
1914
1915 begin
1916 if No (First_Formal (Subp_Id)) then
1917 return No_List;
1918 else
1919 Plist := New_List;
1920 Formal := First_Formal (Subp_Id);
1921 while Present (Formal) loop
1922 Append
1923 (Make_Parameter_Specification (Loc,
1924 Defining_Identifier =>
1925 Make_Defining_Identifier (Sloc (Formal),
1926 Chars => Chars (Formal)),
1927 In_Present => In_Present (Parent (Formal)),
1928 Out_Present => Out_Present (Parent (Formal)),
1929 Parameter_Type =>
1930 New_Reference_To (Etype (Formal), Loc),
1931 Expression =>
1932 New_Copy_Tree (Expression (Parent (Formal)))),
1933 Plist);
1934
1935 Next_Formal (Formal);
1936 end loop;
1937 end if;
1938
1939 return Plist;
1940 end Copy_Parameter_List;
1941
1942 --------------------
1943 -- Current_Entity --
1944 --------------------
1945
1946 -- The currently visible definition for a given identifier is the
1947 -- one most chained at the start of the visibility chain, i.e. the
1948 -- one that is referenced by the Node_Id value of the name of the
1949 -- given identifier.
1950
1951 function Current_Entity (N : Node_Id) return Entity_Id is
1952 begin
1953 return Get_Name_Entity_Id (Chars (N));
1954 end Current_Entity;
1955
1956 -----------------------------
1957 -- Current_Entity_In_Scope --
1958 -----------------------------
1959
1960 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
1961 E : Entity_Id;
1962 CS : constant Entity_Id := Current_Scope;
1963
1964 Transient_Case : constant Boolean := Scope_Is_Transient;
1965
1966 begin
1967 E := Get_Name_Entity_Id (Chars (N));
1968 while Present (E)
1969 and then Scope (E) /= CS
1970 and then (not Transient_Case or else Scope (E) /= Scope (CS))
1971 loop
1972 E := Homonym (E);
1973 end loop;
1974
1975 return E;
1976 end Current_Entity_In_Scope;
1977
1978 -------------------
1979 -- Current_Scope --
1980 -------------------
1981
1982 function Current_Scope return Entity_Id is
1983 begin
1984 if Scope_Stack.Last = -1 then
1985 return Standard_Standard;
1986 else
1987 declare
1988 C : constant Entity_Id :=
1989 Scope_Stack.Table (Scope_Stack.Last).Entity;
1990 begin
1991 if Present (C) then
1992 return C;
1993 else
1994 return Standard_Standard;
1995 end if;
1996 end;
1997 end if;
1998 end Current_Scope;
1999
2000 ------------------------
2001 -- Current_Subprogram --
2002 ------------------------
2003
2004 function Current_Subprogram return Entity_Id is
2005 Scop : constant Entity_Id := Current_Scope;
2006 begin
2007 if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
2008 return Scop;
2009 else
2010 return Enclosing_Subprogram (Scop);
2011 end if;
2012 end Current_Subprogram;
2013
2014 ---------------------
2015 -- Defining_Entity --
2016 ---------------------
2017
2018 function Defining_Entity (N : Node_Id) return Entity_Id is
2019 K : constant Node_Kind := Nkind (N);
2020 Err : Entity_Id := Empty;
2021
2022 begin
2023 case K is
2024 when
2025 N_Subprogram_Declaration |
2026 N_Abstract_Subprogram_Declaration |
2027 N_Subprogram_Body |
2028 N_Package_Declaration |
2029 N_Subprogram_Renaming_Declaration |
2030 N_Subprogram_Body_Stub |
2031 N_Generic_Subprogram_Declaration |
2032 N_Generic_Package_Declaration |
2033 N_Formal_Subprogram_Declaration
2034 =>
2035 return Defining_Entity (Specification (N));
2036
2037 when
2038 N_Component_Declaration |
2039 N_Defining_Program_Unit_Name |
2040 N_Discriminant_Specification |
2041 N_Entry_Body |
2042 N_Entry_Declaration |
2043 N_Entry_Index_Specification |
2044 N_Exception_Declaration |
2045 N_Exception_Renaming_Declaration |
2046 N_Formal_Object_Declaration |
2047 N_Formal_Package_Declaration |
2048 N_Formal_Type_Declaration |
2049 N_Full_Type_Declaration |
2050 N_Implicit_Label_Declaration |
2051 N_Incomplete_Type_Declaration |
2052 N_Loop_Parameter_Specification |
2053 N_Number_Declaration |
2054 N_Object_Declaration |
2055 N_Object_Renaming_Declaration |
2056 N_Package_Body_Stub |
2057 N_Parameter_Specification |
2058 N_Private_Extension_Declaration |
2059 N_Private_Type_Declaration |
2060 N_Protected_Body |
2061 N_Protected_Body_Stub |
2062 N_Protected_Type_Declaration |
2063 N_Single_Protected_Declaration |
2064 N_Single_Task_Declaration |
2065 N_Subtype_Declaration |
2066 N_Task_Body |
2067 N_Task_Body_Stub |
2068 N_Task_Type_Declaration
2069 =>
2070 return Defining_Identifier (N);
2071
2072 when N_Subunit =>
2073 return Defining_Entity (Proper_Body (N));
2074
2075 when
2076 N_Function_Instantiation |
2077 N_Function_Specification |
2078 N_Generic_Function_Renaming_Declaration |
2079 N_Generic_Package_Renaming_Declaration |
2080 N_Generic_Procedure_Renaming_Declaration |
2081 N_Package_Body |
2082 N_Package_Instantiation |
2083 N_Package_Renaming_Declaration |
2084 N_Package_Specification |
2085 N_Procedure_Instantiation |
2086 N_Procedure_Specification
2087 =>
2088 declare
2089 Nam : constant Node_Id := Defining_Unit_Name (N);
2090
2091 begin
2092 if Nkind (Nam) in N_Entity then
2093 return Nam;
2094
2095 -- For Error, make up a name and attach to declaration
2096 -- so we can continue semantic analysis
2097
2098 elsif Nam = Error then
2099 Err := Make_Temporary (Sloc (N), 'T');
2100 Set_Defining_Unit_Name (N, Err);
2101
2102 return Err;
2103 -- If not an entity, get defining identifier
2104
2105 else
2106 return Defining_Identifier (Nam);
2107 end if;
2108 end;
2109
2110 when N_Block_Statement =>
2111 return Entity (Identifier (N));
2112
2113 when others =>
2114 raise Program_Error;
2115
2116 end case;
2117 end Defining_Entity;
2118
2119 --------------------------
2120 -- Denotes_Discriminant --
2121 --------------------------
2122
2123 function Denotes_Discriminant
2124 (N : Node_Id;
2125 Check_Concurrent : Boolean := False) return Boolean
2126 is
2127 E : Entity_Id;
2128 begin
2129 if not Is_Entity_Name (N)
2130 or else No (Entity (N))
2131 then
2132 return False;
2133 else
2134 E := Entity (N);
2135 end if;
2136
2137 -- If we are checking for a protected type, the discriminant may have
2138 -- been rewritten as the corresponding discriminal of the original type
2139 -- or of the corresponding concurrent record, depending on whether we
2140 -- are in the spec or body of the protected type.
2141
2142 return Ekind (E) = E_Discriminant
2143 or else
2144 (Check_Concurrent
2145 and then Ekind (E) = E_In_Parameter
2146 and then Present (Discriminal_Link (E))
2147 and then
2148 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
2149 or else
2150 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
2151
2152 end Denotes_Discriminant;
2153
2154 -------------------------
2155 -- Denotes_Same_Object --
2156 -------------------------
2157
2158 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
2159 begin
2160 -- If we have entity names, then must be same entity
2161
2162 if Is_Entity_Name (A1) then
2163 if Is_Entity_Name (A2) then
2164 return Entity (A1) = Entity (A2);
2165 else
2166 return False;
2167 end if;
2168
2169 -- No match if not same node kind
2170
2171 elsif Nkind (A1) /= Nkind (A2) then
2172 return False;
2173
2174 -- For selected components, must have same prefix and selector
2175
2176 elsif Nkind (A1) = N_Selected_Component then
2177 return Denotes_Same_Object (Prefix (A1), Prefix (A2))
2178 and then
2179 Entity (Selector_Name (A1)) = Entity (Selector_Name (A2));
2180
2181 -- For explicit dereferences, prefixes must be same
2182
2183 elsif Nkind (A1) = N_Explicit_Dereference then
2184 return Denotes_Same_Object (Prefix (A1), Prefix (A2));
2185
2186 -- For indexed components, prefixes and all subscripts must be the same
2187
2188 elsif Nkind (A1) = N_Indexed_Component then
2189 if Denotes_Same_Object (Prefix (A1), Prefix (A2)) then
2190 declare
2191 Indx1 : Node_Id;
2192 Indx2 : Node_Id;
2193
2194 begin
2195 Indx1 := First (Expressions (A1));
2196 Indx2 := First (Expressions (A2));
2197 while Present (Indx1) loop
2198
2199 -- Shouldn't we be checking that values are the same???
2200
2201 if not Denotes_Same_Object (Indx1, Indx2) then
2202 return False;
2203 end if;
2204
2205 Next (Indx1);
2206 Next (Indx2);
2207 end loop;
2208
2209 return True;
2210 end;
2211 else
2212 return False;
2213 end if;
2214
2215 -- For slices, prefixes must match and bounds must match
2216
2217 elsif Nkind (A1) = N_Slice
2218 and then Denotes_Same_Object (Prefix (A1), Prefix (A2))
2219 then
2220 declare
2221 Lo1, Lo2, Hi1, Hi2 : Node_Id;
2222
2223 begin
2224 Get_Index_Bounds (Etype (A1), Lo1, Hi1);
2225 Get_Index_Bounds (Etype (A2), Lo2, Hi2);
2226
2227 -- Check whether bounds are statically identical. There is no
2228 -- attempt to detect partial overlap of slices.
2229
2230 -- What about an array and a slice of an array???
2231
2232 return Denotes_Same_Object (Lo1, Lo2)
2233 and then Denotes_Same_Object (Hi1, Hi2);
2234 end;
2235
2236 -- Literals will appear as indices. Isn't this where we should check
2237 -- Known_At_Compile_Time at least if we are generating warnings ???
2238
2239 elsif Nkind (A1) = N_Integer_Literal then
2240 return Intval (A1) = Intval (A2);
2241
2242 else
2243 return False;
2244 end if;
2245 end Denotes_Same_Object;
2246
2247 -------------------------
2248 -- Denotes_Same_Prefix --
2249 -------------------------
2250
2251 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
2252
2253 begin
2254 if Is_Entity_Name (A1) then
2255 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component) then
2256 return Denotes_Same_Object (A1, Prefix (A2))
2257 or else Denotes_Same_Prefix (A1, Prefix (A2));
2258 else
2259 return False;
2260 end if;
2261
2262 elsif Is_Entity_Name (A2) then
2263 return Denotes_Same_Prefix (A2, A1);
2264
2265 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
2266 and then
2267 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
2268 then
2269 declare
2270 Root1, Root2 : Node_Id;
2271 Depth1, Depth2 : Int := 0;
2272
2273 begin
2274 Root1 := Prefix (A1);
2275 while not Is_Entity_Name (Root1) loop
2276 if not Nkind_In
2277 (Root1, N_Selected_Component, N_Indexed_Component)
2278 then
2279 return False;
2280 else
2281 Root1 := Prefix (Root1);
2282 end if;
2283
2284 Depth1 := Depth1 + 1;
2285 end loop;
2286
2287 Root2 := Prefix (A2);
2288 while not Is_Entity_Name (Root2) loop
2289 if not Nkind_In
2290 (Root2, N_Selected_Component, N_Indexed_Component)
2291 then
2292 return False;
2293 else
2294 Root2 := Prefix (Root2);
2295 end if;
2296
2297 Depth2 := Depth2 + 1;
2298 end loop;
2299
2300 -- If both have the same depth and they do not denote the same
2301 -- object, they are disjoint and not warning is needed.
2302
2303 if Depth1 = Depth2 then
2304 return False;
2305
2306 elsif Depth1 > Depth2 then
2307 Root1 := Prefix (A1);
2308 for I in 1 .. Depth1 - Depth2 - 1 loop
2309 Root1 := Prefix (Root1);
2310 end loop;
2311
2312 return Denotes_Same_Object (Root1, A2);
2313
2314 else
2315 Root2 := Prefix (A2);
2316 for I in 1 .. Depth2 - Depth1 - 1 loop
2317 Root2 := Prefix (Root2);
2318 end loop;
2319
2320 return Denotes_Same_Object (A1, Root2);
2321 end if;
2322 end;
2323
2324 else
2325 return False;
2326 end if;
2327 end Denotes_Same_Prefix;
2328
2329 ----------------------
2330 -- Denotes_Variable --
2331 ----------------------
2332
2333 function Denotes_Variable (N : Node_Id) return Boolean is
2334 begin
2335 return Is_Variable (N) and then Paren_Count (N) = 0;
2336 end Denotes_Variable;
2337
2338 -----------------------------
2339 -- Depends_On_Discriminant --
2340 -----------------------------
2341
2342 function Depends_On_Discriminant (N : Node_Id) return Boolean is
2343 L : Node_Id;
2344 H : Node_Id;
2345
2346 begin
2347 Get_Index_Bounds (N, L, H);
2348 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
2349 end Depends_On_Discriminant;
2350
2351 -------------------------
2352 -- Designate_Same_Unit --
2353 -------------------------
2354
2355 function Designate_Same_Unit
2356 (Name1 : Node_Id;
2357 Name2 : Node_Id) return Boolean
2358 is
2359 K1 : constant Node_Kind := Nkind (Name1);
2360 K2 : constant Node_Kind := Nkind (Name2);
2361
2362 function Prefix_Node (N : Node_Id) return Node_Id;
2363 -- Returns the parent unit name node of a defining program unit name
2364 -- or the prefix if N is a selected component or an expanded name.
2365
2366 function Select_Node (N : Node_Id) return Node_Id;
2367 -- Returns the defining identifier node of a defining program unit
2368 -- name or the selector node if N is a selected component or an
2369 -- expanded name.
2370
2371 -----------------
2372 -- Prefix_Node --
2373 -----------------
2374
2375 function Prefix_Node (N : Node_Id) return Node_Id is
2376 begin
2377 if Nkind (N) = N_Defining_Program_Unit_Name then
2378 return Name (N);
2379
2380 else
2381 return Prefix (N);
2382 end if;
2383 end Prefix_Node;
2384
2385 -----------------
2386 -- Select_Node --
2387 -----------------
2388
2389 function Select_Node (N : Node_Id) return Node_Id is
2390 begin
2391 if Nkind (N) = N_Defining_Program_Unit_Name then
2392 return Defining_Identifier (N);
2393
2394 else
2395 return Selector_Name (N);
2396 end if;
2397 end Select_Node;
2398
2399 -- Start of processing for Designate_Next_Unit
2400
2401 begin
2402 if (K1 = N_Identifier or else
2403 K1 = N_Defining_Identifier)
2404 and then
2405 (K2 = N_Identifier or else
2406 K2 = N_Defining_Identifier)
2407 then
2408 return Chars (Name1) = Chars (Name2);
2409
2410 elsif
2411 (K1 = N_Expanded_Name or else
2412 K1 = N_Selected_Component or else
2413 K1 = N_Defining_Program_Unit_Name)
2414 and then
2415 (K2 = N_Expanded_Name or else
2416 K2 = N_Selected_Component or else
2417 K2 = N_Defining_Program_Unit_Name)
2418 then
2419 return
2420 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
2421 and then
2422 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
2423
2424 else
2425 return False;
2426 end if;
2427 end Designate_Same_Unit;
2428
2429 ----------------------------
2430 -- Enclosing_Generic_Body --
2431 ----------------------------
2432
2433 function Enclosing_Generic_Body
2434 (N : Node_Id) return Node_Id
2435 is
2436 P : Node_Id;
2437 Decl : Node_Id;
2438 Spec : Node_Id;
2439
2440 begin
2441 P := Parent (N);
2442 while Present (P) loop
2443 if Nkind (P) = N_Package_Body
2444 or else Nkind (P) = N_Subprogram_Body
2445 then
2446 Spec := Corresponding_Spec (P);
2447
2448 if Present (Spec) then
2449 Decl := Unit_Declaration_Node (Spec);
2450
2451 if Nkind (Decl) = N_Generic_Package_Declaration
2452 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2453 then
2454 return P;
2455 end if;
2456 end if;
2457 end if;
2458
2459 P := Parent (P);
2460 end loop;
2461
2462 return Empty;
2463 end Enclosing_Generic_Body;
2464
2465 ----------------------------
2466 -- Enclosing_Generic_Unit --
2467 ----------------------------
2468
2469 function Enclosing_Generic_Unit
2470 (N : Node_Id) return Node_Id
2471 is
2472 P : Node_Id;
2473 Decl : Node_Id;
2474 Spec : Node_Id;
2475
2476 begin
2477 P := Parent (N);
2478 while Present (P) loop
2479 if Nkind (P) = N_Generic_Package_Declaration
2480 or else Nkind (P) = N_Generic_Subprogram_Declaration
2481 then
2482 return P;
2483
2484 elsif Nkind (P) = N_Package_Body
2485 or else Nkind (P) = N_Subprogram_Body
2486 then
2487 Spec := Corresponding_Spec (P);
2488
2489 if Present (Spec) then
2490 Decl := Unit_Declaration_Node (Spec);
2491
2492 if Nkind (Decl) = N_Generic_Package_Declaration
2493 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2494 then
2495 return Decl;
2496 end if;
2497 end if;
2498 end if;
2499
2500 P := Parent (P);
2501 end loop;
2502
2503 return Empty;
2504 end Enclosing_Generic_Unit;
2505
2506 -------------------------------
2507 -- Enclosing_Lib_Unit_Entity --
2508 -------------------------------
2509
2510 function Enclosing_Lib_Unit_Entity return Entity_Id is
2511 Unit_Entity : Entity_Id;
2512
2513 begin
2514 -- Look for enclosing library unit entity by following scope links.
2515 -- Equivalent to, but faster than indexing through the scope stack.
2516
2517 Unit_Entity := Current_Scope;
2518 while (Present (Scope (Unit_Entity))
2519 and then Scope (Unit_Entity) /= Standard_Standard)
2520 and not Is_Child_Unit (Unit_Entity)
2521 loop
2522 Unit_Entity := Scope (Unit_Entity);
2523 end loop;
2524
2525 return Unit_Entity;
2526 end Enclosing_Lib_Unit_Entity;
2527
2528 -----------------------------
2529 -- Enclosing_Lib_Unit_Node --
2530 -----------------------------
2531
2532 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
2533 Current_Node : Node_Id;
2534
2535 begin
2536 Current_Node := N;
2537 while Present (Current_Node)
2538 and then Nkind (Current_Node) /= N_Compilation_Unit
2539 loop
2540 Current_Node := Parent (Current_Node);
2541 end loop;
2542
2543 if Nkind (Current_Node) /= N_Compilation_Unit then
2544 return Empty;
2545 end if;
2546
2547 return Current_Node;
2548 end Enclosing_Lib_Unit_Node;
2549
2550 --------------------------
2551 -- Enclosing_Subprogram --
2552 --------------------------
2553
2554 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
2555 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
2556
2557 begin
2558 if Dynamic_Scope = Standard_Standard then
2559 return Empty;
2560
2561 elsif Dynamic_Scope = Empty then
2562 return Empty;
2563
2564 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
2565 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
2566
2567 elsif Ekind (Dynamic_Scope) = E_Block
2568 or else Ekind (Dynamic_Scope) = E_Return_Statement
2569 then
2570 return Enclosing_Subprogram (Dynamic_Scope);
2571
2572 elsif Ekind (Dynamic_Scope) = E_Task_Type then
2573 return Get_Task_Body_Procedure (Dynamic_Scope);
2574
2575 -- No body is generated if the protected operation is eliminated
2576
2577 elsif Convention (Dynamic_Scope) = Convention_Protected
2578 and then not Is_Eliminated (Dynamic_Scope)
2579 and then Present (Protected_Body_Subprogram (Dynamic_Scope))
2580 then
2581 return Protected_Body_Subprogram (Dynamic_Scope);
2582
2583 else
2584 return Dynamic_Scope;
2585 end if;
2586 end Enclosing_Subprogram;
2587
2588 ------------------------
2589 -- Ensure_Freeze_Node --
2590 ------------------------
2591
2592 procedure Ensure_Freeze_Node (E : Entity_Id) is
2593 FN : Node_Id;
2594
2595 begin
2596 if No (Freeze_Node (E)) then
2597 FN := Make_Freeze_Entity (Sloc (E));
2598 Set_Has_Delayed_Freeze (E);
2599 Set_Freeze_Node (E, FN);
2600 Set_Access_Types_To_Process (FN, No_Elist);
2601 Set_TSS_Elist (FN, No_Elist);
2602 Set_Entity (FN, E);
2603 end if;
2604 end Ensure_Freeze_Node;
2605
2606 ----------------
2607 -- Enter_Name --
2608 ----------------
2609
2610 procedure Enter_Name (Def_Id : Entity_Id) is
2611 C : constant Entity_Id := Current_Entity (Def_Id);
2612 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
2613 S : constant Entity_Id := Current_Scope;
2614
2615 begin
2616 Generate_Definition (Def_Id);
2617
2618 -- Add new name to current scope declarations. Check for duplicate
2619 -- declaration, which may or may not be a genuine error.
2620
2621 if Present (E) then
2622
2623 -- Case of previous entity entered because of a missing declaration
2624 -- or else a bad subtype indication. Best is to use the new entity,
2625 -- and make the previous one invisible.
2626
2627 if Etype (E) = Any_Type then
2628 Set_Is_Immediately_Visible (E, False);
2629
2630 -- Case of renaming declaration constructed for package instances.
2631 -- if there is an explicit declaration with the same identifier,
2632 -- the renaming is not immediately visible any longer, but remains
2633 -- visible through selected component notation.
2634
2635 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
2636 and then not Comes_From_Source (E)
2637 then
2638 Set_Is_Immediately_Visible (E, False);
2639
2640 -- The new entity may be the package renaming, which has the same
2641 -- same name as a generic formal which has been seen already.
2642
2643 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
2644 and then not Comes_From_Source (Def_Id)
2645 then
2646 Set_Is_Immediately_Visible (E, False);
2647
2648 -- For a fat pointer corresponding to a remote access to subprogram,
2649 -- we use the same identifier as the RAS type, so that the proper
2650 -- name appears in the stub. This type is only retrieved through
2651 -- the RAS type and never by visibility, and is not added to the
2652 -- visibility list (see below).
2653
2654 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
2655 and then Present (Corresponding_Remote_Type (Def_Id))
2656 then
2657 null;
2658
2659 -- A controller component for a type extension overrides the
2660 -- inherited component.
2661
2662 elsif Chars (E) = Name_uController then
2663 null;
2664
2665 -- Case of an implicit operation or derived literal. The new entity
2666 -- hides the implicit one, which is removed from all visibility,
2667 -- i.e. the entity list of its scope, and homonym chain of its name.
2668
2669 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
2670 or else Is_Internal (E)
2671 then
2672 declare
2673 Prev : Entity_Id;
2674 Prev_Vis : Entity_Id;
2675 Decl : constant Node_Id := Parent (E);
2676
2677 begin
2678 -- If E is an implicit declaration, it cannot be the first
2679 -- entity in the scope.
2680
2681 Prev := First_Entity (Current_Scope);
2682 while Present (Prev)
2683 and then Next_Entity (Prev) /= E
2684 loop
2685 Next_Entity (Prev);
2686 end loop;
2687
2688 if No (Prev) then
2689
2690 -- If E is not on the entity chain of the current scope,
2691 -- it is an implicit declaration in the generic formal
2692 -- part of a generic subprogram. When analyzing the body,
2693 -- the generic formals are visible but not on the entity
2694 -- chain of the subprogram. The new entity will become
2695 -- the visible one in the body.
2696
2697 pragma Assert
2698 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
2699 null;
2700
2701 else
2702 Set_Next_Entity (Prev, Next_Entity (E));
2703
2704 if No (Next_Entity (Prev)) then
2705 Set_Last_Entity (Current_Scope, Prev);
2706 end if;
2707
2708 if E = Current_Entity (E) then
2709 Prev_Vis := Empty;
2710
2711 else
2712 Prev_Vis := Current_Entity (E);
2713 while Homonym (Prev_Vis) /= E loop
2714 Prev_Vis := Homonym (Prev_Vis);
2715 end loop;
2716 end if;
2717
2718 if Present (Prev_Vis) then
2719
2720 -- Skip E in the visibility chain
2721
2722 Set_Homonym (Prev_Vis, Homonym (E));
2723
2724 else
2725 Set_Name_Entity_Id (Chars (E), Homonym (E));
2726 end if;
2727 end if;
2728 end;
2729
2730 -- This section of code could use a comment ???
2731
2732 elsif Present (Etype (E))
2733 and then Is_Concurrent_Type (Etype (E))
2734 and then E = Def_Id
2735 then
2736 return;
2737
2738 -- If the homograph is a protected component renaming, it should not
2739 -- be hiding the current entity. Such renamings are treated as weak
2740 -- declarations.
2741
2742 elsif Is_Prival (E) then
2743 Set_Is_Immediately_Visible (E, False);
2744
2745 -- In this case the current entity is a protected component renaming.
2746 -- Perform minimal decoration by setting the scope and return since
2747 -- the prival should not be hiding other visible entities.
2748
2749 elsif Is_Prival (Def_Id) then
2750 Set_Scope (Def_Id, Current_Scope);
2751 return;
2752
2753 -- Analogous to privals, the discriminal generated for an entry
2754 -- index parameter acts as a weak declaration. Perform minimal
2755 -- decoration to avoid bogus errors.
2756
2757 elsif Is_Discriminal (Def_Id)
2758 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
2759 then
2760 Set_Scope (Def_Id, Current_Scope);
2761 return;
2762
2763 -- In the body or private part of an instance, a type extension
2764 -- may introduce a component with the same name as that of an
2765 -- actual. The legality rule is not enforced, but the semantics
2766 -- of the full type with two components of the same name are not
2767 -- clear at this point ???
2768
2769 elsif In_Instance_Not_Visible then
2770 null;
2771
2772 -- When compiling a package body, some child units may have become
2773 -- visible. They cannot conflict with local entities that hide them.
2774
2775 elsif Is_Child_Unit (E)
2776 and then In_Open_Scopes (Scope (E))
2777 and then not Is_Immediately_Visible (E)
2778 then
2779 null;
2780
2781 -- Conversely, with front-end inlining we may compile the parent
2782 -- body first, and a child unit subsequently. The context is now
2783 -- the parent spec, and body entities are not visible.
2784
2785 elsif Is_Child_Unit (Def_Id)
2786 and then Is_Package_Body_Entity (E)
2787 and then not In_Package_Body (Current_Scope)
2788 then
2789 null;
2790
2791 -- Case of genuine duplicate declaration
2792
2793 else
2794 Error_Msg_Sloc := Sloc (E);
2795
2796 -- If the previous declaration is an incomplete type declaration
2797 -- this may be an attempt to complete it with a private type.
2798 -- The following avoids confusing cascaded errors.
2799
2800 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
2801 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
2802 then
2803 Error_Msg_N
2804 ("incomplete type cannot be completed with a private " &
2805 "declaration", Parent (Def_Id));
2806 Set_Is_Immediately_Visible (E, False);
2807 Set_Full_View (E, Def_Id);
2808
2809 -- An inherited component of a record conflicts with a new
2810 -- discriminant. The discriminant is inserted first in the scope,
2811 -- but the error should be posted on it, not on the component.
2812
2813 elsif Ekind (E) = E_Discriminant
2814 and then Present (Scope (Def_Id))
2815 and then Scope (Def_Id) /= Current_Scope
2816 then
2817 Error_Msg_Sloc := Sloc (Def_Id);
2818 Error_Msg_N ("& conflicts with declaration#", E);
2819 return;
2820
2821 -- If the name of the unit appears in its own context clause,
2822 -- a dummy package with the name has already been created, and
2823 -- the error emitted. Try to continue quietly.
2824
2825 elsif Error_Posted (E)
2826 and then Sloc (E) = No_Location
2827 and then Nkind (Parent (E)) = N_Package_Specification
2828 and then Current_Scope = Standard_Standard
2829 then
2830 Set_Scope (Def_Id, Current_Scope);
2831 return;
2832
2833 else
2834 Error_Msg_N ("& conflicts with declaration#", Def_Id);
2835
2836 -- Avoid cascaded messages with duplicate components in
2837 -- derived types.
2838
2839 if Ekind_In (E, E_Component, E_Discriminant) then
2840 return;
2841 end if;
2842 end if;
2843
2844 if Nkind (Parent (Parent (Def_Id))) =
2845 N_Generic_Subprogram_Declaration
2846 and then Def_Id =
2847 Defining_Entity (Specification (Parent (Parent (Def_Id))))
2848 then
2849 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
2850 end if;
2851
2852 -- If entity is in standard, then we are in trouble, because
2853 -- it means that we have a library package with a duplicated
2854 -- name. That's hard to recover from, so abort!
2855
2856 if S = Standard_Standard then
2857 raise Unrecoverable_Error;
2858
2859 -- Otherwise we continue with the declaration. Having two
2860 -- identical declarations should not cause us too much trouble!
2861
2862 else
2863 null;
2864 end if;
2865 end if;
2866 end if;
2867
2868 -- If we fall through, declaration is OK , or OK enough to continue
2869
2870 -- If Def_Id is a discriminant or a record component we are in the
2871 -- midst of inheriting components in a derived record definition.
2872 -- Preserve their Ekind and Etype.
2873
2874 if Ekind_In (Def_Id, E_Discriminant, E_Component) then
2875 null;
2876
2877 -- If a type is already set, leave it alone (happens whey a type
2878 -- declaration is reanalyzed following a call to the optimizer)
2879
2880 elsif Present (Etype (Def_Id)) then
2881 null;
2882
2883 -- Otherwise, the kind E_Void insures that premature uses of the entity
2884 -- will be detected. Any_Type insures that no cascaded errors will occur
2885
2886 else
2887 Set_Ekind (Def_Id, E_Void);
2888 Set_Etype (Def_Id, Any_Type);
2889 end if;
2890
2891 -- Inherited discriminants and components in derived record types are
2892 -- immediately visible. Itypes are not.
2893
2894 if Ekind_In (Def_Id, E_Discriminant, E_Component)
2895 or else (No (Corresponding_Remote_Type (Def_Id))
2896 and then not Is_Itype (Def_Id))
2897 then
2898 Set_Is_Immediately_Visible (Def_Id);
2899 Set_Current_Entity (Def_Id);
2900 end if;
2901
2902 Set_Homonym (Def_Id, C);
2903 Append_Entity (Def_Id, S);
2904 Set_Public_Status (Def_Id);
2905
2906 -- Warn if new entity hides an old one
2907
2908 if Warn_On_Hiding and then Present (C)
2909
2910 -- Don't warn for record components since they always have a well
2911 -- defined scope which does not confuse other uses. Note that in
2912 -- some cases, Ekind has not been set yet.
2913
2914 and then Ekind (C) /= E_Component
2915 and then Ekind (C) /= E_Discriminant
2916 and then Nkind (Parent (C)) /= N_Component_Declaration
2917 and then Ekind (Def_Id) /= E_Component
2918 and then Ekind (Def_Id) /= E_Discriminant
2919 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
2920
2921 -- Don't warn for one character variables. It is too common to use
2922 -- such variables as locals and will just cause too many false hits.
2923
2924 and then Length_Of_Name (Chars (C)) /= 1
2925
2926 -- Don't warn for non-source entities
2927
2928 and then Comes_From_Source (C)
2929 and then Comes_From_Source (Def_Id)
2930
2931 -- Don't warn unless entity in question is in extended main source
2932
2933 and then In_Extended_Main_Source_Unit (Def_Id)
2934
2935 -- Finally, the hidden entity must be either immediately visible
2936 -- or use visible (from a used package)
2937
2938 and then
2939 (Is_Immediately_Visible (C)
2940 or else
2941 Is_Potentially_Use_Visible (C))
2942 then
2943 Error_Msg_Sloc := Sloc (C);
2944 Error_Msg_N ("declaration hides &#?", Def_Id);
2945 end if;
2946 end Enter_Name;
2947
2948 --------------------------
2949 -- Explain_Limited_Type --
2950 --------------------------
2951
2952 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
2953 C : Entity_Id;
2954
2955 begin
2956 -- For array, component type must be limited
2957
2958 if Is_Array_Type (T) then
2959 Error_Msg_Node_2 := T;
2960 Error_Msg_NE
2961 ("\component type& of type& is limited", N, Component_Type (T));
2962 Explain_Limited_Type (Component_Type (T), N);
2963
2964 elsif Is_Record_Type (T) then
2965
2966 -- No need for extra messages if explicit limited record
2967
2968 if Is_Limited_Record (Base_Type (T)) then
2969 return;
2970 end if;
2971
2972 -- Otherwise find a limited component. Check only components that
2973 -- come from source, or inherited components that appear in the
2974 -- source of the ancestor.
2975
2976 C := First_Component (T);
2977 while Present (C) loop
2978 if Is_Limited_Type (Etype (C))
2979 and then
2980 (Comes_From_Source (C)
2981 or else
2982 (Present (Original_Record_Component (C))
2983 and then
2984 Comes_From_Source (Original_Record_Component (C))))
2985 then
2986 Error_Msg_Node_2 := T;
2987 Error_Msg_NE ("\component& of type& has limited type", N, C);
2988 Explain_Limited_Type (Etype (C), N);
2989 return;
2990 end if;
2991
2992 Next_Component (C);
2993 end loop;
2994
2995 -- The type may be declared explicitly limited, even if no component
2996 -- of it is limited, in which case we fall out of the loop.
2997 return;
2998 end if;
2999 end Explain_Limited_Type;
3000
3001 -----------------
3002 -- Find_Actual --
3003 -----------------
3004
3005 procedure Find_Actual
3006 (N : Node_Id;
3007 Formal : out Entity_Id;
3008 Call : out Node_Id)
3009 is
3010 Parnt : constant Node_Id := Parent (N);
3011 Actual : Node_Id;
3012
3013 begin
3014 if (Nkind (Parnt) = N_Indexed_Component
3015 or else
3016 Nkind (Parnt) = N_Selected_Component)
3017 and then N = Prefix (Parnt)
3018 then
3019 Find_Actual (Parnt, Formal, Call);
3020 return;
3021
3022 elsif Nkind (Parnt) = N_Parameter_Association
3023 and then N = Explicit_Actual_Parameter (Parnt)
3024 then
3025 Call := Parent (Parnt);
3026
3027 elsif Nkind (Parnt) = N_Procedure_Call_Statement then
3028 Call := Parnt;
3029
3030 else
3031 Formal := Empty;
3032 Call := Empty;
3033 return;
3034 end if;
3035
3036 -- If we have a call to a subprogram look for the parameter. Note that
3037 -- we exclude overloaded calls, since we don't know enough to be sure
3038 -- of giving the right answer in this case.
3039
3040 if Is_Entity_Name (Name (Call))
3041 and then Present (Entity (Name (Call)))
3042 and then Is_Overloadable (Entity (Name (Call)))
3043 and then not Is_Overloaded (Name (Call))
3044 then
3045 -- Fall here if we are definitely a parameter
3046
3047 Actual := First_Actual (Call);
3048 Formal := First_Formal (Entity (Name (Call)));
3049 while Present (Formal) and then Present (Actual) loop
3050 if Actual = N then
3051 return;
3052 else
3053 Actual := Next_Actual (Actual);
3054 Formal := Next_Formal (Formal);
3055 end if;
3056 end loop;
3057 end if;
3058
3059 -- Fall through here if we did not find matching actual
3060
3061 Formal := Empty;
3062 Call := Empty;
3063 end Find_Actual;
3064
3065 -------------------------------------
3066 -- Find_Corresponding_Discriminant --
3067 -------------------------------------
3068
3069 function Find_Corresponding_Discriminant
3070 (Id : Node_Id;
3071 Typ : Entity_Id) return Entity_Id
3072 is
3073 Par_Disc : Entity_Id;
3074 Old_Disc : Entity_Id;
3075 New_Disc : Entity_Id;
3076
3077 begin
3078 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
3079
3080 -- The original type may currently be private, and the discriminant
3081 -- only appear on its full view.
3082
3083 if Is_Private_Type (Scope (Par_Disc))
3084 and then not Has_Discriminants (Scope (Par_Disc))
3085 and then Present (Full_View (Scope (Par_Disc)))
3086 then
3087 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
3088 else
3089 Old_Disc := First_Discriminant (Scope (Par_Disc));
3090 end if;
3091
3092 if Is_Class_Wide_Type (Typ) then
3093 New_Disc := First_Discriminant (Root_Type (Typ));
3094 else
3095 New_Disc := First_Discriminant (Typ);
3096 end if;
3097
3098 while Present (Old_Disc) and then Present (New_Disc) loop
3099 if Old_Disc = Par_Disc then
3100 return New_Disc;
3101 else
3102 Next_Discriminant (Old_Disc);
3103 Next_Discriminant (New_Disc);
3104 end if;
3105 end loop;
3106
3107 -- Should always find it
3108
3109 raise Program_Error;
3110 end Find_Corresponding_Discriminant;
3111
3112 --------------------------
3113 -- Find_Overlaid_Entity --
3114 --------------------------
3115
3116 procedure Find_Overlaid_Entity
3117 (N : Node_Id;
3118 Ent : out Entity_Id;
3119 Off : out Boolean)
3120 is
3121 Expr : Node_Id;
3122
3123 begin
3124 -- We are looking for one of the two following forms:
3125
3126 -- for X'Address use Y'Address
3127
3128 -- or
3129
3130 -- Const : constant Address := expr;
3131 -- ...
3132 -- for X'Address use Const;
3133
3134 -- In the second case, the expr is either Y'Address, or recursively a
3135 -- constant that eventually references Y'Address.
3136
3137 Ent := Empty;
3138 Off := False;
3139
3140 if Nkind (N) = N_Attribute_Definition_Clause
3141 and then Chars (N) = Name_Address
3142 then
3143 Expr := Expression (N);
3144
3145 -- This loop checks the form of the expression for Y'Address,
3146 -- using recursion to deal with intermediate constants.
3147
3148 loop
3149 -- Check for Y'Address
3150
3151 if Nkind (Expr) = N_Attribute_Reference
3152 and then Attribute_Name (Expr) = Name_Address
3153 then
3154 Expr := Prefix (Expr);
3155 exit;
3156
3157 -- Check for Const where Const is a constant entity
3158
3159 elsif Is_Entity_Name (Expr)
3160 and then Ekind (Entity (Expr)) = E_Constant
3161 then
3162 Expr := Constant_Value (Entity (Expr));
3163
3164 -- Anything else does not need checking
3165
3166 else
3167 return;
3168 end if;
3169 end loop;
3170
3171 -- This loop checks the form of the prefix for an entity,
3172 -- using recursion to deal with intermediate components.
3173
3174 loop
3175 -- Check for Y where Y is an entity
3176
3177 if Is_Entity_Name (Expr) then
3178 Ent := Entity (Expr);
3179 return;
3180
3181 -- Check for components
3182
3183 elsif
3184 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component) then
3185
3186 Expr := Prefix (Expr);
3187 Off := True;
3188
3189 -- Anything else does not need checking
3190
3191 else
3192 return;
3193 end if;
3194 end loop;
3195 end if;
3196 end Find_Overlaid_Entity;
3197
3198 -------------------------
3199 -- Find_Parameter_Type --
3200 -------------------------
3201
3202 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
3203 begin
3204 if Nkind (Param) /= N_Parameter_Specification then
3205 return Empty;
3206
3207 -- For an access parameter, obtain the type from the formal entity
3208 -- itself, because access to subprogram nodes do not carry a type.
3209 -- Shouldn't we always use the formal entity ???
3210
3211 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
3212 return Etype (Defining_Identifier (Param));
3213
3214 else
3215 return Etype (Parameter_Type (Param));
3216 end if;
3217 end Find_Parameter_Type;
3218
3219 -----------------------------
3220 -- Find_Static_Alternative --
3221 -----------------------------
3222
3223 function Find_Static_Alternative (N : Node_Id) return Node_Id is
3224 Expr : constant Node_Id := Expression (N);
3225 Val : constant Uint := Expr_Value (Expr);
3226 Alt : Node_Id;
3227 Choice : Node_Id;
3228
3229 begin
3230 Alt := First (Alternatives (N));
3231
3232 Search : loop
3233 if Nkind (Alt) /= N_Pragma then
3234 Choice := First (Discrete_Choices (Alt));
3235 while Present (Choice) loop
3236
3237 -- Others choice, always matches
3238
3239 if Nkind (Choice) = N_Others_Choice then
3240 exit Search;
3241
3242 -- Range, check if value is in the range
3243
3244 elsif Nkind (Choice) = N_Range then
3245 exit Search when
3246 Val >= Expr_Value (Low_Bound (Choice))
3247 and then
3248 Val <= Expr_Value (High_Bound (Choice));
3249
3250 -- Choice is a subtype name. Note that we know it must
3251 -- be a static subtype, since otherwise it would have
3252 -- been diagnosed as illegal.
3253
3254 elsif Is_Entity_Name (Choice)
3255 and then Is_Type (Entity (Choice))
3256 then
3257 exit Search when Is_In_Range (Expr, Etype (Choice),
3258 Assume_Valid => False);
3259
3260 -- Choice is a subtype indication
3261
3262 elsif Nkind (Choice) = N_Subtype_Indication then
3263 declare
3264 C : constant Node_Id := Constraint (Choice);
3265 R : constant Node_Id := Range_Expression (C);
3266
3267 begin
3268 exit Search when
3269 Val >= Expr_Value (Low_Bound (R))
3270 and then
3271 Val <= Expr_Value (High_Bound (R));
3272 end;
3273
3274 -- Choice is a simple expression
3275
3276 else
3277 exit Search when Val = Expr_Value (Choice);
3278 end if;
3279
3280 Next (Choice);
3281 end loop;
3282 end if;
3283
3284 Next (Alt);
3285 pragma Assert (Present (Alt));
3286 end loop Search;
3287
3288 -- The above loop *must* terminate by finding a match, since
3289 -- we know the case statement is valid, and the value of the
3290 -- expression is known at compile time. When we fall out of
3291 -- the loop, Alt points to the alternative that we know will
3292 -- be selected at run time.
3293
3294 return Alt;
3295 end Find_Static_Alternative;
3296
3297 ------------------
3298 -- First_Actual --
3299 ------------------
3300
3301 function First_Actual (Node : Node_Id) return Node_Id is
3302 N : Node_Id;
3303
3304 begin
3305 if No (Parameter_Associations (Node)) then
3306 return Empty;
3307 end if;
3308
3309 N := First (Parameter_Associations (Node));
3310
3311 if Nkind (N) = N_Parameter_Association then
3312 return First_Named_Actual (Node);
3313 else
3314 return N;
3315 end if;
3316 end First_Actual;
3317
3318 -------------------------
3319 -- Full_Qualified_Name --
3320 -------------------------
3321
3322 function Full_Qualified_Name (E : Entity_Id) return String_Id is
3323 Res : String_Id;
3324 pragma Warnings (Off, Res);
3325
3326 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id;
3327 -- Compute recursively the qualified name without NUL at the end
3328
3329 ----------------------------------
3330 -- Internal_Full_Qualified_Name --
3331 ----------------------------------
3332
3333 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id is
3334 Ent : Entity_Id := E;
3335 Parent_Name : String_Id := No_String;
3336
3337 begin
3338 -- Deals properly with child units
3339
3340 if Nkind (Ent) = N_Defining_Program_Unit_Name then
3341 Ent := Defining_Identifier (Ent);
3342 end if;
3343
3344 -- Compute qualification recursively (only "Standard" has no scope)
3345
3346 if Present (Scope (Scope (Ent))) then
3347 Parent_Name := Internal_Full_Qualified_Name (Scope (Ent));
3348 end if;
3349
3350 -- Every entity should have a name except some expanded blocks
3351 -- don't bother about those.
3352
3353 if Chars (Ent) = No_Name then
3354 return Parent_Name;
3355 end if;
3356
3357 -- Add a period between Name and qualification
3358
3359 if Parent_Name /= No_String then
3360 Start_String (Parent_Name);
3361 Store_String_Char (Get_Char_Code ('.'));
3362
3363 else
3364 Start_String;
3365 end if;
3366
3367 -- Generates the entity name in upper case
3368
3369 Get_Decoded_Name_String (Chars (Ent));
3370 Set_All_Upper_Case;
3371 Store_String_Chars (Name_Buffer (1 .. Name_Len));
3372 return End_String;
3373 end Internal_Full_Qualified_Name;
3374
3375 -- Start of processing for Full_Qualified_Name
3376
3377 begin
3378 Res := Internal_Full_Qualified_Name (E);
3379 Store_String_Char (Get_Char_Code (ASCII.NUL));
3380 return End_String;
3381 end Full_Qualified_Name;
3382
3383 -----------------------
3384 -- Gather_Components --
3385 -----------------------
3386
3387 procedure Gather_Components
3388 (Typ : Entity_Id;
3389 Comp_List : Node_Id;
3390 Governed_By : List_Id;
3391 Into : Elist_Id;
3392 Report_Errors : out Boolean)
3393 is
3394 Assoc : Node_Id;
3395 Variant : Node_Id;
3396 Discrete_Choice : Node_Id;
3397 Comp_Item : Node_Id;
3398
3399 Discrim : Entity_Id;
3400 Discrim_Name : Node_Id;
3401 Discrim_Value : Node_Id;
3402
3403 begin
3404 Report_Errors := False;
3405
3406 if No (Comp_List) or else Null_Present (Comp_List) then
3407 return;
3408
3409 elsif Present (Component_Items (Comp_List)) then
3410 Comp_Item := First (Component_Items (Comp_List));
3411
3412 else
3413 Comp_Item := Empty;
3414 end if;
3415
3416 while Present (Comp_Item) loop
3417
3418 -- Skip the tag of a tagged record, the interface tags, as well
3419 -- as all items that are not user components (anonymous types,
3420 -- rep clauses, Parent field, controller field).
3421
3422 if Nkind (Comp_Item) = N_Component_Declaration then
3423 declare
3424 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
3425 begin
3426 if not Is_Tag (Comp)
3427 and then Chars (Comp) /= Name_uParent
3428 and then Chars (Comp) /= Name_uController
3429 then
3430 Append_Elmt (Comp, Into);
3431 end if;
3432 end;
3433 end if;
3434
3435 Next (Comp_Item);
3436 end loop;
3437
3438 if No (Variant_Part (Comp_List)) then
3439 return;
3440 else
3441 Discrim_Name := Name (Variant_Part (Comp_List));
3442 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3443 end if;
3444
3445 -- Look for the discriminant that governs this variant part.
3446 -- The discriminant *must* be in the Governed_By List
3447
3448 Assoc := First (Governed_By);
3449 Find_Constraint : loop
3450 Discrim := First (Choices (Assoc));
3451 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
3452 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
3453 and then
3454 Chars (Corresponding_Discriminant (Entity (Discrim)))
3455 = Chars (Discrim_Name))
3456 or else Chars (Original_Record_Component (Entity (Discrim)))
3457 = Chars (Discrim_Name);
3458
3459 if No (Next (Assoc)) then
3460 if not Is_Constrained (Typ)
3461 and then Is_Derived_Type (Typ)
3462 and then Present (Stored_Constraint (Typ))
3463 then
3464 -- If the type is a tagged type with inherited discriminants,
3465 -- use the stored constraint on the parent in order to find
3466 -- the values of discriminants that are otherwise hidden by an
3467 -- explicit constraint. Renamed discriminants are handled in
3468 -- the code above.
3469
3470 -- If several parent discriminants are renamed by a single
3471 -- discriminant of the derived type, the call to obtain the
3472 -- Corresponding_Discriminant field only retrieves the last
3473 -- of them. We recover the constraint on the others from the
3474 -- Stored_Constraint as well.
3475
3476 declare
3477 D : Entity_Id;
3478 C : Elmt_Id;
3479
3480 begin
3481 D := First_Discriminant (Etype (Typ));
3482 C := First_Elmt (Stored_Constraint (Typ));
3483 while Present (D) and then Present (C) loop
3484 if Chars (Discrim_Name) = Chars (D) then
3485 if Is_Entity_Name (Node (C))
3486 and then Entity (Node (C)) = Entity (Discrim)
3487 then
3488 -- D is renamed by Discrim, whose value is given in
3489 -- Assoc.
3490
3491 null;
3492
3493 else
3494 Assoc :=
3495 Make_Component_Association (Sloc (Typ),
3496 New_List
3497 (New_Occurrence_Of (D, Sloc (Typ))),
3498 Duplicate_Subexpr_No_Checks (Node (C)));
3499 end if;
3500 exit Find_Constraint;
3501 end if;
3502
3503 Next_Discriminant (D);
3504 Next_Elmt (C);
3505 end loop;
3506 end;
3507 end if;
3508 end if;
3509
3510 if No (Next (Assoc)) then
3511 Error_Msg_NE (" missing value for discriminant&",
3512 First (Governed_By), Discrim_Name);
3513 Report_Errors := True;
3514 return;
3515 end if;
3516
3517 Next (Assoc);
3518 end loop Find_Constraint;
3519
3520 Discrim_Value := Expression (Assoc);
3521
3522 if not Is_OK_Static_Expression (Discrim_Value) then
3523 Error_Msg_FE
3524 ("value for discriminant & must be static!",
3525 Discrim_Value, Discrim);
3526 Why_Not_Static (Discrim_Value);
3527 Report_Errors := True;
3528 return;
3529 end if;
3530
3531 Search_For_Discriminant_Value : declare
3532 Low : Node_Id;
3533 High : Node_Id;
3534
3535 UI_High : Uint;
3536 UI_Low : Uint;
3537 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
3538
3539 begin
3540 Find_Discrete_Value : while Present (Variant) loop
3541 Discrete_Choice := First (Discrete_Choices (Variant));
3542 while Present (Discrete_Choice) loop
3543
3544 exit Find_Discrete_Value when
3545 Nkind (Discrete_Choice) = N_Others_Choice;
3546
3547 Get_Index_Bounds (Discrete_Choice, Low, High);
3548
3549 UI_Low := Expr_Value (Low);
3550 UI_High := Expr_Value (High);
3551
3552 exit Find_Discrete_Value when
3553 UI_Low <= UI_Discrim_Value
3554 and then
3555 UI_High >= UI_Discrim_Value;
3556
3557 Next (Discrete_Choice);
3558 end loop;
3559
3560 Next_Non_Pragma (Variant);
3561 end loop Find_Discrete_Value;
3562 end Search_For_Discriminant_Value;
3563
3564 if No (Variant) then
3565 Error_Msg_NE
3566 ("value of discriminant & is out of range", Discrim_Value, Discrim);
3567 Report_Errors := True;
3568 return;
3569 end if;
3570
3571 -- If we have found the corresponding choice, recursively add its
3572 -- components to the Into list.
3573
3574 Gather_Components (Empty,
3575 Component_List (Variant), Governed_By, Into, Report_Errors);
3576 end Gather_Components;
3577
3578 ------------------------
3579 -- Get_Actual_Subtype --
3580 ------------------------
3581
3582 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
3583 Typ : constant Entity_Id := Etype (N);
3584 Utyp : Entity_Id := Underlying_Type (Typ);
3585 Decl : Node_Id;
3586 Atyp : Entity_Id;
3587
3588 begin
3589 if No (Utyp) then
3590 Utyp := Typ;
3591 end if;
3592
3593 -- If what we have is an identifier that references a subprogram
3594 -- formal, or a variable or constant object, then we get the actual
3595 -- subtype from the referenced entity if one has been built.
3596
3597 if Nkind (N) = N_Identifier
3598 and then
3599 (Is_Formal (Entity (N))
3600 or else Ekind (Entity (N)) = E_Constant
3601 or else Ekind (Entity (N)) = E_Variable)
3602 and then Present (Actual_Subtype (Entity (N)))
3603 then
3604 return Actual_Subtype (Entity (N));
3605
3606 -- Actual subtype of unchecked union is always itself. We never need
3607 -- the "real" actual subtype. If we did, we couldn't get it anyway
3608 -- because the discriminant is not available. The restrictions on
3609 -- Unchecked_Union are designed to make sure that this is OK.
3610
3611 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
3612 return Typ;
3613
3614 -- Here for the unconstrained case, we must find actual subtype
3615 -- No actual subtype is available, so we must build it on the fly.
3616
3617 -- Checking the type, not the underlying type, for constrainedness
3618 -- seems to be necessary. Maybe all the tests should be on the type???
3619
3620 elsif (not Is_Constrained (Typ))
3621 and then (Is_Array_Type (Utyp)
3622 or else (Is_Record_Type (Utyp)
3623 and then Has_Discriminants (Utyp)))
3624 and then not Has_Unknown_Discriminants (Utyp)
3625 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
3626 then
3627 -- Nothing to do if in spec expression (why not???)
3628
3629 if In_Spec_Expression then
3630 return Typ;
3631
3632 elsif Is_Private_Type (Typ)
3633 and then not Has_Discriminants (Typ)
3634 then
3635 -- If the type has no discriminants, there is no subtype to
3636 -- build, even if the underlying type is discriminated.
3637
3638 return Typ;
3639
3640 -- Else build the actual subtype
3641
3642 else
3643 Decl := Build_Actual_Subtype (Typ, N);
3644 Atyp := Defining_Identifier (Decl);
3645
3646 -- If Build_Actual_Subtype generated a new declaration then use it
3647
3648 if Atyp /= Typ then
3649
3650 -- The actual subtype is an Itype, so analyze the declaration,
3651 -- but do not attach it to the tree, to get the type defined.
3652
3653 Set_Parent (Decl, N);
3654 Set_Is_Itype (Atyp);
3655 Analyze (Decl, Suppress => All_Checks);
3656 Set_Associated_Node_For_Itype (Atyp, N);
3657 Set_Has_Delayed_Freeze (Atyp, False);
3658
3659 -- We need to freeze the actual subtype immediately. This is
3660 -- needed, because otherwise this Itype will not get frozen
3661 -- at all, and it is always safe to freeze on creation because
3662 -- any associated types must be frozen at this point.
3663
3664 Freeze_Itype (Atyp, N);
3665 return Atyp;
3666
3667 -- Otherwise we did not build a declaration, so return original
3668
3669 else
3670 return Typ;
3671 end if;
3672 end if;
3673
3674 -- For all remaining cases, the actual subtype is the same as
3675 -- the nominal type.
3676
3677 else
3678 return Typ;
3679 end if;
3680 end Get_Actual_Subtype;
3681
3682 -------------------------------------
3683 -- Get_Actual_Subtype_If_Available --
3684 -------------------------------------
3685
3686 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
3687 Typ : constant Entity_Id := Etype (N);
3688
3689 begin
3690 -- If what we have is an identifier that references a subprogram
3691 -- formal, or a variable or constant object, then we get the actual
3692 -- subtype from the referenced entity if one has been built.
3693
3694 if Nkind (N) = N_Identifier
3695 and then
3696 (Is_Formal (Entity (N))
3697 or else Ekind (Entity (N)) = E_Constant
3698 or else Ekind (Entity (N)) = E_Variable)
3699 and then Present (Actual_Subtype (Entity (N)))
3700 then
3701 return Actual_Subtype (Entity (N));
3702
3703 -- Otherwise the Etype of N is returned unchanged
3704
3705 else
3706 return Typ;
3707 end if;
3708 end Get_Actual_Subtype_If_Available;
3709
3710 -------------------------------
3711 -- Get_Default_External_Name --
3712 -------------------------------
3713
3714 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
3715 begin
3716 Get_Decoded_Name_String (Chars (E));
3717
3718 if Opt.External_Name_Imp_Casing = Uppercase then
3719 Set_Casing (All_Upper_Case);
3720 else
3721 Set_Casing (All_Lower_Case);
3722 end if;
3723
3724 return
3725 Make_String_Literal (Sloc (E),
3726 Strval => String_From_Name_Buffer);
3727 end Get_Default_External_Name;
3728
3729 ---------------------------
3730 -- Get_Enum_Lit_From_Pos --
3731 ---------------------------
3732
3733 function Get_Enum_Lit_From_Pos
3734 (T : Entity_Id;
3735 Pos : Uint;
3736 Loc : Source_Ptr) return Node_Id
3737 is
3738 Lit : Node_Id;
3739
3740 begin
3741 -- In the case where the literal is of type Character, Wide_Character
3742 -- or Wide_Wide_Character or of a type derived from them, there needs
3743 -- to be some special handling since there is no explicit chain of
3744 -- literals to search. Instead, an N_Character_Literal node is created
3745 -- with the appropriate Char_Code and Chars fields.
3746
3747 if Is_Standard_Character_Type (T) then
3748 Set_Character_Literal_Name (UI_To_CC (Pos));
3749 return
3750 Make_Character_Literal (Loc,
3751 Chars => Name_Find,
3752 Char_Literal_Value => Pos);
3753
3754 -- For all other cases, we have a complete table of literals, and
3755 -- we simply iterate through the chain of literal until the one
3756 -- with the desired position value is found.
3757 --
3758
3759 else
3760 Lit := First_Literal (Base_Type (T));
3761 for J in 1 .. UI_To_Int (Pos) loop
3762 Next_Literal (Lit);
3763 end loop;
3764
3765 return New_Occurrence_Of (Lit, Loc);
3766 end if;
3767 end Get_Enum_Lit_From_Pos;
3768
3769 ------------------------
3770 -- Get_Generic_Entity --
3771 ------------------------
3772
3773 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
3774 Ent : constant Entity_Id := Entity (Name (N));
3775 begin
3776 if Present (Renamed_Object (Ent)) then
3777 return Renamed_Object (Ent);
3778 else
3779 return Ent;
3780 end if;
3781 end Get_Generic_Entity;
3782
3783 ----------------------
3784 -- Get_Index_Bounds --
3785 ----------------------
3786
3787 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
3788 Kind : constant Node_Kind := Nkind (N);
3789 R : Node_Id;
3790
3791 begin
3792 if Kind = N_Range then
3793 L := Low_Bound (N);
3794 H := High_Bound (N);
3795
3796 elsif Kind = N_Subtype_Indication then
3797 R := Range_Expression (Constraint (N));
3798
3799 if R = Error then
3800 L := Error;
3801 H := Error;
3802 return;
3803
3804 else
3805 L := Low_Bound (Range_Expression (Constraint (N)));
3806 H := High_Bound (Range_Expression (Constraint (N)));
3807 end if;
3808
3809 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
3810 if Error_Posted (Scalar_Range (Entity (N))) then
3811 L := Error;
3812 H := Error;
3813
3814 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
3815 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
3816
3817 else
3818 L := Low_Bound (Scalar_Range (Entity (N)));
3819 H := High_Bound (Scalar_Range (Entity (N)));
3820 end if;
3821
3822 else
3823 -- N is an expression, indicating a range with one value
3824
3825 L := N;
3826 H := N;
3827 end if;
3828 end Get_Index_Bounds;
3829
3830 ----------------------------------
3831 -- Get_Library_Unit_Name_string --
3832 ----------------------------------
3833
3834 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
3835 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
3836
3837 begin
3838 Get_Unit_Name_String (Unit_Name_Id);
3839
3840 -- Remove seven last character (" (spec)" or " (body)")
3841
3842 Name_Len := Name_Len - 7;
3843 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
3844 end Get_Library_Unit_Name_String;
3845
3846 ------------------------
3847 -- Get_Name_Entity_Id --
3848 ------------------------
3849
3850 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
3851 begin
3852 return Entity_Id (Get_Name_Table_Info (Id));
3853 end Get_Name_Entity_Id;
3854
3855 -------------------
3856 -- Get_Pragma_Id --
3857 -------------------
3858
3859 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
3860 begin
3861 return Get_Pragma_Id (Pragma_Name (N));
3862 end Get_Pragma_Id;
3863
3864 ---------------------------
3865 -- Get_Referenced_Object --
3866 ---------------------------
3867
3868 function Get_Referenced_Object (N : Node_Id) return Node_Id is
3869 R : Node_Id;
3870
3871 begin
3872 R := N;
3873 while Is_Entity_Name (R)
3874 and then Present (Renamed_Object (Entity (R)))
3875 loop
3876 R := Renamed_Object (Entity (R));
3877 end loop;
3878
3879 return R;
3880 end Get_Referenced_Object;
3881
3882 ------------------------
3883 -- Get_Renamed_Entity --
3884 ------------------------
3885
3886 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
3887 R : Entity_Id;
3888
3889 begin
3890 R := E;
3891 while Present (Renamed_Entity (R)) loop
3892 R := Renamed_Entity (R);
3893 end loop;
3894
3895 return R;
3896 end Get_Renamed_Entity;
3897
3898 -------------------------
3899 -- Get_Subprogram_Body --
3900 -------------------------
3901
3902 function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
3903 Decl : Node_Id;
3904
3905 begin
3906 Decl := Unit_Declaration_Node (E);
3907
3908 if Nkind (Decl) = N_Subprogram_Body then
3909 return Decl;
3910
3911 -- The below comment is bad, because it is possible for
3912 -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
3913
3914 else -- Nkind (Decl) = N_Subprogram_Declaration
3915
3916 if Present (Corresponding_Body (Decl)) then
3917 return Unit_Declaration_Node (Corresponding_Body (Decl));
3918
3919 -- Imported subprogram case
3920
3921 else
3922 return Empty;
3923 end if;
3924 end if;
3925 end Get_Subprogram_Body;
3926
3927 ---------------------------
3928 -- Get_Subprogram_Entity --
3929 ---------------------------
3930
3931 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
3932 Nam : Node_Id;
3933 Proc : Entity_Id;
3934
3935 begin
3936 if Nkind (Nod) = N_Accept_Statement then
3937 Nam := Entry_Direct_Name (Nod);
3938
3939 -- For an entry call, the prefix of the call is a selected component.
3940 -- Need additional code for internal calls ???
3941
3942 elsif Nkind (Nod) = N_Entry_Call_Statement then
3943 if Nkind (Name (Nod)) = N_Selected_Component then
3944 Nam := Entity (Selector_Name (Name (Nod)));
3945 else
3946 Nam := Empty;
3947 end if;
3948
3949 else
3950 Nam := Name (Nod);
3951 end if;
3952
3953 if Nkind (Nam) = N_Explicit_Dereference then
3954 Proc := Etype (Prefix (Nam));
3955 elsif Is_Entity_Name (Nam) then
3956 Proc := Entity (Nam);
3957 else
3958 return Empty;
3959 end if;
3960
3961 if Is_Object (Proc) then
3962 Proc := Etype (Proc);
3963 end if;
3964
3965 if Ekind (Proc) = E_Access_Subprogram_Type then
3966 Proc := Directly_Designated_Type (Proc);
3967 end if;
3968
3969 if not Is_Subprogram (Proc)
3970 and then Ekind (Proc) /= E_Subprogram_Type
3971 then
3972 return Empty;
3973 else
3974 return Proc;
3975 end if;
3976 end Get_Subprogram_Entity;
3977
3978 -----------------------------
3979 -- Get_Task_Body_Procedure --
3980 -----------------------------
3981
3982 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
3983 begin
3984 -- Note: A task type may be the completion of a private type with
3985 -- discriminants. When performing elaboration checks on a task
3986 -- declaration, the current view of the type may be the private one,
3987 -- and the procedure that holds the body of the task is held in its
3988 -- underlying type.
3989
3990 -- This is an odd function, why not have Task_Body_Procedure do
3991 -- the following digging???
3992
3993 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
3994 end Get_Task_Body_Procedure;
3995
3996 -----------------------
3997 -- Has_Access_Values --
3998 -----------------------
3999
4000 function Has_Access_Values (T : Entity_Id) return Boolean is
4001 Typ : constant Entity_Id := Underlying_Type (T);
4002
4003 begin
4004 -- Case of a private type which is not completed yet. This can only
4005 -- happen in the case of a generic format type appearing directly, or
4006 -- as a component of the type to which this function is being applied
4007 -- at the top level. Return False in this case, since we certainly do
4008 -- not know that the type contains access types.
4009
4010 if No (Typ) then
4011 return False;
4012
4013 elsif Is_Access_Type (Typ) then
4014 return True;
4015
4016 elsif Is_Array_Type (Typ) then
4017 return Has_Access_Values (Component_Type (Typ));
4018
4019 elsif Is_Record_Type (Typ) then
4020 declare
4021 Comp : Entity_Id;
4022
4023 begin
4024 -- Loop to Check components
4025
4026 Comp := First_Component_Or_Discriminant (Typ);
4027 while Present (Comp) loop
4028
4029 -- Check for access component, tag field does not count, even
4030 -- though it is implemented internally using an access type.
4031
4032 if Has_Access_Values (Etype (Comp))
4033 and then Chars (Comp) /= Name_uTag
4034 then
4035 return True;
4036 end if;
4037
4038 Next_Component_Or_Discriminant (Comp);
4039 end loop;
4040 end;
4041
4042 return False;
4043
4044 else
4045 return False;
4046 end if;
4047 end Has_Access_Values;
4048
4049 ------------------------------
4050 -- Has_Compatible_Alignment --
4051 ------------------------------
4052
4053 function Has_Compatible_Alignment
4054 (Obj : Entity_Id;
4055 Expr : Node_Id) return Alignment_Result
4056 is
4057 function Has_Compatible_Alignment_Internal
4058 (Obj : Entity_Id;
4059 Expr : Node_Id;
4060 Default : Alignment_Result) return Alignment_Result;
4061 -- This is the internal recursive function that actually does the work.
4062 -- There is one additional parameter, which says what the result should
4063 -- be if no alignment information is found, and there is no definite
4064 -- indication of compatible alignments. At the outer level, this is set
4065 -- to Unknown, but for internal recursive calls in the case where types
4066 -- are known to be correct, it is set to Known_Compatible.
4067
4068 ---------------------------------------
4069 -- Has_Compatible_Alignment_Internal --
4070 ---------------------------------------
4071
4072 function Has_Compatible_Alignment_Internal
4073 (Obj : Entity_Id;
4074 Expr : Node_Id;
4075 Default : Alignment_Result) return Alignment_Result
4076 is
4077 Result : Alignment_Result := Known_Compatible;
4078 -- Holds the current status of the result. Note that once a value of
4079 -- Known_Incompatible is set, it is sticky and does not get changed
4080 -- to Unknown (the value in Result only gets worse as we go along,
4081 -- never better).
4082
4083 Offs : Uint := No_Uint;
4084 -- Set to a factor of the offset from the base object when Expr is a
4085 -- selected or indexed component, based on Component_Bit_Offset and
4086 -- Component_Size respectively. A negative value is used to represent
4087 -- a value which is not known at compile time.
4088
4089 procedure Check_Prefix;
4090 -- Checks the prefix recursively in the case where the expression
4091 -- is an indexed or selected component.
4092
4093 procedure Set_Result (R : Alignment_Result);
4094 -- If R represents a worse outcome (unknown instead of known
4095 -- compatible, or known incompatible), then set Result to R.
4096
4097 ------------------
4098 -- Check_Prefix --
4099 ------------------
4100
4101 procedure Check_Prefix is
4102 begin
4103 -- The subtlety here is that in doing a recursive call to check
4104 -- the prefix, we have to decide what to do in the case where we
4105 -- don't find any specific indication of an alignment problem.
4106
4107 -- At the outer level, we normally set Unknown as the result in
4108 -- this case, since we can only set Known_Compatible if we really
4109 -- know that the alignment value is OK, but for the recursive
4110 -- call, in the case where the types match, and we have not
4111 -- specified a peculiar alignment for the object, we are only
4112 -- concerned about suspicious rep clauses, the default case does
4113 -- not affect us, since the compiler will, in the absence of such
4114 -- rep clauses, ensure that the alignment is correct.
4115
4116 if Default = Known_Compatible
4117 or else
4118 (Etype (Obj) = Etype (Expr)
4119 and then (Unknown_Alignment (Obj)
4120 or else
4121 Alignment (Obj) = Alignment (Etype (Obj))))
4122 then
4123 Set_Result
4124 (Has_Compatible_Alignment_Internal
4125 (Obj, Prefix (Expr), Known_Compatible));
4126
4127 -- In all other cases, we need a full check on the prefix
4128
4129 else
4130 Set_Result
4131 (Has_Compatible_Alignment_Internal
4132 (Obj, Prefix (Expr), Unknown));
4133 end if;
4134 end Check_Prefix;
4135
4136 ----------------
4137 -- Set_Result --
4138 ----------------
4139
4140 procedure Set_Result (R : Alignment_Result) is
4141 begin
4142 if R > Result then
4143 Result := R;
4144 end if;
4145 end Set_Result;
4146
4147 -- Start of processing for Has_Compatible_Alignment_Internal
4148
4149 begin
4150 -- If Expr is a selected component, we must make sure there is no
4151 -- potentially troublesome component clause, and that the record is
4152 -- not packed.
4153
4154 if Nkind (Expr) = N_Selected_Component then
4155
4156 -- Packed record always generate unknown alignment
4157
4158 if Is_Packed (Etype (Prefix (Expr))) then
4159 Set_Result (Unknown);
4160 end if;
4161
4162 -- Check prefix and component offset
4163
4164 Check_Prefix;
4165 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
4166
4167 -- If Expr is an indexed component, we must make sure there is no
4168 -- potentially troublesome Component_Size clause and that the array
4169 -- is not bit-packed.
4170
4171 elsif Nkind (Expr) = N_Indexed_Component then
4172 declare
4173 Typ : constant Entity_Id := Etype (Prefix (Expr));
4174 Ind : constant Node_Id := First_Index (Typ);
4175
4176 begin
4177 -- Bit packed array always generates unknown alignment
4178
4179 if Is_Bit_Packed_Array (Typ) then
4180 Set_Result (Unknown);
4181 end if;
4182
4183 -- Check prefix and component offset
4184
4185 Check_Prefix;
4186 Offs := Component_Size (Typ);
4187
4188 -- Small optimization: compute the full offset when possible
4189
4190 if Offs /= No_Uint
4191 and then Offs > Uint_0
4192 and then Present (Ind)
4193 and then Nkind (Ind) = N_Range
4194 and then Compile_Time_Known_Value (Low_Bound (Ind))
4195 and then Compile_Time_Known_Value (First (Expressions (Expr)))
4196 then
4197 Offs := Offs * (Expr_Value (First (Expressions (Expr)))
4198 - Expr_Value (Low_Bound ((Ind))));
4199 end if;
4200 end;
4201 end if;
4202
4203 -- If we have a null offset, the result is entirely determined by
4204 -- the base object and has already been computed recursively.
4205
4206 if Offs = Uint_0 then
4207 null;
4208
4209 -- Case where we know the alignment of the object
4210
4211 elsif Known_Alignment (Obj) then
4212 declare
4213 ObjA : constant Uint := Alignment (Obj);
4214 ExpA : Uint := No_Uint;
4215 SizA : Uint := No_Uint;
4216
4217 begin
4218 -- If alignment of Obj is 1, then we are always OK
4219
4220 if ObjA = 1 then
4221 Set_Result (Known_Compatible);
4222
4223 -- Alignment of Obj is greater than 1, so we need to check
4224
4225 else
4226 -- If we have an offset, see if it is compatible
4227
4228 if Offs /= No_Uint and Offs > Uint_0 then
4229 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
4230 Set_Result (Known_Incompatible);
4231 end if;
4232
4233 -- See if Expr is an object with known alignment
4234
4235 elsif Is_Entity_Name (Expr)
4236 and then Known_Alignment (Entity (Expr))
4237 then
4238 ExpA := Alignment (Entity (Expr));
4239
4240 -- Otherwise, we can use the alignment of the type of
4241 -- Expr given that we already checked for
4242 -- discombobulating rep clauses for the cases of indexed
4243 -- and selected components above.
4244
4245 elsif Known_Alignment (Etype (Expr)) then
4246 ExpA := Alignment (Etype (Expr));
4247
4248 -- Otherwise the alignment is unknown
4249
4250 else
4251 Set_Result (Default);
4252 end if;
4253
4254 -- If we got an alignment, see if it is acceptable
4255
4256 if ExpA /= No_Uint and then ExpA < ObjA then
4257 Set_Result (Known_Incompatible);
4258 end if;
4259
4260 -- If Expr is not a piece of a larger object, see if size
4261 -- is given. If so, check that it is not too small for the
4262 -- required alignment.
4263
4264 if Offs /= No_Uint then
4265 null;
4266
4267 -- See if Expr is an object with known size
4268
4269 elsif Is_Entity_Name (Expr)
4270 and then Known_Static_Esize (Entity (Expr))
4271 then
4272 SizA := Esize (Entity (Expr));
4273
4274 -- Otherwise, we check the object size of the Expr type
4275
4276 elsif Known_Static_Esize (Etype (Expr)) then
4277 SizA := Esize (Etype (Expr));
4278 end if;
4279
4280 -- If we got a size, see if it is a multiple of the Obj
4281 -- alignment, if not, then the alignment cannot be
4282 -- acceptable, since the size is always a multiple of the
4283 -- alignment.
4284
4285 if SizA /= No_Uint then
4286 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
4287 Set_Result (Known_Incompatible);
4288 end if;
4289 end if;
4290 end if;
4291 end;
4292
4293 -- If we do not know required alignment, any non-zero offset is a
4294 -- potential problem (but certainly may be OK, so result is unknown).
4295
4296 elsif Offs /= No_Uint then
4297 Set_Result (Unknown);
4298
4299 -- If we can't find the result by direct comparison of alignment
4300 -- values, then there is still one case that we can determine known
4301 -- result, and that is when we can determine that the types are the
4302 -- same, and no alignments are specified. Then we known that the
4303 -- alignments are compatible, even if we don't know the alignment
4304 -- value in the front end.
4305
4306 elsif Etype (Obj) = Etype (Expr) then
4307
4308 -- Types are the same, but we have to check for possible size
4309 -- and alignments on the Expr object that may make the alignment
4310 -- different, even though the types are the same.
4311
4312 if Is_Entity_Name (Expr) then
4313
4314 -- First check alignment of the Expr object. Any alignment less
4315 -- than Maximum_Alignment is worrisome since this is the case
4316 -- where we do not know the alignment of Obj.
4317
4318 if Known_Alignment (Entity (Expr))
4319 and then
4320 UI_To_Int (Alignment (Entity (Expr))) <
4321 Ttypes.Maximum_Alignment
4322 then
4323 Set_Result (Unknown);
4324
4325 -- Now check size of Expr object. Any size that is not an
4326 -- even multiple of Maximum_Alignment is also worrisome
4327 -- since it may cause the alignment of the object to be less
4328 -- than the alignment of the type.
4329
4330 elsif Known_Static_Esize (Entity (Expr))
4331 and then
4332 (UI_To_Int (Esize (Entity (Expr))) mod
4333 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
4334 /= 0
4335 then
4336 Set_Result (Unknown);
4337
4338 -- Otherwise same type is decisive
4339
4340 else
4341 Set_Result (Known_Compatible);
4342 end if;
4343 end if;
4344
4345 -- Another case to deal with is when there is an explicit size or
4346 -- alignment clause when the types are not the same. If so, then the
4347 -- result is Unknown. We don't need to do this test if the Default is
4348 -- Unknown, since that result will be set in any case.
4349
4350 elsif Default /= Unknown
4351 and then (Has_Size_Clause (Etype (Expr))
4352 or else
4353 Has_Alignment_Clause (Etype (Expr)))
4354 then
4355 Set_Result (Unknown);
4356
4357 -- If no indication found, set default
4358
4359 else
4360 Set_Result (Default);
4361 end if;
4362
4363 -- Return worst result found
4364
4365 return Result;
4366 end Has_Compatible_Alignment_Internal;
4367
4368 -- Start of processing for Has_Compatible_Alignment
4369
4370 begin
4371 -- If Obj has no specified alignment, then set alignment from the type
4372 -- alignment. Perhaps we should always do this, but for sure we should
4373 -- do it when there is an address clause since we can do more if the
4374 -- alignment is known.
4375
4376 if Unknown_Alignment (Obj) then
4377 Set_Alignment (Obj, Alignment (Etype (Obj)));
4378 end if;
4379
4380 -- Now do the internal call that does all the work
4381
4382 return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
4383 end Has_Compatible_Alignment;
4384
4385 ----------------------
4386 -- Has_Declarations --
4387 ----------------------
4388
4389 function Has_Declarations (N : Node_Id) return Boolean is
4390 begin
4391 return Nkind_In (Nkind (N), N_Accept_Statement,
4392 N_Block_Statement,
4393 N_Compilation_Unit_Aux,
4394 N_Entry_Body,
4395 N_Package_Body,
4396 N_Protected_Body,
4397 N_Subprogram_Body,
4398 N_Task_Body,
4399 N_Package_Specification);
4400 end Has_Declarations;
4401
4402 -------------------------------------------
4403 -- Has_Discriminant_Dependent_Constraint --
4404 -------------------------------------------
4405
4406 function Has_Discriminant_Dependent_Constraint
4407 (Comp : Entity_Id) return Boolean
4408 is
4409 Comp_Decl : constant Node_Id := Parent (Comp);
4410 Subt_Indic : constant Node_Id :=
4411 Subtype_Indication (Component_Definition (Comp_Decl));
4412 Constr : Node_Id;
4413 Assn : Node_Id;
4414
4415 begin
4416 if Nkind (Subt_Indic) = N_Subtype_Indication then
4417 Constr := Constraint (Subt_Indic);
4418
4419 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
4420 Assn := First (Constraints (Constr));
4421 while Present (Assn) loop
4422 case Nkind (Assn) is
4423 when N_Subtype_Indication |
4424 N_Range |
4425 N_Identifier
4426 =>
4427 if Depends_On_Discriminant (Assn) then
4428 return True;
4429 end if;
4430
4431 when N_Discriminant_Association =>
4432 if Depends_On_Discriminant (Expression (Assn)) then
4433 return True;
4434 end if;
4435
4436 when others =>
4437 null;
4438
4439 end case;
4440
4441 Next (Assn);
4442 end loop;
4443 end if;
4444 end if;
4445
4446 return False;
4447 end Has_Discriminant_Dependent_Constraint;
4448
4449 --------------------
4450 -- Has_Infinities --
4451 --------------------
4452
4453 function Has_Infinities (E : Entity_Id) return Boolean is
4454 begin
4455 return
4456 Is_Floating_Point_Type (E)
4457 and then Nkind (Scalar_Range (E)) = N_Range
4458 and then Includes_Infinities (Scalar_Range (E));
4459 end Has_Infinities;
4460
4461 --------------------
4462 -- Has_Interfaces --
4463 --------------------
4464
4465 function Has_Interfaces
4466 (T : Entity_Id;
4467 Use_Full_View : Boolean := True) return Boolean
4468 is
4469 Typ : Entity_Id;
4470
4471 begin
4472 -- Handle concurrent types
4473
4474 if Is_Concurrent_Type (T) then
4475 Typ := Corresponding_Record_Type (T);
4476 else
4477 Typ := T;
4478 end if;
4479
4480 if not Present (Typ)
4481 or else not Is_Record_Type (Typ)
4482 or else not Is_Tagged_Type (Typ)
4483 then
4484 return False;
4485 end if;
4486
4487 -- Handle private types
4488
4489 if Use_Full_View
4490 and then Present (Full_View (Typ))
4491 then
4492 Typ := Full_View (Typ);
4493 end if;
4494
4495 -- Handle concurrent record types
4496
4497 if Is_Concurrent_Record_Type (Typ)
4498 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
4499 then
4500 return True;
4501 end if;
4502
4503 loop
4504 if Is_Interface (Typ)
4505 or else
4506 (Is_Record_Type (Typ)
4507 and then Present (Interfaces (Typ))
4508 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
4509 then
4510 return True;
4511 end if;
4512
4513 exit when Etype (Typ) = Typ
4514
4515 -- Handle private types
4516
4517 or else (Present (Full_View (Etype (Typ)))
4518 and then Full_View (Etype (Typ)) = Typ)
4519
4520 -- Protect the frontend against wrong source with cyclic
4521 -- derivations
4522
4523 or else Etype (Typ) = T;
4524
4525 -- Climb to the ancestor type handling private types
4526
4527 if Present (Full_View (Etype (Typ))) then
4528 Typ := Full_View (Etype (Typ));
4529 else
4530 Typ := Etype (Typ);
4531 end if;
4532 end loop;
4533
4534 return False;
4535 end Has_Interfaces;
4536
4537 ------------------------
4538 -- Has_Null_Exclusion --
4539 ------------------------
4540
4541 function Has_Null_Exclusion (N : Node_Id) return Boolean is
4542 begin
4543 case Nkind (N) is
4544 when N_Access_Definition |
4545 N_Access_Function_Definition |
4546 N_Access_Procedure_Definition |
4547 N_Access_To_Object_Definition |
4548 N_Allocator |
4549 N_Derived_Type_Definition |
4550 N_Function_Specification |
4551 N_Subtype_Declaration =>
4552 return Null_Exclusion_Present (N);
4553
4554 when N_Component_Definition |
4555 N_Formal_Object_Declaration |
4556 N_Object_Renaming_Declaration =>
4557 if Present (Subtype_Mark (N)) then
4558 return Null_Exclusion_Present (N);
4559 else pragma Assert (Present (Access_Definition (N)));
4560 return Null_Exclusion_Present (Access_Definition (N));
4561 end if;
4562
4563 when N_Discriminant_Specification =>
4564 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
4565 return Null_Exclusion_Present (Discriminant_Type (N));
4566 else
4567 return Null_Exclusion_Present (N);
4568 end if;
4569
4570 when N_Object_Declaration =>
4571 if Nkind (Object_Definition (N)) = N_Access_Definition then
4572 return Null_Exclusion_Present (Object_Definition (N));
4573 else
4574 return Null_Exclusion_Present (N);
4575 end if;
4576
4577 when N_Parameter_Specification =>
4578 if Nkind (Parameter_Type (N)) = N_Access_Definition then
4579 return Null_Exclusion_Present (Parameter_Type (N));
4580 else
4581 return Null_Exclusion_Present (N);
4582 end if;
4583
4584 when others =>
4585 return False;
4586
4587 end case;
4588 end Has_Null_Exclusion;
4589
4590 ------------------------
4591 -- Has_Null_Extension --
4592 ------------------------
4593
4594 function Has_Null_Extension (T : Entity_Id) return Boolean is
4595 B : constant Entity_Id := Base_Type (T);
4596 Comps : Node_Id;
4597 Ext : Node_Id;
4598
4599 begin
4600 if Nkind (Parent (B)) = N_Full_Type_Declaration
4601 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
4602 then
4603 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
4604
4605 if Present (Ext) then
4606 if Null_Present (Ext) then
4607 return True;
4608 else
4609 Comps := Component_List (Ext);
4610
4611 -- The null component list is rewritten during analysis to
4612 -- include the parent component. Any other component indicates
4613 -- that the extension was not originally null.
4614
4615 return Null_Present (Comps)
4616 or else No (Next (First (Component_Items (Comps))));
4617 end if;
4618 else
4619 return False;
4620 end if;
4621
4622 else
4623 return False;
4624 end if;
4625 end Has_Null_Extension;
4626
4627 -------------------------------
4628 -- Has_Overriding_Initialize --
4629 -------------------------------
4630
4631 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
4632 BT : constant Entity_Id := Base_Type (T);
4633 Comp : Entity_Id;
4634 P : Elmt_Id;
4635
4636 begin
4637 if Is_Controlled (BT) then
4638
4639 -- For derived types, check immediate ancestor, excluding
4640 -- Controlled itself.
4641
4642 if Is_Derived_Type (BT)
4643 and then not In_Predefined_Unit (Etype (BT))
4644 and then Has_Overriding_Initialize (Etype (BT))
4645 then
4646 return True;
4647
4648 elsif Present (Primitive_Operations (BT)) then
4649 P := First_Elmt (Primitive_Operations (BT));
4650 while Present (P) loop
4651 if Chars (Node (P)) = Name_Initialize
4652 and then Comes_From_Source (Node (P))
4653 then
4654 return True;
4655 end if;
4656
4657 Next_Elmt (P);
4658 end loop;
4659 end if;
4660
4661 return False;
4662
4663 elsif Has_Controlled_Component (BT) then
4664 Comp := First_Component (BT);
4665 while Present (Comp) loop
4666 if Has_Overriding_Initialize (Etype (Comp)) then
4667 return True;
4668 end if;
4669
4670 Next_Component (Comp);
4671 end loop;
4672
4673 return False;
4674
4675 else
4676 return False;
4677 end if;
4678 end Has_Overriding_Initialize;
4679
4680 --------------------------------------
4681 -- Has_Preelaborable_Initialization --
4682 --------------------------------------
4683
4684 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
4685 Has_PE : Boolean;
4686
4687 procedure Check_Components (E : Entity_Id);
4688 -- Check component/discriminant chain, sets Has_PE False if a component
4689 -- or discriminant does not meet the preelaborable initialization rules.
4690
4691 ----------------------
4692 -- Check_Components --
4693 ----------------------
4694
4695 procedure Check_Components (E : Entity_Id) is
4696 Ent : Entity_Id;
4697 Exp : Node_Id;
4698
4699 function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
4700 -- Returns True if and only if the expression denoted by N does not
4701 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
4702
4703 ---------------------------------
4704 -- Is_Preelaborable_Expression --
4705 ---------------------------------
4706
4707 function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
4708 Exp : Node_Id;
4709 Assn : Node_Id;
4710 Choice : Node_Id;
4711 Comp_Type : Entity_Id;
4712 Is_Array_Aggr : Boolean;
4713
4714 begin
4715 if Is_Static_Expression (N) then
4716 return True;
4717
4718 elsif Nkind (N) = N_Null then
4719 return True;
4720
4721 -- Attributes are allowed in general, even if their prefix is a
4722 -- formal type. (It seems that certain attributes known not to be
4723 -- static might not be allowed, but there are no rules to prevent
4724 -- them.)
4725
4726 elsif Nkind (N) = N_Attribute_Reference then
4727 return True;
4728
4729 -- The name of a discriminant evaluated within its parent type is
4730 -- defined to be preelaborable (10.2.1(8)). Note that we test for
4731 -- names that denote discriminals as well as discriminants to
4732 -- catch references occurring within init procs.
4733
4734 elsif Is_Entity_Name (N)
4735 and then
4736 (Ekind (Entity (N)) = E_Discriminant
4737 or else
4738 ((Ekind (Entity (N)) = E_Constant
4739 or else Ekind (Entity (N)) = E_In_Parameter)
4740 and then Present (Discriminal_Link (Entity (N)))))
4741 then
4742 return True;
4743
4744 elsif Nkind (N) = N_Qualified_Expression then
4745 return Is_Preelaborable_Expression (Expression (N));
4746
4747 -- For aggregates we have to check that each of the associations
4748 -- is preelaborable.
4749
4750 elsif Nkind (N) = N_Aggregate
4751 or else Nkind (N) = N_Extension_Aggregate
4752 then
4753 Is_Array_Aggr := Is_Array_Type (Etype (N));
4754
4755 if Is_Array_Aggr then
4756 Comp_Type := Component_Type (Etype (N));
4757 end if;
4758
4759 -- Check the ancestor part of extension aggregates, which must
4760 -- be either the name of a type that has preelaborable init or
4761 -- an expression that is preelaborable.
4762
4763 if Nkind (N) = N_Extension_Aggregate then
4764 declare
4765 Anc_Part : constant Node_Id := Ancestor_Part (N);
4766
4767 begin
4768 if Is_Entity_Name (Anc_Part)
4769 and then Is_Type (Entity (Anc_Part))
4770 then
4771 if not Has_Preelaborable_Initialization
4772 (Entity (Anc_Part))
4773 then
4774 return False;
4775 end if;
4776
4777 elsif not Is_Preelaborable_Expression (Anc_Part) then
4778 return False;
4779 end if;
4780 end;
4781 end if;
4782
4783 -- Check positional associations
4784
4785 Exp := First (Expressions (N));
4786 while Present (Exp) loop
4787 if not Is_Preelaborable_Expression (Exp) then
4788 return False;
4789 end if;
4790
4791 Next (Exp);
4792 end loop;
4793
4794 -- Check named associations
4795
4796 Assn := First (Component_Associations (N));
4797 while Present (Assn) loop
4798 Choice := First (Choices (Assn));
4799 while Present (Choice) loop
4800 if Is_Array_Aggr then
4801 if Nkind (Choice) = N_Others_Choice then
4802 null;
4803
4804 elsif Nkind (Choice) = N_Range then
4805 if not Is_Static_Range (Choice) then
4806 return False;
4807 end if;
4808
4809 elsif not Is_Static_Expression (Choice) then
4810 return False;
4811 end if;
4812
4813 else
4814 Comp_Type := Etype (Choice);
4815 end if;
4816
4817 Next (Choice);
4818 end loop;
4819
4820 -- If the association has a <> at this point, then we have
4821 -- to check whether the component's type has preelaborable
4822 -- initialization. Note that this only occurs when the
4823 -- association's corresponding component does not have a
4824 -- default expression, the latter case having already been
4825 -- expanded as an expression for the association.
4826
4827 if Box_Present (Assn) then
4828 if not Has_Preelaborable_Initialization (Comp_Type) then
4829 return False;
4830 end if;
4831
4832 -- In the expression case we check whether the expression
4833 -- is preelaborable.
4834
4835 elsif
4836 not Is_Preelaborable_Expression (Expression (Assn))
4837 then
4838 return False;
4839 end if;
4840
4841 Next (Assn);
4842 end loop;
4843
4844 -- If we get here then aggregate as a whole is preelaborable
4845
4846 return True;
4847
4848 -- All other cases are not preelaborable
4849
4850 else
4851 return False;
4852 end if;
4853 end Is_Preelaborable_Expression;
4854
4855 -- Start of processing for Check_Components
4856
4857 begin
4858 -- Loop through entities of record or protected type
4859
4860 Ent := E;
4861 while Present (Ent) loop
4862
4863 -- We are interested only in components and discriminants
4864
4865 if Ekind_In (Ent, E_Component, E_Discriminant) then
4866
4867 -- Get default expression if any. If there is no declaration
4868 -- node, it means we have an internal entity. The parent and
4869 -- tag fields are examples of such entities. For these cases,
4870 -- we just test the type of the entity.
4871
4872 if Present (Declaration_Node (Ent)) then
4873 Exp := Expression (Declaration_Node (Ent));
4874 else
4875 Exp := Empty;
4876 end if;
4877
4878 -- A component has PI if it has no default expression and the
4879 -- component type has PI.
4880
4881 if No (Exp) then
4882 if not Has_Preelaborable_Initialization (Etype (Ent)) then
4883 Has_PE := False;
4884 exit;
4885 end if;
4886
4887 -- Require the default expression to be preelaborable
4888
4889 elsif not Is_Preelaborable_Expression (Exp) then
4890 Has_PE := False;
4891 exit;
4892 end if;
4893 end if;
4894
4895 Next_Entity (Ent);
4896 end loop;
4897 end Check_Components;
4898
4899 -- Start of processing for Has_Preelaborable_Initialization
4900
4901 begin
4902 -- Immediate return if already marked as known preelaborable init. This
4903 -- covers types for which this function has already been called once
4904 -- and returned True (in which case the result is cached), and also
4905 -- types to which a pragma Preelaborable_Initialization applies.
4906
4907 if Known_To_Have_Preelab_Init (E) then
4908 return True;
4909 end if;
4910
4911 -- If the type is a subtype representing a generic actual type, then
4912 -- test whether its base type has preelaborable initialization since
4913 -- the subtype representing the actual does not inherit this attribute
4914 -- from the actual or formal. (but maybe it should???)
4915
4916 if Is_Generic_Actual_Type (E) then
4917 return Has_Preelaborable_Initialization (Base_Type (E));
4918 end if;
4919
4920 -- All elementary types have preelaborable initialization
4921
4922 if Is_Elementary_Type (E) then
4923 Has_PE := True;
4924
4925 -- Array types have PI if the component type has PI
4926
4927 elsif Is_Array_Type (E) then
4928 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
4929
4930 -- A derived type has preelaborable initialization if its parent type
4931 -- has preelaborable initialization and (in the case of a derived record
4932 -- extension) if the non-inherited components all have preelaborable
4933 -- initialization. However, a user-defined controlled type with an
4934 -- overriding Initialize procedure does not have preelaborable
4935 -- initialization.
4936
4937 elsif Is_Derived_Type (E) then
4938
4939 -- If the derived type is a private extension then it doesn't have
4940 -- preelaborable initialization.
4941
4942 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
4943 return False;
4944 end if;
4945
4946 -- First check whether ancestor type has preelaborable initialization
4947
4948 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
4949
4950 -- If OK, check extension components (if any)
4951
4952 if Has_PE and then Is_Record_Type (E) then
4953 Check_Components (First_Entity (E));
4954 end if;
4955
4956 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
4957 -- with a user defined Initialize procedure does not have PI.
4958
4959 if Has_PE
4960 and then Is_Controlled (E)
4961 and then Has_Overriding_Initialize (E)
4962 then
4963 Has_PE := False;
4964 end if;
4965
4966 -- Private types not derived from a type having preelaborable init and
4967 -- that are not marked with pragma Preelaborable_Initialization do not
4968 -- have preelaborable initialization.
4969
4970 elsif Is_Private_Type (E) then
4971 return False;
4972
4973 -- Record type has PI if it is non private and all components have PI
4974
4975 elsif Is_Record_Type (E) then
4976 Has_PE := True;
4977 Check_Components (First_Entity (E));
4978
4979 -- Protected types must not have entries, and components must meet
4980 -- same set of rules as for record components.
4981
4982 elsif Is_Protected_Type (E) then
4983 if Has_Entries (E) then
4984 Has_PE := False;
4985 else
4986 Has_PE := True;
4987 Check_Components (First_Entity (E));
4988 Check_Components (First_Private_Entity (E));
4989 end if;
4990
4991 -- Type System.Address always has preelaborable initialization
4992
4993 elsif Is_RTE (E, RE_Address) then
4994 Has_PE := True;
4995
4996 -- In all other cases, type does not have preelaborable initialization
4997
4998 else
4999 return False;
5000 end if;
5001
5002 -- If type has preelaborable initialization, cache result
5003
5004 if Has_PE then
5005 Set_Known_To_Have_Preelab_Init (E);
5006 end if;
5007
5008 return Has_PE;
5009 end Has_Preelaborable_Initialization;
5010
5011 ---------------------------
5012 -- Has_Private_Component --
5013 ---------------------------
5014
5015 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
5016 Btype : Entity_Id := Base_Type (Type_Id);
5017 Component : Entity_Id;
5018
5019 begin
5020 if Error_Posted (Type_Id)
5021 or else Error_Posted (Btype)
5022 then
5023 return False;
5024 end if;
5025
5026 if Is_Class_Wide_Type (Btype) then
5027 Btype := Root_Type (Btype);
5028 end if;
5029
5030 if Is_Private_Type (Btype) then
5031 declare
5032 UT : constant Entity_Id := Underlying_Type (Btype);
5033 begin
5034 if No (UT) then
5035 if No (Full_View (Btype)) then
5036 return not Is_Generic_Type (Btype)
5037 and then not Is_Generic_Type (Root_Type (Btype));
5038 else
5039 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
5040 end if;
5041 else
5042 return not Is_Frozen (UT) and then Has_Private_Component (UT);
5043 end if;
5044 end;
5045
5046 elsif Is_Array_Type (Btype) then
5047 return Has_Private_Component (Component_Type (Btype));
5048
5049 elsif Is_Record_Type (Btype) then
5050 Component := First_Component (Btype);
5051 while Present (Component) loop
5052 if Has_Private_Component (Etype (Component)) then
5053 return True;
5054 end if;
5055
5056 Next_Component (Component);
5057 end loop;
5058
5059 return False;
5060
5061 elsif Is_Protected_Type (Btype)
5062 and then Present (Corresponding_Record_Type (Btype))
5063 then
5064 return Has_Private_Component (Corresponding_Record_Type (Btype));
5065
5066 else
5067 return False;
5068 end if;
5069 end Has_Private_Component;
5070
5071 ----------------
5072 -- Has_Stream --
5073 ----------------
5074
5075 function Has_Stream (T : Entity_Id) return Boolean is
5076 E : Entity_Id;
5077
5078 begin
5079 if No (T) then
5080 return False;
5081
5082 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
5083 return True;
5084
5085 elsif Is_Array_Type (T) then
5086 return Has_Stream (Component_Type (T));
5087
5088 elsif Is_Record_Type (T) then
5089 E := First_Component (T);
5090 while Present (E) loop
5091 if Has_Stream (Etype (E)) then
5092 return True;
5093 else
5094 Next_Component (E);
5095 end if;
5096 end loop;
5097
5098 return False;
5099
5100 elsif Is_Private_Type (T) then
5101 return Has_Stream (Underlying_Type (T));
5102
5103 else
5104 return False;
5105 end if;
5106 end Has_Stream;
5107
5108 --------------------------
5109 -- Has_Tagged_Component --
5110 --------------------------
5111
5112 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
5113 Comp : Entity_Id;
5114
5115 begin
5116 if Is_Private_Type (Typ)
5117 and then Present (Underlying_Type (Typ))
5118 then
5119 return Has_Tagged_Component (Underlying_Type (Typ));
5120
5121 elsif Is_Array_Type (Typ) then
5122 return Has_Tagged_Component (Component_Type (Typ));
5123
5124 elsif Is_Tagged_Type (Typ) then
5125 return True;
5126
5127 elsif Is_Record_Type (Typ) then
5128 Comp := First_Component (Typ);
5129 while Present (Comp) loop
5130 if Has_Tagged_Component (Etype (Comp)) then
5131 return True;
5132 end if;
5133
5134 Next_Component (Comp);
5135 end loop;
5136
5137 return False;
5138
5139 else
5140 return False;
5141 end if;
5142 end Has_Tagged_Component;
5143
5144 --------------------------
5145 -- Implements_Interface --
5146 --------------------------
5147
5148 function Implements_Interface
5149 (Typ_Ent : Entity_Id;
5150 Iface_Ent : Entity_Id;
5151 Exclude_Parents : Boolean := False) return Boolean
5152 is
5153 Ifaces_List : Elist_Id;
5154 Elmt : Elmt_Id;
5155 Iface : Entity_Id := Base_Type (Iface_Ent);
5156 Typ : Entity_Id := Base_Type (Typ_Ent);
5157
5158 begin
5159 if Is_Class_Wide_Type (Typ) then
5160 Typ := Root_Type (Typ);
5161 end if;
5162
5163 if not Has_Interfaces (Typ) then
5164 return False;
5165 end if;
5166
5167 if Is_Class_Wide_Type (Iface) then
5168 Iface := Root_Type (Iface);
5169 end if;
5170
5171 Collect_Interfaces (Typ, Ifaces_List);
5172
5173 Elmt := First_Elmt (Ifaces_List);
5174 while Present (Elmt) loop
5175 if Is_Ancestor (Node (Elmt), Typ)
5176 and then Exclude_Parents
5177 then
5178 null;
5179
5180 elsif Node (Elmt) = Iface then
5181 return True;
5182 end if;
5183
5184 Next_Elmt (Elmt);
5185 end loop;
5186
5187 return False;
5188 end Implements_Interface;
5189
5190 -----------------
5191 -- In_Instance --
5192 -----------------
5193
5194 function In_Instance return Boolean is
5195 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
5196 S : Entity_Id;
5197
5198 begin
5199 S := Current_Scope;
5200 while Present (S)
5201 and then S /= Standard_Standard
5202 loop
5203 if (Ekind (S) = E_Function
5204 or else Ekind (S) = E_Package
5205 or else Ekind (S) = E_Procedure)
5206 and then Is_Generic_Instance (S)
5207 then
5208 -- A child instance is always compiled in the context of a parent
5209 -- instance. Nevertheless, the actuals are not analyzed in an
5210 -- instance context. We detect this case by examining the current
5211 -- compilation unit, which must be a child instance, and checking
5212 -- that it is not currently on the scope stack.
5213
5214 if Is_Child_Unit (Curr_Unit)
5215 and then
5216 Nkind (Unit (Cunit (Current_Sem_Unit)))
5217 = N_Package_Instantiation
5218 and then not In_Open_Scopes (Curr_Unit)
5219 then
5220 return False;
5221 else
5222 return True;
5223 end if;
5224 end if;
5225
5226 S := Scope (S);
5227 end loop;
5228
5229 return False;
5230 end In_Instance;
5231
5232 ----------------------
5233 -- In_Instance_Body --
5234 ----------------------
5235
5236 function In_Instance_Body return Boolean is
5237 S : Entity_Id;
5238
5239 begin
5240 S := Current_Scope;
5241 while Present (S)
5242 and then S /= Standard_Standard
5243 loop
5244 if (Ekind (S) = E_Function
5245 or else Ekind (S) = E_Procedure)
5246 and then Is_Generic_Instance (S)
5247 then
5248 return True;
5249
5250 elsif Ekind (S) = E_Package
5251 and then In_Package_Body (S)
5252 and then Is_Generic_Instance (S)
5253 then
5254 return True;
5255 end if;
5256
5257 S := Scope (S);
5258 end loop;
5259
5260 return False;
5261 end In_Instance_Body;
5262
5263 -----------------------------
5264 -- In_Instance_Not_Visible --
5265 -----------------------------
5266
5267 function In_Instance_Not_Visible return Boolean is
5268 S : Entity_Id;
5269
5270 begin
5271 S := Current_Scope;
5272 while Present (S)
5273 and then S /= Standard_Standard
5274 loop
5275 if (Ekind (S) = E_Function
5276 or else Ekind (S) = E_Procedure)
5277 and then Is_Generic_Instance (S)
5278 then
5279 return True;
5280
5281 elsif Ekind (S) = E_Package
5282 and then (In_Package_Body (S) or else In_Private_Part (S))
5283 and then Is_Generic_Instance (S)
5284 then
5285 return True;
5286 end if;
5287
5288 S := Scope (S);
5289 end loop;
5290
5291 return False;
5292 end In_Instance_Not_Visible;
5293
5294 ------------------------------
5295 -- In_Instance_Visible_Part --
5296 ------------------------------
5297
5298 function In_Instance_Visible_Part return Boolean is
5299 S : Entity_Id;
5300
5301 begin
5302 S := Current_Scope;
5303 while Present (S)
5304 and then S /= Standard_Standard
5305 loop
5306 if Ekind (S) = E_Package
5307 and then Is_Generic_Instance (S)
5308 and then not In_Package_Body (S)
5309 and then not In_Private_Part (S)
5310 then
5311 return True;
5312 end if;
5313
5314 S := Scope (S);
5315 end loop;
5316
5317 return False;
5318 end In_Instance_Visible_Part;
5319
5320 ---------------------
5321 -- In_Package_Body --
5322 ---------------------
5323
5324 function In_Package_Body return Boolean is
5325 S : Entity_Id;
5326
5327 begin
5328 S := Current_Scope;
5329 while Present (S)
5330 and then S /= Standard_Standard
5331 loop
5332 if Ekind (S) = E_Package
5333 and then In_Package_Body (S)
5334 then
5335 return True;
5336 else
5337 S := Scope (S);
5338 end if;
5339 end loop;
5340
5341 return False;
5342 end In_Package_Body;
5343
5344 --------------------------------
5345 -- In_Parameter_Specification --
5346 --------------------------------
5347
5348 function In_Parameter_Specification (N : Node_Id) return Boolean is
5349 PN : Node_Id;
5350
5351 begin
5352 PN := Parent (N);
5353 while Present (PN) loop
5354 if Nkind (PN) = N_Parameter_Specification then
5355 return True;
5356 end if;
5357
5358 PN := Parent (PN);
5359 end loop;
5360
5361 return False;
5362 end In_Parameter_Specification;
5363
5364 --------------------------------------
5365 -- In_Subprogram_Or_Concurrent_Unit --
5366 --------------------------------------
5367
5368 function In_Subprogram_Or_Concurrent_Unit return Boolean is
5369 E : Entity_Id;
5370 K : Entity_Kind;
5371
5372 begin
5373 -- Use scope chain to check successively outer scopes
5374
5375 E := Current_Scope;
5376 loop
5377 K := Ekind (E);
5378
5379 if K in Subprogram_Kind
5380 or else K in Concurrent_Kind
5381 or else K in Generic_Subprogram_Kind
5382 then
5383 return True;
5384
5385 elsif E = Standard_Standard then
5386 return False;
5387 end if;
5388
5389 E := Scope (E);
5390 end loop;
5391 end In_Subprogram_Or_Concurrent_Unit;
5392
5393 ---------------------
5394 -- In_Visible_Part --
5395 ---------------------
5396
5397 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
5398 begin
5399 return
5400 Is_Package_Or_Generic_Package (Scope_Id)
5401 and then In_Open_Scopes (Scope_Id)
5402 and then not In_Package_Body (Scope_Id)
5403 and then not In_Private_Part (Scope_Id);
5404 end In_Visible_Part;
5405
5406 ---------------------------------
5407 -- Insert_Explicit_Dereference --
5408 ---------------------------------
5409
5410 procedure Insert_Explicit_Dereference (N : Node_Id) is
5411 New_Prefix : constant Node_Id := Relocate_Node (N);
5412 Ent : Entity_Id := Empty;
5413 Pref : Node_Id;
5414 I : Interp_Index;
5415 It : Interp;
5416 T : Entity_Id;
5417
5418 begin
5419 Save_Interps (N, New_Prefix);
5420
5421 -- Check if the node relocation requires readjustment of some SCIL
5422 -- dispatching node.
5423
5424 if Generate_SCIL
5425 and then Nkind (N) = N_Function_Call
5426 then
5427 Adjust_SCIL_Node (N, New_Prefix);
5428 end if;
5429
5430 Rewrite (N, Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
5431
5432 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
5433
5434 if Is_Overloaded (New_Prefix) then
5435
5436 -- The dereference is also overloaded, and its interpretations are
5437 -- the designated types of the interpretations of the original node.
5438
5439 Set_Etype (N, Any_Type);
5440
5441 Get_First_Interp (New_Prefix, I, It);
5442 while Present (It.Nam) loop
5443 T := It.Typ;
5444
5445 if Is_Access_Type (T) then
5446 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
5447 end if;
5448
5449 Get_Next_Interp (I, It);
5450 end loop;
5451
5452 End_Interp_List;
5453
5454 else
5455 -- Prefix is unambiguous: mark the original prefix (which might
5456 -- Come_From_Source) as a reference, since the new (relocated) one
5457 -- won't be taken into account.
5458
5459 if Is_Entity_Name (New_Prefix) then
5460 Ent := Entity (New_Prefix);
5461
5462 -- For a retrieval of a subcomponent of some composite object,
5463 -- retrieve the ultimate entity if there is one.
5464
5465 elsif Nkind (New_Prefix) = N_Selected_Component
5466 or else Nkind (New_Prefix) = N_Indexed_Component
5467 then
5468 Pref := Prefix (New_Prefix);
5469 while Present (Pref)
5470 and then
5471 (Nkind (Pref) = N_Selected_Component
5472 or else Nkind (Pref) = N_Indexed_Component)
5473 loop
5474 Pref := Prefix (Pref);
5475 end loop;
5476
5477 if Present (Pref) and then Is_Entity_Name (Pref) then
5478 Ent := Entity (Pref);
5479 end if;
5480 end if;
5481
5482 if Present (Ent) then
5483 Generate_Reference (Ent, New_Prefix);
5484 end if;
5485 end if;
5486 end Insert_Explicit_Dereference;
5487
5488 ------------------------------------------
5489 -- Inspect_Deferred_Constant_Completion --
5490 ------------------------------------------
5491
5492 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
5493 Decl : Node_Id;
5494
5495 begin
5496 Decl := First (Decls);
5497 while Present (Decl) loop
5498
5499 -- Deferred constant signature
5500
5501 if Nkind (Decl) = N_Object_Declaration
5502 and then Constant_Present (Decl)
5503 and then No (Expression (Decl))
5504
5505 -- No need to check internally generated constants
5506
5507 and then Comes_From_Source (Decl)
5508
5509 -- The constant is not completed. A full object declaration
5510 -- or a pragma Import complete a deferred constant.
5511
5512 and then not Has_Completion (Defining_Identifier (Decl))
5513 then
5514 Error_Msg_N
5515 ("constant declaration requires initialization expression",
5516 Defining_Identifier (Decl));
5517 end if;
5518
5519 Decl := Next (Decl);
5520 end loop;
5521 end Inspect_Deferred_Constant_Completion;
5522
5523 -------------------
5524 -- Is_AAMP_Float --
5525 -------------------
5526
5527 function Is_AAMP_Float (E : Entity_Id) return Boolean is
5528 pragma Assert (Is_Type (E));
5529 begin
5530 return AAMP_On_Target
5531 and then Is_Floating_Point_Type (E)
5532 and then E = Base_Type (E);
5533 end Is_AAMP_Float;
5534
5535 -----------------------------
5536 -- Is_Actual_Out_Parameter --
5537 -----------------------------
5538
5539 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
5540 Formal : Entity_Id;
5541 Call : Node_Id;
5542 begin
5543 Find_Actual (N, Formal, Call);
5544 return Present (Formal)
5545 and then Ekind (Formal) = E_Out_Parameter;
5546 end Is_Actual_Out_Parameter;
5547
5548 -------------------------
5549 -- Is_Actual_Parameter --
5550 -------------------------
5551
5552 function Is_Actual_Parameter (N : Node_Id) return Boolean is
5553 PK : constant Node_Kind := Nkind (Parent (N));
5554
5555 begin
5556 case PK is
5557 when N_Parameter_Association =>
5558 return N = Explicit_Actual_Parameter (Parent (N));
5559
5560 when N_Function_Call | N_Procedure_Call_Statement =>
5561 return Is_List_Member (N)
5562 and then
5563 List_Containing (N) = Parameter_Associations (Parent (N));
5564
5565 when others =>
5566 return False;
5567 end case;
5568 end Is_Actual_Parameter;
5569
5570 ---------------------
5571 -- Is_Aliased_View --
5572 ---------------------
5573
5574 function Is_Aliased_View (Obj : Node_Id) return Boolean is
5575 E : Entity_Id;
5576
5577 begin
5578 if Is_Entity_Name (Obj) then
5579
5580 E := Entity (Obj);
5581
5582 return
5583 (Is_Object (E)
5584 and then
5585 (Is_Aliased (E)
5586 or else (Present (Renamed_Object (E))
5587 and then Is_Aliased_View (Renamed_Object (E)))))
5588
5589 or else ((Is_Formal (E)
5590 or else Ekind (E) = E_Generic_In_Out_Parameter
5591 or else Ekind (E) = E_Generic_In_Parameter)
5592 and then Is_Tagged_Type (Etype (E)))
5593
5594 or else (Is_Concurrent_Type (E)
5595 and then In_Open_Scopes (E))
5596
5597 -- Current instance of type, either directly or as rewritten
5598 -- reference to the current object.
5599
5600 or else (Is_Entity_Name (Original_Node (Obj))
5601 and then Present (Entity (Original_Node (Obj)))
5602 and then Is_Type (Entity (Original_Node (Obj))))
5603
5604 or else (Is_Type (E) and then E = Current_Scope)
5605
5606 or else (Is_Incomplete_Or_Private_Type (E)
5607 and then Full_View (E) = Current_Scope);
5608
5609 elsif Nkind (Obj) = N_Selected_Component then
5610 return Is_Aliased (Entity (Selector_Name (Obj)));
5611
5612 elsif Nkind (Obj) = N_Indexed_Component then
5613 return Has_Aliased_Components (Etype (Prefix (Obj)))
5614 or else
5615 (Is_Access_Type (Etype (Prefix (Obj)))
5616 and then
5617 Has_Aliased_Components
5618 (Designated_Type (Etype (Prefix (Obj)))));
5619
5620 elsif Nkind (Obj) = N_Unchecked_Type_Conversion
5621 or else Nkind (Obj) = N_Type_Conversion
5622 then
5623 return Is_Tagged_Type (Etype (Obj))
5624 and then Is_Aliased_View (Expression (Obj));
5625
5626 elsif Nkind (Obj) = N_Explicit_Dereference then
5627 return Nkind (Original_Node (Obj)) /= N_Function_Call;
5628
5629 else
5630 return False;
5631 end if;
5632 end Is_Aliased_View;
5633
5634 -------------------------
5635 -- Is_Ancestor_Package --
5636 -------------------------
5637
5638 function Is_Ancestor_Package
5639 (E1 : Entity_Id;
5640 E2 : Entity_Id) return Boolean
5641 is
5642 Par : Entity_Id;
5643
5644 begin
5645 Par := E2;
5646 while Present (Par)
5647 and then Par /= Standard_Standard
5648 loop
5649 if Par = E1 then
5650 return True;
5651 end if;
5652
5653 Par := Scope (Par);
5654 end loop;
5655
5656 return False;
5657 end Is_Ancestor_Package;
5658
5659 ----------------------
5660 -- Is_Atomic_Object --
5661 ----------------------
5662
5663 function Is_Atomic_Object (N : Node_Id) return Boolean is
5664
5665 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
5666 -- Determines if given object has atomic components
5667
5668 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
5669 -- If prefix is an implicit dereference, examine designated type
5670
5671 ----------------------
5672 -- Is_Atomic_Prefix --
5673 ----------------------
5674
5675 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
5676 begin
5677 if Is_Access_Type (Etype (N)) then
5678 return
5679 Has_Atomic_Components (Designated_Type (Etype (N)));
5680 else
5681 return Object_Has_Atomic_Components (N);
5682 end if;
5683 end Is_Atomic_Prefix;
5684
5685 ----------------------------------
5686 -- Object_Has_Atomic_Components --
5687 ----------------------------------
5688
5689 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
5690 begin
5691 if Has_Atomic_Components (Etype (N))
5692 or else Is_Atomic (Etype (N))
5693 then
5694 return True;
5695
5696 elsif Is_Entity_Name (N)
5697 and then (Has_Atomic_Components (Entity (N))
5698 or else Is_Atomic (Entity (N)))
5699 then
5700 return True;
5701
5702 elsif Nkind (N) = N_Indexed_Component
5703 or else Nkind (N) = N_Selected_Component
5704 then
5705 return Is_Atomic_Prefix (Prefix (N));
5706
5707 else
5708 return False;
5709 end if;
5710 end Object_Has_Atomic_Components;
5711
5712 -- Start of processing for Is_Atomic_Object
5713
5714 begin
5715 if Is_Atomic (Etype (N))
5716 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
5717 then
5718 return True;
5719
5720 elsif Nkind (N) = N_Indexed_Component
5721 or else Nkind (N) = N_Selected_Component
5722 then
5723 return Is_Atomic_Prefix (Prefix (N));
5724
5725 else
5726 return False;
5727 end if;
5728 end Is_Atomic_Object;
5729
5730 -------------------------
5731 -- Is_Coextension_Root --
5732 -------------------------
5733
5734 function Is_Coextension_Root (N : Node_Id) return Boolean is
5735 begin
5736 return
5737 Nkind (N) = N_Allocator
5738 and then Present (Coextensions (N))
5739
5740 -- Anonymous access discriminants carry a list of all nested
5741 -- controlled coextensions.
5742
5743 and then not Is_Dynamic_Coextension (N)
5744 and then not Is_Static_Coextension (N);
5745 end Is_Coextension_Root;
5746
5747 -----------------------------
5748 -- Is_Concurrent_Interface --
5749 -----------------------------
5750
5751 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
5752 begin
5753 return
5754 Is_Interface (T)
5755 and then
5756 (Is_Protected_Interface (T)
5757 or else Is_Synchronized_Interface (T)
5758 or else Is_Task_Interface (T));
5759 end Is_Concurrent_Interface;
5760
5761 --------------------------------------
5762 -- Is_Controlling_Limited_Procedure --
5763 --------------------------------------
5764
5765 function Is_Controlling_Limited_Procedure
5766 (Proc_Nam : Entity_Id) return Boolean
5767 is
5768 Param_Typ : Entity_Id := Empty;
5769
5770 begin
5771 if Ekind (Proc_Nam) = E_Procedure
5772 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
5773 then
5774 Param_Typ := Etype (Parameter_Type (First (
5775 Parameter_Specifications (Parent (Proc_Nam)))));
5776
5777 -- In this case where an Itype was created, the procedure call has been
5778 -- rewritten.
5779
5780 elsif Present (Associated_Node_For_Itype (Proc_Nam))
5781 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
5782 and then
5783 Present (Parameter_Associations
5784 (Associated_Node_For_Itype (Proc_Nam)))
5785 then
5786 Param_Typ :=
5787 Etype (First (Parameter_Associations
5788 (Associated_Node_For_Itype (Proc_Nam))));
5789 end if;
5790
5791 if Present (Param_Typ) then
5792 return
5793 Is_Interface (Param_Typ)
5794 and then Is_Limited_Record (Param_Typ);
5795 end if;
5796
5797 return False;
5798 end Is_Controlling_Limited_Procedure;
5799
5800 -----------------------------
5801 -- Is_CPP_Constructor_Call --
5802 -----------------------------
5803
5804 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
5805 begin
5806 return Nkind (N) = N_Function_Call
5807 and then Is_CPP_Class (Etype (Etype (N)))
5808 and then Is_Constructor (Entity (Name (N)))
5809 and then Is_Imported (Entity (Name (N)));
5810 end Is_CPP_Constructor_Call;
5811
5812 ----------------------------------------------
5813 -- Is_Dependent_Component_Of_Mutable_Object --
5814 ----------------------------------------------
5815
5816 function Is_Dependent_Component_Of_Mutable_Object
5817 (Object : Node_Id) return Boolean
5818 is
5819 P : Node_Id;
5820 Prefix_Type : Entity_Id;
5821 P_Aliased : Boolean := False;
5822 Comp : Entity_Id;
5823
5824 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
5825 -- Returns True if and only if Comp is declared within a variant part
5826
5827 --------------------------------
5828 -- Is_Declared_Within_Variant --
5829 --------------------------------
5830
5831 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
5832 Comp_Decl : constant Node_Id := Parent (Comp);
5833 Comp_List : constant Node_Id := Parent (Comp_Decl);
5834 begin
5835 return Nkind (Parent (Comp_List)) = N_Variant;
5836 end Is_Declared_Within_Variant;
5837
5838 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
5839
5840 begin
5841 if Is_Variable (Object) then
5842
5843 if Nkind (Object) = N_Selected_Component then
5844 P := Prefix (Object);
5845 Prefix_Type := Etype (P);
5846
5847 if Is_Entity_Name (P) then
5848
5849 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
5850 Prefix_Type := Base_Type (Prefix_Type);
5851 end if;
5852
5853 if Is_Aliased (Entity (P)) then
5854 P_Aliased := True;
5855 end if;
5856
5857 -- A discriminant check on a selected component may be
5858 -- expanded into a dereference when removing side-effects.
5859 -- Recover the original node and its type, which may be
5860 -- unconstrained.
5861
5862 elsif Nkind (P) = N_Explicit_Dereference
5863 and then not (Comes_From_Source (P))
5864 then
5865 P := Original_Node (P);
5866 Prefix_Type := Etype (P);
5867
5868 else
5869 -- Check for prefix being an aliased component ???
5870 null;
5871
5872 end if;
5873
5874 -- A heap object is constrained by its initial value
5875
5876 -- Ada 2005 (AI-363): Always assume the object could be mutable in
5877 -- the dereferenced case, since the access value might denote an
5878 -- unconstrained aliased object, whereas in Ada 95 the designated
5879 -- object is guaranteed to be constrained. A worst-case assumption
5880 -- has to apply in Ada 2005 because we can't tell at compile time
5881 -- whether the object is "constrained by its initial value"
5882 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are
5883 -- semantic rules -- these rules are acknowledged to need fixing).
5884
5885 if Ada_Version < Ada_05 then
5886 if Is_Access_Type (Prefix_Type)
5887 or else Nkind (P) = N_Explicit_Dereference
5888 then
5889 return False;
5890 end if;
5891
5892 elsif Ada_Version >= Ada_05 then
5893 if Is_Access_Type (Prefix_Type) then
5894
5895 -- If the access type is pool-specific, and there is no
5896 -- constrained partial view of the designated type, then the
5897 -- designated object is known to be constrained.
5898
5899 if Ekind (Prefix_Type) = E_Access_Type
5900 and then not Has_Constrained_Partial_View
5901 (Designated_Type (Prefix_Type))
5902 then
5903 return False;
5904
5905 -- Otherwise (general access type, or there is a constrained
5906 -- partial view of the designated type), we need to check
5907 -- based on the designated type.
5908
5909 else
5910 Prefix_Type := Designated_Type (Prefix_Type);
5911 end if;
5912 end if;
5913 end if;
5914
5915 Comp :=
5916 Original_Record_Component (Entity (Selector_Name (Object)));
5917
5918 -- As per AI-0017, the renaming is illegal in a generic body,
5919 -- even if the subtype is indefinite.
5920
5921 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
5922
5923 if not Is_Constrained (Prefix_Type)
5924 and then (not Is_Indefinite_Subtype (Prefix_Type)
5925 or else
5926 (Is_Generic_Type (Prefix_Type)
5927 and then Ekind (Current_Scope) = E_Generic_Package
5928 and then In_Package_Body (Current_Scope)))
5929
5930 and then (Is_Declared_Within_Variant (Comp)
5931 or else Has_Discriminant_Dependent_Constraint (Comp))
5932 and then (not P_Aliased or else Ada_Version >= Ada_05)
5933 then
5934 return True;
5935
5936 else
5937 return
5938 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5939
5940 end if;
5941
5942 elsif Nkind (Object) = N_Indexed_Component
5943 or else Nkind (Object) = N_Slice
5944 then
5945 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5946
5947 -- A type conversion that Is_Variable is a view conversion:
5948 -- go back to the denoted object.
5949
5950 elsif Nkind (Object) = N_Type_Conversion then
5951 return
5952 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
5953 end if;
5954 end if;
5955
5956 return False;
5957 end Is_Dependent_Component_Of_Mutable_Object;
5958
5959 ---------------------
5960 -- Is_Dereferenced --
5961 ---------------------
5962
5963 function Is_Dereferenced (N : Node_Id) return Boolean is
5964 P : constant Node_Id := Parent (N);
5965 begin
5966 return
5967 (Nkind (P) = N_Selected_Component
5968 or else
5969 Nkind (P) = N_Explicit_Dereference
5970 or else
5971 Nkind (P) = N_Indexed_Component
5972 or else
5973 Nkind (P) = N_Slice)
5974 and then Prefix (P) = N;
5975 end Is_Dereferenced;
5976
5977 ----------------------
5978 -- Is_Descendent_Of --
5979 ----------------------
5980
5981 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
5982 T : Entity_Id;
5983 Etyp : Entity_Id;
5984
5985 begin
5986 pragma Assert (Nkind (T1) in N_Entity);
5987 pragma Assert (Nkind (T2) in N_Entity);
5988
5989 T := Base_Type (T1);
5990
5991 -- Immediate return if the types match
5992
5993 if T = T2 then
5994 return True;
5995
5996 -- Comment needed here ???
5997
5998 elsif Ekind (T) = E_Class_Wide_Type then
5999 return Etype (T) = T2;
6000
6001 -- All other cases
6002
6003 else
6004 loop
6005 Etyp := Etype (T);
6006
6007 -- Done if we found the type we are looking for
6008
6009 if Etyp = T2 then
6010 return True;
6011
6012 -- Done if no more derivations to check
6013
6014 elsif T = T1
6015 or else T = Etyp
6016 then
6017 return False;
6018
6019 -- Following test catches error cases resulting from prev errors
6020
6021 elsif No (Etyp) then
6022 return False;
6023
6024 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
6025 return False;
6026
6027 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
6028 return False;
6029 end if;
6030
6031 T := Base_Type (Etyp);
6032 end loop;
6033 end if;
6034 end Is_Descendent_Of;
6035
6036 --------------
6037 -- Is_False --
6038 --------------
6039
6040 function Is_False (U : Uint) return Boolean is
6041 begin
6042 return (U = 0);
6043 end Is_False;
6044
6045 ---------------------------
6046 -- Is_Fixed_Model_Number --
6047 ---------------------------
6048
6049 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
6050 S : constant Ureal := Small_Value (T);
6051 M : Urealp.Save_Mark;
6052 R : Boolean;
6053 begin
6054 M := Urealp.Mark;
6055 R := (U = UR_Trunc (U / S) * S);
6056 Urealp.Release (M);
6057 return R;
6058 end Is_Fixed_Model_Number;
6059
6060 -------------------------------
6061 -- Is_Fully_Initialized_Type --
6062 -------------------------------
6063
6064 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
6065 begin
6066 if Is_Scalar_Type (Typ) then
6067 return False;
6068
6069 elsif Is_Access_Type (Typ) then
6070 return True;
6071
6072 elsif Is_Array_Type (Typ) then
6073 if Is_Fully_Initialized_Type (Component_Type (Typ)) then
6074 return True;
6075 end if;
6076
6077 -- An interesting case, if we have a constrained type one of whose
6078 -- bounds is known to be null, then there are no elements to be
6079 -- initialized, so all the elements are initialized!
6080
6081 if Is_Constrained (Typ) then
6082 declare
6083 Indx : Node_Id;
6084 Indx_Typ : Entity_Id;
6085 Lbd, Hbd : Node_Id;
6086
6087 begin
6088 Indx := First_Index (Typ);
6089 while Present (Indx) loop
6090 if Etype (Indx) = Any_Type then
6091 return False;
6092
6093 -- If index is a range, use directly
6094
6095 elsif Nkind (Indx) = N_Range then
6096 Lbd := Low_Bound (Indx);
6097 Hbd := High_Bound (Indx);
6098
6099 else
6100 Indx_Typ := Etype (Indx);
6101
6102 if Is_Private_Type (Indx_Typ) then
6103 Indx_Typ := Full_View (Indx_Typ);
6104 end if;
6105
6106 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
6107 return False;
6108 else
6109 Lbd := Type_Low_Bound (Indx_Typ);
6110 Hbd := Type_High_Bound (Indx_Typ);
6111 end if;
6112 end if;
6113
6114 if Compile_Time_Known_Value (Lbd)
6115 and then Compile_Time_Known_Value (Hbd)
6116 then
6117 if Expr_Value (Hbd) < Expr_Value (Lbd) then
6118 return True;
6119 end if;
6120 end if;
6121
6122 Next_Index (Indx);
6123 end loop;
6124 end;
6125 end if;
6126
6127 -- If no null indexes, then type is not fully initialized
6128
6129 return False;
6130
6131 -- Record types
6132
6133 elsif Is_Record_Type (Typ) then
6134 if Has_Discriminants (Typ)
6135 and then
6136 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
6137 and then Is_Fully_Initialized_Variant (Typ)
6138 then
6139 return True;
6140 end if;
6141
6142 -- Controlled records are considered to be fully initialized if
6143 -- there is a user defined Initialize routine. This may not be
6144 -- entirely correct, but as the spec notes, we are guessing here
6145 -- what is best from the point of view of issuing warnings.
6146
6147 if Is_Controlled (Typ) then
6148 declare
6149 Utyp : constant Entity_Id := Underlying_Type (Typ);
6150
6151 begin
6152 if Present (Utyp) then
6153 declare
6154 Init : constant Entity_Id :=
6155 (Find_Prim_Op
6156 (Underlying_Type (Typ), Name_Initialize));
6157
6158 begin
6159 if Present (Init)
6160 and then Comes_From_Source (Init)
6161 and then not
6162 Is_Predefined_File_Name
6163 (File_Name (Get_Source_File_Index (Sloc (Init))))
6164 then
6165 return True;
6166
6167 elsif Has_Null_Extension (Typ)
6168 and then
6169 Is_Fully_Initialized_Type
6170 (Etype (Base_Type (Typ)))
6171 then
6172 return True;
6173 end if;
6174 end;
6175 end if;
6176 end;
6177 end if;
6178
6179 -- Otherwise see if all record components are initialized
6180
6181 declare
6182 Ent : Entity_Id;
6183
6184 begin
6185 Ent := First_Entity (Typ);
6186 while Present (Ent) loop
6187 if Chars (Ent) = Name_uController then
6188 null;
6189
6190 elsif Ekind (Ent) = E_Component
6191 and then (No (Parent (Ent))
6192 or else No (Expression (Parent (Ent))))
6193 and then not Is_Fully_Initialized_Type (Etype (Ent))
6194
6195 -- Special VM case for tag components, which need to be
6196 -- defined in this case, but are never initialized as VMs
6197 -- are using other dispatching mechanisms. Ignore this
6198 -- uninitialized case. Note that this applies both to the
6199 -- uTag entry and the main vtable pointer (CPP_Class case).
6200
6201 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
6202 then
6203 return False;
6204 end if;
6205
6206 Next_Entity (Ent);
6207 end loop;
6208 end;
6209
6210 -- No uninitialized components, so type is fully initialized.
6211 -- Note that this catches the case of no components as well.
6212
6213 return True;
6214
6215 elsif Is_Concurrent_Type (Typ) then
6216 return True;
6217
6218 elsif Is_Private_Type (Typ) then
6219 declare
6220 U : constant Entity_Id := Underlying_Type (Typ);
6221
6222 begin
6223 if No (U) then
6224 return False;
6225 else
6226 return Is_Fully_Initialized_Type (U);
6227 end if;
6228 end;
6229
6230 else
6231 return False;
6232 end if;
6233 end Is_Fully_Initialized_Type;
6234
6235 ----------------------------------
6236 -- Is_Fully_Initialized_Variant --
6237 ----------------------------------
6238
6239 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
6240 Loc : constant Source_Ptr := Sloc (Typ);
6241 Constraints : constant List_Id := New_List;
6242 Components : constant Elist_Id := New_Elmt_List;
6243 Comp_Elmt : Elmt_Id;
6244 Comp_Id : Node_Id;
6245 Comp_List : Node_Id;
6246 Discr : Entity_Id;
6247 Discr_Val : Node_Id;
6248
6249 Report_Errors : Boolean;
6250 pragma Warnings (Off, Report_Errors);
6251
6252 begin
6253 if Serious_Errors_Detected > 0 then
6254 return False;
6255 end if;
6256
6257 if Is_Record_Type (Typ)
6258 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
6259 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
6260 then
6261 Comp_List := Component_List (Type_Definition (Parent (Typ)));
6262
6263 Discr := First_Discriminant (Typ);
6264 while Present (Discr) loop
6265 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
6266 Discr_Val := Expression (Parent (Discr));
6267
6268 if Present (Discr_Val)
6269 and then Is_OK_Static_Expression (Discr_Val)
6270 then
6271 Append_To (Constraints,
6272 Make_Component_Association (Loc,
6273 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
6274 Expression => New_Copy (Discr_Val)));
6275 else
6276 return False;
6277 end if;
6278 else
6279 return False;
6280 end if;
6281
6282 Next_Discriminant (Discr);
6283 end loop;
6284
6285 Gather_Components
6286 (Typ => Typ,
6287 Comp_List => Comp_List,
6288 Governed_By => Constraints,
6289 Into => Components,
6290 Report_Errors => Report_Errors);
6291
6292 -- Check that each component present is fully initialized
6293
6294 Comp_Elmt := First_Elmt (Components);
6295 while Present (Comp_Elmt) loop
6296 Comp_Id := Node (Comp_Elmt);
6297
6298 if Ekind (Comp_Id) = E_Component
6299 and then (No (Parent (Comp_Id))
6300 or else No (Expression (Parent (Comp_Id))))
6301 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
6302 then
6303 return False;
6304 end if;
6305
6306 Next_Elmt (Comp_Elmt);
6307 end loop;
6308
6309 return True;
6310
6311 elsif Is_Private_Type (Typ) then
6312 declare
6313 U : constant Entity_Id := Underlying_Type (Typ);
6314
6315 begin
6316 if No (U) then
6317 return False;
6318 else
6319 return Is_Fully_Initialized_Variant (U);
6320 end if;
6321 end;
6322 else
6323 return False;
6324 end if;
6325 end Is_Fully_Initialized_Variant;
6326
6327 ------------
6328 -- Is_LHS --
6329 ------------
6330
6331 -- We seem to have a lot of overlapping functions that do similar things
6332 -- (testing for left hand sides or lvalues???). Anyway, since this one is
6333 -- purely syntactic, it should be in Sem_Aux I would think???
6334
6335 function Is_LHS (N : Node_Id) return Boolean is
6336 P : constant Node_Id := Parent (N);
6337 begin
6338 return Nkind (P) = N_Assignment_Statement
6339 and then Name (P) = N;
6340 end Is_LHS;
6341
6342 ----------------------------
6343 -- Is_Inherited_Operation --
6344 ----------------------------
6345
6346 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
6347 Kind : constant Node_Kind := Nkind (Parent (E));
6348 begin
6349 pragma Assert (Is_Overloadable (E));
6350 return Kind = N_Full_Type_Declaration
6351 or else Kind = N_Private_Extension_Declaration
6352 or else Kind = N_Subtype_Declaration
6353 or else (Ekind (E) = E_Enumeration_Literal
6354 and then Is_Derived_Type (Etype (E)));
6355 end Is_Inherited_Operation;
6356
6357 -----------------------------
6358 -- Is_Library_Level_Entity --
6359 -----------------------------
6360
6361 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
6362 begin
6363 -- The following is a small optimization, and it also properly handles
6364 -- discriminals, which in task bodies might appear in expressions before
6365 -- the corresponding procedure has been created, and which therefore do
6366 -- not have an assigned scope.
6367
6368 if Ekind (E) in Formal_Kind then
6369 return False;
6370 end if;
6371
6372 -- Normal test is simply that the enclosing dynamic scope is Standard
6373
6374 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
6375 end Is_Library_Level_Entity;
6376
6377 ---------------------------------
6378 -- Is_Local_Variable_Reference --
6379 ---------------------------------
6380
6381 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
6382 begin
6383 if not Is_Entity_Name (Expr) then
6384 return False;
6385
6386 else
6387 declare
6388 Ent : constant Entity_Id := Entity (Expr);
6389 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
6390 begin
6391 if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
6392 return False;
6393 else
6394 return Present (Sub) and then Sub = Current_Subprogram;
6395 end if;
6396 end;
6397 end if;
6398 end Is_Local_Variable_Reference;
6399
6400 -------------------------
6401 -- Is_Object_Reference --
6402 -------------------------
6403
6404 function Is_Object_Reference (N : Node_Id) return Boolean is
6405 begin
6406 if Is_Entity_Name (N) then
6407 return Present (Entity (N)) and then Is_Object (Entity (N));
6408
6409 else
6410 case Nkind (N) is
6411 when N_Indexed_Component | N_Slice =>
6412 return
6413 Is_Object_Reference (Prefix (N))
6414 or else Is_Access_Type (Etype (Prefix (N)));
6415
6416 -- In Ada95, a function call is a constant object; a procedure
6417 -- call is not.
6418
6419 when N_Function_Call =>
6420 return Etype (N) /= Standard_Void_Type;
6421
6422 -- A reference to the stream attribute Input is a function call
6423
6424 when N_Attribute_Reference =>
6425 return Attribute_Name (N) = Name_Input;
6426
6427 when N_Selected_Component =>
6428 return
6429 Is_Object_Reference (Selector_Name (N))
6430 and then
6431 (Is_Object_Reference (Prefix (N))
6432 or else Is_Access_Type (Etype (Prefix (N))));
6433
6434 when N_Explicit_Dereference =>
6435 return True;
6436
6437 -- A view conversion of a tagged object is an object reference
6438
6439 when N_Type_Conversion =>
6440 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
6441 and then Is_Tagged_Type (Etype (Expression (N)))
6442 and then Is_Object_Reference (Expression (N));
6443
6444 -- An unchecked type conversion is considered to be an object if
6445 -- the operand is an object (this construction arises only as a
6446 -- result of expansion activities).
6447
6448 when N_Unchecked_Type_Conversion =>
6449 return True;
6450
6451 when others =>
6452 return False;
6453 end case;
6454 end if;
6455 end Is_Object_Reference;
6456
6457 -----------------------------------
6458 -- Is_OK_Variable_For_Out_Formal --
6459 -----------------------------------
6460
6461 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
6462 begin
6463 Note_Possible_Modification (AV, Sure => True);
6464
6465 -- We must reject parenthesized variable names. The check for
6466 -- Comes_From_Source is present because there are currently
6467 -- cases where the compiler violates this rule (e.g. passing
6468 -- a task object to its controlled Initialize routine).
6469
6470 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
6471 return False;
6472
6473 -- A variable is always allowed
6474
6475 elsif Is_Variable (AV) then
6476 return True;
6477
6478 -- Unchecked conversions are allowed only if they come from the
6479 -- generated code, which sometimes uses unchecked conversions for out
6480 -- parameters in cases where code generation is unaffected. We tell
6481 -- source unchecked conversions by seeing if they are rewrites of an
6482 -- original Unchecked_Conversion function call, or of an explicit
6483 -- conversion of a function call.
6484
6485 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
6486 if Nkind (Original_Node (AV)) = N_Function_Call then
6487 return False;
6488
6489 elsif Comes_From_Source (AV)
6490 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
6491 then
6492 return False;
6493
6494 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
6495 return Is_OK_Variable_For_Out_Formal (Expression (AV));
6496
6497 else
6498 return True;
6499 end if;
6500
6501 -- Normal type conversions are allowed if argument is a variable
6502
6503 elsif Nkind (AV) = N_Type_Conversion then
6504 if Is_Variable (Expression (AV))
6505 and then Paren_Count (Expression (AV)) = 0
6506 then
6507 Note_Possible_Modification (Expression (AV), Sure => True);
6508 return True;
6509
6510 -- We also allow a non-parenthesized expression that raises
6511 -- constraint error if it rewrites what used to be a variable
6512
6513 elsif Raises_Constraint_Error (Expression (AV))
6514 and then Paren_Count (Expression (AV)) = 0
6515 and then Is_Variable (Original_Node (Expression (AV)))
6516 then
6517 return True;
6518
6519 -- Type conversion of something other than a variable
6520
6521 else
6522 return False;
6523 end if;
6524
6525 -- If this node is rewritten, then test the original form, if that is
6526 -- OK, then we consider the rewritten node OK (for example, if the
6527 -- original node is a conversion, then Is_Variable will not be true
6528 -- but we still want to allow the conversion if it converts a variable).
6529
6530 elsif Original_Node (AV) /= AV then
6531 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
6532
6533 -- All other non-variables are rejected
6534
6535 else
6536 return False;
6537 end if;
6538 end Is_OK_Variable_For_Out_Formal;
6539
6540 -----------------------------------
6541 -- Is_Partially_Initialized_Type --
6542 -----------------------------------
6543
6544 function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean is
6545 begin
6546 if Is_Scalar_Type (Typ) then
6547 return False;
6548
6549 elsif Is_Access_Type (Typ) then
6550 return True;
6551
6552 elsif Is_Array_Type (Typ) then
6553
6554 -- If component type is partially initialized, so is array type
6555
6556 if Is_Partially_Initialized_Type (Component_Type (Typ)) then
6557 return True;
6558
6559 -- Otherwise we are only partially initialized if we are fully
6560 -- initialized (this is the empty array case, no point in us
6561 -- duplicating that code here).
6562
6563 else
6564 return Is_Fully_Initialized_Type (Typ);
6565 end if;
6566
6567 elsif Is_Record_Type (Typ) then
6568
6569 -- A discriminated type is always partially initialized
6570
6571 if Has_Discriminants (Typ) then
6572 return True;
6573
6574 -- A tagged type is always partially initialized
6575
6576 elsif Is_Tagged_Type (Typ) then
6577 return True;
6578
6579 -- Case of non-discriminated record
6580
6581 else
6582 declare
6583 Ent : Entity_Id;
6584
6585 Component_Present : Boolean := False;
6586 -- Set True if at least one component is present. If no
6587 -- components are present, then record type is fully
6588 -- initialized (another odd case, like the null array).
6589
6590 begin
6591 -- Loop through components
6592
6593 Ent := First_Entity (Typ);
6594 while Present (Ent) loop
6595 if Ekind (Ent) = E_Component then
6596 Component_Present := True;
6597
6598 -- If a component has an initialization expression then
6599 -- the enclosing record type is partially initialized
6600
6601 if Present (Parent (Ent))
6602 and then Present (Expression (Parent (Ent)))
6603 then
6604 return True;
6605
6606 -- If a component is of a type which is itself partially
6607 -- initialized, then the enclosing record type is also.
6608
6609 elsif Is_Partially_Initialized_Type (Etype (Ent)) then
6610 return True;
6611 end if;
6612 end if;
6613
6614 Next_Entity (Ent);
6615 end loop;
6616
6617 -- No initialized components found. If we found any components
6618 -- they were all uninitialized so the result is false.
6619
6620 if Component_Present then
6621 return False;
6622
6623 -- But if we found no components, then all the components are
6624 -- initialized so we consider the type to be initialized.
6625
6626 else
6627 return True;
6628 end if;
6629 end;
6630 end if;
6631
6632 -- Concurrent types are always fully initialized
6633
6634 elsif Is_Concurrent_Type (Typ) then
6635 return True;
6636
6637 -- For a private type, go to underlying type. If there is no underlying
6638 -- type then just assume this partially initialized. Not clear if this
6639 -- can happen in a non-error case, but no harm in testing for this.
6640
6641 elsif Is_Private_Type (Typ) then
6642 declare
6643 U : constant Entity_Id := Underlying_Type (Typ);
6644 begin
6645 if No (U) then
6646 return True;
6647 else
6648 return Is_Partially_Initialized_Type (U);
6649 end if;
6650 end;
6651
6652 -- For any other type (are there any?) assume partially initialized
6653
6654 else
6655 return True;
6656 end if;
6657 end Is_Partially_Initialized_Type;
6658
6659 ------------------------------------
6660 -- Is_Potentially_Persistent_Type --
6661 ------------------------------------
6662
6663 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
6664 Comp : Entity_Id;
6665 Indx : Node_Id;
6666
6667 begin
6668 -- For private type, test corresponding full type
6669
6670 if Is_Private_Type (T) then
6671 return Is_Potentially_Persistent_Type (Full_View (T));
6672
6673 -- Scalar types are potentially persistent
6674
6675 elsif Is_Scalar_Type (T) then
6676 return True;
6677
6678 -- Record type is potentially persistent if not tagged and the types of
6679 -- all it components are potentially persistent, and no component has
6680 -- an initialization expression.
6681
6682 elsif Is_Record_Type (T)
6683 and then not Is_Tagged_Type (T)
6684 and then not Is_Partially_Initialized_Type (T)
6685 then
6686 Comp := First_Component (T);
6687 while Present (Comp) loop
6688 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
6689 return False;
6690 else
6691 Next_Entity (Comp);
6692 end if;
6693 end loop;
6694
6695 return True;
6696
6697 -- Array type is potentially persistent if its component type is
6698 -- potentially persistent and if all its constraints are static.
6699
6700 elsif Is_Array_Type (T) then
6701 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
6702 return False;
6703 end if;
6704
6705 Indx := First_Index (T);
6706 while Present (Indx) loop
6707 if not Is_OK_Static_Subtype (Etype (Indx)) then
6708 return False;
6709 else
6710 Next_Index (Indx);
6711 end if;
6712 end loop;
6713
6714 return True;
6715
6716 -- All other types are not potentially persistent
6717
6718 else
6719 return False;
6720 end if;
6721 end Is_Potentially_Persistent_Type;
6722
6723 ---------------------------------
6724 -- Is_Protected_Self_Reference --
6725 ---------------------------------
6726
6727 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
6728
6729 function In_Access_Definition (N : Node_Id) return Boolean;
6730 -- Returns true if N belongs to an access definition
6731
6732 --------------------------
6733 -- In_Access_Definition --
6734 --------------------------
6735
6736 function In_Access_Definition (N : Node_Id) return Boolean is
6737 P : Node_Id;
6738
6739 begin
6740 P := Parent (N);
6741 while Present (P) loop
6742 if Nkind (P) = N_Access_Definition then
6743 return True;
6744 end if;
6745
6746 P := Parent (P);
6747 end loop;
6748
6749 return False;
6750 end In_Access_Definition;
6751
6752 -- Start of processing for Is_Protected_Self_Reference
6753
6754 begin
6755 -- Verify that prefix is analyzed and has the proper form. Note that
6756 -- the attributes Elab_Spec, Elab_Body, and UET_Address, which also
6757 -- produce the address of an entity, do not analyze their prefix
6758 -- because they denote entities that are not necessarily visible.
6759 -- Neither of them can apply to a protected type.
6760
6761 return Ada_Version >= Ada_05
6762 and then Is_Entity_Name (N)
6763 and then Present (Entity (N))
6764 and then Is_Protected_Type (Entity (N))
6765 and then In_Open_Scopes (Entity (N))
6766 and then not In_Access_Definition (N);
6767 end Is_Protected_Self_Reference;
6768
6769 -----------------------------
6770 -- Is_RCI_Pkg_Spec_Or_Body --
6771 -----------------------------
6772
6773 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
6774
6775 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
6776 -- Return True if the unit of Cunit is an RCI package declaration
6777
6778 ---------------------------
6779 -- Is_RCI_Pkg_Decl_Cunit --
6780 ---------------------------
6781
6782 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
6783 The_Unit : constant Node_Id := Unit (Cunit);
6784
6785 begin
6786 if Nkind (The_Unit) /= N_Package_Declaration then
6787 return False;
6788 end if;
6789
6790 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
6791 end Is_RCI_Pkg_Decl_Cunit;
6792
6793 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
6794
6795 begin
6796 return Is_RCI_Pkg_Decl_Cunit (Cunit)
6797 or else
6798 (Nkind (Unit (Cunit)) = N_Package_Body
6799 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
6800 end Is_RCI_Pkg_Spec_Or_Body;
6801
6802 -----------------------------------------
6803 -- Is_Remote_Access_To_Class_Wide_Type --
6804 -----------------------------------------
6805
6806 function Is_Remote_Access_To_Class_Wide_Type
6807 (E : Entity_Id) return Boolean
6808 is
6809 begin
6810 -- A remote access to class-wide type is a general access to object type
6811 -- declared in the visible part of a Remote_Types or Remote_Call_
6812 -- Interface unit.
6813
6814 return Ekind (E) = E_General_Access_Type
6815 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6816 end Is_Remote_Access_To_Class_Wide_Type;
6817
6818 -----------------------------------------
6819 -- Is_Remote_Access_To_Subprogram_Type --
6820 -----------------------------------------
6821
6822 function Is_Remote_Access_To_Subprogram_Type
6823 (E : Entity_Id) return Boolean
6824 is
6825 begin
6826 return (Ekind (E) = E_Access_Subprogram_Type
6827 or else (Ekind (E) = E_Record_Type
6828 and then Present (Corresponding_Remote_Type (E))))
6829 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6830 end Is_Remote_Access_To_Subprogram_Type;
6831
6832 --------------------
6833 -- Is_Remote_Call --
6834 --------------------
6835
6836 function Is_Remote_Call (N : Node_Id) return Boolean is
6837 begin
6838 if Nkind (N) /= N_Procedure_Call_Statement
6839 and then Nkind (N) /= N_Function_Call
6840 then
6841 -- An entry call cannot be remote
6842
6843 return False;
6844
6845 elsif Nkind (Name (N)) in N_Has_Entity
6846 and then Is_Remote_Call_Interface (Entity (Name (N)))
6847 then
6848 -- A subprogram declared in the spec of a RCI package is remote
6849
6850 return True;
6851
6852 elsif Nkind (Name (N)) = N_Explicit_Dereference
6853 and then Is_Remote_Access_To_Subprogram_Type
6854 (Etype (Prefix (Name (N))))
6855 then
6856 -- The dereference of a RAS is a remote call
6857
6858 return True;
6859
6860 elsif Present (Controlling_Argument (N))
6861 and then Is_Remote_Access_To_Class_Wide_Type
6862 (Etype (Controlling_Argument (N)))
6863 then
6864 -- Any primitive operation call with a controlling argument of
6865 -- a RACW type is a remote call.
6866
6867 return True;
6868 end if;
6869
6870 -- All other calls are local calls
6871
6872 return False;
6873 end Is_Remote_Call;
6874
6875 ----------------------
6876 -- Is_Renamed_Entry --
6877 ----------------------
6878
6879 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
6880 Orig_Node : Node_Id := Empty;
6881 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
6882
6883 function Is_Entry (Nam : Node_Id) return Boolean;
6884 -- Determine whether Nam is an entry. Traverse selectors if there are
6885 -- nested selected components.
6886
6887 --------------
6888 -- Is_Entry --
6889 --------------
6890
6891 function Is_Entry (Nam : Node_Id) return Boolean is
6892 begin
6893 if Nkind (Nam) = N_Selected_Component then
6894 return Is_Entry (Selector_Name (Nam));
6895 end if;
6896
6897 return Ekind (Entity (Nam)) = E_Entry;
6898 end Is_Entry;
6899
6900 -- Start of processing for Is_Renamed_Entry
6901
6902 begin
6903 if Present (Alias (Proc_Nam)) then
6904 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
6905 end if;
6906
6907 -- Look for a rewritten subprogram renaming declaration
6908
6909 if Nkind (Subp_Decl) = N_Subprogram_Declaration
6910 and then Present (Original_Node (Subp_Decl))
6911 then
6912 Orig_Node := Original_Node (Subp_Decl);
6913 end if;
6914
6915 -- The rewritten subprogram is actually an entry
6916
6917 if Present (Orig_Node)
6918 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
6919 and then Is_Entry (Name (Orig_Node))
6920 then
6921 return True;
6922 end if;
6923
6924 return False;
6925 end Is_Renamed_Entry;
6926
6927 ----------------------
6928 -- Is_Selector_Name --
6929 ----------------------
6930
6931 function Is_Selector_Name (N : Node_Id) return Boolean is
6932 begin
6933 if not Is_List_Member (N) then
6934 declare
6935 P : constant Node_Id := Parent (N);
6936 K : constant Node_Kind := Nkind (P);
6937 begin
6938 return
6939 (K = N_Expanded_Name or else
6940 K = N_Generic_Association or else
6941 K = N_Parameter_Association or else
6942 K = N_Selected_Component)
6943 and then Selector_Name (P) = N;
6944 end;
6945
6946 else
6947 declare
6948 L : constant List_Id := List_Containing (N);
6949 P : constant Node_Id := Parent (L);
6950 begin
6951 return (Nkind (P) = N_Discriminant_Association
6952 and then Selector_Names (P) = L)
6953 or else
6954 (Nkind (P) = N_Component_Association
6955 and then Choices (P) = L);
6956 end;
6957 end if;
6958 end Is_Selector_Name;
6959
6960 ------------------
6961 -- Is_Statement --
6962 ------------------
6963
6964 function Is_Statement (N : Node_Id) return Boolean is
6965 begin
6966 return
6967 Nkind (N) in N_Statement_Other_Than_Procedure_Call
6968 or else Nkind (N) = N_Procedure_Call_Statement;
6969 end Is_Statement;
6970
6971 ---------------------------------
6972 -- Is_Synchronized_Tagged_Type --
6973 ---------------------------------
6974
6975 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
6976 Kind : constant Entity_Kind := Ekind (Base_Type (E));
6977
6978 begin
6979 -- A task or protected type derived from an interface is a tagged type.
6980 -- Such a tagged type is called a synchronized tagged type, as are
6981 -- synchronized interfaces and private extensions whose declaration
6982 -- includes the reserved word synchronized.
6983
6984 return (Is_Tagged_Type (E)
6985 and then (Kind = E_Task_Type
6986 or else Kind = E_Protected_Type))
6987 or else
6988 (Is_Interface (E)
6989 and then Is_Synchronized_Interface (E))
6990 or else
6991 (Ekind (E) = E_Record_Type_With_Private
6992 and then (Synchronized_Present (Parent (E))
6993 or else Is_Synchronized_Interface (Etype (E))));
6994 end Is_Synchronized_Tagged_Type;
6995
6996 -----------------
6997 -- Is_Transfer --
6998 -----------------
6999
7000 function Is_Transfer (N : Node_Id) return Boolean is
7001 Kind : constant Node_Kind := Nkind (N);
7002
7003 begin
7004 if Kind = N_Simple_Return_Statement
7005 or else
7006 Kind = N_Extended_Return_Statement
7007 or else
7008 Kind = N_Goto_Statement
7009 or else
7010 Kind = N_Raise_Statement
7011 or else
7012 Kind = N_Requeue_Statement
7013 then
7014 return True;
7015
7016 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
7017 and then No (Condition (N))
7018 then
7019 return True;
7020
7021 elsif Kind = N_Procedure_Call_Statement
7022 and then Is_Entity_Name (Name (N))
7023 and then Present (Entity (Name (N)))
7024 and then No_Return (Entity (Name (N)))
7025 then
7026 return True;
7027
7028 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
7029 return True;
7030
7031 else
7032 return False;
7033 end if;
7034 end Is_Transfer;
7035
7036 -------------
7037 -- Is_True --
7038 -------------
7039
7040 function Is_True (U : Uint) return Boolean is
7041 begin
7042 return (U /= 0);
7043 end Is_True;
7044
7045 -------------------
7046 -- Is_Value_Type --
7047 -------------------
7048
7049 function Is_Value_Type (T : Entity_Id) return Boolean is
7050 begin
7051 return VM_Target = CLI_Target
7052 and then Nkind (T) in N_Has_Chars
7053 and then Chars (T) /= No_Name
7054 and then Get_Name_String (Chars (T)) = "valuetype";
7055 end Is_Value_Type;
7056
7057 ---------------------
7058 -- Is_VMS_Operator --
7059 ---------------------
7060
7061 function Is_VMS_Operator (Op : Entity_Id) return Boolean is
7062 begin
7063 return Ekind (Op) = E_Function
7064 and then Is_Intrinsic_Subprogram (Op)
7065 and then Chars (Scope (Scope (Op))) = Name_System
7066 and then OpenVMS_On_Target;
7067 end Is_VMS_Operator;
7068
7069 -----------------
7070 -- Is_Delegate --
7071 -----------------
7072
7073 function Is_Delegate (T : Entity_Id) return Boolean is
7074 Desig_Type : Entity_Id;
7075
7076 begin
7077 if VM_Target /= CLI_Target then
7078 return False;
7079 end if;
7080
7081 -- Access-to-subprograms are delegates in CIL
7082
7083 if Ekind (T) = E_Access_Subprogram_Type then
7084 return True;
7085 end if;
7086
7087 if Ekind (T) not in Access_Kind then
7088
7089 -- A delegate is a managed pointer. If no designated type is defined
7090 -- it means that it's not a delegate.
7091
7092 return False;
7093 end if;
7094
7095 Desig_Type := Etype (Directly_Designated_Type (T));
7096
7097 if not Is_Tagged_Type (Desig_Type) then
7098 return False;
7099 end if;
7100
7101 -- Test if the type is inherited from [mscorlib]System.Delegate
7102
7103 while Etype (Desig_Type) /= Desig_Type loop
7104 if Chars (Scope (Desig_Type)) /= No_Name
7105 and then Is_Imported (Scope (Desig_Type))
7106 and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
7107 then
7108 return True;
7109 end if;
7110
7111 Desig_Type := Etype (Desig_Type);
7112 end loop;
7113
7114 return False;
7115 end Is_Delegate;
7116
7117 -----------------
7118 -- Is_Variable --
7119 -----------------
7120
7121 function Is_Variable (N : Node_Id) return Boolean is
7122
7123 Orig_Node : constant Node_Id := Original_Node (N);
7124 -- We do the test on the original node, since this is basically a test
7125 -- of syntactic categories, so it must not be disturbed by whatever
7126 -- rewriting might have occurred. For example, an aggregate, which is
7127 -- certainly NOT a variable, could be turned into a variable by
7128 -- expansion.
7129
7130 function In_Protected_Function (E : Entity_Id) return Boolean;
7131 -- Within a protected function, the private components of the
7132 -- enclosing protected type are constants. A function nested within
7133 -- a (protected) procedure is not itself protected.
7134
7135 function Is_Variable_Prefix (P : Node_Id) return Boolean;
7136 -- Prefixes can involve implicit dereferences, in which case we
7137 -- must test for the case of a reference of a constant access
7138 -- type, which can never be a variable.
7139
7140 ---------------------------
7141 -- In_Protected_Function --
7142 ---------------------------
7143
7144 function In_Protected_Function (E : Entity_Id) return Boolean is
7145 Prot : constant Entity_Id := Scope (E);
7146 S : Entity_Id;
7147
7148 begin
7149 if not Is_Protected_Type (Prot) then
7150 return False;
7151 else
7152 S := Current_Scope;
7153 while Present (S) and then S /= Prot loop
7154 if Ekind (S) = E_Function
7155 and then Scope (S) = Prot
7156 then
7157 return True;
7158 end if;
7159
7160 S := Scope (S);
7161 end loop;
7162
7163 return False;
7164 end if;
7165 end In_Protected_Function;
7166
7167 ------------------------
7168 -- Is_Variable_Prefix --
7169 ------------------------
7170
7171 function Is_Variable_Prefix (P : Node_Id) return Boolean is
7172 begin
7173 if Is_Access_Type (Etype (P)) then
7174 return not Is_Access_Constant (Root_Type (Etype (P)));
7175
7176 -- For the case of an indexed component whose prefix has a packed
7177 -- array type, the prefix has been rewritten into a type conversion.
7178 -- Determine variable-ness from the converted expression.
7179
7180 elsif Nkind (P) = N_Type_Conversion
7181 and then not Comes_From_Source (P)
7182 and then Is_Array_Type (Etype (P))
7183 and then Is_Packed (Etype (P))
7184 then
7185 return Is_Variable (Expression (P));
7186
7187 else
7188 return Is_Variable (P);
7189 end if;
7190 end Is_Variable_Prefix;
7191
7192 -- Start of processing for Is_Variable
7193
7194 begin
7195 -- Definitely OK if Assignment_OK is set. Since this is something that
7196 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
7197
7198 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
7199 return True;
7200
7201 -- Normally we go to the original node, but there is one exception
7202 -- where we use the rewritten node, namely when it is an explicit
7203 -- dereference. The generated code may rewrite a prefix which is an
7204 -- access type with an explicit dereference. The dereference is a
7205 -- variable, even though the original node may not be (since it could
7206 -- be a constant of the access type).
7207
7208 -- In Ada 2005 we have a further case to consider: the prefix may be
7209 -- a function call given in prefix notation. The original node appears
7210 -- to be a selected component, but we need to examine the call.
7211
7212 elsif Nkind (N) = N_Explicit_Dereference
7213 and then Nkind (Orig_Node) /= N_Explicit_Dereference
7214 and then Present (Etype (Orig_Node))
7215 and then Is_Access_Type (Etype (Orig_Node))
7216 then
7217 -- Note that if the prefix is an explicit dereference that does not
7218 -- come from source, we must check for a rewritten function call in
7219 -- prefixed notation before other forms of rewriting, to prevent a
7220 -- compiler crash.
7221
7222 return
7223 (Nkind (Orig_Node) = N_Function_Call
7224 and then not Is_Access_Constant (Etype (Prefix (N))))
7225 or else
7226 Is_Variable_Prefix (Original_Node (Prefix (N)));
7227
7228 -- A function call is never a variable
7229
7230 elsif Nkind (N) = N_Function_Call then
7231 return False;
7232
7233 -- All remaining checks use the original node
7234
7235 elsif Is_Entity_Name (Orig_Node)
7236 and then Present (Entity (Orig_Node))
7237 then
7238 declare
7239 E : constant Entity_Id := Entity (Orig_Node);
7240 K : constant Entity_Kind := Ekind (E);
7241
7242 begin
7243 return (K = E_Variable
7244 and then Nkind (Parent (E)) /= N_Exception_Handler)
7245 or else (K = E_Component
7246 and then not In_Protected_Function (E))
7247 or else K = E_Out_Parameter
7248 or else K = E_In_Out_Parameter
7249 or else K = E_Generic_In_Out_Parameter
7250
7251 -- Current instance of type:
7252
7253 or else (Is_Type (E) and then In_Open_Scopes (E))
7254 or else (Is_Incomplete_Or_Private_Type (E)
7255 and then In_Open_Scopes (Full_View (E)));
7256 end;
7257
7258 else
7259 case Nkind (Orig_Node) is
7260 when N_Indexed_Component | N_Slice =>
7261 return Is_Variable_Prefix (Prefix (Orig_Node));
7262
7263 when N_Selected_Component =>
7264 return Is_Variable_Prefix (Prefix (Orig_Node))
7265 and then Is_Variable (Selector_Name (Orig_Node));
7266
7267 -- For an explicit dereference, the type of the prefix cannot
7268 -- be an access to constant or an access to subprogram.
7269
7270 when N_Explicit_Dereference =>
7271 declare
7272 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
7273 begin
7274 return Is_Access_Type (Typ)
7275 and then not Is_Access_Constant (Root_Type (Typ))
7276 and then Ekind (Typ) /= E_Access_Subprogram_Type;
7277 end;
7278
7279 -- The type conversion is the case where we do not deal with the
7280 -- context dependent special case of an actual parameter. Thus
7281 -- the type conversion is only considered a variable for the
7282 -- purposes of this routine if the target type is tagged. However,
7283 -- a type conversion is considered to be a variable if it does not
7284 -- come from source (this deals for example with the conversions
7285 -- of expressions to their actual subtypes).
7286
7287 when N_Type_Conversion =>
7288 return Is_Variable (Expression (Orig_Node))
7289 and then
7290 (not Comes_From_Source (Orig_Node)
7291 or else
7292 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
7293 and then
7294 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
7295
7296 -- GNAT allows an unchecked type conversion as a variable. This
7297 -- only affects the generation of internal expanded code, since
7298 -- calls to instantiations of Unchecked_Conversion are never
7299 -- considered variables (since they are function calls).
7300 -- This is also true for expression actions.
7301
7302 when N_Unchecked_Type_Conversion =>
7303 return Is_Variable (Expression (Orig_Node));
7304
7305 when others =>
7306 return False;
7307 end case;
7308 end if;
7309 end Is_Variable;
7310
7311 ---------------------------
7312 -- Is_Visibly_Controlled --
7313 ---------------------------
7314
7315 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
7316 Root : constant Entity_Id := Root_Type (T);
7317 begin
7318 return Chars (Scope (Root)) = Name_Finalization
7319 and then Chars (Scope (Scope (Root))) = Name_Ada
7320 and then Scope (Scope (Scope (Root))) = Standard_Standard;
7321 end Is_Visibly_Controlled;
7322
7323 ------------------------
7324 -- Is_Volatile_Object --
7325 ------------------------
7326
7327 function Is_Volatile_Object (N : Node_Id) return Boolean is
7328
7329 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
7330 -- Determines if given object has volatile components
7331
7332 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
7333 -- If prefix is an implicit dereference, examine designated type
7334
7335 ------------------------
7336 -- Is_Volatile_Prefix --
7337 ------------------------
7338
7339 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
7340 Typ : constant Entity_Id := Etype (N);
7341
7342 begin
7343 if Is_Access_Type (Typ) then
7344 declare
7345 Dtyp : constant Entity_Id := Designated_Type (Typ);
7346
7347 begin
7348 return Is_Volatile (Dtyp)
7349 or else Has_Volatile_Components (Dtyp);
7350 end;
7351
7352 else
7353 return Object_Has_Volatile_Components (N);
7354 end if;
7355 end Is_Volatile_Prefix;
7356
7357 ------------------------------------
7358 -- Object_Has_Volatile_Components --
7359 ------------------------------------
7360
7361 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
7362 Typ : constant Entity_Id := Etype (N);
7363
7364 begin
7365 if Is_Volatile (Typ)
7366 or else Has_Volatile_Components (Typ)
7367 then
7368 return True;
7369
7370 elsif Is_Entity_Name (N)
7371 and then (Has_Volatile_Components (Entity (N))
7372 or else Is_Volatile (Entity (N)))
7373 then
7374 return True;
7375
7376 elsif Nkind (N) = N_Indexed_Component
7377 or else Nkind (N) = N_Selected_Component
7378 then
7379 return Is_Volatile_Prefix (Prefix (N));
7380
7381 else
7382 return False;
7383 end if;
7384 end Object_Has_Volatile_Components;
7385
7386 -- Start of processing for Is_Volatile_Object
7387
7388 begin
7389 if Is_Volatile (Etype (N))
7390 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
7391 then
7392 return True;
7393
7394 elsif Nkind (N) = N_Indexed_Component
7395 or else Nkind (N) = N_Selected_Component
7396 then
7397 return Is_Volatile_Prefix (Prefix (N));
7398
7399 else
7400 return False;
7401 end if;
7402 end Is_Volatile_Object;
7403
7404 -------------------------
7405 -- Kill_Current_Values --
7406 -------------------------
7407
7408 procedure Kill_Current_Values
7409 (Ent : Entity_Id;
7410 Last_Assignment_Only : Boolean := False)
7411 is
7412 begin
7413 -- ??? do we have to worry about clearing cached checks?
7414
7415 if Is_Assignable (Ent) then
7416 Set_Last_Assignment (Ent, Empty);
7417 end if;
7418
7419 if Is_Object (Ent) then
7420 if not Last_Assignment_Only then
7421 Kill_Checks (Ent);
7422 Set_Current_Value (Ent, Empty);
7423
7424 if not Can_Never_Be_Null (Ent) then
7425 Set_Is_Known_Non_Null (Ent, False);
7426 end if;
7427
7428 Set_Is_Known_Null (Ent, False);
7429
7430 -- Reset Is_Known_Valid unless type is always valid, or if we have
7431 -- a loop parameter (loop parameters are always valid, since their
7432 -- bounds are defined by the bounds given in the loop header).
7433
7434 if not Is_Known_Valid (Etype (Ent))
7435 and then Ekind (Ent) /= E_Loop_Parameter
7436 then
7437 Set_Is_Known_Valid (Ent, False);
7438 end if;
7439 end if;
7440 end if;
7441 end Kill_Current_Values;
7442
7443 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
7444 S : Entity_Id;
7445
7446 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
7447 -- Clear current value for entity E and all entities chained to E
7448
7449 ------------------------------------------
7450 -- Kill_Current_Values_For_Entity_Chain --
7451 ------------------------------------------
7452
7453 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
7454 Ent : Entity_Id;
7455 begin
7456 Ent := E;
7457 while Present (Ent) loop
7458 Kill_Current_Values (Ent, Last_Assignment_Only);
7459 Next_Entity (Ent);
7460 end loop;
7461 end Kill_Current_Values_For_Entity_Chain;
7462
7463 -- Start of processing for Kill_Current_Values
7464
7465 begin
7466 -- Kill all saved checks, a special case of killing saved values
7467
7468 if not Last_Assignment_Only then
7469 Kill_All_Checks;
7470 end if;
7471
7472 -- Loop through relevant scopes, which includes the current scope and
7473 -- any parent scopes if the current scope is a block or a package.
7474
7475 S := Current_Scope;
7476 Scope_Loop : loop
7477
7478 -- Clear current values of all entities in current scope
7479
7480 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
7481
7482 -- If scope is a package, also clear current values of all
7483 -- private entities in the scope.
7484
7485 if Is_Package_Or_Generic_Package (S)
7486 or else Is_Concurrent_Type (S)
7487 then
7488 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
7489 end if;
7490
7491 -- If this is a not a subprogram, deal with parents
7492
7493 if not Is_Subprogram (S) then
7494 S := Scope (S);
7495 exit Scope_Loop when S = Standard_Standard;
7496 else
7497 exit Scope_Loop;
7498 end if;
7499 end loop Scope_Loop;
7500 end Kill_Current_Values;
7501
7502 --------------------------
7503 -- Kill_Size_Check_Code --
7504 --------------------------
7505
7506 procedure Kill_Size_Check_Code (E : Entity_Id) is
7507 begin
7508 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
7509 and then Present (Size_Check_Code (E))
7510 then
7511 Remove (Size_Check_Code (E));
7512 Set_Size_Check_Code (E, Empty);
7513 end if;
7514 end Kill_Size_Check_Code;
7515
7516 --------------------------
7517 -- Known_To_Be_Assigned --
7518 --------------------------
7519
7520 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
7521 P : constant Node_Id := Parent (N);
7522
7523 begin
7524 case Nkind (P) is
7525
7526 -- Test left side of assignment
7527
7528 when N_Assignment_Statement =>
7529 return N = Name (P);
7530
7531 -- Function call arguments are never lvalues
7532
7533 when N_Function_Call =>
7534 return False;
7535
7536 -- Positional parameter for procedure or accept call
7537
7538 when N_Procedure_Call_Statement |
7539 N_Accept_Statement
7540 =>
7541 declare
7542 Proc : Entity_Id;
7543 Form : Entity_Id;
7544 Act : Node_Id;
7545
7546 begin
7547 Proc := Get_Subprogram_Entity (P);
7548
7549 if No (Proc) then
7550 return False;
7551 end if;
7552
7553 -- If we are not a list member, something is strange, so
7554 -- be conservative and return False.
7555
7556 if not Is_List_Member (N) then
7557 return False;
7558 end if;
7559
7560 -- We are going to find the right formal by stepping forward
7561 -- through the formals, as we step backwards in the actuals.
7562
7563 Form := First_Formal (Proc);
7564 Act := N;
7565 loop
7566 -- If no formal, something is weird, so be conservative
7567 -- and return False.
7568
7569 if No (Form) then
7570 return False;
7571 end if;
7572
7573 Prev (Act);
7574 exit when No (Act);
7575 Next_Formal (Form);
7576 end loop;
7577
7578 return Ekind (Form) /= E_In_Parameter;
7579 end;
7580
7581 -- Named parameter for procedure or accept call
7582
7583 when N_Parameter_Association =>
7584 declare
7585 Proc : Entity_Id;
7586 Form : Entity_Id;
7587
7588 begin
7589 Proc := Get_Subprogram_Entity (Parent (P));
7590
7591 if No (Proc) then
7592 return False;
7593 end if;
7594
7595 -- Loop through formals to find the one that matches
7596
7597 Form := First_Formal (Proc);
7598 loop
7599 -- If no matching formal, that's peculiar, some kind of
7600 -- previous error, so return False to be conservative.
7601
7602 if No (Form) then
7603 return False;
7604 end if;
7605
7606 -- Else test for match
7607
7608 if Chars (Form) = Chars (Selector_Name (P)) then
7609 return Ekind (Form) /= E_In_Parameter;
7610 end if;
7611
7612 Next_Formal (Form);
7613 end loop;
7614 end;
7615
7616 -- Test for appearing in a conversion that itself appears
7617 -- in an lvalue context, since this should be an lvalue.
7618
7619 when N_Type_Conversion =>
7620 return Known_To_Be_Assigned (P);
7621
7622 -- All other references are definitely not known to be modifications
7623
7624 when others =>
7625 return False;
7626
7627 end case;
7628 end Known_To_Be_Assigned;
7629
7630 -------------------
7631 -- May_Be_Lvalue --
7632 -------------------
7633
7634 function May_Be_Lvalue (N : Node_Id) return Boolean is
7635 P : constant Node_Id := Parent (N);
7636
7637 begin
7638 case Nkind (P) is
7639
7640 -- Test left side of assignment
7641
7642 when N_Assignment_Statement =>
7643 return N = Name (P);
7644
7645 -- Test prefix of component or attribute. Note that the prefix of an
7646 -- explicit or implicit dereference cannot be an l-value.
7647
7648 when N_Attribute_Reference =>
7649 return N = Prefix (P)
7650 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
7651
7652 -- For an expanded name, the name is an lvalue if the expanded name
7653 -- is an lvalue, but the prefix is never an lvalue, since it is just
7654 -- the scope where the name is found.
7655
7656 when N_Expanded_Name =>
7657 if N = Prefix (P) then
7658 return May_Be_Lvalue (P);
7659 else
7660 return False;
7661 end if;
7662
7663 -- For a selected component A.B, A is certainly an lvalue if A.B is.
7664 -- B is a little interesting, if we have A.B := 3, there is some
7665 -- discussion as to whether B is an lvalue or not, we choose to say
7666 -- it is. Note however that A is not an lvalue if it is of an access
7667 -- type since this is an implicit dereference.
7668
7669 when N_Selected_Component =>
7670 if N = Prefix (P)
7671 and then Present (Etype (N))
7672 and then Is_Access_Type (Etype (N))
7673 then
7674 return False;
7675 else
7676 return May_Be_Lvalue (P);
7677 end if;
7678
7679 -- For an indexed component or slice, the index or slice bounds is
7680 -- never an lvalue. The prefix is an lvalue if the indexed component
7681 -- or slice is an lvalue, except if it is an access type, where we
7682 -- have an implicit dereference.
7683
7684 when N_Indexed_Component =>
7685 if N /= Prefix (P)
7686 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
7687 then
7688 return False;
7689 else
7690 return May_Be_Lvalue (P);
7691 end if;
7692
7693 -- Prefix of a reference is an lvalue if the reference is an lvalue
7694
7695 when N_Reference =>
7696 return May_Be_Lvalue (P);
7697
7698 -- Prefix of explicit dereference is never an lvalue
7699
7700 when N_Explicit_Dereference =>
7701 return False;
7702
7703 -- Function call arguments are never lvalues
7704
7705 when N_Function_Call =>
7706 return False;
7707
7708 -- Positional parameter for procedure, entry, or accept call
7709
7710 when N_Procedure_Call_Statement |
7711 N_Entry_Call_Statement |
7712 N_Accept_Statement
7713 =>
7714 declare
7715 Proc : Entity_Id;
7716 Form : Entity_Id;
7717 Act : Node_Id;
7718
7719 begin
7720 Proc := Get_Subprogram_Entity (P);
7721
7722 if No (Proc) then
7723 return True;
7724 end if;
7725
7726 -- If we are not a list member, something is strange, so
7727 -- be conservative and return True.
7728
7729 if not Is_List_Member (N) then
7730 return True;
7731 end if;
7732
7733 -- We are going to find the right formal by stepping forward
7734 -- through the formals, as we step backwards in the actuals.
7735
7736 Form := First_Formal (Proc);
7737 Act := N;
7738 loop
7739 -- If no formal, something is weird, so be conservative
7740 -- and return True.
7741
7742 if No (Form) then
7743 return True;
7744 end if;
7745
7746 Prev (Act);
7747 exit when No (Act);
7748 Next_Formal (Form);
7749 end loop;
7750
7751 return Ekind (Form) /= E_In_Parameter;
7752 end;
7753
7754 -- Named parameter for procedure or accept call
7755
7756 when N_Parameter_Association =>
7757 declare
7758 Proc : Entity_Id;
7759 Form : Entity_Id;
7760
7761 begin
7762 Proc := Get_Subprogram_Entity (Parent (P));
7763
7764 if No (Proc) then
7765 return True;
7766 end if;
7767
7768 -- Loop through formals to find the one that matches
7769
7770 Form := First_Formal (Proc);
7771 loop
7772 -- If no matching formal, that's peculiar, some kind of
7773 -- previous error, so return True to be conservative.
7774
7775 if No (Form) then
7776 return True;
7777 end if;
7778
7779 -- Else test for match
7780
7781 if Chars (Form) = Chars (Selector_Name (P)) then
7782 return Ekind (Form) /= E_In_Parameter;
7783 end if;
7784
7785 Next_Formal (Form);
7786 end loop;
7787 end;
7788
7789 -- Test for appearing in a conversion that itself appears in an
7790 -- lvalue context, since this should be an lvalue.
7791
7792 when N_Type_Conversion =>
7793 return May_Be_Lvalue (P);
7794
7795 -- Test for appearance in object renaming declaration
7796
7797 when N_Object_Renaming_Declaration =>
7798 return True;
7799
7800 -- All other references are definitely not lvalues
7801
7802 when others =>
7803 return False;
7804
7805 end case;
7806 end May_Be_Lvalue;
7807
7808 -----------------------
7809 -- Mark_Coextensions --
7810 -----------------------
7811
7812 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
7813 Is_Dynamic : Boolean;
7814 -- Indicates whether the context causes nested coextensions to be
7815 -- dynamic or static
7816
7817 function Mark_Allocator (N : Node_Id) return Traverse_Result;
7818 -- Recognize an allocator node and label it as a dynamic coextension
7819
7820 --------------------
7821 -- Mark_Allocator --
7822 --------------------
7823
7824 function Mark_Allocator (N : Node_Id) return Traverse_Result is
7825 begin
7826 if Nkind (N) = N_Allocator then
7827 if Is_Dynamic then
7828 Set_Is_Dynamic_Coextension (N);
7829 else
7830 Set_Is_Static_Coextension (N);
7831 end if;
7832 end if;
7833
7834 return OK;
7835 end Mark_Allocator;
7836
7837 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
7838
7839 -- Start of processing Mark_Coextensions
7840
7841 begin
7842 case Nkind (Context_Nod) is
7843 when N_Assignment_Statement |
7844 N_Simple_Return_Statement =>
7845 Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
7846
7847 when N_Object_Declaration =>
7848 Is_Dynamic := Nkind (Root_Nod) = N_Allocator;
7849
7850 -- This routine should not be called for constructs which may not
7851 -- contain coextensions.
7852
7853 when others =>
7854 raise Program_Error;
7855 end case;
7856
7857 Mark_Allocators (Root_Nod);
7858 end Mark_Coextensions;
7859
7860 ----------------------
7861 -- Needs_One_Actual --
7862 ----------------------
7863
7864 function Needs_One_Actual (E : Entity_Id) return Boolean is
7865 Formal : Entity_Id;
7866
7867 begin
7868 if Ada_Version >= Ada_05
7869 and then Present (First_Formal (E))
7870 then
7871 Formal := Next_Formal (First_Formal (E));
7872 while Present (Formal) loop
7873 if No (Default_Value (Formal)) then
7874 return False;
7875 end if;
7876
7877 Next_Formal (Formal);
7878 end loop;
7879
7880 return True;
7881
7882 else
7883 return False;
7884 end if;
7885 end Needs_One_Actual;
7886
7887 ------------------------
7888 -- New_Copy_List_Tree --
7889 ------------------------
7890
7891 function New_Copy_List_Tree (List : List_Id) return List_Id is
7892 NL : List_Id;
7893 E : Node_Id;
7894
7895 begin
7896 if List = No_List then
7897 return No_List;
7898
7899 else
7900 NL := New_List;
7901 E := First (List);
7902
7903 while Present (E) loop
7904 Append (New_Copy_Tree (E), NL);
7905 E := Next (E);
7906 end loop;
7907
7908 return NL;
7909 end if;
7910 end New_Copy_List_Tree;
7911
7912 -------------------
7913 -- New_Copy_Tree --
7914 -------------------
7915
7916 use Atree.Unchecked_Access;
7917 use Atree_Private_Part;
7918
7919 -- Our approach here requires a two pass traversal of the tree. The
7920 -- first pass visits all nodes that eventually will be copied looking
7921 -- for defining Itypes. If any defining Itypes are found, then they are
7922 -- copied, and an entry is added to the replacement map. In the second
7923 -- phase, the tree is copied, using the replacement map to replace any
7924 -- Itype references within the copied tree.
7925
7926 -- The following hash tables are used if the Map supplied has more
7927 -- than hash threshhold entries to speed up access to the map. If
7928 -- there are fewer entries, then the map is searched sequentially
7929 -- (because setting up a hash table for only a few entries takes
7930 -- more time than it saves.
7931
7932 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
7933 -- Hash function used for hash operations
7934
7935 -------------------
7936 -- New_Copy_Hash --
7937 -------------------
7938
7939 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
7940 begin
7941 return Nat (E) mod (NCT_Header_Num'Last + 1);
7942 end New_Copy_Hash;
7943
7944 ---------------
7945 -- NCT_Assoc --
7946 ---------------
7947
7948 -- The hash table NCT_Assoc associates old entities in the table
7949 -- with their corresponding new entities (i.e. the pairs of entries
7950 -- presented in the original Map argument are Key-Element pairs).
7951
7952 package NCT_Assoc is new Simple_HTable (
7953 Header_Num => NCT_Header_Num,
7954 Element => Entity_Id,
7955 No_Element => Empty,
7956 Key => Entity_Id,
7957 Hash => New_Copy_Hash,
7958 Equal => Types."=");
7959
7960 ---------------------
7961 -- NCT_Itype_Assoc --
7962 ---------------------
7963
7964 -- The hash table NCT_Itype_Assoc contains entries only for those
7965 -- old nodes which have a non-empty Associated_Node_For_Itype set.
7966 -- The key is the associated node, and the element is the new node
7967 -- itself (NOT the associated node for the new node).
7968
7969 package NCT_Itype_Assoc is new Simple_HTable (
7970 Header_Num => NCT_Header_Num,
7971 Element => Entity_Id,
7972 No_Element => Empty,
7973 Key => Entity_Id,
7974 Hash => New_Copy_Hash,
7975 Equal => Types."=");
7976
7977 -- Start of processing for New_Copy_Tree function
7978
7979 function New_Copy_Tree
7980 (Source : Node_Id;
7981 Map : Elist_Id := No_Elist;
7982 New_Sloc : Source_Ptr := No_Location;
7983 New_Scope : Entity_Id := Empty) return Node_Id
7984 is
7985 Actual_Map : Elist_Id := Map;
7986 -- This is the actual map for the copy. It is initialized with the
7987 -- given elements, and then enlarged as required for Itypes that are
7988 -- copied during the first phase of the copy operation. The visit
7989 -- procedures add elements to this map as Itypes are encountered.
7990 -- The reason we cannot use Map directly, is that it may well be
7991 -- (and normally is) initialized to No_Elist, and if we have mapped
7992 -- entities, we have to reset it to point to a real Elist.
7993
7994 function Assoc (N : Node_Or_Entity_Id) return Node_Id;
7995 -- Called during second phase to map entities into their corresponding
7996 -- copies using Actual_Map. If the argument is not an entity, or is not
7997 -- in Actual_Map, then it is returned unchanged.
7998
7999 procedure Build_NCT_Hash_Tables;
8000 -- Builds hash tables (number of elements >= threshold value)
8001
8002 function Copy_Elist_With_Replacement
8003 (Old_Elist : Elist_Id) return Elist_Id;
8004 -- Called during second phase to copy element list doing replacements
8005
8006 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
8007 -- Called during the second phase to process a copied Itype. The actual
8008 -- copy happened during the first phase (so that we could make the entry
8009 -- in the mapping), but we still have to deal with the descendents of
8010 -- the copied Itype and copy them where necessary.
8011
8012 function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
8013 -- Called during second phase to copy list doing replacements
8014
8015 function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
8016 -- Called during second phase to copy node doing replacements
8017
8018 procedure Visit_Elist (E : Elist_Id);
8019 -- Called during first phase to visit all elements of an Elist
8020
8021 procedure Visit_Field (F : Union_Id; N : Node_Id);
8022 -- Visit a single field, recursing to call Visit_Node or Visit_List
8023 -- if the field is a syntactic descendent of the current node (i.e.
8024 -- its parent is Node N).
8025
8026 procedure Visit_Itype (Old_Itype : Entity_Id);
8027 -- Called during first phase to visit subsidiary fields of a defining
8028 -- Itype, and also create a copy and make an entry in the replacement
8029 -- map for the new copy.
8030
8031 procedure Visit_List (L : List_Id);
8032 -- Called during first phase to visit all elements of a List
8033
8034 procedure Visit_Node (N : Node_Or_Entity_Id);
8035 -- Called during first phase to visit a node and all its subtrees
8036
8037 -----------
8038 -- Assoc --
8039 -----------
8040
8041 function Assoc (N : Node_Or_Entity_Id) return Node_Id is
8042 E : Elmt_Id;
8043 Ent : Entity_Id;
8044
8045 begin
8046 if not Has_Extension (N) or else No (Actual_Map) then
8047 return N;
8048
8049 elsif NCT_Hash_Tables_Used then
8050 Ent := NCT_Assoc.Get (Entity_Id (N));
8051
8052 if Present (Ent) then
8053 return Ent;
8054 else
8055 return N;
8056 end if;
8057
8058 -- No hash table used, do serial search
8059
8060 else
8061 E := First_Elmt (Actual_Map);
8062 while Present (E) loop
8063 if Node (E) = N then
8064 return Node (Next_Elmt (E));
8065 else
8066 E := Next_Elmt (Next_Elmt (E));
8067 end if;
8068 end loop;
8069 end if;
8070
8071 return N;
8072 end Assoc;
8073
8074 ---------------------------
8075 -- Build_NCT_Hash_Tables --
8076 ---------------------------
8077
8078 procedure Build_NCT_Hash_Tables is
8079 Elmt : Elmt_Id;
8080 Ent : Entity_Id;
8081 begin
8082 if NCT_Hash_Table_Setup then
8083 NCT_Assoc.Reset;
8084 NCT_Itype_Assoc.Reset;
8085 end if;
8086
8087 Elmt := First_Elmt (Actual_Map);
8088 while Present (Elmt) loop
8089 Ent := Node (Elmt);
8090
8091 -- Get new entity, and associate old and new
8092
8093 Next_Elmt (Elmt);
8094 NCT_Assoc.Set (Ent, Node (Elmt));
8095
8096 if Is_Type (Ent) then
8097 declare
8098 Anode : constant Entity_Id :=
8099 Associated_Node_For_Itype (Ent);
8100
8101 begin
8102 if Present (Anode) then
8103
8104 -- Enter a link between the associated node of the
8105 -- old Itype and the new Itype, for updating later
8106 -- when node is copied.
8107
8108 NCT_Itype_Assoc.Set (Anode, Node (Elmt));
8109 end if;
8110 end;
8111 end if;
8112
8113 Next_Elmt (Elmt);
8114 end loop;
8115
8116 NCT_Hash_Tables_Used := True;
8117 NCT_Hash_Table_Setup := True;
8118 end Build_NCT_Hash_Tables;
8119
8120 ---------------------------------
8121 -- Copy_Elist_With_Replacement --
8122 ---------------------------------
8123
8124 function Copy_Elist_With_Replacement
8125 (Old_Elist : Elist_Id) return Elist_Id
8126 is
8127 M : Elmt_Id;
8128 New_Elist : Elist_Id;
8129
8130 begin
8131 if No (Old_Elist) then
8132 return No_Elist;
8133
8134 else
8135 New_Elist := New_Elmt_List;
8136
8137 M := First_Elmt (Old_Elist);
8138 while Present (M) loop
8139 Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
8140 Next_Elmt (M);
8141 end loop;
8142 end if;
8143
8144 return New_Elist;
8145 end Copy_Elist_With_Replacement;
8146
8147 ---------------------------------
8148 -- Copy_Itype_With_Replacement --
8149 ---------------------------------
8150
8151 -- This routine exactly parallels its phase one analog Visit_Itype,
8152
8153 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
8154 begin
8155 -- Translate Next_Entity, Scope and Etype fields, in case they
8156 -- reference entities that have been mapped into copies.
8157
8158 Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
8159 Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
8160
8161 if Present (New_Scope) then
8162 Set_Scope (New_Itype, New_Scope);
8163 else
8164 Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
8165 end if;
8166
8167 -- Copy referenced fields
8168
8169 if Is_Discrete_Type (New_Itype) then
8170 Set_Scalar_Range (New_Itype,
8171 Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
8172
8173 elsif Has_Discriminants (Base_Type (New_Itype)) then
8174 Set_Discriminant_Constraint (New_Itype,
8175 Copy_Elist_With_Replacement
8176 (Discriminant_Constraint (New_Itype)));
8177
8178 elsif Is_Array_Type (New_Itype) then
8179 if Present (First_Index (New_Itype)) then
8180 Set_First_Index (New_Itype,
8181 First (Copy_List_With_Replacement
8182 (List_Containing (First_Index (New_Itype)))));
8183 end if;
8184
8185 if Is_Packed (New_Itype) then
8186 Set_Packed_Array_Type (New_Itype,
8187 Copy_Node_With_Replacement
8188 (Packed_Array_Type (New_Itype)));
8189 end if;
8190 end if;
8191 end Copy_Itype_With_Replacement;
8192
8193 --------------------------------
8194 -- Copy_List_With_Replacement --
8195 --------------------------------
8196
8197 function Copy_List_With_Replacement
8198 (Old_List : List_Id) return List_Id
8199 is
8200 New_List : List_Id;
8201 E : Node_Id;
8202
8203 begin
8204 if Old_List = No_List then
8205 return No_List;
8206
8207 else
8208 New_List := Empty_List;
8209
8210 E := First (Old_List);
8211 while Present (E) loop
8212 Append (Copy_Node_With_Replacement (E), New_List);
8213 Next (E);
8214 end loop;
8215
8216 return New_List;
8217 end if;
8218 end Copy_List_With_Replacement;
8219
8220 --------------------------------
8221 -- Copy_Node_With_Replacement --
8222 --------------------------------
8223
8224 function Copy_Node_With_Replacement
8225 (Old_Node : Node_Id) return Node_Id
8226 is
8227 New_Node : Node_Id;
8228
8229 procedure Adjust_Named_Associations
8230 (Old_Node : Node_Id;
8231 New_Node : Node_Id);
8232 -- If a call node has named associations, these are chained through
8233 -- the First_Named_Actual, Next_Named_Actual links. These must be
8234 -- propagated separately to the new parameter list, because these
8235 -- are not syntactic fields.
8236
8237 function Copy_Field_With_Replacement
8238 (Field : Union_Id) return Union_Id;
8239 -- Given Field, which is a field of Old_Node, return a copy of it
8240 -- if it is a syntactic field (i.e. its parent is Node), setting
8241 -- the parent of the copy to poit to New_Node. Otherwise returns
8242 -- the field (possibly mapped if it is an entity).
8243
8244 -------------------------------
8245 -- Adjust_Named_Associations --
8246 -------------------------------
8247
8248 procedure Adjust_Named_Associations
8249 (Old_Node : Node_Id;
8250 New_Node : Node_Id)
8251 is
8252 Old_E : Node_Id;
8253 New_E : Node_Id;
8254
8255 Old_Next : Node_Id;
8256 New_Next : Node_Id;
8257
8258 begin
8259 Old_E := First (Parameter_Associations (Old_Node));
8260 New_E := First (Parameter_Associations (New_Node));
8261 while Present (Old_E) loop
8262 if Nkind (Old_E) = N_Parameter_Association
8263 and then Present (Next_Named_Actual (Old_E))
8264 then
8265 if First_Named_Actual (Old_Node)
8266 = Explicit_Actual_Parameter (Old_E)
8267 then
8268 Set_First_Named_Actual
8269 (New_Node, Explicit_Actual_Parameter (New_E));
8270 end if;
8271
8272 -- Now scan parameter list from the beginning,to locate
8273 -- next named actual, which can be out of order.
8274
8275 Old_Next := First (Parameter_Associations (Old_Node));
8276 New_Next := First (Parameter_Associations (New_Node));
8277
8278 while Nkind (Old_Next) /= N_Parameter_Association
8279 or else Explicit_Actual_Parameter (Old_Next)
8280 /= Next_Named_Actual (Old_E)
8281 loop
8282 Next (Old_Next);
8283 Next (New_Next);
8284 end loop;
8285
8286 Set_Next_Named_Actual
8287 (New_E, Explicit_Actual_Parameter (New_Next));
8288 end if;
8289
8290 Next (Old_E);
8291 Next (New_E);
8292 end loop;
8293 end Adjust_Named_Associations;
8294
8295 ---------------------------------
8296 -- Copy_Field_With_Replacement --
8297 ---------------------------------
8298
8299 function Copy_Field_With_Replacement
8300 (Field : Union_Id) return Union_Id
8301 is
8302 begin
8303 if Field = Union_Id (Empty) then
8304 return Field;
8305
8306 elsif Field in Node_Range then
8307 declare
8308 Old_N : constant Node_Id := Node_Id (Field);
8309 New_N : Node_Id;
8310
8311 begin
8312 -- If syntactic field, as indicated by the parent pointer
8313 -- being set, then copy the referenced node recursively.
8314
8315 if Parent (Old_N) = Old_Node then
8316 New_N := Copy_Node_With_Replacement (Old_N);
8317
8318 if New_N /= Old_N then
8319 Set_Parent (New_N, New_Node);
8320 end if;
8321
8322 -- For semantic fields, update possible entity reference
8323 -- from the replacement map.
8324
8325 else
8326 New_N := Assoc (Old_N);
8327 end if;
8328
8329 return Union_Id (New_N);
8330 end;
8331
8332 elsif Field in List_Range then
8333 declare
8334 Old_L : constant List_Id := List_Id (Field);
8335 New_L : List_Id;
8336
8337 begin
8338 -- If syntactic field, as indicated by the parent pointer,
8339 -- then recursively copy the entire referenced list.
8340
8341 if Parent (Old_L) = Old_Node then
8342 New_L := Copy_List_With_Replacement (Old_L);
8343 Set_Parent (New_L, New_Node);
8344
8345 -- For semantic list, just returned unchanged
8346
8347 else
8348 New_L := Old_L;
8349 end if;
8350
8351 return Union_Id (New_L);
8352 end;
8353
8354 -- Anything other than a list or a node is returned unchanged
8355
8356 else
8357 return Field;
8358 end if;
8359 end Copy_Field_With_Replacement;
8360
8361 -- Start of processing for Copy_Node_With_Replacement
8362
8363 begin
8364 if Old_Node <= Empty_Or_Error then
8365 return Old_Node;
8366
8367 elsif Has_Extension (Old_Node) then
8368 return Assoc (Old_Node);
8369
8370 else
8371 New_Node := New_Copy (Old_Node);
8372
8373 -- If the node we are copying is the associated node of a
8374 -- previously copied Itype, then adjust the associated node
8375 -- of the copy of that Itype accordingly.
8376
8377 if Present (Actual_Map) then
8378 declare
8379 E : Elmt_Id;
8380 Ent : Entity_Id;
8381
8382 begin
8383 -- Case of hash table used
8384
8385 if NCT_Hash_Tables_Used then
8386 Ent := NCT_Itype_Assoc.Get (Old_Node);
8387
8388 if Present (Ent) then
8389 Set_Associated_Node_For_Itype (Ent, New_Node);
8390 end if;
8391
8392 -- Case of no hash table used
8393
8394 else
8395 E := First_Elmt (Actual_Map);
8396 while Present (E) loop
8397 if Is_Itype (Node (E))
8398 and then
8399 Old_Node = Associated_Node_For_Itype (Node (E))
8400 then
8401 Set_Associated_Node_For_Itype
8402 (Node (Next_Elmt (E)), New_Node);
8403 end if;
8404
8405 E := Next_Elmt (Next_Elmt (E));
8406 end loop;
8407 end if;
8408 end;
8409 end if;
8410
8411 -- Recursively copy descendents
8412
8413 Set_Field1
8414 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
8415 Set_Field2
8416 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
8417 Set_Field3
8418 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
8419 Set_Field4
8420 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
8421 Set_Field5
8422 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
8423
8424 -- Adjust Sloc of new node if necessary
8425
8426 if New_Sloc /= No_Location then
8427 Set_Sloc (New_Node, New_Sloc);
8428
8429 -- If we adjust the Sloc, then we are essentially making
8430 -- a completely new node, so the Comes_From_Source flag
8431 -- should be reset to the proper default value.
8432
8433 Nodes.Table (New_Node).Comes_From_Source :=
8434 Default_Node.Comes_From_Source;
8435 end if;
8436
8437 -- If the node is call and has named associations,
8438 -- set the corresponding links in the copy.
8439
8440 if (Nkind (Old_Node) = N_Function_Call
8441 or else Nkind (Old_Node) = N_Entry_Call_Statement
8442 or else
8443 Nkind (Old_Node) = N_Procedure_Call_Statement)
8444 and then Present (First_Named_Actual (Old_Node))
8445 then
8446 Adjust_Named_Associations (Old_Node, New_Node);
8447 end if;
8448
8449 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
8450 -- The replacement mechanism applies to entities, and is not used
8451 -- here. Eventually we may need a more general graph-copying
8452 -- routine. For now, do a sequential search to find desired node.
8453
8454 if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
8455 and then Present (First_Real_Statement (Old_Node))
8456 then
8457 declare
8458 Old_F : constant Node_Id := First_Real_Statement (Old_Node);
8459 N1, N2 : Node_Id;
8460
8461 begin
8462 N1 := First (Statements (Old_Node));
8463 N2 := First (Statements (New_Node));
8464
8465 while N1 /= Old_F loop
8466 Next (N1);
8467 Next (N2);
8468 end loop;
8469
8470 Set_First_Real_Statement (New_Node, N2);
8471 end;
8472 end if;
8473 end if;
8474
8475 -- All done, return copied node
8476
8477 return New_Node;
8478 end Copy_Node_With_Replacement;
8479
8480 -----------------
8481 -- Visit_Elist --
8482 -----------------
8483
8484 procedure Visit_Elist (E : Elist_Id) is
8485 Elmt : Elmt_Id;
8486 begin
8487 if Present (E) then
8488 Elmt := First_Elmt (E);
8489
8490 while Elmt /= No_Elmt loop
8491 Visit_Node (Node (Elmt));
8492 Next_Elmt (Elmt);
8493 end loop;
8494 end if;
8495 end Visit_Elist;
8496
8497 -----------------
8498 -- Visit_Field --
8499 -----------------
8500
8501 procedure Visit_Field (F : Union_Id; N : Node_Id) is
8502 begin
8503 if F = Union_Id (Empty) then
8504 return;
8505
8506 elsif F in Node_Range then
8507
8508 -- Copy node if it is syntactic, i.e. its parent pointer is
8509 -- set to point to the field that referenced it (certain
8510 -- Itypes will also meet this criterion, which is fine, since
8511 -- these are clearly Itypes that do need to be copied, since
8512 -- we are copying their parent.)
8513
8514 if Parent (Node_Id (F)) = N then
8515 Visit_Node (Node_Id (F));
8516 return;
8517
8518 -- Another case, if we are pointing to an Itype, then we want
8519 -- to copy it if its associated node is somewhere in the tree
8520 -- being copied.
8521
8522 -- Note: the exclusion of self-referential copies is just an
8523 -- optimization, since the search of the already copied list
8524 -- would catch it, but it is a common case (Etype pointing
8525 -- to itself for an Itype that is a base type).
8526
8527 elsif Has_Extension (Node_Id (F))
8528 and then Is_Itype (Entity_Id (F))
8529 and then Node_Id (F) /= N
8530 then
8531 declare
8532 P : Node_Id;
8533
8534 begin
8535 P := Associated_Node_For_Itype (Node_Id (F));
8536 while Present (P) loop
8537 if P = Source then
8538 Visit_Node (Node_Id (F));
8539 return;
8540 else
8541 P := Parent (P);
8542 end if;
8543 end loop;
8544
8545 -- An Itype whose parent is not being copied definitely
8546 -- should NOT be copied, since it does not belong in any
8547 -- sense to the copied subtree.
8548
8549 return;
8550 end;
8551 end if;
8552
8553 elsif F in List_Range
8554 and then Parent (List_Id (F)) = N
8555 then
8556 Visit_List (List_Id (F));
8557 return;
8558 end if;
8559 end Visit_Field;
8560
8561 -----------------
8562 -- Visit_Itype --
8563 -----------------
8564
8565 procedure Visit_Itype (Old_Itype : Entity_Id) is
8566 New_Itype : Entity_Id;
8567 E : Elmt_Id;
8568 Ent : Entity_Id;
8569
8570 begin
8571 -- Itypes that describe the designated type of access to subprograms
8572 -- have the structure of subprogram declarations, with signatures,
8573 -- etc. Either we duplicate the signatures completely, or choose to
8574 -- share such itypes, which is fine because their elaboration will
8575 -- have no side effects.
8576
8577 if Ekind (Old_Itype) = E_Subprogram_Type then
8578 return;
8579 end if;
8580
8581 New_Itype := New_Copy (Old_Itype);
8582
8583 -- The new Itype has all the attributes of the old one, and
8584 -- we just copy the contents of the entity. However, the back-end
8585 -- needs different names for debugging purposes, so we create a
8586 -- new internal name for it in all cases.
8587
8588 Set_Chars (New_Itype, New_Internal_Name ('T'));
8589
8590 -- If our associated node is an entity that has already been copied,
8591 -- then set the associated node of the copy to point to the right
8592 -- copy. If we have copied an Itype that is itself the associated
8593 -- node of some previously copied Itype, then we set the right
8594 -- pointer in the other direction.
8595
8596 if Present (Actual_Map) then
8597
8598 -- Case of hash tables used
8599
8600 if NCT_Hash_Tables_Used then
8601
8602 Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
8603
8604 if Present (Ent) then
8605 Set_Associated_Node_For_Itype (New_Itype, Ent);
8606 end if;
8607
8608 Ent := NCT_Itype_Assoc.Get (Old_Itype);
8609 if Present (Ent) then
8610 Set_Associated_Node_For_Itype (Ent, New_Itype);
8611
8612 -- If the hash table has no association for this Itype and
8613 -- its associated node, enter one now.
8614
8615 else
8616 NCT_Itype_Assoc.Set
8617 (Associated_Node_For_Itype (Old_Itype), New_Itype);
8618 end if;
8619
8620 -- Case of hash tables not used
8621
8622 else
8623 E := First_Elmt (Actual_Map);
8624 while Present (E) loop
8625 if Associated_Node_For_Itype (Old_Itype) = Node (E) then
8626 Set_Associated_Node_For_Itype
8627 (New_Itype, Node (Next_Elmt (E)));
8628 end if;
8629
8630 if Is_Type (Node (E))
8631 and then
8632 Old_Itype = Associated_Node_For_Itype (Node (E))
8633 then
8634 Set_Associated_Node_For_Itype
8635 (Node (Next_Elmt (E)), New_Itype);
8636 end if;
8637
8638 E := Next_Elmt (Next_Elmt (E));
8639 end loop;
8640 end if;
8641 end if;
8642
8643 if Present (Freeze_Node (New_Itype)) then
8644 Set_Is_Frozen (New_Itype, False);
8645 Set_Freeze_Node (New_Itype, Empty);
8646 end if;
8647
8648 -- Add new association to map
8649
8650 if No (Actual_Map) then
8651 Actual_Map := New_Elmt_List;
8652 end if;
8653
8654 Append_Elmt (Old_Itype, Actual_Map);
8655 Append_Elmt (New_Itype, Actual_Map);
8656
8657 if NCT_Hash_Tables_Used then
8658 NCT_Assoc.Set (Old_Itype, New_Itype);
8659
8660 else
8661 NCT_Table_Entries := NCT_Table_Entries + 1;
8662
8663 if NCT_Table_Entries > NCT_Hash_Threshhold then
8664 Build_NCT_Hash_Tables;
8665 end if;
8666 end if;
8667
8668 -- If a record subtype is simply copied, the entity list will be
8669 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
8670
8671 if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
8672 Set_Cloned_Subtype (New_Itype, Old_Itype);
8673 end if;
8674
8675 -- Visit descendents that eventually get copied
8676
8677 Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
8678
8679 if Is_Discrete_Type (Old_Itype) then
8680 Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
8681
8682 elsif Has_Discriminants (Base_Type (Old_Itype)) then
8683 -- ??? This should involve call to Visit_Field
8684 Visit_Elist (Discriminant_Constraint (Old_Itype));
8685
8686 elsif Is_Array_Type (Old_Itype) then
8687 if Present (First_Index (Old_Itype)) then
8688 Visit_Field (Union_Id (List_Containing
8689 (First_Index (Old_Itype))),
8690 Old_Itype);
8691 end if;
8692
8693 if Is_Packed (Old_Itype) then
8694 Visit_Field (Union_Id (Packed_Array_Type (Old_Itype)),
8695 Old_Itype);
8696 end if;
8697 end if;
8698 end Visit_Itype;
8699
8700 ----------------
8701 -- Visit_List --
8702 ----------------
8703
8704 procedure Visit_List (L : List_Id) is
8705 N : Node_Id;
8706 begin
8707 if L /= No_List then
8708 N := First (L);
8709
8710 while Present (N) loop
8711 Visit_Node (N);
8712 Next (N);
8713 end loop;
8714 end if;
8715 end Visit_List;
8716
8717 ----------------
8718 -- Visit_Node --
8719 ----------------
8720
8721 procedure Visit_Node (N : Node_Or_Entity_Id) is
8722
8723 -- Start of processing for Visit_Node
8724
8725 begin
8726 -- Handle case of an Itype, which must be copied
8727
8728 if Has_Extension (N)
8729 and then Is_Itype (N)
8730 then
8731 -- Nothing to do if already in the list. This can happen with an
8732 -- Itype entity that appears more than once in the tree.
8733 -- Note that we do not want to visit descendents in this case.
8734
8735 -- Test for already in list when hash table is used
8736
8737 if NCT_Hash_Tables_Used then
8738 if Present (NCT_Assoc.Get (Entity_Id (N))) then
8739 return;
8740 end if;
8741
8742 -- Test for already in list when hash table not used
8743
8744 else
8745 declare
8746 E : Elmt_Id;
8747 begin
8748 if Present (Actual_Map) then
8749 E := First_Elmt (Actual_Map);
8750 while Present (E) loop
8751 if Node (E) = N then
8752 return;
8753 else
8754 E := Next_Elmt (Next_Elmt (E));
8755 end if;
8756 end loop;
8757 end if;
8758 end;
8759 end if;
8760
8761 Visit_Itype (N);
8762 end if;
8763
8764 -- Visit descendents
8765
8766 Visit_Field (Field1 (N), N);
8767 Visit_Field (Field2 (N), N);
8768 Visit_Field (Field3 (N), N);
8769 Visit_Field (Field4 (N), N);
8770 Visit_Field (Field5 (N), N);
8771 end Visit_Node;
8772
8773 -- Start of processing for New_Copy_Tree
8774
8775 begin
8776 Actual_Map := Map;
8777
8778 -- See if we should use hash table
8779
8780 if No (Actual_Map) then
8781 NCT_Hash_Tables_Used := False;
8782
8783 else
8784 declare
8785 Elmt : Elmt_Id;
8786
8787 begin
8788 NCT_Table_Entries := 0;
8789
8790 Elmt := First_Elmt (Actual_Map);
8791 while Present (Elmt) loop
8792 NCT_Table_Entries := NCT_Table_Entries + 1;
8793 Next_Elmt (Elmt);
8794 Next_Elmt (Elmt);
8795 end loop;
8796
8797 if NCT_Table_Entries > NCT_Hash_Threshhold then
8798 Build_NCT_Hash_Tables;
8799 else
8800 NCT_Hash_Tables_Used := False;
8801 end if;
8802 end;
8803 end if;
8804
8805 -- Hash table set up if required, now start phase one by visiting
8806 -- top node (we will recursively visit the descendents).
8807
8808 Visit_Node (Source);
8809
8810 -- Now the second phase of the copy can start. First we process
8811 -- all the mapped entities, copying their descendents.
8812
8813 if Present (Actual_Map) then
8814 declare
8815 Elmt : Elmt_Id;
8816 New_Itype : Entity_Id;
8817 begin
8818 Elmt := First_Elmt (Actual_Map);
8819 while Present (Elmt) loop
8820 Next_Elmt (Elmt);
8821 New_Itype := Node (Elmt);
8822 Copy_Itype_With_Replacement (New_Itype);
8823 Next_Elmt (Elmt);
8824 end loop;
8825 end;
8826 end if;
8827
8828 -- Now we can copy the actual tree
8829
8830 return Copy_Node_With_Replacement (Source);
8831 end New_Copy_Tree;
8832
8833 -------------------------
8834 -- New_External_Entity --
8835 -------------------------
8836
8837 function New_External_Entity
8838 (Kind : Entity_Kind;
8839 Scope_Id : Entity_Id;
8840 Sloc_Value : Source_Ptr;
8841 Related_Id : Entity_Id;
8842 Suffix : Character;
8843 Suffix_Index : Nat := 0;
8844 Prefix : Character := ' ') return Entity_Id
8845 is
8846 N : constant Entity_Id :=
8847 Make_Defining_Identifier (Sloc_Value,
8848 New_External_Name
8849 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
8850
8851 begin
8852 Set_Ekind (N, Kind);
8853 Set_Is_Internal (N, True);
8854 Append_Entity (N, Scope_Id);
8855 Set_Public_Status (N);
8856
8857 if Kind in Type_Kind then
8858 Init_Size_Align (N);
8859 end if;
8860
8861 return N;
8862 end New_External_Entity;
8863
8864 -------------------------
8865 -- New_Internal_Entity --
8866 -------------------------
8867
8868 function New_Internal_Entity
8869 (Kind : Entity_Kind;
8870 Scope_Id : Entity_Id;
8871 Sloc_Value : Source_Ptr;
8872 Id_Char : Character) return Entity_Id
8873 is
8874 N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
8875
8876 begin
8877 Set_Ekind (N, Kind);
8878 Set_Is_Internal (N, True);
8879 Append_Entity (N, Scope_Id);
8880
8881 if Kind in Type_Kind then
8882 Init_Size_Align (N);
8883 end if;
8884
8885 return N;
8886 end New_Internal_Entity;
8887
8888 -----------------
8889 -- Next_Actual --
8890 -----------------
8891
8892 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
8893 N : Node_Id;
8894
8895 begin
8896 -- If we are pointing at a positional parameter, it is a member of a
8897 -- node list (the list of parameters), and the next parameter is the
8898 -- next node on the list, unless we hit a parameter association, then
8899 -- we shift to using the chain whose head is the First_Named_Actual in
8900 -- the parent, and then is threaded using the Next_Named_Actual of the
8901 -- Parameter_Association. All this fiddling is because the original node
8902 -- list is in the textual call order, and what we need is the
8903 -- declaration order.
8904
8905 if Is_List_Member (Actual_Id) then
8906 N := Next (Actual_Id);
8907
8908 if Nkind (N) = N_Parameter_Association then
8909 return First_Named_Actual (Parent (Actual_Id));
8910 else
8911 return N;
8912 end if;
8913
8914 else
8915 return Next_Named_Actual (Parent (Actual_Id));
8916 end if;
8917 end Next_Actual;
8918
8919 procedure Next_Actual (Actual_Id : in out Node_Id) is
8920 begin
8921 Actual_Id := Next_Actual (Actual_Id);
8922 end Next_Actual;
8923
8924 -----------------------
8925 -- Normalize_Actuals --
8926 -----------------------
8927
8928 -- Chain actuals according to formals of subprogram. If there are no named
8929 -- associations, the chain is simply the list of Parameter Associations,
8930 -- since the order is the same as the declaration order. If there are named
8931 -- associations, then the First_Named_Actual field in the N_Function_Call
8932 -- or N_Procedure_Call_Statement node points to the Parameter_Association
8933 -- node for the parameter that comes first in declaration order. The
8934 -- remaining named parameters are then chained in declaration order using
8935 -- Next_Named_Actual.
8936
8937 -- This routine also verifies that the number of actuals is compatible with
8938 -- the number and default values of formals, but performs no type checking
8939 -- (type checking is done by the caller).
8940
8941 -- If the matching succeeds, Success is set to True and the caller proceeds
8942 -- with type-checking. If the match is unsuccessful, then Success is set to
8943 -- False, and the caller attempts a different interpretation, if there is
8944 -- one.
8945
8946 -- If the flag Report is on, the call is not overloaded, and a failure to
8947 -- match can be reported here, rather than in the caller.
8948
8949 procedure Normalize_Actuals
8950 (N : Node_Id;
8951 S : Entity_Id;
8952 Report : Boolean;
8953 Success : out Boolean)
8954 is
8955 Actuals : constant List_Id := Parameter_Associations (N);
8956 Actual : Node_Id := Empty;
8957 Formal : Entity_Id;
8958 Last : Node_Id := Empty;
8959 First_Named : Node_Id := Empty;
8960 Found : Boolean;
8961
8962 Formals_To_Match : Integer := 0;
8963 Actuals_To_Match : Integer := 0;
8964
8965 procedure Chain (A : Node_Id);
8966 -- Add named actual at the proper place in the list, using the
8967 -- Next_Named_Actual link.
8968
8969 function Reporting return Boolean;
8970 -- Determines if an error is to be reported. To report an error, we
8971 -- need Report to be True, and also we do not report errors caused
8972 -- by calls to init procs that occur within other init procs. Such
8973 -- errors must always be cascaded errors, since if all the types are
8974 -- declared correctly, the compiler will certainly build decent calls!
8975
8976 -----------
8977 -- Chain --
8978 -----------
8979
8980 procedure Chain (A : Node_Id) is
8981 begin
8982 if No (Last) then
8983
8984 -- Call node points to first actual in list
8985
8986 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
8987
8988 else
8989 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
8990 end if;
8991
8992 Last := A;
8993 Set_Next_Named_Actual (Last, Empty);
8994 end Chain;
8995
8996 ---------------
8997 -- Reporting --
8998 ---------------
8999
9000 function Reporting return Boolean is
9001 begin
9002 if not Report then
9003 return False;
9004
9005 elsif not Within_Init_Proc then
9006 return True;
9007
9008 elsif Is_Init_Proc (Entity (Name (N))) then
9009 return False;
9010
9011 else
9012 return True;
9013 end if;
9014 end Reporting;
9015
9016 -- Start of processing for Normalize_Actuals
9017
9018 begin
9019 if Is_Access_Type (S) then
9020
9021 -- The name in the call is a function call that returns an access
9022 -- to subprogram. The designated type has the list of formals.
9023
9024 Formal := First_Formal (Designated_Type (S));
9025 else
9026 Formal := First_Formal (S);
9027 end if;
9028
9029 while Present (Formal) loop
9030 Formals_To_Match := Formals_To_Match + 1;
9031 Next_Formal (Formal);
9032 end loop;
9033
9034 -- Find if there is a named association, and verify that no positional
9035 -- associations appear after named ones.
9036
9037 if Present (Actuals) then
9038 Actual := First (Actuals);
9039 end if;
9040
9041 while Present (Actual)
9042 and then Nkind (Actual) /= N_Parameter_Association
9043 loop
9044 Actuals_To_Match := Actuals_To_Match + 1;
9045 Next (Actual);
9046 end loop;
9047
9048 if No (Actual) and Actuals_To_Match = Formals_To_Match then
9049
9050 -- Most common case: positional notation, no defaults
9051
9052 Success := True;
9053 return;
9054
9055 elsif Actuals_To_Match > Formals_To_Match then
9056
9057 -- Too many actuals: will not work
9058
9059 if Reporting then
9060 if Is_Entity_Name (Name (N)) then
9061 Error_Msg_N ("too many arguments in call to&", Name (N));
9062 else
9063 Error_Msg_N ("too many arguments in call", N);
9064 end if;
9065 end if;
9066
9067 Success := False;
9068 return;
9069 end if;
9070
9071 First_Named := Actual;
9072
9073 while Present (Actual) loop
9074 if Nkind (Actual) /= N_Parameter_Association then
9075 Error_Msg_N
9076 ("positional parameters not allowed after named ones", Actual);
9077 Success := False;
9078 return;
9079
9080 else
9081 Actuals_To_Match := Actuals_To_Match + 1;
9082 end if;
9083
9084 Next (Actual);
9085 end loop;
9086
9087 if Present (Actuals) then
9088 Actual := First (Actuals);
9089 end if;
9090
9091 Formal := First_Formal (S);
9092 while Present (Formal) loop
9093
9094 -- Match the formals in order. If the corresponding actual is
9095 -- positional, nothing to do. Else scan the list of named actuals
9096 -- to find the one with the right name.
9097
9098 if Present (Actual)
9099 and then Nkind (Actual) /= N_Parameter_Association
9100 then
9101 Next (Actual);
9102 Actuals_To_Match := Actuals_To_Match - 1;
9103 Formals_To_Match := Formals_To_Match - 1;
9104
9105 else
9106 -- For named parameters, search the list of actuals to find
9107 -- one that matches the next formal name.
9108
9109 Actual := First_Named;
9110 Found := False;
9111 while Present (Actual) loop
9112 if Chars (Selector_Name (Actual)) = Chars (Formal) then
9113 Found := True;
9114 Chain (Actual);
9115 Actuals_To_Match := Actuals_To_Match - 1;
9116 Formals_To_Match := Formals_To_Match - 1;
9117 exit;
9118 end if;
9119
9120 Next (Actual);
9121 end loop;
9122
9123 if not Found then
9124 if Ekind (Formal) /= E_In_Parameter
9125 or else No (Default_Value (Formal))
9126 then
9127 if Reporting then
9128 if (Comes_From_Source (S)
9129 or else Sloc (S) = Standard_Location)
9130 and then Is_Overloadable (S)
9131 then
9132 if No (Actuals)
9133 and then
9134 (Nkind (Parent (N)) = N_Procedure_Call_Statement
9135 or else
9136 (Nkind (Parent (N)) = N_Function_Call
9137 or else
9138 Nkind (Parent (N)) = N_Parameter_Association))
9139 and then Ekind (S) /= E_Function
9140 then
9141 Set_Etype (N, Etype (S));
9142 else
9143 Error_Msg_Name_1 := Chars (S);
9144 Error_Msg_Sloc := Sloc (S);
9145 Error_Msg_NE
9146 ("missing argument for parameter & " &
9147 "in call to % declared #", N, Formal);
9148 end if;
9149
9150 elsif Is_Overloadable (S) then
9151 Error_Msg_Name_1 := Chars (S);
9152
9153 -- Point to type derivation that generated the
9154 -- operation.
9155
9156 Error_Msg_Sloc := Sloc (Parent (S));
9157
9158 Error_Msg_NE
9159 ("missing argument for parameter & " &
9160 "in call to % (inherited) #", N, Formal);
9161
9162 else
9163 Error_Msg_NE
9164 ("missing argument for parameter &", N, Formal);
9165 end if;
9166 end if;
9167
9168 Success := False;
9169 return;
9170
9171 else
9172 Formals_To_Match := Formals_To_Match - 1;
9173 end if;
9174 end if;
9175 end if;
9176
9177 Next_Formal (Formal);
9178 end loop;
9179
9180 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
9181 Success := True;
9182 return;
9183
9184 else
9185 if Reporting then
9186
9187 -- Find some superfluous named actual that did not get
9188 -- attached to the list of associations.
9189
9190 Actual := First (Actuals);
9191 while Present (Actual) loop
9192 if Nkind (Actual) = N_Parameter_Association
9193 and then Actual /= Last
9194 and then No (Next_Named_Actual (Actual))
9195 then
9196 Error_Msg_N ("unmatched actual & in call",
9197 Selector_Name (Actual));
9198 exit;
9199 end if;
9200
9201 Next (Actual);
9202 end loop;
9203 end if;
9204
9205 Success := False;
9206 return;
9207 end if;
9208 end Normalize_Actuals;
9209
9210 --------------------------------
9211 -- Note_Possible_Modification --
9212 --------------------------------
9213
9214 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
9215 Modification_Comes_From_Source : constant Boolean :=
9216 Comes_From_Source (Parent (N));
9217
9218 Ent : Entity_Id;
9219 Exp : Node_Id;
9220
9221 begin
9222 -- Loop to find referenced entity, if there is one
9223
9224 Exp := N;
9225 loop
9226 <<Continue>>
9227 Ent := Empty;
9228
9229 if Is_Entity_Name (Exp) then
9230 Ent := Entity (Exp);
9231
9232 -- If the entity is missing, it is an undeclared identifier,
9233 -- and there is nothing to annotate.
9234
9235 if No (Ent) then
9236 return;
9237 end if;
9238
9239 elsif Nkind (Exp) = N_Explicit_Dereference then
9240 declare
9241 P : constant Node_Id := Prefix (Exp);
9242
9243 begin
9244 if Nkind (P) = N_Selected_Component
9245 and then Present (
9246 Entry_Formal (Entity (Selector_Name (P))))
9247 then
9248 -- Case of a reference to an entry formal
9249
9250 Ent := Entry_Formal (Entity (Selector_Name (P)));
9251
9252 elsif Nkind (P) = N_Identifier
9253 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
9254 and then Present (Expression (Parent (Entity (P))))
9255 and then Nkind (Expression (Parent (Entity (P))))
9256 = N_Reference
9257 then
9258 -- Case of a reference to a value on which side effects have
9259 -- been removed.
9260
9261 Exp := Prefix (Expression (Parent (Entity (P))));
9262 goto Continue;
9263
9264 else
9265 return;
9266
9267 end if;
9268 end;
9269
9270 elsif Nkind (Exp) = N_Type_Conversion
9271 or else Nkind (Exp) = N_Unchecked_Type_Conversion
9272 then
9273 Exp := Expression (Exp);
9274 goto Continue;
9275
9276 elsif Nkind (Exp) = N_Slice
9277 or else Nkind (Exp) = N_Indexed_Component
9278 or else Nkind (Exp) = N_Selected_Component
9279 then
9280 Exp := Prefix (Exp);
9281 goto Continue;
9282
9283 else
9284 return;
9285 end if;
9286
9287 -- Now look for entity being referenced
9288
9289 if Present (Ent) then
9290 if Is_Object (Ent) then
9291 if Comes_From_Source (Exp)
9292 or else Modification_Comes_From_Source
9293 then
9294 if Has_Pragma_Unmodified (Ent) then
9295 Error_Msg_NE ("?pragma Unmodified given for &!", N, Ent);
9296 end if;
9297
9298 Set_Never_Set_In_Source (Ent, False);
9299 end if;
9300
9301 Set_Is_True_Constant (Ent, False);
9302 Set_Current_Value (Ent, Empty);
9303 Set_Is_Known_Null (Ent, False);
9304
9305 if not Can_Never_Be_Null (Ent) then
9306 Set_Is_Known_Non_Null (Ent, False);
9307 end if;
9308
9309 -- Follow renaming chain
9310
9311 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
9312 and then Present (Renamed_Object (Ent))
9313 then
9314 Exp := Renamed_Object (Ent);
9315 goto Continue;
9316 end if;
9317
9318 -- Generate a reference only if the assignment comes from
9319 -- source. This excludes, for example, calls to a dispatching
9320 -- assignment operation when the left-hand side is tagged.
9321
9322 if Modification_Comes_From_Source then
9323 Generate_Reference (Ent, Exp, 'm');
9324 end if;
9325
9326 Check_Nested_Access (Ent);
9327 end if;
9328
9329 Kill_Checks (Ent);
9330
9331 -- If we are sure this is a modification from source, and we know
9332 -- this modifies a constant, then give an appropriate warning.
9333
9334 if Overlays_Constant (Ent)
9335 and then Modification_Comes_From_Source
9336 and then Sure
9337 then
9338 declare
9339 A : constant Node_Id := Address_Clause (Ent);
9340 begin
9341 if Present (A) then
9342 declare
9343 Exp : constant Node_Id := Expression (A);
9344 begin
9345 if Nkind (Exp) = N_Attribute_Reference
9346 and then Attribute_Name (Exp) = Name_Address
9347 and then Is_Entity_Name (Prefix (Exp))
9348 then
9349 Error_Msg_Sloc := Sloc (A);
9350 Error_Msg_NE
9351 ("constant& may be modified via address clause#?",
9352 N, Entity (Prefix (Exp)));
9353 end if;
9354 end;
9355 end if;
9356 end;
9357 end if;
9358
9359 return;
9360 end if;
9361 end loop;
9362 end Note_Possible_Modification;
9363
9364 -------------------------
9365 -- Object_Access_Level --
9366 -------------------------
9367
9368 function Object_Access_Level (Obj : Node_Id) return Uint is
9369 E : Entity_Id;
9370
9371 -- Returns the static accessibility level of the view denoted by Obj. Note
9372 -- that the value returned is the result of a call to Scope_Depth. Only
9373 -- scope depths associated with dynamic scopes can actually be returned.
9374 -- Since only relative levels matter for accessibility checking, the fact
9375 -- that the distance between successive levels of accessibility is not
9376 -- always one is immaterial (invariant: if level(E2) is deeper than
9377 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
9378
9379 function Reference_To (Obj : Node_Id) return Node_Id;
9380 -- An explicit dereference is created when removing side-effects from
9381 -- expressions for constraint checking purposes. In this case a local
9382 -- access type is created for it. The correct access level is that of
9383 -- the original source node. We detect this case by noting that the
9384 -- prefix of the dereference is created by an object declaration whose
9385 -- initial expression is a reference.
9386
9387 ------------------
9388 -- Reference_To --
9389 ------------------
9390
9391 function Reference_To (Obj : Node_Id) return Node_Id is
9392 Pref : constant Node_Id := Prefix (Obj);
9393 begin
9394 if Is_Entity_Name (Pref)
9395 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
9396 and then Present (Expression (Parent (Entity (Pref))))
9397 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
9398 then
9399 return (Prefix (Expression (Parent (Entity (Pref)))));
9400 else
9401 return Empty;
9402 end if;
9403 end Reference_To;
9404
9405 -- Start of processing for Object_Access_Level
9406
9407 begin
9408 if Is_Entity_Name (Obj) then
9409 E := Entity (Obj);
9410
9411 if Is_Prival (E) then
9412 E := Prival_Link (E);
9413 end if;
9414
9415 -- If E is a type then it denotes a current instance. For this case
9416 -- we add one to the normal accessibility level of the type to ensure
9417 -- that current instances are treated as always being deeper than
9418 -- than the level of any visible named access type (see 3.10.2(21)).
9419
9420 if Is_Type (E) then
9421 return Type_Access_Level (E) + 1;
9422
9423 elsif Present (Renamed_Object (E)) then
9424 return Object_Access_Level (Renamed_Object (E));
9425
9426 -- Similarly, if E is a component of the current instance of a
9427 -- protected type, any instance of it is assumed to be at a deeper
9428 -- level than the type. For a protected object (whose type is an
9429 -- anonymous protected type) its components are at the same level
9430 -- as the type itself.
9431
9432 elsif not Is_Overloadable (E)
9433 and then Ekind (Scope (E)) = E_Protected_Type
9434 and then Comes_From_Source (Scope (E))
9435 then
9436 return Type_Access_Level (Scope (E)) + 1;
9437
9438 else
9439 return Scope_Depth (Enclosing_Dynamic_Scope (E));
9440 end if;
9441
9442 elsif Nkind (Obj) = N_Selected_Component then
9443 if Is_Access_Type (Etype (Prefix (Obj))) then
9444 return Type_Access_Level (Etype (Prefix (Obj)));
9445 else
9446 return Object_Access_Level (Prefix (Obj));
9447 end if;
9448
9449 elsif Nkind (Obj) = N_Indexed_Component then
9450 if Is_Access_Type (Etype (Prefix (Obj))) then
9451 return Type_Access_Level (Etype (Prefix (Obj)));
9452 else
9453 return Object_Access_Level (Prefix (Obj));
9454 end if;
9455
9456 elsif Nkind (Obj) = N_Explicit_Dereference then
9457
9458 -- If the prefix is a selected access discriminant then we make a
9459 -- recursive call on the prefix, which will in turn check the level
9460 -- of the prefix object of the selected discriminant.
9461
9462 if Nkind (Prefix (Obj)) = N_Selected_Component
9463 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
9464 and then
9465 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
9466 then
9467 return Object_Access_Level (Prefix (Obj));
9468
9469 elsif not (Comes_From_Source (Obj)) then
9470 declare
9471 Ref : constant Node_Id := Reference_To (Obj);
9472 begin
9473 if Present (Ref) then
9474 return Object_Access_Level (Ref);
9475 else
9476 return Type_Access_Level (Etype (Prefix (Obj)));
9477 end if;
9478 end;
9479
9480 else
9481 return Type_Access_Level (Etype (Prefix (Obj)));
9482 end if;
9483
9484 elsif Nkind (Obj) = N_Type_Conversion
9485 or else Nkind (Obj) = N_Unchecked_Type_Conversion
9486 then
9487 return Object_Access_Level (Expression (Obj));
9488
9489 -- Function results are objects, so we get either the access level of
9490 -- the function or, in the case of an indirect call, the level of the
9491 -- access-to-subprogram type.
9492
9493 elsif Nkind (Obj) = N_Function_Call then
9494 if Is_Entity_Name (Name (Obj)) then
9495 return Subprogram_Access_Level (Entity (Name (Obj)));
9496 else
9497 return Type_Access_Level (Etype (Prefix (Name (Obj))));
9498 end if;
9499
9500 -- For convenience we handle qualified expressions, even though
9501 -- they aren't technically object names.
9502
9503 elsif Nkind (Obj) = N_Qualified_Expression then
9504 return Object_Access_Level (Expression (Obj));
9505
9506 -- Otherwise return the scope level of Standard.
9507 -- (If there are cases that fall through
9508 -- to this point they will be treated as
9509 -- having global accessibility for now. ???)
9510
9511 else
9512 return Scope_Depth (Standard_Standard);
9513 end if;
9514 end Object_Access_Level;
9515
9516 -----------------------
9517 -- Private_Component --
9518 -----------------------
9519
9520 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
9521 Ancestor : constant Entity_Id := Base_Type (Type_Id);
9522
9523 function Trace_Components
9524 (T : Entity_Id;
9525 Check : Boolean) return Entity_Id;
9526 -- Recursive function that does the work, and checks against circular
9527 -- definition for each subcomponent type.
9528
9529 ----------------------
9530 -- Trace_Components --
9531 ----------------------
9532
9533 function Trace_Components
9534 (T : Entity_Id;
9535 Check : Boolean) return Entity_Id
9536 is
9537 Btype : constant Entity_Id := Base_Type (T);
9538 Component : Entity_Id;
9539 P : Entity_Id;
9540 Candidate : Entity_Id := Empty;
9541
9542 begin
9543 if Check and then Btype = Ancestor then
9544 Error_Msg_N ("circular type definition", Type_Id);
9545 return Any_Type;
9546 end if;
9547
9548 if Is_Private_Type (Btype)
9549 and then not Is_Generic_Type (Btype)
9550 then
9551 if Present (Full_View (Btype))
9552 and then Is_Record_Type (Full_View (Btype))
9553 and then not Is_Frozen (Btype)
9554 then
9555 -- To indicate that the ancestor depends on a private type, the
9556 -- current Btype is sufficient. However, to check for circular
9557 -- definition we must recurse on the full view.
9558
9559 Candidate := Trace_Components (Full_View (Btype), True);
9560
9561 if Candidate = Any_Type then
9562 return Any_Type;
9563 else
9564 return Btype;
9565 end if;
9566
9567 else
9568 return Btype;
9569 end if;
9570
9571 elsif Is_Array_Type (Btype) then
9572 return Trace_Components (Component_Type (Btype), True);
9573
9574 elsif Is_Record_Type (Btype) then
9575 Component := First_Entity (Btype);
9576 while Present (Component) loop
9577
9578 -- Skip anonymous types generated by constrained components
9579
9580 if not Is_Type (Component) then
9581 P := Trace_Components (Etype (Component), True);
9582
9583 if Present (P) then
9584 if P = Any_Type then
9585 return P;
9586 else
9587 Candidate := P;
9588 end if;
9589 end if;
9590 end if;
9591
9592 Next_Entity (Component);
9593 end loop;
9594
9595 return Candidate;
9596
9597 else
9598 return Empty;
9599 end if;
9600 end Trace_Components;
9601
9602 -- Start of processing for Private_Component
9603
9604 begin
9605 return Trace_Components (Type_Id, False);
9606 end Private_Component;
9607
9608 ---------------------------
9609 -- Primitive_Names_Match --
9610 ---------------------------
9611
9612 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
9613
9614 function Non_Internal_Name (E : Entity_Id) return Name_Id;
9615 -- Given an internal name, returns the corresponding non-internal name
9616
9617 ------------------------
9618 -- Non_Internal_Name --
9619 ------------------------
9620
9621 function Non_Internal_Name (E : Entity_Id) return Name_Id is
9622 begin
9623 Get_Name_String (Chars (E));
9624 Name_Len := Name_Len - 1;
9625 return Name_Find;
9626 end Non_Internal_Name;
9627
9628 -- Start of processing for Primitive_Names_Match
9629
9630 begin
9631 pragma Assert (Present (E1) and then Present (E2));
9632
9633 return Chars (E1) = Chars (E2)
9634 or else
9635 (not Is_Internal_Name (Chars (E1))
9636 and then Is_Internal_Name (Chars (E2))
9637 and then Non_Internal_Name (E2) = Chars (E1))
9638 or else
9639 (not Is_Internal_Name (Chars (E2))
9640 and then Is_Internal_Name (Chars (E1))
9641 and then Non_Internal_Name (E1) = Chars (E2))
9642 or else
9643 (Is_Predefined_Dispatching_Operation (E1)
9644 and then Is_Predefined_Dispatching_Operation (E2)
9645 and then Same_TSS (E1, E2))
9646 or else
9647 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
9648 end Primitive_Names_Match;
9649
9650 -----------------------
9651 -- Process_End_Label --
9652 -----------------------
9653
9654 procedure Process_End_Label
9655 (N : Node_Id;
9656 Typ : Character;
9657 Ent : Entity_Id)
9658 is
9659 Loc : Source_Ptr;
9660 Nam : Node_Id;
9661 Scop : Entity_Id;
9662
9663 Label_Ref : Boolean;
9664 -- Set True if reference to end label itself is required
9665
9666 Endl : Node_Id;
9667 -- Gets set to the operator symbol or identifier that references the
9668 -- entity Ent. For the child unit case, this is the identifier from the
9669 -- designator. For other cases, this is simply Endl.
9670
9671 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
9672 -- N is an identifier node that appears as a parent unit reference in
9673 -- the case where Ent is a child unit. This procedure generates an
9674 -- appropriate cross-reference entry. E is the corresponding entity.
9675
9676 -------------------------
9677 -- Generate_Parent_Ref --
9678 -------------------------
9679
9680 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
9681 begin
9682 -- If names do not match, something weird, skip reference
9683
9684 if Chars (E) = Chars (N) then
9685
9686 -- Generate the reference. We do NOT consider this as a reference
9687 -- for unreferenced symbol purposes.
9688
9689 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
9690
9691 if Style_Check then
9692 Style.Check_Identifier (N, E);
9693 end if;
9694 end if;
9695 end Generate_Parent_Ref;
9696
9697 -- Start of processing for Process_End_Label
9698
9699 begin
9700 -- If no node, ignore. This happens in some error situations, and
9701 -- also for some internally generated structures where no end label
9702 -- references are required in any case.
9703
9704 if No (N) then
9705 return;
9706 end if;
9707
9708 -- Nothing to do if no End_Label, happens for internally generated
9709 -- constructs where we don't want an end label reference anyway. Also
9710 -- nothing to do if Endl is a string literal, which means there was
9711 -- some prior error (bad operator symbol)
9712
9713 Endl := End_Label (N);
9714
9715 if No (Endl) or else Nkind (Endl) = N_String_Literal then
9716 return;
9717 end if;
9718
9719 -- Reference node is not in extended main source unit
9720
9721 if not In_Extended_Main_Source_Unit (N) then
9722
9723 -- Generally we do not collect references except for the extended
9724 -- main source unit. The one exception is the 'e' entry for a
9725 -- package spec, where it is useful for a client to have the
9726 -- ending information to define scopes.
9727
9728 if Typ /= 'e' then
9729 return;
9730
9731 else
9732 Label_Ref := False;
9733
9734 -- For this case, we can ignore any parent references, but we
9735 -- need the package name itself for the 'e' entry.
9736
9737 if Nkind (Endl) = N_Designator then
9738 Endl := Identifier (Endl);
9739 end if;
9740 end if;
9741
9742 -- Reference is in extended main source unit
9743
9744 else
9745 Label_Ref := True;
9746
9747 -- For designator, generate references for the parent entries
9748
9749 if Nkind (Endl) = N_Designator then
9750
9751 -- Generate references for the prefix if the END line comes from
9752 -- source (otherwise we do not need these references) We climb the
9753 -- scope stack to find the expected entities.
9754
9755 if Comes_From_Source (Endl) then
9756 Nam := Name (Endl);
9757 Scop := Current_Scope;
9758 while Nkind (Nam) = N_Selected_Component loop
9759 Scop := Scope (Scop);
9760 exit when No (Scop);
9761 Generate_Parent_Ref (Selector_Name (Nam), Scop);
9762 Nam := Prefix (Nam);
9763 end loop;
9764
9765 if Present (Scop) then
9766 Generate_Parent_Ref (Nam, Scope (Scop));
9767 end if;
9768 end if;
9769
9770 Endl := Identifier (Endl);
9771 end if;
9772 end if;
9773
9774 -- If the end label is not for the given entity, then either we have
9775 -- some previous error, or this is a generic instantiation for which
9776 -- we do not need to make a cross-reference in this case anyway. In
9777 -- either case we simply ignore the call.
9778
9779 if Chars (Ent) /= Chars (Endl) then
9780 return;
9781 end if;
9782
9783 -- If label was really there, then generate a normal reference and then
9784 -- adjust the location in the end label to point past the name (which
9785 -- should almost always be the semicolon).
9786
9787 Loc := Sloc (Endl);
9788
9789 if Comes_From_Source (Endl) then
9790
9791 -- If a label reference is required, then do the style check and
9792 -- generate an l-type cross-reference entry for the label
9793
9794 if Label_Ref then
9795 if Style_Check then
9796 Style.Check_Identifier (Endl, Ent);
9797 end if;
9798
9799 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
9800 end if;
9801
9802 -- Set the location to point past the label (normally this will
9803 -- mean the semicolon immediately following the label). This is
9804 -- done for the sake of the 'e' or 't' entry generated below.
9805
9806 Get_Decoded_Name_String (Chars (Endl));
9807 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
9808 end if;
9809
9810 -- Now generate the e/t reference
9811
9812 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
9813
9814 -- Restore Sloc, in case modified above, since we have an identifier
9815 -- and the normal Sloc should be left set in the tree.
9816
9817 Set_Sloc (Endl, Loc);
9818 end Process_End_Label;
9819
9820 ------------------
9821 -- Real_Convert --
9822 ------------------
9823
9824 -- We do the conversion to get the value of the real string by using
9825 -- the scanner, see Sinput for details on use of the internal source
9826 -- buffer for scanning internal strings.
9827
9828 function Real_Convert (S : String) return Node_Id is
9829 Save_Src : constant Source_Buffer_Ptr := Source;
9830 Negative : Boolean;
9831
9832 begin
9833 Source := Internal_Source_Ptr;
9834 Scan_Ptr := 1;
9835
9836 for J in S'Range loop
9837 Source (Source_Ptr (J)) := S (J);
9838 end loop;
9839
9840 Source (S'Length + 1) := EOF;
9841
9842 if Source (Scan_Ptr) = '-' then
9843 Negative := True;
9844 Scan_Ptr := Scan_Ptr + 1;
9845 else
9846 Negative := False;
9847 end if;
9848
9849 Scan;
9850
9851 if Negative then
9852 Set_Realval (Token_Node, UR_Negate (Realval (Token_Node)));
9853 end if;
9854
9855 Source := Save_Src;
9856 return Token_Node;
9857 end Real_Convert;
9858
9859 ------------------------------------
9860 -- References_Generic_Formal_Type --
9861 ------------------------------------
9862
9863 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
9864
9865 function Process (N : Node_Id) return Traverse_Result;
9866 -- Process one node in search for generic formal type
9867
9868 -------------
9869 -- Process --
9870 -------------
9871
9872 function Process (N : Node_Id) return Traverse_Result is
9873 begin
9874 if Nkind (N) in N_Has_Entity then
9875 declare
9876 E : constant Entity_Id := Entity (N);
9877 begin
9878 if Present (E) then
9879 if Is_Generic_Type (E) then
9880 return Abandon;
9881 elsif Present (Etype (E))
9882 and then Is_Generic_Type (Etype (E))
9883 then
9884 return Abandon;
9885 end if;
9886 end if;
9887 end;
9888 end if;
9889
9890 return Atree.OK;
9891 end Process;
9892
9893 function Traverse is new Traverse_Func (Process);
9894 -- Traverse tree to look for generic type
9895
9896 begin
9897 if Inside_A_Generic then
9898 return Traverse (N) = Abandon;
9899 else
9900 return False;
9901 end if;
9902 end References_Generic_Formal_Type;
9903
9904 --------------------
9905 -- Remove_Homonym --
9906 --------------------
9907
9908 procedure Remove_Homonym (E : Entity_Id) is
9909 Prev : Entity_Id := Empty;
9910 H : Entity_Id;
9911
9912 begin
9913 if E = Current_Entity (E) then
9914 if Present (Homonym (E)) then
9915 Set_Current_Entity (Homonym (E));
9916 else
9917 Set_Name_Entity_Id (Chars (E), Empty);
9918 end if;
9919 else
9920 H := Current_Entity (E);
9921 while Present (H) and then H /= E loop
9922 Prev := H;
9923 H := Homonym (H);
9924 end loop;
9925
9926 Set_Homonym (Prev, Homonym (E));
9927 end if;
9928 end Remove_Homonym;
9929
9930 ---------------------
9931 -- Rep_To_Pos_Flag --
9932 ---------------------
9933
9934 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
9935 begin
9936 return New_Occurrence_Of
9937 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
9938 end Rep_To_Pos_Flag;
9939
9940 --------------------
9941 -- Require_Entity --
9942 --------------------
9943
9944 procedure Require_Entity (N : Node_Id) is
9945 begin
9946 if Is_Entity_Name (N) and then No (Entity (N)) then
9947 if Total_Errors_Detected /= 0 then
9948 Set_Entity (N, Any_Id);
9949 else
9950 raise Program_Error;
9951 end if;
9952 end if;
9953 end Require_Entity;
9954
9955 ------------------------------
9956 -- Requires_Transient_Scope --
9957 ------------------------------
9958
9959 -- A transient scope is required when variable-sized temporaries are
9960 -- allocated in the primary or secondary stack, or when finalization
9961 -- actions must be generated before the next instruction.
9962
9963 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
9964 Typ : constant Entity_Id := Underlying_Type (Id);
9965
9966 -- Start of processing for Requires_Transient_Scope
9967
9968 begin
9969 -- This is a private type which is not completed yet. This can only
9970 -- happen in a default expression (of a formal parameter or of a
9971 -- record component). Do not expand transient scope in this case
9972
9973 if No (Typ) then
9974 return False;
9975
9976 -- Do not expand transient scope for non-existent procedure return
9977
9978 elsif Typ = Standard_Void_Type then
9979 return False;
9980
9981 -- Elementary types do not require a transient scope
9982
9983 elsif Is_Elementary_Type (Typ) then
9984 return False;
9985
9986 -- Generally, indefinite subtypes require a transient scope, since the
9987 -- back end cannot generate temporaries, since this is not a valid type
9988 -- for declaring an object. It might be possible to relax this in the
9989 -- future, e.g. by declaring the maximum possible space for the type.
9990
9991 elsif Is_Indefinite_Subtype (Typ) then
9992 return True;
9993
9994 -- Functions returning tagged types may dispatch on result so their
9995 -- returned value is allocated on the secondary stack. Controlled
9996 -- type temporaries need finalization.
9997
9998 elsif Is_Tagged_Type (Typ)
9999 or else Has_Controlled_Component (Typ)
10000 then
10001 return not Is_Value_Type (Typ);
10002
10003 -- Record type
10004
10005 elsif Is_Record_Type (Typ) then
10006 declare
10007 Comp : Entity_Id;
10008 begin
10009 Comp := First_Entity (Typ);
10010 while Present (Comp) loop
10011 if Ekind (Comp) = E_Component
10012 and then Requires_Transient_Scope (Etype (Comp))
10013 then
10014 return True;
10015 else
10016 Next_Entity (Comp);
10017 end if;
10018 end loop;
10019 end;
10020
10021 return False;
10022
10023 -- String literal types never require transient scope
10024
10025 elsif Ekind (Typ) = E_String_Literal_Subtype then
10026 return False;
10027
10028 -- Array type. Note that we already know that this is a constrained
10029 -- array, since unconstrained arrays will fail the indefinite test.
10030
10031 elsif Is_Array_Type (Typ) then
10032
10033 -- If component type requires a transient scope, the array does too
10034
10035 if Requires_Transient_Scope (Component_Type (Typ)) then
10036 return True;
10037
10038 -- Otherwise, we only need a transient scope if the size is not
10039 -- known at compile time.
10040
10041 else
10042 return not Size_Known_At_Compile_Time (Typ);
10043 end if;
10044
10045 -- All other cases do not require a transient scope
10046
10047 else
10048 return False;
10049 end if;
10050 end Requires_Transient_Scope;
10051
10052 --------------------------
10053 -- Reset_Analyzed_Flags --
10054 --------------------------
10055
10056 procedure Reset_Analyzed_Flags (N : Node_Id) is
10057
10058 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
10059 -- Function used to reset Analyzed flags in tree. Note that we do
10060 -- not reset Analyzed flags in entities, since there is no need to
10061 -- reanalyze entities, and indeed, it is wrong to do so, since it
10062 -- can result in generating auxiliary stuff more than once.
10063
10064 --------------------
10065 -- Clear_Analyzed --
10066 --------------------
10067
10068 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
10069 begin
10070 if not Has_Extension (N) then
10071 Set_Analyzed (N, False);
10072 end if;
10073
10074 return OK;
10075 end Clear_Analyzed;
10076
10077 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
10078
10079 -- Start of processing for Reset_Analyzed_Flags
10080
10081 begin
10082 Reset_Analyzed (N);
10083 end Reset_Analyzed_Flags;
10084
10085 ---------------------------
10086 -- Safe_To_Capture_Value --
10087 ---------------------------
10088
10089 function Safe_To_Capture_Value
10090 (N : Node_Id;
10091 Ent : Entity_Id;
10092 Cond : Boolean := False) return Boolean
10093 is
10094 begin
10095 -- The only entities for which we track constant values are variables
10096 -- which are not renamings, constants, out parameters, and in out
10097 -- parameters, so check if we have this case.
10098
10099 -- Note: it may seem odd to track constant values for constants, but in
10100 -- fact this routine is used for other purposes than simply capturing
10101 -- the value. In particular, the setting of Known[_Non]_Null.
10102
10103 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
10104 or else
10105 Ekind (Ent) = E_Constant
10106 or else
10107 Ekind (Ent) = E_Out_Parameter
10108 or else
10109 Ekind (Ent) = E_In_Out_Parameter
10110 then
10111 null;
10112
10113 -- For conditionals, we also allow loop parameters and all formals,
10114 -- including in parameters.
10115
10116 elsif Cond
10117 and then
10118 (Ekind (Ent) = E_Loop_Parameter
10119 or else
10120 Ekind (Ent) = E_In_Parameter)
10121 then
10122 null;
10123
10124 -- For all other cases, not just unsafe, but impossible to capture
10125 -- Current_Value, since the above are the only entities which have
10126 -- Current_Value fields.
10127
10128 else
10129 return False;
10130 end if;
10131
10132 -- Skip if volatile or aliased, since funny things might be going on in
10133 -- these cases which we cannot necessarily track. Also skip any variable
10134 -- for which an address clause is given, or whose address is taken. Also
10135 -- never capture value of library level variables (an attempt to do so
10136 -- can occur in the case of package elaboration code).
10137
10138 if Treat_As_Volatile (Ent)
10139 or else Is_Aliased (Ent)
10140 or else Present (Address_Clause (Ent))
10141 or else Address_Taken (Ent)
10142 or else (Is_Library_Level_Entity (Ent)
10143 and then Ekind (Ent) = E_Variable)
10144 then
10145 return False;
10146 end if;
10147
10148 -- OK, all above conditions are met. We also require that the scope of
10149 -- the reference be the same as the scope of the entity, not counting
10150 -- packages and blocks and loops.
10151
10152 declare
10153 E_Scope : constant Entity_Id := Scope (Ent);
10154 R_Scope : Entity_Id;
10155
10156 begin
10157 R_Scope := Current_Scope;
10158 while R_Scope /= Standard_Standard loop
10159 exit when R_Scope = E_Scope;
10160
10161 if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
10162 return False;
10163 else
10164 R_Scope := Scope (R_Scope);
10165 end if;
10166 end loop;
10167 end;
10168
10169 -- We also require that the reference does not appear in a context
10170 -- where it is not sure to be executed (i.e. a conditional context
10171 -- or an exception handler). We skip this if Cond is True, since the
10172 -- capturing of values from conditional tests handles this ok.
10173
10174 if Cond then
10175 return True;
10176 end if;
10177
10178 declare
10179 Desc : Node_Id;
10180 P : Node_Id;
10181
10182 begin
10183 Desc := N;
10184
10185 P := Parent (N);
10186 while Present (P) loop
10187 if Nkind (P) = N_If_Statement
10188 or else Nkind (P) = N_Case_Statement
10189 or else (Nkind (P) in N_Short_Circuit
10190 and then Desc = Right_Opnd (P))
10191 or else (Nkind (P) = N_Conditional_Expression
10192 and then Desc /= First (Expressions (P)))
10193 or else Nkind (P) = N_Exception_Handler
10194 or else Nkind (P) = N_Selective_Accept
10195 or else Nkind (P) = N_Conditional_Entry_Call
10196 or else Nkind (P) = N_Timed_Entry_Call
10197 or else Nkind (P) = N_Asynchronous_Select
10198 then
10199 return False;
10200 else
10201 Desc := P;
10202 P := Parent (P);
10203 end if;
10204 end loop;
10205 end;
10206
10207 -- OK, looks safe to set value
10208
10209 return True;
10210 end Safe_To_Capture_Value;
10211
10212 ---------------
10213 -- Same_Name --
10214 ---------------
10215
10216 function Same_Name (N1, N2 : Node_Id) return Boolean is
10217 K1 : constant Node_Kind := Nkind (N1);
10218 K2 : constant Node_Kind := Nkind (N2);
10219
10220 begin
10221 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
10222 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
10223 then
10224 return Chars (N1) = Chars (N2);
10225
10226 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
10227 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
10228 then
10229 return Same_Name (Selector_Name (N1), Selector_Name (N2))
10230 and then Same_Name (Prefix (N1), Prefix (N2));
10231
10232 else
10233 return False;
10234 end if;
10235 end Same_Name;
10236
10237 -----------------
10238 -- Same_Object --
10239 -----------------
10240
10241 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
10242 N1 : constant Node_Id := Original_Node (Node1);
10243 N2 : constant Node_Id := Original_Node (Node2);
10244 -- We do the tests on original nodes, since we are most interested
10245 -- in the original source, not any expansion that got in the way.
10246
10247 K1 : constant Node_Kind := Nkind (N1);
10248 K2 : constant Node_Kind := Nkind (N2);
10249
10250 begin
10251 -- First case, both are entities with same entity
10252
10253 if K1 in N_Has_Entity
10254 and then K2 in N_Has_Entity
10255 and then Present (Entity (N1))
10256 and then Present (Entity (N2))
10257 and then (Ekind (Entity (N1)) = E_Variable
10258 or else
10259 Ekind (Entity (N1)) = E_Constant)
10260 and then Entity (N1) = Entity (N2)
10261 then
10262 return True;
10263
10264 -- Second case, selected component with same selector, same record
10265
10266 elsif K1 = N_Selected_Component
10267 and then K2 = N_Selected_Component
10268 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
10269 then
10270 return Same_Object (Prefix (N1), Prefix (N2));
10271
10272 -- Third case, indexed component with same subscripts, same array
10273
10274 elsif K1 = N_Indexed_Component
10275 and then K2 = N_Indexed_Component
10276 and then Same_Object (Prefix (N1), Prefix (N2))
10277 then
10278 declare
10279 E1, E2 : Node_Id;
10280 begin
10281 E1 := First (Expressions (N1));
10282 E2 := First (Expressions (N2));
10283 while Present (E1) loop
10284 if not Same_Value (E1, E2) then
10285 return False;
10286 else
10287 Next (E1);
10288 Next (E2);
10289 end if;
10290 end loop;
10291
10292 return True;
10293 end;
10294
10295 -- Fourth case, slice of same array with same bounds
10296
10297 elsif K1 = N_Slice
10298 and then K2 = N_Slice
10299 and then Nkind (Discrete_Range (N1)) = N_Range
10300 and then Nkind (Discrete_Range (N2)) = N_Range
10301 and then Same_Value (Low_Bound (Discrete_Range (N1)),
10302 Low_Bound (Discrete_Range (N2)))
10303 and then Same_Value (High_Bound (Discrete_Range (N1)),
10304 High_Bound (Discrete_Range (N2)))
10305 then
10306 return Same_Name (Prefix (N1), Prefix (N2));
10307
10308 -- All other cases, not clearly the same object
10309
10310 else
10311 return False;
10312 end if;
10313 end Same_Object;
10314
10315 ---------------
10316 -- Same_Type --
10317 ---------------
10318
10319 function Same_Type (T1, T2 : Entity_Id) return Boolean is
10320 begin
10321 if T1 = T2 then
10322 return True;
10323
10324 elsif not Is_Constrained (T1)
10325 and then not Is_Constrained (T2)
10326 and then Base_Type (T1) = Base_Type (T2)
10327 then
10328 return True;
10329
10330 -- For now don't bother with case of identical constraints, to be
10331 -- fiddled with later on perhaps (this is only used for optimization
10332 -- purposes, so it is not critical to do a best possible job)
10333
10334 else
10335 return False;
10336 end if;
10337 end Same_Type;
10338
10339 ----------------
10340 -- Same_Value --
10341 ----------------
10342
10343 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
10344 begin
10345 if Compile_Time_Known_Value (Node1)
10346 and then Compile_Time_Known_Value (Node2)
10347 and then Expr_Value (Node1) = Expr_Value (Node2)
10348 then
10349 return True;
10350 elsif Same_Object (Node1, Node2) then
10351 return True;
10352 else
10353 return False;
10354 end if;
10355 end Same_Value;
10356
10357 ------------------------
10358 -- Scope_Is_Transient --
10359 ------------------------
10360
10361 function Scope_Is_Transient return Boolean is
10362 begin
10363 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
10364 end Scope_Is_Transient;
10365
10366 ------------------
10367 -- Scope_Within --
10368 ------------------
10369
10370 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
10371 Scop : Entity_Id;
10372
10373 begin
10374 Scop := Scope1;
10375 while Scop /= Standard_Standard loop
10376 Scop := Scope (Scop);
10377
10378 if Scop = Scope2 then
10379 return True;
10380 end if;
10381 end loop;
10382
10383 return False;
10384 end Scope_Within;
10385
10386 --------------------------
10387 -- Scope_Within_Or_Same --
10388 --------------------------
10389
10390 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
10391 Scop : Entity_Id;
10392
10393 begin
10394 Scop := Scope1;
10395 while Scop /= Standard_Standard loop
10396 if Scop = Scope2 then
10397 return True;
10398 else
10399 Scop := Scope (Scop);
10400 end if;
10401 end loop;
10402
10403 return False;
10404 end Scope_Within_Or_Same;
10405
10406 --------------------
10407 -- Set_Convention --
10408 --------------------
10409
10410 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
10411 begin
10412 Basic_Set_Convention (E, Val);
10413
10414 if Is_Type (E)
10415 and then Is_Access_Subprogram_Type (Base_Type (E))
10416 and then Has_Foreign_Convention (E)
10417 then
10418 Set_Can_Use_Internal_Rep (E, False);
10419 end if;
10420 end Set_Convention;
10421
10422 ------------------------
10423 -- Set_Current_Entity --
10424 ------------------------
10425
10426 -- The given entity is to be set as the currently visible definition
10427 -- of its associated name (i.e. the Node_Id associated with its name).
10428 -- All we have to do is to get the name from the identifier, and
10429 -- then set the associated Node_Id to point to the given entity.
10430
10431 procedure Set_Current_Entity (E : Entity_Id) is
10432 begin
10433 Set_Name_Entity_Id (Chars (E), E);
10434 end Set_Current_Entity;
10435
10436 ---------------------------
10437 -- Set_Debug_Info_Needed --
10438 ---------------------------
10439
10440 procedure Set_Debug_Info_Needed (T : Entity_Id) is
10441
10442 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
10443 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
10444 -- Used to set debug info in a related node if not set already
10445
10446 --------------------------------------
10447 -- Set_Debug_Info_Needed_If_Not_Set --
10448 --------------------------------------
10449
10450 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
10451 begin
10452 if Present (E)
10453 and then not Needs_Debug_Info (E)
10454 then
10455 Set_Debug_Info_Needed (E);
10456
10457 -- For a private type, indicate that the full view also needs
10458 -- debug information.
10459
10460 if Is_Type (E)
10461 and then Is_Private_Type (E)
10462 and then Present (Full_View (E))
10463 then
10464 Set_Debug_Info_Needed (Full_View (E));
10465 end if;
10466 end if;
10467 end Set_Debug_Info_Needed_If_Not_Set;
10468
10469 -- Start of processing for Set_Debug_Info_Needed
10470
10471 begin
10472 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
10473 -- indicates that Debug_Info_Needed is never required for the entity.
10474
10475 if No (T)
10476 or else Debug_Info_Off (T)
10477 then
10478 return;
10479 end if;
10480
10481 -- Set flag in entity itself. Note that we will go through the following
10482 -- circuitry even if the flag is already set on T. That's intentional,
10483 -- it makes sure that the flag will be set in subsidiary entities.
10484
10485 Set_Needs_Debug_Info (T);
10486
10487 -- Set flag on subsidiary entities if not set already
10488
10489 if Is_Object (T) then
10490 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10491
10492 elsif Is_Type (T) then
10493 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10494
10495 if Is_Record_Type (T) then
10496 declare
10497 Ent : Entity_Id := First_Entity (T);
10498 begin
10499 while Present (Ent) loop
10500 Set_Debug_Info_Needed_If_Not_Set (Ent);
10501 Next_Entity (Ent);
10502 end loop;
10503 end;
10504
10505 -- For a class wide subtype, we also need debug information
10506 -- for the equivalent type.
10507
10508 if Ekind (T) = E_Class_Wide_Subtype then
10509 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
10510 end if;
10511
10512 elsif Is_Array_Type (T) then
10513 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
10514
10515 declare
10516 Indx : Node_Id := First_Index (T);
10517 begin
10518 while Present (Indx) loop
10519 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
10520 Indx := Next_Index (Indx);
10521 end loop;
10522 end;
10523
10524 if Is_Packed (T) then
10525 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T));
10526 end if;
10527
10528 elsif Is_Access_Type (T) then
10529 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
10530
10531 elsif Is_Private_Type (T) then
10532 Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
10533
10534 elsif Is_Protected_Type (T) then
10535 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
10536 end if;
10537 end if;
10538 end Set_Debug_Info_Needed;
10539
10540 ---------------------------------
10541 -- Set_Entity_With_Style_Check --
10542 ---------------------------------
10543
10544 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
10545 Val_Actual : Entity_Id;
10546 Nod : Node_Id;
10547
10548 begin
10549 Set_Entity (N, Val);
10550
10551 if Style_Check
10552 and then not Suppress_Style_Checks (Val)
10553 and then not In_Instance
10554 then
10555 if Nkind (N) = N_Identifier then
10556 Nod := N;
10557 elsif Nkind (N) = N_Expanded_Name then
10558 Nod := Selector_Name (N);
10559 else
10560 return;
10561 end if;
10562
10563 -- A special situation arises for derived operations, where we want
10564 -- to do the check against the parent (since the Sloc of the derived
10565 -- operation points to the derived type declaration itself).
10566
10567 Val_Actual := Val;
10568 while not Comes_From_Source (Val_Actual)
10569 and then Nkind (Val_Actual) in N_Entity
10570 and then (Ekind (Val_Actual) = E_Enumeration_Literal
10571 or else Is_Subprogram (Val_Actual)
10572 or else Is_Generic_Subprogram (Val_Actual))
10573 and then Present (Alias (Val_Actual))
10574 loop
10575 Val_Actual := Alias (Val_Actual);
10576 end loop;
10577
10578 -- Renaming declarations for generic actuals do not come from source,
10579 -- and have a different name from that of the entity they rename, so
10580 -- there is no style check to perform here.
10581
10582 if Chars (Nod) = Chars (Val_Actual) then
10583 Style.Check_Identifier (Nod, Val_Actual);
10584 end if;
10585 end if;
10586
10587 Set_Entity (N, Val);
10588 end Set_Entity_With_Style_Check;
10589
10590 ------------------------
10591 -- Set_Name_Entity_Id --
10592 ------------------------
10593
10594 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
10595 begin
10596 Set_Name_Table_Info (Id, Int (Val));
10597 end Set_Name_Entity_Id;
10598
10599 ---------------------
10600 -- Set_Next_Actual --
10601 ---------------------
10602
10603 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
10604 begin
10605 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
10606 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
10607 end if;
10608 end Set_Next_Actual;
10609
10610 ----------------------------------
10611 -- Set_Optimize_Alignment_Flags --
10612 ----------------------------------
10613
10614 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
10615 begin
10616 if Optimize_Alignment = 'S' then
10617 Set_Optimize_Alignment_Space (E);
10618 elsif Optimize_Alignment = 'T' then
10619 Set_Optimize_Alignment_Time (E);
10620 end if;
10621 end Set_Optimize_Alignment_Flags;
10622
10623 -----------------------
10624 -- Set_Public_Status --
10625 -----------------------
10626
10627 procedure Set_Public_Status (Id : Entity_Id) is
10628 S : constant Entity_Id := Current_Scope;
10629
10630 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
10631 -- Determines if E is defined within handled statement sequence or
10632 -- an if statement, returns True if so, False otherwise.
10633
10634 ----------------------
10635 -- Within_HSS_Or_If --
10636 ----------------------
10637
10638 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
10639 N : Node_Id;
10640 begin
10641 N := Declaration_Node (E);
10642 loop
10643 N := Parent (N);
10644
10645 if No (N) then
10646 return False;
10647
10648 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
10649 N_If_Statement)
10650 then
10651 return True;
10652 end if;
10653 end loop;
10654 end Within_HSS_Or_If;
10655
10656 -- Start of processing for Set_Public_Status
10657
10658 begin
10659 -- Everything in the scope of Standard is public
10660
10661 if S = Standard_Standard then
10662 Set_Is_Public (Id);
10663
10664 -- Entity is definitely not public if enclosing scope is not public
10665
10666 elsif not Is_Public (S) then
10667 return;
10668
10669 -- An object or function declaration that occurs in a handled sequence
10670 -- of statements or within an if statement is the declaration for a
10671 -- temporary object or local subprogram generated by the expander. It
10672 -- never needs to be made public and furthermore, making it public can
10673 -- cause back end problems.
10674
10675 elsif Nkind_In (Parent (Id), N_Object_Declaration,
10676 N_Function_Specification)
10677 and then Within_HSS_Or_If (Id)
10678 then
10679 return;
10680
10681 -- Entities in public packages or records are public
10682
10683 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
10684 Set_Is_Public (Id);
10685
10686 -- The bounds of an entry family declaration can generate object
10687 -- declarations that are visible to the back-end, e.g. in the
10688 -- the declaration of a composite type that contains tasks.
10689
10690 elsif Is_Concurrent_Type (S)
10691 and then not Has_Completion (S)
10692 and then Nkind (Parent (Id)) = N_Object_Declaration
10693 then
10694 Set_Is_Public (Id);
10695 end if;
10696 end Set_Public_Status;
10697
10698 -----------------------------
10699 -- Set_Referenced_Modified --
10700 -----------------------------
10701
10702 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
10703 Pref : Node_Id;
10704
10705 begin
10706 -- Deal with indexed or selected component where prefix is modified
10707
10708 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
10709 Pref := Prefix (N);
10710
10711 -- If prefix is access type, then it is the designated object that is
10712 -- being modified, which means we have no entity to set the flag on.
10713
10714 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
10715 return;
10716
10717 -- Otherwise chase the prefix
10718
10719 else
10720 Set_Referenced_Modified (Pref, Out_Param);
10721 end if;
10722
10723 -- Otherwise see if we have an entity name (only other case to process)
10724
10725 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
10726 Set_Referenced_As_LHS (Entity (N), not Out_Param);
10727 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
10728 end if;
10729 end Set_Referenced_Modified;
10730
10731 ----------------------------
10732 -- Set_Scope_Is_Transient --
10733 ----------------------------
10734
10735 procedure Set_Scope_Is_Transient (V : Boolean := True) is
10736 begin
10737 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
10738 end Set_Scope_Is_Transient;
10739
10740 -------------------
10741 -- Set_Size_Info --
10742 -------------------
10743
10744 procedure Set_Size_Info (T1, T2 : Entity_Id) is
10745 begin
10746 -- We copy Esize, but not RM_Size, since in general RM_Size is
10747 -- subtype specific and does not get inherited by all subtypes.
10748
10749 Set_Esize (T1, Esize (T2));
10750 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
10751
10752 if Is_Discrete_Or_Fixed_Point_Type (T1)
10753 and then
10754 Is_Discrete_Or_Fixed_Point_Type (T2)
10755 then
10756 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
10757 end if;
10758
10759 Set_Alignment (T1, Alignment (T2));
10760 end Set_Size_Info;
10761
10762 --------------------
10763 -- Static_Integer --
10764 --------------------
10765
10766 function Static_Integer (N : Node_Id) return Uint is
10767 begin
10768 Analyze_And_Resolve (N, Any_Integer);
10769
10770 if N = Error
10771 or else Error_Posted (N)
10772 or else Etype (N) = Any_Type
10773 then
10774 return No_Uint;
10775 end if;
10776
10777 if Is_Static_Expression (N) then
10778 if not Raises_Constraint_Error (N) then
10779 return Expr_Value (N);
10780 else
10781 return No_Uint;
10782 end if;
10783
10784 elsif Etype (N) = Any_Type then
10785 return No_Uint;
10786
10787 else
10788 Flag_Non_Static_Expr
10789 ("static integer expression required here", N);
10790 return No_Uint;
10791 end if;
10792 end Static_Integer;
10793
10794 --------------------------
10795 -- Statically_Different --
10796 --------------------------
10797
10798 function Statically_Different (E1, E2 : Node_Id) return Boolean is
10799 R1 : constant Node_Id := Get_Referenced_Object (E1);
10800 R2 : constant Node_Id := Get_Referenced_Object (E2);
10801 begin
10802 return Is_Entity_Name (R1)
10803 and then Is_Entity_Name (R2)
10804 and then Entity (R1) /= Entity (R2)
10805 and then not Is_Formal (Entity (R1))
10806 and then not Is_Formal (Entity (R2));
10807 end Statically_Different;
10808
10809 -----------------------------
10810 -- Subprogram_Access_Level --
10811 -----------------------------
10812
10813 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
10814 begin
10815 if Present (Alias (Subp)) then
10816 return Subprogram_Access_Level (Alias (Subp));
10817 else
10818 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
10819 end if;
10820 end Subprogram_Access_Level;
10821
10822 -----------------
10823 -- Trace_Scope --
10824 -----------------
10825
10826 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
10827 begin
10828 if Debug_Flag_W then
10829 for J in 0 .. Scope_Stack.Last loop
10830 Write_Str (" ");
10831 end loop;
10832
10833 Write_Str (Msg);
10834 Write_Name (Chars (E));
10835 Write_Str (" from ");
10836 Write_Location (Sloc (N));
10837 Write_Eol;
10838 end if;
10839 end Trace_Scope;
10840
10841 -----------------------
10842 -- Transfer_Entities --
10843 -----------------------
10844
10845 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
10846 Ent : Entity_Id := First_Entity (From);
10847
10848 begin
10849 if No (Ent) then
10850 return;
10851 end if;
10852
10853 if (Last_Entity (To)) = Empty then
10854 Set_First_Entity (To, Ent);
10855 else
10856 Set_Next_Entity (Last_Entity (To), Ent);
10857 end if;
10858
10859 Set_Last_Entity (To, Last_Entity (From));
10860
10861 while Present (Ent) loop
10862 Set_Scope (Ent, To);
10863
10864 if not Is_Public (Ent) then
10865 Set_Public_Status (Ent);
10866
10867 if Is_Public (Ent)
10868 and then Ekind (Ent) = E_Record_Subtype
10869
10870 then
10871 -- The components of the propagated Itype must be public
10872 -- as well.
10873
10874 declare
10875 Comp : Entity_Id;
10876 begin
10877 Comp := First_Entity (Ent);
10878 while Present (Comp) loop
10879 Set_Is_Public (Comp);
10880 Next_Entity (Comp);
10881 end loop;
10882 end;
10883 end if;
10884 end if;
10885
10886 Next_Entity (Ent);
10887 end loop;
10888
10889 Set_First_Entity (From, Empty);
10890 Set_Last_Entity (From, Empty);
10891 end Transfer_Entities;
10892
10893 -----------------------
10894 -- Type_Access_Level --
10895 -----------------------
10896
10897 function Type_Access_Level (Typ : Entity_Id) return Uint is
10898 Btyp : Entity_Id;
10899
10900 begin
10901 Btyp := Base_Type (Typ);
10902
10903 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
10904 -- simply use the level where the type is declared. This is true for
10905 -- stand-alone object declarations, and for anonymous access types
10906 -- associated with components the level is the same as that of the
10907 -- enclosing composite type. However, special treatment is needed for
10908 -- the cases of access parameters, return objects of an anonymous access
10909 -- type, and, in Ada 95, access discriminants of limited types.
10910
10911 if Ekind (Btyp) in Access_Kind then
10912 if Ekind (Btyp) = E_Anonymous_Access_Type then
10913
10914 -- If the type is a nonlocal anonymous access type (such as for
10915 -- an access parameter) we treat it as being declared at the
10916 -- library level to ensure that names such as X.all'access don't
10917 -- fail static accessibility checks.
10918
10919 if not Is_Local_Anonymous_Access (Typ) then
10920 return Scope_Depth (Standard_Standard);
10921
10922 -- If this is a return object, the accessibility level is that of
10923 -- the result subtype of the enclosing function. The test here is
10924 -- little complicated, because we have to account for extended
10925 -- return statements that have been rewritten as blocks, in which
10926 -- case we have to find and the Is_Return_Object attribute of the
10927 -- itype's associated object. It would be nice to find a way to
10928 -- simplify this test, but it doesn't seem worthwhile to add a new
10929 -- flag just for purposes of this test. ???
10930
10931 elsif Ekind (Scope (Btyp)) = E_Return_Statement
10932 or else
10933 (Is_Itype (Btyp)
10934 and then Nkind (Associated_Node_For_Itype (Btyp)) =
10935 N_Object_Declaration
10936 and then Is_Return_Object
10937 (Defining_Identifier
10938 (Associated_Node_For_Itype (Btyp))))
10939 then
10940 declare
10941 Scop : Entity_Id;
10942
10943 begin
10944 Scop := Scope (Scope (Btyp));
10945 while Present (Scop) loop
10946 exit when Ekind (Scop) = E_Function;
10947 Scop := Scope (Scop);
10948 end loop;
10949
10950 -- Treat the return object's type as having the level of the
10951 -- function's result subtype (as per RM05-6.5(5.3/2)).
10952
10953 return Type_Access_Level (Etype (Scop));
10954 end;
10955 end if;
10956 end if;
10957
10958 Btyp := Root_Type (Btyp);
10959
10960 -- The accessibility level of anonymous access types associated with
10961 -- discriminants is that of the current instance of the type, and
10962 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
10963
10964 -- AI-402: access discriminants have accessibility based on the
10965 -- object rather than the type in Ada 2005, so the above paragraph
10966 -- doesn't apply.
10967
10968 -- ??? Needs completion with rules from AI-416
10969
10970 if Ada_Version <= Ada_95
10971 and then Ekind (Typ) = E_Anonymous_Access_Type
10972 and then Present (Associated_Node_For_Itype (Typ))
10973 and then Nkind (Associated_Node_For_Itype (Typ)) =
10974 N_Discriminant_Specification
10975 then
10976 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
10977 end if;
10978 end if;
10979
10980 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
10981 end Type_Access_Level;
10982
10983 --------------------
10984 -- Ultimate_Alias --
10985 --------------------
10986 -- To do: add occurrences calling this new subprogram
10987
10988 function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
10989 E : Entity_Id := Prim;
10990
10991 begin
10992 while Present (Alias (E)) loop
10993 E := Alias (E);
10994 end loop;
10995
10996 return E;
10997 end Ultimate_Alias;
10998
10999 --------------------------
11000 -- Unit_Declaration_Node --
11001 --------------------------
11002
11003 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
11004 N : Node_Id := Parent (Unit_Id);
11005
11006 begin
11007 -- Predefined operators do not have a full function declaration
11008
11009 if Ekind (Unit_Id) = E_Operator then
11010 return N;
11011 end if;
11012
11013 -- Isn't there some better way to express the following ???
11014
11015 while Nkind (N) /= N_Abstract_Subprogram_Declaration
11016 and then Nkind (N) /= N_Formal_Package_Declaration
11017 and then Nkind (N) /= N_Function_Instantiation
11018 and then Nkind (N) /= N_Generic_Package_Declaration
11019 and then Nkind (N) /= N_Generic_Subprogram_Declaration
11020 and then Nkind (N) /= N_Package_Declaration
11021 and then Nkind (N) /= N_Package_Body
11022 and then Nkind (N) /= N_Package_Instantiation
11023 and then Nkind (N) /= N_Package_Renaming_Declaration
11024 and then Nkind (N) /= N_Procedure_Instantiation
11025 and then Nkind (N) /= N_Protected_Body
11026 and then Nkind (N) /= N_Subprogram_Declaration
11027 and then Nkind (N) /= N_Subprogram_Body
11028 and then Nkind (N) /= N_Subprogram_Body_Stub
11029 and then Nkind (N) /= N_Subprogram_Renaming_Declaration
11030 and then Nkind (N) /= N_Task_Body
11031 and then Nkind (N) /= N_Task_Type_Declaration
11032 and then Nkind (N) not in N_Formal_Subprogram_Declaration
11033 and then Nkind (N) not in N_Generic_Renaming_Declaration
11034 loop
11035 N := Parent (N);
11036 pragma Assert (Present (N));
11037 end loop;
11038
11039 return N;
11040 end Unit_Declaration_Node;
11041
11042 ------------------------------
11043 -- Universal_Interpretation --
11044 ------------------------------
11045
11046 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
11047 Index : Interp_Index;
11048 It : Interp;
11049
11050 begin
11051 -- The argument may be a formal parameter of an operator or subprogram
11052 -- with multiple interpretations, or else an expression for an actual.
11053
11054 if Nkind (Opnd) = N_Defining_Identifier
11055 or else not Is_Overloaded (Opnd)
11056 then
11057 if Etype (Opnd) = Universal_Integer
11058 or else Etype (Opnd) = Universal_Real
11059 then
11060 return Etype (Opnd);
11061 else
11062 return Empty;
11063 end if;
11064
11065 else
11066 Get_First_Interp (Opnd, Index, It);
11067 while Present (It.Typ) loop
11068 if It.Typ = Universal_Integer
11069 or else It.Typ = Universal_Real
11070 then
11071 return It.Typ;
11072 end if;
11073
11074 Get_Next_Interp (Index, It);
11075 end loop;
11076
11077 return Empty;
11078 end if;
11079 end Universal_Interpretation;
11080
11081 ---------------
11082 -- Unqualify --
11083 ---------------
11084
11085 function Unqualify (Expr : Node_Id) return Node_Id is
11086 begin
11087 -- Recurse to handle unlikely case of multiple levels of qualification
11088
11089 if Nkind (Expr) = N_Qualified_Expression then
11090 return Unqualify (Expression (Expr));
11091
11092 -- Normal case, not a qualified expression
11093
11094 else
11095 return Expr;
11096 end if;
11097 end Unqualify;
11098
11099 ----------------------
11100 -- Within_Init_Proc --
11101 ----------------------
11102
11103 function Within_Init_Proc return Boolean is
11104 S : Entity_Id;
11105
11106 begin
11107 S := Current_Scope;
11108 while not Is_Overloadable (S) loop
11109 if S = Standard_Standard then
11110 return False;
11111 else
11112 S := Scope (S);
11113 end if;
11114 end loop;
11115
11116 return Is_Init_Proc (S);
11117 end Within_Init_Proc;
11118
11119 ----------------
11120 -- Wrong_Type --
11121 ----------------
11122
11123 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
11124 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
11125 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
11126
11127 function Has_One_Matching_Field return Boolean;
11128 -- Determines if Expec_Type is a record type with a single component or
11129 -- discriminant whose type matches the found type or is one dimensional
11130 -- array whose component type matches the found type.
11131
11132 ----------------------------
11133 -- Has_One_Matching_Field --
11134 ----------------------------
11135
11136 function Has_One_Matching_Field return Boolean is
11137 E : Entity_Id;
11138
11139 begin
11140 if Is_Array_Type (Expec_Type)
11141 and then Number_Dimensions (Expec_Type) = 1
11142 and then
11143 Covers (Etype (Component_Type (Expec_Type)), Found_Type)
11144 then
11145 return True;
11146
11147 elsif not Is_Record_Type (Expec_Type) then
11148 return False;
11149
11150 else
11151 E := First_Entity (Expec_Type);
11152 loop
11153 if No (E) then
11154 return False;
11155
11156 elsif (Ekind (E) /= E_Discriminant
11157 and then Ekind (E) /= E_Component)
11158 or else (Chars (E) = Name_uTag
11159 or else Chars (E) = Name_uParent)
11160 then
11161 Next_Entity (E);
11162
11163 else
11164 exit;
11165 end if;
11166 end loop;
11167
11168 if not Covers (Etype (E), Found_Type) then
11169 return False;
11170
11171 elsif Present (Next_Entity (E)) then
11172 return False;
11173
11174 else
11175 return True;
11176 end if;
11177 end if;
11178 end Has_One_Matching_Field;
11179
11180 -- Start of processing for Wrong_Type
11181
11182 begin
11183 -- Don't output message if either type is Any_Type, or if a message
11184 -- has already been posted for this node. We need to do the latter
11185 -- check explicitly (it is ordinarily done in Errout), because we
11186 -- are using ! to force the output of the error messages.
11187
11188 if Expec_Type = Any_Type
11189 or else Found_Type = Any_Type
11190 or else Error_Posted (Expr)
11191 then
11192 return;
11193
11194 -- In an instance, there is an ongoing problem with completion of
11195 -- type derived from private types. Their structure is what Gigi
11196 -- expects, but the Etype is the parent type rather than the
11197 -- derived private type itself. Do not flag error in this case. The
11198 -- private completion is an entity without a parent, like an Itype.
11199 -- Similarly, full and partial views may be incorrect in the instance.
11200 -- There is no simple way to insure that it is consistent ???
11201
11202 elsif In_Instance then
11203 if Etype (Etype (Expr)) = Etype (Expected_Type)
11204 and then
11205 (Has_Private_Declaration (Expected_Type)
11206 or else Has_Private_Declaration (Etype (Expr)))
11207 and then No (Parent (Expected_Type))
11208 then
11209 return;
11210 end if;
11211 end if;
11212
11213 -- An interesting special check. If the expression is parenthesized
11214 -- and its type corresponds to the type of the sole component of the
11215 -- expected record type, or to the component type of the expected one
11216 -- dimensional array type, then assume we have a bad aggregate attempt.
11217
11218 if Nkind (Expr) in N_Subexpr
11219 and then Paren_Count (Expr) /= 0
11220 and then Has_One_Matching_Field
11221 then
11222 Error_Msg_N ("positional aggregate cannot have one component", Expr);
11223
11224 -- Another special check, if we are looking for a pool-specific access
11225 -- type and we found an E_Access_Attribute_Type, then we have the case
11226 -- of an Access attribute being used in a context which needs a pool-
11227 -- specific type, which is never allowed. The one extra check we make
11228 -- is that the expected designated type covers the Found_Type.
11229
11230 elsif Is_Access_Type (Expec_Type)
11231 and then Ekind (Found_Type) = E_Access_Attribute_Type
11232 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
11233 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
11234 and then Covers
11235 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
11236 then
11237 Error_Msg_N ("result must be general access type!", Expr);
11238 Error_Msg_NE ("add ALL to }!", Expr, Expec_Type);
11239
11240 -- Another special check, if the expected type is an integer type,
11241 -- but the expression is of type System.Address, and the parent is
11242 -- an addition or subtraction operation whose left operand is the
11243 -- expression in question and whose right operand is of an integral
11244 -- type, then this is an attempt at address arithmetic, so give
11245 -- appropriate message.
11246
11247 elsif Is_Integer_Type (Expec_Type)
11248 and then Is_RTE (Found_Type, RE_Address)
11249 and then (Nkind (Parent (Expr)) = N_Op_Add
11250 or else
11251 Nkind (Parent (Expr)) = N_Op_Subtract)
11252 and then Expr = Left_Opnd (Parent (Expr))
11253 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
11254 then
11255 Error_Msg_N
11256 ("address arithmetic not predefined in package System",
11257 Parent (Expr));
11258 Error_Msg_N
11259 ("\possible missing with/use of System.Storage_Elements",
11260 Parent (Expr));
11261 return;
11262
11263 -- If the expected type is an anonymous access type, as for access
11264 -- parameters and discriminants, the error is on the designated types.
11265
11266 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
11267 if Comes_From_Source (Expec_Type) then
11268 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11269 else
11270 Error_Msg_NE
11271 ("expected an access type with designated}",
11272 Expr, Designated_Type (Expec_Type));
11273 end if;
11274
11275 if Is_Access_Type (Found_Type)
11276 and then not Comes_From_Source (Found_Type)
11277 then
11278 Error_Msg_NE
11279 ("\\found an access type with designated}!",
11280 Expr, Designated_Type (Found_Type));
11281 else
11282 if From_With_Type (Found_Type) then
11283 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
11284 Error_Msg_Qual_Level := 99;
11285 Error_Msg_NE ("\\missing `WITH &;", Expr, Scope (Found_Type));
11286 Error_Msg_Qual_Level := 0;
11287 else
11288 Error_Msg_NE ("found}!", Expr, Found_Type);
11289 end if;
11290 end if;
11291
11292 -- Normal case of one type found, some other type expected
11293
11294 else
11295 -- If the names of the two types are the same, see if some number
11296 -- of levels of qualification will help. Don't try more than three
11297 -- levels, and if we get to standard, it's no use (and probably
11298 -- represents an error in the compiler) Also do not bother with
11299 -- internal scope names.
11300
11301 declare
11302 Expec_Scope : Entity_Id;
11303 Found_Scope : Entity_Id;
11304
11305 begin
11306 Expec_Scope := Expec_Type;
11307 Found_Scope := Found_Type;
11308
11309 for Levels in Int range 0 .. 3 loop
11310 if Chars (Expec_Scope) /= Chars (Found_Scope) then
11311 Error_Msg_Qual_Level := Levels;
11312 exit;
11313 end if;
11314
11315 Expec_Scope := Scope (Expec_Scope);
11316 Found_Scope := Scope (Found_Scope);
11317
11318 exit when Expec_Scope = Standard_Standard
11319 or else Found_Scope = Standard_Standard
11320 or else not Comes_From_Source (Expec_Scope)
11321 or else not Comes_From_Source (Found_Scope);
11322 end loop;
11323 end;
11324
11325 if Is_Record_Type (Expec_Type)
11326 and then Present (Corresponding_Remote_Type (Expec_Type))
11327 then
11328 Error_Msg_NE ("expected}!", Expr,
11329 Corresponding_Remote_Type (Expec_Type));
11330 else
11331 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11332 end if;
11333
11334 if Is_Entity_Name (Expr)
11335 and then Is_Package_Or_Generic_Package (Entity (Expr))
11336 then
11337 Error_Msg_N ("\\found package name!", Expr);
11338
11339 elsif Is_Entity_Name (Expr)
11340 and then
11341 (Ekind (Entity (Expr)) = E_Procedure
11342 or else
11343 Ekind (Entity (Expr)) = E_Generic_Procedure)
11344 then
11345 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
11346 Error_Msg_N
11347 ("found procedure name, possibly missing Access attribute!",
11348 Expr);
11349 else
11350 Error_Msg_N
11351 ("\\found procedure name instead of function!", Expr);
11352 end if;
11353
11354 elsif Nkind (Expr) = N_Function_Call
11355 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
11356 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
11357 and then No (Parameter_Associations (Expr))
11358 then
11359 Error_Msg_N
11360 ("found function name, possibly missing Access attribute!",
11361 Expr);
11362
11363 -- Catch common error: a prefix or infix operator which is not
11364 -- directly visible because the type isn't.
11365
11366 elsif Nkind (Expr) in N_Op
11367 and then Is_Overloaded (Expr)
11368 and then not Is_Immediately_Visible (Expec_Type)
11369 and then not Is_Potentially_Use_Visible (Expec_Type)
11370 and then not In_Use (Expec_Type)
11371 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
11372 then
11373 Error_Msg_N
11374 ("operator of the type is not directly visible!", Expr);
11375
11376 elsif Ekind (Found_Type) = E_Void
11377 and then Present (Parent (Found_Type))
11378 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
11379 then
11380 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
11381
11382 else
11383 Error_Msg_NE ("\\found}!", Expr, Found_Type);
11384 end if;
11385
11386 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
11387 -- of the same modular type, and (M1 and M2) = 0 was intended.
11388
11389 if Expec_Type = Standard_Boolean
11390 and then Is_Modular_Integer_Type (Found_Type)
11391 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
11392 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
11393 then
11394 declare
11395 Op : constant Node_Id := Right_Opnd (Parent (Expr));
11396 L : constant Node_Id := Left_Opnd (Op);
11397 R : constant Node_Id := Right_Opnd (Op);
11398 begin
11399 -- The case for the message is when the left operand of the
11400 -- comparison is the same modular type, or when it is an
11401 -- integer literal (or other universal integer expression),
11402 -- which would have been typed as the modular type if the
11403 -- parens had been there.
11404
11405 if (Etype (L) = Found_Type
11406 or else
11407 Etype (L) = Universal_Integer)
11408 and then Is_Integer_Type (Etype (R))
11409 then
11410 Error_Msg_N
11411 ("\\possible missing parens for modular operation", Expr);
11412 end if;
11413 end;
11414 end if;
11415
11416 -- Reset error message qualification indication
11417
11418 Error_Msg_Qual_Level := 0;
11419 end if;
11420 end Wrong_Type;
11421
11422 end Sem_Util;
This page took 0.571595 seconds and 6 git commands to generate.