]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_util.adb
[multiple changes]
[gcc.git] / gcc / ada / sem_util.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Fname; use Fname;
37 with Freeze; use Freeze;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Nlists; use Nlists;
41 with Output; use Output;
42 with Opt; use Opt;
43 with Rtsfind; use Rtsfind;
44 with Scans; use Scans;
45 with Scn; use Scn;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Attr; use Sem_Attr;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Disp; use Sem_Disp;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_SCIL; use Sem_SCIL;
54 with Sem_Type; use Sem_Type;
55 with Sinfo; use Sinfo;
56 with Sinput; use Sinput;
57 with Stand; use Stand;
58 with Style;
59 with Stringt; use Stringt;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uname; use Uname;
64
65 with GNAT.HTable; use GNAT.HTable;
66 package body Sem_Util is
67
68 ----------------------------------------
69 -- Global_Variables for New_Copy_Tree --
70 ----------------------------------------
71
72 -- These global variables are used by New_Copy_Tree. See description
73 -- of the body of this subprogram for details. Global variables can be
74 -- safely used by New_Copy_Tree, since there is no case of a recursive
75 -- call from the processing inside New_Copy_Tree.
76
77 NCT_Hash_Threshhold : constant := 20;
78 -- If there are more than this number of pairs of entries in the
79 -- map, then Hash_Tables_Used will be set, and the hash tables will
80 -- be initialized and used for the searches.
81
82 NCT_Hash_Tables_Used : Boolean := False;
83 -- Set to True if hash tables are in use
84
85 NCT_Table_Entries : Nat;
86 -- Count entries in table to see if threshhold is reached
87
88 NCT_Hash_Table_Setup : Boolean := False;
89 -- Set to True if hash table contains data. We set this True if we
90 -- setup the hash table with data, and leave it set permanently
91 -- from then on, this is a signal that second and subsequent users
92 -- of the hash table must clear the old entries before reuse.
93
94 subtype NCT_Header_Num is Int range 0 .. 511;
95 -- Defines range of headers in hash tables (512 headers)
96
97 -----------------------
98 -- Local Subprograms --
99 -----------------------
100
101 function Build_Component_Subtype
102 (C : List_Id;
103 Loc : Source_Ptr;
104 T : Entity_Id) return Node_Id;
105 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
106 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
107 -- Loc is the source location, T is the original subtype.
108
109 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
110 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
111 -- with discriminants whose default values are static, examine only the
112 -- components in the selected variant to determine whether all of them
113 -- have a default.
114
115 function Has_Null_Extension (T : Entity_Id) return Boolean;
116 -- T is a derived tagged type. Check whether the type extension is null.
117 -- If the parent type is fully initialized, T can be treated as such.
118
119 ------------------------------
120 -- Abstract_Interface_List --
121 ------------------------------
122
123 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
124 Nod : Node_Id;
125
126 begin
127 if Is_Concurrent_Type (Typ) then
128
129 -- If we are dealing with a synchronized subtype, go to the base
130 -- type, whose declaration has the interface list.
131
132 -- Shouldn't this be Declaration_Node???
133
134 Nod := Parent (Base_Type (Typ));
135
136 if Nkind (Nod) = N_Full_Type_Declaration then
137 return Empty_List;
138 end if;
139
140 elsif Ekind (Typ) = E_Record_Type_With_Private then
141 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
142 Nod := Type_Definition (Parent (Typ));
143
144 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
145 if Present (Full_View (Typ)) then
146 Nod := Type_Definition (Parent (Full_View (Typ)));
147
148 -- If the full-view is not available we cannot do anything else
149 -- here (the source has errors).
150
151 else
152 return Empty_List;
153 end if;
154
155 -- Support for generic formals with interfaces is still missing ???
156
157 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
158 return Empty_List;
159
160 else
161 pragma Assert
162 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
163 Nod := Parent (Typ);
164 end if;
165
166 elsif Ekind (Typ) = E_Record_Subtype then
167 Nod := Type_Definition (Parent (Etype (Typ)));
168
169 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
170
171 -- Recurse, because parent may still be a private extension. Also
172 -- note that the full view of the subtype or the full view of its
173 -- base type may (both) be unavailable.
174
175 return Abstract_Interface_List (Etype (Typ));
176
177 else pragma Assert ((Ekind (Typ)) = E_Record_Type);
178 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
179 Nod := Formal_Type_Definition (Parent (Typ));
180 else
181 Nod := Type_Definition (Parent (Typ));
182 end if;
183 end if;
184
185 return Interface_List (Nod);
186 end Abstract_Interface_List;
187
188 --------------------------------
189 -- Add_Access_Type_To_Process --
190 --------------------------------
191
192 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
193 L : Elist_Id;
194
195 begin
196 Ensure_Freeze_Node (E);
197 L := Access_Types_To_Process (Freeze_Node (E));
198
199 if No (L) then
200 L := New_Elmt_List;
201 Set_Access_Types_To_Process (Freeze_Node (E), L);
202 end if;
203
204 Append_Elmt (A, L);
205 end Add_Access_Type_To_Process;
206
207 ----------------------------
208 -- Add_Global_Declaration --
209 ----------------------------
210
211 procedure Add_Global_Declaration (N : Node_Id) is
212 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
213
214 begin
215 if No (Declarations (Aux_Node)) then
216 Set_Declarations (Aux_Node, New_List);
217 end if;
218
219 Append_To (Declarations (Aux_Node), N);
220 Analyze (N);
221 end Add_Global_Declaration;
222
223 -----------------------
224 -- Alignment_In_Bits --
225 -----------------------
226
227 function Alignment_In_Bits (E : Entity_Id) return Uint is
228 begin
229 return Alignment (E) * System_Storage_Unit;
230 end Alignment_In_Bits;
231
232 -----------------------------------------
233 -- Apply_Compile_Time_Constraint_Error --
234 -----------------------------------------
235
236 procedure Apply_Compile_Time_Constraint_Error
237 (N : Node_Id;
238 Msg : String;
239 Reason : RT_Exception_Code;
240 Ent : Entity_Id := Empty;
241 Typ : Entity_Id := Empty;
242 Loc : Source_Ptr := No_Location;
243 Rep : Boolean := True;
244 Warn : Boolean := False)
245 is
246 Stat : constant Boolean := Is_Static_Expression (N);
247 R_Stat : constant Node_Id :=
248 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
249 Rtyp : Entity_Id;
250
251 begin
252 if No (Typ) then
253 Rtyp := Etype (N);
254 else
255 Rtyp := Typ;
256 end if;
257
258 Discard_Node
259 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
260
261 if not Rep then
262 return;
263 end if;
264
265 -- Now we replace the node by an N_Raise_Constraint_Error node
266 -- This does not need reanalyzing, so set it as analyzed now.
267
268 Rewrite (N, R_Stat);
269 Set_Analyzed (N, True);
270
271 Set_Etype (N, Rtyp);
272 Set_Raises_Constraint_Error (N);
273
274 -- Now deal with possible local raise handling
275
276 Possible_Local_Raise (N, Standard_Constraint_Error);
277
278 -- If the original expression was marked as static, the result is
279 -- still marked as static, but the Raises_Constraint_Error flag is
280 -- always set so that further static evaluation is not attempted.
281
282 if Stat then
283 Set_Is_Static_Expression (N);
284 end if;
285 end Apply_Compile_Time_Constraint_Error;
286
287 --------------------------
288 -- Build_Actual_Subtype --
289 --------------------------
290
291 function Build_Actual_Subtype
292 (T : Entity_Id;
293 N : Node_Or_Entity_Id) return Node_Id
294 is
295 Loc : Source_Ptr;
296 -- Normally Sloc (N), but may point to corresponding body in some cases
297
298 Constraints : List_Id;
299 Decl : Node_Id;
300 Discr : Entity_Id;
301 Hi : Node_Id;
302 Lo : Node_Id;
303 Subt : Entity_Id;
304 Disc_Type : Entity_Id;
305 Obj : Node_Id;
306
307 begin
308 Loc := Sloc (N);
309
310 if Nkind (N) = N_Defining_Identifier then
311 Obj := New_Reference_To (N, Loc);
312
313 -- If this is a formal parameter of a subprogram declaration, and
314 -- we are compiling the body, we want the declaration for the
315 -- actual subtype to carry the source position of the body, to
316 -- prevent anomalies in gdb when stepping through the code.
317
318 if Is_Formal (N) then
319 declare
320 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
321 begin
322 if Nkind (Decl) = N_Subprogram_Declaration
323 and then Present (Corresponding_Body (Decl))
324 then
325 Loc := Sloc (Corresponding_Body (Decl));
326 end if;
327 end;
328 end if;
329
330 else
331 Obj := N;
332 end if;
333
334 if Is_Array_Type (T) then
335 Constraints := New_List;
336 for J in 1 .. Number_Dimensions (T) loop
337
338 -- Build an array subtype declaration with the nominal subtype and
339 -- the bounds of the actual. Add the declaration in front of the
340 -- local declarations for the subprogram, for analysis before any
341 -- reference to the formal in the body.
342
343 Lo :=
344 Make_Attribute_Reference (Loc,
345 Prefix =>
346 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
347 Attribute_Name => Name_First,
348 Expressions => New_List (
349 Make_Integer_Literal (Loc, J)));
350
351 Hi :=
352 Make_Attribute_Reference (Loc,
353 Prefix =>
354 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
355 Attribute_Name => Name_Last,
356 Expressions => New_List (
357 Make_Integer_Literal (Loc, J)));
358
359 Append (Make_Range (Loc, Lo, Hi), Constraints);
360 end loop;
361
362 -- If the type has unknown discriminants there is no constrained
363 -- subtype to build. This is never called for a formal or for a
364 -- lhs, so returning the type is ok ???
365
366 elsif Has_Unknown_Discriminants (T) then
367 return T;
368
369 else
370 Constraints := New_List;
371
372 -- Type T is a generic derived type, inherit the discriminants from
373 -- the parent type.
374
375 if Is_Private_Type (T)
376 and then No (Full_View (T))
377
378 -- T was flagged as an error if it was declared as a formal
379 -- derived type with known discriminants. In this case there
380 -- is no need to look at the parent type since T already carries
381 -- its own discriminants.
382
383 and then not Error_Posted (T)
384 then
385 Disc_Type := Etype (Base_Type (T));
386 else
387 Disc_Type := T;
388 end if;
389
390 Discr := First_Discriminant (Disc_Type);
391 while Present (Discr) loop
392 Append_To (Constraints,
393 Make_Selected_Component (Loc,
394 Prefix =>
395 Duplicate_Subexpr_No_Checks (Obj),
396 Selector_Name => New_Occurrence_Of (Discr, Loc)));
397 Next_Discriminant (Discr);
398 end loop;
399 end if;
400
401 Subt :=
402 Make_Defining_Identifier (Loc,
403 Chars => New_Internal_Name ('S'));
404 Set_Is_Internal (Subt);
405
406 Decl :=
407 Make_Subtype_Declaration (Loc,
408 Defining_Identifier => Subt,
409 Subtype_Indication =>
410 Make_Subtype_Indication (Loc,
411 Subtype_Mark => New_Reference_To (T, Loc),
412 Constraint =>
413 Make_Index_Or_Discriminant_Constraint (Loc,
414 Constraints => Constraints)));
415
416 Mark_Rewrite_Insertion (Decl);
417 return Decl;
418 end Build_Actual_Subtype;
419
420 ---------------------------------------
421 -- Build_Actual_Subtype_Of_Component --
422 ---------------------------------------
423
424 function Build_Actual_Subtype_Of_Component
425 (T : Entity_Id;
426 N : Node_Id) return Node_Id
427 is
428 Loc : constant Source_Ptr := Sloc (N);
429 P : constant Node_Id := Prefix (N);
430 D : Elmt_Id;
431 Id : Node_Id;
432 Indx_Type : Entity_Id;
433
434 Deaccessed_T : Entity_Id;
435 -- This is either a copy of T, or if T is an access type, then it is
436 -- the directly designated type of this access type.
437
438 function Build_Actual_Array_Constraint return List_Id;
439 -- If one or more of the bounds of the component depends on
440 -- discriminants, build actual constraint using the discriminants
441 -- of the prefix.
442
443 function Build_Actual_Record_Constraint return List_Id;
444 -- Similar to previous one, for discriminated components constrained
445 -- by the discriminant of the enclosing object.
446
447 -----------------------------------
448 -- Build_Actual_Array_Constraint --
449 -----------------------------------
450
451 function Build_Actual_Array_Constraint return List_Id is
452 Constraints : constant List_Id := New_List;
453 Indx : Node_Id;
454 Hi : Node_Id;
455 Lo : Node_Id;
456 Old_Hi : Node_Id;
457 Old_Lo : Node_Id;
458
459 begin
460 Indx := First_Index (Deaccessed_T);
461 while Present (Indx) loop
462 Old_Lo := Type_Low_Bound (Etype (Indx));
463 Old_Hi := Type_High_Bound (Etype (Indx));
464
465 if Denotes_Discriminant (Old_Lo) then
466 Lo :=
467 Make_Selected_Component (Loc,
468 Prefix => New_Copy_Tree (P),
469 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
470
471 else
472 Lo := New_Copy_Tree (Old_Lo);
473
474 -- The new bound will be reanalyzed in the enclosing
475 -- declaration. For literal bounds that come from a type
476 -- declaration, the type of the context must be imposed, so
477 -- insure that analysis will take place. For non-universal
478 -- types this is not strictly necessary.
479
480 Set_Analyzed (Lo, False);
481 end if;
482
483 if Denotes_Discriminant (Old_Hi) then
484 Hi :=
485 Make_Selected_Component (Loc,
486 Prefix => New_Copy_Tree (P),
487 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
488
489 else
490 Hi := New_Copy_Tree (Old_Hi);
491 Set_Analyzed (Hi, False);
492 end if;
493
494 Append (Make_Range (Loc, Lo, Hi), Constraints);
495 Next_Index (Indx);
496 end loop;
497
498 return Constraints;
499 end Build_Actual_Array_Constraint;
500
501 ------------------------------------
502 -- Build_Actual_Record_Constraint --
503 ------------------------------------
504
505 function Build_Actual_Record_Constraint return List_Id is
506 Constraints : constant List_Id := New_List;
507 D : Elmt_Id;
508 D_Val : Node_Id;
509
510 begin
511 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
512 while Present (D) loop
513 if Denotes_Discriminant (Node (D)) then
514 D_Val := Make_Selected_Component (Loc,
515 Prefix => New_Copy_Tree (P),
516 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
517
518 else
519 D_Val := New_Copy_Tree (Node (D));
520 end if;
521
522 Append (D_Val, Constraints);
523 Next_Elmt (D);
524 end loop;
525
526 return Constraints;
527 end Build_Actual_Record_Constraint;
528
529 -- Start of processing for Build_Actual_Subtype_Of_Component
530
531 begin
532 -- Why the test for Spec_Expression mode here???
533
534 if In_Spec_Expression then
535 return Empty;
536
537 -- More comments for the rest of this body would be good ???
538
539 elsif Nkind (N) = N_Explicit_Dereference then
540 if Is_Composite_Type (T)
541 and then not Is_Constrained (T)
542 and then not (Is_Class_Wide_Type (T)
543 and then Is_Constrained (Root_Type (T)))
544 and then not Has_Unknown_Discriminants (T)
545 then
546 -- If the type of the dereference is already constrained, it is an
547 -- actual subtype.
548
549 if Is_Array_Type (Etype (N))
550 and then Is_Constrained (Etype (N))
551 then
552 return Empty;
553 else
554 Remove_Side_Effects (P);
555 return Build_Actual_Subtype (T, N);
556 end if;
557 else
558 return Empty;
559 end if;
560 end if;
561
562 if Ekind (T) = E_Access_Subtype then
563 Deaccessed_T := Designated_Type (T);
564 else
565 Deaccessed_T := T;
566 end if;
567
568 if Ekind (Deaccessed_T) = E_Array_Subtype then
569 Id := First_Index (Deaccessed_T);
570 while Present (Id) loop
571 Indx_Type := Underlying_Type (Etype (Id));
572
573 if Denotes_Discriminant (Type_Low_Bound (Indx_Type))
574 or else
575 Denotes_Discriminant (Type_High_Bound (Indx_Type))
576 then
577 Remove_Side_Effects (P);
578 return
579 Build_Component_Subtype
580 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
581 end if;
582
583 Next_Index (Id);
584 end loop;
585
586 elsif Is_Composite_Type (Deaccessed_T)
587 and then Has_Discriminants (Deaccessed_T)
588 and then not Has_Unknown_Discriminants (Deaccessed_T)
589 then
590 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
591 while Present (D) loop
592 if Denotes_Discriminant (Node (D)) then
593 Remove_Side_Effects (P);
594 return
595 Build_Component_Subtype (
596 Build_Actual_Record_Constraint, Loc, Base_Type (T));
597 end if;
598
599 Next_Elmt (D);
600 end loop;
601 end if;
602
603 -- If none of the above, the actual and nominal subtypes are the same
604
605 return Empty;
606 end Build_Actual_Subtype_Of_Component;
607
608 -----------------------------
609 -- Build_Component_Subtype --
610 -----------------------------
611
612 function Build_Component_Subtype
613 (C : List_Id;
614 Loc : Source_Ptr;
615 T : Entity_Id) return Node_Id
616 is
617 Subt : Entity_Id;
618 Decl : Node_Id;
619
620 begin
621 -- Unchecked_Union components do not require component subtypes
622
623 if Is_Unchecked_Union (T) then
624 return Empty;
625 end if;
626
627 Subt :=
628 Make_Defining_Identifier (Loc,
629 Chars => New_Internal_Name ('S'));
630 Set_Is_Internal (Subt);
631
632 Decl :=
633 Make_Subtype_Declaration (Loc,
634 Defining_Identifier => Subt,
635 Subtype_Indication =>
636 Make_Subtype_Indication (Loc,
637 Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
638 Constraint =>
639 Make_Index_Or_Discriminant_Constraint (Loc,
640 Constraints => C)));
641
642 Mark_Rewrite_Insertion (Decl);
643 return Decl;
644 end Build_Component_Subtype;
645
646 ---------------------------
647 -- Build_Default_Subtype --
648 ---------------------------
649
650 function Build_Default_Subtype
651 (T : Entity_Id;
652 N : Node_Id) return Entity_Id
653 is
654 Loc : constant Source_Ptr := Sloc (N);
655 Disc : Entity_Id;
656
657 begin
658 if not Has_Discriminants (T) or else Is_Constrained (T) then
659 return T;
660 end if;
661
662 Disc := First_Discriminant (T);
663
664 if No (Discriminant_Default_Value (Disc)) then
665 return T;
666 end if;
667
668 declare
669 Act : constant Entity_Id :=
670 Make_Defining_Identifier (Loc,
671 Chars => New_Internal_Name ('S'));
672
673 Constraints : constant List_Id := New_List;
674 Decl : Node_Id;
675
676 begin
677 while Present (Disc) loop
678 Append_To (Constraints,
679 New_Copy_Tree (Discriminant_Default_Value (Disc)));
680 Next_Discriminant (Disc);
681 end loop;
682
683 Decl :=
684 Make_Subtype_Declaration (Loc,
685 Defining_Identifier => Act,
686 Subtype_Indication =>
687 Make_Subtype_Indication (Loc,
688 Subtype_Mark => New_Occurrence_Of (T, Loc),
689 Constraint =>
690 Make_Index_Or_Discriminant_Constraint (Loc,
691 Constraints => Constraints)));
692
693 Insert_Action (N, Decl);
694 Analyze (Decl);
695 return Act;
696 end;
697 end Build_Default_Subtype;
698
699 --------------------------------------------
700 -- Build_Discriminal_Subtype_Of_Component --
701 --------------------------------------------
702
703 function Build_Discriminal_Subtype_Of_Component
704 (T : Entity_Id) return Node_Id
705 is
706 Loc : constant Source_Ptr := Sloc (T);
707 D : Elmt_Id;
708 Id : Node_Id;
709
710 function Build_Discriminal_Array_Constraint return List_Id;
711 -- If one or more of the bounds of the component depends on
712 -- discriminants, build actual constraint using the discriminants
713 -- of the prefix.
714
715 function Build_Discriminal_Record_Constraint return List_Id;
716 -- Similar to previous one, for discriminated components constrained
717 -- by the discriminant of the enclosing object.
718
719 ----------------------------------------
720 -- Build_Discriminal_Array_Constraint --
721 ----------------------------------------
722
723 function Build_Discriminal_Array_Constraint return List_Id is
724 Constraints : constant List_Id := New_List;
725 Indx : Node_Id;
726 Hi : Node_Id;
727 Lo : Node_Id;
728 Old_Hi : Node_Id;
729 Old_Lo : Node_Id;
730
731 begin
732 Indx := First_Index (T);
733 while Present (Indx) loop
734 Old_Lo := Type_Low_Bound (Etype (Indx));
735 Old_Hi := Type_High_Bound (Etype (Indx));
736
737 if Denotes_Discriminant (Old_Lo) then
738 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
739
740 else
741 Lo := New_Copy_Tree (Old_Lo);
742 end if;
743
744 if Denotes_Discriminant (Old_Hi) then
745 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
746
747 else
748 Hi := New_Copy_Tree (Old_Hi);
749 end if;
750
751 Append (Make_Range (Loc, Lo, Hi), Constraints);
752 Next_Index (Indx);
753 end loop;
754
755 return Constraints;
756 end Build_Discriminal_Array_Constraint;
757
758 -----------------------------------------
759 -- Build_Discriminal_Record_Constraint --
760 -----------------------------------------
761
762 function Build_Discriminal_Record_Constraint return List_Id is
763 Constraints : constant List_Id := New_List;
764 D : Elmt_Id;
765 D_Val : Node_Id;
766
767 begin
768 D := First_Elmt (Discriminant_Constraint (T));
769 while Present (D) loop
770 if Denotes_Discriminant (Node (D)) then
771 D_Val :=
772 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
773
774 else
775 D_Val := New_Copy_Tree (Node (D));
776 end if;
777
778 Append (D_Val, Constraints);
779 Next_Elmt (D);
780 end loop;
781
782 return Constraints;
783 end Build_Discriminal_Record_Constraint;
784
785 -- Start of processing for Build_Discriminal_Subtype_Of_Component
786
787 begin
788 if Ekind (T) = E_Array_Subtype then
789 Id := First_Index (T);
790 while Present (Id) loop
791 if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
792 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
793 then
794 return Build_Component_Subtype
795 (Build_Discriminal_Array_Constraint, Loc, T);
796 end if;
797
798 Next_Index (Id);
799 end loop;
800
801 elsif Ekind (T) = E_Record_Subtype
802 and then Has_Discriminants (T)
803 and then not Has_Unknown_Discriminants (T)
804 then
805 D := First_Elmt (Discriminant_Constraint (T));
806 while Present (D) loop
807 if Denotes_Discriminant (Node (D)) then
808 return Build_Component_Subtype
809 (Build_Discriminal_Record_Constraint, Loc, T);
810 end if;
811
812 Next_Elmt (D);
813 end loop;
814 end if;
815
816 -- If none of the above, the actual and nominal subtypes are the same
817
818 return Empty;
819 end Build_Discriminal_Subtype_Of_Component;
820
821 ------------------------------
822 -- Build_Elaboration_Entity --
823 ------------------------------
824
825 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
826 Loc : constant Source_Ptr := Sloc (N);
827 Decl : Node_Id;
828 Elab_Ent : Entity_Id;
829
830 procedure Set_Package_Name (Ent : Entity_Id);
831 -- Given an entity, sets the fully qualified name of the entity in
832 -- Name_Buffer, with components separated by double underscores. This
833 -- is a recursive routine that climbs the scope chain to Standard.
834
835 ----------------------
836 -- Set_Package_Name --
837 ----------------------
838
839 procedure Set_Package_Name (Ent : Entity_Id) is
840 begin
841 if Scope (Ent) /= Standard_Standard then
842 Set_Package_Name (Scope (Ent));
843
844 declare
845 Nam : constant String := Get_Name_String (Chars (Ent));
846 begin
847 Name_Buffer (Name_Len + 1) := '_';
848 Name_Buffer (Name_Len + 2) := '_';
849 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
850 Name_Len := Name_Len + Nam'Length + 2;
851 end;
852
853 else
854 Get_Name_String (Chars (Ent));
855 end if;
856 end Set_Package_Name;
857
858 -- Start of processing for Build_Elaboration_Entity
859
860 begin
861 -- Ignore if already constructed
862
863 if Present (Elaboration_Entity (Spec_Id)) then
864 return;
865 end if;
866
867 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
868 -- name with dots replaced by double underscore. We have to manually
869 -- construct this name, since it will be elaborated in the outer scope,
870 -- and thus will not have the unit name automatically prepended.
871
872 Set_Package_Name (Spec_Id);
873
874 -- Append _E
875
876 Name_Buffer (Name_Len + 1) := '_';
877 Name_Buffer (Name_Len + 2) := 'E';
878 Name_Len := Name_Len + 2;
879
880 -- Create elaboration flag
881
882 Elab_Ent :=
883 Make_Defining_Identifier (Loc, Chars => Name_Find);
884 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
885
886 Decl :=
887 Make_Object_Declaration (Loc,
888 Defining_Identifier => Elab_Ent,
889 Object_Definition =>
890 New_Occurrence_Of (Standard_Boolean, Loc),
891 Expression =>
892 New_Occurrence_Of (Standard_False, Loc));
893
894 Push_Scope (Standard_Standard);
895 Add_Global_Declaration (Decl);
896 Pop_Scope;
897
898 -- Reset True_Constant indication, since we will indeed assign a value
899 -- to the variable in the binder main. We also kill the Current_Value
900 -- and Last_Assignment fields for the same reason.
901
902 Set_Is_True_Constant (Elab_Ent, False);
903 Set_Current_Value (Elab_Ent, Empty);
904 Set_Last_Assignment (Elab_Ent, Empty);
905
906 -- We do not want any further qualification of the name (if we did
907 -- not do this, we would pick up the name of the generic package
908 -- in the case of a library level generic instantiation).
909
910 Set_Has_Qualified_Name (Elab_Ent);
911 Set_Has_Fully_Qualified_Name (Elab_Ent);
912 end Build_Elaboration_Entity;
913
914 -----------------------------------
915 -- Cannot_Raise_Constraint_Error --
916 -----------------------------------
917
918 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
919 begin
920 if Compile_Time_Known_Value (Expr) then
921 return True;
922
923 elsif Do_Range_Check (Expr) then
924 return False;
925
926 elsif Raises_Constraint_Error (Expr) then
927 return False;
928
929 else
930 case Nkind (Expr) is
931 when N_Identifier =>
932 return True;
933
934 when N_Expanded_Name =>
935 return True;
936
937 when N_Selected_Component =>
938 return not Do_Discriminant_Check (Expr);
939
940 when N_Attribute_Reference =>
941 if Do_Overflow_Check (Expr) then
942 return False;
943
944 elsif No (Expressions (Expr)) then
945 return True;
946
947 else
948 declare
949 N : Node_Id;
950
951 begin
952 N := First (Expressions (Expr));
953 while Present (N) loop
954 if Cannot_Raise_Constraint_Error (N) then
955 Next (N);
956 else
957 return False;
958 end if;
959 end loop;
960
961 return True;
962 end;
963 end if;
964
965 when N_Type_Conversion =>
966 if Do_Overflow_Check (Expr)
967 or else Do_Length_Check (Expr)
968 or else Do_Tag_Check (Expr)
969 then
970 return False;
971 else
972 return
973 Cannot_Raise_Constraint_Error (Expression (Expr));
974 end if;
975
976 when N_Unchecked_Type_Conversion =>
977 return Cannot_Raise_Constraint_Error (Expression (Expr));
978
979 when N_Unary_Op =>
980 if Do_Overflow_Check (Expr) then
981 return False;
982 else
983 return
984 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
985 end if;
986
987 when N_Op_Divide |
988 N_Op_Mod |
989 N_Op_Rem
990 =>
991 if Do_Division_Check (Expr)
992 or else Do_Overflow_Check (Expr)
993 then
994 return False;
995 else
996 return
997 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
998 and then
999 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1000 end if;
1001
1002 when N_Op_Add |
1003 N_Op_And |
1004 N_Op_Concat |
1005 N_Op_Eq |
1006 N_Op_Expon |
1007 N_Op_Ge |
1008 N_Op_Gt |
1009 N_Op_Le |
1010 N_Op_Lt |
1011 N_Op_Multiply |
1012 N_Op_Ne |
1013 N_Op_Or |
1014 N_Op_Rotate_Left |
1015 N_Op_Rotate_Right |
1016 N_Op_Shift_Left |
1017 N_Op_Shift_Right |
1018 N_Op_Shift_Right_Arithmetic |
1019 N_Op_Subtract |
1020 N_Op_Xor
1021 =>
1022 if Do_Overflow_Check (Expr) then
1023 return False;
1024 else
1025 return
1026 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1027 and then
1028 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1029 end if;
1030
1031 when others =>
1032 return False;
1033 end case;
1034 end if;
1035 end Cannot_Raise_Constraint_Error;
1036
1037 -----------------------------------------
1038 -- Check_Dynamically_Tagged_Expression --
1039 -----------------------------------------
1040
1041 procedure Check_Dynamically_Tagged_Expression
1042 (Expr : Node_Id;
1043 Typ : Entity_Id;
1044 Related_Nod : Node_Id)
1045 is
1046 begin
1047 pragma Assert (Is_Tagged_Type (Typ));
1048
1049 -- In order to avoid spurious errors when analyzing the expanded code,
1050 -- this check is done only for nodes that come from source and for
1051 -- actuals of generic instantiations.
1052
1053 if (Comes_From_Source (Related_Nod)
1054 or else In_Generic_Actual (Expr))
1055 and then (Is_Class_Wide_Type (Etype (Expr))
1056 or else Is_Dynamically_Tagged (Expr))
1057 and then Is_Tagged_Type (Typ)
1058 and then not Is_Class_Wide_Type (Typ)
1059 then
1060 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
1061 end if;
1062 end Check_Dynamically_Tagged_Expression;
1063
1064 --------------------------
1065 -- Check_Fully_Declared --
1066 --------------------------
1067
1068 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
1069 begin
1070 if Ekind (T) = E_Incomplete_Type then
1071
1072 -- Ada 2005 (AI-50217): If the type is available through a limited
1073 -- with_clause, verify that its full view has been analyzed.
1074
1075 if From_With_Type (T)
1076 and then Present (Non_Limited_View (T))
1077 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
1078 then
1079 -- The non-limited view is fully declared
1080 null;
1081
1082 else
1083 Error_Msg_NE
1084 ("premature usage of incomplete}", N, First_Subtype (T));
1085 end if;
1086
1087 -- Need comments for these tests ???
1088
1089 elsif Has_Private_Component (T)
1090 and then not Is_Generic_Type (Root_Type (T))
1091 and then not In_Spec_Expression
1092 then
1093 -- Special case: if T is the anonymous type created for a single
1094 -- task or protected object, use the name of the source object.
1095
1096 if Is_Concurrent_Type (T)
1097 and then not Comes_From_Source (T)
1098 and then Nkind (N) = N_Object_Declaration
1099 then
1100 Error_Msg_NE ("type of& has incomplete component", N,
1101 Defining_Identifier (N));
1102
1103 else
1104 Error_Msg_NE
1105 ("premature usage of incomplete}", N, First_Subtype (T));
1106 end if;
1107 end if;
1108 end Check_Fully_Declared;
1109
1110 -------------------------
1111 -- Check_Nested_Access --
1112 -------------------------
1113
1114 procedure Check_Nested_Access (Ent : Entity_Id) is
1115 Scop : constant Entity_Id := Current_Scope;
1116 Current_Subp : Entity_Id;
1117 Enclosing : Entity_Id;
1118
1119 begin
1120 -- Currently only enabled for VM back-ends for efficiency, should we
1121 -- enable it more systematically ???
1122
1123 -- Check for Is_Imported needs commenting below ???
1124
1125 if VM_Target /= No_VM
1126 and then (Ekind (Ent) = E_Variable
1127 or else
1128 Ekind (Ent) = E_Constant
1129 or else
1130 Ekind (Ent) = E_Loop_Parameter)
1131 and then Scope (Ent) /= Empty
1132 and then not Is_Library_Level_Entity (Ent)
1133 and then not Is_Imported (Ent)
1134 then
1135 if Is_Subprogram (Scop)
1136 or else Is_Generic_Subprogram (Scop)
1137 or else Is_Entry (Scop)
1138 then
1139 Current_Subp := Scop;
1140 else
1141 Current_Subp := Current_Subprogram;
1142 end if;
1143
1144 Enclosing := Enclosing_Subprogram (Ent);
1145
1146 if Enclosing /= Empty
1147 and then Enclosing /= Current_Subp
1148 then
1149 Set_Has_Up_Level_Access (Ent, True);
1150 end if;
1151 end if;
1152 end Check_Nested_Access;
1153
1154 ------------------------------------------
1155 -- Check_Potentially_Blocking_Operation --
1156 ------------------------------------------
1157
1158 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
1159 S : Entity_Id;
1160 begin
1161 -- N is one of the potentially blocking operations listed in 9.5.1(8).
1162 -- When pragma Detect_Blocking is active, the run time will raise
1163 -- Program_Error. Here we only issue a warning, since we generally
1164 -- support the use of potentially blocking operations in the absence
1165 -- of the pragma.
1166
1167 -- Indirect blocking through a subprogram call cannot be diagnosed
1168 -- statically without interprocedural analysis, so we do not attempt
1169 -- to do it here.
1170
1171 S := Scope (Current_Scope);
1172 while Present (S) and then S /= Standard_Standard loop
1173 if Is_Protected_Type (S) then
1174 Error_Msg_N
1175 ("potentially blocking operation in protected operation?", N);
1176
1177 return;
1178 end if;
1179
1180 S := Scope (S);
1181 end loop;
1182 end Check_Potentially_Blocking_Operation;
1183
1184 ------------------------------
1185 -- Check_Unprotected_Access --
1186 ------------------------------
1187
1188 procedure Check_Unprotected_Access
1189 (Context : Node_Id;
1190 Expr : Node_Id)
1191 is
1192 Cont_Encl_Typ : Entity_Id;
1193 Pref_Encl_Typ : Entity_Id;
1194
1195 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
1196 -- Check whether Obj is a private component of a protected object.
1197 -- Return the protected type where the component resides, Empty
1198 -- otherwise.
1199
1200 function Is_Public_Operation return Boolean;
1201 -- Verify that the enclosing operation is callable from outside the
1202 -- protected object, to minimize false positives.
1203
1204 ------------------------------
1205 -- Enclosing_Protected_Type --
1206 ------------------------------
1207
1208 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
1209 begin
1210 if Is_Entity_Name (Obj) then
1211 declare
1212 Ent : Entity_Id := Entity (Obj);
1213
1214 begin
1215 -- The object can be a renaming of a private component, use
1216 -- the original record component.
1217
1218 if Is_Prival (Ent) then
1219 Ent := Prival_Link (Ent);
1220 end if;
1221
1222 if Is_Protected_Type (Scope (Ent)) then
1223 return Scope (Ent);
1224 end if;
1225 end;
1226 end if;
1227
1228 -- For indexed and selected components, recursively check the prefix
1229
1230 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
1231 return Enclosing_Protected_Type (Prefix (Obj));
1232
1233 -- The object does not denote a protected component
1234
1235 else
1236 return Empty;
1237 end if;
1238 end Enclosing_Protected_Type;
1239
1240 -------------------------
1241 -- Is_Public_Operation --
1242 -------------------------
1243
1244 function Is_Public_Operation return Boolean is
1245 S : Entity_Id;
1246 E : Entity_Id;
1247
1248 begin
1249 S := Current_Scope;
1250 while Present (S)
1251 and then S /= Pref_Encl_Typ
1252 loop
1253 if Scope (S) = Pref_Encl_Typ then
1254 E := First_Entity (Pref_Encl_Typ);
1255 while Present (E)
1256 and then E /= First_Private_Entity (Pref_Encl_Typ)
1257 loop
1258 if E = S then
1259 return True;
1260 end if;
1261 Next_Entity (E);
1262 end loop;
1263 end if;
1264
1265 S := Scope (S);
1266 end loop;
1267
1268 return False;
1269 end Is_Public_Operation;
1270
1271 -- Start of processing for Check_Unprotected_Access
1272
1273 begin
1274 if Nkind (Expr) = N_Attribute_Reference
1275 and then Attribute_Name (Expr) = Name_Unchecked_Access
1276 then
1277 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
1278 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
1279
1280 -- Check whether we are trying to export a protected component to a
1281 -- context with an equal or lower access level.
1282
1283 if Present (Pref_Encl_Typ)
1284 and then No (Cont_Encl_Typ)
1285 and then Is_Public_Operation
1286 and then Scope_Depth (Pref_Encl_Typ) >=
1287 Object_Access_Level (Context)
1288 then
1289 Error_Msg_N
1290 ("?possible unprotected access to protected data", Expr);
1291 end if;
1292 end if;
1293 end Check_Unprotected_Access;
1294
1295 ---------------
1296 -- Check_VMS --
1297 ---------------
1298
1299 procedure Check_VMS (Construct : Node_Id) is
1300 begin
1301 if not OpenVMS_On_Target then
1302 Error_Msg_N
1303 ("this construct is allowed only in Open'V'M'S", Construct);
1304 end if;
1305 end Check_VMS;
1306
1307 ------------------------
1308 -- Collect_Interfaces --
1309 ------------------------
1310
1311 procedure Collect_Interfaces
1312 (T : Entity_Id;
1313 Ifaces_List : out Elist_Id;
1314 Exclude_Parents : Boolean := False;
1315 Use_Full_View : Boolean := True)
1316 is
1317 procedure Collect (Typ : Entity_Id);
1318 -- Subsidiary subprogram used to traverse the whole list
1319 -- of directly and indirectly implemented interfaces
1320
1321 -------------
1322 -- Collect --
1323 -------------
1324
1325 procedure Collect (Typ : Entity_Id) is
1326 Ancestor : Entity_Id;
1327 Full_T : Entity_Id;
1328 Id : Node_Id;
1329 Iface : Entity_Id;
1330
1331 begin
1332 Full_T := Typ;
1333
1334 -- Handle private types
1335
1336 if Use_Full_View
1337 and then Is_Private_Type (Typ)
1338 and then Present (Full_View (Typ))
1339 then
1340 Full_T := Full_View (Typ);
1341 end if;
1342
1343 -- Include the ancestor if we are generating the whole list of
1344 -- abstract interfaces.
1345
1346 if Etype (Full_T) /= Typ
1347
1348 -- Protect the frontend against wrong sources. For example:
1349
1350 -- package P is
1351 -- type A is tagged null record;
1352 -- type B is new A with private;
1353 -- type C is new A with private;
1354 -- private
1355 -- type B is new C with null record;
1356 -- type C is new B with null record;
1357 -- end P;
1358
1359 and then Etype (Full_T) /= T
1360 then
1361 Ancestor := Etype (Full_T);
1362 Collect (Ancestor);
1363
1364 if Is_Interface (Ancestor)
1365 and then not Exclude_Parents
1366 then
1367 Append_Unique_Elmt (Ancestor, Ifaces_List);
1368 end if;
1369 end if;
1370
1371 -- Traverse the graph of ancestor interfaces
1372
1373 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
1374 Id := First (Abstract_Interface_List (Full_T));
1375 while Present (Id) loop
1376 Iface := Etype (Id);
1377
1378 -- Protect against wrong uses. For example:
1379 -- type I is interface;
1380 -- type O is tagged null record;
1381 -- type Wrong is new I and O with null record; -- ERROR
1382
1383 if Is_Interface (Iface) then
1384 if Exclude_Parents
1385 and then Etype (T) /= T
1386 and then Interface_Present_In_Ancestor (Etype (T), Iface)
1387 then
1388 null;
1389 else
1390 Collect (Iface);
1391 Append_Unique_Elmt (Iface, Ifaces_List);
1392 end if;
1393 end if;
1394
1395 Next (Id);
1396 end loop;
1397 end if;
1398 end Collect;
1399
1400 -- Start of processing for Collect_Interfaces
1401
1402 begin
1403 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
1404 Ifaces_List := New_Elmt_List;
1405 Collect (T);
1406 end Collect_Interfaces;
1407
1408 ----------------------------------
1409 -- Collect_Interface_Components --
1410 ----------------------------------
1411
1412 procedure Collect_Interface_Components
1413 (Tagged_Type : Entity_Id;
1414 Components_List : out Elist_Id)
1415 is
1416 procedure Collect (Typ : Entity_Id);
1417 -- Subsidiary subprogram used to climb to the parents
1418
1419 -------------
1420 -- Collect --
1421 -------------
1422
1423 procedure Collect (Typ : Entity_Id) is
1424 Tag_Comp : Entity_Id;
1425 Parent_Typ : Entity_Id;
1426
1427 begin
1428 -- Handle private types
1429
1430 if Present (Full_View (Etype (Typ))) then
1431 Parent_Typ := Full_View (Etype (Typ));
1432 else
1433 Parent_Typ := Etype (Typ);
1434 end if;
1435
1436 if Parent_Typ /= Typ
1437
1438 -- Protect the frontend against wrong sources. For example:
1439
1440 -- package P is
1441 -- type A is tagged null record;
1442 -- type B is new A with private;
1443 -- type C is new A with private;
1444 -- private
1445 -- type B is new C with null record;
1446 -- type C is new B with null record;
1447 -- end P;
1448
1449 and then Parent_Typ /= Tagged_Type
1450 then
1451 Collect (Parent_Typ);
1452 end if;
1453
1454 -- Collect the components containing tags of secondary dispatch
1455 -- tables.
1456
1457 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
1458 while Present (Tag_Comp) loop
1459 pragma Assert (Present (Related_Type (Tag_Comp)));
1460 Append_Elmt (Tag_Comp, Components_List);
1461
1462 Tag_Comp := Next_Tag_Component (Tag_Comp);
1463 end loop;
1464 end Collect;
1465
1466 -- Start of processing for Collect_Interface_Components
1467
1468 begin
1469 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
1470 and then Is_Tagged_Type (Tagged_Type));
1471
1472 Components_List := New_Elmt_List;
1473 Collect (Tagged_Type);
1474 end Collect_Interface_Components;
1475
1476 -----------------------------
1477 -- Collect_Interfaces_Info --
1478 -----------------------------
1479
1480 procedure Collect_Interfaces_Info
1481 (T : Entity_Id;
1482 Ifaces_List : out Elist_Id;
1483 Components_List : out Elist_Id;
1484 Tags_List : out Elist_Id)
1485 is
1486 Comps_List : Elist_Id;
1487 Comp_Elmt : Elmt_Id;
1488 Comp_Iface : Entity_Id;
1489 Iface_Elmt : Elmt_Id;
1490 Iface : Entity_Id;
1491
1492 function Search_Tag (Iface : Entity_Id) return Entity_Id;
1493 -- Search for the secondary tag associated with the interface type
1494 -- Iface that is implemented by T.
1495
1496 ----------------
1497 -- Search_Tag --
1498 ----------------
1499
1500 function Search_Tag (Iface : Entity_Id) return Entity_Id is
1501 ADT : Elmt_Id;
1502
1503 begin
1504 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
1505 while Present (ADT)
1506 and then Ekind (Node (ADT)) = E_Constant
1507 and then Related_Type (Node (ADT)) /= Iface
1508 loop
1509 -- Skip the secondary dispatch tables of Iface
1510
1511 Next_Elmt (ADT);
1512 Next_Elmt (ADT);
1513 Next_Elmt (ADT);
1514 Next_Elmt (ADT);
1515 end loop;
1516
1517 pragma Assert (Ekind (Node (ADT)) = E_Constant);
1518 return Node (ADT);
1519 end Search_Tag;
1520
1521 -- Start of processing for Collect_Interfaces_Info
1522
1523 begin
1524 Collect_Interfaces (T, Ifaces_List);
1525 Collect_Interface_Components (T, Comps_List);
1526
1527 -- Search for the record component and tag associated with each
1528 -- interface type of T.
1529
1530 Components_List := New_Elmt_List;
1531 Tags_List := New_Elmt_List;
1532
1533 Iface_Elmt := First_Elmt (Ifaces_List);
1534 while Present (Iface_Elmt) loop
1535 Iface := Node (Iface_Elmt);
1536
1537 -- Associate the primary tag component and the primary dispatch table
1538 -- with all the interfaces that are parents of T
1539
1540 if Is_Ancestor (Iface, T) then
1541 Append_Elmt (First_Tag_Component (T), Components_List);
1542 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
1543
1544 -- Otherwise search for the tag component and secondary dispatch
1545 -- table of Iface
1546
1547 else
1548 Comp_Elmt := First_Elmt (Comps_List);
1549 while Present (Comp_Elmt) loop
1550 Comp_Iface := Related_Type (Node (Comp_Elmt));
1551
1552 if Comp_Iface = Iface
1553 or else Is_Ancestor (Iface, Comp_Iface)
1554 then
1555 Append_Elmt (Node (Comp_Elmt), Components_List);
1556 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
1557 exit;
1558 end if;
1559
1560 Next_Elmt (Comp_Elmt);
1561 end loop;
1562 pragma Assert (Present (Comp_Elmt));
1563 end if;
1564
1565 Next_Elmt (Iface_Elmt);
1566 end loop;
1567 end Collect_Interfaces_Info;
1568
1569 ----------------------------------
1570 -- Collect_Primitive_Operations --
1571 ----------------------------------
1572
1573 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
1574 B_Type : constant Entity_Id := Base_Type (T);
1575 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
1576 B_Scope : Entity_Id := Scope (B_Type);
1577 Op_List : Elist_Id;
1578 Formal : Entity_Id;
1579 Is_Prim : Boolean;
1580 Formal_Derived : Boolean := False;
1581 Id : Entity_Id;
1582
1583 begin
1584 -- For tagged types, the primitive operations are collected as they
1585 -- are declared, and held in an explicit list which is simply returned.
1586
1587 if Is_Tagged_Type (B_Type) then
1588 return Primitive_Operations (B_Type);
1589
1590 -- An untagged generic type that is a derived type inherits the
1591 -- primitive operations of its parent type. Other formal types only
1592 -- have predefined operators, which are not explicitly represented.
1593
1594 elsif Is_Generic_Type (B_Type) then
1595 if Nkind (B_Decl) = N_Formal_Type_Declaration
1596 and then Nkind (Formal_Type_Definition (B_Decl))
1597 = N_Formal_Derived_Type_Definition
1598 then
1599 Formal_Derived := True;
1600 else
1601 return New_Elmt_List;
1602 end if;
1603 end if;
1604
1605 Op_List := New_Elmt_List;
1606
1607 if B_Scope = Standard_Standard then
1608 if B_Type = Standard_String then
1609 Append_Elmt (Standard_Op_Concat, Op_List);
1610
1611 elsif B_Type = Standard_Wide_String then
1612 Append_Elmt (Standard_Op_Concatw, Op_List);
1613
1614 else
1615 null;
1616 end if;
1617
1618 elsif (Is_Package_Or_Generic_Package (B_Scope)
1619 and then
1620 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
1621 N_Package_Body)
1622 or else Is_Derived_Type (B_Type)
1623 then
1624 -- The primitive operations appear after the base type, except
1625 -- if the derivation happens within the private part of B_Scope
1626 -- and the type is a private type, in which case both the type
1627 -- and some primitive operations may appear before the base
1628 -- type, and the list of candidates starts after the type.
1629
1630 if In_Open_Scopes (B_Scope)
1631 and then Scope (T) = B_Scope
1632 and then In_Private_Part (B_Scope)
1633 then
1634 Id := Next_Entity (T);
1635 else
1636 Id := Next_Entity (B_Type);
1637 end if;
1638
1639 while Present (Id) loop
1640
1641 -- Note that generic formal subprograms are not
1642 -- considered to be primitive operations and thus
1643 -- are never inherited.
1644
1645 if Is_Overloadable (Id)
1646 and then Nkind (Parent (Parent (Id)))
1647 not in N_Formal_Subprogram_Declaration
1648 then
1649 Is_Prim := False;
1650
1651 if Base_Type (Etype (Id)) = B_Type then
1652 Is_Prim := True;
1653 else
1654 Formal := First_Formal (Id);
1655 while Present (Formal) loop
1656 if Base_Type (Etype (Formal)) = B_Type then
1657 Is_Prim := True;
1658 exit;
1659
1660 elsif Ekind (Etype (Formal)) = E_Anonymous_Access_Type
1661 and then Base_Type
1662 (Designated_Type (Etype (Formal))) = B_Type
1663 then
1664 Is_Prim := True;
1665 exit;
1666 end if;
1667
1668 Next_Formal (Formal);
1669 end loop;
1670 end if;
1671
1672 -- For a formal derived type, the only primitives are the
1673 -- ones inherited from the parent type. Operations appearing
1674 -- in the package declaration are not primitive for it.
1675
1676 if Is_Prim
1677 and then (not Formal_Derived
1678 or else Present (Alias (Id)))
1679 then
1680 Append_Elmt (Id, Op_List);
1681 end if;
1682 end if;
1683
1684 Next_Entity (Id);
1685
1686 -- For a type declared in System, some of its operations
1687 -- may appear in the target-specific extension to System.
1688
1689 if No (Id)
1690 and then Chars (B_Scope) = Name_System
1691 and then Scope (B_Scope) = Standard_Standard
1692 and then Present_System_Aux
1693 then
1694 B_Scope := System_Aux_Id;
1695 Id := First_Entity (System_Aux_Id);
1696 end if;
1697 end loop;
1698 end if;
1699
1700 return Op_List;
1701 end Collect_Primitive_Operations;
1702
1703 -----------------------------------
1704 -- Compile_Time_Constraint_Error --
1705 -----------------------------------
1706
1707 function Compile_Time_Constraint_Error
1708 (N : Node_Id;
1709 Msg : String;
1710 Ent : Entity_Id := Empty;
1711 Loc : Source_Ptr := No_Location;
1712 Warn : Boolean := False) return Node_Id
1713 is
1714 Msgc : String (1 .. Msg'Length + 2);
1715 -- Copy of message, with room for possible ? and ! at end
1716
1717 Msgl : Natural;
1718 Wmsg : Boolean;
1719 P : Node_Id;
1720 OldP : Node_Id;
1721 Msgs : Boolean;
1722 Eloc : Source_Ptr;
1723
1724 begin
1725 -- A static constraint error in an instance body is not a fatal error.
1726 -- we choose to inhibit the message altogether, because there is no
1727 -- obvious node (for now) on which to post it. On the other hand the
1728 -- offending node must be replaced with a constraint_error in any case.
1729
1730 -- No messages are generated if we already posted an error on this node
1731
1732 if not Error_Posted (N) then
1733 if Loc /= No_Location then
1734 Eloc := Loc;
1735 else
1736 Eloc := Sloc (N);
1737 end if;
1738
1739 Msgc (1 .. Msg'Length) := Msg;
1740 Msgl := Msg'Length;
1741
1742 -- Message is a warning, even in Ada 95 case
1743
1744 if Msg (Msg'Last) = '?' then
1745 Wmsg := True;
1746
1747 -- In Ada 83, all messages are warnings. In the private part and
1748 -- the body of an instance, constraint_checks are only warnings.
1749 -- We also make this a warning if the Warn parameter is set.
1750
1751 elsif Warn
1752 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
1753 then
1754 Msgl := Msgl + 1;
1755 Msgc (Msgl) := '?';
1756 Wmsg := True;
1757
1758 elsif In_Instance_Not_Visible then
1759 Msgl := Msgl + 1;
1760 Msgc (Msgl) := '?';
1761 Wmsg := True;
1762
1763 -- Otherwise we have a real error message (Ada 95 static case)
1764 -- and we make this an unconditional message. Note that in the
1765 -- warning case we do not make the message unconditional, it seems
1766 -- quite reasonable to delete messages like this (about exceptions
1767 -- that will be raised) in dead code.
1768
1769 else
1770 Wmsg := False;
1771 Msgl := Msgl + 1;
1772 Msgc (Msgl) := '!';
1773 end if;
1774
1775 -- Should we generate a warning? The answer is not quite yes. The
1776 -- very annoying exception occurs in the case of a short circuit
1777 -- operator where the left operand is static and decisive. Climb
1778 -- parents to see if that is the case we have here. Conditional
1779 -- expressions with decisive conditions are a similar situation.
1780
1781 Msgs := True;
1782 P := N;
1783 loop
1784 OldP := P;
1785 P := Parent (P);
1786
1787 -- And then with False as left operand
1788
1789 if Nkind (P) = N_And_Then
1790 and then Compile_Time_Known_Value (Left_Opnd (P))
1791 and then Is_False (Expr_Value (Left_Opnd (P)))
1792 then
1793 Msgs := False;
1794 exit;
1795
1796 -- OR ELSE with True as left operand
1797
1798 elsif Nkind (P) = N_Or_Else
1799 and then Compile_Time_Known_Value (Left_Opnd (P))
1800 and then Is_True (Expr_Value (Left_Opnd (P)))
1801 then
1802 Msgs := False;
1803 exit;
1804
1805 -- Conditional expression
1806
1807 elsif Nkind (P) = N_Conditional_Expression then
1808 declare
1809 Cond : constant Node_Id := First (Expressions (P));
1810 Texp : constant Node_Id := Next (Cond);
1811 Fexp : constant Node_Id := Next (Texp);
1812
1813 begin
1814 if Compile_Time_Known_Value (Cond) then
1815
1816 -- Condition is True and we are in the right operand
1817
1818 if Is_True (Expr_Value (Cond))
1819 and then OldP = Fexp
1820 then
1821 Msgs := False;
1822 exit;
1823
1824 -- Condition is False and we are in the left operand
1825
1826 elsif Is_False (Expr_Value (Cond))
1827 and then OldP = Texp
1828 then
1829 Msgs := False;
1830 exit;
1831 end if;
1832 end if;
1833 end;
1834
1835 -- Special case for component association in aggregates, where
1836 -- we want to keep climbing up to the parent aggregate.
1837
1838 elsif Nkind (P) = N_Component_Association
1839 and then Nkind (Parent (P)) = N_Aggregate
1840 then
1841 null;
1842
1843 -- Keep going if within subexpression
1844
1845 else
1846 exit when Nkind (P) not in N_Subexpr;
1847 end if;
1848 end loop;
1849
1850 if Msgs then
1851 if Present (Ent) then
1852 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
1853 else
1854 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
1855 end if;
1856
1857 if Wmsg then
1858 if Inside_Init_Proc then
1859 Error_Msg_NEL
1860 ("\?& will be raised for objects of this type",
1861 N, Standard_Constraint_Error, Eloc);
1862 else
1863 Error_Msg_NEL
1864 ("\?& will be raised at run time",
1865 N, Standard_Constraint_Error, Eloc);
1866 end if;
1867
1868 else
1869 Error_Msg
1870 ("\static expression fails Constraint_Check", Eloc);
1871 Set_Error_Posted (N);
1872 end if;
1873 end if;
1874 end if;
1875
1876 return N;
1877 end Compile_Time_Constraint_Error;
1878
1879 -----------------------
1880 -- Conditional_Delay --
1881 -----------------------
1882
1883 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
1884 begin
1885 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
1886 Set_Has_Delayed_Freeze (New_Ent);
1887 end if;
1888 end Conditional_Delay;
1889
1890 -------------------------
1891 -- Copy_Parameter_List --
1892 -------------------------
1893
1894 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
1895 Loc : constant Source_Ptr := Sloc (Subp_Id);
1896 Plist : List_Id;
1897 Formal : Entity_Id;
1898
1899 begin
1900 if No (First_Formal (Subp_Id)) then
1901 return No_List;
1902 else
1903 Plist := New_List;
1904 Formal := First_Formal (Subp_Id);
1905 while Present (Formal) loop
1906 Append
1907 (Make_Parameter_Specification (Loc,
1908 Defining_Identifier =>
1909 Make_Defining_Identifier (Sloc (Formal),
1910 Chars => Chars (Formal)),
1911 In_Present => In_Present (Parent (Formal)),
1912 Out_Present => Out_Present (Parent (Formal)),
1913 Parameter_Type =>
1914 New_Reference_To (Etype (Formal), Loc),
1915 Expression =>
1916 New_Copy_Tree (Expression (Parent (Formal)))),
1917 Plist);
1918
1919 Next_Formal (Formal);
1920 end loop;
1921 end if;
1922
1923 return Plist;
1924 end Copy_Parameter_List;
1925
1926 --------------------
1927 -- Current_Entity --
1928 --------------------
1929
1930 -- The currently visible definition for a given identifier is the
1931 -- one most chained at the start of the visibility chain, i.e. the
1932 -- one that is referenced by the Node_Id value of the name of the
1933 -- given identifier.
1934
1935 function Current_Entity (N : Node_Id) return Entity_Id is
1936 begin
1937 return Get_Name_Entity_Id (Chars (N));
1938 end Current_Entity;
1939
1940 -----------------------------
1941 -- Current_Entity_In_Scope --
1942 -----------------------------
1943
1944 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
1945 E : Entity_Id;
1946 CS : constant Entity_Id := Current_Scope;
1947
1948 Transient_Case : constant Boolean := Scope_Is_Transient;
1949
1950 begin
1951 E := Get_Name_Entity_Id (Chars (N));
1952 while Present (E)
1953 and then Scope (E) /= CS
1954 and then (not Transient_Case or else Scope (E) /= Scope (CS))
1955 loop
1956 E := Homonym (E);
1957 end loop;
1958
1959 return E;
1960 end Current_Entity_In_Scope;
1961
1962 -------------------
1963 -- Current_Scope --
1964 -------------------
1965
1966 function Current_Scope return Entity_Id is
1967 begin
1968 if Scope_Stack.Last = -1 then
1969 return Standard_Standard;
1970 else
1971 declare
1972 C : constant Entity_Id :=
1973 Scope_Stack.Table (Scope_Stack.Last).Entity;
1974 begin
1975 if Present (C) then
1976 return C;
1977 else
1978 return Standard_Standard;
1979 end if;
1980 end;
1981 end if;
1982 end Current_Scope;
1983
1984 ------------------------
1985 -- Current_Subprogram --
1986 ------------------------
1987
1988 function Current_Subprogram return Entity_Id is
1989 Scop : constant Entity_Id := Current_Scope;
1990 begin
1991 if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
1992 return Scop;
1993 else
1994 return Enclosing_Subprogram (Scop);
1995 end if;
1996 end Current_Subprogram;
1997
1998 ---------------------
1999 -- Defining_Entity --
2000 ---------------------
2001
2002 function Defining_Entity (N : Node_Id) return Entity_Id is
2003 K : constant Node_Kind := Nkind (N);
2004 Err : Entity_Id := Empty;
2005
2006 begin
2007 case K is
2008 when
2009 N_Subprogram_Declaration |
2010 N_Abstract_Subprogram_Declaration |
2011 N_Subprogram_Body |
2012 N_Package_Declaration |
2013 N_Subprogram_Renaming_Declaration |
2014 N_Subprogram_Body_Stub |
2015 N_Generic_Subprogram_Declaration |
2016 N_Generic_Package_Declaration |
2017 N_Formal_Subprogram_Declaration
2018 =>
2019 return Defining_Entity (Specification (N));
2020
2021 when
2022 N_Component_Declaration |
2023 N_Defining_Program_Unit_Name |
2024 N_Discriminant_Specification |
2025 N_Entry_Body |
2026 N_Entry_Declaration |
2027 N_Entry_Index_Specification |
2028 N_Exception_Declaration |
2029 N_Exception_Renaming_Declaration |
2030 N_Formal_Object_Declaration |
2031 N_Formal_Package_Declaration |
2032 N_Formal_Type_Declaration |
2033 N_Full_Type_Declaration |
2034 N_Implicit_Label_Declaration |
2035 N_Incomplete_Type_Declaration |
2036 N_Loop_Parameter_Specification |
2037 N_Number_Declaration |
2038 N_Object_Declaration |
2039 N_Object_Renaming_Declaration |
2040 N_Package_Body_Stub |
2041 N_Parameter_Specification |
2042 N_Private_Extension_Declaration |
2043 N_Private_Type_Declaration |
2044 N_Protected_Body |
2045 N_Protected_Body_Stub |
2046 N_Protected_Type_Declaration |
2047 N_Single_Protected_Declaration |
2048 N_Single_Task_Declaration |
2049 N_Subtype_Declaration |
2050 N_Task_Body |
2051 N_Task_Body_Stub |
2052 N_Task_Type_Declaration
2053 =>
2054 return Defining_Identifier (N);
2055
2056 when N_Subunit =>
2057 return Defining_Entity (Proper_Body (N));
2058
2059 when
2060 N_Function_Instantiation |
2061 N_Function_Specification |
2062 N_Generic_Function_Renaming_Declaration |
2063 N_Generic_Package_Renaming_Declaration |
2064 N_Generic_Procedure_Renaming_Declaration |
2065 N_Package_Body |
2066 N_Package_Instantiation |
2067 N_Package_Renaming_Declaration |
2068 N_Package_Specification |
2069 N_Procedure_Instantiation |
2070 N_Procedure_Specification
2071 =>
2072 declare
2073 Nam : constant Node_Id := Defining_Unit_Name (N);
2074
2075 begin
2076 if Nkind (Nam) in N_Entity then
2077 return Nam;
2078
2079 -- For Error, make up a name and attach to declaration
2080 -- so we can continue semantic analysis
2081
2082 elsif Nam = Error then
2083 Err :=
2084 Make_Defining_Identifier (Sloc (N),
2085 Chars => New_Internal_Name ('T'));
2086 Set_Defining_Unit_Name (N, Err);
2087
2088 return Err;
2089 -- If not an entity, get defining identifier
2090
2091 else
2092 return Defining_Identifier (Nam);
2093 end if;
2094 end;
2095
2096 when N_Block_Statement =>
2097 return Entity (Identifier (N));
2098
2099 when others =>
2100 raise Program_Error;
2101
2102 end case;
2103 end Defining_Entity;
2104
2105 --------------------------
2106 -- Denotes_Discriminant --
2107 --------------------------
2108
2109 function Denotes_Discriminant
2110 (N : Node_Id;
2111 Check_Concurrent : Boolean := False) return Boolean
2112 is
2113 E : Entity_Id;
2114 begin
2115 if not Is_Entity_Name (N)
2116 or else No (Entity (N))
2117 then
2118 return False;
2119 else
2120 E := Entity (N);
2121 end if;
2122
2123 -- If we are checking for a protected type, the discriminant may have
2124 -- been rewritten as the corresponding discriminal of the original type
2125 -- or of the corresponding concurrent record, depending on whether we
2126 -- are in the spec or body of the protected type.
2127
2128 return Ekind (E) = E_Discriminant
2129 or else
2130 (Check_Concurrent
2131 and then Ekind (E) = E_In_Parameter
2132 and then Present (Discriminal_Link (E))
2133 and then
2134 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
2135 or else
2136 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
2137
2138 end Denotes_Discriminant;
2139
2140 -------------------------
2141 -- Denotes_Same_Object --
2142 -------------------------
2143
2144 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
2145 begin
2146 -- If we have entity names, then must be same entity
2147
2148 if Is_Entity_Name (A1) then
2149 if Is_Entity_Name (A2) then
2150 return Entity (A1) = Entity (A2);
2151 else
2152 return False;
2153 end if;
2154
2155 -- No match if not same node kind
2156
2157 elsif Nkind (A1) /= Nkind (A2) then
2158 return False;
2159
2160 -- For selected components, must have same prefix and selector
2161
2162 elsif Nkind (A1) = N_Selected_Component then
2163 return Denotes_Same_Object (Prefix (A1), Prefix (A2))
2164 and then
2165 Entity (Selector_Name (A1)) = Entity (Selector_Name (A2));
2166
2167 -- For explicit dereferences, prefixes must be same
2168
2169 elsif Nkind (A1) = N_Explicit_Dereference then
2170 return Denotes_Same_Object (Prefix (A1), Prefix (A2));
2171
2172 -- For indexed components, prefixes and all subscripts must be the same
2173
2174 elsif Nkind (A1) = N_Indexed_Component then
2175 if Denotes_Same_Object (Prefix (A1), Prefix (A2)) then
2176 declare
2177 Indx1 : Node_Id;
2178 Indx2 : Node_Id;
2179
2180 begin
2181 Indx1 := First (Expressions (A1));
2182 Indx2 := First (Expressions (A2));
2183 while Present (Indx1) loop
2184
2185 -- Shouldn't we be checking that values are the same???
2186
2187 if not Denotes_Same_Object (Indx1, Indx2) then
2188 return False;
2189 end if;
2190
2191 Next (Indx1);
2192 Next (Indx2);
2193 end loop;
2194
2195 return True;
2196 end;
2197 else
2198 return False;
2199 end if;
2200
2201 -- For slices, prefixes must match and bounds must match
2202
2203 elsif Nkind (A1) = N_Slice
2204 and then Denotes_Same_Object (Prefix (A1), Prefix (A2))
2205 then
2206 declare
2207 Lo1, Lo2, Hi1, Hi2 : Node_Id;
2208
2209 begin
2210 Get_Index_Bounds (Etype (A1), Lo1, Hi1);
2211 Get_Index_Bounds (Etype (A2), Lo2, Hi2);
2212
2213 -- Check whether bounds are statically identical. There is no
2214 -- attempt to detect partial overlap of slices.
2215
2216 -- What about an array and a slice of an array???
2217
2218 return Denotes_Same_Object (Lo1, Lo2)
2219 and then Denotes_Same_Object (Hi1, Hi2);
2220 end;
2221
2222 -- Literals will appear as indices. Isn't this where we should check
2223 -- Known_At_Compile_Time at least if we are generating warnings ???
2224
2225 elsif Nkind (A1) = N_Integer_Literal then
2226 return Intval (A1) = Intval (A2);
2227
2228 else
2229 return False;
2230 end if;
2231 end Denotes_Same_Object;
2232
2233 -------------------------
2234 -- Denotes_Same_Prefix --
2235 -------------------------
2236
2237 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
2238
2239 begin
2240 if Is_Entity_Name (A1) then
2241 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component) then
2242 return Denotes_Same_Object (A1, Prefix (A2))
2243 or else Denotes_Same_Prefix (A1, Prefix (A2));
2244 else
2245 return False;
2246 end if;
2247
2248 elsif Is_Entity_Name (A2) then
2249 return Denotes_Same_Prefix (A2, A1);
2250
2251 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
2252 and then
2253 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
2254 then
2255 declare
2256 Root1, Root2 : Node_Id;
2257 Depth1, Depth2 : Int := 0;
2258
2259 begin
2260 Root1 := Prefix (A1);
2261 while not Is_Entity_Name (Root1) loop
2262 if not Nkind_In
2263 (Root1, N_Selected_Component, N_Indexed_Component)
2264 then
2265 return False;
2266 else
2267 Root1 := Prefix (Root1);
2268 end if;
2269
2270 Depth1 := Depth1 + 1;
2271 end loop;
2272
2273 Root2 := Prefix (A2);
2274 while not Is_Entity_Name (Root2) loop
2275 if not Nkind_In
2276 (Root2, N_Selected_Component, N_Indexed_Component)
2277 then
2278 return False;
2279 else
2280 Root2 := Prefix (Root2);
2281 end if;
2282
2283 Depth2 := Depth2 + 1;
2284 end loop;
2285
2286 -- If both have the same depth and they do not denote the same
2287 -- object, they are disjoint and not warning is needed.
2288
2289 if Depth1 = Depth2 then
2290 return False;
2291
2292 elsif Depth1 > Depth2 then
2293 Root1 := Prefix (A1);
2294 for I in 1 .. Depth1 - Depth2 - 1 loop
2295 Root1 := Prefix (Root1);
2296 end loop;
2297
2298 return Denotes_Same_Object (Root1, A2);
2299
2300 else
2301 Root2 := Prefix (A2);
2302 for I in 1 .. Depth2 - Depth1 - 1 loop
2303 Root2 := Prefix (Root2);
2304 end loop;
2305
2306 return Denotes_Same_Object (A1, Root2);
2307 end if;
2308 end;
2309
2310 else
2311 return False;
2312 end if;
2313 end Denotes_Same_Prefix;
2314
2315 ----------------------
2316 -- Denotes_Variable --
2317 ----------------------
2318
2319 function Denotes_Variable (N : Node_Id) return Boolean is
2320 begin
2321 return Is_Variable (N) and then Paren_Count (N) = 0;
2322 end Denotes_Variable;
2323
2324 -----------------------------
2325 -- Depends_On_Discriminant --
2326 -----------------------------
2327
2328 function Depends_On_Discriminant (N : Node_Id) return Boolean is
2329 L : Node_Id;
2330 H : Node_Id;
2331
2332 begin
2333 Get_Index_Bounds (N, L, H);
2334 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
2335 end Depends_On_Discriminant;
2336
2337 -------------------------
2338 -- Designate_Same_Unit --
2339 -------------------------
2340
2341 function Designate_Same_Unit
2342 (Name1 : Node_Id;
2343 Name2 : Node_Id) return Boolean
2344 is
2345 K1 : constant Node_Kind := Nkind (Name1);
2346 K2 : constant Node_Kind := Nkind (Name2);
2347
2348 function Prefix_Node (N : Node_Id) return Node_Id;
2349 -- Returns the parent unit name node of a defining program unit name
2350 -- or the prefix if N is a selected component or an expanded name.
2351
2352 function Select_Node (N : Node_Id) return Node_Id;
2353 -- Returns the defining identifier node of a defining program unit
2354 -- name or the selector node if N is a selected component or an
2355 -- expanded name.
2356
2357 -----------------
2358 -- Prefix_Node --
2359 -----------------
2360
2361 function Prefix_Node (N : Node_Id) return Node_Id is
2362 begin
2363 if Nkind (N) = N_Defining_Program_Unit_Name then
2364 return Name (N);
2365
2366 else
2367 return Prefix (N);
2368 end if;
2369 end Prefix_Node;
2370
2371 -----------------
2372 -- Select_Node --
2373 -----------------
2374
2375 function Select_Node (N : Node_Id) return Node_Id is
2376 begin
2377 if Nkind (N) = N_Defining_Program_Unit_Name then
2378 return Defining_Identifier (N);
2379
2380 else
2381 return Selector_Name (N);
2382 end if;
2383 end Select_Node;
2384
2385 -- Start of processing for Designate_Next_Unit
2386
2387 begin
2388 if (K1 = N_Identifier or else
2389 K1 = N_Defining_Identifier)
2390 and then
2391 (K2 = N_Identifier or else
2392 K2 = N_Defining_Identifier)
2393 then
2394 return Chars (Name1) = Chars (Name2);
2395
2396 elsif
2397 (K1 = N_Expanded_Name or else
2398 K1 = N_Selected_Component or else
2399 K1 = N_Defining_Program_Unit_Name)
2400 and then
2401 (K2 = N_Expanded_Name or else
2402 K2 = N_Selected_Component or else
2403 K2 = N_Defining_Program_Unit_Name)
2404 then
2405 return
2406 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
2407 and then
2408 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
2409
2410 else
2411 return False;
2412 end if;
2413 end Designate_Same_Unit;
2414
2415 ----------------------------
2416 -- Enclosing_Generic_Body --
2417 ----------------------------
2418
2419 function Enclosing_Generic_Body
2420 (N : Node_Id) return Node_Id
2421 is
2422 P : Node_Id;
2423 Decl : Node_Id;
2424 Spec : Node_Id;
2425
2426 begin
2427 P := Parent (N);
2428 while Present (P) loop
2429 if Nkind (P) = N_Package_Body
2430 or else Nkind (P) = N_Subprogram_Body
2431 then
2432 Spec := Corresponding_Spec (P);
2433
2434 if Present (Spec) then
2435 Decl := Unit_Declaration_Node (Spec);
2436
2437 if Nkind (Decl) = N_Generic_Package_Declaration
2438 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2439 then
2440 return P;
2441 end if;
2442 end if;
2443 end if;
2444
2445 P := Parent (P);
2446 end loop;
2447
2448 return Empty;
2449 end Enclosing_Generic_Body;
2450
2451 ----------------------------
2452 -- Enclosing_Generic_Unit --
2453 ----------------------------
2454
2455 function Enclosing_Generic_Unit
2456 (N : Node_Id) return Node_Id
2457 is
2458 P : Node_Id;
2459 Decl : Node_Id;
2460 Spec : Node_Id;
2461
2462 begin
2463 P := Parent (N);
2464 while Present (P) loop
2465 if Nkind (P) = N_Generic_Package_Declaration
2466 or else Nkind (P) = N_Generic_Subprogram_Declaration
2467 then
2468 return P;
2469
2470 elsif Nkind (P) = N_Package_Body
2471 or else Nkind (P) = N_Subprogram_Body
2472 then
2473 Spec := Corresponding_Spec (P);
2474
2475 if Present (Spec) then
2476 Decl := Unit_Declaration_Node (Spec);
2477
2478 if Nkind (Decl) = N_Generic_Package_Declaration
2479 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2480 then
2481 return Decl;
2482 end if;
2483 end if;
2484 end if;
2485
2486 P := Parent (P);
2487 end loop;
2488
2489 return Empty;
2490 end Enclosing_Generic_Unit;
2491
2492 -------------------------------
2493 -- Enclosing_Lib_Unit_Entity --
2494 -------------------------------
2495
2496 function Enclosing_Lib_Unit_Entity return Entity_Id is
2497 Unit_Entity : Entity_Id;
2498
2499 begin
2500 -- Look for enclosing library unit entity by following scope links.
2501 -- Equivalent to, but faster than indexing through the scope stack.
2502
2503 Unit_Entity := Current_Scope;
2504 while (Present (Scope (Unit_Entity))
2505 and then Scope (Unit_Entity) /= Standard_Standard)
2506 and not Is_Child_Unit (Unit_Entity)
2507 loop
2508 Unit_Entity := Scope (Unit_Entity);
2509 end loop;
2510
2511 return Unit_Entity;
2512 end Enclosing_Lib_Unit_Entity;
2513
2514 -----------------------------
2515 -- Enclosing_Lib_Unit_Node --
2516 -----------------------------
2517
2518 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
2519 Current_Node : Node_Id;
2520
2521 begin
2522 Current_Node := N;
2523 while Present (Current_Node)
2524 and then Nkind (Current_Node) /= N_Compilation_Unit
2525 loop
2526 Current_Node := Parent (Current_Node);
2527 end loop;
2528
2529 if Nkind (Current_Node) /= N_Compilation_Unit then
2530 return Empty;
2531 end if;
2532
2533 return Current_Node;
2534 end Enclosing_Lib_Unit_Node;
2535
2536 --------------------------
2537 -- Enclosing_Subprogram --
2538 --------------------------
2539
2540 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
2541 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
2542
2543 begin
2544 if Dynamic_Scope = Standard_Standard then
2545 return Empty;
2546
2547 elsif Dynamic_Scope = Empty then
2548 return Empty;
2549
2550 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
2551 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
2552
2553 elsif Ekind (Dynamic_Scope) = E_Block
2554 or else Ekind (Dynamic_Scope) = E_Return_Statement
2555 then
2556 return Enclosing_Subprogram (Dynamic_Scope);
2557
2558 elsif Ekind (Dynamic_Scope) = E_Task_Type then
2559 return Get_Task_Body_Procedure (Dynamic_Scope);
2560
2561 elsif Convention (Dynamic_Scope) = Convention_Protected then
2562 return Protected_Body_Subprogram (Dynamic_Scope);
2563
2564 else
2565 return Dynamic_Scope;
2566 end if;
2567 end Enclosing_Subprogram;
2568
2569 ------------------------
2570 -- Ensure_Freeze_Node --
2571 ------------------------
2572
2573 procedure Ensure_Freeze_Node (E : Entity_Id) is
2574 FN : Node_Id;
2575
2576 begin
2577 if No (Freeze_Node (E)) then
2578 FN := Make_Freeze_Entity (Sloc (E));
2579 Set_Has_Delayed_Freeze (E);
2580 Set_Freeze_Node (E, FN);
2581 Set_Access_Types_To_Process (FN, No_Elist);
2582 Set_TSS_Elist (FN, No_Elist);
2583 Set_Entity (FN, E);
2584 end if;
2585 end Ensure_Freeze_Node;
2586
2587 ----------------
2588 -- Enter_Name --
2589 ----------------
2590
2591 procedure Enter_Name (Def_Id : Entity_Id) is
2592 C : constant Entity_Id := Current_Entity (Def_Id);
2593 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
2594 S : constant Entity_Id := Current_Scope;
2595
2596 begin
2597 Generate_Definition (Def_Id);
2598
2599 -- Add new name to current scope declarations. Check for duplicate
2600 -- declaration, which may or may not be a genuine error.
2601
2602 if Present (E) then
2603
2604 -- Case of previous entity entered because of a missing declaration
2605 -- or else a bad subtype indication. Best is to use the new entity,
2606 -- and make the previous one invisible.
2607
2608 if Etype (E) = Any_Type then
2609 Set_Is_Immediately_Visible (E, False);
2610
2611 -- Case of renaming declaration constructed for package instances.
2612 -- if there is an explicit declaration with the same identifier,
2613 -- the renaming is not immediately visible any longer, but remains
2614 -- visible through selected component notation.
2615
2616 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
2617 and then not Comes_From_Source (E)
2618 then
2619 Set_Is_Immediately_Visible (E, False);
2620
2621 -- The new entity may be the package renaming, which has the same
2622 -- same name as a generic formal which has been seen already.
2623
2624 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
2625 and then not Comes_From_Source (Def_Id)
2626 then
2627 Set_Is_Immediately_Visible (E, False);
2628
2629 -- For a fat pointer corresponding to a remote access to subprogram,
2630 -- we use the same identifier as the RAS type, so that the proper
2631 -- name appears in the stub. This type is only retrieved through
2632 -- the RAS type and never by visibility, and is not added to the
2633 -- visibility list (see below).
2634
2635 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
2636 and then Present (Corresponding_Remote_Type (Def_Id))
2637 then
2638 null;
2639
2640 -- A controller component for a type extension overrides the
2641 -- inherited component.
2642
2643 elsif Chars (E) = Name_uController then
2644 null;
2645
2646 -- Case of an implicit operation or derived literal. The new entity
2647 -- hides the implicit one, which is removed from all visibility,
2648 -- i.e. the entity list of its scope, and homonym chain of its name.
2649
2650 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
2651 or else Is_Internal (E)
2652 then
2653 declare
2654 Prev : Entity_Id;
2655 Prev_Vis : Entity_Id;
2656 Decl : constant Node_Id := Parent (E);
2657
2658 begin
2659 -- If E is an implicit declaration, it cannot be the first
2660 -- entity in the scope.
2661
2662 Prev := First_Entity (Current_Scope);
2663 while Present (Prev)
2664 and then Next_Entity (Prev) /= E
2665 loop
2666 Next_Entity (Prev);
2667 end loop;
2668
2669 if No (Prev) then
2670
2671 -- If E is not on the entity chain of the current scope,
2672 -- it is an implicit declaration in the generic formal
2673 -- part of a generic subprogram. When analyzing the body,
2674 -- the generic formals are visible but not on the entity
2675 -- chain of the subprogram. The new entity will become
2676 -- the visible one in the body.
2677
2678 pragma Assert
2679 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
2680 null;
2681
2682 else
2683 Set_Next_Entity (Prev, Next_Entity (E));
2684
2685 if No (Next_Entity (Prev)) then
2686 Set_Last_Entity (Current_Scope, Prev);
2687 end if;
2688
2689 if E = Current_Entity (E) then
2690 Prev_Vis := Empty;
2691
2692 else
2693 Prev_Vis := Current_Entity (E);
2694 while Homonym (Prev_Vis) /= E loop
2695 Prev_Vis := Homonym (Prev_Vis);
2696 end loop;
2697 end if;
2698
2699 if Present (Prev_Vis) then
2700
2701 -- Skip E in the visibility chain
2702
2703 Set_Homonym (Prev_Vis, Homonym (E));
2704
2705 else
2706 Set_Name_Entity_Id (Chars (E), Homonym (E));
2707 end if;
2708 end if;
2709 end;
2710
2711 -- This section of code could use a comment ???
2712
2713 elsif Present (Etype (E))
2714 and then Is_Concurrent_Type (Etype (E))
2715 and then E = Def_Id
2716 then
2717 return;
2718
2719 -- If the homograph is a protected component renaming, it should not
2720 -- be hiding the current entity. Such renamings are treated as weak
2721 -- declarations.
2722
2723 elsif Is_Prival (E) then
2724 Set_Is_Immediately_Visible (E, False);
2725
2726 -- In this case the current entity is a protected component renaming.
2727 -- Perform minimal decoration by setting the scope and return since
2728 -- the prival should not be hiding other visible entities.
2729
2730 elsif Is_Prival (Def_Id) then
2731 Set_Scope (Def_Id, Current_Scope);
2732 return;
2733
2734 -- Analogous to privals, the discriminal generated for an entry
2735 -- index parameter acts as a weak declaration. Perform minimal
2736 -- decoration to avoid bogus errors.
2737
2738 elsif Is_Discriminal (Def_Id)
2739 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
2740 then
2741 Set_Scope (Def_Id, Current_Scope);
2742 return;
2743
2744 -- In the body or private part of an instance, a type extension
2745 -- may introduce a component with the same name as that of an
2746 -- actual. The legality rule is not enforced, but the semantics
2747 -- of the full type with two components of the same name are not
2748 -- clear at this point ???
2749
2750 elsif In_Instance_Not_Visible then
2751 null;
2752
2753 -- When compiling a package body, some child units may have become
2754 -- visible. They cannot conflict with local entities that hide them.
2755
2756 elsif Is_Child_Unit (E)
2757 and then In_Open_Scopes (Scope (E))
2758 and then not Is_Immediately_Visible (E)
2759 then
2760 null;
2761
2762 -- Conversely, with front-end inlining we may compile the parent
2763 -- body first, and a child unit subsequently. The context is now
2764 -- the parent spec, and body entities are not visible.
2765
2766 elsif Is_Child_Unit (Def_Id)
2767 and then Is_Package_Body_Entity (E)
2768 and then not In_Package_Body (Current_Scope)
2769 then
2770 null;
2771
2772 -- Case of genuine duplicate declaration
2773
2774 else
2775 Error_Msg_Sloc := Sloc (E);
2776
2777 -- If the previous declaration is an incomplete type declaration
2778 -- this may be an attempt to complete it with a private type.
2779 -- The following avoids confusing cascaded errors.
2780
2781 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
2782 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
2783 then
2784 Error_Msg_N
2785 ("incomplete type cannot be completed with a private " &
2786 "declaration", Parent (Def_Id));
2787 Set_Is_Immediately_Visible (E, False);
2788 Set_Full_View (E, Def_Id);
2789
2790 -- An inherited component of a record conflicts with a new
2791 -- discriminant. The discriminant is inserted first in the scope,
2792 -- but the error should be posted on it, not on the component.
2793
2794 elsif Ekind (E) = E_Discriminant
2795 and then Present (Scope (Def_Id))
2796 and then Scope (Def_Id) /= Current_Scope
2797 then
2798 Error_Msg_Sloc := Sloc (Def_Id);
2799 Error_Msg_N ("& conflicts with declaration#", E);
2800 return;
2801
2802 -- If the name of the unit appears in its own context clause,
2803 -- a dummy package with the name has already been created, and
2804 -- the error emitted. Try to continue quietly.
2805
2806 elsif Error_Posted (E)
2807 and then Sloc (E) = No_Location
2808 and then Nkind (Parent (E)) = N_Package_Specification
2809 and then Current_Scope = Standard_Standard
2810 then
2811 Set_Scope (Def_Id, Current_Scope);
2812 return;
2813
2814 else
2815 Error_Msg_N ("& conflicts with declaration#", Def_Id);
2816
2817 -- Avoid cascaded messages with duplicate components in
2818 -- derived types.
2819
2820 if Ekind (E) = E_Component
2821 or else Ekind (E) = E_Discriminant
2822 then
2823 return;
2824 end if;
2825 end if;
2826
2827 if Nkind (Parent (Parent (Def_Id))) =
2828 N_Generic_Subprogram_Declaration
2829 and then Def_Id =
2830 Defining_Entity (Specification (Parent (Parent (Def_Id))))
2831 then
2832 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
2833 end if;
2834
2835 -- If entity is in standard, then we are in trouble, because
2836 -- it means that we have a library package with a duplicated
2837 -- name. That's hard to recover from, so abort!
2838
2839 if S = Standard_Standard then
2840 raise Unrecoverable_Error;
2841
2842 -- Otherwise we continue with the declaration. Having two
2843 -- identical declarations should not cause us too much trouble!
2844
2845 else
2846 null;
2847 end if;
2848 end if;
2849 end if;
2850
2851 -- If we fall through, declaration is OK , or OK enough to continue
2852
2853 -- If Def_Id is a discriminant or a record component we are in the
2854 -- midst of inheriting components in a derived record definition.
2855 -- Preserve their Ekind and Etype.
2856
2857 if Ekind (Def_Id) = E_Discriminant
2858 or else Ekind (Def_Id) = E_Component
2859 then
2860 null;
2861
2862 -- If a type is already set, leave it alone (happens whey a type
2863 -- declaration is reanalyzed following a call to the optimizer)
2864
2865 elsif Present (Etype (Def_Id)) then
2866 null;
2867
2868 -- Otherwise, the kind E_Void insures that premature uses of the entity
2869 -- will be detected. Any_Type insures that no cascaded errors will occur
2870
2871 else
2872 Set_Ekind (Def_Id, E_Void);
2873 Set_Etype (Def_Id, Any_Type);
2874 end if;
2875
2876 -- Inherited discriminants and components in derived record types are
2877 -- immediately visible. Itypes are not.
2878
2879 if Ekind (Def_Id) = E_Discriminant
2880 or else Ekind (Def_Id) = E_Component
2881 or else (No (Corresponding_Remote_Type (Def_Id))
2882 and then not Is_Itype (Def_Id))
2883 then
2884 Set_Is_Immediately_Visible (Def_Id);
2885 Set_Current_Entity (Def_Id);
2886 end if;
2887
2888 Set_Homonym (Def_Id, C);
2889 Append_Entity (Def_Id, S);
2890 Set_Public_Status (Def_Id);
2891
2892 -- Warn if new entity hides an old one
2893
2894 if Warn_On_Hiding and then Present (C)
2895
2896 -- Don't warn for record components since they always have a well
2897 -- defined scope which does not confuse other uses. Note that in
2898 -- some cases, Ekind has not been set yet.
2899
2900 and then Ekind (C) /= E_Component
2901 and then Ekind (C) /= E_Discriminant
2902 and then Nkind (Parent (C)) /= N_Component_Declaration
2903 and then Ekind (Def_Id) /= E_Component
2904 and then Ekind (Def_Id) /= E_Discriminant
2905 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
2906
2907 -- Don't warn for one character variables. It is too common to use
2908 -- such variables as locals and will just cause too many false hits.
2909
2910 and then Length_Of_Name (Chars (C)) /= 1
2911
2912 -- Don't warn for non-source entities
2913
2914 and then Comes_From_Source (C)
2915 and then Comes_From_Source (Def_Id)
2916
2917 -- Don't warn unless entity in question is in extended main source
2918
2919 and then In_Extended_Main_Source_Unit (Def_Id)
2920
2921 -- Finally, the hidden entity must be either immediately visible
2922 -- or use visible (from a used package)
2923
2924 and then
2925 (Is_Immediately_Visible (C)
2926 or else
2927 Is_Potentially_Use_Visible (C))
2928 then
2929 Error_Msg_Sloc := Sloc (C);
2930 Error_Msg_N ("declaration hides &#?", Def_Id);
2931 end if;
2932 end Enter_Name;
2933
2934 --------------------------
2935 -- Explain_Limited_Type --
2936 --------------------------
2937
2938 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
2939 C : Entity_Id;
2940
2941 begin
2942 -- For array, component type must be limited
2943
2944 if Is_Array_Type (T) then
2945 Error_Msg_Node_2 := T;
2946 Error_Msg_NE
2947 ("\component type& of type& is limited", N, Component_Type (T));
2948 Explain_Limited_Type (Component_Type (T), N);
2949
2950 elsif Is_Record_Type (T) then
2951
2952 -- No need for extra messages if explicit limited record
2953
2954 if Is_Limited_Record (Base_Type (T)) then
2955 return;
2956 end if;
2957
2958 -- Otherwise find a limited component. Check only components that
2959 -- come from source, or inherited components that appear in the
2960 -- source of the ancestor.
2961
2962 C := First_Component (T);
2963 while Present (C) loop
2964 if Is_Limited_Type (Etype (C))
2965 and then
2966 (Comes_From_Source (C)
2967 or else
2968 (Present (Original_Record_Component (C))
2969 and then
2970 Comes_From_Source (Original_Record_Component (C))))
2971 then
2972 Error_Msg_Node_2 := T;
2973 Error_Msg_NE ("\component& of type& has limited type", N, C);
2974 Explain_Limited_Type (Etype (C), N);
2975 return;
2976 end if;
2977
2978 Next_Component (C);
2979 end loop;
2980
2981 -- The type may be declared explicitly limited, even if no component
2982 -- of it is limited, in which case we fall out of the loop.
2983 return;
2984 end if;
2985 end Explain_Limited_Type;
2986
2987 -----------------
2988 -- Find_Actual --
2989 -----------------
2990
2991 procedure Find_Actual
2992 (N : Node_Id;
2993 Formal : out Entity_Id;
2994 Call : out Node_Id)
2995 is
2996 Parnt : constant Node_Id := Parent (N);
2997 Actual : Node_Id;
2998
2999 begin
3000 if (Nkind (Parnt) = N_Indexed_Component
3001 or else
3002 Nkind (Parnt) = N_Selected_Component)
3003 and then N = Prefix (Parnt)
3004 then
3005 Find_Actual (Parnt, Formal, Call);
3006 return;
3007
3008 elsif Nkind (Parnt) = N_Parameter_Association
3009 and then N = Explicit_Actual_Parameter (Parnt)
3010 then
3011 Call := Parent (Parnt);
3012
3013 elsif Nkind (Parnt) = N_Procedure_Call_Statement then
3014 Call := Parnt;
3015
3016 else
3017 Formal := Empty;
3018 Call := Empty;
3019 return;
3020 end if;
3021
3022 -- If we have a call to a subprogram look for the parameter. Note that
3023 -- we exclude overloaded calls, since we don't know enough to be sure
3024 -- of giving the right answer in this case.
3025
3026 if Is_Entity_Name (Name (Call))
3027 and then Present (Entity (Name (Call)))
3028 and then Is_Overloadable (Entity (Name (Call)))
3029 and then not Is_Overloaded (Name (Call))
3030 then
3031 -- Fall here if we are definitely a parameter
3032
3033 Actual := First_Actual (Call);
3034 Formal := First_Formal (Entity (Name (Call)));
3035 while Present (Formal) and then Present (Actual) loop
3036 if Actual = N then
3037 return;
3038 else
3039 Actual := Next_Actual (Actual);
3040 Formal := Next_Formal (Formal);
3041 end if;
3042 end loop;
3043 end if;
3044
3045 -- Fall through here if we did not find matching actual
3046
3047 Formal := Empty;
3048 Call := Empty;
3049 end Find_Actual;
3050
3051 -------------------------------------
3052 -- Find_Corresponding_Discriminant --
3053 -------------------------------------
3054
3055 function Find_Corresponding_Discriminant
3056 (Id : Node_Id;
3057 Typ : Entity_Id) return Entity_Id
3058 is
3059 Par_Disc : Entity_Id;
3060 Old_Disc : Entity_Id;
3061 New_Disc : Entity_Id;
3062
3063 begin
3064 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
3065
3066 -- The original type may currently be private, and the discriminant
3067 -- only appear on its full view.
3068
3069 if Is_Private_Type (Scope (Par_Disc))
3070 and then not Has_Discriminants (Scope (Par_Disc))
3071 and then Present (Full_View (Scope (Par_Disc)))
3072 then
3073 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
3074 else
3075 Old_Disc := First_Discriminant (Scope (Par_Disc));
3076 end if;
3077
3078 if Is_Class_Wide_Type (Typ) then
3079 New_Disc := First_Discriminant (Root_Type (Typ));
3080 else
3081 New_Disc := First_Discriminant (Typ);
3082 end if;
3083
3084 while Present (Old_Disc) and then Present (New_Disc) loop
3085 if Old_Disc = Par_Disc then
3086 return New_Disc;
3087 else
3088 Next_Discriminant (Old_Disc);
3089 Next_Discriminant (New_Disc);
3090 end if;
3091 end loop;
3092
3093 -- Should always find it
3094
3095 raise Program_Error;
3096 end Find_Corresponding_Discriminant;
3097
3098 --------------------------
3099 -- Find_Overlaid_Entity --
3100 --------------------------
3101
3102 procedure Find_Overlaid_Entity
3103 (N : Node_Id;
3104 Ent : out Entity_Id;
3105 Off : out Boolean)
3106 is
3107 Expr : Node_Id;
3108
3109 begin
3110 -- We are looking for one of the two following forms:
3111
3112 -- for X'Address use Y'Address
3113
3114 -- or
3115
3116 -- Const : constant Address := expr;
3117 -- ...
3118 -- for X'Address use Const;
3119
3120 -- In the second case, the expr is either Y'Address, or recursively a
3121 -- constant that eventually references Y'Address.
3122
3123 Ent := Empty;
3124 Off := False;
3125
3126 if Nkind (N) = N_Attribute_Definition_Clause
3127 and then Chars (N) = Name_Address
3128 then
3129 Expr := Expression (N);
3130
3131 -- This loop checks the form of the expression for Y'Address,
3132 -- using recursion to deal with intermediate constants.
3133
3134 loop
3135 -- Check for Y'Address
3136
3137 if Nkind (Expr) = N_Attribute_Reference
3138 and then Attribute_Name (Expr) = Name_Address
3139 then
3140 Expr := Prefix (Expr);
3141 exit;
3142
3143 -- Check for Const where Const is a constant entity
3144
3145 elsif Is_Entity_Name (Expr)
3146 and then Ekind (Entity (Expr)) = E_Constant
3147 then
3148 Expr := Constant_Value (Entity (Expr));
3149
3150 -- Anything else does not need checking
3151
3152 else
3153 return;
3154 end if;
3155 end loop;
3156
3157 -- This loop checks the form of the prefix for an entity,
3158 -- using recursion to deal with intermediate components.
3159
3160 loop
3161 -- Check for Y where Y is an entity
3162
3163 if Is_Entity_Name (Expr) then
3164 Ent := Entity (Expr);
3165 return;
3166
3167 -- Check for components
3168
3169 elsif
3170 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component) then
3171
3172 Expr := Prefix (Expr);
3173 Off := True;
3174
3175 -- Anything else does not need checking
3176
3177 else
3178 return;
3179 end if;
3180 end loop;
3181 end if;
3182 end Find_Overlaid_Entity;
3183
3184 -------------------------
3185 -- Find_Parameter_Type --
3186 -------------------------
3187
3188 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
3189 begin
3190 if Nkind (Param) /= N_Parameter_Specification then
3191 return Empty;
3192
3193 -- For an access parameter, obtain the type from the formal entity
3194 -- itself, because access to subprogram nodes do not carry a type.
3195 -- Shouldn't we always use the formal entity ???
3196
3197 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
3198 return Etype (Defining_Identifier (Param));
3199
3200 else
3201 return Etype (Parameter_Type (Param));
3202 end if;
3203 end Find_Parameter_Type;
3204
3205 -----------------------------
3206 -- Find_Static_Alternative --
3207 -----------------------------
3208
3209 function Find_Static_Alternative (N : Node_Id) return Node_Id is
3210 Expr : constant Node_Id := Expression (N);
3211 Val : constant Uint := Expr_Value (Expr);
3212 Alt : Node_Id;
3213 Choice : Node_Id;
3214
3215 begin
3216 Alt := First (Alternatives (N));
3217
3218 Search : loop
3219 if Nkind (Alt) /= N_Pragma then
3220 Choice := First (Discrete_Choices (Alt));
3221 while Present (Choice) loop
3222
3223 -- Others choice, always matches
3224
3225 if Nkind (Choice) = N_Others_Choice then
3226 exit Search;
3227
3228 -- Range, check if value is in the range
3229
3230 elsif Nkind (Choice) = N_Range then
3231 exit Search when
3232 Val >= Expr_Value (Low_Bound (Choice))
3233 and then
3234 Val <= Expr_Value (High_Bound (Choice));
3235
3236 -- Choice is a subtype name. Note that we know it must
3237 -- be a static subtype, since otherwise it would have
3238 -- been diagnosed as illegal.
3239
3240 elsif Is_Entity_Name (Choice)
3241 and then Is_Type (Entity (Choice))
3242 then
3243 exit Search when Is_In_Range (Expr, Etype (Choice),
3244 Assume_Valid => False);
3245
3246 -- Choice is a subtype indication
3247
3248 elsif Nkind (Choice) = N_Subtype_Indication then
3249 declare
3250 C : constant Node_Id := Constraint (Choice);
3251 R : constant Node_Id := Range_Expression (C);
3252
3253 begin
3254 exit Search when
3255 Val >= Expr_Value (Low_Bound (R))
3256 and then
3257 Val <= Expr_Value (High_Bound (R));
3258 end;
3259
3260 -- Choice is a simple expression
3261
3262 else
3263 exit Search when Val = Expr_Value (Choice);
3264 end if;
3265
3266 Next (Choice);
3267 end loop;
3268 end if;
3269
3270 Next (Alt);
3271 pragma Assert (Present (Alt));
3272 end loop Search;
3273
3274 -- The above loop *must* terminate by finding a match, since
3275 -- we know the case statement is valid, and the value of the
3276 -- expression is known at compile time. When we fall out of
3277 -- the loop, Alt points to the alternative that we know will
3278 -- be selected at run time.
3279
3280 return Alt;
3281 end Find_Static_Alternative;
3282
3283 ------------------
3284 -- First_Actual --
3285 ------------------
3286
3287 function First_Actual (Node : Node_Id) return Node_Id is
3288 N : Node_Id;
3289
3290 begin
3291 if No (Parameter_Associations (Node)) then
3292 return Empty;
3293 end if;
3294
3295 N := First (Parameter_Associations (Node));
3296
3297 if Nkind (N) = N_Parameter_Association then
3298 return First_Named_Actual (Node);
3299 else
3300 return N;
3301 end if;
3302 end First_Actual;
3303
3304 -------------------------
3305 -- Full_Qualified_Name --
3306 -------------------------
3307
3308 function Full_Qualified_Name (E : Entity_Id) return String_Id is
3309 Res : String_Id;
3310 pragma Warnings (Off, Res);
3311
3312 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id;
3313 -- Compute recursively the qualified name without NUL at the end
3314
3315 ----------------------------------
3316 -- Internal_Full_Qualified_Name --
3317 ----------------------------------
3318
3319 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id is
3320 Ent : Entity_Id := E;
3321 Parent_Name : String_Id := No_String;
3322
3323 begin
3324 -- Deals properly with child units
3325
3326 if Nkind (Ent) = N_Defining_Program_Unit_Name then
3327 Ent := Defining_Identifier (Ent);
3328 end if;
3329
3330 -- Compute qualification recursively (only "Standard" has no scope)
3331
3332 if Present (Scope (Scope (Ent))) then
3333 Parent_Name := Internal_Full_Qualified_Name (Scope (Ent));
3334 end if;
3335
3336 -- Every entity should have a name except some expanded blocks
3337 -- don't bother about those.
3338
3339 if Chars (Ent) = No_Name then
3340 return Parent_Name;
3341 end if;
3342
3343 -- Add a period between Name and qualification
3344
3345 if Parent_Name /= No_String then
3346 Start_String (Parent_Name);
3347 Store_String_Char (Get_Char_Code ('.'));
3348
3349 else
3350 Start_String;
3351 end if;
3352
3353 -- Generates the entity name in upper case
3354
3355 Get_Decoded_Name_String (Chars (Ent));
3356 Set_All_Upper_Case;
3357 Store_String_Chars (Name_Buffer (1 .. Name_Len));
3358 return End_String;
3359 end Internal_Full_Qualified_Name;
3360
3361 -- Start of processing for Full_Qualified_Name
3362
3363 begin
3364 Res := Internal_Full_Qualified_Name (E);
3365 Store_String_Char (Get_Char_Code (ASCII.NUL));
3366 return End_String;
3367 end Full_Qualified_Name;
3368
3369 -----------------------
3370 -- Gather_Components --
3371 -----------------------
3372
3373 procedure Gather_Components
3374 (Typ : Entity_Id;
3375 Comp_List : Node_Id;
3376 Governed_By : List_Id;
3377 Into : Elist_Id;
3378 Report_Errors : out Boolean)
3379 is
3380 Assoc : Node_Id;
3381 Variant : Node_Id;
3382 Discrete_Choice : Node_Id;
3383 Comp_Item : Node_Id;
3384
3385 Discrim : Entity_Id;
3386 Discrim_Name : Node_Id;
3387 Discrim_Value : Node_Id;
3388
3389 begin
3390 Report_Errors := False;
3391
3392 if No (Comp_List) or else Null_Present (Comp_List) then
3393 return;
3394
3395 elsif Present (Component_Items (Comp_List)) then
3396 Comp_Item := First (Component_Items (Comp_List));
3397
3398 else
3399 Comp_Item := Empty;
3400 end if;
3401
3402 while Present (Comp_Item) loop
3403
3404 -- Skip the tag of a tagged record, the interface tags, as well
3405 -- as all items that are not user components (anonymous types,
3406 -- rep clauses, Parent field, controller field).
3407
3408 if Nkind (Comp_Item) = N_Component_Declaration then
3409 declare
3410 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
3411 begin
3412 if not Is_Tag (Comp)
3413 and then Chars (Comp) /= Name_uParent
3414 and then Chars (Comp) /= Name_uController
3415 then
3416 Append_Elmt (Comp, Into);
3417 end if;
3418 end;
3419 end if;
3420
3421 Next (Comp_Item);
3422 end loop;
3423
3424 if No (Variant_Part (Comp_List)) then
3425 return;
3426 else
3427 Discrim_Name := Name (Variant_Part (Comp_List));
3428 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3429 end if;
3430
3431 -- Look for the discriminant that governs this variant part.
3432 -- The discriminant *must* be in the Governed_By List
3433
3434 Assoc := First (Governed_By);
3435 Find_Constraint : loop
3436 Discrim := First (Choices (Assoc));
3437 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
3438 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
3439 and then
3440 Chars (Corresponding_Discriminant (Entity (Discrim)))
3441 = Chars (Discrim_Name))
3442 or else Chars (Original_Record_Component (Entity (Discrim)))
3443 = Chars (Discrim_Name);
3444
3445 if No (Next (Assoc)) then
3446 if not Is_Constrained (Typ)
3447 and then Is_Derived_Type (Typ)
3448 and then Present (Stored_Constraint (Typ))
3449 then
3450 -- If the type is a tagged type with inherited discriminants,
3451 -- use the stored constraint on the parent in order to find
3452 -- the values of discriminants that are otherwise hidden by an
3453 -- explicit constraint. Renamed discriminants are handled in
3454 -- the code above.
3455
3456 -- If several parent discriminants are renamed by a single
3457 -- discriminant of the derived type, the call to obtain the
3458 -- Corresponding_Discriminant field only retrieves the last
3459 -- of them. We recover the constraint on the others from the
3460 -- Stored_Constraint as well.
3461
3462 declare
3463 D : Entity_Id;
3464 C : Elmt_Id;
3465
3466 begin
3467 D := First_Discriminant (Etype (Typ));
3468 C := First_Elmt (Stored_Constraint (Typ));
3469 while Present (D) and then Present (C) loop
3470 if Chars (Discrim_Name) = Chars (D) then
3471 if Is_Entity_Name (Node (C))
3472 and then Entity (Node (C)) = Entity (Discrim)
3473 then
3474 -- D is renamed by Discrim, whose value is given in
3475 -- Assoc.
3476
3477 null;
3478
3479 else
3480 Assoc :=
3481 Make_Component_Association (Sloc (Typ),
3482 New_List
3483 (New_Occurrence_Of (D, Sloc (Typ))),
3484 Duplicate_Subexpr_No_Checks (Node (C)));
3485 end if;
3486 exit Find_Constraint;
3487 end if;
3488
3489 Next_Discriminant (D);
3490 Next_Elmt (C);
3491 end loop;
3492 end;
3493 end if;
3494 end if;
3495
3496 if No (Next (Assoc)) then
3497 Error_Msg_NE (" missing value for discriminant&",
3498 First (Governed_By), Discrim_Name);
3499 Report_Errors := True;
3500 return;
3501 end if;
3502
3503 Next (Assoc);
3504 end loop Find_Constraint;
3505
3506 Discrim_Value := Expression (Assoc);
3507
3508 if not Is_OK_Static_Expression (Discrim_Value) then
3509 Error_Msg_FE
3510 ("value for discriminant & must be static!",
3511 Discrim_Value, Discrim);
3512 Why_Not_Static (Discrim_Value);
3513 Report_Errors := True;
3514 return;
3515 end if;
3516
3517 Search_For_Discriminant_Value : declare
3518 Low : Node_Id;
3519 High : Node_Id;
3520
3521 UI_High : Uint;
3522 UI_Low : Uint;
3523 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
3524
3525 begin
3526 Find_Discrete_Value : while Present (Variant) loop
3527 Discrete_Choice := First (Discrete_Choices (Variant));
3528 while Present (Discrete_Choice) loop
3529
3530 exit Find_Discrete_Value when
3531 Nkind (Discrete_Choice) = N_Others_Choice;
3532
3533 Get_Index_Bounds (Discrete_Choice, Low, High);
3534
3535 UI_Low := Expr_Value (Low);
3536 UI_High := Expr_Value (High);
3537
3538 exit Find_Discrete_Value when
3539 UI_Low <= UI_Discrim_Value
3540 and then
3541 UI_High >= UI_Discrim_Value;
3542
3543 Next (Discrete_Choice);
3544 end loop;
3545
3546 Next_Non_Pragma (Variant);
3547 end loop Find_Discrete_Value;
3548 end Search_For_Discriminant_Value;
3549
3550 if No (Variant) then
3551 Error_Msg_NE
3552 ("value of discriminant & is out of range", Discrim_Value, Discrim);
3553 Report_Errors := True;
3554 return;
3555 end if;
3556
3557 -- If we have found the corresponding choice, recursively add its
3558 -- components to the Into list.
3559
3560 Gather_Components (Empty,
3561 Component_List (Variant), Governed_By, Into, Report_Errors);
3562 end Gather_Components;
3563
3564 ------------------------
3565 -- Get_Actual_Subtype --
3566 ------------------------
3567
3568 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
3569 Typ : constant Entity_Id := Etype (N);
3570 Utyp : Entity_Id := Underlying_Type (Typ);
3571 Decl : Node_Id;
3572 Atyp : Entity_Id;
3573
3574 begin
3575 if No (Utyp) then
3576 Utyp := Typ;
3577 end if;
3578
3579 -- If what we have is an identifier that references a subprogram
3580 -- formal, or a variable or constant object, then we get the actual
3581 -- subtype from the referenced entity if one has been built.
3582
3583 if Nkind (N) = N_Identifier
3584 and then
3585 (Is_Formal (Entity (N))
3586 or else Ekind (Entity (N)) = E_Constant
3587 or else Ekind (Entity (N)) = E_Variable)
3588 and then Present (Actual_Subtype (Entity (N)))
3589 then
3590 return Actual_Subtype (Entity (N));
3591
3592 -- Actual subtype of unchecked union is always itself. We never need
3593 -- the "real" actual subtype. If we did, we couldn't get it anyway
3594 -- because the discriminant is not available. The restrictions on
3595 -- Unchecked_Union are designed to make sure that this is OK.
3596
3597 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
3598 return Typ;
3599
3600 -- Here for the unconstrained case, we must find actual subtype
3601 -- No actual subtype is available, so we must build it on the fly.
3602
3603 -- Checking the type, not the underlying type, for constrainedness
3604 -- seems to be necessary. Maybe all the tests should be on the type???
3605
3606 elsif (not Is_Constrained (Typ))
3607 and then (Is_Array_Type (Utyp)
3608 or else (Is_Record_Type (Utyp)
3609 and then Has_Discriminants (Utyp)))
3610 and then not Has_Unknown_Discriminants (Utyp)
3611 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
3612 then
3613 -- Nothing to do if in spec expression (why not???)
3614
3615 if In_Spec_Expression then
3616 return Typ;
3617
3618 elsif Is_Private_Type (Typ)
3619 and then not Has_Discriminants (Typ)
3620 then
3621 -- If the type has no discriminants, there is no subtype to
3622 -- build, even if the underlying type is discriminated.
3623
3624 return Typ;
3625
3626 -- Else build the actual subtype
3627
3628 else
3629 Decl := Build_Actual_Subtype (Typ, N);
3630 Atyp := Defining_Identifier (Decl);
3631
3632 -- If Build_Actual_Subtype generated a new declaration then use it
3633
3634 if Atyp /= Typ then
3635
3636 -- The actual subtype is an Itype, so analyze the declaration,
3637 -- but do not attach it to the tree, to get the type defined.
3638
3639 Set_Parent (Decl, N);
3640 Set_Is_Itype (Atyp);
3641 Analyze (Decl, Suppress => All_Checks);
3642 Set_Associated_Node_For_Itype (Atyp, N);
3643 Set_Has_Delayed_Freeze (Atyp, False);
3644
3645 -- We need to freeze the actual subtype immediately. This is
3646 -- needed, because otherwise this Itype will not get frozen
3647 -- at all, and it is always safe to freeze on creation because
3648 -- any associated types must be frozen at this point.
3649
3650 Freeze_Itype (Atyp, N);
3651 return Atyp;
3652
3653 -- Otherwise we did not build a declaration, so return original
3654
3655 else
3656 return Typ;
3657 end if;
3658 end if;
3659
3660 -- For all remaining cases, the actual subtype is the same as
3661 -- the nominal type.
3662
3663 else
3664 return Typ;
3665 end if;
3666 end Get_Actual_Subtype;
3667
3668 -------------------------------------
3669 -- Get_Actual_Subtype_If_Available --
3670 -------------------------------------
3671
3672 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
3673 Typ : constant Entity_Id := Etype (N);
3674
3675 begin
3676 -- If what we have is an identifier that references a subprogram
3677 -- formal, or a variable or constant object, then we get the actual
3678 -- subtype from the referenced entity if one has been built.
3679
3680 if Nkind (N) = N_Identifier
3681 and then
3682 (Is_Formal (Entity (N))
3683 or else Ekind (Entity (N)) = E_Constant
3684 or else Ekind (Entity (N)) = E_Variable)
3685 and then Present (Actual_Subtype (Entity (N)))
3686 then
3687 return Actual_Subtype (Entity (N));
3688
3689 -- Otherwise the Etype of N is returned unchanged
3690
3691 else
3692 return Typ;
3693 end if;
3694 end Get_Actual_Subtype_If_Available;
3695
3696 -------------------------------
3697 -- Get_Default_External_Name --
3698 -------------------------------
3699
3700 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
3701 begin
3702 Get_Decoded_Name_String (Chars (E));
3703
3704 if Opt.External_Name_Imp_Casing = Uppercase then
3705 Set_Casing (All_Upper_Case);
3706 else
3707 Set_Casing (All_Lower_Case);
3708 end if;
3709
3710 return
3711 Make_String_Literal (Sloc (E),
3712 Strval => String_From_Name_Buffer);
3713 end Get_Default_External_Name;
3714
3715 ---------------------------
3716 -- Get_Enum_Lit_From_Pos --
3717 ---------------------------
3718
3719 function Get_Enum_Lit_From_Pos
3720 (T : Entity_Id;
3721 Pos : Uint;
3722 Loc : Source_Ptr) return Node_Id
3723 is
3724 Lit : Node_Id;
3725
3726 begin
3727 -- In the case where the literal is of type Character, Wide_Character
3728 -- or Wide_Wide_Character or of a type derived from them, there needs
3729 -- to be some special handling since there is no explicit chain of
3730 -- literals to search. Instead, an N_Character_Literal node is created
3731 -- with the appropriate Char_Code and Chars fields.
3732
3733 if Is_Standard_Character_Type (T) then
3734 Set_Character_Literal_Name (UI_To_CC (Pos));
3735 return
3736 Make_Character_Literal (Loc,
3737 Chars => Name_Find,
3738 Char_Literal_Value => Pos);
3739
3740 -- For all other cases, we have a complete table of literals, and
3741 -- we simply iterate through the chain of literal until the one
3742 -- with the desired position value is found.
3743 --
3744
3745 else
3746 Lit := First_Literal (Base_Type (T));
3747 for J in 1 .. UI_To_Int (Pos) loop
3748 Next_Literal (Lit);
3749 end loop;
3750
3751 return New_Occurrence_Of (Lit, Loc);
3752 end if;
3753 end Get_Enum_Lit_From_Pos;
3754
3755 ------------------------
3756 -- Get_Generic_Entity --
3757 ------------------------
3758
3759 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
3760 Ent : constant Entity_Id := Entity (Name (N));
3761 begin
3762 if Present (Renamed_Object (Ent)) then
3763 return Renamed_Object (Ent);
3764 else
3765 return Ent;
3766 end if;
3767 end Get_Generic_Entity;
3768
3769 ----------------------
3770 -- Get_Index_Bounds --
3771 ----------------------
3772
3773 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
3774 Kind : constant Node_Kind := Nkind (N);
3775 R : Node_Id;
3776
3777 begin
3778 if Kind = N_Range then
3779 L := Low_Bound (N);
3780 H := High_Bound (N);
3781
3782 elsif Kind = N_Subtype_Indication then
3783 R := Range_Expression (Constraint (N));
3784
3785 if R = Error then
3786 L := Error;
3787 H := Error;
3788 return;
3789
3790 else
3791 L := Low_Bound (Range_Expression (Constraint (N)));
3792 H := High_Bound (Range_Expression (Constraint (N)));
3793 end if;
3794
3795 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
3796 if Error_Posted (Scalar_Range (Entity (N))) then
3797 L := Error;
3798 H := Error;
3799
3800 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
3801 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
3802
3803 else
3804 L := Low_Bound (Scalar_Range (Entity (N)));
3805 H := High_Bound (Scalar_Range (Entity (N)));
3806 end if;
3807
3808 else
3809 -- N is an expression, indicating a range with one value
3810
3811 L := N;
3812 H := N;
3813 end if;
3814 end Get_Index_Bounds;
3815
3816 ----------------------------------
3817 -- Get_Library_Unit_Name_string --
3818 ----------------------------------
3819
3820 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
3821 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
3822
3823 begin
3824 Get_Unit_Name_String (Unit_Name_Id);
3825
3826 -- Remove seven last character (" (spec)" or " (body)")
3827
3828 Name_Len := Name_Len - 7;
3829 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
3830 end Get_Library_Unit_Name_String;
3831
3832 ------------------------
3833 -- Get_Name_Entity_Id --
3834 ------------------------
3835
3836 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
3837 begin
3838 return Entity_Id (Get_Name_Table_Info (Id));
3839 end Get_Name_Entity_Id;
3840
3841 -------------------
3842 -- Get_Pragma_Id --
3843 -------------------
3844
3845 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
3846 begin
3847 return Get_Pragma_Id (Pragma_Name (N));
3848 end Get_Pragma_Id;
3849
3850 ---------------------------
3851 -- Get_Referenced_Object --
3852 ---------------------------
3853
3854 function Get_Referenced_Object (N : Node_Id) return Node_Id is
3855 R : Node_Id;
3856
3857 begin
3858 R := N;
3859 while Is_Entity_Name (R)
3860 and then Present (Renamed_Object (Entity (R)))
3861 loop
3862 R := Renamed_Object (Entity (R));
3863 end loop;
3864
3865 return R;
3866 end Get_Referenced_Object;
3867
3868 ------------------------
3869 -- Get_Renamed_Entity --
3870 ------------------------
3871
3872 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
3873 R : Entity_Id;
3874
3875 begin
3876 R := E;
3877 while Present (Renamed_Entity (R)) loop
3878 R := Renamed_Entity (R);
3879 end loop;
3880
3881 return R;
3882 end Get_Renamed_Entity;
3883
3884 -------------------------
3885 -- Get_Subprogram_Body --
3886 -------------------------
3887
3888 function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
3889 Decl : Node_Id;
3890
3891 begin
3892 Decl := Unit_Declaration_Node (E);
3893
3894 if Nkind (Decl) = N_Subprogram_Body then
3895 return Decl;
3896
3897 -- The below comment is bad, because it is possible for
3898 -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
3899
3900 else -- Nkind (Decl) = N_Subprogram_Declaration
3901
3902 if Present (Corresponding_Body (Decl)) then
3903 return Unit_Declaration_Node (Corresponding_Body (Decl));
3904
3905 -- Imported subprogram case
3906
3907 else
3908 return Empty;
3909 end if;
3910 end if;
3911 end Get_Subprogram_Body;
3912
3913 ---------------------------
3914 -- Get_Subprogram_Entity --
3915 ---------------------------
3916
3917 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
3918 Nam : Node_Id;
3919 Proc : Entity_Id;
3920
3921 begin
3922 if Nkind (Nod) = N_Accept_Statement then
3923 Nam := Entry_Direct_Name (Nod);
3924
3925 -- For an entry call, the prefix of the call is a selected component.
3926 -- Need additional code for internal calls ???
3927
3928 elsif Nkind (Nod) = N_Entry_Call_Statement then
3929 if Nkind (Name (Nod)) = N_Selected_Component then
3930 Nam := Entity (Selector_Name (Name (Nod)));
3931 else
3932 Nam := Empty;
3933 end if;
3934
3935 else
3936 Nam := Name (Nod);
3937 end if;
3938
3939 if Nkind (Nam) = N_Explicit_Dereference then
3940 Proc := Etype (Prefix (Nam));
3941 elsif Is_Entity_Name (Nam) then
3942 Proc := Entity (Nam);
3943 else
3944 return Empty;
3945 end if;
3946
3947 if Is_Object (Proc) then
3948 Proc := Etype (Proc);
3949 end if;
3950
3951 if Ekind (Proc) = E_Access_Subprogram_Type then
3952 Proc := Directly_Designated_Type (Proc);
3953 end if;
3954
3955 if not Is_Subprogram (Proc)
3956 and then Ekind (Proc) /= E_Subprogram_Type
3957 then
3958 return Empty;
3959 else
3960 return Proc;
3961 end if;
3962 end Get_Subprogram_Entity;
3963
3964 -----------------------------
3965 -- Get_Task_Body_Procedure --
3966 -----------------------------
3967
3968 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
3969 begin
3970 -- Note: A task type may be the completion of a private type with
3971 -- discriminants. When performing elaboration checks on a task
3972 -- declaration, the current view of the type may be the private one,
3973 -- and the procedure that holds the body of the task is held in its
3974 -- underlying type.
3975
3976 -- This is an odd function, why not have Task_Body_Procedure do
3977 -- the following digging???
3978
3979 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
3980 end Get_Task_Body_Procedure;
3981
3982 -----------------------
3983 -- Has_Access_Values --
3984 -----------------------
3985
3986 function Has_Access_Values (T : Entity_Id) return Boolean is
3987 Typ : constant Entity_Id := Underlying_Type (T);
3988
3989 begin
3990 -- Case of a private type which is not completed yet. This can only
3991 -- happen in the case of a generic format type appearing directly, or
3992 -- as a component of the type to which this function is being applied
3993 -- at the top level. Return False in this case, since we certainly do
3994 -- not know that the type contains access types.
3995
3996 if No (Typ) then
3997 return False;
3998
3999 elsif Is_Access_Type (Typ) then
4000 return True;
4001
4002 elsif Is_Array_Type (Typ) then
4003 return Has_Access_Values (Component_Type (Typ));
4004
4005 elsif Is_Record_Type (Typ) then
4006 declare
4007 Comp : Entity_Id;
4008
4009 begin
4010 -- Loop to Check components
4011
4012 Comp := First_Component_Or_Discriminant (Typ);
4013 while Present (Comp) loop
4014
4015 -- Check for access component, tag field does not count, even
4016 -- though it is implemented internally using an access type.
4017
4018 if Has_Access_Values (Etype (Comp))
4019 and then Chars (Comp) /= Name_uTag
4020 then
4021 return True;
4022 end if;
4023
4024 Next_Component_Or_Discriminant (Comp);
4025 end loop;
4026 end;
4027
4028 return False;
4029
4030 else
4031 return False;
4032 end if;
4033 end Has_Access_Values;
4034
4035 ------------------------------
4036 -- Has_Compatible_Alignment --
4037 ------------------------------
4038
4039 function Has_Compatible_Alignment
4040 (Obj : Entity_Id;
4041 Expr : Node_Id) return Alignment_Result
4042 is
4043 function Has_Compatible_Alignment_Internal
4044 (Obj : Entity_Id;
4045 Expr : Node_Id;
4046 Default : Alignment_Result) return Alignment_Result;
4047 -- This is the internal recursive function that actually does the work.
4048 -- There is one additional parameter, which says what the result should
4049 -- be if no alignment information is found, and there is no definite
4050 -- indication of compatible alignments. At the outer level, this is set
4051 -- to Unknown, but for internal recursive calls in the case where types
4052 -- are known to be correct, it is set to Known_Compatible.
4053
4054 ---------------------------------------
4055 -- Has_Compatible_Alignment_Internal --
4056 ---------------------------------------
4057
4058 function Has_Compatible_Alignment_Internal
4059 (Obj : Entity_Id;
4060 Expr : Node_Id;
4061 Default : Alignment_Result) return Alignment_Result
4062 is
4063 Result : Alignment_Result := Known_Compatible;
4064 -- Holds the current status of the result. Note that once a value of
4065 -- Known_Incompatible is set, it is sticky and does not get changed
4066 -- to Unknown (the value in Result only gets worse as we go along,
4067 -- never better).
4068
4069 Offs : Uint := No_Uint;
4070 -- Set to a factor of the offset from the base object when Expr is a
4071 -- selected or indexed component, based on Component_Bit_Offset and
4072 -- Component_Size respectively. A negative value is used to represent
4073 -- a value which is not known at compile time.
4074
4075 procedure Check_Prefix;
4076 -- Checks the prefix recursively in the case where the expression
4077 -- is an indexed or selected component.
4078
4079 procedure Set_Result (R : Alignment_Result);
4080 -- If R represents a worse outcome (unknown instead of known
4081 -- compatible, or known incompatible), then set Result to R.
4082
4083 ------------------
4084 -- Check_Prefix --
4085 ------------------
4086
4087 procedure Check_Prefix is
4088 begin
4089 -- The subtlety here is that in doing a recursive call to check
4090 -- the prefix, we have to decide what to do in the case where we
4091 -- don't find any specific indication of an alignment problem.
4092
4093 -- At the outer level, we normally set Unknown as the result in
4094 -- this case, since we can only set Known_Compatible if we really
4095 -- know that the alignment value is OK, but for the recursive
4096 -- call, in the case where the types match, and we have not
4097 -- specified a peculiar alignment for the object, we are only
4098 -- concerned about suspicious rep clauses, the default case does
4099 -- not affect us, since the compiler will, in the absence of such
4100 -- rep clauses, ensure that the alignment is correct.
4101
4102 if Default = Known_Compatible
4103 or else
4104 (Etype (Obj) = Etype (Expr)
4105 and then (Unknown_Alignment (Obj)
4106 or else
4107 Alignment (Obj) = Alignment (Etype (Obj))))
4108 then
4109 Set_Result
4110 (Has_Compatible_Alignment_Internal
4111 (Obj, Prefix (Expr), Known_Compatible));
4112
4113 -- In all other cases, we need a full check on the prefix
4114
4115 else
4116 Set_Result
4117 (Has_Compatible_Alignment_Internal
4118 (Obj, Prefix (Expr), Unknown));
4119 end if;
4120 end Check_Prefix;
4121
4122 ----------------
4123 -- Set_Result --
4124 ----------------
4125
4126 procedure Set_Result (R : Alignment_Result) is
4127 begin
4128 if R > Result then
4129 Result := R;
4130 end if;
4131 end Set_Result;
4132
4133 -- Start of processing for Has_Compatible_Alignment_Internal
4134
4135 begin
4136 -- If Expr is a selected component, we must make sure there is no
4137 -- potentially troublesome component clause, and that the record is
4138 -- not packed.
4139
4140 if Nkind (Expr) = N_Selected_Component then
4141
4142 -- Packed record always generate unknown alignment
4143
4144 if Is_Packed (Etype (Prefix (Expr))) then
4145 Set_Result (Unknown);
4146 end if;
4147
4148 -- Check prefix and component offset
4149
4150 Check_Prefix;
4151 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
4152
4153 -- If Expr is an indexed component, we must make sure there is no
4154 -- potentially troublesome Component_Size clause and that the array
4155 -- is not bit-packed.
4156
4157 elsif Nkind (Expr) = N_Indexed_Component then
4158 declare
4159 Typ : constant Entity_Id := Etype (Prefix (Expr));
4160 Ind : constant Node_Id := First_Index (Typ);
4161
4162 begin
4163 -- Bit packed array always generates unknown alignment
4164
4165 if Is_Bit_Packed_Array (Typ) then
4166 Set_Result (Unknown);
4167 end if;
4168
4169 -- Check prefix and component offset
4170
4171 Check_Prefix;
4172 Offs := Component_Size (Typ);
4173
4174 -- Small optimization: compute the full offset when possible
4175
4176 if Offs /= No_Uint
4177 and then Offs > Uint_0
4178 and then Present (Ind)
4179 and then Nkind (Ind) = N_Range
4180 and then Compile_Time_Known_Value (Low_Bound (Ind))
4181 and then Compile_Time_Known_Value (First (Expressions (Expr)))
4182 then
4183 Offs := Offs * (Expr_Value (First (Expressions (Expr)))
4184 - Expr_Value (Low_Bound ((Ind))));
4185 end if;
4186 end;
4187 end if;
4188
4189 -- If we have a null offset, the result is entirely determined by
4190 -- the base object and has already been computed recursively.
4191
4192 if Offs = Uint_0 then
4193 null;
4194
4195 -- Case where we know the alignment of the object
4196
4197 elsif Known_Alignment (Obj) then
4198 declare
4199 ObjA : constant Uint := Alignment (Obj);
4200 ExpA : Uint := No_Uint;
4201 SizA : Uint := No_Uint;
4202
4203 begin
4204 -- If alignment of Obj is 1, then we are always OK
4205
4206 if ObjA = 1 then
4207 Set_Result (Known_Compatible);
4208
4209 -- Alignment of Obj is greater than 1, so we need to check
4210
4211 else
4212 -- If we have an offset, see if it is compatible
4213
4214 if Offs /= No_Uint and Offs > Uint_0 then
4215 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
4216 Set_Result (Known_Incompatible);
4217 end if;
4218
4219 -- See if Expr is an object with known alignment
4220
4221 elsif Is_Entity_Name (Expr)
4222 and then Known_Alignment (Entity (Expr))
4223 then
4224 ExpA := Alignment (Entity (Expr));
4225
4226 -- Otherwise, we can use the alignment of the type of
4227 -- Expr given that we already checked for
4228 -- discombobulating rep clauses for the cases of indexed
4229 -- and selected components above.
4230
4231 elsif Known_Alignment (Etype (Expr)) then
4232 ExpA := Alignment (Etype (Expr));
4233
4234 -- Otherwise the alignment is unknown
4235
4236 else
4237 Set_Result (Default);
4238 end if;
4239
4240 -- If we got an alignment, see if it is acceptable
4241
4242 if ExpA /= No_Uint and then ExpA < ObjA then
4243 Set_Result (Known_Incompatible);
4244 end if;
4245
4246 -- If Expr is not a piece of a larger object, see if size
4247 -- is given. If so, check that it is not too small for the
4248 -- required alignment.
4249
4250 if Offs /= No_Uint then
4251 null;
4252
4253 -- See if Expr is an object with known size
4254
4255 elsif Is_Entity_Name (Expr)
4256 and then Known_Static_Esize (Entity (Expr))
4257 then
4258 SizA := Esize (Entity (Expr));
4259
4260 -- Otherwise, we check the object size of the Expr type
4261
4262 elsif Known_Static_Esize (Etype (Expr)) then
4263 SizA := Esize (Etype (Expr));
4264 end if;
4265
4266 -- If we got a size, see if it is a multiple of the Obj
4267 -- alignment, if not, then the alignment cannot be
4268 -- acceptable, since the size is always a multiple of the
4269 -- alignment.
4270
4271 if SizA /= No_Uint then
4272 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
4273 Set_Result (Known_Incompatible);
4274 end if;
4275 end if;
4276 end if;
4277 end;
4278
4279 -- If we do not know required alignment, any non-zero offset is a
4280 -- potential problem (but certainly may be OK, so result is unknown).
4281
4282 elsif Offs /= No_Uint then
4283 Set_Result (Unknown);
4284
4285 -- If we can't find the result by direct comparison of alignment
4286 -- values, then there is still one case that we can determine known
4287 -- result, and that is when we can determine that the types are the
4288 -- same, and no alignments are specified. Then we known that the
4289 -- alignments are compatible, even if we don't know the alignment
4290 -- value in the front end.
4291
4292 elsif Etype (Obj) = Etype (Expr) then
4293
4294 -- Types are the same, but we have to check for possible size
4295 -- and alignments on the Expr object that may make the alignment
4296 -- different, even though the types are the same.
4297
4298 if Is_Entity_Name (Expr) then
4299
4300 -- First check alignment of the Expr object. Any alignment less
4301 -- than Maximum_Alignment is worrisome since this is the case
4302 -- where we do not know the alignment of Obj.
4303
4304 if Known_Alignment (Entity (Expr))
4305 and then
4306 UI_To_Int (Alignment (Entity (Expr))) <
4307 Ttypes.Maximum_Alignment
4308 then
4309 Set_Result (Unknown);
4310
4311 -- Now check size of Expr object. Any size that is not an
4312 -- even multiple of Maximum_Alignment is also worrisome
4313 -- since it may cause the alignment of the object to be less
4314 -- than the alignment of the type.
4315
4316 elsif Known_Static_Esize (Entity (Expr))
4317 and then
4318 (UI_To_Int (Esize (Entity (Expr))) mod
4319 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
4320 /= 0
4321 then
4322 Set_Result (Unknown);
4323
4324 -- Otherwise same type is decisive
4325
4326 else
4327 Set_Result (Known_Compatible);
4328 end if;
4329 end if;
4330
4331 -- Another case to deal with is when there is an explicit size or
4332 -- alignment clause when the types are not the same. If so, then the
4333 -- result is Unknown. We don't need to do this test if the Default is
4334 -- Unknown, since that result will be set in any case.
4335
4336 elsif Default /= Unknown
4337 and then (Has_Size_Clause (Etype (Expr))
4338 or else
4339 Has_Alignment_Clause (Etype (Expr)))
4340 then
4341 Set_Result (Unknown);
4342
4343 -- If no indication found, set default
4344
4345 else
4346 Set_Result (Default);
4347 end if;
4348
4349 -- Return worst result found
4350
4351 return Result;
4352 end Has_Compatible_Alignment_Internal;
4353
4354 -- Start of processing for Has_Compatible_Alignment
4355
4356 begin
4357 -- If Obj has no specified alignment, then set alignment from the type
4358 -- alignment. Perhaps we should always do this, but for sure we should
4359 -- do it when there is an address clause since we can do more if the
4360 -- alignment is known.
4361
4362 if Unknown_Alignment (Obj) then
4363 Set_Alignment (Obj, Alignment (Etype (Obj)));
4364 end if;
4365
4366 -- Now do the internal call that does all the work
4367
4368 return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
4369 end Has_Compatible_Alignment;
4370
4371 ----------------------
4372 -- Has_Declarations --
4373 ----------------------
4374
4375 function Has_Declarations (N : Node_Id) return Boolean is
4376 begin
4377 return Nkind_In (Nkind (N), N_Accept_Statement,
4378 N_Block_Statement,
4379 N_Compilation_Unit_Aux,
4380 N_Entry_Body,
4381 N_Package_Body,
4382 N_Protected_Body,
4383 N_Subprogram_Body,
4384 N_Task_Body,
4385 N_Package_Specification);
4386 end Has_Declarations;
4387
4388 -------------------------------------------
4389 -- Has_Discriminant_Dependent_Constraint --
4390 -------------------------------------------
4391
4392 function Has_Discriminant_Dependent_Constraint
4393 (Comp : Entity_Id) return Boolean
4394 is
4395 Comp_Decl : constant Node_Id := Parent (Comp);
4396 Subt_Indic : constant Node_Id :=
4397 Subtype_Indication (Component_Definition (Comp_Decl));
4398 Constr : Node_Id;
4399 Assn : Node_Id;
4400
4401 begin
4402 if Nkind (Subt_Indic) = N_Subtype_Indication then
4403 Constr := Constraint (Subt_Indic);
4404
4405 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
4406 Assn := First (Constraints (Constr));
4407 while Present (Assn) loop
4408 case Nkind (Assn) is
4409 when N_Subtype_Indication |
4410 N_Range |
4411 N_Identifier
4412 =>
4413 if Depends_On_Discriminant (Assn) then
4414 return True;
4415 end if;
4416
4417 when N_Discriminant_Association =>
4418 if Depends_On_Discriminant (Expression (Assn)) then
4419 return True;
4420 end if;
4421
4422 when others =>
4423 null;
4424
4425 end case;
4426
4427 Next (Assn);
4428 end loop;
4429 end if;
4430 end if;
4431
4432 return False;
4433 end Has_Discriminant_Dependent_Constraint;
4434
4435 --------------------
4436 -- Has_Infinities --
4437 --------------------
4438
4439 function Has_Infinities (E : Entity_Id) return Boolean is
4440 begin
4441 return
4442 Is_Floating_Point_Type (E)
4443 and then Nkind (Scalar_Range (E)) = N_Range
4444 and then Includes_Infinities (Scalar_Range (E));
4445 end Has_Infinities;
4446
4447 --------------------
4448 -- Has_Interfaces --
4449 --------------------
4450
4451 function Has_Interfaces
4452 (T : Entity_Id;
4453 Use_Full_View : Boolean := True) return Boolean
4454 is
4455 Typ : Entity_Id;
4456
4457 begin
4458 -- Handle concurrent types
4459
4460 if Is_Concurrent_Type (T) then
4461 Typ := Corresponding_Record_Type (T);
4462 else
4463 Typ := T;
4464 end if;
4465
4466 if not Present (Typ)
4467 or else not Is_Record_Type (Typ)
4468 or else not Is_Tagged_Type (Typ)
4469 then
4470 return False;
4471 end if;
4472
4473 -- Handle private types
4474
4475 if Use_Full_View
4476 and then Present (Full_View (Typ))
4477 then
4478 Typ := Full_View (Typ);
4479 end if;
4480
4481 -- Handle concurrent record types
4482
4483 if Is_Concurrent_Record_Type (Typ)
4484 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
4485 then
4486 return True;
4487 end if;
4488
4489 loop
4490 if Is_Interface (Typ)
4491 or else
4492 (Is_Record_Type (Typ)
4493 and then Present (Interfaces (Typ))
4494 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
4495 then
4496 return True;
4497 end if;
4498
4499 exit when Etype (Typ) = Typ
4500
4501 -- Handle private types
4502
4503 or else (Present (Full_View (Etype (Typ)))
4504 and then Full_View (Etype (Typ)) = Typ)
4505
4506 -- Protect the frontend against wrong source with cyclic
4507 -- derivations
4508
4509 or else Etype (Typ) = T;
4510
4511 -- Climb to the ancestor type handling private types
4512
4513 if Present (Full_View (Etype (Typ))) then
4514 Typ := Full_View (Etype (Typ));
4515 else
4516 Typ := Etype (Typ);
4517 end if;
4518 end loop;
4519
4520 return False;
4521 end Has_Interfaces;
4522
4523 ------------------------
4524 -- Has_Null_Exclusion --
4525 ------------------------
4526
4527 function Has_Null_Exclusion (N : Node_Id) return Boolean is
4528 begin
4529 case Nkind (N) is
4530 when N_Access_Definition |
4531 N_Access_Function_Definition |
4532 N_Access_Procedure_Definition |
4533 N_Access_To_Object_Definition |
4534 N_Allocator |
4535 N_Derived_Type_Definition |
4536 N_Function_Specification |
4537 N_Subtype_Declaration =>
4538 return Null_Exclusion_Present (N);
4539
4540 when N_Component_Definition |
4541 N_Formal_Object_Declaration |
4542 N_Object_Renaming_Declaration =>
4543 if Present (Subtype_Mark (N)) then
4544 return Null_Exclusion_Present (N);
4545 else pragma Assert (Present (Access_Definition (N)));
4546 return Null_Exclusion_Present (Access_Definition (N));
4547 end if;
4548
4549 when N_Discriminant_Specification =>
4550 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
4551 return Null_Exclusion_Present (Discriminant_Type (N));
4552 else
4553 return Null_Exclusion_Present (N);
4554 end if;
4555
4556 when N_Object_Declaration =>
4557 if Nkind (Object_Definition (N)) = N_Access_Definition then
4558 return Null_Exclusion_Present (Object_Definition (N));
4559 else
4560 return Null_Exclusion_Present (N);
4561 end if;
4562
4563 when N_Parameter_Specification =>
4564 if Nkind (Parameter_Type (N)) = N_Access_Definition then
4565 return Null_Exclusion_Present (Parameter_Type (N));
4566 else
4567 return Null_Exclusion_Present (N);
4568 end if;
4569
4570 when others =>
4571 return False;
4572
4573 end case;
4574 end Has_Null_Exclusion;
4575
4576 ------------------------
4577 -- Has_Null_Extension --
4578 ------------------------
4579
4580 function Has_Null_Extension (T : Entity_Id) return Boolean is
4581 B : constant Entity_Id := Base_Type (T);
4582 Comps : Node_Id;
4583 Ext : Node_Id;
4584
4585 begin
4586 if Nkind (Parent (B)) = N_Full_Type_Declaration
4587 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
4588 then
4589 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
4590
4591 if Present (Ext) then
4592 if Null_Present (Ext) then
4593 return True;
4594 else
4595 Comps := Component_List (Ext);
4596
4597 -- The null component list is rewritten during analysis to
4598 -- include the parent component. Any other component indicates
4599 -- that the extension was not originally null.
4600
4601 return Null_Present (Comps)
4602 or else No (Next (First (Component_Items (Comps))));
4603 end if;
4604 else
4605 return False;
4606 end if;
4607
4608 else
4609 return False;
4610 end if;
4611 end Has_Null_Extension;
4612
4613 -------------------------------
4614 -- Has_Overriding_Initialize --
4615 -------------------------------
4616
4617 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
4618 BT : constant Entity_Id := Base_Type (T);
4619 Comp : Entity_Id;
4620 P : Elmt_Id;
4621
4622 begin
4623 if Is_Controlled (BT) then
4624
4625 -- For derived types, check immediate ancestor, excluding
4626 -- Controlled itself.
4627
4628 if Is_Derived_Type (BT)
4629 and then not In_Predefined_Unit (Etype (BT))
4630 and then Has_Overriding_Initialize (Etype (BT))
4631 then
4632 return True;
4633
4634 elsif Present (Primitive_Operations (BT)) then
4635 P := First_Elmt (Primitive_Operations (BT));
4636 while Present (P) loop
4637 if Chars (Node (P)) = Name_Initialize
4638 and then Comes_From_Source (Node (P))
4639 then
4640 return True;
4641 end if;
4642
4643 Next_Elmt (P);
4644 end loop;
4645 end if;
4646
4647 return False;
4648
4649 elsif Has_Controlled_Component (BT) then
4650 Comp := First_Component (BT);
4651 while Present (Comp) loop
4652 if Has_Overriding_Initialize (Etype (Comp)) then
4653 return True;
4654 end if;
4655
4656 Next_Component (Comp);
4657 end loop;
4658
4659 return False;
4660
4661 else
4662 return False;
4663 end if;
4664 end Has_Overriding_Initialize;
4665
4666 --------------------------------------
4667 -- Has_Preelaborable_Initialization --
4668 --------------------------------------
4669
4670 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
4671 Has_PE : Boolean;
4672
4673 procedure Check_Components (E : Entity_Id);
4674 -- Check component/discriminant chain, sets Has_PE False if a component
4675 -- or discriminant does not meet the preelaborable initialization rules.
4676
4677 ----------------------
4678 -- Check_Components --
4679 ----------------------
4680
4681 procedure Check_Components (E : Entity_Id) is
4682 Ent : Entity_Id;
4683 Exp : Node_Id;
4684
4685 function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
4686 -- Returns True if and only if the expression denoted by N does not
4687 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
4688
4689 ---------------------------------
4690 -- Is_Preelaborable_Expression --
4691 ---------------------------------
4692
4693 function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
4694 Exp : Node_Id;
4695 Assn : Node_Id;
4696 Choice : Node_Id;
4697 Comp_Type : Entity_Id;
4698 Is_Array_Aggr : Boolean;
4699
4700 begin
4701 if Is_Static_Expression (N) then
4702 return True;
4703
4704 elsif Nkind (N) = N_Null then
4705 return True;
4706
4707 -- Attributes are allowed in general, even if their prefix is a
4708 -- formal type. (It seems that certain attributes known not to be
4709 -- static might not be allowed, but there are no rules to prevent
4710 -- them.)
4711
4712 elsif Nkind (N) = N_Attribute_Reference then
4713 return True;
4714
4715 -- The name of a discriminant evaluated within its parent type is
4716 -- defined to be preelaborable (10.2.1(8)). Note that we test for
4717 -- names that denote discriminals as well as discriminants to
4718 -- catch references occurring within init procs.
4719
4720 elsif Is_Entity_Name (N)
4721 and then
4722 (Ekind (Entity (N)) = E_Discriminant
4723 or else
4724 ((Ekind (Entity (N)) = E_Constant
4725 or else Ekind (Entity (N)) = E_In_Parameter)
4726 and then Present (Discriminal_Link (Entity (N)))))
4727 then
4728 return True;
4729
4730 elsif Nkind (N) = N_Qualified_Expression then
4731 return Is_Preelaborable_Expression (Expression (N));
4732
4733 -- For aggregates we have to check that each of the associations
4734 -- is preelaborable.
4735
4736 elsif Nkind (N) = N_Aggregate
4737 or else Nkind (N) = N_Extension_Aggregate
4738 then
4739 Is_Array_Aggr := Is_Array_Type (Etype (N));
4740
4741 if Is_Array_Aggr then
4742 Comp_Type := Component_Type (Etype (N));
4743 end if;
4744
4745 -- Check the ancestor part of extension aggregates, which must
4746 -- be either the name of a type that has preelaborable init or
4747 -- an expression that is preelaborable.
4748
4749 if Nkind (N) = N_Extension_Aggregate then
4750 declare
4751 Anc_Part : constant Node_Id := Ancestor_Part (N);
4752
4753 begin
4754 if Is_Entity_Name (Anc_Part)
4755 and then Is_Type (Entity (Anc_Part))
4756 then
4757 if not Has_Preelaborable_Initialization
4758 (Entity (Anc_Part))
4759 then
4760 return False;
4761 end if;
4762
4763 elsif not Is_Preelaborable_Expression (Anc_Part) then
4764 return False;
4765 end if;
4766 end;
4767 end if;
4768
4769 -- Check positional associations
4770
4771 Exp := First (Expressions (N));
4772 while Present (Exp) loop
4773 if not Is_Preelaborable_Expression (Exp) then
4774 return False;
4775 end if;
4776
4777 Next (Exp);
4778 end loop;
4779
4780 -- Check named associations
4781
4782 Assn := First (Component_Associations (N));
4783 while Present (Assn) loop
4784 Choice := First (Choices (Assn));
4785 while Present (Choice) loop
4786 if Is_Array_Aggr then
4787 if Nkind (Choice) = N_Others_Choice then
4788 null;
4789
4790 elsif Nkind (Choice) = N_Range then
4791 if not Is_Static_Range (Choice) then
4792 return False;
4793 end if;
4794
4795 elsif not Is_Static_Expression (Choice) then
4796 return False;
4797 end if;
4798
4799 else
4800 Comp_Type := Etype (Choice);
4801 end if;
4802
4803 Next (Choice);
4804 end loop;
4805
4806 -- If the association has a <> at this point, then we have
4807 -- to check whether the component's type has preelaborable
4808 -- initialization. Note that this only occurs when the
4809 -- association's corresponding component does not have a
4810 -- default expression, the latter case having already been
4811 -- expanded as an expression for the association.
4812
4813 if Box_Present (Assn) then
4814 if not Has_Preelaborable_Initialization (Comp_Type) then
4815 return False;
4816 end if;
4817
4818 -- In the expression case we check whether the expression
4819 -- is preelaborable.
4820
4821 elsif
4822 not Is_Preelaborable_Expression (Expression (Assn))
4823 then
4824 return False;
4825 end if;
4826
4827 Next (Assn);
4828 end loop;
4829
4830 -- If we get here then aggregate as a whole is preelaborable
4831
4832 return True;
4833
4834 -- All other cases are not preelaborable
4835
4836 else
4837 return False;
4838 end if;
4839 end Is_Preelaborable_Expression;
4840
4841 -- Start of processing for Check_Components
4842
4843 begin
4844 -- Loop through entities of record or protected type
4845
4846 Ent := E;
4847 while Present (Ent) loop
4848
4849 -- We are interested only in components and discriminants
4850
4851 if Ekind (Ent) = E_Component
4852 or else
4853 Ekind (Ent) = E_Discriminant
4854 then
4855 -- Get default expression if any. If there is no declaration
4856 -- node, it means we have an internal entity. The parent and
4857 -- tag fields are examples of such entities. For these cases,
4858 -- we just test the type of the entity.
4859
4860 if Present (Declaration_Node (Ent)) then
4861 Exp := Expression (Declaration_Node (Ent));
4862 else
4863 Exp := Empty;
4864 end if;
4865
4866 -- A component has PI if it has no default expression and the
4867 -- component type has PI.
4868
4869 if No (Exp) then
4870 if not Has_Preelaborable_Initialization (Etype (Ent)) then
4871 Has_PE := False;
4872 exit;
4873 end if;
4874
4875 -- Require the default expression to be preelaborable
4876
4877 elsif not Is_Preelaborable_Expression (Exp) then
4878 Has_PE := False;
4879 exit;
4880 end if;
4881 end if;
4882
4883 Next_Entity (Ent);
4884 end loop;
4885 end Check_Components;
4886
4887 -- Start of processing for Has_Preelaborable_Initialization
4888
4889 begin
4890 -- Immediate return if already marked as known preelaborable init. This
4891 -- covers types for which this function has already been called once
4892 -- and returned True (in which case the result is cached), and also
4893 -- types to which a pragma Preelaborable_Initialization applies.
4894
4895 if Known_To_Have_Preelab_Init (E) then
4896 return True;
4897 end if;
4898
4899 -- If the type is a subtype representing a generic actual type, then
4900 -- test whether its base type has preelaborable initialization since
4901 -- the subtype representing the actual does not inherit this attribute
4902 -- from the actual or formal. (but maybe it should???)
4903
4904 if Is_Generic_Actual_Type (E) then
4905 return Has_Preelaborable_Initialization (Base_Type (E));
4906 end if;
4907
4908 -- All elementary types have preelaborable initialization
4909
4910 if Is_Elementary_Type (E) then
4911 Has_PE := True;
4912
4913 -- Array types have PI if the component type has PI
4914
4915 elsif Is_Array_Type (E) then
4916 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
4917
4918 -- A derived type has preelaborable initialization if its parent type
4919 -- has preelaborable initialization and (in the case of a derived record
4920 -- extension) if the non-inherited components all have preelaborable
4921 -- initialization. However, a user-defined controlled type with an
4922 -- overriding Initialize procedure does not have preelaborable
4923 -- initialization.
4924
4925 elsif Is_Derived_Type (E) then
4926
4927 -- If the derived type is a private extension then it doesn't have
4928 -- preelaborable initialization.
4929
4930 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
4931 return False;
4932 end if;
4933
4934 -- First check whether ancestor type has preelaborable initialization
4935
4936 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
4937
4938 -- If OK, check extension components (if any)
4939
4940 if Has_PE and then Is_Record_Type (E) then
4941 Check_Components (First_Entity (E));
4942 end if;
4943
4944 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
4945 -- with a user defined Initialize procedure does not have PI.
4946
4947 if Has_PE
4948 and then Is_Controlled (E)
4949 and then Has_Overriding_Initialize (E)
4950 then
4951 Has_PE := False;
4952 end if;
4953
4954 -- Private types not derived from a type having preelaborable init and
4955 -- that are not marked with pragma Preelaborable_Initialization do not
4956 -- have preelaborable initialization.
4957
4958 elsif Is_Private_Type (E) then
4959 return False;
4960
4961 -- Record type has PI if it is non private and all components have PI
4962
4963 elsif Is_Record_Type (E) then
4964 Has_PE := True;
4965 Check_Components (First_Entity (E));
4966
4967 -- Protected types must not have entries, and components must meet
4968 -- same set of rules as for record components.
4969
4970 elsif Is_Protected_Type (E) then
4971 if Has_Entries (E) then
4972 Has_PE := False;
4973 else
4974 Has_PE := True;
4975 Check_Components (First_Entity (E));
4976 Check_Components (First_Private_Entity (E));
4977 end if;
4978
4979 -- Type System.Address always has preelaborable initialization
4980
4981 elsif Is_RTE (E, RE_Address) then
4982 Has_PE := True;
4983
4984 -- In all other cases, type does not have preelaborable initialization
4985
4986 else
4987 return False;
4988 end if;
4989
4990 -- If type has preelaborable initialization, cache result
4991
4992 if Has_PE then
4993 Set_Known_To_Have_Preelab_Init (E);
4994 end if;
4995
4996 return Has_PE;
4997 end Has_Preelaborable_Initialization;
4998
4999 ---------------------------
5000 -- Has_Private_Component --
5001 ---------------------------
5002
5003 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
5004 Btype : Entity_Id := Base_Type (Type_Id);
5005 Component : Entity_Id;
5006
5007 begin
5008 if Error_Posted (Type_Id)
5009 or else Error_Posted (Btype)
5010 then
5011 return False;
5012 end if;
5013
5014 if Is_Class_Wide_Type (Btype) then
5015 Btype := Root_Type (Btype);
5016 end if;
5017
5018 if Is_Private_Type (Btype) then
5019 declare
5020 UT : constant Entity_Id := Underlying_Type (Btype);
5021 begin
5022 if No (UT) then
5023 if No (Full_View (Btype)) then
5024 return not Is_Generic_Type (Btype)
5025 and then not Is_Generic_Type (Root_Type (Btype));
5026 else
5027 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
5028 end if;
5029 else
5030 return not Is_Frozen (UT) and then Has_Private_Component (UT);
5031 end if;
5032 end;
5033
5034 elsif Is_Array_Type (Btype) then
5035 return Has_Private_Component (Component_Type (Btype));
5036
5037 elsif Is_Record_Type (Btype) then
5038 Component := First_Component (Btype);
5039 while Present (Component) loop
5040 if Has_Private_Component (Etype (Component)) then
5041 return True;
5042 end if;
5043
5044 Next_Component (Component);
5045 end loop;
5046
5047 return False;
5048
5049 elsif Is_Protected_Type (Btype)
5050 and then Present (Corresponding_Record_Type (Btype))
5051 then
5052 return Has_Private_Component (Corresponding_Record_Type (Btype));
5053
5054 else
5055 return False;
5056 end if;
5057 end Has_Private_Component;
5058
5059 ----------------
5060 -- Has_Stream --
5061 ----------------
5062
5063 function Has_Stream (T : Entity_Id) return Boolean is
5064 E : Entity_Id;
5065
5066 begin
5067 if No (T) then
5068 return False;
5069
5070 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
5071 return True;
5072
5073 elsif Is_Array_Type (T) then
5074 return Has_Stream (Component_Type (T));
5075
5076 elsif Is_Record_Type (T) then
5077 E := First_Component (T);
5078 while Present (E) loop
5079 if Has_Stream (Etype (E)) then
5080 return True;
5081 else
5082 Next_Component (E);
5083 end if;
5084 end loop;
5085
5086 return False;
5087
5088 elsif Is_Private_Type (T) then
5089 return Has_Stream (Underlying_Type (T));
5090
5091 else
5092 return False;
5093 end if;
5094 end Has_Stream;
5095
5096 --------------------------
5097 -- Has_Tagged_Component --
5098 --------------------------
5099
5100 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
5101 Comp : Entity_Id;
5102
5103 begin
5104 if Is_Private_Type (Typ)
5105 and then Present (Underlying_Type (Typ))
5106 then
5107 return Has_Tagged_Component (Underlying_Type (Typ));
5108
5109 elsif Is_Array_Type (Typ) then
5110 return Has_Tagged_Component (Component_Type (Typ));
5111
5112 elsif Is_Tagged_Type (Typ) then
5113 return True;
5114
5115 elsif Is_Record_Type (Typ) then
5116 Comp := First_Component (Typ);
5117 while Present (Comp) loop
5118 if Has_Tagged_Component (Etype (Comp)) then
5119 return True;
5120 end if;
5121
5122 Next_Component (Comp);
5123 end loop;
5124
5125 return False;
5126
5127 else
5128 return False;
5129 end if;
5130 end Has_Tagged_Component;
5131
5132 --------------------------
5133 -- Implements_Interface --
5134 --------------------------
5135
5136 function Implements_Interface
5137 (Typ_Ent : Entity_Id;
5138 Iface_Ent : Entity_Id;
5139 Exclude_Parents : Boolean := False) return Boolean
5140 is
5141 Ifaces_List : Elist_Id;
5142 Elmt : Elmt_Id;
5143 Iface : Entity_Id := Base_Type (Iface_Ent);
5144 Typ : Entity_Id := Base_Type (Typ_Ent);
5145
5146 begin
5147 if Is_Class_Wide_Type (Typ) then
5148 Typ := Root_Type (Typ);
5149 end if;
5150
5151 if not Has_Interfaces (Typ) then
5152 return False;
5153 end if;
5154
5155 if Is_Class_Wide_Type (Iface) then
5156 Iface := Root_Type (Iface);
5157 end if;
5158
5159 Collect_Interfaces (Typ, Ifaces_List);
5160
5161 Elmt := First_Elmt (Ifaces_List);
5162 while Present (Elmt) loop
5163 if Is_Ancestor (Node (Elmt), Typ)
5164 and then Exclude_Parents
5165 then
5166 null;
5167
5168 elsif Node (Elmt) = Iface then
5169 return True;
5170 end if;
5171
5172 Next_Elmt (Elmt);
5173 end loop;
5174
5175 return False;
5176 end Implements_Interface;
5177
5178 -----------------
5179 -- In_Instance --
5180 -----------------
5181
5182 function In_Instance return Boolean is
5183 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
5184 S : Entity_Id;
5185
5186 begin
5187 S := Current_Scope;
5188 while Present (S)
5189 and then S /= Standard_Standard
5190 loop
5191 if (Ekind (S) = E_Function
5192 or else Ekind (S) = E_Package
5193 or else Ekind (S) = E_Procedure)
5194 and then Is_Generic_Instance (S)
5195 then
5196 -- A child instance is always compiled in the context of a parent
5197 -- instance. Nevertheless, the actuals are not analyzed in an
5198 -- instance context. We detect this case by examining the current
5199 -- compilation unit, which must be a child instance, and checking
5200 -- that it is not currently on the scope stack.
5201
5202 if Is_Child_Unit (Curr_Unit)
5203 and then
5204 Nkind (Unit (Cunit (Current_Sem_Unit)))
5205 = N_Package_Instantiation
5206 and then not In_Open_Scopes (Curr_Unit)
5207 then
5208 return False;
5209 else
5210 return True;
5211 end if;
5212 end if;
5213
5214 S := Scope (S);
5215 end loop;
5216
5217 return False;
5218 end In_Instance;
5219
5220 ----------------------
5221 -- In_Instance_Body --
5222 ----------------------
5223
5224 function In_Instance_Body return Boolean is
5225 S : Entity_Id;
5226
5227 begin
5228 S := Current_Scope;
5229 while Present (S)
5230 and then S /= Standard_Standard
5231 loop
5232 if (Ekind (S) = E_Function
5233 or else Ekind (S) = E_Procedure)
5234 and then Is_Generic_Instance (S)
5235 then
5236 return True;
5237
5238 elsif Ekind (S) = E_Package
5239 and then In_Package_Body (S)
5240 and then Is_Generic_Instance (S)
5241 then
5242 return True;
5243 end if;
5244
5245 S := Scope (S);
5246 end loop;
5247
5248 return False;
5249 end In_Instance_Body;
5250
5251 -----------------------------
5252 -- In_Instance_Not_Visible --
5253 -----------------------------
5254
5255 function In_Instance_Not_Visible return Boolean is
5256 S : Entity_Id;
5257
5258 begin
5259 S := Current_Scope;
5260 while Present (S)
5261 and then S /= Standard_Standard
5262 loop
5263 if (Ekind (S) = E_Function
5264 or else Ekind (S) = E_Procedure)
5265 and then Is_Generic_Instance (S)
5266 then
5267 return True;
5268
5269 elsif Ekind (S) = E_Package
5270 and then (In_Package_Body (S) or else In_Private_Part (S))
5271 and then Is_Generic_Instance (S)
5272 then
5273 return True;
5274 end if;
5275
5276 S := Scope (S);
5277 end loop;
5278
5279 return False;
5280 end In_Instance_Not_Visible;
5281
5282 ------------------------------
5283 -- In_Instance_Visible_Part --
5284 ------------------------------
5285
5286 function In_Instance_Visible_Part return Boolean is
5287 S : Entity_Id;
5288
5289 begin
5290 S := Current_Scope;
5291 while Present (S)
5292 and then S /= Standard_Standard
5293 loop
5294 if Ekind (S) = E_Package
5295 and then Is_Generic_Instance (S)
5296 and then not In_Package_Body (S)
5297 and then not In_Private_Part (S)
5298 then
5299 return True;
5300 end if;
5301
5302 S := Scope (S);
5303 end loop;
5304
5305 return False;
5306 end In_Instance_Visible_Part;
5307
5308 ---------------------
5309 -- In_Package_Body --
5310 ---------------------
5311
5312 function In_Package_Body return Boolean is
5313 S : Entity_Id;
5314
5315 begin
5316 S := Current_Scope;
5317 while Present (S)
5318 and then S /= Standard_Standard
5319 loop
5320 if Ekind (S) = E_Package
5321 and then In_Package_Body (S)
5322 then
5323 return True;
5324 else
5325 S := Scope (S);
5326 end if;
5327 end loop;
5328
5329 return False;
5330 end In_Package_Body;
5331
5332 --------------------------------
5333 -- In_Parameter_Specification --
5334 --------------------------------
5335
5336 function In_Parameter_Specification (N : Node_Id) return Boolean is
5337 PN : Node_Id;
5338
5339 begin
5340 PN := Parent (N);
5341 while Present (PN) loop
5342 if Nkind (PN) = N_Parameter_Specification then
5343 return True;
5344 end if;
5345
5346 PN := Parent (PN);
5347 end loop;
5348
5349 return False;
5350 end In_Parameter_Specification;
5351
5352 --------------------------------------
5353 -- In_Subprogram_Or_Concurrent_Unit --
5354 --------------------------------------
5355
5356 function In_Subprogram_Or_Concurrent_Unit return Boolean is
5357 E : Entity_Id;
5358 K : Entity_Kind;
5359
5360 begin
5361 -- Use scope chain to check successively outer scopes
5362
5363 E := Current_Scope;
5364 loop
5365 K := Ekind (E);
5366
5367 if K in Subprogram_Kind
5368 or else K in Concurrent_Kind
5369 or else K in Generic_Subprogram_Kind
5370 then
5371 return True;
5372
5373 elsif E = Standard_Standard then
5374 return False;
5375 end if;
5376
5377 E := Scope (E);
5378 end loop;
5379 end In_Subprogram_Or_Concurrent_Unit;
5380
5381 ---------------------
5382 -- In_Visible_Part --
5383 ---------------------
5384
5385 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
5386 begin
5387 return
5388 Is_Package_Or_Generic_Package (Scope_Id)
5389 and then In_Open_Scopes (Scope_Id)
5390 and then not In_Package_Body (Scope_Id)
5391 and then not In_Private_Part (Scope_Id);
5392 end In_Visible_Part;
5393
5394 ---------------------------------
5395 -- Insert_Explicit_Dereference --
5396 ---------------------------------
5397
5398 procedure Insert_Explicit_Dereference (N : Node_Id) is
5399 New_Prefix : constant Node_Id := Relocate_Node (N);
5400 Ent : Entity_Id := Empty;
5401 Pref : Node_Id;
5402 I : Interp_Index;
5403 It : Interp;
5404 T : Entity_Id;
5405
5406 begin
5407 Save_Interps (N, New_Prefix);
5408
5409 -- Check if the node relocation requires readjustment of some SCIL
5410 -- dispatching node.
5411
5412 if Generate_SCIL
5413 and then Nkind (N) = N_Function_Call
5414 then
5415 Adjust_SCIL_Node (N, New_Prefix);
5416 end if;
5417
5418 Rewrite (N, Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
5419
5420 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
5421
5422 if Is_Overloaded (New_Prefix) then
5423
5424 -- The dereference is also overloaded, and its interpretations are
5425 -- the designated types of the interpretations of the original node.
5426
5427 Set_Etype (N, Any_Type);
5428
5429 Get_First_Interp (New_Prefix, I, It);
5430 while Present (It.Nam) loop
5431 T := It.Typ;
5432
5433 if Is_Access_Type (T) then
5434 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
5435 end if;
5436
5437 Get_Next_Interp (I, It);
5438 end loop;
5439
5440 End_Interp_List;
5441
5442 else
5443 -- Prefix is unambiguous: mark the original prefix (which might
5444 -- Come_From_Source) as a reference, since the new (relocated) one
5445 -- won't be taken into account.
5446
5447 if Is_Entity_Name (New_Prefix) then
5448 Ent := Entity (New_Prefix);
5449
5450 -- For a retrieval of a subcomponent of some composite object,
5451 -- retrieve the ultimate entity if there is one.
5452
5453 elsif Nkind (New_Prefix) = N_Selected_Component
5454 or else Nkind (New_Prefix) = N_Indexed_Component
5455 then
5456 Pref := Prefix (New_Prefix);
5457 while Present (Pref)
5458 and then
5459 (Nkind (Pref) = N_Selected_Component
5460 or else Nkind (Pref) = N_Indexed_Component)
5461 loop
5462 Pref := Prefix (Pref);
5463 end loop;
5464
5465 if Present (Pref) and then Is_Entity_Name (Pref) then
5466 Ent := Entity (Pref);
5467 end if;
5468 end if;
5469
5470 if Present (Ent) then
5471 Generate_Reference (Ent, New_Prefix);
5472 end if;
5473 end if;
5474 end Insert_Explicit_Dereference;
5475
5476 ------------------------------------------
5477 -- Inspect_Deferred_Constant_Completion --
5478 ------------------------------------------
5479
5480 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
5481 Decl : Node_Id;
5482
5483 begin
5484 Decl := First (Decls);
5485 while Present (Decl) loop
5486
5487 -- Deferred constant signature
5488
5489 if Nkind (Decl) = N_Object_Declaration
5490 and then Constant_Present (Decl)
5491 and then No (Expression (Decl))
5492
5493 -- No need to check internally generated constants
5494
5495 and then Comes_From_Source (Decl)
5496
5497 -- The constant is not completed. A full object declaration
5498 -- or a pragma Import complete a deferred constant.
5499
5500 and then not Has_Completion (Defining_Identifier (Decl))
5501 then
5502 Error_Msg_N
5503 ("constant declaration requires initialization expression",
5504 Defining_Identifier (Decl));
5505 end if;
5506
5507 Decl := Next (Decl);
5508 end loop;
5509 end Inspect_Deferred_Constant_Completion;
5510
5511 -------------------
5512 -- Is_AAMP_Float --
5513 -------------------
5514
5515 function Is_AAMP_Float (E : Entity_Id) return Boolean is
5516 pragma Assert (Is_Type (E));
5517 begin
5518 return AAMP_On_Target
5519 and then Is_Floating_Point_Type (E)
5520 and then E = Base_Type (E);
5521 end Is_AAMP_Float;
5522
5523 -----------------------------
5524 -- Is_Actual_Out_Parameter --
5525 -----------------------------
5526
5527 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
5528 Formal : Entity_Id;
5529 Call : Node_Id;
5530 begin
5531 Find_Actual (N, Formal, Call);
5532 return Present (Formal)
5533 and then Ekind (Formal) = E_Out_Parameter;
5534 end Is_Actual_Out_Parameter;
5535
5536 -------------------------
5537 -- Is_Actual_Parameter --
5538 -------------------------
5539
5540 function Is_Actual_Parameter (N : Node_Id) return Boolean is
5541 PK : constant Node_Kind := Nkind (Parent (N));
5542
5543 begin
5544 case PK is
5545 when N_Parameter_Association =>
5546 return N = Explicit_Actual_Parameter (Parent (N));
5547
5548 when N_Function_Call | N_Procedure_Call_Statement =>
5549 return Is_List_Member (N)
5550 and then
5551 List_Containing (N) = Parameter_Associations (Parent (N));
5552
5553 when others =>
5554 return False;
5555 end case;
5556 end Is_Actual_Parameter;
5557
5558 ---------------------
5559 -- Is_Aliased_View --
5560 ---------------------
5561
5562 function Is_Aliased_View (Obj : Node_Id) return Boolean is
5563 E : Entity_Id;
5564
5565 begin
5566 if Is_Entity_Name (Obj) then
5567
5568 E := Entity (Obj);
5569
5570 return
5571 (Is_Object (E)
5572 and then
5573 (Is_Aliased (E)
5574 or else (Present (Renamed_Object (E))
5575 and then Is_Aliased_View (Renamed_Object (E)))))
5576
5577 or else ((Is_Formal (E)
5578 or else Ekind (E) = E_Generic_In_Out_Parameter
5579 or else Ekind (E) = E_Generic_In_Parameter)
5580 and then Is_Tagged_Type (Etype (E)))
5581
5582 or else (Is_Concurrent_Type (E)
5583 and then In_Open_Scopes (E))
5584
5585 -- Current instance of type, either directly or as rewritten
5586 -- reference to the current object.
5587
5588 or else (Is_Entity_Name (Original_Node (Obj))
5589 and then Present (Entity (Original_Node (Obj)))
5590 and then Is_Type (Entity (Original_Node (Obj))))
5591
5592 or else (Is_Type (E) and then E = Current_Scope)
5593
5594 or else (Is_Incomplete_Or_Private_Type (E)
5595 and then Full_View (E) = Current_Scope);
5596
5597 elsif Nkind (Obj) = N_Selected_Component then
5598 return Is_Aliased (Entity (Selector_Name (Obj)));
5599
5600 elsif Nkind (Obj) = N_Indexed_Component then
5601 return Has_Aliased_Components (Etype (Prefix (Obj)))
5602 or else
5603 (Is_Access_Type (Etype (Prefix (Obj)))
5604 and then
5605 Has_Aliased_Components
5606 (Designated_Type (Etype (Prefix (Obj)))));
5607
5608 elsif Nkind (Obj) = N_Unchecked_Type_Conversion
5609 or else Nkind (Obj) = N_Type_Conversion
5610 then
5611 return Is_Tagged_Type (Etype (Obj))
5612 and then Is_Aliased_View (Expression (Obj));
5613
5614 elsif Nkind (Obj) = N_Explicit_Dereference then
5615 return Nkind (Original_Node (Obj)) /= N_Function_Call;
5616
5617 else
5618 return False;
5619 end if;
5620 end Is_Aliased_View;
5621
5622 -------------------------
5623 -- Is_Ancestor_Package --
5624 -------------------------
5625
5626 function Is_Ancestor_Package
5627 (E1 : Entity_Id;
5628 E2 : Entity_Id) return Boolean
5629 is
5630 Par : Entity_Id;
5631
5632 begin
5633 Par := E2;
5634 while Present (Par)
5635 and then Par /= Standard_Standard
5636 loop
5637 if Par = E1 then
5638 return True;
5639 end if;
5640
5641 Par := Scope (Par);
5642 end loop;
5643
5644 return False;
5645 end Is_Ancestor_Package;
5646
5647 ----------------------
5648 -- Is_Atomic_Object --
5649 ----------------------
5650
5651 function Is_Atomic_Object (N : Node_Id) return Boolean is
5652
5653 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
5654 -- Determines if given object has atomic components
5655
5656 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
5657 -- If prefix is an implicit dereference, examine designated type
5658
5659 ----------------------
5660 -- Is_Atomic_Prefix --
5661 ----------------------
5662
5663 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
5664 begin
5665 if Is_Access_Type (Etype (N)) then
5666 return
5667 Has_Atomic_Components (Designated_Type (Etype (N)));
5668 else
5669 return Object_Has_Atomic_Components (N);
5670 end if;
5671 end Is_Atomic_Prefix;
5672
5673 ----------------------------------
5674 -- Object_Has_Atomic_Components --
5675 ----------------------------------
5676
5677 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
5678 begin
5679 if Has_Atomic_Components (Etype (N))
5680 or else Is_Atomic (Etype (N))
5681 then
5682 return True;
5683
5684 elsif Is_Entity_Name (N)
5685 and then (Has_Atomic_Components (Entity (N))
5686 or else Is_Atomic (Entity (N)))
5687 then
5688 return True;
5689
5690 elsif Nkind (N) = N_Indexed_Component
5691 or else Nkind (N) = N_Selected_Component
5692 then
5693 return Is_Atomic_Prefix (Prefix (N));
5694
5695 else
5696 return False;
5697 end if;
5698 end Object_Has_Atomic_Components;
5699
5700 -- Start of processing for Is_Atomic_Object
5701
5702 begin
5703 if Is_Atomic (Etype (N))
5704 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
5705 then
5706 return True;
5707
5708 elsif Nkind (N) = N_Indexed_Component
5709 or else Nkind (N) = N_Selected_Component
5710 then
5711 return Is_Atomic_Prefix (Prefix (N));
5712
5713 else
5714 return False;
5715 end if;
5716 end Is_Atomic_Object;
5717
5718 -------------------------
5719 -- Is_Coextension_Root --
5720 -------------------------
5721
5722 function Is_Coextension_Root (N : Node_Id) return Boolean is
5723 begin
5724 return
5725 Nkind (N) = N_Allocator
5726 and then Present (Coextensions (N))
5727
5728 -- Anonymous access discriminants carry a list of all nested
5729 -- controlled coextensions.
5730
5731 and then not Is_Dynamic_Coextension (N)
5732 and then not Is_Static_Coextension (N);
5733 end Is_Coextension_Root;
5734
5735 -----------------------------
5736 -- Is_Concurrent_Interface --
5737 -----------------------------
5738
5739 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
5740 begin
5741 return
5742 Is_Interface (T)
5743 and then
5744 (Is_Protected_Interface (T)
5745 or else Is_Synchronized_Interface (T)
5746 or else Is_Task_Interface (T));
5747 end Is_Concurrent_Interface;
5748
5749 --------------------------------------
5750 -- Is_Controlling_Limited_Procedure --
5751 --------------------------------------
5752
5753 function Is_Controlling_Limited_Procedure
5754 (Proc_Nam : Entity_Id) return Boolean
5755 is
5756 Param_Typ : Entity_Id := Empty;
5757
5758 begin
5759 if Ekind (Proc_Nam) = E_Procedure
5760 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
5761 then
5762 Param_Typ := Etype (Parameter_Type (First (
5763 Parameter_Specifications (Parent (Proc_Nam)))));
5764
5765 -- In this case where an Itype was created, the procedure call has been
5766 -- rewritten.
5767
5768 elsif Present (Associated_Node_For_Itype (Proc_Nam))
5769 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
5770 and then
5771 Present (Parameter_Associations
5772 (Associated_Node_For_Itype (Proc_Nam)))
5773 then
5774 Param_Typ :=
5775 Etype (First (Parameter_Associations
5776 (Associated_Node_For_Itype (Proc_Nam))));
5777 end if;
5778
5779 if Present (Param_Typ) then
5780 return
5781 Is_Interface (Param_Typ)
5782 and then Is_Limited_Record (Param_Typ);
5783 end if;
5784
5785 return False;
5786 end Is_Controlling_Limited_Procedure;
5787
5788 -----------------------------
5789 -- Is_CPP_Constructor_Call --
5790 -----------------------------
5791
5792 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
5793 begin
5794 return Nkind (N) = N_Function_Call
5795 and then Is_CPP_Class (Etype (Etype (N)))
5796 and then Is_Constructor (Entity (Name (N)))
5797 and then Is_Imported (Entity (Name (N)));
5798 end Is_CPP_Constructor_Call;
5799
5800 ----------------------------------------------
5801 -- Is_Dependent_Component_Of_Mutable_Object --
5802 ----------------------------------------------
5803
5804 function Is_Dependent_Component_Of_Mutable_Object
5805 (Object : Node_Id) return Boolean
5806 is
5807 P : Node_Id;
5808 Prefix_Type : Entity_Id;
5809 P_Aliased : Boolean := False;
5810 Comp : Entity_Id;
5811
5812 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
5813 -- Returns True if and only if Comp is declared within a variant part
5814
5815 --------------------------------
5816 -- Is_Declared_Within_Variant --
5817 --------------------------------
5818
5819 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
5820 Comp_Decl : constant Node_Id := Parent (Comp);
5821 Comp_List : constant Node_Id := Parent (Comp_Decl);
5822 begin
5823 return Nkind (Parent (Comp_List)) = N_Variant;
5824 end Is_Declared_Within_Variant;
5825
5826 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
5827
5828 begin
5829 if Is_Variable (Object) then
5830
5831 if Nkind (Object) = N_Selected_Component then
5832 P := Prefix (Object);
5833 Prefix_Type := Etype (P);
5834
5835 if Is_Entity_Name (P) then
5836
5837 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
5838 Prefix_Type := Base_Type (Prefix_Type);
5839 end if;
5840
5841 if Is_Aliased (Entity (P)) then
5842 P_Aliased := True;
5843 end if;
5844
5845 -- A discriminant check on a selected component may be
5846 -- expanded into a dereference when removing side-effects.
5847 -- Recover the original node and its type, which may be
5848 -- unconstrained.
5849
5850 elsif Nkind (P) = N_Explicit_Dereference
5851 and then not (Comes_From_Source (P))
5852 then
5853 P := Original_Node (P);
5854 Prefix_Type := Etype (P);
5855
5856 else
5857 -- Check for prefix being an aliased component ???
5858 null;
5859
5860 end if;
5861
5862 -- A heap object is constrained by its initial value
5863
5864 -- Ada 2005 (AI-363): Always assume the object could be mutable in
5865 -- the dereferenced case, since the access value might denote an
5866 -- unconstrained aliased object, whereas in Ada 95 the designated
5867 -- object is guaranteed to be constrained. A worst-case assumption
5868 -- has to apply in Ada 2005 because we can't tell at compile time
5869 -- whether the object is "constrained by its initial value"
5870 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are
5871 -- semantic rules -- these rules are acknowledged to need fixing).
5872
5873 if Ada_Version < Ada_05 then
5874 if Is_Access_Type (Prefix_Type)
5875 or else Nkind (P) = N_Explicit_Dereference
5876 then
5877 return False;
5878 end if;
5879
5880 elsif Ada_Version >= Ada_05 then
5881 if Is_Access_Type (Prefix_Type) then
5882
5883 -- If the access type is pool-specific, and there is no
5884 -- constrained partial view of the designated type, then the
5885 -- designated object is known to be constrained.
5886
5887 if Ekind (Prefix_Type) = E_Access_Type
5888 and then not Has_Constrained_Partial_View
5889 (Designated_Type (Prefix_Type))
5890 then
5891 return False;
5892
5893 -- Otherwise (general access type, or there is a constrained
5894 -- partial view of the designated type), we need to check
5895 -- based on the designated type.
5896
5897 else
5898 Prefix_Type := Designated_Type (Prefix_Type);
5899 end if;
5900 end if;
5901 end if;
5902
5903 Comp :=
5904 Original_Record_Component (Entity (Selector_Name (Object)));
5905
5906 -- As per AI-0017, the renaming is illegal in a generic body,
5907 -- even if the subtype is indefinite.
5908
5909 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
5910
5911 if not Is_Constrained (Prefix_Type)
5912 and then (not Is_Indefinite_Subtype (Prefix_Type)
5913 or else
5914 (Is_Generic_Type (Prefix_Type)
5915 and then Ekind (Current_Scope) = E_Generic_Package
5916 and then In_Package_Body (Current_Scope)))
5917
5918 and then (Is_Declared_Within_Variant (Comp)
5919 or else Has_Discriminant_Dependent_Constraint (Comp))
5920 and then (not P_Aliased or else Ada_Version >= Ada_05)
5921 then
5922 return True;
5923
5924 else
5925 return
5926 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5927
5928 end if;
5929
5930 elsif Nkind (Object) = N_Indexed_Component
5931 or else Nkind (Object) = N_Slice
5932 then
5933 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5934
5935 -- A type conversion that Is_Variable is a view conversion:
5936 -- go back to the denoted object.
5937
5938 elsif Nkind (Object) = N_Type_Conversion then
5939 return
5940 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
5941 end if;
5942 end if;
5943
5944 return False;
5945 end Is_Dependent_Component_Of_Mutable_Object;
5946
5947 ---------------------
5948 -- Is_Dereferenced --
5949 ---------------------
5950
5951 function Is_Dereferenced (N : Node_Id) return Boolean is
5952 P : constant Node_Id := Parent (N);
5953 begin
5954 return
5955 (Nkind (P) = N_Selected_Component
5956 or else
5957 Nkind (P) = N_Explicit_Dereference
5958 or else
5959 Nkind (P) = N_Indexed_Component
5960 or else
5961 Nkind (P) = N_Slice)
5962 and then Prefix (P) = N;
5963 end Is_Dereferenced;
5964
5965 ----------------------
5966 -- Is_Descendent_Of --
5967 ----------------------
5968
5969 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
5970 T : Entity_Id;
5971 Etyp : Entity_Id;
5972
5973 begin
5974 pragma Assert (Nkind (T1) in N_Entity);
5975 pragma Assert (Nkind (T2) in N_Entity);
5976
5977 T := Base_Type (T1);
5978
5979 -- Immediate return if the types match
5980
5981 if T = T2 then
5982 return True;
5983
5984 -- Comment needed here ???
5985
5986 elsif Ekind (T) = E_Class_Wide_Type then
5987 return Etype (T) = T2;
5988
5989 -- All other cases
5990
5991 else
5992 loop
5993 Etyp := Etype (T);
5994
5995 -- Done if we found the type we are looking for
5996
5997 if Etyp = T2 then
5998 return True;
5999
6000 -- Done if no more derivations to check
6001
6002 elsif T = T1
6003 or else T = Etyp
6004 then
6005 return False;
6006
6007 -- Following test catches error cases resulting from prev errors
6008
6009 elsif No (Etyp) then
6010 return False;
6011
6012 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
6013 return False;
6014
6015 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
6016 return False;
6017 end if;
6018
6019 T := Base_Type (Etyp);
6020 end loop;
6021 end if;
6022 end Is_Descendent_Of;
6023
6024 --------------
6025 -- Is_False --
6026 --------------
6027
6028 function Is_False (U : Uint) return Boolean is
6029 begin
6030 return (U = 0);
6031 end Is_False;
6032
6033 ---------------------------
6034 -- Is_Fixed_Model_Number --
6035 ---------------------------
6036
6037 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
6038 S : constant Ureal := Small_Value (T);
6039 M : Urealp.Save_Mark;
6040 R : Boolean;
6041 begin
6042 M := Urealp.Mark;
6043 R := (U = UR_Trunc (U / S) * S);
6044 Urealp.Release (M);
6045 return R;
6046 end Is_Fixed_Model_Number;
6047
6048 -------------------------------
6049 -- Is_Fully_Initialized_Type --
6050 -------------------------------
6051
6052 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
6053 begin
6054 if Is_Scalar_Type (Typ) then
6055 return False;
6056
6057 elsif Is_Access_Type (Typ) then
6058 return True;
6059
6060 elsif Is_Array_Type (Typ) then
6061 if Is_Fully_Initialized_Type (Component_Type (Typ)) then
6062 return True;
6063 end if;
6064
6065 -- An interesting case, if we have a constrained type one of whose
6066 -- bounds is known to be null, then there are no elements to be
6067 -- initialized, so all the elements are initialized!
6068
6069 if Is_Constrained (Typ) then
6070 declare
6071 Indx : Node_Id;
6072 Indx_Typ : Entity_Id;
6073 Lbd, Hbd : Node_Id;
6074
6075 begin
6076 Indx := First_Index (Typ);
6077 while Present (Indx) loop
6078 if Etype (Indx) = Any_Type then
6079 return False;
6080
6081 -- If index is a range, use directly
6082
6083 elsif Nkind (Indx) = N_Range then
6084 Lbd := Low_Bound (Indx);
6085 Hbd := High_Bound (Indx);
6086
6087 else
6088 Indx_Typ := Etype (Indx);
6089
6090 if Is_Private_Type (Indx_Typ) then
6091 Indx_Typ := Full_View (Indx_Typ);
6092 end if;
6093
6094 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
6095 return False;
6096 else
6097 Lbd := Type_Low_Bound (Indx_Typ);
6098 Hbd := Type_High_Bound (Indx_Typ);
6099 end if;
6100 end if;
6101
6102 if Compile_Time_Known_Value (Lbd)
6103 and then Compile_Time_Known_Value (Hbd)
6104 then
6105 if Expr_Value (Hbd) < Expr_Value (Lbd) then
6106 return True;
6107 end if;
6108 end if;
6109
6110 Next_Index (Indx);
6111 end loop;
6112 end;
6113 end if;
6114
6115 -- If no null indexes, then type is not fully initialized
6116
6117 return False;
6118
6119 -- Record types
6120
6121 elsif Is_Record_Type (Typ) then
6122 if Has_Discriminants (Typ)
6123 and then
6124 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
6125 and then Is_Fully_Initialized_Variant (Typ)
6126 then
6127 return True;
6128 end if;
6129
6130 -- Controlled records are considered to be fully initialized if
6131 -- there is a user defined Initialize routine. This may not be
6132 -- entirely correct, but as the spec notes, we are guessing here
6133 -- what is best from the point of view of issuing warnings.
6134
6135 if Is_Controlled (Typ) then
6136 declare
6137 Utyp : constant Entity_Id := Underlying_Type (Typ);
6138
6139 begin
6140 if Present (Utyp) then
6141 declare
6142 Init : constant Entity_Id :=
6143 (Find_Prim_Op
6144 (Underlying_Type (Typ), Name_Initialize));
6145
6146 begin
6147 if Present (Init)
6148 and then Comes_From_Source (Init)
6149 and then not
6150 Is_Predefined_File_Name
6151 (File_Name (Get_Source_File_Index (Sloc (Init))))
6152 then
6153 return True;
6154
6155 elsif Has_Null_Extension (Typ)
6156 and then
6157 Is_Fully_Initialized_Type
6158 (Etype (Base_Type (Typ)))
6159 then
6160 return True;
6161 end if;
6162 end;
6163 end if;
6164 end;
6165 end if;
6166
6167 -- Otherwise see if all record components are initialized
6168
6169 declare
6170 Ent : Entity_Id;
6171
6172 begin
6173 Ent := First_Entity (Typ);
6174 while Present (Ent) loop
6175 if Chars (Ent) = Name_uController then
6176 null;
6177
6178 elsif Ekind (Ent) = E_Component
6179 and then (No (Parent (Ent))
6180 or else No (Expression (Parent (Ent))))
6181 and then not Is_Fully_Initialized_Type (Etype (Ent))
6182
6183 -- Special VM case for tag components, which need to be
6184 -- defined in this case, but are never initialized as VMs
6185 -- are using other dispatching mechanisms. Ignore this
6186 -- uninitialized case. Note that this applies both to the
6187 -- uTag entry and the main vtable pointer (CPP_Class case).
6188
6189 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
6190 then
6191 return False;
6192 end if;
6193
6194 Next_Entity (Ent);
6195 end loop;
6196 end;
6197
6198 -- No uninitialized components, so type is fully initialized.
6199 -- Note that this catches the case of no components as well.
6200
6201 return True;
6202
6203 elsif Is_Concurrent_Type (Typ) then
6204 return True;
6205
6206 elsif Is_Private_Type (Typ) then
6207 declare
6208 U : constant Entity_Id := Underlying_Type (Typ);
6209
6210 begin
6211 if No (U) then
6212 return False;
6213 else
6214 return Is_Fully_Initialized_Type (U);
6215 end if;
6216 end;
6217
6218 else
6219 return False;
6220 end if;
6221 end Is_Fully_Initialized_Type;
6222
6223 ----------------------------------
6224 -- Is_Fully_Initialized_Variant --
6225 ----------------------------------
6226
6227 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
6228 Loc : constant Source_Ptr := Sloc (Typ);
6229 Constraints : constant List_Id := New_List;
6230 Components : constant Elist_Id := New_Elmt_List;
6231 Comp_Elmt : Elmt_Id;
6232 Comp_Id : Node_Id;
6233 Comp_List : Node_Id;
6234 Discr : Entity_Id;
6235 Discr_Val : Node_Id;
6236
6237 Report_Errors : Boolean;
6238 pragma Warnings (Off, Report_Errors);
6239
6240 begin
6241 if Serious_Errors_Detected > 0 then
6242 return False;
6243 end if;
6244
6245 if Is_Record_Type (Typ)
6246 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
6247 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
6248 then
6249 Comp_List := Component_List (Type_Definition (Parent (Typ)));
6250
6251 Discr := First_Discriminant (Typ);
6252 while Present (Discr) loop
6253 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
6254 Discr_Val := Expression (Parent (Discr));
6255
6256 if Present (Discr_Val)
6257 and then Is_OK_Static_Expression (Discr_Val)
6258 then
6259 Append_To (Constraints,
6260 Make_Component_Association (Loc,
6261 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
6262 Expression => New_Copy (Discr_Val)));
6263 else
6264 return False;
6265 end if;
6266 else
6267 return False;
6268 end if;
6269
6270 Next_Discriminant (Discr);
6271 end loop;
6272
6273 Gather_Components
6274 (Typ => Typ,
6275 Comp_List => Comp_List,
6276 Governed_By => Constraints,
6277 Into => Components,
6278 Report_Errors => Report_Errors);
6279
6280 -- Check that each component present is fully initialized
6281
6282 Comp_Elmt := First_Elmt (Components);
6283 while Present (Comp_Elmt) loop
6284 Comp_Id := Node (Comp_Elmt);
6285
6286 if Ekind (Comp_Id) = E_Component
6287 and then (No (Parent (Comp_Id))
6288 or else No (Expression (Parent (Comp_Id))))
6289 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
6290 then
6291 return False;
6292 end if;
6293
6294 Next_Elmt (Comp_Elmt);
6295 end loop;
6296
6297 return True;
6298
6299 elsif Is_Private_Type (Typ) then
6300 declare
6301 U : constant Entity_Id := Underlying_Type (Typ);
6302
6303 begin
6304 if No (U) then
6305 return False;
6306 else
6307 return Is_Fully_Initialized_Variant (U);
6308 end if;
6309 end;
6310 else
6311 return False;
6312 end if;
6313 end Is_Fully_Initialized_Variant;
6314
6315 ------------
6316 -- Is_LHS --
6317 ------------
6318
6319 -- We seem to have a lot of overlapping functions that do similar things
6320 -- (testing for left hand sides or lvalues???). Anyway, since this one is
6321 -- purely syntactic, it should be in Sem_Aux I would think???
6322
6323 function Is_LHS (N : Node_Id) return Boolean is
6324 P : constant Node_Id := Parent (N);
6325 begin
6326 return Nkind (P) = N_Assignment_Statement
6327 and then Name (P) = N;
6328 end Is_LHS;
6329
6330 ----------------------------
6331 -- Is_Inherited_Operation --
6332 ----------------------------
6333
6334 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
6335 Kind : constant Node_Kind := Nkind (Parent (E));
6336 begin
6337 pragma Assert (Is_Overloadable (E));
6338 return Kind = N_Full_Type_Declaration
6339 or else Kind = N_Private_Extension_Declaration
6340 or else Kind = N_Subtype_Declaration
6341 or else (Ekind (E) = E_Enumeration_Literal
6342 and then Is_Derived_Type (Etype (E)));
6343 end Is_Inherited_Operation;
6344
6345 -----------------------------
6346 -- Is_Library_Level_Entity --
6347 -----------------------------
6348
6349 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
6350 begin
6351 -- The following is a small optimization, and it also properly handles
6352 -- discriminals, which in task bodies might appear in expressions before
6353 -- the corresponding procedure has been created, and which therefore do
6354 -- not have an assigned scope.
6355
6356 if Ekind (E) in Formal_Kind then
6357 return False;
6358 end if;
6359
6360 -- Normal test is simply that the enclosing dynamic scope is Standard
6361
6362 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
6363 end Is_Library_Level_Entity;
6364
6365 ---------------------------------
6366 -- Is_Local_Variable_Reference --
6367 ---------------------------------
6368
6369 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
6370 begin
6371 if not Is_Entity_Name (Expr) then
6372 return False;
6373
6374 else
6375 declare
6376 Ent : constant Entity_Id := Entity (Expr);
6377 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
6378 begin
6379 if Ekind (Ent) /= E_Variable
6380 and then
6381 Ekind (Ent) /= E_In_Out_Parameter
6382 then
6383 return False;
6384 else
6385 return Present (Sub) and then Sub = Current_Subprogram;
6386 end if;
6387 end;
6388 end if;
6389 end Is_Local_Variable_Reference;
6390
6391 -------------------------
6392 -- Is_Object_Reference --
6393 -------------------------
6394
6395 function Is_Object_Reference (N : Node_Id) return Boolean is
6396 begin
6397 if Is_Entity_Name (N) then
6398 return Present (Entity (N)) and then Is_Object (Entity (N));
6399
6400 else
6401 case Nkind (N) is
6402 when N_Indexed_Component | N_Slice =>
6403 return
6404 Is_Object_Reference (Prefix (N))
6405 or else Is_Access_Type (Etype (Prefix (N)));
6406
6407 -- In Ada95, a function call is a constant object; a procedure
6408 -- call is not.
6409
6410 when N_Function_Call =>
6411 return Etype (N) /= Standard_Void_Type;
6412
6413 -- A reference to the stream attribute Input is a function call
6414
6415 when N_Attribute_Reference =>
6416 return Attribute_Name (N) = Name_Input;
6417
6418 when N_Selected_Component =>
6419 return
6420 Is_Object_Reference (Selector_Name (N))
6421 and then
6422 (Is_Object_Reference (Prefix (N))
6423 or else Is_Access_Type (Etype (Prefix (N))));
6424
6425 when N_Explicit_Dereference =>
6426 return True;
6427
6428 -- A view conversion of a tagged object is an object reference
6429
6430 when N_Type_Conversion =>
6431 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
6432 and then Is_Tagged_Type (Etype (Expression (N)))
6433 and then Is_Object_Reference (Expression (N));
6434
6435 -- An unchecked type conversion is considered to be an object if
6436 -- the operand is an object (this construction arises only as a
6437 -- result of expansion activities).
6438
6439 when N_Unchecked_Type_Conversion =>
6440 return True;
6441
6442 when others =>
6443 return False;
6444 end case;
6445 end if;
6446 end Is_Object_Reference;
6447
6448 -----------------------------------
6449 -- Is_OK_Variable_For_Out_Formal --
6450 -----------------------------------
6451
6452 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
6453 begin
6454 Note_Possible_Modification (AV, Sure => True);
6455
6456 -- We must reject parenthesized variable names. The check for
6457 -- Comes_From_Source is present because there are currently
6458 -- cases where the compiler violates this rule (e.g. passing
6459 -- a task object to its controlled Initialize routine).
6460
6461 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
6462 return False;
6463
6464 -- A variable is always allowed
6465
6466 elsif Is_Variable (AV) then
6467 return True;
6468
6469 -- Unchecked conversions are allowed only if they come from the
6470 -- generated code, which sometimes uses unchecked conversions for out
6471 -- parameters in cases where code generation is unaffected. We tell
6472 -- source unchecked conversions by seeing if they are rewrites of an
6473 -- original Unchecked_Conversion function call, or of an explicit
6474 -- conversion of a function call.
6475
6476 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
6477 if Nkind (Original_Node (AV)) = N_Function_Call then
6478 return False;
6479
6480 elsif Comes_From_Source (AV)
6481 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
6482 then
6483 return False;
6484
6485 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
6486 return Is_OK_Variable_For_Out_Formal (Expression (AV));
6487
6488 else
6489 return True;
6490 end if;
6491
6492 -- Normal type conversions are allowed if argument is a variable
6493
6494 elsif Nkind (AV) = N_Type_Conversion then
6495 if Is_Variable (Expression (AV))
6496 and then Paren_Count (Expression (AV)) = 0
6497 then
6498 Note_Possible_Modification (Expression (AV), Sure => True);
6499 return True;
6500
6501 -- We also allow a non-parenthesized expression that raises
6502 -- constraint error if it rewrites what used to be a variable
6503
6504 elsif Raises_Constraint_Error (Expression (AV))
6505 and then Paren_Count (Expression (AV)) = 0
6506 and then Is_Variable (Original_Node (Expression (AV)))
6507 then
6508 return True;
6509
6510 -- Type conversion of something other than a variable
6511
6512 else
6513 return False;
6514 end if;
6515
6516 -- If this node is rewritten, then test the original form, if that is
6517 -- OK, then we consider the rewritten node OK (for example, if the
6518 -- original node is a conversion, then Is_Variable will not be true
6519 -- but we still want to allow the conversion if it converts a variable).
6520
6521 elsif Original_Node (AV) /= AV then
6522 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
6523
6524 -- All other non-variables are rejected
6525
6526 else
6527 return False;
6528 end if;
6529 end Is_OK_Variable_For_Out_Formal;
6530
6531 -----------------------------------
6532 -- Is_Partially_Initialized_Type --
6533 -----------------------------------
6534
6535 function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean is
6536 begin
6537 if Is_Scalar_Type (Typ) then
6538 return False;
6539
6540 elsif Is_Access_Type (Typ) then
6541 return True;
6542
6543 elsif Is_Array_Type (Typ) then
6544
6545 -- If component type is partially initialized, so is array type
6546
6547 if Is_Partially_Initialized_Type (Component_Type (Typ)) then
6548 return True;
6549
6550 -- Otherwise we are only partially initialized if we are fully
6551 -- initialized (this is the empty array case, no point in us
6552 -- duplicating that code here).
6553
6554 else
6555 return Is_Fully_Initialized_Type (Typ);
6556 end if;
6557
6558 elsif Is_Record_Type (Typ) then
6559
6560 -- A discriminated type is always partially initialized
6561
6562 if Has_Discriminants (Typ) then
6563 return True;
6564
6565 -- A tagged type is always partially initialized
6566
6567 elsif Is_Tagged_Type (Typ) then
6568 return True;
6569
6570 -- Case of non-discriminated record
6571
6572 else
6573 declare
6574 Ent : Entity_Id;
6575
6576 Component_Present : Boolean := False;
6577 -- Set True if at least one component is present. If no
6578 -- components are present, then record type is fully
6579 -- initialized (another odd case, like the null array).
6580
6581 begin
6582 -- Loop through components
6583
6584 Ent := First_Entity (Typ);
6585 while Present (Ent) loop
6586 if Ekind (Ent) = E_Component then
6587 Component_Present := True;
6588
6589 -- If a component has an initialization expression then
6590 -- the enclosing record type is partially initialized
6591
6592 if Present (Parent (Ent))
6593 and then Present (Expression (Parent (Ent)))
6594 then
6595 return True;
6596
6597 -- If a component is of a type which is itself partially
6598 -- initialized, then the enclosing record type is also.
6599
6600 elsif Is_Partially_Initialized_Type (Etype (Ent)) then
6601 return True;
6602 end if;
6603 end if;
6604
6605 Next_Entity (Ent);
6606 end loop;
6607
6608 -- No initialized components found. If we found any components
6609 -- they were all uninitialized so the result is false.
6610
6611 if Component_Present then
6612 return False;
6613
6614 -- But if we found no components, then all the components are
6615 -- initialized so we consider the type to be initialized.
6616
6617 else
6618 return True;
6619 end if;
6620 end;
6621 end if;
6622
6623 -- Concurrent types are always fully initialized
6624
6625 elsif Is_Concurrent_Type (Typ) then
6626 return True;
6627
6628 -- For a private type, go to underlying type. If there is no underlying
6629 -- type then just assume this partially initialized. Not clear if this
6630 -- can happen in a non-error case, but no harm in testing for this.
6631
6632 elsif Is_Private_Type (Typ) then
6633 declare
6634 U : constant Entity_Id := Underlying_Type (Typ);
6635 begin
6636 if No (U) then
6637 return True;
6638 else
6639 return Is_Partially_Initialized_Type (U);
6640 end if;
6641 end;
6642
6643 -- For any other type (are there any?) assume partially initialized
6644
6645 else
6646 return True;
6647 end if;
6648 end Is_Partially_Initialized_Type;
6649
6650 ------------------------------------
6651 -- Is_Potentially_Persistent_Type --
6652 ------------------------------------
6653
6654 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
6655 Comp : Entity_Id;
6656 Indx : Node_Id;
6657
6658 begin
6659 -- For private type, test corresponding full type
6660
6661 if Is_Private_Type (T) then
6662 return Is_Potentially_Persistent_Type (Full_View (T));
6663
6664 -- Scalar types are potentially persistent
6665
6666 elsif Is_Scalar_Type (T) then
6667 return True;
6668
6669 -- Record type is potentially persistent if not tagged and the types of
6670 -- all it components are potentially persistent, and no component has
6671 -- an initialization expression.
6672
6673 elsif Is_Record_Type (T)
6674 and then not Is_Tagged_Type (T)
6675 and then not Is_Partially_Initialized_Type (T)
6676 then
6677 Comp := First_Component (T);
6678 while Present (Comp) loop
6679 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
6680 return False;
6681 else
6682 Next_Entity (Comp);
6683 end if;
6684 end loop;
6685
6686 return True;
6687
6688 -- Array type is potentially persistent if its component type is
6689 -- potentially persistent and if all its constraints are static.
6690
6691 elsif Is_Array_Type (T) then
6692 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
6693 return False;
6694 end if;
6695
6696 Indx := First_Index (T);
6697 while Present (Indx) loop
6698 if not Is_OK_Static_Subtype (Etype (Indx)) then
6699 return False;
6700 else
6701 Next_Index (Indx);
6702 end if;
6703 end loop;
6704
6705 return True;
6706
6707 -- All other types are not potentially persistent
6708
6709 else
6710 return False;
6711 end if;
6712 end Is_Potentially_Persistent_Type;
6713
6714 ---------------------------------
6715 -- Is_Protected_Self_Reference --
6716 ---------------------------------
6717
6718 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
6719
6720 function In_Access_Definition (N : Node_Id) return Boolean;
6721 -- Returns true if N belongs to an access definition
6722
6723 --------------------------
6724 -- In_Access_Definition --
6725 --------------------------
6726
6727 function In_Access_Definition (N : Node_Id) return Boolean is
6728 P : Node_Id;
6729
6730 begin
6731 P := Parent (N);
6732 while Present (P) loop
6733 if Nkind (P) = N_Access_Definition then
6734 return True;
6735 end if;
6736
6737 P := Parent (P);
6738 end loop;
6739
6740 return False;
6741 end In_Access_Definition;
6742
6743 -- Start of processing for Is_Protected_Self_Reference
6744
6745 begin
6746 -- Verify that prefix is analyzed and has the proper form. Note that
6747 -- the attributes Elab_Spec, Elab_Body, and UET_Address, which also
6748 -- produce the address of an entity, do not analyze their prefix
6749 -- because they denote entities that are not necessarily visible.
6750 -- Neither of them can apply to a protected type.
6751
6752 return Ada_Version >= Ada_05
6753 and then Is_Entity_Name (N)
6754 and then Present (Entity (N))
6755 and then Is_Protected_Type (Entity (N))
6756 and then In_Open_Scopes (Entity (N))
6757 and then not In_Access_Definition (N);
6758 end Is_Protected_Self_Reference;
6759
6760 -----------------------------
6761 -- Is_RCI_Pkg_Spec_Or_Body --
6762 -----------------------------
6763
6764 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
6765
6766 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
6767 -- Return True if the unit of Cunit is an RCI package declaration
6768
6769 ---------------------------
6770 -- Is_RCI_Pkg_Decl_Cunit --
6771 ---------------------------
6772
6773 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
6774 The_Unit : constant Node_Id := Unit (Cunit);
6775
6776 begin
6777 if Nkind (The_Unit) /= N_Package_Declaration then
6778 return False;
6779 end if;
6780
6781 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
6782 end Is_RCI_Pkg_Decl_Cunit;
6783
6784 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
6785
6786 begin
6787 return Is_RCI_Pkg_Decl_Cunit (Cunit)
6788 or else
6789 (Nkind (Unit (Cunit)) = N_Package_Body
6790 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
6791 end Is_RCI_Pkg_Spec_Or_Body;
6792
6793 -----------------------------------------
6794 -- Is_Remote_Access_To_Class_Wide_Type --
6795 -----------------------------------------
6796
6797 function Is_Remote_Access_To_Class_Wide_Type
6798 (E : Entity_Id) return Boolean
6799 is
6800 begin
6801 -- A remote access to class-wide type is a general access to object type
6802 -- declared in the visible part of a Remote_Types or Remote_Call_
6803 -- Interface unit.
6804
6805 return Ekind (E) = E_General_Access_Type
6806 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6807 end Is_Remote_Access_To_Class_Wide_Type;
6808
6809 -----------------------------------------
6810 -- Is_Remote_Access_To_Subprogram_Type --
6811 -----------------------------------------
6812
6813 function Is_Remote_Access_To_Subprogram_Type
6814 (E : Entity_Id) return Boolean
6815 is
6816 begin
6817 return (Ekind (E) = E_Access_Subprogram_Type
6818 or else (Ekind (E) = E_Record_Type
6819 and then Present (Corresponding_Remote_Type (E))))
6820 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6821 end Is_Remote_Access_To_Subprogram_Type;
6822
6823 --------------------
6824 -- Is_Remote_Call --
6825 --------------------
6826
6827 function Is_Remote_Call (N : Node_Id) return Boolean is
6828 begin
6829 if Nkind (N) /= N_Procedure_Call_Statement
6830 and then Nkind (N) /= N_Function_Call
6831 then
6832 -- An entry call cannot be remote
6833
6834 return False;
6835
6836 elsif Nkind (Name (N)) in N_Has_Entity
6837 and then Is_Remote_Call_Interface (Entity (Name (N)))
6838 then
6839 -- A subprogram declared in the spec of a RCI package is remote
6840
6841 return True;
6842
6843 elsif Nkind (Name (N)) = N_Explicit_Dereference
6844 and then Is_Remote_Access_To_Subprogram_Type
6845 (Etype (Prefix (Name (N))))
6846 then
6847 -- The dereference of a RAS is a remote call
6848
6849 return True;
6850
6851 elsif Present (Controlling_Argument (N))
6852 and then Is_Remote_Access_To_Class_Wide_Type
6853 (Etype (Controlling_Argument (N)))
6854 then
6855 -- Any primitive operation call with a controlling argument of
6856 -- a RACW type is a remote call.
6857
6858 return True;
6859 end if;
6860
6861 -- All other calls are local calls
6862
6863 return False;
6864 end Is_Remote_Call;
6865
6866 ----------------------
6867 -- Is_Renamed_Entry --
6868 ----------------------
6869
6870 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
6871 Orig_Node : Node_Id := Empty;
6872 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
6873
6874 function Is_Entry (Nam : Node_Id) return Boolean;
6875 -- Determine whether Nam is an entry. Traverse selectors if there are
6876 -- nested selected components.
6877
6878 --------------
6879 -- Is_Entry --
6880 --------------
6881
6882 function Is_Entry (Nam : Node_Id) return Boolean is
6883 begin
6884 if Nkind (Nam) = N_Selected_Component then
6885 return Is_Entry (Selector_Name (Nam));
6886 end if;
6887
6888 return Ekind (Entity (Nam)) = E_Entry;
6889 end Is_Entry;
6890
6891 -- Start of processing for Is_Renamed_Entry
6892
6893 begin
6894 if Present (Alias (Proc_Nam)) then
6895 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
6896 end if;
6897
6898 -- Look for a rewritten subprogram renaming declaration
6899
6900 if Nkind (Subp_Decl) = N_Subprogram_Declaration
6901 and then Present (Original_Node (Subp_Decl))
6902 then
6903 Orig_Node := Original_Node (Subp_Decl);
6904 end if;
6905
6906 -- The rewritten subprogram is actually an entry
6907
6908 if Present (Orig_Node)
6909 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
6910 and then Is_Entry (Name (Orig_Node))
6911 then
6912 return True;
6913 end if;
6914
6915 return False;
6916 end Is_Renamed_Entry;
6917
6918 ----------------------
6919 -- Is_Selector_Name --
6920 ----------------------
6921
6922 function Is_Selector_Name (N : Node_Id) return Boolean is
6923 begin
6924 if not Is_List_Member (N) then
6925 declare
6926 P : constant Node_Id := Parent (N);
6927 K : constant Node_Kind := Nkind (P);
6928 begin
6929 return
6930 (K = N_Expanded_Name or else
6931 K = N_Generic_Association or else
6932 K = N_Parameter_Association or else
6933 K = N_Selected_Component)
6934 and then Selector_Name (P) = N;
6935 end;
6936
6937 else
6938 declare
6939 L : constant List_Id := List_Containing (N);
6940 P : constant Node_Id := Parent (L);
6941 begin
6942 return (Nkind (P) = N_Discriminant_Association
6943 and then Selector_Names (P) = L)
6944 or else
6945 (Nkind (P) = N_Component_Association
6946 and then Choices (P) = L);
6947 end;
6948 end if;
6949 end Is_Selector_Name;
6950
6951 ------------------
6952 -- Is_Statement --
6953 ------------------
6954
6955 function Is_Statement (N : Node_Id) return Boolean is
6956 begin
6957 return
6958 Nkind (N) in N_Statement_Other_Than_Procedure_Call
6959 or else Nkind (N) = N_Procedure_Call_Statement;
6960 end Is_Statement;
6961
6962 ---------------------------------
6963 -- Is_Synchronized_Tagged_Type --
6964 ---------------------------------
6965
6966 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
6967 Kind : constant Entity_Kind := Ekind (Base_Type (E));
6968
6969 begin
6970 -- A task or protected type derived from an interface is a tagged type.
6971 -- Such a tagged type is called a synchronized tagged type, as are
6972 -- synchronized interfaces and private extensions whose declaration
6973 -- includes the reserved word synchronized.
6974
6975 return (Is_Tagged_Type (E)
6976 and then (Kind = E_Task_Type
6977 or else Kind = E_Protected_Type))
6978 or else
6979 (Is_Interface (E)
6980 and then Is_Synchronized_Interface (E))
6981 or else
6982 (Ekind (E) = E_Record_Type_With_Private
6983 and then (Synchronized_Present (Parent (E))
6984 or else Is_Synchronized_Interface (Etype (E))));
6985 end Is_Synchronized_Tagged_Type;
6986
6987 -----------------
6988 -- Is_Transfer --
6989 -----------------
6990
6991 function Is_Transfer (N : Node_Id) return Boolean is
6992 Kind : constant Node_Kind := Nkind (N);
6993
6994 begin
6995 if Kind = N_Simple_Return_Statement
6996 or else
6997 Kind = N_Extended_Return_Statement
6998 or else
6999 Kind = N_Goto_Statement
7000 or else
7001 Kind = N_Raise_Statement
7002 or else
7003 Kind = N_Requeue_Statement
7004 then
7005 return True;
7006
7007 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
7008 and then No (Condition (N))
7009 then
7010 return True;
7011
7012 elsif Kind = N_Procedure_Call_Statement
7013 and then Is_Entity_Name (Name (N))
7014 and then Present (Entity (Name (N)))
7015 and then No_Return (Entity (Name (N)))
7016 then
7017 return True;
7018
7019 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
7020 return True;
7021
7022 else
7023 return False;
7024 end if;
7025 end Is_Transfer;
7026
7027 -------------
7028 -- Is_True --
7029 -------------
7030
7031 function Is_True (U : Uint) return Boolean is
7032 begin
7033 return (U /= 0);
7034 end Is_True;
7035
7036 -------------------
7037 -- Is_Value_Type --
7038 -------------------
7039
7040 function Is_Value_Type (T : Entity_Id) return Boolean is
7041 begin
7042 return VM_Target = CLI_Target
7043 and then Nkind (T) in N_Has_Chars
7044 and then Chars (T) /= No_Name
7045 and then Get_Name_String (Chars (T)) = "valuetype";
7046 end Is_Value_Type;
7047
7048 ---------------------
7049 -- Is_VMS_Operator --
7050 ---------------------
7051
7052 function Is_VMS_Operator (Op : Entity_Id) return Boolean is
7053 begin
7054 return Ekind (Op) = E_Function
7055 and then Is_Intrinsic_Subprogram (Op)
7056 and then Scope (Op) = System_Aux_Id;
7057 end Is_VMS_Operator;
7058
7059 -----------------
7060 -- Is_Delegate --
7061 -----------------
7062
7063 function Is_Delegate (T : Entity_Id) return Boolean is
7064 Desig_Type : Entity_Id;
7065
7066 begin
7067 if VM_Target /= CLI_Target then
7068 return False;
7069 end if;
7070
7071 -- Access-to-subprograms are delegates in CIL
7072
7073 if Ekind (T) = E_Access_Subprogram_Type then
7074 return True;
7075 end if;
7076
7077 if Ekind (T) not in Access_Kind then
7078
7079 -- A delegate is a managed pointer. If no designated type is defined
7080 -- it means that it's not a delegate.
7081
7082 return False;
7083 end if;
7084
7085 Desig_Type := Etype (Directly_Designated_Type (T));
7086
7087 if not Is_Tagged_Type (Desig_Type) then
7088 return False;
7089 end if;
7090
7091 -- Test if the type is inherited from [mscorlib]System.Delegate
7092
7093 while Etype (Desig_Type) /= Desig_Type loop
7094 if Chars (Scope (Desig_Type)) /= No_Name
7095 and then Is_Imported (Scope (Desig_Type))
7096 and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
7097 then
7098 return True;
7099 end if;
7100
7101 Desig_Type := Etype (Desig_Type);
7102 end loop;
7103
7104 return False;
7105 end Is_Delegate;
7106
7107 -----------------
7108 -- Is_Variable --
7109 -----------------
7110
7111 function Is_Variable (N : Node_Id) return Boolean is
7112
7113 Orig_Node : constant Node_Id := Original_Node (N);
7114 -- We do the test on the original node, since this is basically a test
7115 -- of syntactic categories, so it must not be disturbed by whatever
7116 -- rewriting might have occurred. For example, an aggregate, which is
7117 -- certainly NOT a variable, could be turned into a variable by
7118 -- expansion.
7119
7120 function In_Protected_Function (E : Entity_Id) return Boolean;
7121 -- Within a protected function, the private components of the
7122 -- enclosing protected type are constants. A function nested within
7123 -- a (protected) procedure is not itself protected.
7124
7125 function Is_Variable_Prefix (P : Node_Id) return Boolean;
7126 -- Prefixes can involve implicit dereferences, in which case we
7127 -- must test for the case of a reference of a constant access
7128 -- type, which can never be a variable.
7129
7130 ---------------------------
7131 -- In_Protected_Function --
7132 ---------------------------
7133
7134 function In_Protected_Function (E : Entity_Id) return Boolean is
7135 Prot : constant Entity_Id := Scope (E);
7136 S : Entity_Id;
7137
7138 begin
7139 if not Is_Protected_Type (Prot) then
7140 return False;
7141 else
7142 S := Current_Scope;
7143 while Present (S) and then S /= Prot loop
7144 if Ekind (S) = E_Function
7145 and then Scope (S) = Prot
7146 then
7147 return True;
7148 end if;
7149
7150 S := Scope (S);
7151 end loop;
7152
7153 return False;
7154 end if;
7155 end In_Protected_Function;
7156
7157 ------------------------
7158 -- Is_Variable_Prefix --
7159 ------------------------
7160
7161 function Is_Variable_Prefix (P : Node_Id) return Boolean is
7162 begin
7163 if Is_Access_Type (Etype (P)) then
7164 return not Is_Access_Constant (Root_Type (Etype (P)));
7165
7166 -- For the case of an indexed component whose prefix has a packed
7167 -- array type, the prefix has been rewritten into a type conversion.
7168 -- Determine variable-ness from the converted expression.
7169
7170 elsif Nkind (P) = N_Type_Conversion
7171 and then not Comes_From_Source (P)
7172 and then Is_Array_Type (Etype (P))
7173 and then Is_Packed (Etype (P))
7174 then
7175 return Is_Variable (Expression (P));
7176
7177 else
7178 return Is_Variable (P);
7179 end if;
7180 end Is_Variable_Prefix;
7181
7182 -- Start of processing for Is_Variable
7183
7184 begin
7185 -- Definitely OK if Assignment_OK is set. Since this is something that
7186 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
7187
7188 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
7189 return True;
7190
7191 -- Normally we go to the original node, but there is one exception
7192 -- where we use the rewritten node, namely when it is an explicit
7193 -- dereference. The generated code may rewrite a prefix which is an
7194 -- access type with an explicit dereference. The dereference is a
7195 -- variable, even though the original node may not be (since it could
7196 -- be a constant of the access type).
7197
7198 -- In Ada 2005 we have a further case to consider: the prefix may be
7199 -- a function call given in prefix notation. The original node appears
7200 -- to be a selected component, but we need to examine the call.
7201
7202 elsif Nkind (N) = N_Explicit_Dereference
7203 and then Nkind (Orig_Node) /= N_Explicit_Dereference
7204 and then Present (Etype (Orig_Node))
7205 and then Is_Access_Type (Etype (Orig_Node))
7206 then
7207 -- Note that if the prefix is an explicit dereference that does not
7208 -- come from source, we must check for a rewritten function call in
7209 -- prefixed notation before other forms of rewriting, to prevent a
7210 -- compiler crash.
7211
7212 return
7213 (Nkind (Orig_Node) = N_Function_Call
7214 and then not Is_Access_Constant (Etype (Prefix (N))))
7215 or else
7216 Is_Variable_Prefix (Original_Node (Prefix (N)));
7217
7218 -- A function call is never a variable
7219
7220 elsif Nkind (N) = N_Function_Call then
7221 return False;
7222
7223 -- All remaining checks use the original node
7224
7225 elsif Is_Entity_Name (Orig_Node)
7226 and then Present (Entity (Orig_Node))
7227 then
7228 declare
7229 E : constant Entity_Id := Entity (Orig_Node);
7230 K : constant Entity_Kind := Ekind (E);
7231
7232 begin
7233 return (K = E_Variable
7234 and then Nkind (Parent (E)) /= N_Exception_Handler)
7235 or else (K = E_Component
7236 and then not In_Protected_Function (E))
7237 or else K = E_Out_Parameter
7238 or else K = E_In_Out_Parameter
7239 or else K = E_Generic_In_Out_Parameter
7240
7241 -- Current instance of type:
7242
7243 or else (Is_Type (E) and then In_Open_Scopes (E))
7244 or else (Is_Incomplete_Or_Private_Type (E)
7245 and then In_Open_Scopes (Full_View (E)));
7246 end;
7247
7248 else
7249 case Nkind (Orig_Node) is
7250 when N_Indexed_Component | N_Slice =>
7251 return Is_Variable_Prefix (Prefix (Orig_Node));
7252
7253 when N_Selected_Component =>
7254 return Is_Variable_Prefix (Prefix (Orig_Node))
7255 and then Is_Variable (Selector_Name (Orig_Node));
7256
7257 -- For an explicit dereference, the type of the prefix cannot
7258 -- be an access to constant or an access to subprogram.
7259
7260 when N_Explicit_Dereference =>
7261 declare
7262 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
7263 begin
7264 return Is_Access_Type (Typ)
7265 and then not Is_Access_Constant (Root_Type (Typ))
7266 and then Ekind (Typ) /= E_Access_Subprogram_Type;
7267 end;
7268
7269 -- The type conversion is the case where we do not deal with the
7270 -- context dependent special case of an actual parameter. Thus
7271 -- the type conversion is only considered a variable for the
7272 -- purposes of this routine if the target type is tagged. However,
7273 -- a type conversion is considered to be a variable if it does not
7274 -- come from source (this deals for example with the conversions
7275 -- of expressions to their actual subtypes).
7276
7277 when N_Type_Conversion =>
7278 return Is_Variable (Expression (Orig_Node))
7279 and then
7280 (not Comes_From_Source (Orig_Node)
7281 or else
7282 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
7283 and then
7284 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
7285
7286 -- GNAT allows an unchecked type conversion as a variable. This
7287 -- only affects the generation of internal expanded code, since
7288 -- calls to instantiations of Unchecked_Conversion are never
7289 -- considered variables (since they are function calls).
7290 -- This is also true for expression actions.
7291
7292 when N_Unchecked_Type_Conversion =>
7293 return Is_Variable (Expression (Orig_Node));
7294
7295 when others =>
7296 return False;
7297 end case;
7298 end if;
7299 end Is_Variable;
7300
7301 ---------------------------
7302 -- Is_Visibly_Controlled --
7303 ---------------------------
7304
7305 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
7306 Root : constant Entity_Id := Root_Type (T);
7307 begin
7308 return Chars (Scope (Root)) = Name_Finalization
7309 and then Chars (Scope (Scope (Root))) = Name_Ada
7310 and then Scope (Scope (Scope (Root))) = Standard_Standard;
7311 end Is_Visibly_Controlled;
7312
7313 ------------------------
7314 -- Is_Volatile_Object --
7315 ------------------------
7316
7317 function Is_Volatile_Object (N : Node_Id) return Boolean is
7318
7319 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
7320 -- Determines if given object has volatile components
7321
7322 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
7323 -- If prefix is an implicit dereference, examine designated type
7324
7325 ------------------------
7326 -- Is_Volatile_Prefix --
7327 ------------------------
7328
7329 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
7330 Typ : constant Entity_Id := Etype (N);
7331
7332 begin
7333 if Is_Access_Type (Typ) then
7334 declare
7335 Dtyp : constant Entity_Id := Designated_Type (Typ);
7336
7337 begin
7338 return Is_Volatile (Dtyp)
7339 or else Has_Volatile_Components (Dtyp);
7340 end;
7341
7342 else
7343 return Object_Has_Volatile_Components (N);
7344 end if;
7345 end Is_Volatile_Prefix;
7346
7347 ------------------------------------
7348 -- Object_Has_Volatile_Components --
7349 ------------------------------------
7350
7351 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
7352 Typ : constant Entity_Id := Etype (N);
7353
7354 begin
7355 if Is_Volatile (Typ)
7356 or else Has_Volatile_Components (Typ)
7357 then
7358 return True;
7359
7360 elsif Is_Entity_Name (N)
7361 and then (Has_Volatile_Components (Entity (N))
7362 or else Is_Volatile (Entity (N)))
7363 then
7364 return True;
7365
7366 elsif Nkind (N) = N_Indexed_Component
7367 or else Nkind (N) = N_Selected_Component
7368 then
7369 return Is_Volatile_Prefix (Prefix (N));
7370
7371 else
7372 return False;
7373 end if;
7374 end Object_Has_Volatile_Components;
7375
7376 -- Start of processing for Is_Volatile_Object
7377
7378 begin
7379 if Is_Volatile (Etype (N))
7380 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
7381 then
7382 return True;
7383
7384 elsif Nkind (N) = N_Indexed_Component
7385 or else Nkind (N) = N_Selected_Component
7386 then
7387 return Is_Volatile_Prefix (Prefix (N));
7388
7389 else
7390 return False;
7391 end if;
7392 end Is_Volatile_Object;
7393
7394 -------------------------
7395 -- Kill_Current_Values --
7396 -------------------------
7397
7398 procedure Kill_Current_Values
7399 (Ent : Entity_Id;
7400 Last_Assignment_Only : Boolean := False)
7401 is
7402 begin
7403 -- ??? do we have to worry about clearing cached checks?
7404
7405 if Is_Assignable (Ent) then
7406 Set_Last_Assignment (Ent, Empty);
7407 end if;
7408
7409 if Is_Object (Ent) then
7410 if not Last_Assignment_Only then
7411 Kill_Checks (Ent);
7412 Set_Current_Value (Ent, Empty);
7413
7414 if not Can_Never_Be_Null (Ent) then
7415 Set_Is_Known_Non_Null (Ent, False);
7416 end if;
7417
7418 Set_Is_Known_Null (Ent, False);
7419
7420 -- Reset Is_Known_Valid unless type is always valid, or if we have
7421 -- a loop parameter (loop parameters are always valid, since their
7422 -- bounds are defined by the bounds given in the loop header).
7423
7424 if not Is_Known_Valid (Etype (Ent))
7425 and then Ekind (Ent) /= E_Loop_Parameter
7426 then
7427 Set_Is_Known_Valid (Ent, False);
7428 end if;
7429 end if;
7430 end if;
7431 end Kill_Current_Values;
7432
7433 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
7434 S : Entity_Id;
7435
7436 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
7437 -- Clear current value for entity E and all entities chained to E
7438
7439 ------------------------------------------
7440 -- Kill_Current_Values_For_Entity_Chain --
7441 ------------------------------------------
7442
7443 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
7444 Ent : Entity_Id;
7445 begin
7446 Ent := E;
7447 while Present (Ent) loop
7448 Kill_Current_Values (Ent, Last_Assignment_Only);
7449 Next_Entity (Ent);
7450 end loop;
7451 end Kill_Current_Values_For_Entity_Chain;
7452
7453 -- Start of processing for Kill_Current_Values
7454
7455 begin
7456 -- Kill all saved checks, a special case of killing saved values
7457
7458 if not Last_Assignment_Only then
7459 Kill_All_Checks;
7460 end if;
7461
7462 -- Loop through relevant scopes, which includes the current scope and
7463 -- any parent scopes if the current scope is a block or a package.
7464
7465 S := Current_Scope;
7466 Scope_Loop : loop
7467
7468 -- Clear current values of all entities in current scope
7469
7470 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
7471
7472 -- If scope is a package, also clear current values of all
7473 -- private entities in the scope.
7474
7475 if Is_Package_Or_Generic_Package (S)
7476 or else Is_Concurrent_Type (S)
7477 then
7478 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
7479 end if;
7480
7481 -- If this is a not a subprogram, deal with parents
7482
7483 if not Is_Subprogram (S) then
7484 S := Scope (S);
7485 exit Scope_Loop when S = Standard_Standard;
7486 else
7487 exit Scope_Loop;
7488 end if;
7489 end loop Scope_Loop;
7490 end Kill_Current_Values;
7491
7492 --------------------------
7493 -- Kill_Size_Check_Code --
7494 --------------------------
7495
7496 procedure Kill_Size_Check_Code (E : Entity_Id) is
7497 begin
7498 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
7499 and then Present (Size_Check_Code (E))
7500 then
7501 Remove (Size_Check_Code (E));
7502 Set_Size_Check_Code (E, Empty);
7503 end if;
7504 end Kill_Size_Check_Code;
7505
7506 --------------------------
7507 -- Known_To_Be_Assigned --
7508 --------------------------
7509
7510 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
7511 P : constant Node_Id := Parent (N);
7512
7513 begin
7514 case Nkind (P) is
7515
7516 -- Test left side of assignment
7517
7518 when N_Assignment_Statement =>
7519 return N = Name (P);
7520
7521 -- Function call arguments are never lvalues
7522
7523 when N_Function_Call =>
7524 return False;
7525
7526 -- Positional parameter for procedure or accept call
7527
7528 when N_Procedure_Call_Statement |
7529 N_Accept_Statement
7530 =>
7531 declare
7532 Proc : Entity_Id;
7533 Form : Entity_Id;
7534 Act : Node_Id;
7535
7536 begin
7537 Proc := Get_Subprogram_Entity (P);
7538
7539 if No (Proc) then
7540 return False;
7541 end if;
7542
7543 -- If we are not a list member, something is strange, so
7544 -- be conservative and return False.
7545
7546 if not Is_List_Member (N) then
7547 return False;
7548 end if;
7549
7550 -- We are going to find the right formal by stepping forward
7551 -- through the formals, as we step backwards in the actuals.
7552
7553 Form := First_Formal (Proc);
7554 Act := N;
7555 loop
7556 -- If no formal, something is weird, so be conservative
7557 -- and return False.
7558
7559 if No (Form) then
7560 return False;
7561 end if;
7562
7563 Prev (Act);
7564 exit when No (Act);
7565 Next_Formal (Form);
7566 end loop;
7567
7568 return Ekind (Form) /= E_In_Parameter;
7569 end;
7570
7571 -- Named parameter for procedure or accept call
7572
7573 when N_Parameter_Association =>
7574 declare
7575 Proc : Entity_Id;
7576 Form : Entity_Id;
7577
7578 begin
7579 Proc := Get_Subprogram_Entity (Parent (P));
7580
7581 if No (Proc) then
7582 return False;
7583 end if;
7584
7585 -- Loop through formals to find the one that matches
7586
7587 Form := First_Formal (Proc);
7588 loop
7589 -- If no matching formal, that's peculiar, some kind of
7590 -- previous error, so return False to be conservative.
7591
7592 if No (Form) then
7593 return False;
7594 end if;
7595
7596 -- Else test for match
7597
7598 if Chars (Form) = Chars (Selector_Name (P)) then
7599 return Ekind (Form) /= E_In_Parameter;
7600 end if;
7601
7602 Next_Formal (Form);
7603 end loop;
7604 end;
7605
7606 -- Test for appearing in a conversion that itself appears
7607 -- in an lvalue context, since this should be an lvalue.
7608
7609 when N_Type_Conversion =>
7610 return Known_To_Be_Assigned (P);
7611
7612 -- All other references are definitely not known to be modifications
7613
7614 when others =>
7615 return False;
7616
7617 end case;
7618 end Known_To_Be_Assigned;
7619
7620 -------------------
7621 -- May_Be_Lvalue --
7622 -------------------
7623
7624 function May_Be_Lvalue (N : Node_Id) return Boolean is
7625 P : constant Node_Id := Parent (N);
7626
7627 begin
7628 case Nkind (P) is
7629
7630 -- Test left side of assignment
7631
7632 when N_Assignment_Statement =>
7633 return N = Name (P);
7634
7635 -- Test prefix of component or attribute. Note that the prefix of an
7636 -- explicit or implicit dereference cannot be an l-value.
7637
7638 when N_Attribute_Reference =>
7639 return N = Prefix (P)
7640 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
7641
7642 -- For an expanded name, the name is an lvalue if the expanded name
7643 -- is an lvalue, but the prefix is never an lvalue, since it is just
7644 -- the scope where the name is found.
7645
7646 when N_Expanded_Name =>
7647 if N = Prefix (P) then
7648 return May_Be_Lvalue (P);
7649 else
7650 return False;
7651 end if;
7652
7653 -- For a selected component A.B, A is certainly an lvalue if A.B is.
7654 -- B is a little interesting, if we have A.B := 3, there is some
7655 -- discussion as to whether B is an lvalue or not, we choose to say
7656 -- it is. Note however that A is not an lvalue if it is of an access
7657 -- type since this is an implicit dereference.
7658
7659 when N_Selected_Component =>
7660 if N = Prefix (P)
7661 and then Present (Etype (N))
7662 and then Is_Access_Type (Etype (N))
7663 then
7664 return False;
7665 else
7666 return May_Be_Lvalue (P);
7667 end if;
7668
7669 -- For an indexed component or slice, the index or slice bounds is
7670 -- never an lvalue. The prefix is an lvalue if the indexed component
7671 -- or slice is an lvalue, except if it is an access type, where we
7672 -- have an implicit dereference.
7673
7674 when N_Indexed_Component =>
7675 if N /= Prefix (P)
7676 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
7677 then
7678 return False;
7679 else
7680 return May_Be_Lvalue (P);
7681 end if;
7682
7683 -- Prefix of a reference is an lvalue if the reference is an lvalue
7684
7685 when N_Reference =>
7686 return May_Be_Lvalue (P);
7687
7688 -- Prefix of explicit dereference is never an lvalue
7689
7690 when N_Explicit_Dereference =>
7691 return False;
7692
7693 -- Function call arguments are never lvalues
7694
7695 when N_Function_Call =>
7696 return False;
7697
7698 -- Positional parameter for procedure, entry, or accept call
7699
7700 when N_Procedure_Call_Statement |
7701 N_Entry_Call_Statement |
7702 N_Accept_Statement
7703 =>
7704 declare
7705 Proc : Entity_Id;
7706 Form : Entity_Id;
7707 Act : Node_Id;
7708
7709 begin
7710 Proc := Get_Subprogram_Entity (P);
7711
7712 if No (Proc) then
7713 return True;
7714 end if;
7715
7716 -- If we are not a list member, something is strange, so
7717 -- be conservative and return True.
7718
7719 if not Is_List_Member (N) then
7720 return True;
7721 end if;
7722
7723 -- We are going to find the right formal by stepping forward
7724 -- through the formals, as we step backwards in the actuals.
7725
7726 Form := First_Formal (Proc);
7727 Act := N;
7728 loop
7729 -- If no formal, something is weird, so be conservative
7730 -- and return True.
7731
7732 if No (Form) then
7733 return True;
7734 end if;
7735
7736 Prev (Act);
7737 exit when No (Act);
7738 Next_Formal (Form);
7739 end loop;
7740
7741 return Ekind (Form) /= E_In_Parameter;
7742 end;
7743
7744 -- Named parameter for procedure or accept call
7745
7746 when N_Parameter_Association =>
7747 declare
7748 Proc : Entity_Id;
7749 Form : Entity_Id;
7750
7751 begin
7752 Proc := Get_Subprogram_Entity (Parent (P));
7753
7754 if No (Proc) then
7755 return True;
7756 end if;
7757
7758 -- Loop through formals to find the one that matches
7759
7760 Form := First_Formal (Proc);
7761 loop
7762 -- If no matching formal, that's peculiar, some kind of
7763 -- previous error, so return True to be conservative.
7764
7765 if No (Form) then
7766 return True;
7767 end if;
7768
7769 -- Else test for match
7770
7771 if Chars (Form) = Chars (Selector_Name (P)) then
7772 return Ekind (Form) /= E_In_Parameter;
7773 end if;
7774
7775 Next_Formal (Form);
7776 end loop;
7777 end;
7778
7779 -- Test for appearing in a conversion that itself appears in an
7780 -- lvalue context, since this should be an lvalue.
7781
7782 when N_Type_Conversion =>
7783 return May_Be_Lvalue (P);
7784
7785 -- Test for appearance in object renaming declaration
7786
7787 when N_Object_Renaming_Declaration =>
7788 return True;
7789
7790 -- All other references are definitely not lvalues
7791
7792 when others =>
7793 return False;
7794
7795 end case;
7796 end May_Be_Lvalue;
7797
7798 -----------------------
7799 -- Mark_Coextensions --
7800 -----------------------
7801
7802 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
7803 Is_Dynamic : Boolean;
7804 -- Indicates whether the context causes nested coextensions to be
7805 -- dynamic or static
7806
7807 function Mark_Allocator (N : Node_Id) return Traverse_Result;
7808 -- Recognize an allocator node and label it as a dynamic coextension
7809
7810 --------------------
7811 -- Mark_Allocator --
7812 --------------------
7813
7814 function Mark_Allocator (N : Node_Id) return Traverse_Result is
7815 begin
7816 if Nkind (N) = N_Allocator then
7817 if Is_Dynamic then
7818 Set_Is_Dynamic_Coextension (N);
7819 else
7820 Set_Is_Static_Coextension (N);
7821 end if;
7822 end if;
7823
7824 return OK;
7825 end Mark_Allocator;
7826
7827 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
7828
7829 -- Start of processing Mark_Coextensions
7830
7831 begin
7832 case Nkind (Context_Nod) is
7833 when N_Assignment_Statement |
7834 N_Simple_Return_Statement =>
7835 Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
7836
7837 when N_Object_Declaration =>
7838 Is_Dynamic := Nkind (Root_Nod) = N_Allocator;
7839
7840 -- This routine should not be called for constructs which may not
7841 -- contain coextensions.
7842
7843 when others =>
7844 raise Program_Error;
7845 end case;
7846
7847 Mark_Allocators (Root_Nod);
7848 end Mark_Coextensions;
7849
7850 ----------------------
7851 -- Needs_One_Actual --
7852 ----------------------
7853
7854 function Needs_One_Actual (E : Entity_Id) return Boolean is
7855 Formal : Entity_Id;
7856
7857 begin
7858 if Ada_Version >= Ada_05
7859 and then Present (First_Formal (E))
7860 then
7861 Formal := Next_Formal (First_Formal (E));
7862 while Present (Formal) loop
7863 if No (Default_Value (Formal)) then
7864 return False;
7865 end if;
7866
7867 Next_Formal (Formal);
7868 end loop;
7869
7870 return True;
7871
7872 else
7873 return False;
7874 end if;
7875 end Needs_One_Actual;
7876
7877 ------------------------
7878 -- New_Copy_List_Tree --
7879 ------------------------
7880
7881 function New_Copy_List_Tree (List : List_Id) return List_Id is
7882 NL : List_Id;
7883 E : Node_Id;
7884
7885 begin
7886 if List = No_List then
7887 return No_List;
7888
7889 else
7890 NL := New_List;
7891 E := First (List);
7892
7893 while Present (E) loop
7894 Append (New_Copy_Tree (E), NL);
7895 E := Next (E);
7896 end loop;
7897
7898 return NL;
7899 end if;
7900 end New_Copy_List_Tree;
7901
7902 -------------------
7903 -- New_Copy_Tree --
7904 -------------------
7905
7906 use Atree.Unchecked_Access;
7907 use Atree_Private_Part;
7908
7909 -- Our approach here requires a two pass traversal of the tree. The
7910 -- first pass visits all nodes that eventually will be copied looking
7911 -- for defining Itypes. If any defining Itypes are found, then they are
7912 -- copied, and an entry is added to the replacement map. In the second
7913 -- phase, the tree is copied, using the replacement map to replace any
7914 -- Itype references within the copied tree.
7915
7916 -- The following hash tables are used if the Map supplied has more
7917 -- than hash threshhold entries to speed up access to the map. If
7918 -- there are fewer entries, then the map is searched sequentially
7919 -- (because setting up a hash table for only a few entries takes
7920 -- more time than it saves.
7921
7922 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
7923 -- Hash function used for hash operations
7924
7925 -------------------
7926 -- New_Copy_Hash --
7927 -------------------
7928
7929 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
7930 begin
7931 return Nat (E) mod (NCT_Header_Num'Last + 1);
7932 end New_Copy_Hash;
7933
7934 ---------------
7935 -- NCT_Assoc --
7936 ---------------
7937
7938 -- The hash table NCT_Assoc associates old entities in the table
7939 -- with their corresponding new entities (i.e. the pairs of entries
7940 -- presented in the original Map argument are Key-Element pairs).
7941
7942 package NCT_Assoc is new Simple_HTable (
7943 Header_Num => NCT_Header_Num,
7944 Element => Entity_Id,
7945 No_Element => Empty,
7946 Key => Entity_Id,
7947 Hash => New_Copy_Hash,
7948 Equal => Types."=");
7949
7950 ---------------------
7951 -- NCT_Itype_Assoc --
7952 ---------------------
7953
7954 -- The hash table NCT_Itype_Assoc contains entries only for those
7955 -- old nodes which have a non-empty Associated_Node_For_Itype set.
7956 -- The key is the associated node, and the element is the new node
7957 -- itself (NOT the associated node for the new node).
7958
7959 package NCT_Itype_Assoc is new Simple_HTable (
7960 Header_Num => NCT_Header_Num,
7961 Element => Entity_Id,
7962 No_Element => Empty,
7963 Key => Entity_Id,
7964 Hash => New_Copy_Hash,
7965 Equal => Types."=");
7966
7967 -- Start of processing for New_Copy_Tree function
7968
7969 function New_Copy_Tree
7970 (Source : Node_Id;
7971 Map : Elist_Id := No_Elist;
7972 New_Sloc : Source_Ptr := No_Location;
7973 New_Scope : Entity_Id := Empty) return Node_Id
7974 is
7975 Actual_Map : Elist_Id := Map;
7976 -- This is the actual map for the copy. It is initialized with the
7977 -- given elements, and then enlarged as required for Itypes that are
7978 -- copied during the first phase of the copy operation. The visit
7979 -- procedures add elements to this map as Itypes are encountered.
7980 -- The reason we cannot use Map directly, is that it may well be
7981 -- (and normally is) initialized to No_Elist, and if we have mapped
7982 -- entities, we have to reset it to point to a real Elist.
7983
7984 function Assoc (N : Node_Or_Entity_Id) return Node_Id;
7985 -- Called during second phase to map entities into their corresponding
7986 -- copies using Actual_Map. If the argument is not an entity, or is not
7987 -- in Actual_Map, then it is returned unchanged.
7988
7989 procedure Build_NCT_Hash_Tables;
7990 -- Builds hash tables (number of elements >= threshold value)
7991
7992 function Copy_Elist_With_Replacement
7993 (Old_Elist : Elist_Id) return Elist_Id;
7994 -- Called during second phase to copy element list doing replacements
7995
7996 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
7997 -- Called during the second phase to process a copied Itype. The actual
7998 -- copy happened during the first phase (so that we could make the entry
7999 -- in the mapping), but we still have to deal with the descendents of
8000 -- the copied Itype and copy them where necessary.
8001
8002 function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
8003 -- Called during second phase to copy list doing replacements
8004
8005 function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
8006 -- Called during second phase to copy node doing replacements
8007
8008 procedure Visit_Elist (E : Elist_Id);
8009 -- Called during first phase to visit all elements of an Elist
8010
8011 procedure Visit_Field (F : Union_Id; N : Node_Id);
8012 -- Visit a single field, recursing to call Visit_Node or Visit_List
8013 -- if the field is a syntactic descendent of the current node (i.e.
8014 -- its parent is Node N).
8015
8016 procedure Visit_Itype (Old_Itype : Entity_Id);
8017 -- Called during first phase to visit subsidiary fields of a defining
8018 -- Itype, and also create a copy and make an entry in the replacement
8019 -- map for the new copy.
8020
8021 procedure Visit_List (L : List_Id);
8022 -- Called during first phase to visit all elements of a List
8023
8024 procedure Visit_Node (N : Node_Or_Entity_Id);
8025 -- Called during first phase to visit a node and all its subtrees
8026
8027 -----------
8028 -- Assoc --
8029 -----------
8030
8031 function Assoc (N : Node_Or_Entity_Id) return Node_Id is
8032 E : Elmt_Id;
8033 Ent : Entity_Id;
8034
8035 begin
8036 if not Has_Extension (N) or else No (Actual_Map) then
8037 return N;
8038
8039 elsif NCT_Hash_Tables_Used then
8040 Ent := NCT_Assoc.Get (Entity_Id (N));
8041
8042 if Present (Ent) then
8043 return Ent;
8044 else
8045 return N;
8046 end if;
8047
8048 -- No hash table used, do serial search
8049
8050 else
8051 E := First_Elmt (Actual_Map);
8052 while Present (E) loop
8053 if Node (E) = N then
8054 return Node (Next_Elmt (E));
8055 else
8056 E := Next_Elmt (Next_Elmt (E));
8057 end if;
8058 end loop;
8059 end if;
8060
8061 return N;
8062 end Assoc;
8063
8064 ---------------------------
8065 -- Build_NCT_Hash_Tables --
8066 ---------------------------
8067
8068 procedure Build_NCT_Hash_Tables is
8069 Elmt : Elmt_Id;
8070 Ent : Entity_Id;
8071 begin
8072 if NCT_Hash_Table_Setup then
8073 NCT_Assoc.Reset;
8074 NCT_Itype_Assoc.Reset;
8075 end if;
8076
8077 Elmt := First_Elmt (Actual_Map);
8078 while Present (Elmt) loop
8079 Ent := Node (Elmt);
8080
8081 -- Get new entity, and associate old and new
8082
8083 Next_Elmt (Elmt);
8084 NCT_Assoc.Set (Ent, Node (Elmt));
8085
8086 if Is_Type (Ent) then
8087 declare
8088 Anode : constant Entity_Id :=
8089 Associated_Node_For_Itype (Ent);
8090
8091 begin
8092 if Present (Anode) then
8093
8094 -- Enter a link between the associated node of the
8095 -- old Itype and the new Itype, for updating later
8096 -- when node is copied.
8097
8098 NCT_Itype_Assoc.Set (Anode, Node (Elmt));
8099 end if;
8100 end;
8101 end if;
8102
8103 Next_Elmt (Elmt);
8104 end loop;
8105
8106 NCT_Hash_Tables_Used := True;
8107 NCT_Hash_Table_Setup := True;
8108 end Build_NCT_Hash_Tables;
8109
8110 ---------------------------------
8111 -- Copy_Elist_With_Replacement --
8112 ---------------------------------
8113
8114 function Copy_Elist_With_Replacement
8115 (Old_Elist : Elist_Id) return Elist_Id
8116 is
8117 M : Elmt_Id;
8118 New_Elist : Elist_Id;
8119
8120 begin
8121 if No (Old_Elist) then
8122 return No_Elist;
8123
8124 else
8125 New_Elist := New_Elmt_List;
8126
8127 M := First_Elmt (Old_Elist);
8128 while Present (M) loop
8129 Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
8130 Next_Elmt (M);
8131 end loop;
8132 end if;
8133
8134 return New_Elist;
8135 end Copy_Elist_With_Replacement;
8136
8137 ---------------------------------
8138 -- Copy_Itype_With_Replacement --
8139 ---------------------------------
8140
8141 -- This routine exactly parallels its phase one analog Visit_Itype,
8142
8143 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
8144 begin
8145 -- Translate Next_Entity, Scope and Etype fields, in case they
8146 -- reference entities that have been mapped into copies.
8147
8148 Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
8149 Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
8150
8151 if Present (New_Scope) then
8152 Set_Scope (New_Itype, New_Scope);
8153 else
8154 Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
8155 end if;
8156
8157 -- Copy referenced fields
8158
8159 if Is_Discrete_Type (New_Itype) then
8160 Set_Scalar_Range (New_Itype,
8161 Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
8162
8163 elsif Has_Discriminants (Base_Type (New_Itype)) then
8164 Set_Discriminant_Constraint (New_Itype,
8165 Copy_Elist_With_Replacement
8166 (Discriminant_Constraint (New_Itype)));
8167
8168 elsif Is_Array_Type (New_Itype) then
8169 if Present (First_Index (New_Itype)) then
8170 Set_First_Index (New_Itype,
8171 First (Copy_List_With_Replacement
8172 (List_Containing (First_Index (New_Itype)))));
8173 end if;
8174
8175 if Is_Packed (New_Itype) then
8176 Set_Packed_Array_Type (New_Itype,
8177 Copy_Node_With_Replacement
8178 (Packed_Array_Type (New_Itype)));
8179 end if;
8180 end if;
8181 end Copy_Itype_With_Replacement;
8182
8183 --------------------------------
8184 -- Copy_List_With_Replacement --
8185 --------------------------------
8186
8187 function Copy_List_With_Replacement
8188 (Old_List : List_Id) return List_Id
8189 is
8190 New_List : List_Id;
8191 E : Node_Id;
8192
8193 begin
8194 if Old_List = No_List then
8195 return No_List;
8196
8197 else
8198 New_List := Empty_List;
8199
8200 E := First (Old_List);
8201 while Present (E) loop
8202 Append (Copy_Node_With_Replacement (E), New_List);
8203 Next (E);
8204 end loop;
8205
8206 return New_List;
8207 end if;
8208 end Copy_List_With_Replacement;
8209
8210 --------------------------------
8211 -- Copy_Node_With_Replacement --
8212 --------------------------------
8213
8214 function Copy_Node_With_Replacement
8215 (Old_Node : Node_Id) return Node_Id
8216 is
8217 New_Node : Node_Id;
8218
8219 procedure Adjust_Named_Associations
8220 (Old_Node : Node_Id;
8221 New_Node : Node_Id);
8222 -- If a call node has named associations, these are chained through
8223 -- the First_Named_Actual, Next_Named_Actual links. These must be
8224 -- propagated separately to the new parameter list, because these
8225 -- are not syntactic fields.
8226
8227 function Copy_Field_With_Replacement
8228 (Field : Union_Id) return Union_Id;
8229 -- Given Field, which is a field of Old_Node, return a copy of it
8230 -- if it is a syntactic field (i.e. its parent is Node), setting
8231 -- the parent of the copy to poit to New_Node. Otherwise returns
8232 -- the field (possibly mapped if it is an entity).
8233
8234 -------------------------------
8235 -- Adjust_Named_Associations --
8236 -------------------------------
8237
8238 procedure Adjust_Named_Associations
8239 (Old_Node : Node_Id;
8240 New_Node : Node_Id)
8241 is
8242 Old_E : Node_Id;
8243 New_E : Node_Id;
8244
8245 Old_Next : Node_Id;
8246 New_Next : Node_Id;
8247
8248 begin
8249 Old_E := First (Parameter_Associations (Old_Node));
8250 New_E := First (Parameter_Associations (New_Node));
8251 while Present (Old_E) loop
8252 if Nkind (Old_E) = N_Parameter_Association
8253 and then Present (Next_Named_Actual (Old_E))
8254 then
8255 if First_Named_Actual (Old_Node)
8256 = Explicit_Actual_Parameter (Old_E)
8257 then
8258 Set_First_Named_Actual
8259 (New_Node, Explicit_Actual_Parameter (New_E));
8260 end if;
8261
8262 -- Now scan parameter list from the beginning,to locate
8263 -- next named actual, which can be out of order.
8264
8265 Old_Next := First (Parameter_Associations (Old_Node));
8266 New_Next := First (Parameter_Associations (New_Node));
8267
8268 while Nkind (Old_Next) /= N_Parameter_Association
8269 or else Explicit_Actual_Parameter (Old_Next)
8270 /= Next_Named_Actual (Old_E)
8271 loop
8272 Next (Old_Next);
8273 Next (New_Next);
8274 end loop;
8275
8276 Set_Next_Named_Actual
8277 (New_E, Explicit_Actual_Parameter (New_Next));
8278 end if;
8279
8280 Next (Old_E);
8281 Next (New_E);
8282 end loop;
8283 end Adjust_Named_Associations;
8284
8285 ---------------------------------
8286 -- Copy_Field_With_Replacement --
8287 ---------------------------------
8288
8289 function Copy_Field_With_Replacement
8290 (Field : Union_Id) return Union_Id
8291 is
8292 begin
8293 if Field = Union_Id (Empty) then
8294 return Field;
8295
8296 elsif Field in Node_Range then
8297 declare
8298 Old_N : constant Node_Id := Node_Id (Field);
8299 New_N : Node_Id;
8300
8301 begin
8302 -- If syntactic field, as indicated by the parent pointer
8303 -- being set, then copy the referenced node recursively.
8304
8305 if Parent (Old_N) = Old_Node then
8306 New_N := Copy_Node_With_Replacement (Old_N);
8307
8308 if New_N /= Old_N then
8309 Set_Parent (New_N, New_Node);
8310 end if;
8311
8312 -- For semantic fields, update possible entity reference
8313 -- from the replacement map.
8314
8315 else
8316 New_N := Assoc (Old_N);
8317 end if;
8318
8319 return Union_Id (New_N);
8320 end;
8321
8322 elsif Field in List_Range then
8323 declare
8324 Old_L : constant List_Id := List_Id (Field);
8325 New_L : List_Id;
8326
8327 begin
8328 -- If syntactic field, as indicated by the parent pointer,
8329 -- then recursively copy the entire referenced list.
8330
8331 if Parent (Old_L) = Old_Node then
8332 New_L := Copy_List_With_Replacement (Old_L);
8333 Set_Parent (New_L, New_Node);
8334
8335 -- For semantic list, just returned unchanged
8336
8337 else
8338 New_L := Old_L;
8339 end if;
8340
8341 return Union_Id (New_L);
8342 end;
8343
8344 -- Anything other than a list or a node is returned unchanged
8345
8346 else
8347 return Field;
8348 end if;
8349 end Copy_Field_With_Replacement;
8350
8351 -- Start of processing for Copy_Node_With_Replacement
8352
8353 begin
8354 if Old_Node <= Empty_Or_Error then
8355 return Old_Node;
8356
8357 elsif Has_Extension (Old_Node) then
8358 return Assoc (Old_Node);
8359
8360 else
8361 New_Node := New_Copy (Old_Node);
8362
8363 -- If the node we are copying is the associated node of a
8364 -- previously copied Itype, then adjust the associated node
8365 -- of the copy of that Itype accordingly.
8366
8367 if Present (Actual_Map) then
8368 declare
8369 E : Elmt_Id;
8370 Ent : Entity_Id;
8371
8372 begin
8373 -- Case of hash table used
8374
8375 if NCT_Hash_Tables_Used then
8376 Ent := NCT_Itype_Assoc.Get (Old_Node);
8377
8378 if Present (Ent) then
8379 Set_Associated_Node_For_Itype (Ent, New_Node);
8380 end if;
8381
8382 -- Case of no hash table used
8383
8384 else
8385 E := First_Elmt (Actual_Map);
8386 while Present (E) loop
8387 if Is_Itype (Node (E))
8388 and then
8389 Old_Node = Associated_Node_For_Itype (Node (E))
8390 then
8391 Set_Associated_Node_For_Itype
8392 (Node (Next_Elmt (E)), New_Node);
8393 end if;
8394
8395 E := Next_Elmt (Next_Elmt (E));
8396 end loop;
8397 end if;
8398 end;
8399 end if;
8400
8401 -- Recursively copy descendents
8402
8403 Set_Field1
8404 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
8405 Set_Field2
8406 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
8407 Set_Field3
8408 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
8409 Set_Field4
8410 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
8411 Set_Field5
8412 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
8413
8414 -- Adjust Sloc of new node if necessary
8415
8416 if New_Sloc /= No_Location then
8417 Set_Sloc (New_Node, New_Sloc);
8418
8419 -- If we adjust the Sloc, then we are essentially making
8420 -- a completely new node, so the Comes_From_Source flag
8421 -- should be reset to the proper default value.
8422
8423 Nodes.Table (New_Node).Comes_From_Source :=
8424 Default_Node.Comes_From_Source;
8425 end if;
8426
8427 -- If the node is call and has named associations,
8428 -- set the corresponding links in the copy.
8429
8430 if (Nkind (Old_Node) = N_Function_Call
8431 or else Nkind (Old_Node) = N_Entry_Call_Statement
8432 or else
8433 Nkind (Old_Node) = N_Procedure_Call_Statement)
8434 and then Present (First_Named_Actual (Old_Node))
8435 then
8436 Adjust_Named_Associations (Old_Node, New_Node);
8437 end if;
8438
8439 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
8440 -- The replacement mechanism applies to entities, and is not used
8441 -- here. Eventually we may need a more general graph-copying
8442 -- routine. For now, do a sequential search to find desired node.
8443
8444 if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
8445 and then Present (First_Real_Statement (Old_Node))
8446 then
8447 declare
8448 Old_F : constant Node_Id := First_Real_Statement (Old_Node);
8449 N1, N2 : Node_Id;
8450
8451 begin
8452 N1 := First (Statements (Old_Node));
8453 N2 := First (Statements (New_Node));
8454
8455 while N1 /= Old_F loop
8456 Next (N1);
8457 Next (N2);
8458 end loop;
8459
8460 Set_First_Real_Statement (New_Node, N2);
8461 end;
8462 end if;
8463 end if;
8464
8465 -- All done, return copied node
8466
8467 return New_Node;
8468 end Copy_Node_With_Replacement;
8469
8470 -----------------
8471 -- Visit_Elist --
8472 -----------------
8473
8474 procedure Visit_Elist (E : Elist_Id) is
8475 Elmt : Elmt_Id;
8476 begin
8477 if Present (E) then
8478 Elmt := First_Elmt (E);
8479
8480 while Elmt /= No_Elmt loop
8481 Visit_Node (Node (Elmt));
8482 Next_Elmt (Elmt);
8483 end loop;
8484 end if;
8485 end Visit_Elist;
8486
8487 -----------------
8488 -- Visit_Field --
8489 -----------------
8490
8491 procedure Visit_Field (F : Union_Id; N : Node_Id) is
8492 begin
8493 if F = Union_Id (Empty) then
8494 return;
8495
8496 elsif F in Node_Range then
8497
8498 -- Copy node if it is syntactic, i.e. its parent pointer is
8499 -- set to point to the field that referenced it (certain
8500 -- Itypes will also meet this criterion, which is fine, since
8501 -- these are clearly Itypes that do need to be copied, since
8502 -- we are copying their parent.)
8503
8504 if Parent (Node_Id (F)) = N then
8505 Visit_Node (Node_Id (F));
8506 return;
8507
8508 -- Another case, if we are pointing to an Itype, then we want
8509 -- to copy it if its associated node is somewhere in the tree
8510 -- being copied.
8511
8512 -- Note: the exclusion of self-referential copies is just an
8513 -- optimization, since the search of the already copied list
8514 -- would catch it, but it is a common case (Etype pointing
8515 -- to itself for an Itype that is a base type).
8516
8517 elsif Has_Extension (Node_Id (F))
8518 and then Is_Itype (Entity_Id (F))
8519 and then Node_Id (F) /= N
8520 then
8521 declare
8522 P : Node_Id;
8523
8524 begin
8525 P := Associated_Node_For_Itype (Node_Id (F));
8526 while Present (P) loop
8527 if P = Source then
8528 Visit_Node (Node_Id (F));
8529 return;
8530 else
8531 P := Parent (P);
8532 end if;
8533 end loop;
8534
8535 -- An Itype whose parent is not being copied definitely
8536 -- should NOT be copied, since it does not belong in any
8537 -- sense to the copied subtree.
8538
8539 return;
8540 end;
8541 end if;
8542
8543 elsif F in List_Range
8544 and then Parent (List_Id (F)) = N
8545 then
8546 Visit_List (List_Id (F));
8547 return;
8548 end if;
8549 end Visit_Field;
8550
8551 -----------------
8552 -- Visit_Itype --
8553 -----------------
8554
8555 procedure Visit_Itype (Old_Itype : Entity_Id) is
8556 New_Itype : Entity_Id;
8557 E : Elmt_Id;
8558 Ent : Entity_Id;
8559
8560 begin
8561 -- Itypes that describe the designated type of access to subprograms
8562 -- have the structure of subprogram declarations, with signatures,
8563 -- etc. Either we duplicate the signatures completely, or choose to
8564 -- share such itypes, which is fine because their elaboration will
8565 -- have no side effects.
8566
8567 if Ekind (Old_Itype) = E_Subprogram_Type then
8568 return;
8569 end if;
8570
8571 New_Itype := New_Copy (Old_Itype);
8572
8573 -- The new Itype has all the attributes of the old one, and
8574 -- we just copy the contents of the entity. However, the back-end
8575 -- needs different names for debugging purposes, so we create a
8576 -- new internal name for it in all cases.
8577
8578 Set_Chars (New_Itype, New_Internal_Name ('T'));
8579
8580 -- If our associated node is an entity that has already been copied,
8581 -- then set the associated node of the copy to point to the right
8582 -- copy. If we have copied an Itype that is itself the associated
8583 -- node of some previously copied Itype, then we set the right
8584 -- pointer in the other direction.
8585
8586 if Present (Actual_Map) then
8587
8588 -- Case of hash tables used
8589
8590 if NCT_Hash_Tables_Used then
8591
8592 Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
8593
8594 if Present (Ent) then
8595 Set_Associated_Node_For_Itype (New_Itype, Ent);
8596 end if;
8597
8598 Ent := NCT_Itype_Assoc.Get (Old_Itype);
8599 if Present (Ent) then
8600 Set_Associated_Node_For_Itype (Ent, New_Itype);
8601
8602 -- If the hash table has no association for this Itype and
8603 -- its associated node, enter one now.
8604
8605 else
8606 NCT_Itype_Assoc.Set
8607 (Associated_Node_For_Itype (Old_Itype), New_Itype);
8608 end if;
8609
8610 -- Case of hash tables not used
8611
8612 else
8613 E := First_Elmt (Actual_Map);
8614 while Present (E) loop
8615 if Associated_Node_For_Itype (Old_Itype) = Node (E) then
8616 Set_Associated_Node_For_Itype
8617 (New_Itype, Node (Next_Elmt (E)));
8618 end if;
8619
8620 if Is_Type (Node (E))
8621 and then
8622 Old_Itype = Associated_Node_For_Itype (Node (E))
8623 then
8624 Set_Associated_Node_For_Itype
8625 (Node (Next_Elmt (E)), New_Itype);
8626 end if;
8627
8628 E := Next_Elmt (Next_Elmt (E));
8629 end loop;
8630 end if;
8631 end if;
8632
8633 if Present (Freeze_Node (New_Itype)) then
8634 Set_Is_Frozen (New_Itype, False);
8635 Set_Freeze_Node (New_Itype, Empty);
8636 end if;
8637
8638 -- Add new association to map
8639
8640 if No (Actual_Map) then
8641 Actual_Map := New_Elmt_List;
8642 end if;
8643
8644 Append_Elmt (Old_Itype, Actual_Map);
8645 Append_Elmt (New_Itype, Actual_Map);
8646
8647 if NCT_Hash_Tables_Used then
8648 NCT_Assoc.Set (Old_Itype, New_Itype);
8649
8650 else
8651 NCT_Table_Entries := NCT_Table_Entries + 1;
8652
8653 if NCT_Table_Entries > NCT_Hash_Threshhold then
8654 Build_NCT_Hash_Tables;
8655 end if;
8656 end if;
8657
8658 -- If a record subtype is simply copied, the entity list will be
8659 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
8660
8661 if Ekind (Old_Itype) = E_Record_Subtype
8662 or else Ekind (Old_Itype) = E_Class_Wide_Subtype
8663 then
8664 Set_Cloned_Subtype (New_Itype, Old_Itype);
8665 end if;
8666
8667 -- Visit descendents that eventually get copied
8668
8669 Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
8670
8671 if Is_Discrete_Type (Old_Itype) then
8672 Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
8673
8674 elsif Has_Discriminants (Base_Type (Old_Itype)) then
8675 -- ??? This should involve call to Visit_Field
8676 Visit_Elist (Discriminant_Constraint (Old_Itype));
8677
8678 elsif Is_Array_Type (Old_Itype) then
8679 if Present (First_Index (Old_Itype)) then
8680 Visit_Field (Union_Id (List_Containing
8681 (First_Index (Old_Itype))),
8682 Old_Itype);
8683 end if;
8684
8685 if Is_Packed (Old_Itype) then
8686 Visit_Field (Union_Id (Packed_Array_Type (Old_Itype)),
8687 Old_Itype);
8688 end if;
8689 end if;
8690 end Visit_Itype;
8691
8692 ----------------
8693 -- Visit_List --
8694 ----------------
8695
8696 procedure Visit_List (L : List_Id) is
8697 N : Node_Id;
8698 begin
8699 if L /= No_List then
8700 N := First (L);
8701
8702 while Present (N) loop
8703 Visit_Node (N);
8704 Next (N);
8705 end loop;
8706 end if;
8707 end Visit_List;
8708
8709 ----------------
8710 -- Visit_Node --
8711 ----------------
8712
8713 procedure Visit_Node (N : Node_Or_Entity_Id) is
8714
8715 -- Start of processing for Visit_Node
8716
8717 begin
8718 -- Handle case of an Itype, which must be copied
8719
8720 if Has_Extension (N)
8721 and then Is_Itype (N)
8722 then
8723 -- Nothing to do if already in the list. This can happen with an
8724 -- Itype entity that appears more than once in the tree.
8725 -- Note that we do not want to visit descendents in this case.
8726
8727 -- Test for already in list when hash table is used
8728
8729 if NCT_Hash_Tables_Used then
8730 if Present (NCT_Assoc.Get (Entity_Id (N))) then
8731 return;
8732 end if;
8733
8734 -- Test for already in list when hash table not used
8735
8736 else
8737 declare
8738 E : Elmt_Id;
8739 begin
8740 if Present (Actual_Map) then
8741 E := First_Elmt (Actual_Map);
8742 while Present (E) loop
8743 if Node (E) = N then
8744 return;
8745 else
8746 E := Next_Elmt (Next_Elmt (E));
8747 end if;
8748 end loop;
8749 end if;
8750 end;
8751 end if;
8752
8753 Visit_Itype (N);
8754 end if;
8755
8756 -- Visit descendents
8757
8758 Visit_Field (Field1 (N), N);
8759 Visit_Field (Field2 (N), N);
8760 Visit_Field (Field3 (N), N);
8761 Visit_Field (Field4 (N), N);
8762 Visit_Field (Field5 (N), N);
8763 end Visit_Node;
8764
8765 -- Start of processing for New_Copy_Tree
8766
8767 begin
8768 Actual_Map := Map;
8769
8770 -- See if we should use hash table
8771
8772 if No (Actual_Map) then
8773 NCT_Hash_Tables_Used := False;
8774
8775 else
8776 declare
8777 Elmt : Elmt_Id;
8778
8779 begin
8780 NCT_Table_Entries := 0;
8781
8782 Elmt := First_Elmt (Actual_Map);
8783 while Present (Elmt) loop
8784 NCT_Table_Entries := NCT_Table_Entries + 1;
8785 Next_Elmt (Elmt);
8786 Next_Elmt (Elmt);
8787 end loop;
8788
8789 if NCT_Table_Entries > NCT_Hash_Threshhold then
8790 Build_NCT_Hash_Tables;
8791 else
8792 NCT_Hash_Tables_Used := False;
8793 end if;
8794 end;
8795 end if;
8796
8797 -- Hash table set up if required, now start phase one by visiting
8798 -- top node (we will recursively visit the descendents).
8799
8800 Visit_Node (Source);
8801
8802 -- Now the second phase of the copy can start. First we process
8803 -- all the mapped entities, copying their descendents.
8804
8805 if Present (Actual_Map) then
8806 declare
8807 Elmt : Elmt_Id;
8808 New_Itype : Entity_Id;
8809 begin
8810 Elmt := First_Elmt (Actual_Map);
8811 while Present (Elmt) loop
8812 Next_Elmt (Elmt);
8813 New_Itype := Node (Elmt);
8814 Copy_Itype_With_Replacement (New_Itype);
8815 Next_Elmt (Elmt);
8816 end loop;
8817 end;
8818 end if;
8819
8820 -- Now we can copy the actual tree
8821
8822 return Copy_Node_With_Replacement (Source);
8823 end New_Copy_Tree;
8824
8825 -------------------------
8826 -- New_External_Entity --
8827 -------------------------
8828
8829 function New_External_Entity
8830 (Kind : Entity_Kind;
8831 Scope_Id : Entity_Id;
8832 Sloc_Value : Source_Ptr;
8833 Related_Id : Entity_Id;
8834 Suffix : Character;
8835 Suffix_Index : Nat := 0;
8836 Prefix : Character := ' ') return Entity_Id
8837 is
8838 N : constant Entity_Id :=
8839 Make_Defining_Identifier (Sloc_Value,
8840 New_External_Name
8841 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
8842
8843 begin
8844 Set_Ekind (N, Kind);
8845 Set_Is_Internal (N, True);
8846 Append_Entity (N, Scope_Id);
8847 Set_Public_Status (N);
8848
8849 if Kind in Type_Kind then
8850 Init_Size_Align (N);
8851 end if;
8852
8853 return N;
8854 end New_External_Entity;
8855
8856 -------------------------
8857 -- New_Internal_Entity --
8858 -------------------------
8859
8860 function New_Internal_Entity
8861 (Kind : Entity_Kind;
8862 Scope_Id : Entity_Id;
8863 Sloc_Value : Source_Ptr;
8864 Id_Char : Character) return Entity_Id
8865 is
8866 N : constant Entity_Id :=
8867 Make_Defining_Identifier (Sloc_Value, New_Internal_Name (Id_Char));
8868
8869 begin
8870 Set_Ekind (N, Kind);
8871 Set_Is_Internal (N, True);
8872 Append_Entity (N, Scope_Id);
8873
8874 if Kind in Type_Kind then
8875 Init_Size_Align (N);
8876 end if;
8877
8878 return N;
8879 end New_Internal_Entity;
8880
8881 -----------------
8882 -- Next_Actual --
8883 -----------------
8884
8885 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
8886 N : Node_Id;
8887
8888 begin
8889 -- If we are pointing at a positional parameter, it is a member of a
8890 -- node list (the list of parameters), and the next parameter is the
8891 -- next node on the list, unless we hit a parameter association, then
8892 -- we shift to using the chain whose head is the First_Named_Actual in
8893 -- the parent, and then is threaded using the Next_Named_Actual of the
8894 -- Parameter_Association. All this fiddling is because the original node
8895 -- list is in the textual call order, and what we need is the
8896 -- declaration order.
8897
8898 if Is_List_Member (Actual_Id) then
8899 N := Next (Actual_Id);
8900
8901 if Nkind (N) = N_Parameter_Association then
8902 return First_Named_Actual (Parent (Actual_Id));
8903 else
8904 return N;
8905 end if;
8906
8907 else
8908 return Next_Named_Actual (Parent (Actual_Id));
8909 end if;
8910 end Next_Actual;
8911
8912 procedure Next_Actual (Actual_Id : in out Node_Id) is
8913 begin
8914 Actual_Id := Next_Actual (Actual_Id);
8915 end Next_Actual;
8916
8917 -----------------------
8918 -- Normalize_Actuals --
8919 -----------------------
8920
8921 -- Chain actuals according to formals of subprogram. If there are no named
8922 -- associations, the chain is simply the list of Parameter Associations,
8923 -- since the order is the same as the declaration order. If there are named
8924 -- associations, then the First_Named_Actual field in the N_Function_Call
8925 -- or N_Procedure_Call_Statement node points to the Parameter_Association
8926 -- node for the parameter that comes first in declaration order. The
8927 -- remaining named parameters are then chained in declaration order using
8928 -- Next_Named_Actual.
8929
8930 -- This routine also verifies that the number of actuals is compatible with
8931 -- the number and default values of formals, but performs no type checking
8932 -- (type checking is done by the caller).
8933
8934 -- If the matching succeeds, Success is set to True and the caller proceeds
8935 -- with type-checking. If the match is unsuccessful, then Success is set to
8936 -- False, and the caller attempts a different interpretation, if there is
8937 -- one.
8938
8939 -- If the flag Report is on, the call is not overloaded, and a failure to
8940 -- match can be reported here, rather than in the caller.
8941
8942 procedure Normalize_Actuals
8943 (N : Node_Id;
8944 S : Entity_Id;
8945 Report : Boolean;
8946 Success : out Boolean)
8947 is
8948 Actuals : constant List_Id := Parameter_Associations (N);
8949 Actual : Node_Id := Empty;
8950 Formal : Entity_Id;
8951 Last : Node_Id := Empty;
8952 First_Named : Node_Id := Empty;
8953 Found : Boolean;
8954
8955 Formals_To_Match : Integer := 0;
8956 Actuals_To_Match : Integer := 0;
8957
8958 procedure Chain (A : Node_Id);
8959 -- Add named actual at the proper place in the list, using the
8960 -- Next_Named_Actual link.
8961
8962 function Reporting return Boolean;
8963 -- Determines if an error is to be reported. To report an error, we
8964 -- need Report to be True, and also we do not report errors caused
8965 -- by calls to init procs that occur within other init procs. Such
8966 -- errors must always be cascaded errors, since if all the types are
8967 -- declared correctly, the compiler will certainly build decent calls!
8968
8969 -----------
8970 -- Chain --
8971 -----------
8972
8973 procedure Chain (A : Node_Id) is
8974 begin
8975 if No (Last) then
8976
8977 -- Call node points to first actual in list
8978
8979 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
8980
8981 else
8982 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
8983 end if;
8984
8985 Last := A;
8986 Set_Next_Named_Actual (Last, Empty);
8987 end Chain;
8988
8989 ---------------
8990 -- Reporting --
8991 ---------------
8992
8993 function Reporting return Boolean is
8994 begin
8995 if not Report then
8996 return False;
8997
8998 elsif not Within_Init_Proc then
8999 return True;
9000
9001 elsif Is_Init_Proc (Entity (Name (N))) then
9002 return False;
9003
9004 else
9005 return True;
9006 end if;
9007 end Reporting;
9008
9009 -- Start of processing for Normalize_Actuals
9010
9011 begin
9012 if Is_Access_Type (S) then
9013
9014 -- The name in the call is a function call that returns an access
9015 -- to subprogram. The designated type has the list of formals.
9016
9017 Formal := First_Formal (Designated_Type (S));
9018 else
9019 Formal := First_Formal (S);
9020 end if;
9021
9022 while Present (Formal) loop
9023 Formals_To_Match := Formals_To_Match + 1;
9024 Next_Formal (Formal);
9025 end loop;
9026
9027 -- Find if there is a named association, and verify that no positional
9028 -- associations appear after named ones.
9029
9030 if Present (Actuals) then
9031 Actual := First (Actuals);
9032 end if;
9033
9034 while Present (Actual)
9035 and then Nkind (Actual) /= N_Parameter_Association
9036 loop
9037 Actuals_To_Match := Actuals_To_Match + 1;
9038 Next (Actual);
9039 end loop;
9040
9041 if No (Actual) and Actuals_To_Match = Formals_To_Match then
9042
9043 -- Most common case: positional notation, no defaults
9044
9045 Success := True;
9046 return;
9047
9048 elsif Actuals_To_Match > Formals_To_Match then
9049
9050 -- Too many actuals: will not work
9051
9052 if Reporting then
9053 if Is_Entity_Name (Name (N)) then
9054 Error_Msg_N ("too many arguments in call to&", Name (N));
9055 else
9056 Error_Msg_N ("too many arguments in call", N);
9057 end if;
9058 end if;
9059
9060 Success := False;
9061 return;
9062 end if;
9063
9064 First_Named := Actual;
9065
9066 while Present (Actual) loop
9067 if Nkind (Actual) /= N_Parameter_Association then
9068 Error_Msg_N
9069 ("positional parameters not allowed after named ones", Actual);
9070 Success := False;
9071 return;
9072
9073 else
9074 Actuals_To_Match := Actuals_To_Match + 1;
9075 end if;
9076
9077 Next (Actual);
9078 end loop;
9079
9080 if Present (Actuals) then
9081 Actual := First (Actuals);
9082 end if;
9083
9084 Formal := First_Formal (S);
9085 while Present (Formal) loop
9086
9087 -- Match the formals in order. If the corresponding actual is
9088 -- positional, nothing to do. Else scan the list of named actuals
9089 -- to find the one with the right name.
9090
9091 if Present (Actual)
9092 and then Nkind (Actual) /= N_Parameter_Association
9093 then
9094 Next (Actual);
9095 Actuals_To_Match := Actuals_To_Match - 1;
9096 Formals_To_Match := Formals_To_Match - 1;
9097
9098 else
9099 -- For named parameters, search the list of actuals to find
9100 -- one that matches the next formal name.
9101
9102 Actual := First_Named;
9103 Found := False;
9104 while Present (Actual) loop
9105 if Chars (Selector_Name (Actual)) = Chars (Formal) then
9106 Found := True;
9107 Chain (Actual);
9108 Actuals_To_Match := Actuals_To_Match - 1;
9109 Formals_To_Match := Formals_To_Match - 1;
9110 exit;
9111 end if;
9112
9113 Next (Actual);
9114 end loop;
9115
9116 if not Found then
9117 if Ekind (Formal) /= E_In_Parameter
9118 or else No (Default_Value (Formal))
9119 then
9120 if Reporting then
9121 if (Comes_From_Source (S)
9122 or else Sloc (S) = Standard_Location)
9123 and then Is_Overloadable (S)
9124 then
9125 if No (Actuals)
9126 and then
9127 (Nkind (Parent (N)) = N_Procedure_Call_Statement
9128 or else
9129 (Nkind (Parent (N)) = N_Function_Call
9130 or else
9131 Nkind (Parent (N)) = N_Parameter_Association))
9132 and then Ekind (S) /= E_Function
9133 then
9134 Set_Etype (N, Etype (S));
9135 else
9136 Error_Msg_Name_1 := Chars (S);
9137 Error_Msg_Sloc := Sloc (S);
9138 Error_Msg_NE
9139 ("missing argument for parameter & " &
9140 "in call to % declared #", N, Formal);
9141 end if;
9142
9143 elsif Is_Overloadable (S) then
9144 Error_Msg_Name_1 := Chars (S);
9145
9146 -- Point to type derivation that generated the
9147 -- operation.
9148
9149 Error_Msg_Sloc := Sloc (Parent (S));
9150
9151 Error_Msg_NE
9152 ("missing argument for parameter & " &
9153 "in call to % (inherited) #", N, Formal);
9154
9155 else
9156 Error_Msg_NE
9157 ("missing argument for parameter &", N, Formal);
9158 end if;
9159 end if;
9160
9161 Success := False;
9162 return;
9163
9164 else
9165 Formals_To_Match := Formals_To_Match - 1;
9166 end if;
9167 end if;
9168 end if;
9169
9170 Next_Formal (Formal);
9171 end loop;
9172
9173 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
9174 Success := True;
9175 return;
9176
9177 else
9178 if Reporting then
9179
9180 -- Find some superfluous named actual that did not get
9181 -- attached to the list of associations.
9182
9183 Actual := First (Actuals);
9184 while Present (Actual) loop
9185 if Nkind (Actual) = N_Parameter_Association
9186 and then Actual /= Last
9187 and then No (Next_Named_Actual (Actual))
9188 then
9189 Error_Msg_N ("unmatched actual & in call",
9190 Selector_Name (Actual));
9191 exit;
9192 end if;
9193
9194 Next (Actual);
9195 end loop;
9196 end if;
9197
9198 Success := False;
9199 return;
9200 end if;
9201 end Normalize_Actuals;
9202
9203 --------------------------------
9204 -- Note_Possible_Modification --
9205 --------------------------------
9206
9207 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
9208 Modification_Comes_From_Source : constant Boolean :=
9209 Comes_From_Source (Parent (N));
9210
9211 Ent : Entity_Id;
9212 Exp : Node_Id;
9213
9214 begin
9215 -- Loop to find referenced entity, if there is one
9216
9217 Exp := N;
9218 loop
9219 <<Continue>>
9220 Ent := Empty;
9221
9222 if Is_Entity_Name (Exp) then
9223 Ent := Entity (Exp);
9224
9225 -- If the entity is missing, it is an undeclared identifier,
9226 -- and there is nothing to annotate.
9227
9228 if No (Ent) then
9229 return;
9230 end if;
9231
9232 elsif Nkind (Exp) = N_Explicit_Dereference then
9233 declare
9234 P : constant Node_Id := Prefix (Exp);
9235
9236 begin
9237 if Nkind (P) = N_Selected_Component
9238 and then Present (
9239 Entry_Formal (Entity (Selector_Name (P))))
9240 then
9241 -- Case of a reference to an entry formal
9242
9243 Ent := Entry_Formal (Entity (Selector_Name (P)));
9244
9245 elsif Nkind (P) = N_Identifier
9246 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
9247 and then Present (Expression (Parent (Entity (P))))
9248 and then Nkind (Expression (Parent (Entity (P))))
9249 = N_Reference
9250 then
9251 -- Case of a reference to a value on which side effects have
9252 -- been removed.
9253
9254 Exp := Prefix (Expression (Parent (Entity (P))));
9255 goto Continue;
9256
9257 else
9258 return;
9259
9260 end if;
9261 end;
9262
9263 elsif Nkind (Exp) = N_Type_Conversion
9264 or else Nkind (Exp) = N_Unchecked_Type_Conversion
9265 then
9266 Exp := Expression (Exp);
9267 goto Continue;
9268
9269 elsif Nkind (Exp) = N_Slice
9270 or else Nkind (Exp) = N_Indexed_Component
9271 or else Nkind (Exp) = N_Selected_Component
9272 then
9273 Exp := Prefix (Exp);
9274 goto Continue;
9275
9276 else
9277 return;
9278 end if;
9279
9280 -- Now look for entity being referenced
9281
9282 if Present (Ent) then
9283 if Is_Object (Ent) then
9284 if Comes_From_Source (Exp)
9285 or else Modification_Comes_From_Source
9286 then
9287 if Has_Pragma_Unmodified (Ent) then
9288 Error_Msg_NE ("?pragma Unmodified given for &!", N, Ent);
9289 end if;
9290
9291 Set_Never_Set_In_Source (Ent, False);
9292 end if;
9293
9294 Set_Is_True_Constant (Ent, False);
9295 Set_Current_Value (Ent, Empty);
9296 Set_Is_Known_Null (Ent, False);
9297
9298 if not Can_Never_Be_Null (Ent) then
9299 Set_Is_Known_Non_Null (Ent, False);
9300 end if;
9301
9302 -- Follow renaming chain
9303
9304 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
9305 and then Present (Renamed_Object (Ent))
9306 then
9307 Exp := Renamed_Object (Ent);
9308 goto Continue;
9309 end if;
9310
9311 -- Generate a reference only if the assignment comes from
9312 -- source. This excludes, for example, calls to a dispatching
9313 -- assignment operation when the left-hand side is tagged.
9314
9315 if Modification_Comes_From_Source then
9316 Generate_Reference (Ent, Exp, 'm');
9317 end if;
9318
9319 Check_Nested_Access (Ent);
9320 end if;
9321
9322 Kill_Checks (Ent);
9323
9324 -- If we are sure this is a modification from source, and we know
9325 -- this modifies a constant, then give an appropriate warning.
9326
9327 if Overlays_Constant (Ent)
9328 and then Modification_Comes_From_Source
9329 and then Sure
9330 then
9331 declare
9332 A : constant Node_Id := Address_Clause (Ent);
9333 begin
9334 if Present (A) then
9335 declare
9336 Exp : constant Node_Id := Expression (A);
9337 begin
9338 if Nkind (Exp) = N_Attribute_Reference
9339 and then Attribute_Name (Exp) = Name_Address
9340 and then Is_Entity_Name (Prefix (Exp))
9341 then
9342 Error_Msg_Sloc := Sloc (A);
9343 Error_Msg_NE
9344 ("constant& may be modified via address clause#?",
9345 N, Entity (Prefix (Exp)));
9346 end if;
9347 end;
9348 end if;
9349 end;
9350 end if;
9351
9352 return;
9353 end if;
9354 end loop;
9355 end Note_Possible_Modification;
9356
9357 -------------------------
9358 -- Object_Access_Level --
9359 -------------------------
9360
9361 function Object_Access_Level (Obj : Node_Id) return Uint is
9362 E : Entity_Id;
9363
9364 -- Returns the static accessibility level of the view denoted by Obj. Note
9365 -- that the value returned is the result of a call to Scope_Depth. Only
9366 -- scope depths associated with dynamic scopes can actually be returned.
9367 -- Since only relative levels matter for accessibility checking, the fact
9368 -- that the distance between successive levels of accessibility is not
9369 -- always one is immaterial (invariant: if level(E2) is deeper than
9370 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
9371
9372 function Reference_To (Obj : Node_Id) return Node_Id;
9373 -- An explicit dereference is created when removing side-effects from
9374 -- expressions for constraint checking purposes. In this case a local
9375 -- access type is created for it. The correct access level is that of
9376 -- the original source node. We detect this case by noting that the
9377 -- prefix of the dereference is created by an object declaration whose
9378 -- initial expression is a reference.
9379
9380 ------------------
9381 -- Reference_To --
9382 ------------------
9383
9384 function Reference_To (Obj : Node_Id) return Node_Id is
9385 Pref : constant Node_Id := Prefix (Obj);
9386 begin
9387 if Is_Entity_Name (Pref)
9388 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
9389 and then Present (Expression (Parent (Entity (Pref))))
9390 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
9391 then
9392 return (Prefix (Expression (Parent (Entity (Pref)))));
9393 else
9394 return Empty;
9395 end if;
9396 end Reference_To;
9397
9398 -- Start of processing for Object_Access_Level
9399
9400 begin
9401 if Is_Entity_Name (Obj) then
9402 E := Entity (Obj);
9403
9404 if Is_Prival (E) then
9405 E := Prival_Link (E);
9406 end if;
9407
9408 -- If E is a type then it denotes a current instance. For this case
9409 -- we add one to the normal accessibility level of the type to ensure
9410 -- that current instances are treated as always being deeper than
9411 -- than the level of any visible named access type (see 3.10.2(21)).
9412
9413 if Is_Type (E) then
9414 return Type_Access_Level (E) + 1;
9415
9416 elsif Present (Renamed_Object (E)) then
9417 return Object_Access_Level (Renamed_Object (E));
9418
9419 -- Similarly, if E is a component of the current instance of a
9420 -- protected type, any instance of it is assumed to be at a deeper
9421 -- level than the type. For a protected object (whose type is an
9422 -- anonymous protected type) its components are at the same level
9423 -- as the type itself.
9424
9425 elsif not Is_Overloadable (E)
9426 and then Ekind (Scope (E)) = E_Protected_Type
9427 and then Comes_From_Source (Scope (E))
9428 then
9429 return Type_Access_Level (Scope (E)) + 1;
9430
9431 else
9432 return Scope_Depth (Enclosing_Dynamic_Scope (E));
9433 end if;
9434
9435 elsif Nkind (Obj) = N_Selected_Component then
9436 if Is_Access_Type (Etype (Prefix (Obj))) then
9437 return Type_Access_Level (Etype (Prefix (Obj)));
9438 else
9439 return Object_Access_Level (Prefix (Obj));
9440 end if;
9441
9442 elsif Nkind (Obj) = N_Indexed_Component then
9443 if Is_Access_Type (Etype (Prefix (Obj))) then
9444 return Type_Access_Level (Etype (Prefix (Obj)));
9445 else
9446 return Object_Access_Level (Prefix (Obj));
9447 end if;
9448
9449 elsif Nkind (Obj) = N_Explicit_Dereference then
9450
9451 -- If the prefix is a selected access discriminant then we make a
9452 -- recursive call on the prefix, which will in turn check the level
9453 -- of the prefix object of the selected discriminant.
9454
9455 if Nkind (Prefix (Obj)) = N_Selected_Component
9456 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
9457 and then
9458 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
9459 then
9460 return Object_Access_Level (Prefix (Obj));
9461
9462 elsif not (Comes_From_Source (Obj)) then
9463 declare
9464 Ref : constant Node_Id := Reference_To (Obj);
9465 begin
9466 if Present (Ref) then
9467 return Object_Access_Level (Ref);
9468 else
9469 return Type_Access_Level (Etype (Prefix (Obj)));
9470 end if;
9471 end;
9472
9473 else
9474 return Type_Access_Level (Etype (Prefix (Obj)));
9475 end if;
9476
9477 elsif Nkind (Obj) = N_Type_Conversion
9478 or else Nkind (Obj) = N_Unchecked_Type_Conversion
9479 then
9480 return Object_Access_Level (Expression (Obj));
9481
9482 -- Function results are objects, so we get either the access level of
9483 -- the function or, in the case of an indirect call, the level of the
9484 -- access-to-subprogram type.
9485
9486 elsif Nkind (Obj) = N_Function_Call then
9487 if Is_Entity_Name (Name (Obj)) then
9488 return Subprogram_Access_Level (Entity (Name (Obj)));
9489 else
9490 return Type_Access_Level (Etype (Prefix (Name (Obj))));
9491 end if;
9492
9493 -- For convenience we handle qualified expressions, even though
9494 -- they aren't technically object names.
9495
9496 elsif Nkind (Obj) = N_Qualified_Expression then
9497 return Object_Access_Level (Expression (Obj));
9498
9499 -- Otherwise return the scope level of Standard.
9500 -- (If there are cases that fall through
9501 -- to this point they will be treated as
9502 -- having global accessibility for now. ???)
9503
9504 else
9505 return Scope_Depth (Standard_Standard);
9506 end if;
9507 end Object_Access_Level;
9508
9509 -----------------------
9510 -- Private_Component --
9511 -----------------------
9512
9513 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
9514 Ancestor : constant Entity_Id := Base_Type (Type_Id);
9515
9516 function Trace_Components
9517 (T : Entity_Id;
9518 Check : Boolean) return Entity_Id;
9519 -- Recursive function that does the work, and checks against circular
9520 -- definition for each subcomponent type.
9521
9522 ----------------------
9523 -- Trace_Components --
9524 ----------------------
9525
9526 function Trace_Components
9527 (T : Entity_Id;
9528 Check : Boolean) return Entity_Id
9529 is
9530 Btype : constant Entity_Id := Base_Type (T);
9531 Component : Entity_Id;
9532 P : Entity_Id;
9533 Candidate : Entity_Id := Empty;
9534
9535 begin
9536 if Check and then Btype = Ancestor then
9537 Error_Msg_N ("circular type definition", Type_Id);
9538 return Any_Type;
9539 end if;
9540
9541 if Is_Private_Type (Btype)
9542 and then not Is_Generic_Type (Btype)
9543 then
9544 if Present (Full_View (Btype))
9545 and then Is_Record_Type (Full_View (Btype))
9546 and then not Is_Frozen (Btype)
9547 then
9548 -- To indicate that the ancestor depends on a private type, the
9549 -- current Btype is sufficient. However, to check for circular
9550 -- definition we must recurse on the full view.
9551
9552 Candidate := Trace_Components (Full_View (Btype), True);
9553
9554 if Candidate = Any_Type then
9555 return Any_Type;
9556 else
9557 return Btype;
9558 end if;
9559
9560 else
9561 return Btype;
9562 end if;
9563
9564 elsif Is_Array_Type (Btype) then
9565 return Trace_Components (Component_Type (Btype), True);
9566
9567 elsif Is_Record_Type (Btype) then
9568 Component := First_Entity (Btype);
9569 while Present (Component) loop
9570
9571 -- Skip anonymous types generated by constrained components
9572
9573 if not Is_Type (Component) then
9574 P := Trace_Components (Etype (Component), True);
9575
9576 if Present (P) then
9577 if P = Any_Type then
9578 return P;
9579 else
9580 Candidate := P;
9581 end if;
9582 end if;
9583 end if;
9584
9585 Next_Entity (Component);
9586 end loop;
9587
9588 return Candidate;
9589
9590 else
9591 return Empty;
9592 end if;
9593 end Trace_Components;
9594
9595 -- Start of processing for Private_Component
9596
9597 begin
9598 return Trace_Components (Type_Id, False);
9599 end Private_Component;
9600
9601 ---------------------------
9602 -- Primitive_Names_Match --
9603 ---------------------------
9604
9605 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
9606
9607 function Non_Internal_Name (E : Entity_Id) return Name_Id;
9608 -- Given an internal name, returns the corresponding non-internal name
9609
9610 ------------------------
9611 -- Non_Internal_Name --
9612 ------------------------
9613
9614 function Non_Internal_Name (E : Entity_Id) return Name_Id is
9615 begin
9616 Get_Name_String (Chars (E));
9617 Name_Len := Name_Len - 1;
9618 return Name_Find;
9619 end Non_Internal_Name;
9620
9621 -- Start of processing for Primitive_Names_Match
9622
9623 begin
9624 pragma Assert (Present (E1) and then Present (E2));
9625
9626 return Chars (E1) = Chars (E2)
9627 or else
9628 (not Is_Internal_Name (Chars (E1))
9629 and then Is_Internal_Name (Chars (E2))
9630 and then Non_Internal_Name (E2) = Chars (E1))
9631 or else
9632 (not Is_Internal_Name (Chars (E2))
9633 and then Is_Internal_Name (Chars (E1))
9634 and then Non_Internal_Name (E1) = Chars (E2))
9635 or else
9636 (Is_Predefined_Dispatching_Operation (E1)
9637 and then Is_Predefined_Dispatching_Operation (E2)
9638 and then Same_TSS (E1, E2))
9639 or else
9640 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
9641 end Primitive_Names_Match;
9642
9643 -----------------------
9644 -- Process_End_Label --
9645 -----------------------
9646
9647 procedure Process_End_Label
9648 (N : Node_Id;
9649 Typ : Character;
9650 Ent : Entity_Id)
9651 is
9652 Loc : Source_Ptr;
9653 Nam : Node_Id;
9654 Scop : Entity_Id;
9655
9656 Label_Ref : Boolean;
9657 -- Set True if reference to end label itself is required
9658
9659 Endl : Node_Id;
9660 -- Gets set to the operator symbol or identifier that references the
9661 -- entity Ent. For the child unit case, this is the identifier from the
9662 -- designator. For other cases, this is simply Endl.
9663
9664 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
9665 -- N is an identifier node that appears as a parent unit reference in
9666 -- the case where Ent is a child unit. This procedure generates an
9667 -- appropriate cross-reference entry. E is the corresponding entity.
9668
9669 -------------------------
9670 -- Generate_Parent_Ref --
9671 -------------------------
9672
9673 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
9674 begin
9675 -- If names do not match, something weird, skip reference
9676
9677 if Chars (E) = Chars (N) then
9678
9679 -- Generate the reference. We do NOT consider this as a reference
9680 -- for unreferenced symbol purposes.
9681
9682 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
9683
9684 if Style_Check then
9685 Style.Check_Identifier (N, E);
9686 end if;
9687 end if;
9688 end Generate_Parent_Ref;
9689
9690 -- Start of processing for Process_End_Label
9691
9692 begin
9693 -- If no node, ignore. This happens in some error situations, and
9694 -- also for some internally generated structures where no end label
9695 -- references are required in any case.
9696
9697 if No (N) then
9698 return;
9699 end if;
9700
9701 -- Nothing to do if no End_Label, happens for internally generated
9702 -- constructs where we don't want an end label reference anyway. Also
9703 -- nothing to do if Endl is a string literal, which means there was
9704 -- some prior error (bad operator symbol)
9705
9706 Endl := End_Label (N);
9707
9708 if No (Endl) or else Nkind (Endl) = N_String_Literal then
9709 return;
9710 end if;
9711
9712 -- Reference node is not in extended main source unit
9713
9714 if not In_Extended_Main_Source_Unit (N) then
9715
9716 -- Generally we do not collect references except for the extended
9717 -- main source unit. The one exception is the 'e' entry for a
9718 -- package spec, where it is useful for a client to have the
9719 -- ending information to define scopes.
9720
9721 if Typ /= 'e' then
9722 return;
9723
9724 else
9725 Label_Ref := False;
9726
9727 -- For this case, we can ignore any parent references, but we
9728 -- need the package name itself for the 'e' entry.
9729
9730 if Nkind (Endl) = N_Designator then
9731 Endl := Identifier (Endl);
9732 end if;
9733 end if;
9734
9735 -- Reference is in extended main source unit
9736
9737 else
9738 Label_Ref := True;
9739
9740 -- For designator, generate references for the parent entries
9741
9742 if Nkind (Endl) = N_Designator then
9743
9744 -- Generate references for the prefix if the END line comes from
9745 -- source (otherwise we do not need these references) We climb the
9746 -- scope stack to find the expected entities.
9747
9748 if Comes_From_Source (Endl) then
9749 Nam := Name (Endl);
9750 Scop := Current_Scope;
9751 while Nkind (Nam) = N_Selected_Component loop
9752 Scop := Scope (Scop);
9753 exit when No (Scop);
9754 Generate_Parent_Ref (Selector_Name (Nam), Scop);
9755 Nam := Prefix (Nam);
9756 end loop;
9757
9758 if Present (Scop) then
9759 Generate_Parent_Ref (Nam, Scope (Scop));
9760 end if;
9761 end if;
9762
9763 Endl := Identifier (Endl);
9764 end if;
9765 end if;
9766
9767 -- If the end label is not for the given entity, then either we have
9768 -- some previous error, or this is a generic instantiation for which
9769 -- we do not need to make a cross-reference in this case anyway. In
9770 -- either case we simply ignore the call.
9771
9772 if Chars (Ent) /= Chars (Endl) then
9773 return;
9774 end if;
9775
9776 -- If label was really there, then generate a normal reference and then
9777 -- adjust the location in the end label to point past the name (which
9778 -- should almost always be the semicolon).
9779
9780 Loc := Sloc (Endl);
9781
9782 if Comes_From_Source (Endl) then
9783
9784 -- If a label reference is required, then do the style check and
9785 -- generate an l-type cross-reference entry for the label
9786
9787 if Label_Ref then
9788 if Style_Check then
9789 Style.Check_Identifier (Endl, Ent);
9790 end if;
9791
9792 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
9793 end if;
9794
9795 -- Set the location to point past the label (normally this will
9796 -- mean the semicolon immediately following the label). This is
9797 -- done for the sake of the 'e' or 't' entry generated below.
9798
9799 Get_Decoded_Name_String (Chars (Endl));
9800 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
9801 end if;
9802
9803 -- Now generate the e/t reference
9804
9805 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
9806
9807 -- Restore Sloc, in case modified above, since we have an identifier
9808 -- and the normal Sloc should be left set in the tree.
9809
9810 Set_Sloc (Endl, Loc);
9811 end Process_End_Label;
9812
9813 ------------------
9814 -- Real_Convert --
9815 ------------------
9816
9817 -- We do the conversion to get the value of the real string by using
9818 -- the scanner, see Sinput for details on use of the internal source
9819 -- buffer for scanning internal strings.
9820
9821 function Real_Convert (S : String) return Node_Id is
9822 Save_Src : constant Source_Buffer_Ptr := Source;
9823 Negative : Boolean;
9824
9825 begin
9826 Source := Internal_Source_Ptr;
9827 Scan_Ptr := 1;
9828
9829 for J in S'Range loop
9830 Source (Source_Ptr (J)) := S (J);
9831 end loop;
9832
9833 Source (S'Length + 1) := EOF;
9834
9835 if Source (Scan_Ptr) = '-' then
9836 Negative := True;
9837 Scan_Ptr := Scan_Ptr + 1;
9838 else
9839 Negative := False;
9840 end if;
9841
9842 Scan;
9843
9844 if Negative then
9845 Set_Realval (Token_Node, UR_Negate (Realval (Token_Node)));
9846 end if;
9847
9848 Source := Save_Src;
9849 return Token_Node;
9850 end Real_Convert;
9851
9852 ------------------------------------
9853 -- References_Generic_Formal_Type --
9854 ------------------------------------
9855
9856 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
9857
9858 function Process (N : Node_Id) return Traverse_Result;
9859 -- Process one node in search for generic formal type
9860
9861 -------------
9862 -- Process --
9863 -------------
9864
9865 function Process (N : Node_Id) return Traverse_Result is
9866 begin
9867 if Nkind (N) in N_Has_Entity then
9868 declare
9869 E : constant Entity_Id := Entity (N);
9870 begin
9871 if Present (E) then
9872 if Is_Generic_Type (E) then
9873 return Abandon;
9874 elsif Present (Etype (E))
9875 and then Is_Generic_Type (Etype (E))
9876 then
9877 return Abandon;
9878 end if;
9879 end if;
9880 end;
9881 end if;
9882
9883 return Atree.OK;
9884 end Process;
9885
9886 function Traverse is new Traverse_Func (Process);
9887 -- Traverse tree to look for generic type
9888
9889 begin
9890 if Inside_A_Generic then
9891 return Traverse (N) = Abandon;
9892 else
9893 return False;
9894 end if;
9895 end References_Generic_Formal_Type;
9896
9897 --------------------
9898 -- Remove_Homonym --
9899 --------------------
9900
9901 procedure Remove_Homonym (E : Entity_Id) is
9902 Prev : Entity_Id := Empty;
9903 H : Entity_Id;
9904
9905 begin
9906 if E = Current_Entity (E) then
9907 if Present (Homonym (E)) then
9908 Set_Current_Entity (Homonym (E));
9909 else
9910 Set_Name_Entity_Id (Chars (E), Empty);
9911 end if;
9912 else
9913 H := Current_Entity (E);
9914 while Present (H) and then H /= E loop
9915 Prev := H;
9916 H := Homonym (H);
9917 end loop;
9918
9919 Set_Homonym (Prev, Homonym (E));
9920 end if;
9921 end Remove_Homonym;
9922
9923 ---------------------
9924 -- Rep_To_Pos_Flag --
9925 ---------------------
9926
9927 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
9928 begin
9929 return New_Occurrence_Of
9930 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
9931 end Rep_To_Pos_Flag;
9932
9933 --------------------
9934 -- Require_Entity --
9935 --------------------
9936
9937 procedure Require_Entity (N : Node_Id) is
9938 begin
9939 if Is_Entity_Name (N) and then No (Entity (N)) then
9940 if Total_Errors_Detected /= 0 then
9941 Set_Entity (N, Any_Id);
9942 else
9943 raise Program_Error;
9944 end if;
9945 end if;
9946 end Require_Entity;
9947
9948 ------------------------------
9949 -- Requires_Transient_Scope --
9950 ------------------------------
9951
9952 -- A transient scope is required when variable-sized temporaries are
9953 -- allocated in the primary or secondary stack, or when finalization
9954 -- actions must be generated before the next instruction.
9955
9956 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
9957 Typ : constant Entity_Id := Underlying_Type (Id);
9958
9959 -- Start of processing for Requires_Transient_Scope
9960
9961 begin
9962 -- This is a private type which is not completed yet. This can only
9963 -- happen in a default expression (of a formal parameter or of a
9964 -- record component). Do not expand transient scope in this case
9965
9966 if No (Typ) then
9967 return False;
9968
9969 -- Do not expand transient scope for non-existent procedure return
9970
9971 elsif Typ = Standard_Void_Type then
9972 return False;
9973
9974 -- Elementary types do not require a transient scope
9975
9976 elsif Is_Elementary_Type (Typ) then
9977 return False;
9978
9979 -- Generally, indefinite subtypes require a transient scope, since the
9980 -- back end cannot generate temporaries, since this is not a valid type
9981 -- for declaring an object. It might be possible to relax this in the
9982 -- future, e.g. by declaring the maximum possible space for the type.
9983
9984 elsif Is_Indefinite_Subtype (Typ) then
9985 return True;
9986
9987 -- Functions returning tagged types may dispatch on result so their
9988 -- returned value is allocated on the secondary stack. Controlled
9989 -- type temporaries need finalization.
9990
9991 elsif Is_Tagged_Type (Typ)
9992 or else Has_Controlled_Component (Typ)
9993 then
9994 return not Is_Value_Type (Typ);
9995
9996 -- Record type
9997
9998 elsif Is_Record_Type (Typ) then
9999 declare
10000 Comp : Entity_Id;
10001 begin
10002 Comp := First_Entity (Typ);
10003 while Present (Comp) loop
10004 if Ekind (Comp) = E_Component
10005 and then Requires_Transient_Scope (Etype (Comp))
10006 then
10007 return True;
10008 else
10009 Next_Entity (Comp);
10010 end if;
10011 end loop;
10012 end;
10013
10014 return False;
10015
10016 -- String literal types never require transient scope
10017
10018 elsif Ekind (Typ) = E_String_Literal_Subtype then
10019 return False;
10020
10021 -- Array type. Note that we already know that this is a constrained
10022 -- array, since unconstrained arrays will fail the indefinite test.
10023
10024 elsif Is_Array_Type (Typ) then
10025
10026 -- If component type requires a transient scope, the array does too
10027
10028 if Requires_Transient_Scope (Component_Type (Typ)) then
10029 return True;
10030
10031 -- Otherwise, we only need a transient scope if the size is not
10032 -- known at compile time.
10033
10034 else
10035 return not Size_Known_At_Compile_Time (Typ);
10036 end if;
10037
10038 -- All other cases do not require a transient scope
10039
10040 else
10041 return False;
10042 end if;
10043 end Requires_Transient_Scope;
10044
10045 --------------------------
10046 -- Reset_Analyzed_Flags --
10047 --------------------------
10048
10049 procedure Reset_Analyzed_Flags (N : Node_Id) is
10050
10051 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
10052 -- Function used to reset Analyzed flags in tree. Note that we do
10053 -- not reset Analyzed flags in entities, since there is no need to
10054 -- reanalyze entities, and indeed, it is wrong to do so, since it
10055 -- can result in generating auxiliary stuff more than once.
10056
10057 --------------------
10058 -- Clear_Analyzed --
10059 --------------------
10060
10061 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
10062 begin
10063 if not Has_Extension (N) then
10064 Set_Analyzed (N, False);
10065 end if;
10066
10067 return OK;
10068 end Clear_Analyzed;
10069
10070 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
10071
10072 -- Start of processing for Reset_Analyzed_Flags
10073
10074 begin
10075 Reset_Analyzed (N);
10076 end Reset_Analyzed_Flags;
10077
10078 ---------------------------
10079 -- Safe_To_Capture_Value --
10080 ---------------------------
10081
10082 function Safe_To_Capture_Value
10083 (N : Node_Id;
10084 Ent : Entity_Id;
10085 Cond : Boolean := False) return Boolean
10086 is
10087 begin
10088 -- The only entities for which we track constant values are variables
10089 -- which are not renamings, constants, out parameters, and in out
10090 -- parameters, so check if we have this case.
10091
10092 -- Note: it may seem odd to track constant values for constants, but in
10093 -- fact this routine is used for other purposes than simply capturing
10094 -- the value. In particular, the setting of Known[_Non]_Null.
10095
10096 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
10097 or else
10098 Ekind (Ent) = E_Constant
10099 or else
10100 Ekind (Ent) = E_Out_Parameter
10101 or else
10102 Ekind (Ent) = E_In_Out_Parameter
10103 then
10104 null;
10105
10106 -- For conditionals, we also allow loop parameters and all formals,
10107 -- including in parameters.
10108
10109 elsif Cond
10110 and then
10111 (Ekind (Ent) = E_Loop_Parameter
10112 or else
10113 Ekind (Ent) = E_In_Parameter)
10114 then
10115 null;
10116
10117 -- For all other cases, not just unsafe, but impossible to capture
10118 -- Current_Value, since the above are the only entities which have
10119 -- Current_Value fields.
10120
10121 else
10122 return False;
10123 end if;
10124
10125 -- Skip if volatile or aliased, since funny things might be going on in
10126 -- these cases which we cannot necessarily track. Also skip any variable
10127 -- for which an address clause is given, or whose address is taken. Also
10128 -- never capture value of library level variables (an attempt to do so
10129 -- can occur in the case of package elaboration code).
10130
10131 if Treat_As_Volatile (Ent)
10132 or else Is_Aliased (Ent)
10133 or else Present (Address_Clause (Ent))
10134 or else Address_Taken (Ent)
10135 or else (Is_Library_Level_Entity (Ent)
10136 and then Ekind (Ent) = E_Variable)
10137 then
10138 return False;
10139 end if;
10140
10141 -- OK, all above conditions are met. We also require that the scope of
10142 -- the reference be the same as the scope of the entity, not counting
10143 -- packages and blocks and loops.
10144
10145 declare
10146 E_Scope : constant Entity_Id := Scope (Ent);
10147 R_Scope : Entity_Id;
10148
10149 begin
10150 R_Scope := Current_Scope;
10151 while R_Scope /= Standard_Standard loop
10152 exit when R_Scope = E_Scope;
10153
10154 if Ekind (R_Scope) /= E_Package
10155 and then
10156 Ekind (R_Scope) /= E_Block
10157 and then
10158 Ekind (R_Scope) /= E_Loop
10159 then
10160 return False;
10161 else
10162 R_Scope := Scope (R_Scope);
10163 end if;
10164 end loop;
10165 end;
10166
10167 -- We also require that the reference does not appear in a context
10168 -- where it is not sure to be executed (i.e. a conditional context
10169 -- or an exception handler). We skip this if Cond is True, since the
10170 -- capturing of values from conditional tests handles this ok.
10171
10172 if Cond then
10173 return True;
10174 end if;
10175
10176 declare
10177 Desc : Node_Id;
10178 P : Node_Id;
10179
10180 begin
10181 Desc := N;
10182
10183 P := Parent (N);
10184 while Present (P) loop
10185 if Nkind (P) = N_If_Statement
10186 or else Nkind (P) = N_Case_Statement
10187 or else (Nkind (P) in N_Short_Circuit
10188 and then Desc = Right_Opnd (P))
10189 or else (Nkind (P) = N_Conditional_Expression
10190 and then Desc /= First (Expressions (P)))
10191 or else Nkind (P) = N_Exception_Handler
10192 or else Nkind (P) = N_Selective_Accept
10193 or else Nkind (P) = N_Conditional_Entry_Call
10194 or else Nkind (P) = N_Timed_Entry_Call
10195 or else Nkind (P) = N_Asynchronous_Select
10196 then
10197 return False;
10198 else
10199 Desc := P;
10200 P := Parent (P);
10201 end if;
10202 end loop;
10203 end;
10204
10205 -- OK, looks safe to set value
10206
10207 return True;
10208 end Safe_To_Capture_Value;
10209
10210 ---------------
10211 -- Same_Name --
10212 ---------------
10213
10214 function Same_Name (N1, N2 : Node_Id) return Boolean is
10215 K1 : constant Node_Kind := Nkind (N1);
10216 K2 : constant Node_Kind := Nkind (N2);
10217
10218 begin
10219 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
10220 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
10221 then
10222 return Chars (N1) = Chars (N2);
10223
10224 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
10225 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
10226 then
10227 return Same_Name (Selector_Name (N1), Selector_Name (N2))
10228 and then Same_Name (Prefix (N1), Prefix (N2));
10229
10230 else
10231 return False;
10232 end if;
10233 end Same_Name;
10234
10235 -----------------
10236 -- Same_Object --
10237 -----------------
10238
10239 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
10240 N1 : constant Node_Id := Original_Node (Node1);
10241 N2 : constant Node_Id := Original_Node (Node2);
10242 -- We do the tests on original nodes, since we are most interested
10243 -- in the original source, not any expansion that got in the way.
10244
10245 K1 : constant Node_Kind := Nkind (N1);
10246 K2 : constant Node_Kind := Nkind (N2);
10247
10248 begin
10249 -- First case, both are entities with same entity
10250
10251 if K1 in N_Has_Entity
10252 and then K2 in N_Has_Entity
10253 and then Present (Entity (N1))
10254 and then Present (Entity (N2))
10255 and then (Ekind (Entity (N1)) = E_Variable
10256 or else
10257 Ekind (Entity (N1)) = E_Constant)
10258 and then Entity (N1) = Entity (N2)
10259 then
10260 return True;
10261
10262 -- Second case, selected component with same selector, same record
10263
10264 elsif K1 = N_Selected_Component
10265 and then K2 = N_Selected_Component
10266 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
10267 then
10268 return Same_Object (Prefix (N1), Prefix (N2));
10269
10270 -- Third case, indexed component with same subscripts, same array
10271
10272 elsif K1 = N_Indexed_Component
10273 and then K2 = N_Indexed_Component
10274 and then Same_Object (Prefix (N1), Prefix (N2))
10275 then
10276 declare
10277 E1, E2 : Node_Id;
10278 begin
10279 E1 := First (Expressions (N1));
10280 E2 := First (Expressions (N2));
10281 while Present (E1) loop
10282 if not Same_Value (E1, E2) then
10283 return False;
10284 else
10285 Next (E1);
10286 Next (E2);
10287 end if;
10288 end loop;
10289
10290 return True;
10291 end;
10292
10293 -- Fourth case, slice of same array with same bounds
10294
10295 elsif K1 = N_Slice
10296 and then K2 = N_Slice
10297 and then Nkind (Discrete_Range (N1)) = N_Range
10298 and then Nkind (Discrete_Range (N2)) = N_Range
10299 and then Same_Value (Low_Bound (Discrete_Range (N1)),
10300 Low_Bound (Discrete_Range (N2)))
10301 and then Same_Value (High_Bound (Discrete_Range (N1)),
10302 High_Bound (Discrete_Range (N2)))
10303 then
10304 return Same_Name (Prefix (N1), Prefix (N2));
10305
10306 -- All other cases, not clearly the same object
10307
10308 else
10309 return False;
10310 end if;
10311 end Same_Object;
10312
10313 ---------------
10314 -- Same_Type --
10315 ---------------
10316
10317 function Same_Type (T1, T2 : Entity_Id) return Boolean is
10318 begin
10319 if T1 = T2 then
10320 return True;
10321
10322 elsif not Is_Constrained (T1)
10323 and then not Is_Constrained (T2)
10324 and then Base_Type (T1) = Base_Type (T2)
10325 then
10326 return True;
10327
10328 -- For now don't bother with case of identical constraints, to be
10329 -- fiddled with later on perhaps (this is only used for optimization
10330 -- purposes, so it is not critical to do a best possible job)
10331
10332 else
10333 return False;
10334 end if;
10335 end Same_Type;
10336
10337 ----------------
10338 -- Same_Value --
10339 ----------------
10340
10341 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
10342 begin
10343 if Compile_Time_Known_Value (Node1)
10344 and then Compile_Time_Known_Value (Node2)
10345 and then Expr_Value (Node1) = Expr_Value (Node2)
10346 then
10347 return True;
10348 elsif Same_Object (Node1, Node2) then
10349 return True;
10350 else
10351 return False;
10352 end if;
10353 end Same_Value;
10354
10355 ------------------------
10356 -- Scope_Is_Transient --
10357 ------------------------
10358
10359 function Scope_Is_Transient return Boolean is
10360 begin
10361 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
10362 end Scope_Is_Transient;
10363
10364 ------------------
10365 -- Scope_Within --
10366 ------------------
10367
10368 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
10369 Scop : Entity_Id;
10370
10371 begin
10372 Scop := Scope1;
10373 while Scop /= Standard_Standard loop
10374 Scop := Scope (Scop);
10375
10376 if Scop = Scope2 then
10377 return True;
10378 end if;
10379 end loop;
10380
10381 return False;
10382 end Scope_Within;
10383
10384 --------------------------
10385 -- Scope_Within_Or_Same --
10386 --------------------------
10387
10388 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
10389 Scop : Entity_Id;
10390
10391 begin
10392 Scop := Scope1;
10393 while Scop /= Standard_Standard loop
10394 if Scop = Scope2 then
10395 return True;
10396 else
10397 Scop := Scope (Scop);
10398 end if;
10399 end loop;
10400
10401 return False;
10402 end Scope_Within_Or_Same;
10403
10404 --------------------
10405 -- Set_Convention --
10406 --------------------
10407
10408 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
10409 begin
10410 Basic_Set_Convention (E, Val);
10411
10412 if Is_Type (E)
10413 and then Is_Access_Subprogram_Type (Base_Type (E))
10414 and then Has_Foreign_Convention (E)
10415 then
10416 Set_Can_Use_Internal_Rep (E, False);
10417 end if;
10418 end Set_Convention;
10419
10420 ------------------------
10421 -- Set_Current_Entity --
10422 ------------------------
10423
10424 -- The given entity is to be set as the currently visible definition
10425 -- of its associated name (i.e. the Node_Id associated with its name).
10426 -- All we have to do is to get the name from the identifier, and
10427 -- then set the associated Node_Id to point to the given entity.
10428
10429 procedure Set_Current_Entity (E : Entity_Id) is
10430 begin
10431 Set_Name_Entity_Id (Chars (E), E);
10432 end Set_Current_Entity;
10433
10434 ---------------------------
10435 -- Set_Debug_Info_Needed --
10436 ---------------------------
10437
10438 procedure Set_Debug_Info_Needed (T : Entity_Id) is
10439
10440 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
10441 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
10442 -- Used to set debug info in a related node if not set already
10443
10444 --------------------------------------
10445 -- Set_Debug_Info_Needed_If_Not_Set --
10446 --------------------------------------
10447
10448 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
10449 begin
10450 if Present (E)
10451 and then not Needs_Debug_Info (E)
10452 then
10453 Set_Debug_Info_Needed (E);
10454
10455 -- For a private type, indicate that the full view also needs
10456 -- debug information.
10457
10458 if Is_Type (E)
10459 and then Is_Private_Type (E)
10460 and then Present (Full_View (E))
10461 then
10462 Set_Debug_Info_Needed (Full_View (E));
10463 end if;
10464 end if;
10465 end Set_Debug_Info_Needed_If_Not_Set;
10466
10467 -- Start of processing for Set_Debug_Info_Needed
10468
10469 begin
10470 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
10471 -- indicates that Debug_Info_Needed is never required for the entity.
10472
10473 if No (T)
10474 or else Debug_Info_Off (T)
10475 then
10476 return;
10477 end if;
10478
10479 -- Set flag in entity itself. Note that we will go through the following
10480 -- circuitry even if the flag is already set on T. That's intentional,
10481 -- it makes sure that the flag will be set in subsidiary entities.
10482
10483 Set_Needs_Debug_Info (T);
10484
10485 -- Set flag on subsidiary entities if not set already
10486
10487 if Is_Object (T) then
10488 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10489
10490 elsif Is_Type (T) then
10491 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10492
10493 if Is_Record_Type (T) then
10494 declare
10495 Ent : Entity_Id := First_Entity (T);
10496 begin
10497 while Present (Ent) loop
10498 Set_Debug_Info_Needed_If_Not_Set (Ent);
10499 Next_Entity (Ent);
10500 end loop;
10501 end;
10502
10503 -- For a class wide subtype, we also need debug information
10504 -- for the equivalent type.
10505
10506 if Ekind (T) = E_Class_Wide_Subtype then
10507 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
10508 end if;
10509
10510 elsif Is_Array_Type (T) then
10511 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
10512
10513 declare
10514 Indx : Node_Id := First_Index (T);
10515 begin
10516 while Present (Indx) loop
10517 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
10518 Indx := Next_Index (Indx);
10519 end loop;
10520 end;
10521
10522 if Is_Packed (T) then
10523 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T));
10524 end if;
10525
10526 elsif Is_Access_Type (T) then
10527 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
10528
10529 elsif Is_Private_Type (T) then
10530 Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
10531
10532 elsif Is_Protected_Type (T) then
10533 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
10534 end if;
10535 end if;
10536 end Set_Debug_Info_Needed;
10537
10538 ---------------------------------
10539 -- Set_Entity_With_Style_Check --
10540 ---------------------------------
10541
10542 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
10543 Val_Actual : Entity_Id;
10544 Nod : Node_Id;
10545
10546 begin
10547 Set_Entity (N, Val);
10548
10549 if Style_Check
10550 and then not Suppress_Style_Checks (Val)
10551 and then not In_Instance
10552 then
10553 if Nkind (N) = N_Identifier then
10554 Nod := N;
10555 elsif Nkind (N) = N_Expanded_Name then
10556 Nod := Selector_Name (N);
10557 else
10558 return;
10559 end if;
10560
10561 -- A special situation arises for derived operations, where we want
10562 -- to do the check against the parent (since the Sloc of the derived
10563 -- operation points to the derived type declaration itself).
10564
10565 Val_Actual := Val;
10566 while not Comes_From_Source (Val_Actual)
10567 and then Nkind (Val_Actual) in N_Entity
10568 and then (Ekind (Val_Actual) = E_Enumeration_Literal
10569 or else Is_Subprogram (Val_Actual)
10570 or else Is_Generic_Subprogram (Val_Actual))
10571 and then Present (Alias (Val_Actual))
10572 loop
10573 Val_Actual := Alias (Val_Actual);
10574 end loop;
10575
10576 -- Renaming declarations for generic actuals do not come from source,
10577 -- and have a different name from that of the entity they rename, so
10578 -- there is no style check to perform here.
10579
10580 if Chars (Nod) = Chars (Val_Actual) then
10581 Style.Check_Identifier (Nod, Val_Actual);
10582 end if;
10583 end if;
10584
10585 Set_Entity (N, Val);
10586 end Set_Entity_With_Style_Check;
10587
10588 ------------------------
10589 -- Set_Name_Entity_Id --
10590 ------------------------
10591
10592 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
10593 begin
10594 Set_Name_Table_Info (Id, Int (Val));
10595 end Set_Name_Entity_Id;
10596
10597 ---------------------
10598 -- Set_Next_Actual --
10599 ---------------------
10600
10601 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
10602 begin
10603 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
10604 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
10605 end if;
10606 end Set_Next_Actual;
10607
10608 ----------------------------------
10609 -- Set_Optimize_Alignment_Flags --
10610 ----------------------------------
10611
10612 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
10613 begin
10614 if Optimize_Alignment = 'S' then
10615 Set_Optimize_Alignment_Space (E);
10616 elsif Optimize_Alignment = 'T' then
10617 Set_Optimize_Alignment_Time (E);
10618 end if;
10619 end Set_Optimize_Alignment_Flags;
10620
10621 -----------------------
10622 -- Set_Public_Status --
10623 -----------------------
10624
10625 procedure Set_Public_Status (Id : Entity_Id) is
10626 S : constant Entity_Id := Current_Scope;
10627
10628 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
10629 -- Determines if E is defined within handled statement sequence or
10630 -- an if statement, returns True if so, False otherwise.
10631
10632 ----------------------
10633 -- Within_HSS_Or_If --
10634 ----------------------
10635
10636 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
10637 N : Node_Id;
10638 begin
10639 N := Declaration_Node (E);
10640 loop
10641 N := Parent (N);
10642
10643 if No (N) then
10644 return False;
10645
10646 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
10647 N_If_Statement)
10648 then
10649 return True;
10650 end if;
10651 end loop;
10652 end Within_HSS_Or_If;
10653
10654 -- Start of processing for Set_Public_Status
10655
10656 begin
10657 -- Everything in the scope of Standard is public
10658
10659 if S = Standard_Standard then
10660 Set_Is_Public (Id);
10661
10662 -- Entity is definitely not public if enclosing scope is not public
10663
10664 elsif not Is_Public (S) then
10665 return;
10666
10667 -- An object or function declaration that occurs in a handled sequence
10668 -- of statements or within an if statement is the declaration for a
10669 -- temporary object or local subprogram generated by the expander. It
10670 -- never needs to be made public and furthermore, making it public can
10671 -- cause back end problems.
10672
10673 elsif Nkind_In (Parent (Id), N_Object_Declaration,
10674 N_Function_Specification)
10675 and then Within_HSS_Or_If (Id)
10676 then
10677 return;
10678
10679 -- Entities in public packages or records are public
10680
10681 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
10682 Set_Is_Public (Id);
10683
10684 -- The bounds of an entry family declaration can generate object
10685 -- declarations that are visible to the back-end, e.g. in the
10686 -- the declaration of a composite type that contains tasks.
10687
10688 elsif Is_Concurrent_Type (S)
10689 and then not Has_Completion (S)
10690 and then Nkind (Parent (Id)) = N_Object_Declaration
10691 then
10692 Set_Is_Public (Id);
10693 end if;
10694 end Set_Public_Status;
10695
10696 -----------------------------
10697 -- Set_Referenced_Modified --
10698 -----------------------------
10699
10700 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
10701 Pref : Node_Id;
10702
10703 begin
10704 -- Deal with indexed or selected component where prefix is modified
10705
10706 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
10707 Pref := Prefix (N);
10708
10709 -- If prefix is access type, then it is the designated object that is
10710 -- being modified, which means we have no entity to set the flag on.
10711
10712 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
10713 return;
10714
10715 -- Otherwise chase the prefix
10716
10717 else
10718 Set_Referenced_Modified (Pref, Out_Param);
10719 end if;
10720
10721 -- Otherwise see if we have an entity name (only other case to process)
10722
10723 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
10724 Set_Referenced_As_LHS (Entity (N), not Out_Param);
10725 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
10726 end if;
10727 end Set_Referenced_Modified;
10728
10729 ----------------------------
10730 -- Set_Scope_Is_Transient --
10731 ----------------------------
10732
10733 procedure Set_Scope_Is_Transient (V : Boolean := True) is
10734 begin
10735 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
10736 end Set_Scope_Is_Transient;
10737
10738 -------------------
10739 -- Set_Size_Info --
10740 -------------------
10741
10742 procedure Set_Size_Info (T1, T2 : Entity_Id) is
10743 begin
10744 -- We copy Esize, but not RM_Size, since in general RM_Size is
10745 -- subtype specific and does not get inherited by all subtypes.
10746
10747 Set_Esize (T1, Esize (T2));
10748 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
10749
10750 if Is_Discrete_Or_Fixed_Point_Type (T1)
10751 and then
10752 Is_Discrete_Or_Fixed_Point_Type (T2)
10753 then
10754 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
10755 end if;
10756
10757 Set_Alignment (T1, Alignment (T2));
10758 end Set_Size_Info;
10759
10760 --------------------
10761 -- Static_Integer --
10762 --------------------
10763
10764 function Static_Integer (N : Node_Id) return Uint is
10765 begin
10766 Analyze_And_Resolve (N, Any_Integer);
10767
10768 if N = Error
10769 or else Error_Posted (N)
10770 or else Etype (N) = Any_Type
10771 then
10772 return No_Uint;
10773 end if;
10774
10775 if Is_Static_Expression (N) then
10776 if not Raises_Constraint_Error (N) then
10777 return Expr_Value (N);
10778 else
10779 return No_Uint;
10780 end if;
10781
10782 elsif Etype (N) = Any_Type then
10783 return No_Uint;
10784
10785 else
10786 Flag_Non_Static_Expr
10787 ("static integer expression required here", N);
10788 return No_Uint;
10789 end if;
10790 end Static_Integer;
10791
10792 --------------------------
10793 -- Statically_Different --
10794 --------------------------
10795
10796 function Statically_Different (E1, E2 : Node_Id) return Boolean is
10797 R1 : constant Node_Id := Get_Referenced_Object (E1);
10798 R2 : constant Node_Id := Get_Referenced_Object (E2);
10799 begin
10800 return Is_Entity_Name (R1)
10801 and then Is_Entity_Name (R2)
10802 and then Entity (R1) /= Entity (R2)
10803 and then not Is_Formal (Entity (R1))
10804 and then not Is_Formal (Entity (R2));
10805 end Statically_Different;
10806
10807 -----------------------------
10808 -- Subprogram_Access_Level --
10809 -----------------------------
10810
10811 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
10812 begin
10813 if Present (Alias (Subp)) then
10814 return Subprogram_Access_Level (Alias (Subp));
10815 else
10816 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
10817 end if;
10818 end Subprogram_Access_Level;
10819
10820 -----------------
10821 -- Trace_Scope --
10822 -----------------
10823
10824 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
10825 begin
10826 if Debug_Flag_W then
10827 for J in 0 .. Scope_Stack.Last loop
10828 Write_Str (" ");
10829 end loop;
10830
10831 Write_Str (Msg);
10832 Write_Name (Chars (E));
10833 Write_Str (" from ");
10834 Write_Location (Sloc (N));
10835 Write_Eol;
10836 end if;
10837 end Trace_Scope;
10838
10839 -----------------------
10840 -- Transfer_Entities --
10841 -----------------------
10842
10843 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
10844 Ent : Entity_Id := First_Entity (From);
10845
10846 begin
10847 if No (Ent) then
10848 return;
10849 end if;
10850
10851 if (Last_Entity (To)) = Empty then
10852 Set_First_Entity (To, Ent);
10853 else
10854 Set_Next_Entity (Last_Entity (To), Ent);
10855 end if;
10856
10857 Set_Last_Entity (To, Last_Entity (From));
10858
10859 while Present (Ent) loop
10860 Set_Scope (Ent, To);
10861
10862 if not Is_Public (Ent) then
10863 Set_Public_Status (Ent);
10864
10865 if Is_Public (Ent)
10866 and then Ekind (Ent) = E_Record_Subtype
10867
10868 then
10869 -- The components of the propagated Itype must be public
10870 -- as well.
10871
10872 declare
10873 Comp : Entity_Id;
10874 begin
10875 Comp := First_Entity (Ent);
10876 while Present (Comp) loop
10877 Set_Is_Public (Comp);
10878 Next_Entity (Comp);
10879 end loop;
10880 end;
10881 end if;
10882 end if;
10883
10884 Next_Entity (Ent);
10885 end loop;
10886
10887 Set_First_Entity (From, Empty);
10888 Set_Last_Entity (From, Empty);
10889 end Transfer_Entities;
10890
10891 -----------------------
10892 -- Type_Access_Level --
10893 -----------------------
10894
10895 function Type_Access_Level (Typ : Entity_Id) return Uint is
10896 Btyp : Entity_Id;
10897
10898 begin
10899 Btyp := Base_Type (Typ);
10900
10901 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
10902 -- simply use the level where the type is declared. This is true for
10903 -- stand-alone object declarations, and for anonymous access types
10904 -- associated with components the level is the same as that of the
10905 -- enclosing composite type. However, special treatment is needed for
10906 -- the cases of access parameters, return objects of an anonymous access
10907 -- type, and, in Ada 95, access discriminants of limited types.
10908
10909 if Ekind (Btyp) in Access_Kind then
10910 if Ekind (Btyp) = E_Anonymous_Access_Type then
10911
10912 -- If the type is a nonlocal anonymous access type (such as for
10913 -- an access parameter) we treat it as being declared at the
10914 -- library level to ensure that names such as X.all'access don't
10915 -- fail static accessibility checks.
10916
10917 if not Is_Local_Anonymous_Access (Typ) then
10918 return Scope_Depth (Standard_Standard);
10919
10920 -- If this is a return object, the accessibility level is that of
10921 -- the result subtype of the enclosing function. The test here is
10922 -- little complicated, because we have to account for extended
10923 -- return statements that have been rewritten as blocks, in which
10924 -- case we have to find and the Is_Return_Object attribute of the
10925 -- itype's associated object. It would be nice to find a way to
10926 -- simplify this test, but it doesn't seem worthwhile to add a new
10927 -- flag just for purposes of this test. ???
10928
10929 elsif Ekind (Scope (Btyp)) = E_Return_Statement
10930 or else
10931 (Is_Itype (Btyp)
10932 and then Nkind (Associated_Node_For_Itype (Btyp)) =
10933 N_Object_Declaration
10934 and then Is_Return_Object
10935 (Defining_Identifier
10936 (Associated_Node_For_Itype (Btyp))))
10937 then
10938 declare
10939 Scop : Entity_Id;
10940
10941 begin
10942 Scop := Scope (Scope (Btyp));
10943 while Present (Scop) loop
10944 exit when Ekind (Scop) = E_Function;
10945 Scop := Scope (Scop);
10946 end loop;
10947
10948 -- Treat the return object's type as having the level of the
10949 -- function's result subtype (as per RM05-6.5(5.3/2)).
10950
10951 return Type_Access_Level (Etype (Scop));
10952 end;
10953 end if;
10954 end if;
10955
10956 Btyp := Root_Type (Btyp);
10957
10958 -- The accessibility level of anonymous access types associated with
10959 -- discriminants is that of the current instance of the type, and
10960 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
10961
10962 -- AI-402: access discriminants have accessibility based on the
10963 -- object rather than the type in Ada 2005, so the above paragraph
10964 -- doesn't apply.
10965
10966 -- ??? Needs completion with rules from AI-416
10967
10968 if Ada_Version <= Ada_95
10969 and then Ekind (Typ) = E_Anonymous_Access_Type
10970 and then Present (Associated_Node_For_Itype (Typ))
10971 and then Nkind (Associated_Node_For_Itype (Typ)) =
10972 N_Discriminant_Specification
10973 then
10974 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
10975 end if;
10976 end if;
10977
10978 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
10979 end Type_Access_Level;
10980
10981 --------------------
10982 -- Ultimate_Alias --
10983 --------------------
10984 -- To do: add occurrences calling this new subprogram
10985
10986 function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
10987 E : Entity_Id := Prim;
10988
10989 begin
10990 while Present (Alias (E)) loop
10991 E := Alias (E);
10992 end loop;
10993
10994 return E;
10995 end Ultimate_Alias;
10996
10997 --------------------------
10998 -- Unit_Declaration_Node --
10999 --------------------------
11000
11001 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
11002 N : Node_Id := Parent (Unit_Id);
11003
11004 begin
11005 -- Predefined operators do not have a full function declaration
11006
11007 if Ekind (Unit_Id) = E_Operator then
11008 return N;
11009 end if;
11010
11011 -- Isn't there some better way to express the following ???
11012
11013 while Nkind (N) /= N_Abstract_Subprogram_Declaration
11014 and then Nkind (N) /= N_Formal_Package_Declaration
11015 and then Nkind (N) /= N_Function_Instantiation
11016 and then Nkind (N) /= N_Generic_Package_Declaration
11017 and then Nkind (N) /= N_Generic_Subprogram_Declaration
11018 and then Nkind (N) /= N_Package_Declaration
11019 and then Nkind (N) /= N_Package_Body
11020 and then Nkind (N) /= N_Package_Instantiation
11021 and then Nkind (N) /= N_Package_Renaming_Declaration
11022 and then Nkind (N) /= N_Procedure_Instantiation
11023 and then Nkind (N) /= N_Protected_Body
11024 and then Nkind (N) /= N_Subprogram_Declaration
11025 and then Nkind (N) /= N_Subprogram_Body
11026 and then Nkind (N) /= N_Subprogram_Body_Stub
11027 and then Nkind (N) /= N_Subprogram_Renaming_Declaration
11028 and then Nkind (N) /= N_Task_Body
11029 and then Nkind (N) /= N_Task_Type_Declaration
11030 and then Nkind (N) not in N_Formal_Subprogram_Declaration
11031 and then Nkind (N) not in N_Generic_Renaming_Declaration
11032 loop
11033 N := Parent (N);
11034 pragma Assert (Present (N));
11035 end loop;
11036
11037 return N;
11038 end Unit_Declaration_Node;
11039
11040 ------------------------------
11041 -- Universal_Interpretation --
11042 ------------------------------
11043
11044 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
11045 Index : Interp_Index;
11046 It : Interp;
11047
11048 begin
11049 -- The argument may be a formal parameter of an operator or subprogram
11050 -- with multiple interpretations, or else an expression for an actual.
11051
11052 if Nkind (Opnd) = N_Defining_Identifier
11053 or else not Is_Overloaded (Opnd)
11054 then
11055 if Etype (Opnd) = Universal_Integer
11056 or else Etype (Opnd) = Universal_Real
11057 then
11058 return Etype (Opnd);
11059 else
11060 return Empty;
11061 end if;
11062
11063 else
11064 Get_First_Interp (Opnd, Index, It);
11065 while Present (It.Typ) loop
11066 if It.Typ = Universal_Integer
11067 or else It.Typ = Universal_Real
11068 then
11069 return It.Typ;
11070 end if;
11071
11072 Get_Next_Interp (Index, It);
11073 end loop;
11074
11075 return Empty;
11076 end if;
11077 end Universal_Interpretation;
11078
11079 ---------------
11080 -- Unqualify --
11081 ---------------
11082
11083 function Unqualify (Expr : Node_Id) return Node_Id is
11084 begin
11085 -- Recurse to handle unlikely case of multiple levels of qualification
11086
11087 if Nkind (Expr) = N_Qualified_Expression then
11088 return Unqualify (Expression (Expr));
11089
11090 -- Normal case, not a qualified expression
11091
11092 else
11093 return Expr;
11094 end if;
11095 end Unqualify;
11096
11097 ----------------------
11098 -- Within_Init_Proc --
11099 ----------------------
11100
11101 function Within_Init_Proc return Boolean is
11102 S : Entity_Id;
11103
11104 begin
11105 S := Current_Scope;
11106 while not Is_Overloadable (S) loop
11107 if S = Standard_Standard then
11108 return False;
11109 else
11110 S := Scope (S);
11111 end if;
11112 end loop;
11113
11114 return Is_Init_Proc (S);
11115 end Within_Init_Proc;
11116
11117 ----------------
11118 -- Wrong_Type --
11119 ----------------
11120
11121 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
11122 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
11123 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
11124
11125 function Has_One_Matching_Field return Boolean;
11126 -- Determines if Expec_Type is a record type with a single component or
11127 -- discriminant whose type matches the found type or is one dimensional
11128 -- array whose component type matches the found type.
11129
11130 ----------------------------
11131 -- Has_One_Matching_Field --
11132 ----------------------------
11133
11134 function Has_One_Matching_Field return Boolean is
11135 E : Entity_Id;
11136
11137 begin
11138 if Is_Array_Type (Expec_Type)
11139 and then Number_Dimensions (Expec_Type) = 1
11140 and then
11141 Covers (Etype (Component_Type (Expec_Type)), Found_Type)
11142 then
11143 return True;
11144
11145 elsif not Is_Record_Type (Expec_Type) then
11146 return False;
11147
11148 else
11149 E := First_Entity (Expec_Type);
11150 loop
11151 if No (E) then
11152 return False;
11153
11154 elsif (Ekind (E) /= E_Discriminant
11155 and then Ekind (E) /= E_Component)
11156 or else (Chars (E) = Name_uTag
11157 or else Chars (E) = Name_uParent)
11158 then
11159 Next_Entity (E);
11160
11161 else
11162 exit;
11163 end if;
11164 end loop;
11165
11166 if not Covers (Etype (E), Found_Type) then
11167 return False;
11168
11169 elsif Present (Next_Entity (E)) then
11170 return False;
11171
11172 else
11173 return True;
11174 end if;
11175 end if;
11176 end Has_One_Matching_Field;
11177
11178 -- Start of processing for Wrong_Type
11179
11180 begin
11181 -- Don't output message if either type is Any_Type, or if a message
11182 -- has already been posted for this node. We need to do the latter
11183 -- check explicitly (it is ordinarily done in Errout), because we
11184 -- are using ! to force the output of the error messages.
11185
11186 if Expec_Type = Any_Type
11187 or else Found_Type = Any_Type
11188 or else Error_Posted (Expr)
11189 then
11190 return;
11191
11192 -- In an instance, there is an ongoing problem with completion of
11193 -- type derived from private types. Their structure is what Gigi
11194 -- expects, but the Etype is the parent type rather than the
11195 -- derived private type itself. Do not flag error in this case. The
11196 -- private completion is an entity without a parent, like an Itype.
11197 -- Similarly, full and partial views may be incorrect in the instance.
11198 -- There is no simple way to insure that it is consistent ???
11199
11200 elsif In_Instance then
11201 if Etype (Etype (Expr)) = Etype (Expected_Type)
11202 and then
11203 (Has_Private_Declaration (Expected_Type)
11204 or else Has_Private_Declaration (Etype (Expr)))
11205 and then No (Parent (Expected_Type))
11206 then
11207 return;
11208 end if;
11209 end if;
11210
11211 -- An interesting special check. If the expression is parenthesized
11212 -- and its type corresponds to the type of the sole component of the
11213 -- expected record type, or to the component type of the expected one
11214 -- dimensional array type, then assume we have a bad aggregate attempt.
11215
11216 if Nkind (Expr) in N_Subexpr
11217 and then Paren_Count (Expr) /= 0
11218 and then Has_One_Matching_Field
11219 then
11220 Error_Msg_N ("positional aggregate cannot have one component", Expr);
11221
11222 -- Another special check, if we are looking for a pool-specific access
11223 -- type and we found an E_Access_Attribute_Type, then we have the case
11224 -- of an Access attribute being used in a context which needs a pool-
11225 -- specific type, which is never allowed. The one extra check we make
11226 -- is that the expected designated type covers the Found_Type.
11227
11228 elsif Is_Access_Type (Expec_Type)
11229 and then Ekind (Found_Type) = E_Access_Attribute_Type
11230 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
11231 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
11232 and then Covers
11233 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
11234 then
11235 Error_Msg_N ("result must be general access type!", Expr);
11236 Error_Msg_NE ("add ALL to }!", Expr, Expec_Type);
11237
11238 -- Another special check, if the expected type is an integer type,
11239 -- but the expression is of type System.Address, and the parent is
11240 -- an addition or subtraction operation whose left operand is the
11241 -- expression in question and whose right operand is of an integral
11242 -- type, then this is an attempt at address arithmetic, so give
11243 -- appropriate message.
11244
11245 elsif Is_Integer_Type (Expec_Type)
11246 and then Is_RTE (Found_Type, RE_Address)
11247 and then (Nkind (Parent (Expr)) = N_Op_Add
11248 or else
11249 Nkind (Parent (Expr)) = N_Op_Subtract)
11250 and then Expr = Left_Opnd (Parent (Expr))
11251 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
11252 then
11253 Error_Msg_N
11254 ("address arithmetic not predefined in package System",
11255 Parent (Expr));
11256 Error_Msg_N
11257 ("\possible missing with/use of System.Storage_Elements",
11258 Parent (Expr));
11259 return;
11260
11261 -- If the expected type is an anonymous access type, as for access
11262 -- parameters and discriminants, the error is on the designated types.
11263
11264 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
11265 if Comes_From_Source (Expec_Type) then
11266 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11267 else
11268 Error_Msg_NE
11269 ("expected an access type with designated}",
11270 Expr, Designated_Type (Expec_Type));
11271 end if;
11272
11273 if Is_Access_Type (Found_Type)
11274 and then not Comes_From_Source (Found_Type)
11275 then
11276 Error_Msg_NE
11277 ("\\found an access type with designated}!",
11278 Expr, Designated_Type (Found_Type));
11279 else
11280 if From_With_Type (Found_Type) then
11281 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
11282 Error_Msg_Qual_Level := 99;
11283 Error_Msg_NE ("\\missing `WITH &;", Expr, Scope (Found_Type));
11284 Error_Msg_Qual_Level := 0;
11285 else
11286 Error_Msg_NE ("found}!", Expr, Found_Type);
11287 end if;
11288 end if;
11289
11290 -- Normal case of one type found, some other type expected
11291
11292 else
11293 -- If the names of the two types are the same, see if some number
11294 -- of levels of qualification will help. Don't try more than three
11295 -- levels, and if we get to standard, it's no use (and probably
11296 -- represents an error in the compiler) Also do not bother with
11297 -- internal scope names.
11298
11299 declare
11300 Expec_Scope : Entity_Id;
11301 Found_Scope : Entity_Id;
11302
11303 begin
11304 Expec_Scope := Expec_Type;
11305 Found_Scope := Found_Type;
11306
11307 for Levels in Int range 0 .. 3 loop
11308 if Chars (Expec_Scope) /= Chars (Found_Scope) then
11309 Error_Msg_Qual_Level := Levels;
11310 exit;
11311 end if;
11312
11313 Expec_Scope := Scope (Expec_Scope);
11314 Found_Scope := Scope (Found_Scope);
11315
11316 exit when Expec_Scope = Standard_Standard
11317 or else Found_Scope = Standard_Standard
11318 or else not Comes_From_Source (Expec_Scope)
11319 or else not Comes_From_Source (Found_Scope);
11320 end loop;
11321 end;
11322
11323 if Is_Record_Type (Expec_Type)
11324 and then Present (Corresponding_Remote_Type (Expec_Type))
11325 then
11326 Error_Msg_NE ("expected}!", Expr,
11327 Corresponding_Remote_Type (Expec_Type));
11328 else
11329 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11330 end if;
11331
11332 if Is_Entity_Name (Expr)
11333 and then Is_Package_Or_Generic_Package (Entity (Expr))
11334 then
11335 Error_Msg_N ("\\found package name!", Expr);
11336
11337 elsif Is_Entity_Name (Expr)
11338 and then
11339 (Ekind (Entity (Expr)) = E_Procedure
11340 or else
11341 Ekind (Entity (Expr)) = E_Generic_Procedure)
11342 then
11343 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
11344 Error_Msg_N
11345 ("found procedure name, possibly missing Access attribute!",
11346 Expr);
11347 else
11348 Error_Msg_N
11349 ("\\found procedure name instead of function!", Expr);
11350 end if;
11351
11352 elsif Nkind (Expr) = N_Function_Call
11353 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
11354 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
11355 and then No (Parameter_Associations (Expr))
11356 then
11357 Error_Msg_N
11358 ("found function name, possibly missing Access attribute!",
11359 Expr);
11360
11361 -- Catch common error: a prefix or infix operator which is not
11362 -- directly visible because the type isn't.
11363
11364 elsif Nkind (Expr) in N_Op
11365 and then Is_Overloaded (Expr)
11366 and then not Is_Immediately_Visible (Expec_Type)
11367 and then not Is_Potentially_Use_Visible (Expec_Type)
11368 and then not In_Use (Expec_Type)
11369 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
11370 then
11371 Error_Msg_N
11372 ("operator of the type is not directly visible!", Expr);
11373
11374 elsif Ekind (Found_Type) = E_Void
11375 and then Present (Parent (Found_Type))
11376 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
11377 then
11378 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
11379
11380 else
11381 Error_Msg_NE ("\\found}!", Expr, Found_Type);
11382 end if;
11383
11384 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
11385 -- of the same modular type, and (M1 and M2) = 0 was intended.
11386
11387 if Expec_Type = Standard_Boolean
11388 and then Is_Modular_Integer_Type (Found_Type)
11389 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
11390 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
11391 then
11392 declare
11393 Op : constant Node_Id := Right_Opnd (Parent (Expr));
11394 L : constant Node_Id := Left_Opnd (Op);
11395 R : constant Node_Id := Right_Opnd (Op);
11396 begin
11397 -- The case for the message is when the left operand of the
11398 -- comparison is the same modular type, or when it is an
11399 -- integer literal (or other universal integer expression),
11400 -- which would have been typed as the modular type if the
11401 -- parens had been there.
11402
11403 if (Etype (L) = Found_Type
11404 or else
11405 Etype (L) = Universal_Integer)
11406 and then Is_Integer_Type (Etype (R))
11407 then
11408 Error_Msg_N
11409 ("\\possible missing parens for modular operation", Expr);
11410 end if;
11411 end;
11412 end if;
11413
11414 -- Reset error message qualification indication
11415
11416 Error_Msg_Qual_Level := 0;
11417 end if;
11418 end Wrong_Type;
11419
11420 end Sem_Util;
This page took 0.505194 seconds and 6 git commands to generate.