]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_eval.adb
a3a1a1f18ab42a4e55cc2a9838be5cdf18e21425
[gcc.git] / gcc / ada / sem_eval.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ E V A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Eval_Fat; use Eval_Fat;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Lib; use Lib;
37 with Namet; use Namet;
38 with Nmake; use Nmake;
39 with Nlists; use Nlists;
40 with Opt; use Opt;
41 with Par_SCO; use Par_SCO;
42 with Rtsfind; use Rtsfind;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Res; use Sem_Res;
49 with Sem_Util; use Sem_Util;
50 with Sem_Type; use Sem_Type;
51 with Sem_Warn; use Sem_Warn;
52 with Sinfo; use Sinfo;
53 with Snames; use Snames;
54 with Stand; use Stand;
55 with Stringt; use Stringt;
56 with Tbuild; use Tbuild;
57
58 package body Sem_Eval is
59
60 -----------------------------------------
61 -- Handling of Compile Time Evaluation --
62 -----------------------------------------
63
64 -- The compile time evaluation of expressions is distributed over several
65 -- Eval_xxx procedures. These procedures are called immediately after
66 -- a subexpression is resolved and is therefore accomplished in a bottom
67 -- up fashion. The flags are synthesized using the following approach.
68
69 -- Is_Static_Expression is determined by following the detailed rules
70 -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
71 -- flag of the operands in many cases.
72
73 -- Raises_Constraint_Error is set if any of the operands have the flag
74 -- set or if an attempt to compute the value of the current expression
75 -- results in detection of a runtime constraint error.
76
77 -- As described in the spec, the requirement is that Is_Static_Expression
78 -- be accurately set, and in addition for nodes for which this flag is set,
79 -- Raises_Constraint_Error must also be set. Furthermore a node which has
80 -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
81 -- requirement is that the expression value must be precomputed, and the
82 -- node is either a literal, or the name of a constant entity whose value
83 -- is a static expression.
84
85 -- The general approach is as follows. First compute Is_Static_Expression.
86 -- If the node is not static, then the flag is left off in the node and
87 -- we are all done. Otherwise for a static node, we test if any of the
88 -- operands will raise constraint error, and if so, propagate the flag
89 -- Raises_Constraint_Error to the result node and we are done (since the
90 -- error was already posted at a lower level).
91
92 -- For the case of a static node whose operands do not raise constraint
93 -- error, we attempt to evaluate the node. If this evaluation succeeds,
94 -- then the node is replaced by the result of this computation. If the
95 -- evaluation raises constraint error, then we rewrite the node with
96 -- Apply_Compile_Time_Constraint_Error to raise the exception and also
97 -- to post appropriate error messages.
98
99 ----------------
100 -- Local Data --
101 ----------------
102
103 type Bits is array (Nat range <>) of Boolean;
104 -- Used to convert unsigned (modular) values for folding logical ops
105
106 -- The following declarations are used to maintain a cache of nodes that
107 -- have compile time known values. The cache is maintained only for
108 -- discrete types (the most common case), and is populated by calls to
109 -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
110 -- since it is possible for the status to change (in particular it is
111 -- possible for a node to get replaced by a constraint error node).
112
113 CV_Bits : constant := 5;
114 -- Number of low order bits of Node_Id value used to reference entries
115 -- in the cache table.
116
117 CV_Cache_Size : constant Nat := 2 ** CV_Bits;
118 -- Size of cache for compile time values
119
120 subtype CV_Range is Nat range 0 .. CV_Cache_Size;
121
122 type CV_Entry is record
123 N : Node_Id;
124 V : Uint;
125 end record;
126
127 type Match_Result is (Match, No_Match, Non_Static);
128 -- Result returned from functions that test for a matching result. If the
129 -- operands are not OK_Static then Non_Static will be returned. Otherwise
130 -- Match/No_Match is returned depending on whether the match succeeds.
131
132 type CV_Cache_Array is array (CV_Range) of CV_Entry;
133
134 CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
135 -- This is the actual cache, with entries consisting of node/value pairs,
136 -- and the impossible value Node_High_Bound used for unset entries.
137
138 type Range_Membership is (In_Range, Out_Of_Range, Unknown);
139 -- Range membership may either be statically known to be in range or out
140 -- of range, or not statically known. Used for Test_In_Range below.
141
142 -----------------------
143 -- Local Subprograms --
144 -----------------------
145
146 function Choice_Matches
147 (Expr : Node_Id;
148 Choice : Node_Id) return Match_Result;
149 -- Determines whether given value Expr matches the given Choice. The Expr
150 -- can be of discrete, real, or string type and must be a compile time
151 -- known value (it is an error to make the call if these conditions are
152 -- not met). The choice can be a range, subtype name, subtype indication,
153 -- or expression. The returned result is Non_Static if Choice is not
154 -- OK_Static, otherwise either Match or No_Match is returned depending
155 -- on whether Choice matches Expr. This is used for case expression
156 -- alternatives, and also for membership tests. In each case, more
157 -- possibilities are tested than the syntax allows (e.g. membership allows
158 -- subtype indications and non-discrete types, and case allows an OTHERS
159 -- choice), but it does not matter, since we have already done a full
160 -- semantic and syntax check of the construct, so the extra possibilities
161 -- just will not arise for correct expressions.
162 --
163 -- Note: if Choice_Matches finds that a choice raises Constraint_Error, e.g
164 -- a reference to a type, one of whose bounds raises Constraint_Error, then
165 -- it also sets the Raises_Constraint_Error flag on the Choice itself.
166
167 function Choices_Match
168 (Expr : Node_Id;
169 Choices : List_Id) return Match_Result;
170 -- This function applies Choice_Matches to each element of Choices. If the
171 -- result is No_Match, then it continues and checks the next element. If
172 -- the result is Match or Non_Static, this result is immediately given
173 -- as the result without checking the rest of the list. Expr can be of
174 -- discrete, real, or string type and must be a compile time known value
175 -- (it is an error to make the call if these conditions are not met).
176
177 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id;
178 -- Check whether an arithmetic operation with universal operands which is a
179 -- rewritten function call with an explicit scope indication is ambiguous:
180 -- P."+" (1, 2) will be ambiguous if there is more than one visible numeric
181 -- type declared in P and the context does not impose a type on the result
182 -- (e.g. in the expression of a type conversion). If ambiguous, emit an
183 -- error and return Empty, else return the result type of the operator.
184
185 function From_Bits (B : Bits; T : Entity_Id) return Uint;
186 -- Converts a bit string of length B'Length to a Uint value to be used for
187 -- a target of type T, which is a modular type. This procedure includes the
188 -- necessary reduction by the modulus in the case of a nonbinary modulus
189 -- (for a binary modulus, the bit string is the right length any way so all
190 -- is well).
191
192 function Get_String_Val (N : Node_Id) return Node_Id;
193 -- Given a tree node for a folded string or character value, returns the
194 -- corresponding string literal or character literal (one of the two must
195 -- be available, or the operand would not have been marked as foldable in
196 -- the earlier analysis of the operation).
197
198 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean;
199 -- Given a choice (from a case expression or membership test), returns
200 -- True if the choice is static and does not raise a Constraint_Error.
201
202 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean;
203 -- Given a choice list (from a case expression or membership test), return
204 -- True if all choices are static in the sense of Is_OK_Static_Choice.
205
206 function Is_Static_Choice (Choice : Node_Id) return Boolean;
207 -- Given a choice (from a case expression or membership test), returns
208 -- True if the choice is static. No test is made for raising of constraint
209 -- error, so this function is used only for legality tests.
210
211 function Is_Static_Choice_List (Choices : List_Id) return Boolean;
212 -- Given a choice list (from a case expression or membership test), return
213 -- True if all choices are static in the sense of Is_Static_Choice.
214
215 function Is_Static_Range (N : Node_Id) return Boolean;
216 -- Determine if range is static, as defined in RM 4.9(26). The only allowed
217 -- argument is an N_Range node (but note that the semantic analysis of
218 -- equivalent range attribute references already turned them into the
219 -- equivalent range). This differs from Is_OK_Static_Range (which is what
220 -- must be used by clients) in that it does not care whether the bounds
221 -- raise Constraint_Error or not. Used for checking whether expressions are
222 -- static in the 4.9 sense (without worrying about exceptions).
223
224 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
225 -- Bits represents the number of bits in an integer value to be computed
226 -- (but the value has not been computed yet). If this value in Bits is
227 -- reasonable, a result of True is returned, with the implication that the
228 -- caller should go ahead and complete the calculation. If the value in
229 -- Bits is unreasonably large, then an error is posted on node N, and
230 -- False is returned (and the caller skips the proposed calculation).
231
232 procedure Out_Of_Range (N : Node_Id);
233 -- This procedure is called if it is determined that node N, which appears
234 -- in a non-static context, is a compile time known value which is outside
235 -- its range, i.e. the range of Etype. This is used in contexts where
236 -- this is an illegality if N is static, and should generate a warning
237 -- otherwise.
238
239 function Real_Or_String_Static_Predicate_Matches
240 (Val : Node_Id;
241 Typ : Entity_Id) return Boolean;
242 -- This is the function used to evaluate real or string static predicates.
243 -- Val is an unanalyzed N_Real_Literal or N_String_Literal node, which
244 -- represents the value to be tested against the predicate. Typ is the
245 -- type with the predicate, from which the predicate expression can be
246 -- extracted. The result returned is True if the given value satisfies
247 -- the predicate.
248
249 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
250 -- N and Exp are nodes representing an expression, Exp is known to raise
251 -- CE. N is rewritten in term of Exp in the optimal way.
252
253 function String_Type_Len (Stype : Entity_Id) return Uint;
254 -- Given a string type, determines the length of the index type, or, if
255 -- this index type is non-static, the length of the base type of this index
256 -- type. Note that if the string type is itself static, then the index type
257 -- is static, so the second case applies only if the string type passed is
258 -- non-static.
259
260 function Test (Cond : Boolean) return Uint;
261 pragma Inline (Test);
262 -- This function simply returns the appropriate Boolean'Pos value
263 -- corresponding to the value of Cond as a universal integer. It is
264 -- used for producing the result of the static evaluation of the
265 -- logical operators
266
267 procedure Test_Expression_Is_Foldable
268 (N : Node_Id;
269 Op1 : Node_Id;
270 Stat : out Boolean;
271 Fold : out Boolean);
272 -- Tests to see if expression N whose single operand is Op1 is foldable,
273 -- i.e. the operand value is known at compile time. If the operation is
274 -- foldable, then Fold is True on return, and Stat indicates whether the
275 -- result is static (i.e. the operand was static). Note that it is quite
276 -- possible for Fold to be True, and Stat to be False, since there are
277 -- cases in which we know the value of an operand even though it is not
278 -- technically static (e.g. the static lower bound of a range whose upper
279 -- bound is non-static).
280 --
281 -- If Stat is set False on return, then Test_Expression_Is_Foldable makes
282 -- a call to Check_Non_Static_Context on the operand. If Fold is False on
283 -- return, then all processing is complete, and the caller should return,
284 -- since there is nothing else to do.
285 --
286 -- If Stat is set True on return, then Is_Static_Expression is also set
287 -- true in node N. There are some cases where this is over-enthusiastic,
288 -- e.g. in the two operand case below, for string comparison, the result is
289 -- not static even though the two operands are static. In such cases, the
290 -- caller must reset the Is_Static_Expression flag in N.
291 --
292 -- If Fold and Stat are both set to False then this routine performs also
293 -- the following extra actions:
294 --
295 -- If either operand is Any_Type then propagate it to result to prevent
296 -- cascaded errors.
297 --
298 -- If some operand raises constraint error, then replace the node N
299 -- with the raise constraint error node. This replacement inherits the
300 -- Is_Static_Expression flag from the operands.
301
302 procedure Test_Expression_Is_Foldable
303 (N : Node_Id;
304 Op1 : Node_Id;
305 Op2 : Node_Id;
306 Stat : out Boolean;
307 Fold : out Boolean;
308 CRT_Safe : Boolean := False);
309 -- Same processing, except applies to an expression N with two operands
310 -- Op1 and Op2. The result is static only if both operands are static. If
311 -- CRT_Safe is set True, then CRT_Safe_Compile_Time_Known_Value is used
312 -- for the tests that the two operands are known at compile time. See
313 -- spec of this routine for further details.
314
315 function Test_In_Range
316 (N : Node_Id;
317 Typ : Entity_Id;
318 Assume_Valid : Boolean;
319 Fixed_Int : Boolean;
320 Int_Real : Boolean) return Range_Membership;
321 -- Common processing for Is_In_Range and Is_Out_Of_Range: Returns In_Range
322 -- or Out_Of_Range if it can be guaranteed at compile time that expression
323 -- N is known to be in or out of range of the subtype Typ. If not compile
324 -- time known, Unknown is returned. See documentation of Is_In_Range for
325 -- complete description of parameters.
326
327 procedure To_Bits (U : Uint; B : out Bits);
328 -- Converts a Uint value to a bit string of length B'Length
329
330 -----------------------------------------------
331 -- Check_Expression_Against_Static_Predicate --
332 -----------------------------------------------
333
334 procedure Check_Expression_Against_Static_Predicate
335 (Expr : Node_Id;
336 Typ : Entity_Id)
337 is
338 begin
339 -- Nothing to do if expression is not known at compile time, or the
340 -- type has no static predicate set (will be the case for all non-scalar
341 -- types, so no need to make a special test for that).
342
343 if not (Has_Static_Predicate (Typ)
344 and then Compile_Time_Known_Value (Expr))
345 then
346 return;
347 end if;
348
349 -- Here we have a static predicate (note that it could have arisen from
350 -- an explicitly specified Dynamic_Predicate whose expression met the
351 -- rules for being predicate-static). If the expression is known at
352 -- compile time and obeys the predicate, then it is static and must be
353 -- labeled as such, which matters e.g. for case statements. The original
354 -- expression may be a type conversion of a variable with a known value,
355 -- which might otherwise not be marked static.
356
357 -- Case of real static predicate
358
359 if Is_Real_Type (Typ) then
360 if Real_Or_String_Static_Predicate_Matches
361 (Val => Make_Real_Literal (Sloc (Expr), Expr_Value_R (Expr)),
362 Typ => Typ)
363 then
364 Set_Is_Static_Expression (Expr);
365 return;
366 end if;
367
368 -- Case of string static predicate
369
370 elsif Is_String_Type (Typ) then
371 if Real_Or_String_Static_Predicate_Matches
372 (Val => Expr_Value_S (Expr), Typ => Typ)
373 then
374 Set_Is_Static_Expression (Expr);
375 return;
376 end if;
377
378 -- Case of discrete static predicate
379
380 else
381 pragma Assert (Is_Discrete_Type (Typ));
382
383 -- If static predicate matches, nothing to do
384
385 if Choices_Match (Expr, Static_Discrete_Predicate (Typ)) = Match then
386 Set_Is_Static_Expression (Expr);
387 return;
388 end if;
389 end if;
390
391 -- Here we know that the predicate will fail
392
393 -- Special case of static expression failing a predicate (other than one
394 -- that was explicitly specified with a Dynamic_Predicate aspect). This
395 -- is the case where the expression is no longer considered static.
396
397 if Is_Static_Expression (Expr)
398 and then not Has_Dynamic_Predicate_Aspect (Typ)
399 then
400 Error_Msg_NE
401 ("??static expression fails static predicate check on &",
402 Expr, Typ);
403 Error_Msg_N
404 ("\??expression is no longer considered static", Expr);
405 Set_Is_Static_Expression (Expr, False);
406
407 -- In all other cases, this is just a warning that a test will fail.
408 -- It does not matter if the expression is static or not, or if the
409 -- predicate comes from a dynamic predicate aspect or not.
410
411 else
412 Error_Msg_NE
413 ("??expression fails predicate check on &", Expr, Typ);
414 end if;
415 end Check_Expression_Against_Static_Predicate;
416
417 ------------------------------
418 -- Check_Non_Static_Context --
419 ------------------------------
420
421 procedure Check_Non_Static_Context (N : Node_Id) is
422 T : constant Entity_Id := Etype (N);
423 Checks_On : constant Boolean :=
424 not Index_Checks_Suppressed (T)
425 and not Range_Checks_Suppressed (T);
426
427 begin
428 -- Ignore cases of non-scalar types, error types, or universal real
429 -- types that have no usable bounds.
430
431 if T = Any_Type
432 or else not Is_Scalar_Type (T)
433 or else T = Universal_Fixed
434 or else T = Universal_Real
435 then
436 return;
437 end if;
438
439 -- At this stage we have a scalar type. If we have an expression that
440 -- raises CE, then we already issued a warning or error msg so there is
441 -- nothing more to be done in this routine.
442
443 if Raises_Constraint_Error (N) then
444 return;
445 end if;
446
447 -- Now we have a scalar type which is not marked as raising a constraint
448 -- error exception. The main purpose of this routine is to deal with
449 -- static expressions appearing in a non-static context. That means
450 -- that if we do not have a static expression then there is not much
451 -- to do. The one case that we deal with here is that if we have a
452 -- floating-point value that is out of range, then we post a warning
453 -- that an infinity will result.
454
455 if not Is_Static_Expression (N) then
456 if Is_Floating_Point_Type (T) then
457 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
458 Error_Msg_N
459 ("??float value out of range, infinity will be generated", N);
460
461 -- The literal may be the result of constant-folding of a non-
462 -- static subexpression of a larger expression (e.g. a conversion
463 -- of a non-static variable whose value happens to be known). At
464 -- this point we must reduce the value of the subexpression to a
465 -- machine number (RM 4.9 (38/2)).
466
467 elsif Nkind (N) = N_Real_Literal
468 and then Nkind (Parent (N)) in N_Subexpr
469 then
470 Rewrite (N, New_Copy (N));
471 Set_Realval
472 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
473 end if;
474 end if;
475
476 return;
477 end if;
478
479 -- Here we have the case of outer level static expression of scalar
480 -- type, where the processing of this procedure is needed.
481
482 -- For real types, this is where we convert the value to a machine
483 -- number (see RM 4.9(38)). Also see ACVC test C490001. We should only
484 -- need to do this if the parent is a constant declaration, since in
485 -- other cases, gigi should do the necessary conversion correctly, but
486 -- experimentation shows that this is not the case on all machines, in
487 -- particular if we do not convert all literals to machine values in
488 -- non-static contexts, then ACVC test C490001 fails on Sparc/Solaris
489 -- and SGI/Irix.
490
491 -- This conversion is always done by GNATprove on real literals in
492 -- non-static expressions, by calling Check_Non_Static_Context from
493 -- gnat2why, as GNATprove cannot do the conversion later contrary
494 -- to gigi. The frontend computes the information about which
495 -- expressions are static, which is used by gnat2why to call
496 -- Check_Non_Static_Context on exactly those real literals that are
497 -- not subexpressions of static expressions.
498
499 if Nkind (N) = N_Real_Literal
500 and then not Is_Machine_Number (N)
501 and then not Is_Generic_Type (Etype (N))
502 and then Etype (N) /= Universal_Real
503 then
504 -- Check that value is in bounds before converting to machine
505 -- number, so as not to lose case where value overflows in the
506 -- least significant bit or less. See B490001.
507
508 if Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
509 Out_Of_Range (N);
510 return;
511 end if;
512
513 -- Note: we have to copy the node, to avoid problems with conformance
514 -- of very similar numbers (see ACVC tests B4A010C and B63103A).
515
516 Rewrite (N, New_Copy (N));
517
518 if not Is_Floating_Point_Type (T) then
519 Set_Realval
520 (N, Corresponding_Integer_Value (N) * Small_Value (T));
521
522 elsif not UR_Is_Zero (Realval (N)) then
523
524 -- Note: even though RM 4.9(38) specifies biased rounding, this
525 -- has been modified by AI-100 in order to prevent confusing
526 -- differences in rounding between static and non-static
527 -- expressions. AI-100 specifies that the effect of such rounding
528 -- is implementation dependent, and in GNAT we round to nearest
529 -- even to match the run-time behavior. Note that this applies
530 -- to floating point literals, not fixed points ones, even though
531 -- their compiler representation is also as a universal real.
532
533 Set_Realval
534 (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
535 Set_Is_Machine_Number (N);
536 end if;
537
538 end if;
539
540 -- Check for out of range universal integer. This is a non-static
541 -- context, so the integer value must be in range of the runtime
542 -- representation of universal integers.
543
544 -- We do this only within an expression, because that is the only
545 -- case in which non-static universal integer values can occur, and
546 -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
547 -- called in contexts like the expression of a number declaration where
548 -- we certainly want to allow out of range values.
549
550 if Etype (N) = Universal_Integer
551 and then Nkind (N) = N_Integer_Literal
552 and then Nkind (Parent (N)) in N_Subexpr
553 and then
554 (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
555 or else
556 Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
557 then
558 Apply_Compile_Time_Constraint_Error
559 (N, "non-static universal integer value out of range<<",
560 CE_Range_Check_Failed);
561
562 -- Check out of range of base type
563
564 elsif Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True) then
565 Out_Of_Range (N);
566
567 -- Give warning if outside subtype (where one or both of the bounds of
568 -- the subtype is static). This warning is omitted if the expression
569 -- appears in a range that could be null (warnings are handled elsewhere
570 -- for this case).
571
572 elsif T /= Base_Type (T) and then Nkind (Parent (N)) /= N_Range then
573 if Is_In_Range (N, T, Assume_Valid => True) then
574 null;
575
576 elsif Is_Out_Of_Range (N, T, Assume_Valid => True) then
577 Apply_Compile_Time_Constraint_Error
578 (N, "value not in range of}<<", CE_Range_Check_Failed);
579
580 elsif Checks_On then
581 Enable_Range_Check (N);
582
583 else
584 Set_Do_Range_Check (N, False);
585 end if;
586 end if;
587 end Check_Non_Static_Context;
588
589 ---------------------------------
590 -- Check_String_Literal_Length --
591 ---------------------------------
592
593 procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
594 begin
595 if not Raises_Constraint_Error (N) and then Is_Constrained (Ttype) then
596 if UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
597 then
598 Apply_Compile_Time_Constraint_Error
599 (N, "string length wrong for}??",
600 CE_Length_Check_Failed,
601 Ent => Ttype,
602 Typ => Ttype);
603 end if;
604 end if;
605 end Check_String_Literal_Length;
606
607 --------------------
608 -- Choice_Matches --
609 --------------------
610
611 function Choice_Matches
612 (Expr : Node_Id;
613 Choice : Node_Id) return Match_Result
614 is
615 Etyp : constant Entity_Id := Etype (Expr);
616 Val : Uint;
617 ValR : Ureal;
618 ValS : Node_Id;
619
620 begin
621 pragma Assert (Compile_Time_Known_Value (Expr));
622 pragma Assert (Is_Scalar_Type (Etyp) or else Is_String_Type (Etyp));
623
624 if not Is_OK_Static_Choice (Choice) then
625 Set_Raises_Constraint_Error (Choice);
626 return Non_Static;
627
628 -- When the choice denotes a subtype with a static predictate, check the
629 -- expression against the predicate values. Different procedures apply
630 -- to discrete and non-discrete types.
631
632 elsif (Nkind (Choice) = N_Subtype_Indication
633 or else (Is_Entity_Name (Choice)
634 and then Is_Type (Entity (Choice))))
635 and then Has_Predicates (Etype (Choice))
636 and then Has_Static_Predicate (Etype (Choice))
637 then
638 if Is_Discrete_Type (Etype (Choice)) then
639 return
640 Choices_Match
641 (Expr, Static_Discrete_Predicate (Etype (Choice)));
642
643 elsif Real_Or_String_Static_Predicate_Matches (Expr, Etype (Choice))
644 then
645 return Match;
646
647 else
648 return No_Match;
649 end if;
650
651 -- Discrete type case only
652
653 elsif Is_Discrete_Type (Etyp) then
654 Val := Expr_Value (Expr);
655
656 if Nkind (Choice) = N_Range then
657 if Val >= Expr_Value (Low_Bound (Choice))
658 and then
659 Val <= Expr_Value (High_Bound (Choice))
660 then
661 return Match;
662 else
663 return No_Match;
664 end if;
665
666 elsif Nkind (Choice) = N_Subtype_Indication
667 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
668 then
669 if Val >= Expr_Value (Type_Low_Bound (Etype (Choice)))
670 and then
671 Val <= Expr_Value (Type_High_Bound (Etype (Choice)))
672 then
673 return Match;
674 else
675 return No_Match;
676 end if;
677
678 elsif Nkind (Choice) = N_Others_Choice then
679 return Match;
680
681 else
682 if Val = Expr_Value (Choice) then
683 return Match;
684 else
685 return No_Match;
686 end if;
687 end if;
688
689 -- Real type case
690
691 elsif Is_Real_Type (Etyp) then
692 ValR := Expr_Value_R (Expr);
693
694 if Nkind (Choice) = N_Range then
695 if ValR >= Expr_Value_R (Low_Bound (Choice))
696 and then
697 ValR <= Expr_Value_R (High_Bound (Choice))
698 then
699 return Match;
700 else
701 return No_Match;
702 end if;
703
704 elsif Nkind (Choice) = N_Subtype_Indication
705 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
706 then
707 if ValR >= Expr_Value_R (Type_Low_Bound (Etype (Choice)))
708 and then
709 ValR <= Expr_Value_R (Type_High_Bound (Etype (Choice)))
710 then
711 return Match;
712 else
713 return No_Match;
714 end if;
715
716 else
717 if ValR = Expr_Value_R (Choice) then
718 return Match;
719 else
720 return No_Match;
721 end if;
722 end if;
723
724 -- String type cases
725
726 else
727 pragma Assert (Is_String_Type (Etyp));
728 ValS := Expr_Value_S (Expr);
729
730 if Nkind (Choice) = N_Subtype_Indication
731 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
732 then
733 if not Is_Constrained (Etype (Choice)) then
734 return Match;
735
736 else
737 declare
738 Typlen : constant Uint :=
739 String_Type_Len (Etype (Choice));
740 Strlen : constant Uint :=
741 UI_From_Int (String_Length (Strval (ValS)));
742 begin
743 if Typlen = Strlen then
744 return Match;
745 else
746 return No_Match;
747 end if;
748 end;
749 end if;
750
751 else
752 if String_Equal (Strval (ValS), Strval (Expr_Value_S (Choice)))
753 then
754 return Match;
755 else
756 return No_Match;
757 end if;
758 end if;
759 end if;
760 end Choice_Matches;
761
762 -------------------
763 -- Choices_Match --
764 -------------------
765
766 function Choices_Match
767 (Expr : Node_Id;
768 Choices : List_Id) return Match_Result
769 is
770 Choice : Node_Id;
771 Result : Match_Result;
772
773 begin
774 Choice := First (Choices);
775 while Present (Choice) loop
776 Result := Choice_Matches (Expr, Choice);
777
778 if Result /= No_Match then
779 return Result;
780 end if;
781
782 Next (Choice);
783 end loop;
784
785 return No_Match;
786 end Choices_Match;
787
788 --------------------------
789 -- Compile_Time_Compare --
790 --------------------------
791
792 function Compile_Time_Compare
793 (L, R : Node_Id;
794 Assume_Valid : Boolean) return Compare_Result
795 is
796 Discard : aliased Uint;
797 begin
798 return Compile_Time_Compare (L, R, Discard'Access, Assume_Valid);
799 end Compile_Time_Compare;
800
801 function Compile_Time_Compare
802 (L, R : Node_Id;
803 Diff : access Uint;
804 Assume_Valid : Boolean;
805 Rec : Boolean := False) return Compare_Result
806 is
807 Ltyp : Entity_Id := Etype (L);
808 Rtyp : Entity_Id := Etype (R);
809
810 Discard : aliased Uint;
811
812 procedure Compare_Decompose
813 (N : Node_Id;
814 R : out Node_Id;
815 V : out Uint);
816 -- This procedure decomposes the node N into an expression node and a
817 -- signed offset, so that the value of N is equal to the value of R plus
818 -- the value V (which may be negative). If no such decomposition is
819 -- possible, then on return R is a copy of N, and V is set to zero.
820
821 function Compare_Fixup (N : Node_Id) return Node_Id;
822 -- This function deals with replacing 'Last and 'First references with
823 -- their corresponding type bounds, which we then can compare. The
824 -- argument is the original node, the result is the identity, unless we
825 -- have a 'Last/'First reference in which case the value returned is the
826 -- appropriate type bound.
827
828 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean;
829 -- Even if the context does not assume that values are valid, some
830 -- simple cases can be recognized.
831
832 function Is_Same_Value (L, R : Node_Id) return Boolean;
833 -- Returns True iff L and R represent expressions that definitely have
834 -- identical (but not necessarily compile time known) values Indeed the
835 -- caller is expected to have already dealt with the cases of compile
836 -- time known values, so these are not tested here.
837
838 -----------------------
839 -- Compare_Decompose --
840 -----------------------
841
842 procedure Compare_Decompose
843 (N : Node_Id;
844 R : out Node_Id;
845 V : out Uint)
846 is
847 begin
848 if Nkind (N) = N_Op_Add
849 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
850 then
851 R := Left_Opnd (N);
852 V := Intval (Right_Opnd (N));
853 return;
854
855 elsif Nkind (N) = N_Op_Subtract
856 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
857 then
858 R := Left_Opnd (N);
859 V := UI_Negate (Intval (Right_Opnd (N)));
860 return;
861
862 elsif Nkind (N) = N_Attribute_Reference then
863 if Attribute_Name (N) = Name_Succ then
864 R := First (Expressions (N));
865 V := Uint_1;
866 return;
867
868 elsif Attribute_Name (N) = Name_Pred then
869 R := First (Expressions (N));
870 V := Uint_Minus_1;
871 return;
872 end if;
873 end if;
874
875 R := N;
876 V := Uint_0;
877 end Compare_Decompose;
878
879 -------------------
880 -- Compare_Fixup --
881 -------------------
882
883 function Compare_Fixup (N : Node_Id) return Node_Id is
884 Indx : Node_Id;
885 Xtyp : Entity_Id;
886 Subs : Nat;
887
888 begin
889 -- Fixup only required for First/Last attribute reference
890
891 if Nkind (N) = N_Attribute_Reference
892 and then Nam_In (Attribute_Name (N), Name_First, Name_Last)
893 then
894 Xtyp := Etype (Prefix (N));
895
896 -- If we have no type, then just abandon the attempt to do
897 -- a fixup, this is probably the result of some other error.
898
899 if No (Xtyp) then
900 return N;
901 end if;
902
903 -- Dereference an access type
904
905 if Is_Access_Type (Xtyp) then
906 Xtyp := Designated_Type (Xtyp);
907 end if;
908
909 -- If we don't have an array type at this stage, something is
910 -- peculiar, e.g. another error, and we abandon the attempt at
911 -- a fixup.
912
913 if not Is_Array_Type (Xtyp) then
914 return N;
915 end if;
916
917 -- Ignore unconstrained array, since bounds are not meaningful
918
919 if not Is_Constrained (Xtyp) then
920 return N;
921 end if;
922
923 if Ekind (Xtyp) = E_String_Literal_Subtype then
924 if Attribute_Name (N) = Name_First then
925 return String_Literal_Low_Bound (Xtyp);
926 else
927 return
928 Make_Integer_Literal (Sloc (N),
929 Intval => Intval (String_Literal_Low_Bound (Xtyp)) +
930 String_Literal_Length (Xtyp));
931 end if;
932 end if;
933
934 -- Find correct index type
935
936 Indx := First_Index (Xtyp);
937
938 if Present (Expressions (N)) then
939 Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
940
941 for J in 2 .. Subs loop
942 Indx := Next_Index (Indx);
943 end loop;
944 end if;
945
946 Xtyp := Etype (Indx);
947
948 if Attribute_Name (N) = Name_First then
949 return Type_Low_Bound (Xtyp);
950 else
951 return Type_High_Bound (Xtyp);
952 end if;
953 end if;
954
955 return N;
956 end Compare_Fixup;
957
958 ----------------------------
959 -- Is_Known_Valid_Operand --
960 ----------------------------
961
962 function Is_Known_Valid_Operand (Opnd : Node_Id) return Boolean is
963 begin
964 return (Is_Entity_Name (Opnd)
965 and then
966 (Is_Known_Valid (Entity (Opnd))
967 or else Ekind (Entity (Opnd)) = E_In_Parameter
968 or else
969 (Ekind (Entity (Opnd)) in Object_Kind
970 and then Present (Current_Value (Entity (Opnd))))))
971 or else Is_OK_Static_Expression (Opnd);
972 end Is_Known_Valid_Operand;
973
974 -------------------
975 -- Is_Same_Value --
976 -------------------
977
978 function Is_Same_Value (L, R : Node_Id) return Boolean is
979 Lf : constant Node_Id := Compare_Fixup (L);
980 Rf : constant Node_Id := Compare_Fixup (R);
981
982 function Is_Same_Subscript (L, R : List_Id) return Boolean;
983 -- L, R are the Expressions values from two attribute nodes for First
984 -- or Last attributes. Either may be set to No_List if no expressions
985 -- are present (indicating subscript 1). The result is True if both
986 -- expressions represent the same subscript (note one case is where
987 -- one subscript is missing and the other is explicitly set to 1).
988
989 -----------------------
990 -- Is_Same_Subscript --
991 -----------------------
992
993 function Is_Same_Subscript (L, R : List_Id) return Boolean is
994 begin
995 if L = No_List then
996 if R = No_List then
997 return True;
998 else
999 return Expr_Value (First (R)) = Uint_1;
1000 end if;
1001
1002 else
1003 if R = No_List then
1004 return Expr_Value (First (L)) = Uint_1;
1005 else
1006 return Expr_Value (First (L)) = Expr_Value (First (R));
1007 end if;
1008 end if;
1009 end Is_Same_Subscript;
1010
1011 -- Start of processing for Is_Same_Value
1012
1013 begin
1014 -- Values are the same if they refer to the same entity and the
1015 -- entity is non-volatile. This does not however apply to Float
1016 -- types, since we may have two NaN values and they should never
1017 -- compare equal.
1018
1019 -- If the entity is a discriminant, the two expressions may be bounds
1020 -- of components of objects of the same discriminated type. The
1021 -- values of the discriminants are not static, and therefore the
1022 -- result is unknown.
1023
1024 -- It would be better to comment individual branches of this test ???
1025
1026 if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
1027 and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
1028 and then Entity (Lf) = Entity (Rf)
1029 and then Ekind (Entity (Lf)) /= E_Discriminant
1030 and then Present (Entity (Lf))
1031 and then not Is_Floating_Point_Type (Etype (L))
1032 and then not Is_Volatile_Reference (L)
1033 and then not Is_Volatile_Reference (R)
1034 then
1035 return True;
1036
1037 -- Or if they are compile time known and identical
1038
1039 elsif Compile_Time_Known_Value (Lf)
1040 and then
1041 Compile_Time_Known_Value (Rf)
1042 and then Expr_Value (Lf) = Expr_Value (Rf)
1043 then
1044 return True;
1045
1046 -- False if Nkind of the two nodes is different for remaining cases
1047
1048 elsif Nkind (Lf) /= Nkind (Rf) then
1049 return False;
1050
1051 -- True if both 'First or 'Last values applying to the same entity
1052 -- (first and last don't change even if value does). Note that we
1053 -- need this even with the calls to Compare_Fixup, to handle the
1054 -- case of unconstrained array attributes where Compare_Fixup
1055 -- cannot find useful bounds.
1056
1057 elsif Nkind (Lf) = N_Attribute_Reference
1058 and then Attribute_Name (Lf) = Attribute_Name (Rf)
1059 and then Nam_In (Attribute_Name (Lf), Name_First, Name_Last)
1060 and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
1061 and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
1062 and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
1063 and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
1064 then
1065 return True;
1066
1067 -- True if the same selected component from the same record
1068
1069 elsif Nkind (Lf) = N_Selected_Component
1070 and then Selector_Name (Lf) = Selector_Name (Rf)
1071 and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
1072 then
1073 return True;
1074
1075 -- True if the same unary operator applied to the same operand
1076
1077 elsif Nkind (Lf) in N_Unary_Op
1078 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1079 then
1080 return True;
1081
1082 -- True if the same binary operator applied to the same operands
1083
1084 elsif Nkind (Lf) in N_Binary_Op
1085 and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
1086 and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
1087 then
1088 return True;
1089
1090 -- All other cases, we can't tell, so return False
1091
1092 else
1093 return False;
1094 end if;
1095 end Is_Same_Value;
1096
1097 -- Start of processing for Compile_Time_Compare
1098
1099 begin
1100 Diff.all := No_Uint;
1101
1102 -- In preanalysis mode, always return Unknown unless the expression
1103 -- is static. It is too early to be thinking we know the result of a
1104 -- comparison, save that judgment for the full analysis. This is
1105 -- particularly important in the case of pre and postconditions, which
1106 -- otherwise can be prematurely collapsed into having True or False
1107 -- conditions when this is inappropriate.
1108
1109 if not (Full_Analysis
1110 or else (Is_OK_Static_Expression (L)
1111 and then
1112 Is_OK_Static_Expression (R)))
1113 then
1114 return Unknown;
1115 end if;
1116
1117 -- If either operand could raise constraint error, then we cannot
1118 -- know the result at compile time (since CE may be raised).
1119
1120 if not (Cannot_Raise_Constraint_Error (L)
1121 and then
1122 Cannot_Raise_Constraint_Error (R))
1123 then
1124 return Unknown;
1125 end if;
1126
1127 -- Identical operands are most certainly equal
1128
1129 if L = R then
1130 return EQ;
1131 end if;
1132
1133 -- If expressions have no types, then do not attempt to determine if
1134 -- they are the same, since something funny is going on. One case in
1135 -- which this happens is during generic template analysis, when bounds
1136 -- are not fully analyzed.
1137
1138 if No (Ltyp) or else No (Rtyp) then
1139 return Unknown;
1140 end if;
1141
1142 -- These get reset to the base type for the case of entities where
1143 -- Is_Known_Valid is not set. This takes care of handling possible
1144 -- invalid representations using the value of the base type, in
1145 -- accordance with RM 13.9.1(10).
1146
1147 Ltyp := Underlying_Type (Ltyp);
1148 Rtyp := Underlying_Type (Rtyp);
1149
1150 -- Same rationale as above, but for Underlying_Type instead of Etype
1151
1152 if No (Ltyp) or else No (Rtyp) then
1153 return Unknown;
1154 end if;
1155
1156 -- We do not attempt comparisons for packed arrays represented as
1157 -- modular types, where the semantics of comparison is quite different.
1158
1159 if Is_Packed_Array_Impl_Type (Ltyp)
1160 and then Is_Modular_Integer_Type (Ltyp)
1161 then
1162 return Unknown;
1163
1164 -- For access types, the only time we know the result at compile time
1165 -- (apart from identical operands, which we handled already) is if we
1166 -- know one operand is null and the other is not, or both operands are
1167 -- known null.
1168
1169 elsif Is_Access_Type (Ltyp) then
1170 if Known_Null (L) then
1171 if Known_Null (R) then
1172 return EQ;
1173 elsif Known_Non_Null (R) then
1174 return NE;
1175 else
1176 return Unknown;
1177 end if;
1178
1179 elsif Known_Non_Null (L) and then Known_Null (R) then
1180 return NE;
1181
1182 else
1183 return Unknown;
1184 end if;
1185
1186 -- Case where comparison involves two compile time known values
1187
1188 elsif Compile_Time_Known_Value (L)
1189 and then
1190 Compile_Time_Known_Value (R)
1191 then
1192 -- For the floating-point case, we have to be a little careful, since
1193 -- at compile time we are dealing with universal exact values, but at
1194 -- runtime, these will be in non-exact target form. That's why the
1195 -- returned results are LE and GE below instead of LT and GT.
1196
1197 if Is_Floating_Point_Type (Ltyp)
1198 or else
1199 Is_Floating_Point_Type (Rtyp)
1200 then
1201 declare
1202 Lo : constant Ureal := Expr_Value_R (L);
1203 Hi : constant Ureal := Expr_Value_R (R);
1204 begin
1205 if Lo < Hi then
1206 return LE;
1207 elsif Lo = Hi then
1208 return EQ;
1209 else
1210 return GE;
1211 end if;
1212 end;
1213
1214 -- For string types, we have two string literals and we proceed to
1215 -- compare them using the Ada style dictionary string comparison.
1216
1217 elsif not Is_Scalar_Type (Ltyp) then
1218 declare
1219 Lstring : constant String_Id := Strval (Expr_Value_S (L));
1220 Rstring : constant String_Id := Strval (Expr_Value_S (R));
1221 Llen : constant Nat := String_Length (Lstring);
1222 Rlen : constant Nat := String_Length (Rstring);
1223
1224 begin
1225 for J in 1 .. Nat'Min (Llen, Rlen) loop
1226 declare
1227 LC : constant Char_Code := Get_String_Char (Lstring, J);
1228 RC : constant Char_Code := Get_String_Char (Rstring, J);
1229 begin
1230 if LC < RC then
1231 return LT;
1232 elsif LC > RC then
1233 return GT;
1234 end if;
1235 end;
1236 end loop;
1237
1238 if Llen < Rlen then
1239 return LT;
1240 elsif Llen > Rlen then
1241 return GT;
1242 else
1243 return EQ;
1244 end if;
1245 end;
1246
1247 -- For remaining scalar cases we know exactly (note that this does
1248 -- include the fixed-point case, where we know the run time integer
1249 -- values now).
1250
1251 else
1252 declare
1253 Lo : constant Uint := Expr_Value (L);
1254 Hi : constant Uint := Expr_Value (R);
1255 begin
1256 if Lo < Hi then
1257 Diff.all := Hi - Lo;
1258 return LT;
1259 elsif Lo = Hi then
1260 return EQ;
1261 else
1262 Diff.all := Lo - Hi;
1263 return GT;
1264 end if;
1265 end;
1266 end if;
1267
1268 -- Cases where at least one operand is not known at compile time
1269
1270 else
1271 -- Remaining checks apply only for discrete types
1272
1273 if not Is_Discrete_Type (Ltyp)
1274 or else
1275 not Is_Discrete_Type (Rtyp)
1276 then
1277 return Unknown;
1278 end if;
1279
1280 -- Defend against generic types, or actually any expressions that
1281 -- contain a reference to a generic type from within a generic
1282 -- template. We don't want to do any range analysis of such
1283 -- expressions for two reasons. First, the bounds of a generic type
1284 -- itself are junk and cannot be used for any kind of analysis.
1285 -- Second, we may have a case where the range at run time is indeed
1286 -- known, but we don't want to do compile time analysis in the
1287 -- template based on that range since in an instance the value may be
1288 -- static, and able to be elaborated without reference to the bounds
1289 -- of types involved. As an example, consider:
1290
1291 -- (F'Pos (F'Last) + 1) > Integer'Last
1292
1293 -- The expression on the left side of > is Universal_Integer and thus
1294 -- acquires the type Integer for evaluation at run time, and at run
1295 -- time it is true that this condition is always False, but within
1296 -- an instance F may be a type with a static range greater than the
1297 -- range of Integer, and the expression statically evaluates to True.
1298
1299 if References_Generic_Formal_Type (L)
1300 or else
1301 References_Generic_Formal_Type (R)
1302 then
1303 return Unknown;
1304 end if;
1305
1306 -- Replace types by base types for the case of values which are not
1307 -- known to have valid representations. This takes care of properly
1308 -- dealing with invalid representations.
1309
1310 if not Assume_Valid then
1311 if not (Is_Entity_Name (L)
1312 and then (Is_Known_Valid (Entity (L))
1313 or else Assume_No_Invalid_Values))
1314 then
1315 Ltyp := Underlying_Type (Base_Type (Ltyp));
1316 end if;
1317
1318 if not (Is_Entity_Name (R)
1319 and then (Is_Known_Valid (Entity (R))
1320 or else Assume_No_Invalid_Values))
1321 then
1322 Rtyp := Underlying_Type (Base_Type (Rtyp));
1323 end if;
1324 end if;
1325
1326 -- First attempt is to decompose the expressions to extract a
1327 -- constant offset resulting from the use of any of the forms:
1328
1329 -- expr + literal
1330 -- expr - literal
1331 -- typ'Succ (expr)
1332 -- typ'Pred (expr)
1333
1334 -- Then we see if the two expressions are the same value, and if so
1335 -- the result is obtained by comparing the offsets.
1336
1337 -- Note: the reason we do this test first is that it returns only
1338 -- decisive results (with diff set), where other tests, like the
1339 -- range test, may not be as so decisive. Consider for example
1340 -- J .. J + 1. This code can conclude LT with a difference of 1,
1341 -- even if the range of J is not known.
1342
1343 declare
1344 Lnode : Node_Id;
1345 Loffs : Uint;
1346 Rnode : Node_Id;
1347 Roffs : Uint;
1348
1349 begin
1350 Compare_Decompose (L, Lnode, Loffs);
1351 Compare_Decompose (R, Rnode, Roffs);
1352
1353 if Is_Same_Value (Lnode, Rnode) then
1354 if Loffs = Roffs then
1355 return EQ;
1356 end if;
1357
1358 -- When the offsets are not equal, we can go farther only if
1359 -- the types are not modular (e.g. X < X + 1 is False if X is
1360 -- the largest number).
1361
1362 if not Is_Modular_Integer_Type (Ltyp)
1363 and then not Is_Modular_Integer_Type (Rtyp)
1364 then
1365 if Loffs < Roffs then
1366 Diff.all := Roffs - Loffs;
1367 return LT;
1368 else
1369 Diff.all := Loffs - Roffs;
1370 return GT;
1371 end if;
1372 end if;
1373 end if;
1374 end;
1375
1376 -- Next, try range analysis and see if operand ranges are disjoint
1377
1378 declare
1379 LOK, ROK : Boolean;
1380 LLo, LHi : Uint;
1381 RLo, RHi : Uint;
1382
1383 Single : Boolean;
1384 -- True if each range is a single point
1385
1386 begin
1387 Determine_Range (L, LOK, LLo, LHi, Assume_Valid);
1388 Determine_Range (R, ROK, RLo, RHi, Assume_Valid);
1389
1390 if LOK and ROK then
1391 Single := (LLo = LHi) and then (RLo = RHi);
1392
1393 if LHi < RLo then
1394 if Single and Assume_Valid then
1395 Diff.all := RLo - LLo;
1396 end if;
1397
1398 return LT;
1399
1400 elsif RHi < LLo then
1401 if Single and Assume_Valid then
1402 Diff.all := LLo - RLo;
1403 end if;
1404
1405 return GT;
1406
1407 elsif Single and then LLo = RLo then
1408
1409 -- If the range includes a single literal and we can assume
1410 -- validity then the result is known even if an operand is
1411 -- not static.
1412
1413 if Assume_Valid then
1414 return EQ;
1415 else
1416 return Unknown;
1417 end if;
1418
1419 elsif LHi = RLo then
1420 return LE;
1421
1422 elsif RHi = LLo then
1423 return GE;
1424
1425 elsif not Is_Known_Valid_Operand (L)
1426 and then not Assume_Valid
1427 then
1428 if Is_Same_Value (L, R) then
1429 return EQ;
1430 else
1431 return Unknown;
1432 end if;
1433 end if;
1434
1435 -- If the range of either operand cannot be determined, nothing
1436 -- further can be inferred.
1437
1438 else
1439 return Unknown;
1440 end if;
1441 end;
1442
1443 -- Here is where we check for comparisons against maximum bounds of
1444 -- types, where we know that no value can be outside the bounds of
1445 -- the subtype. Note that this routine is allowed to assume that all
1446 -- expressions are within their subtype bounds. Callers wishing to
1447 -- deal with possibly invalid values must in any case take special
1448 -- steps (e.g. conversions to larger types) to avoid this kind of
1449 -- optimization, which is always considered to be valid. We do not
1450 -- attempt this optimization with generic types, since the type
1451 -- bounds may not be meaningful in this case.
1452
1453 -- We are in danger of an infinite recursion here. It does not seem
1454 -- useful to go more than one level deep, so the parameter Rec is
1455 -- used to protect ourselves against this infinite recursion.
1456
1457 if not Rec then
1458
1459 -- See if we can get a decisive check against one operand and a
1460 -- bound of the other operand (four possible tests here). Note
1461 -- that we avoid testing junk bounds of a generic type.
1462
1463 if not Is_Generic_Type (Rtyp) then
1464 case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
1465 Discard'Access,
1466 Assume_Valid, Rec => True)
1467 is
1468 when LT => return LT;
1469 when LE => return LE;
1470 when EQ => return LE;
1471 when others => null;
1472 end case;
1473
1474 case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
1475 Discard'Access,
1476 Assume_Valid, Rec => True)
1477 is
1478 when GT => return GT;
1479 when GE => return GE;
1480 when EQ => return GE;
1481 when others => null;
1482 end case;
1483 end if;
1484
1485 if not Is_Generic_Type (Ltyp) then
1486 case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
1487 Discard'Access,
1488 Assume_Valid, Rec => True)
1489 is
1490 when GT => return GT;
1491 when GE => return GE;
1492 when EQ => return GE;
1493 when others => null;
1494 end case;
1495
1496 case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
1497 Discard'Access,
1498 Assume_Valid, Rec => True)
1499 is
1500 when LT => return LT;
1501 when LE => return LE;
1502 when EQ => return LE;
1503 when others => null;
1504 end case;
1505 end if;
1506 end if;
1507
1508 -- Next attempt is to see if we have an entity compared with a
1509 -- compile time known value, where there is a current value
1510 -- conditional for the entity which can tell us the result.
1511
1512 declare
1513 Var : Node_Id;
1514 -- Entity variable (left operand)
1515
1516 Val : Uint;
1517 -- Value (right operand)
1518
1519 Inv : Boolean;
1520 -- If False, we have reversed the operands
1521
1522 Op : Node_Kind;
1523 -- Comparison operator kind from Get_Current_Value_Condition call
1524
1525 Opn : Node_Id;
1526 -- Value from Get_Current_Value_Condition call
1527
1528 Opv : Uint;
1529 -- Value of Opn
1530
1531 Result : Compare_Result;
1532 -- Known result before inversion
1533
1534 begin
1535 if Is_Entity_Name (L)
1536 and then Compile_Time_Known_Value (R)
1537 then
1538 Var := L;
1539 Val := Expr_Value (R);
1540 Inv := False;
1541
1542 elsif Is_Entity_Name (R)
1543 and then Compile_Time_Known_Value (L)
1544 then
1545 Var := R;
1546 Val := Expr_Value (L);
1547 Inv := True;
1548
1549 -- That was the last chance at finding a compile time result
1550
1551 else
1552 return Unknown;
1553 end if;
1554
1555 Get_Current_Value_Condition (Var, Op, Opn);
1556
1557 -- That was the last chance, so if we got nothing return
1558
1559 if No (Opn) then
1560 return Unknown;
1561 end if;
1562
1563 Opv := Expr_Value (Opn);
1564
1565 -- We got a comparison, so we might have something interesting
1566
1567 -- Convert LE to LT and GE to GT, just so we have fewer cases
1568
1569 if Op = N_Op_Le then
1570 Op := N_Op_Lt;
1571 Opv := Opv + 1;
1572
1573 elsif Op = N_Op_Ge then
1574 Op := N_Op_Gt;
1575 Opv := Opv - 1;
1576 end if;
1577
1578 -- Deal with equality case
1579
1580 if Op = N_Op_Eq then
1581 if Val = Opv then
1582 Result := EQ;
1583 elsif Opv < Val then
1584 Result := LT;
1585 else
1586 Result := GT;
1587 end if;
1588
1589 -- Deal with inequality case
1590
1591 elsif Op = N_Op_Ne then
1592 if Val = Opv then
1593 Result := NE;
1594 else
1595 return Unknown;
1596 end if;
1597
1598 -- Deal with greater than case
1599
1600 elsif Op = N_Op_Gt then
1601 if Opv >= Val then
1602 Result := GT;
1603 elsif Opv = Val - 1 then
1604 Result := GE;
1605 else
1606 return Unknown;
1607 end if;
1608
1609 -- Deal with less than case
1610
1611 else pragma Assert (Op = N_Op_Lt);
1612 if Opv <= Val then
1613 Result := LT;
1614 elsif Opv = Val + 1 then
1615 Result := LE;
1616 else
1617 return Unknown;
1618 end if;
1619 end if;
1620
1621 -- Deal with inverting result
1622
1623 if Inv then
1624 case Result is
1625 when GT => return LT;
1626 when GE => return LE;
1627 when LT => return GT;
1628 when LE => return GE;
1629 when others => return Result;
1630 end case;
1631 end if;
1632
1633 return Result;
1634 end;
1635 end if;
1636 end Compile_Time_Compare;
1637
1638 -------------------------------
1639 -- Compile_Time_Known_Bounds --
1640 -------------------------------
1641
1642 function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
1643 Indx : Node_Id;
1644 Typ : Entity_Id;
1645
1646 begin
1647 if T = Any_Composite or else not Is_Array_Type (T) then
1648 return False;
1649 end if;
1650
1651 Indx := First_Index (T);
1652 while Present (Indx) loop
1653 Typ := Underlying_Type (Etype (Indx));
1654
1655 -- Never look at junk bounds of a generic type
1656
1657 if Is_Generic_Type (Typ) then
1658 return False;
1659 end if;
1660
1661 -- Otherwise check bounds for compile time known
1662
1663 if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
1664 return False;
1665 elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
1666 return False;
1667 else
1668 Next_Index (Indx);
1669 end if;
1670 end loop;
1671
1672 return True;
1673 end Compile_Time_Known_Bounds;
1674
1675 ------------------------------
1676 -- Compile_Time_Known_Value --
1677 ------------------------------
1678
1679 function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1680 K : constant Node_Kind := Nkind (Op);
1681 CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
1682
1683 begin
1684 -- Never known at compile time if bad type or raises constraint error
1685 -- or empty (latter case occurs only as a result of a previous error).
1686
1687 if No (Op) then
1688 Check_Error_Detected;
1689 return False;
1690
1691 elsif Op = Error
1692 or else Etype (Op) = Any_Type
1693 or else Raises_Constraint_Error (Op)
1694 then
1695 return False;
1696 end if;
1697
1698 -- If we have an entity name, then see if it is the name of a constant
1699 -- and if so, test the corresponding constant value, or the name of
1700 -- an enumeration literal, which is always a constant.
1701
1702 if Present (Etype (Op)) and then Is_Entity_Name (Op) then
1703 declare
1704 E : constant Entity_Id := Entity (Op);
1705 V : Node_Id;
1706
1707 begin
1708 -- Never known at compile time if it is a packed array value.
1709 -- We might want to try to evaluate these at compile time one
1710 -- day, but we do not make that attempt now.
1711
1712 if Is_Packed_Array_Impl_Type (Etype (Op)) then
1713 return False;
1714 end if;
1715
1716 if Ekind (E) = E_Enumeration_Literal then
1717 return True;
1718
1719 elsif Ekind (E) = E_Constant then
1720 V := Constant_Value (E);
1721 return Present (V) and then Compile_Time_Known_Value (V);
1722 end if;
1723 end;
1724
1725 -- We have a value, see if it is compile time known
1726
1727 else
1728 -- Integer literals are worth storing in the cache
1729
1730 if K = N_Integer_Literal then
1731 CV_Ent.N := Op;
1732 CV_Ent.V := Intval (Op);
1733 return True;
1734
1735 -- Other literals and NULL are known at compile time
1736
1737 elsif
1738 Nkind_In (K, N_Character_Literal,
1739 N_Real_Literal,
1740 N_String_Literal,
1741 N_Null)
1742 then
1743 return True;
1744 end if;
1745 end if;
1746
1747 -- If we fall through, not known at compile time
1748
1749 return False;
1750
1751 -- If we get an exception while trying to do this test, then some error
1752 -- has occurred, and we simply say that the value is not known after all
1753
1754 exception
1755 when others =>
1756 return False;
1757 end Compile_Time_Known_Value;
1758
1759 --------------------------------------
1760 -- Compile_Time_Known_Value_Or_Aggr --
1761 --------------------------------------
1762
1763 function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
1764 begin
1765 -- If we have an entity name, then see if it is the name of a constant
1766 -- and if so, test the corresponding constant value, or the name of
1767 -- an enumeration literal, which is always a constant.
1768
1769 if Is_Entity_Name (Op) then
1770 declare
1771 E : constant Entity_Id := Entity (Op);
1772 V : Node_Id;
1773
1774 begin
1775 if Ekind (E) = E_Enumeration_Literal then
1776 return True;
1777
1778 elsif Ekind (E) /= E_Constant then
1779 return False;
1780
1781 else
1782 V := Constant_Value (E);
1783 return Present (V)
1784 and then Compile_Time_Known_Value_Or_Aggr (V);
1785 end if;
1786 end;
1787
1788 -- We have a value, see if it is compile time known
1789
1790 else
1791 if Compile_Time_Known_Value (Op) then
1792 return True;
1793
1794 elsif Nkind (Op) = N_Aggregate then
1795
1796 if Present (Expressions (Op)) then
1797 declare
1798 Expr : Node_Id;
1799 begin
1800 Expr := First (Expressions (Op));
1801 while Present (Expr) loop
1802 if not Compile_Time_Known_Value_Or_Aggr (Expr) then
1803 return False;
1804 else
1805 Next (Expr);
1806 end if;
1807 end loop;
1808 end;
1809 end if;
1810
1811 if Present (Component_Associations (Op)) then
1812 declare
1813 Cass : Node_Id;
1814
1815 begin
1816 Cass := First (Component_Associations (Op));
1817 while Present (Cass) loop
1818 if not
1819 Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
1820 then
1821 return False;
1822 end if;
1823
1824 Next (Cass);
1825 end loop;
1826 end;
1827 end if;
1828
1829 return True;
1830
1831 elsif Nkind (Op) = N_Qualified_Expression then
1832 return Compile_Time_Known_Value_Or_Aggr (Expression (Op));
1833
1834 -- All other types of values are not known at compile time
1835
1836 else
1837 return False;
1838 end if;
1839
1840 end if;
1841 end Compile_Time_Known_Value_Or_Aggr;
1842
1843 ---------------------------------------
1844 -- CRT_Safe_Compile_Time_Known_Value --
1845 ---------------------------------------
1846
1847 function CRT_Safe_Compile_Time_Known_Value (Op : Node_Id) return Boolean is
1848 begin
1849 if (Configurable_Run_Time_Mode or No_Run_Time_Mode)
1850 and then not Is_OK_Static_Expression (Op)
1851 then
1852 return False;
1853 else
1854 return Compile_Time_Known_Value (Op);
1855 end if;
1856 end CRT_Safe_Compile_Time_Known_Value;
1857
1858 -----------------
1859 -- Eval_Actual --
1860 -----------------
1861
1862 -- This is only called for actuals of functions that are not predefined
1863 -- operators (which have already been rewritten as operators at this
1864 -- stage), so the call can never be folded, and all that needs doing for
1865 -- the actual is to do the check for a non-static context.
1866
1867 procedure Eval_Actual (N : Node_Id) is
1868 begin
1869 Check_Non_Static_Context (N);
1870 end Eval_Actual;
1871
1872 --------------------
1873 -- Eval_Allocator --
1874 --------------------
1875
1876 -- Allocators are never static, so all we have to do is to do the
1877 -- check for a non-static context if an expression is present.
1878
1879 procedure Eval_Allocator (N : Node_Id) is
1880 Expr : constant Node_Id := Expression (N);
1881 begin
1882 if Nkind (Expr) = N_Qualified_Expression then
1883 Check_Non_Static_Context (Expression (Expr));
1884 end if;
1885 end Eval_Allocator;
1886
1887 ------------------------
1888 -- Eval_Arithmetic_Op --
1889 ------------------------
1890
1891 -- Arithmetic operations are static functions, so the result is static
1892 -- if both operands are static (RM 4.9(7), 4.9(20)).
1893
1894 procedure Eval_Arithmetic_Op (N : Node_Id) is
1895 Left : constant Node_Id := Left_Opnd (N);
1896 Right : constant Node_Id := Right_Opnd (N);
1897 Ltype : constant Entity_Id := Etype (Left);
1898 Rtype : constant Entity_Id := Etype (Right);
1899 Otype : Entity_Id := Empty;
1900 Stat : Boolean;
1901 Fold : Boolean;
1902
1903 begin
1904 -- If not foldable we are done
1905
1906 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
1907
1908 if not Fold then
1909 return;
1910 end if;
1911
1912 -- Otherwise attempt to fold
1913
1914 if Is_Universal_Numeric_Type (Etype (Left))
1915 and then
1916 Is_Universal_Numeric_Type (Etype (Right))
1917 then
1918 Otype := Find_Universal_Operator_Type (N);
1919 end if;
1920
1921 -- Fold for cases where both operands are of integer type
1922
1923 if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
1924 declare
1925 Left_Int : constant Uint := Expr_Value (Left);
1926 Right_Int : constant Uint := Expr_Value (Right);
1927 Result : Uint;
1928
1929 begin
1930 case Nkind (N) is
1931 when N_Op_Add =>
1932 Result := Left_Int + Right_Int;
1933
1934 when N_Op_Subtract =>
1935 Result := Left_Int - Right_Int;
1936
1937 when N_Op_Multiply =>
1938 if OK_Bits
1939 (N, UI_From_Int
1940 (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
1941 then
1942 Result := Left_Int * Right_Int;
1943 else
1944 Result := Left_Int;
1945 end if;
1946
1947 when N_Op_Divide =>
1948
1949 -- The exception Constraint_Error is raised by integer
1950 -- division, rem and mod if the right operand is zero.
1951
1952 if Right_Int = 0 then
1953
1954 -- When SPARK_Mode is On, force a warning instead of
1955 -- an error in that case, as this likely corresponds
1956 -- to deactivated code.
1957
1958 Apply_Compile_Time_Constraint_Error
1959 (N, "division by zero", CE_Divide_By_Zero,
1960 Warn => not Stat or SPARK_Mode = On);
1961 Set_Raises_Constraint_Error (N);
1962 return;
1963
1964 -- Otherwise we can do the division
1965
1966 else
1967 Result := Left_Int / Right_Int;
1968 end if;
1969
1970 when N_Op_Mod =>
1971
1972 -- The exception Constraint_Error is raised by integer
1973 -- division, rem and mod if the right operand is zero.
1974
1975 if Right_Int = 0 then
1976
1977 -- When SPARK_Mode is On, force a warning instead of
1978 -- an error in that case, as this likely corresponds
1979 -- to deactivated code.
1980
1981 Apply_Compile_Time_Constraint_Error
1982 (N, "mod with zero divisor", CE_Divide_By_Zero,
1983 Warn => not Stat or SPARK_Mode = On);
1984 return;
1985
1986 else
1987 Result := Left_Int mod Right_Int;
1988 end if;
1989
1990 when N_Op_Rem =>
1991
1992 -- The exception Constraint_Error is raised by integer
1993 -- division, rem and mod if the right operand is zero.
1994
1995 if Right_Int = 0 then
1996
1997 -- When SPARK_Mode is On, force a warning instead of
1998 -- an error in that case, as this likely corresponds
1999 -- to deactivated code.
2000
2001 Apply_Compile_Time_Constraint_Error
2002 (N, "rem with zero divisor", CE_Divide_By_Zero,
2003 Warn => not Stat or SPARK_Mode = On);
2004 return;
2005
2006 else
2007 Result := Left_Int rem Right_Int;
2008 end if;
2009
2010 when others =>
2011 raise Program_Error;
2012 end case;
2013
2014 -- Adjust the result by the modulus if the type is a modular type
2015
2016 if Is_Modular_Integer_Type (Ltype) then
2017 Result := Result mod Modulus (Ltype);
2018
2019 -- For a signed integer type, check non-static overflow
2020
2021 elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
2022 declare
2023 BT : constant Entity_Id := Base_Type (Ltype);
2024 Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
2025 Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
2026 begin
2027 if Result < Lo or else Result > Hi then
2028 Apply_Compile_Time_Constraint_Error
2029 (N, "value not in range of }??",
2030 CE_Overflow_Check_Failed,
2031 Ent => BT);
2032 return;
2033 end if;
2034 end;
2035 end if;
2036
2037 -- If we get here we can fold the result
2038
2039 Fold_Uint (N, Result, Stat);
2040 end;
2041
2042 -- Cases where at least one operand is a real. We handle the cases of
2043 -- both reals, or mixed/real integer cases (the latter happen only for
2044 -- divide and multiply, and the result is always real).
2045
2046 elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
2047 declare
2048 Left_Real : Ureal;
2049 Right_Real : Ureal;
2050 Result : Ureal;
2051
2052 begin
2053 if Is_Real_Type (Ltype) then
2054 Left_Real := Expr_Value_R (Left);
2055 else
2056 Left_Real := UR_From_Uint (Expr_Value (Left));
2057 end if;
2058
2059 if Is_Real_Type (Rtype) then
2060 Right_Real := Expr_Value_R (Right);
2061 else
2062 Right_Real := UR_From_Uint (Expr_Value (Right));
2063 end if;
2064
2065 if Nkind (N) = N_Op_Add then
2066 Result := Left_Real + Right_Real;
2067
2068 elsif Nkind (N) = N_Op_Subtract then
2069 Result := Left_Real - Right_Real;
2070
2071 elsif Nkind (N) = N_Op_Multiply then
2072 Result := Left_Real * Right_Real;
2073
2074 else pragma Assert (Nkind (N) = N_Op_Divide);
2075 if UR_Is_Zero (Right_Real) then
2076 Apply_Compile_Time_Constraint_Error
2077 (N, "division by zero", CE_Divide_By_Zero);
2078 return;
2079 end if;
2080
2081 Result := Left_Real / Right_Real;
2082 end if;
2083
2084 Fold_Ureal (N, Result, Stat);
2085 end;
2086 end if;
2087
2088 -- If the operator was resolved to a specific type, make sure that type
2089 -- is frozen even if the expression is folded into a literal (which has
2090 -- a universal type).
2091
2092 if Present (Otype) then
2093 Freeze_Before (N, Otype);
2094 end if;
2095 end Eval_Arithmetic_Op;
2096
2097 ----------------------------
2098 -- Eval_Character_Literal --
2099 ----------------------------
2100
2101 -- Nothing to be done
2102
2103 procedure Eval_Character_Literal (N : Node_Id) is
2104 pragma Warnings (Off, N);
2105 begin
2106 null;
2107 end Eval_Character_Literal;
2108
2109 ---------------
2110 -- Eval_Call --
2111 ---------------
2112
2113 -- Static function calls are either calls to predefined operators
2114 -- with static arguments, or calls to functions that rename a literal.
2115 -- Only the latter case is handled here, predefined operators are
2116 -- constant-folded elsewhere.
2117
2118 -- If the function is itself inherited (see 7423-001) the literal of
2119 -- the parent type must be explicitly converted to the return type
2120 -- of the function.
2121
2122 procedure Eval_Call (N : Node_Id) is
2123 Loc : constant Source_Ptr := Sloc (N);
2124 Typ : constant Entity_Id := Etype (N);
2125 Lit : Entity_Id;
2126
2127 begin
2128 if Nkind (N) = N_Function_Call
2129 and then No (Parameter_Associations (N))
2130 and then Is_Entity_Name (Name (N))
2131 and then Present (Alias (Entity (Name (N))))
2132 and then Is_Enumeration_Type (Base_Type (Typ))
2133 then
2134 Lit := Ultimate_Alias (Entity (Name (N)));
2135
2136 if Ekind (Lit) = E_Enumeration_Literal then
2137 if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
2138 Rewrite
2139 (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
2140 else
2141 Rewrite (N, New_Occurrence_Of (Lit, Loc));
2142 end if;
2143
2144 Resolve (N, Typ);
2145 end if;
2146 end if;
2147 end Eval_Call;
2148
2149 --------------------------
2150 -- Eval_Case_Expression --
2151 --------------------------
2152
2153 -- A conditional expression is static if all its conditions and dependent
2154 -- expressions are static. Note that we do not care if the dependent
2155 -- expressions raise CE, except for the one that will be selected.
2156
2157 procedure Eval_Case_Expression (N : Node_Id) is
2158 Alt : Node_Id;
2159 Choice : Node_Id;
2160
2161 begin
2162 Set_Is_Static_Expression (N, False);
2163
2164 if Error_Posted (Expression (N))
2165 or else not Is_Static_Expression (Expression (N))
2166 then
2167 Check_Non_Static_Context (Expression (N));
2168 return;
2169 end if;
2170
2171 -- First loop, make sure all the alternatives are static expressions
2172 -- none of which raise Constraint_Error. We make the constraint error
2173 -- check because part of the legality condition for a correct static
2174 -- case expression is that the cases are covered, like any other case
2175 -- expression. And we can't do that if any of the conditions raise an
2176 -- exception, so we don't even try to evaluate if that is the case.
2177
2178 Alt := First (Alternatives (N));
2179 while Present (Alt) loop
2180
2181 -- The expression must be static, but we don't care at this stage
2182 -- if it raises Constraint_Error (the alternative might not match,
2183 -- in which case the expression is statically unevaluated anyway).
2184
2185 if not Is_Static_Expression (Expression (Alt)) then
2186 Check_Non_Static_Context (Expression (Alt));
2187 return;
2188 end if;
2189
2190 -- The choices of a case always have to be static, and cannot raise
2191 -- an exception. If this condition is not met, then the expression
2192 -- is plain illegal, so just abandon evaluation attempts. No need
2193 -- to check non-static context when we have something illegal anyway.
2194
2195 if not Is_OK_Static_Choice_List (Discrete_Choices (Alt)) then
2196 return;
2197 end if;
2198
2199 Next (Alt);
2200 end loop;
2201
2202 -- OK, if the above loop gets through it means that all choices are OK
2203 -- static (don't raise exceptions), so the whole case is static, and we
2204 -- can find the matching alternative.
2205
2206 Set_Is_Static_Expression (N);
2207
2208 -- Now to deal with propagating a possible constraint error
2209
2210 -- If the selecting expression raises CE, propagate and we are done
2211
2212 if Raises_Constraint_Error (Expression (N)) then
2213 Set_Raises_Constraint_Error (N);
2214
2215 -- Otherwise we need to check the alternatives to find the matching
2216 -- one. CE's in other than the matching one are not relevant. But we
2217 -- do need to check the matching one. Unlike the first loop, we do not
2218 -- have to go all the way through, when we find the matching one, quit.
2219
2220 else
2221 Alt := First (Alternatives (N));
2222 Search : loop
2223
2224 -- We must find a match among the alternatives. If not, this must
2225 -- be due to other errors, so just ignore, leaving as non-static.
2226
2227 if No (Alt) then
2228 Set_Is_Static_Expression (N, False);
2229 return;
2230 end if;
2231
2232 -- Otherwise loop through choices of this alternative
2233
2234 Choice := First (Discrete_Choices (Alt));
2235 while Present (Choice) loop
2236
2237 -- If we find a matching choice, then the Expression of this
2238 -- alternative replaces N (Raises_Constraint_Error flag is
2239 -- included, so we don't have to special case that).
2240
2241 if Choice_Matches (Expression (N), Choice) = Match then
2242 Rewrite (N, Relocate_Node (Expression (Alt)));
2243 return;
2244 end if;
2245
2246 Next (Choice);
2247 end loop;
2248
2249 Next (Alt);
2250 end loop Search;
2251 end if;
2252 end Eval_Case_Expression;
2253
2254 ------------------------
2255 -- Eval_Concatenation --
2256 ------------------------
2257
2258 -- Concatenation is a static function, so the result is static if both
2259 -- operands are static (RM 4.9(7), 4.9(21)).
2260
2261 procedure Eval_Concatenation (N : Node_Id) is
2262 Left : constant Node_Id := Left_Opnd (N);
2263 Right : constant Node_Id := Right_Opnd (N);
2264 C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
2265 Stat : Boolean;
2266 Fold : Boolean;
2267
2268 begin
2269 -- Concatenation is never static in Ada 83, so if Ada 83 check operand
2270 -- non-static context.
2271
2272 if Ada_Version = Ada_83
2273 and then Comes_From_Source (N)
2274 then
2275 Check_Non_Static_Context (Left);
2276 Check_Non_Static_Context (Right);
2277 return;
2278 end if;
2279
2280 -- If not foldable we are done. In principle concatenation that yields
2281 -- any string type is static (i.e. an array type of character types).
2282 -- However, character types can include enumeration literals, and
2283 -- concatenation in that case cannot be described by a literal, so we
2284 -- only consider the operation static if the result is an array of
2285 -- (a descendant of) a predefined character type.
2286
2287 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2288
2289 if not (Is_Standard_Character_Type (C_Typ) and then Fold) then
2290 Set_Is_Static_Expression (N, False);
2291 return;
2292 end if;
2293
2294 -- Compile time string concatenation
2295
2296 -- ??? Note that operands that are aggregates can be marked as static,
2297 -- so we should attempt at a later stage to fold concatenations with
2298 -- such aggregates.
2299
2300 declare
2301 Left_Str : constant Node_Id := Get_String_Val (Left);
2302 Left_Len : Nat;
2303 Right_Str : constant Node_Id := Get_String_Val (Right);
2304 Folded_Val : String_Id;
2305
2306 begin
2307 -- Establish new string literal, and store left operand. We make
2308 -- sure to use the special Start_String that takes an operand if
2309 -- the left operand is a string literal. Since this is optimized
2310 -- in the case where that is the most recently created string
2311 -- literal, we ensure efficient time/space behavior for the
2312 -- case of a concatenation of a series of string literals.
2313
2314 if Nkind (Left_Str) = N_String_Literal then
2315 Left_Len := String_Length (Strval (Left_Str));
2316
2317 -- If the left operand is the empty string, and the right operand
2318 -- is a string literal (the case of "" & "..."), the result is the
2319 -- value of the right operand. This optimization is important when
2320 -- Is_Folded_In_Parser, to avoid copying an enormous right
2321 -- operand.
2322
2323 if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
2324 Folded_Val := Strval (Right_Str);
2325 else
2326 Start_String (Strval (Left_Str));
2327 end if;
2328
2329 else
2330 Start_String;
2331 Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
2332 Left_Len := 1;
2333 end if;
2334
2335 -- Now append the characters of the right operand, unless we
2336 -- optimized the "" & "..." case above.
2337
2338 if Nkind (Right_Str) = N_String_Literal then
2339 if Left_Len /= 0 then
2340 Store_String_Chars (Strval (Right_Str));
2341 Folded_Val := End_String;
2342 end if;
2343 else
2344 Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
2345 Folded_Val := End_String;
2346 end if;
2347
2348 Set_Is_Static_Expression (N, Stat);
2349
2350 -- If left operand is the empty string, the result is the
2351 -- right operand, including its bounds if anomalous.
2352
2353 if Left_Len = 0
2354 and then Is_Array_Type (Etype (Right))
2355 and then Etype (Right) /= Any_String
2356 then
2357 Set_Etype (N, Etype (Right));
2358 end if;
2359
2360 Fold_Str (N, Folded_Val, Static => Stat);
2361 end;
2362 end Eval_Concatenation;
2363
2364 ----------------------
2365 -- Eval_Entity_Name --
2366 ----------------------
2367
2368 -- This procedure is used for identifiers and expanded names other than
2369 -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
2370 -- static if they denote a static constant (RM 4.9(6)) or if the name
2371 -- denotes an enumeration literal (RM 4.9(22)).
2372
2373 procedure Eval_Entity_Name (N : Node_Id) is
2374 Def_Id : constant Entity_Id := Entity (N);
2375 Val : Node_Id;
2376
2377 begin
2378 -- Enumeration literals are always considered to be constants
2379 -- and cannot raise constraint error (RM 4.9(22)).
2380
2381 if Ekind (Def_Id) = E_Enumeration_Literal then
2382 Set_Is_Static_Expression (N);
2383 return;
2384
2385 -- A name is static if it denotes a static constant (RM 4.9(5)), and
2386 -- we also copy Raise_Constraint_Error. Notice that even if non-static,
2387 -- it does not violate 10.2.1(8) here, since this is not a variable.
2388
2389 elsif Ekind (Def_Id) = E_Constant then
2390
2391 -- Deferred constants must always be treated as nonstatic outside the
2392 -- scope of their full view.
2393
2394 if Present (Full_View (Def_Id))
2395 and then not In_Open_Scopes (Scope (Def_Id))
2396 then
2397 Val := Empty;
2398 else
2399 Val := Constant_Value (Def_Id);
2400 end if;
2401
2402 if Present (Val) then
2403 Set_Is_Static_Expression
2404 (N, Is_Static_Expression (Val)
2405 and then Is_Static_Subtype (Etype (Def_Id)));
2406 Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
2407
2408 if not Is_Static_Expression (N)
2409 and then not Is_Generic_Type (Etype (N))
2410 then
2411 Validate_Static_Object_Name (N);
2412 end if;
2413
2414 -- Mark constant condition in SCOs
2415
2416 if Generate_SCO
2417 and then Comes_From_Source (N)
2418 and then Is_Boolean_Type (Etype (Def_Id))
2419 and then Compile_Time_Known_Value (N)
2420 then
2421 Set_SCO_Condition (N, Expr_Value_E (N) = Standard_True);
2422 end if;
2423
2424 return;
2425 end if;
2426 end if;
2427
2428 -- Fall through if the name is not static
2429
2430 Validate_Static_Object_Name (N);
2431 end Eval_Entity_Name;
2432
2433 ------------------------
2434 -- Eval_If_Expression --
2435 ------------------------
2436
2437 -- We can fold to a static expression if the condition and both dependent
2438 -- expressions are static. Otherwise, the only required processing is to do
2439 -- the check for non-static context for the then and else expressions.
2440
2441 procedure Eval_If_Expression (N : Node_Id) is
2442 Condition : constant Node_Id := First (Expressions (N));
2443 Then_Expr : constant Node_Id := Next (Condition);
2444 Else_Expr : constant Node_Id := Next (Then_Expr);
2445 Result : Node_Id;
2446 Non_Result : Node_Id;
2447
2448 Rstat : constant Boolean :=
2449 Is_Static_Expression (Condition)
2450 and then
2451 Is_Static_Expression (Then_Expr)
2452 and then
2453 Is_Static_Expression (Else_Expr);
2454 -- True if result is static
2455
2456 begin
2457 -- If result not static, nothing to do, otherwise set static result
2458
2459 if not Rstat then
2460 return;
2461 else
2462 Set_Is_Static_Expression (N);
2463 end if;
2464
2465 -- If any operand is Any_Type, just propagate to result and do not try
2466 -- to fold, this prevents cascaded errors.
2467
2468 if Etype (Condition) = Any_Type or else
2469 Etype (Then_Expr) = Any_Type or else
2470 Etype (Else_Expr) = Any_Type
2471 then
2472 Set_Etype (N, Any_Type);
2473 Set_Is_Static_Expression (N, False);
2474 return;
2475 end if;
2476
2477 -- If condition raises constraint error then we have already signaled
2478 -- an error, and we just propagate to the result and do not fold.
2479
2480 if Raises_Constraint_Error (Condition) then
2481 Set_Raises_Constraint_Error (N);
2482 return;
2483 end if;
2484
2485 -- Static case where we can fold. Note that we don't try to fold cases
2486 -- where the condition is known at compile time, but the result is
2487 -- non-static. This avoids possible cases of infinite recursion where
2488 -- the expander puts in a redundant test and we remove it. Instead we
2489 -- deal with these cases in the expander.
2490
2491 -- Select result operand
2492
2493 if Is_True (Expr_Value (Condition)) then
2494 Result := Then_Expr;
2495 Non_Result := Else_Expr;
2496 else
2497 Result := Else_Expr;
2498 Non_Result := Then_Expr;
2499 end if;
2500
2501 -- Note that it does not matter if the non-result operand raises a
2502 -- Constraint_Error, but if the result raises constraint error then we
2503 -- replace the node with a raise constraint error. This will properly
2504 -- propagate Raises_Constraint_Error since this flag is set in Result.
2505
2506 if Raises_Constraint_Error (Result) then
2507 Rewrite_In_Raise_CE (N, Result);
2508 Check_Non_Static_Context (Non_Result);
2509
2510 -- Otherwise the result operand replaces the original node
2511
2512 else
2513 Rewrite (N, Relocate_Node (Result));
2514 Set_Is_Static_Expression (N);
2515 end if;
2516 end Eval_If_Expression;
2517
2518 ----------------------------
2519 -- Eval_Indexed_Component --
2520 ----------------------------
2521
2522 -- Indexed components are never static, so we need to perform the check
2523 -- for non-static context on the index values. Then, we check if the
2524 -- value can be obtained at compile time, even though it is non-static.
2525
2526 procedure Eval_Indexed_Component (N : Node_Id) is
2527 Expr : Node_Id;
2528
2529 begin
2530 -- Check for non-static context on index values
2531
2532 Expr := First (Expressions (N));
2533 while Present (Expr) loop
2534 Check_Non_Static_Context (Expr);
2535 Next (Expr);
2536 end loop;
2537
2538 -- If the indexed component appears in an object renaming declaration
2539 -- then we do not want to try to evaluate it, since in this case we
2540 -- need the identity of the array element.
2541
2542 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
2543 return;
2544
2545 -- Similarly if the indexed component appears as the prefix of an
2546 -- attribute we don't want to evaluate it, because at least for
2547 -- some cases of attributes we need the identify (e.g. Access, Size)
2548
2549 elsif Nkind (Parent (N)) = N_Attribute_Reference then
2550 return;
2551 end if;
2552
2553 -- Note: there are other cases, such as the left side of an assignment,
2554 -- or an OUT parameter for a call, where the replacement results in the
2555 -- illegal use of a constant, But these cases are illegal in the first
2556 -- place, so the replacement, though silly, is harmless.
2557
2558 -- Now see if this is a constant array reference
2559
2560 if List_Length (Expressions (N)) = 1
2561 and then Is_Entity_Name (Prefix (N))
2562 and then Ekind (Entity (Prefix (N))) = E_Constant
2563 and then Present (Constant_Value (Entity (Prefix (N))))
2564 then
2565 declare
2566 Loc : constant Source_Ptr := Sloc (N);
2567 Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
2568 Sub : constant Node_Id := First (Expressions (N));
2569
2570 Atyp : Entity_Id;
2571 -- Type of array
2572
2573 Lin : Nat;
2574 -- Linear one's origin subscript value for array reference
2575
2576 Lbd : Node_Id;
2577 -- Lower bound of the first array index
2578
2579 Elm : Node_Id;
2580 -- Value from constant array
2581
2582 begin
2583 Atyp := Etype (Arr);
2584
2585 if Is_Access_Type (Atyp) then
2586 Atyp := Designated_Type (Atyp);
2587 end if;
2588
2589 -- If we have an array type (we should have but perhaps there are
2590 -- error cases where this is not the case), then see if we can do
2591 -- a constant evaluation of the array reference.
2592
2593 if Is_Array_Type (Atyp) and then Atyp /= Any_Composite then
2594 if Ekind (Atyp) = E_String_Literal_Subtype then
2595 Lbd := String_Literal_Low_Bound (Atyp);
2596 else
2597 Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
2598 end if;
2599
2600 if Compile_Time_Known_Value (Sub)
2601 and then Nkind (Arr) = N_Aggregate
2602 and then Compile_Time_Known_Value (Lbd)
2603 and then Is_Discrete_Type (Component_Type (Atyp))
2604 then
2605 Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
2606
2607 if List_Length (Expressions (Arr)) >= Lin then
2608 Elm := Pick (Expressions (Arr), Lin);
2609
2610 -- If the resulting expression is compile time known,
2611 -- then we can rewrite the indexed component with this
2612 -- value, being sure to mark the result as non-static.
2613 -- We also reset the Sloc, in case this generates an
2614 -- error later on (e.g. 136'Access).
2615
2616 if Compile_Time_Known_Value (Elm) then
2617 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2618 Set_Is_Static_Expression (N, False);
2619 Set_Sloc (N, Loc);
2620 end if;
2621 end if;
2622
2623 -- We can also constant-fold if the prefix is a string literal.
2624 -- This will be useful in an instantiation or an inlining.
2625
2626 elsif Compile_Time_Known_Value (Sub)
2627 and then Nkind (Arr) = N_String_Literal
2628 and then Compile_Time_Known_Value (Lbd)
2629 and then Expr_Value (Lbd) = 1
2630 and then Expr_Value (Sub) <=
2631 String_Literal_Length (Etype (Arr))
2632 then
2633 declare
2634 C : constant Char_Code :=
2635 Get_String_Char (Strval (Arr),
2636 UI_To_Int (Expr_Value (Sub)));
2637 begin
2638 Set_Character_Literal_Name (C);
2639
2640 Elm :=
2641 Make_Character_Literal (Loc,
2642 Chars => Name_Find,
2643 Char_Literal_Value => UI_From_CC (C));
2644 Set_Etype (Elm, Component_Type (Atyp));
2645 Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
2646 Set_Is_Static_Expression (N, False);
2647 end;
2648 end if;
2649 end if;
2650 end;
2651 end if;
2652 end Eval_Indexed_Component;
2653
2654 --------------------------
2655 -- Eval_Integer_Literal --
2656 --------------------------
2657
2658 -- Numeric literals are static (RM 4.9(1)), and have already been marked
2659 -- as static by the analyzer. The reason we did it that early is to allow
2660 -- the possibility of turning off the Is_Static_Expression flag after
2661 -- analysis, but before resolution, when integer literals are generated in
2662 -- the expander that do not correspond to static expressions.
2663
2664 procedure Eval_Integer_Literal (N : Node_Id) is
2665 T : constant Entity_Id := Etype (N);
2666
2667 function In_Any_Integer_Context return Boolean;
2668 -- If the literal is resolved with a specific type in a context where
2669 -- the expected type is Any_Integer, there are no range checks on the
2670 -- literal. By the time the literal is evaluated, it carries the type
2671 -- imposed by the enclosing expression, and we must recover the context
2672 -- to determine that Any_Integer is meant.
2673
2674 ----------------------------
2675 -- In_Any_Integer_Context --
2676 ----------------------------
2677
2678 function In_Any_Integer_Context return Boolean is
2679 Par : constant Node_Id := Parent (N);
2680 K : constant Node_Kind := Nkind (Par);
2681
2682 begin
2683 -- Any_Integer also appears in digits specifications for real types,
2684 -- but those have bounds smaller that those of any integer base type,
2685 -- so we can safely ignore these cases.
2686
2687 return Nkind_In (K, N_Number_Declaration,
2688 N_Attribute_Reference,
2689 N_Attribute_Definition_Clause,
2690 N_Modular_Type_Definition,
2691 N_Signed_Integer_Type_Definition);
2692 end In_Any_Integer_Context;
2693
2694 -- Start of processing for Eval_Integer_Literal
2695
2696 begin
2697
2698 -- If the literal appears in a non-expression context, then it is
2699 -- certainly appearing in a non-static context, so check it. This is
2700 -- actually a redundant check, since Check_Non_Static_Context would
2701 -- check it, but it seems worthwhile to optimize out the call.
2702
2703 -- An exception is made for a literal in an if or case expression
2704
2705 if (Nkind_In (Parent (N), N_If_Expression, N_Case_Expression_Alternative)
2706 or else Nkind (Parent (N)) not in N_Subexpr)
2707 and then not In_Any_Integer_Context
2708 then
2709 Check_Non_Static_Context (N);
2710 end if;
2711
2712 -- Modular integer literals must be in their base range
2713
2714 if Is_Modular_Integer_Type (T)
2715 and then Is_Out_Of_Range (N, Base_Type (T), Assume_Valid => True)
2716 then
2717 Out_Of_Range (N);
2718 end if;
2719 end Eval_Integer_Literal;
2720
2721 ---------------------
2722 -- Eval_Logical_Op --
2723 ---------------------
2724
2725 -- Logical operations are static functions, so the result is potentially
2726 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2727
2728 procedure Eval_Logical_Op (N : Node_Id) is
2729 Left : constant Node_Id := Left_Opnd (N);
2730 Right : constant Node_Id := Right_Opnd (N);
2731 Stat : Boolean;
2732 Fold : Boolean;
2733
2734 begin
2735 -- If not foldable we are done
2736
2737 Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
2738
2739 if not Fold then
2740 return;
2741 end if;
2742
2743 -- Compile time evaluation of logical operation
2744
2745 declare
2746 Left_Int : constant Uint := Expr_Value (Left);
2747 Right_Int : constant Uint := Expr_Value (Right);
2748
2749 begin
2750 if Is_Modular_Integer_Type (Etype (N)) then
2751 declare
2752 Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2753 Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
2754
2755 begin
2756 To_Bits (Left_Int, Left_Bits);
2757 To_Bits (Right_Int, Right_Bits);
2758
2759 -- Note: should really be able to use array ops instead of
2760 -- these loops, but they weren't working at the time ???
2761
2762 if Nkind (N) = N_Op_And then
2763 for J in Left_Bits'Range loop
2764 Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
2765 end loop;
2766
2767 elsif Nkind (N) = N_Op_Or then
2768 for J in Left_Bits'Range loop
2769 Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
2770 end loop;
2771
2772 else
2773 pragma Assert (Nkind (N) = N_Op_Xor);
2774
2775 for J in Left_Bits'Range loop
2776 Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
2777 end loop;
2778 end if;
2779
2780 Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
2781 end;
2782
2783 else
2784 pragma Assert (Is_Boolean_Type (Etype (N)));
2785
2786 if Nkind (N) = N_Op_And then
2787 Fold_Uint (N,
2788 Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
2789
2790 elsif Nkind (N) = N_Op_Or then
2791 Fold_Uint (N,
2792 Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
2793
2794 else
2795 pragma Assert (Nkind (N) = N_Op_Xor);
2796 Fold_Uint (N,
2797 Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
2798 end if;
2799 end if;
2800 end;
2801 end Eval_Logical_Op;
2802
2803 ------------------------
2804 -- Eval_Membership_Op --
2805 ------------------------
2806
2807 -- A membership test is potentially static if the expression is static, and
2808 -- the range is a potentially static range, or is a subtype mark denoting a
2809 -- static subtype (RM 4.9(12)).
2810
2811 procedure Eval_Membership_Op (N : Node_Id) is
2812 Alts : constant List_Id := Alternatives (N);
2813 Choice : constant Node_Id := Right_Opnd (N);
2814 Expr : constant Node_Id := Left_Opnd (N);
2815 Result : Match_Result;
2816
2817 begin
2818 -- Ignore if error in either operand, except to make sure that Any_Type
2819 -- is properly propagated to avoid junk cascaded errors.
2820
2821 if Etype (Expr) = Any_Type
2822 or else (Present (Choice) and then Etype (Choice) = Any_Type)
2823 then
2824 Set_Etype (N, Any_Type);
2825 return;
2826 end if;
2827
2828 -- If left operand non-static, then nothing to do
2829
2830 if not Is_Static_Expression (Expr) then
2831 return;
2832 end if;
2833
2834 -- If choice is non-static, left operand is in non-static context
2835
2836 if (Present (Choice) and then not Is_Static_Choice (Choice))
2837 or else (Present (Alts) and then not Is_Static_Choice_List (Alts))
2838 then
2839 Check_Non_Static_Context (Expr);
2840 return;
2841 end if;
2842
2843 -- Otherwise we definitely have a static expression
2844
2845 Set_Is_Static_Expression (N);
2846
2847 -- If left operand raises constraint error, propagate and we are done
2848
2849 if Raises_Constraint_Error (Expr) then
2850 Set_Raises_Constraint_Error (N, True);
2851
2852 -- See if we match
2853
2854 else
2855 if Present (Choice) then
2856 Result := Choice_Matches (Expr, Choice);
2857 else
2858 Result := Choices_Match (Expr, Alts);
2859 end if;
2860
2861 -- If result is Non_Static, it means that we raise Constraint_Error,
2862 -- since we already tested that the operands were themselves static.
2863
2864 if Result = Non_Static then
2865 Set_Raises_Constraint_Error (N);
2866
2867 -- Otherwise we have our result (flipped if NOT IN case)
2868
2869 else
2870 Fold_Uint
2871 (N, Test ((Result = Match) xor (Nkind (N) = N_Not_In)), True);
2872 Warn_On_Known_Condition (N);
2873 end if;
2874 end if;
2875 end Eval_Membership_Op;
2876
2877 ------------------------
2878 -- Eval_Named_Integer --
2879 ------------------------
2880
2881 procedure Eval_Named_Integer (N : Node_Id) is
2882 begin
2883 Fold_Uint (N,
2884 Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
2885 end Eval_Named_Integer;
2886
2887 ---------------------
2888 -- Eval_Named_Real --
2889 ---------------------
2890
2891 procedure Eval_Named_Real (N : Node_Id) is
2892 begin
2893 Fold_Ureal (N,
2894 Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
2895 end Eval_Named_Real;
2896
2897 -------------------
2898 -- Eval_Op_Expon --
2899 -------------------
2900
2901 -- Exponentiation is a static functions, so the result is potentially
2902 -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
2903
2904 procedure Eval_Op_Expon (N : Node_Id) is
2905 Left : constant Node_Id := Left_Opnd (N);
2906 Right : constant Node_Id := Right_Opnd (N);
2907 Stat : Boolean;
2908 Fold : Boolean;
2909
2910 begin
2911 -- If not foldable we are done
2912
2913 Test_Expression_Is_Foldable
2914 (N, Left, Right, Stat, Fold, CRT_Safe => True);
2915
2916 -- Return if not foldable
2917
2918 if not Fold then
2919 return;
2920 end if;
2921
2922 if Configurable_Run_Time_Mode and not Stat then
2923 return;
2924 end if;
2925
2926 -- Fold exponentiation operation
2927
2928 declare
2929 Right_Int : constant Uint := Expr_Value (Right);
2930
2931 begin
2932 -- Integer case
2933
2934 if Is_Integer_Type (Etype (Left)) then
2935 declare
2936 Left_Int : constant Uint := Expr_Value (Left);
2937 Result : Uint;
2938
2939 begin
2940 -- Exponentiation of an integer raises Constraint_Error for a
2941 -- negative exponent (RM 4.5.6).
2942
2943 if Right_Int < 0 then
2944 Apply_Compile_Time_Constraint_Error
2945 (N, "integer exponent negative", CE_Range_Check_Failed,
2946 Warn => not Stat);
2947 return;
2948
2949 else
2950 if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
2951 Result := Left_Int ** Right_Int;
2952 else
2953 Result := Left_Int;
2954 end if;
2955
2956 if Is_Modular_Integer_Type (Etype (N)) then
2957 Result := Result mod Modulus (Etype (N));
2958 end if;
2959
2960 Fold_Uint (N, Result, Stat);
2961 end if;
2962 end;
2963
2964 -- Real case
2965
2966 else
2967 declare
2968 Left_Real : constant Ureal := Expr_Value_R (Left);
2969
2970 begin
2971 -- Cannot have a zero base with a negative exponent
2972
2973 if UR_Is_Zero (Left_Real) then
2974
2975 if Right_Int < 0 then
2976 Apply_Compile_Time_Constraint_Error
2977 (N, "zero ** negative integer", CE_Range_Check_Failed,
2978 Warn => not Stat);
2979 return;
2980 else
2981 Fold_Ureal (N, Ureal_0, Stat);
2982 end if;
2983
2984 else
2985 Fold_Ureal (N, Left_Real ** Right_Int, Stat);
2986 end if;
2987 end;
2988 end if;
2989 end;
2990 end Eval_Op_Expon;
2991
2992 -----------------
2993 -- Eval_Op_Not --
2994 -----------------
2995
2996 -- The not operation is a static functions, so the result is potentially
2997 -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
2998
2999 procedure Eval_Op_Not (N : Node_Id) is
3000 Right : constant Node_Id := Right_Opnd (N);
3001 Stat : Boolean;
3002 Fold : Boolean;
3003
3004 begin
3005 -- If not foldable we are done
3006
3007 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
3008
3009 if not Fold then
3010 return;
3011 end if;
3012
3013 -- Fold not operation
3014
3015 declare
3016 Rint : constant Uint := Expr_Value (Right);
3017 Typ : constant Entity_Id := Etype (N);
3018
3019 begin
3020 -- Negation is equivalent to subtracting from the modulus minus one.
3021 -- For a binary modulus this is equivalent to the ones-complement of
3022 -- the original value. For a nonbinary modulus this is an arbitrary
3023 -- but consistent definition.
3024
3025 if Is_Modular_Integer_Type (Typ) then
3026 Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
3027 else pragma Assert (Is_Boolean_Type (Typ));
3028 Fold_Uint (N, Test (not Is_True (Rint)), Stat);
3029 end if;
3030
3031 Set_Is_Static_Expression (N, Stat);
3032 end;
3033 end Eval_Op_Not;
3034
3035 -------------------------------
3036 -- Eval_Qualified_Expression --
3037 -------------------------------
3038
3039 -- A qualified expression is potentially static if its subtype mark denotes
3040 -- a static subtype and its expression is potentially static (RM 4.9 (11)).
3041
3042 procedure Eval_Qualified_Expression (N : Node_Id) is
3043 Operand : constant Node_Id := Expression (N);
3044 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
3045
3046 Stat : Boolean;
3047 Fold : Boolean;
3048 Hex : Boolean;
3049
3050 begin
3051 -- Can only fold if target is string or scalar and subtype is static.
3052 -- Also, do not fold if our parent is an allocator (this is because the
3053 -- qualified expression is really part of the syntactic structure of an
3054 -- allocator, and we do not want to end up with something that
3055 -- corresponds to "new 1" where the 1 is the result of folding a
3056 -- qualified expression).
3057
3058 if not Is_Static_Subtype (Target_Type)
3059 or else Nkind (Parent (N)) = N_Allocator
3060 then
3061 Check_Non_Static_Context (Operand);
3062
3063 -- If operand is known to raise constraint_error, set the flag on the
3064 -- expression so it does not get optimized away.
3065
3066 if Nkind (Operand) = N_Raise_Constraint_Error then
3067 Set_Raises_Constraint_Error (N);
3068 end if;
3069
3070 return;
3071 end if;
3072
3073 -- If not foldable we are done
3074
3075 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3076
3077 if not Fold then
3078 return;
3079
3080 -- Don't try fold if target type has constraint error bounds
3081
3082 elsif not Is_OK_Static_Subtype (Target_Type) then
3083 Set_Raises_Constraint_Error (N);
3084 return;
3085 end if;
3086
3087 -- Here we will fold, save Print_In_Hex indication
3088
3089 Hex := Nkind (Operand) = N_Integer_Literal
3090 and then Print_In_Hex (Operand);
3091
3092 -- Fold the result of qualification
3093
3094 if Is_Discrete_Type (Target_Type) then
3095 Fold_Uint (N, Expr_Value (Operand), Stat);
3096
3097 -- Preserve Print_In_Hex indication
3098
3099 if Hex and then Nkind (N) = N_Integer_Literal then
3100 Set_Print_In_Hex (N);
3101 end if;
3102
3103 elsif Is_Real_Type (Target_Type) then
3104 Fold_Ureal (N, Expr_Value_R (Operand), Stat);
3105
3106 else
3107 Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
3108
3109 if not Stat then
3110 Set_Is_Static_Expression (N, False);
3111 else
3112 Check_String_Literal_Length (N, Target_Type);
3113 end if;
3114
3115 return;
3116 end if;
3117
3118 -- The expression may be foldable but not static
3119
3120 Set_Is_Static_Expression (N, Stat);
3121
3122 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3123 Out_Of_Range (N);
3124 end if;
3125 end Eval_Qualified_Expression;
3126
3127 -----------------------
3128 -- Eval_Real_Literal --
3129 -----------------------
3130
3131 -- Numeric literals are static (RM 4.9(1)), and have already been marked
3132 -- as static by the analyzer. The reason we did it that early is to allow
3133 -- the possibility of turning off the Is_Static_Expression flag after
3134 -- analysis, but before resolution, when integer literals are generated
3135 -- in the expander that do not correspond to static expressions.
3136
3137 procedure Eval_Real_Literal (N : Node_Id) is
3138 PK : constant Node_Kind := Nkind (Parent (N));
3139
3140 begin
3141 -- If the literal appears in a non-expression context and not as part of
3142 -- a number declaration, then it is appearing in a non-static context,
3143 -- so check it.
3144
3145 if PK not in N_Subexpr and then PK /= N_Number_Declaration then
3146 Check_Non_Static_Context (N);
3147 end if;
3148 end Eval_Real_Literal;
3149
3150 ------------------------
3151 -- Eval_Relational_Op --
3152 ------------------------
3153
3154 -- Relational operations are static functions, so the result is static if
3155 -- both operands are static (RM 4.9(7), 4.9(20)), except that for strings,
3156 -- the result is never static, even if the operands are.
3157
3158 -- However, for internally generated nodes, we allow string equality and
3159 -- inequality to be static. This is because we rewrite A in "ABC" as an
3160 -- equality test A = "ABC", and the former is definitely static.
3161
3162 procedure Eval_Relational_Op (N : Node_Id) is
3163 Left : constant Node_Id := Left_Opnd (N);
3164 Right : constant Node_Id := Right_Opnd (N);
3165
3166 procedure Decompose_Expr
3167 (Expr : Node_Id;
3168 Ent : out Entity_Id;
3169 Kind : out Character;
3170 Cons : out Uint;
3171 Orig : Boolean := True);
3172 -- Given expression Expr, see if it is of the form X [+/- K]. If so, Ent
3173 -- is set to the entity in X, Kind is 'F','L','E' for 'First or 'Last or
3174 -- simple entity, and Cons is the value of K. If the expression is not
3175 -- of the required form, Ent is set to Empty.
3176 --
3177 -- Orig indicates whether Expr is the original expression to consider,
3178 -- or if we are handling a subexpression (e.g. recursive call to
3179 -- Decompose_Expr).
3180
3181 procedure Fold_General_Op (Is_Static : Boolean);
3182 -- Attempt to fold arbitrary relational operator N. Flag Is_Static must
3183 -- be set when the operator denotes a static expression.
3184
3185 procedure Fold_Static_Real_Op;
3186 -- Attempt to fold static real type relational operator N
3187
3188 function Static_Length (Expr : Node_Id) return Uint;
3189 -- If Expr is an expression for a constrained array whose length is
3190 -- known at compile time, return the non-negative length, otherwise
3191 -- return -1.
3192
3193 --------------------
3194 -- Decompose_Expr --
3195 --------------------
3196
3197 procedure Decompose_Expr
3198 (Expr : Node_Id;
3199 Ent : out Entity_Id;
3200 Kind : out Character;
3201 Cons : out Uint;
3202 Orig : Boolean := True)
3203 is
3204 Exp : Node_Id;
3205
3206 begin
3207 -- Assume that the expression does not meet the expected form
3208
3209 Cons := No_Uint;
3210 Ent := Empty;
3211 Kind := '?';
3212
3213 if Nkind (Expr) = N_Op_Add
3214 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3215 then
3216 Exp := Left_Opnd (Expr);
3217 Cons := Expr_Value (Right_Opnd (Expr));
3218
3219 elsif Nkind (Expr) = N_Op_Subtract
3220 and then Compile_Time_Known_Value (Right_Opnd (Expr))
3221 then
3222 Exp := Left_Opnd (Expr);
3223 Cons := -Expr_Value (Right_Opnd (Expr));
3224
3225 -- If the bound is a constant created to remove side effects, recover
3226 -- the original expression to see if it has one of the recognizable
3227 -- forms.
3228
3229 elsif Nkind (Expr) = N_Identifier
3230 and then not Comes_From_Source (Entity (Expr))
3231 and then Ekind (Entity (Expr)) = E_Constant
3232 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
3233 then
3234 Exp := Expression (Parent (Entity (Expr)));
3235 Decompose_Expr (Exp, Ent, Kind, Cons, Orig => False);
3236
3237 -- If original expression includes an entity, create a reference
3238 -- to it for use below.
3239
3240 if Present (Ent) then
3241 Exp := New_Occurrence_Of (Ent, Sloc (Ent));
3242 else
3243 return;
3244 end if;
3245
3246 else
3247 -- Only consider the case of X + 0 for a full expression, and
3248 -- not when recursing, otherwise we may end up with evaluating
3249 -- expressions not known at compile time to 0.
3250
3251 if Orig then
3252 Exp := Expr;
3253 Cons := Uint_0;
3254 else
3255 return;
3256 end if;
3257 end if;
3258
3259 -- At this stage Exp is set to the potential X
3260
3261 if Nkind (Exp) = N_Attribute_Reference then
3262 if Attribute_Name (Exp) = Name_First then
3263 Kind := 'F';
3264 elsif Attribute_Name (Exp) = Name_Last then
3265 Kind := 'L';
3266 else
3267 return;
3268 end if;
3269
3270 Exp := Prefix (Exp);
3271
3272 else
3273 Kind := 'E';
3274 end if;
3275
3276 if Is_Entity_Name (Exp) and then Present (Entity (Exp)) then
3277 Ent := Entity (Exp);
3278 end if;
3279 end Decompose_Expr;
3280
3281 ---------------------
3282 -- Fold_General_Op --
3283 ---------------------
3284
3285 procedure Fold_General_Op (Is_Static : Boolean) is
3286 CR : constant Compare_Result :=
3287 Compile_Time_Compare (Left, Right, Assume_Valid => False);
3288
3289 Result : Boolean;
3290
3291 begin
3292 if CR = Unknown then
3293 return;
3294 end if;
3295
3296 case Nkind (N) is
3297 when N_Op_Eq =>
3298 if CR = EQ then
3299 Result := True;
3300 elsif CR = NE or else CR = GT or else CR = LT then
3301 Result := False;
3302 else
3303 return;
3304 end if;
3305
3306 when N_Op_Ge =>
3307 if CR = GT or else CR = EQ or else CR = GE then
3308 Result := True;
3309 elsif CR = LT then
3310 Result := False;
3311 else
3312 return;
3313 end if;
3314
3315 when N_Op_Gt =>
3316 if CR = GT then
3317 Result := True;
3318 elsif CR = EQ or else CR = LT or else CR = LE then
3319 Result := False;
3320 else
3321 return;
3322 end if;
3323
3324 when N_Op_Le =>
3325 if CR = LT or else CR = EQ or else CR = LE then
3326 Result := True;
3327 elsif CR = GT then
3328 Result := False;
3329 else
3330 return;
3331 end if;
3332
3333 when N_Op_Lt =>
3334 if CR = LT then
3335 Result := True;
3336 elsif CR = EQ or else CR = GT or else CR = GE then
3337 Result := False;
3338 else
3339 return;
3340 end if;
3341
3342 when N_Op_Ne =>
3343 if CR = NE or else CR = GT or else CR = LT then
3344 Result := True;
3345 elsif CR = EQ then
3346 Result := False;
3347 else
3348 return;
3349 end if;
3350
3351 when others =>
3352 raise Program_Error;
3353 end case;
3354
3355 -- Determine the potential outcome of the relation assuming the
3356 -- operands are valid and emit a warning when the relation yields
3357 -- True or False only in the presence of invalid values.
3358
3359 Warn_On_Constant_Valid_Condition (N);
3360
3361 Fold_Uint (N, Test (Result), Is_Static);
3362 end Fold_General_Op;
3363
3364 -------------------------
3365 -- Fold_Static_Real_Op --
3366 -------------------------
3367
3368 procedure Fold_Static_Real_Op is
3369 Left_Real : constant Ureal := Expr_Value_R (Left);
3370 Right_Real : constant Ureal := Expr_Value_R (Right);
3371 Result : Boolean;
3372
3373 begin
3374 case Nkind (N) is
3375 when N_Op_Eq => Result := (Left_Real = Right_Real);
3376 when N_Op_Ge => Result := (Left_Real >= Right_Real);
3377 when N_Op_Gt => Result := (Left_Real > Right_Real);
3378 when N_Op_Le => Result := (Left_Real <= Right_Real);
3379 when N_Op_Lt => Result := (Left_Real < Right_Real);
3380 when N_Op_Ne => Result := (Left_Real /= Right_Real);
3381 when others => raise Program_Error;
3382 end case;
3383
3384 Fold_Uint (N, Test (Result), True);
3385 end Fold_Static_Real_Op;
3386
3387 -------------------
3388 -- Static_Length --
3389 -------------------
3390
3391 function Static_Length (Expr : Node_Id) return Uint is
3392 Cons1 : Uint;
3393 Cons2 : Uint;
3394 Ent1 : Entity_Id;
3395 Ent2 : Entity_Id;
3396 Kind1 : Character;
3397 Kind2 : Character;
3398 Typ : Entity_Id;
3399
3400 begin
3401 -- First easy case string literal
3402
3403 if Nkind (Expr) = N_String_Literal then
3404 return UI_From_Int (String_Length (Strval (Expr)));
3405
3406 -- Second easy case, not constrained subtype, so no length
3407
3408 elsif not Is_Constrained (Etype (Expr)) then
3409 return Uint_Minus_1;
3410 end if;
3411
3412 -- General case
3413
3414 Typ := Etype (First_Index (Etype (Expr)));
3415
3416 -- The simple case, both bounds are known at compile time
3417
3418 if Is_Discrete_Type (Typ)
3419 and then Compile_Time_Known_Value (Type_Low_Bound (Typ))
3420 and then Compile_Time_Known_Value (Type_High_Bound (Typ))
3421 then
3422 return
3423 UI_Max (Uint_0, Expr_Value (Type_High_Bound (Typ)) -
3424 Expr_Value (Type_Low_Bound (Typ)) + 1);
3425 end if;
3426
3427 -- A more complex case, where the bounds are of the form X [+/- K1]
3428 -- .. X [+/- K2]), where X is an expression that is either A'First or
3429 -- A'Last (with A an entity name), or X is an entity name, and the
3430 -- two X's are the same and K1 and K2 are known at compile time, in
3431 -- this case, the length can also be computed at compile time, even
3432 -- though the bounds are not known. A common case of this is e.g.
3433 -- (X'First .. X'First+5).
3434
3435 Decompose_Expr
3436 (Original_Node (Type_Low_Bound (Typ)), Ent1, Kind1, Cons1);
3437 Decompose_Expr
3438 (Original_Node (Type_High_Bound (Typ)), Ent2, Kind2, Cons2);
3439
3440 if Present (Ent1) and then Ent1 = Ent2 and then Kind1 = Kind2 then
3441 return Cons2 - Cons1 + 1;
3442 else
3443 return Uint_Minus_1;
3444 end if;
3445 end Static_Length;
3446
3447 -- Local variables
3448
3449 Left_Typ : constant Entity_Id := Etype (Left);
3450 Right_Typ : constant Entity_Id := Etype (Right);
3451 Fold : Boolean;
3452 Left_Len : Uint;
3453 Op_Typ : Entity_Id := Empty;
3454 Right_Len : Uint;
3455
3456 Is_Static_Expression : Boolean;
3457
3458 -- Start of processing for Eval_Relational_Op
3459
3460 begin
3461 -- One special case to deal with first. If we can tell that the result
3462 -- will be false because the lengths of one or more index subtypes are
3463 -- compile-time known and different, then we can replace the entire
3464 -- result by False. We only do this for one-dimensional arrays, because
3465 -- the case of multidimensional arrays is rare and too much trouble. If
3466 -- one of the operands is an illegal aggregate, its type might still be
3467 -- an arbitrary composite type, so nothing to do.
3468
3469 if Is_Array_Type (Left_Typ)
3470 and then Left_Typ /= Any_Composite
3471 and then Number_Dimensions (Left_Typ) = 1
3472 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3473 then
3474 if Raises_Constraint_Error (Left)
3475 or else
3476 Raises_Constraint_Error (Right)
3477 then
3478 return;
3479
3480 -- OK, we have the case where we may be able to do this fold
3481
3482 else
3483 Left_Len := Static_Length (Left);
3484 Right_Len := Static_Length (Right);
3485
3486 if Left_Len /= Uint_Minus_1
3487 and then Right_Len /= Uint_Minus_1
3488 and then Left_Len /= Right_Len
3489 then
3490 Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
3491 Warn_On_Known_Condition (N);
3492 return;
3493 end if;
3494 end if;
3495
3496 -- General case
3497
3498 else
3499 -- Initialize the value of Is_Static_Expression. The value of Fold
3500 -- returned by Test_Expression_Is_Foldable is not needed since, even
3501 -- when some operand is a variable, we can still perform the static
3502 -- evaluation of the expression in some cases (for example, for a
3503 -- variable of a subtype of Integer we statically know that any value
3504 -- stored in such variable is smaller than Integer'Last).
3505
3506 Test_Expression_Is_Foldable
3507 (N, Left, Right, Is_Static_Expression, Fold);
3508
3509 -- Only comparisons of scalars can give static results. A comparison
3510 -- of strings never yields a static result, even if both operands are
3511 -- static strings, except that as noted above, we allow equality and
3512 -- inequality for strings.
3513
3514 if Is_String_Type (Left_Typ)
3515 and then not Comes_From_Source (N)
3516 and then Nkind_In (N, N_Op_Eq, N_Op_Ne)
3517 then
3518 null;
3519
3520 elsif not Is_Scalar_Type (Left_Typ) then
3521 Is_Static_Expression := False;
3522 Set_Is_Static_Expression (N, False);
3523 end if;
3524
3525 -- For operators on universal numeric types called as functions with
3526 -- an explicit scope, determine appropriate specific numeric type,
3527 -- and diagnose possible ambiguity.
3528
3529 if Is_Universal_Numeric_Type (Left_Typ)
3530 and then
3531 Is_Universal_Numeric_Type (Right_Typ)
3532 then
3533 Op_Typ := Find_Universal_Operator_Type (N);
3534 end if;
3535
3536 -- Attempt to fold the relational operator
3537
3538 if Is_Static_Expression and then Is_Real_Type (Left_Typ) then
3539 Fold_Static_Real_Op;
3540 else
3541 Fold_General_Op (Is_Static_Expression);
3542 end if;
3543 end if;
3544
3545 -- For the case of a folded relational operator on a specific numeric
3546 -- type, freeze the operand type now.
3547
3548 if Present (Op_Typ) then
3549 Freeze_Before (N, Op_Typ);
3550 end if;
3551
3552 Warn_On_Known_Condition (N);
3553 end Eval_Relational_Op;
3554
3555 ----------------
3556 -- Eval_Shift --
3557 ----------------
3558
3559 -- Shift operations are intrinsic operations that can never be static, so
3560 -- the only processing required is to perform the required check for a non
3561 -- static context for the two operands.
3562
3563 -- Actually we could do some compile time evaluation here some time ???
3564
3565 procedure Eval_Shift (N : Node_Id) is
3566 begin
3567 Check_Non_Static_Context (Left_Opnd (N));
3568 Check_Non_Static_Context (Right_Opnd (N));
3569 end Eval_Shift;
3570
3571 ------------------------
3572 -- Eval_Short_Circuit --
3573 ------------------------
3574
3575 -- A short circuit operation is potentially static if both operands are
3576 -- potentially static (RM 4.9 (13)).
3577
3578 procedure Eval_Short_Circuit (N : Node_Id) is
3579 Kind : constant Node_Kind := Nkind (N);
3580 Left : constant Node_Id := Left_Opnd (N);
3581 Right : constant Node_Id := Right_Opnd (N);
3582 Left_Int : Uint;
3583
3584 Rstat : constant Boolean :=
3585 Is_Static_Expression (Left)
3586 and then
3587 Is_Static_Expression (Right);
3588
3589 begin
3590 -- Short circuit operations are never static in Ada 83
3591
3592 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3593 Check_Non_Static_Context (Left);
3594 Check_Non_Static_Context (Right);
3595 return;
3596 end if;
3597
3598 -- Now look at the operands, we can't quite use the normal call to
3599 -- Test_Expression_Is_Foldable here because short circuit operations
3600 -- are a special case, they can still be foldable, even if the right
3601 -- operand raises constraint error.
3602
3603 -- If either operand is Any_Type, just propagate to result and do not
3604 -- try to fold, this prevents cascaded errors.
3605
3606 if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
3607 Set_Etype (N, Any_Type);
3608 return;
3609
3610 -- If left operand raises constraint error, then replace node N with
3611 -- the raise constraint error node, and we are obviously not foldable.
3612 -- Is_Static_Expression is set from the two operands in the normal way,
3613 -- and we check the right operand if it is in a non-static context.
3614
3615 elsif Raises_Constraint_Error (Left) then
3616 if not Rstat then
3617 Check_Non_Static_Context (Right);
3618 end if;
3619
3620 Rewrite_In_Raise_CE (N, Left);
3621 Set_Is_Static_Expression (N, Rstat);
3622 return;
3623
3624 -- If the result is not static, then we won't in any case fold
3625
3626 elsif not Rstat then
3627 Check_Non_Static_Context (Left);
3628 Check_Non_Static_Context (Right);
3629 return;
3630 end if;
3631
3632 -- Here the result is static, note that, unlike the normal processing
3633 -- in Test_Expression_Is_Foldable, we did *not* check above to see if
3634 -- the right operand raises constraint error, that's because it is not
3635 -- significant if the left operand is decisive.
3636
3637 Set_Is_Static_Expression (N);
3638
3639 -- It does not matter if the right operand raises constraint error if
3640 -- it will not be evaluated. So deal specially with the cases where
3641 -- the right operand is not evaluated. Note that we will fold these
3642 -- cases even if the right operand is non-static, which is fine, but
3643 -- of course in these cases the result is not potentially static.
3644
3645 Left_Int := Expr_Value (Left);
3646
3647 if (Kind = N_And_Then and then Is_False (Left_Int))
3648 or else
3649 (Kind = N_Or_Else and then Is_True (Left_Int))
3650 then
3651 Fold_Uint (N, Left_Int, Rstat);
3652 return;
3653 end if;
3654
3655 -- If first operand not decisive, then it does matter if the right
3656 -- operand raises constraint error, since it will be evaluated, so
3657 -- we simply replace the node with the right operand. Note that this
3658 -- properly propagates Is_Static_Expression and Raises_Constraint_Error
3659 -- (both are set to True in Right).
3660
3661 if Raises_Constraint_Error (Right) then
3662 Rewrite_In_Raise_CE (N, Right);
3663 Check_Non_Static_Context (Left);
3664 return;
3665 end if;
3666
3667 -- Otherwise the result depends on the right operand
3668
3669 Fold_Uint (N, Expr_Value (Right), Rstat);
3670 return;
3671 end Eval_Short_Circuit;
3672
3673 ----------------
3674 -- Eval_Slice --
3675 ----------------
3676
3677 -- Slices can never be static, so the only processing required is to check
3678 -- for non-static context if an explicit range is given.
3679
3680 procedure Eval_Slice (N : Node_Id) is
3681 Drange : constant Node_Id := Discrete_Range (N);
3682
3683 begin
3684 if Nkind (Drange) = N_Range then
3685 Check_Non_Static_Context (Low_Bound (Drange));
3686 Check_Non_Static_Context (High_Bound (Drange));
3687 end if;
3688
3689 -- A slice of the form A (subtype), when the subtype is the index of
3690 -- the type of A, is redundant, the slice can be replaced with A, and
3691 -- this is worth a warning.
3692
3693 if Is_Entity_Name (Prefix (N)) then
3694 declare
3695 E : constant Entity_Id := Entity (Prefix (N));
3696 T : constant Entity_Id := Etype (E);
3697
3698 begin
3699 if Ekind (E) = E_Constant
3700 and then Is_Array_Type (T)
3701 and then Is_Entity_Name (Drange)
3702 then
3703 if Is_Entity_Name (Original_Node (First_Index (T)))
3704 and then Entity (Original_Node (First_Index (T)))
3705 = Entity (Drange)
3706 then
3707 if Warn_On_Redundant_Constructs then
3708 Error_Msg_N ("redundant slice denotes whole array?r?", N);
3709 end if;
3710
3711 -- The following might be a useful optimization???
3712
3713 -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
3714 end if;
3715 end if;
3716 end;
3717 end if;
3718 end Eval_Slice;
3719
3720 -------------------------
3721 -- Eval_String_Literal --
3722 -------------------------
3723
3724 procedure Eval_String_Literal (N : Node_Id) is
3725 Typ : constant Entity_Id := Etype (N);
3726 Bas : constant Entity_Id := Base_Type (Typ);
3727 Xtp : Entity_Id;
3728 Len : Nat;
3729 Lo : Node_Id;
3730
3731 begin
3732 -- Nothing to do if error type (handles cases like default expressions
3733 -- or generics where we have not yet fully resolved the type).
3734
3735 if Bas = Any_Type or else Bas = Any_String then
3736 return;
3737 end if;
3738
3739 -- String literals are static if the subtype is static (RM 4.9(2)), so
3740 -- reset the static expression flag (it was set unconditionally in
3741 -- Analyze_String_Literal) if the subtype is non-static. We tell if
3742 -- the subtype is static by looking at the lower bound.
3743
3744 if Ekind (Typ) = E_String_Literal_Subtype then
3745 if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
3746 Set_Is_Static_Expression (N, False);
3747 return;
3748 end if;
3749
3750 -- Here if Etype of string literal is normal Etype (not yet possible,
3751 -- but may be possible in future).
3752
3753 elsif not Is_OK_Static_Expression
3754 (Type_Low_Bound (Etype (First_Index (Typ))))
3755 then
3756 Set_Is_Static_Expression (N, False);
3757 return;
3758 end if;
3759
3760 -- If original node was a type conversion, then result if non-static
3761
3762 if Nkind (Original_Node (N)) = N_Type_Conversion then
3763 Set_Is_Static_Expression (N, False);
3764 return;
3765 end if;
3766
3767 -- Test for illegal Ada 95 cases. A string literal is illegal in Ada 95
3768 -- if its bounds are outside the index base type and this index type is
3769 -- static. This can happen in only two ways. Either the string literal
3770 -- is too long, or it is null, and the lower bound is type'First. Either
3771 -- way it is the upper bound that is out of range of the index type.
3772
3773 if Ada_Version >= Ada_95 then
3774 if Is_Standard_String_Type (Bas) then
3775 Xtp := Standard_Positive;
3776 else
3777 Xtp := Etype (First_Index (Bas));
3778 end if;
3779
3780 if Ekind (Typ) = E_String_Literal_Subtype then
3781 Lo := String_Literal_Low_Bound (Typ);
3782 else
3783 Lo := Type_Low_Bound (Etype (First_Index (Typ)));
3784 end if;
3785
3786 -- Check for string too long
3787
3788 Len := String_Length (Strval (N));
3789
3790 if UI_From_Int (Len) > String_Type_Len (Bas) then
3791
3792 -- Issue message. Note that this message is a warning if the
3793 -- string literal is not marked as static (happens in some cases
3794 -- of folding strings known at compile time, but not static).
3795 -- Furthermore in such cases, we reword the message, since there
3796 -- is no string literal in the source program.
3797
3798 if Is_Static_Expression (N) then
3799 Apply_Compile_Time_Constraint_Error
3800 (N, "string literal too long for}", CE_Length_Check_Failed,
3801 Ent => Bas,
3802 Typ => First_Subtype (Bas));
3803 else
3804 Apply_Compile_Time_Constraint_Error
3805 (N, "string value too long for}", CE_Length_Check_Failed,
3806 Ent => Bas,
3807 Typ => First_Subtype (Bas),
3808 Warn => True);
3809 end if;
3810
3811 -- Test for null string not allowed
3812
3813 elsif Len = 0
3814 and then not Is_Generic_Type (Xtp)
3815 and then
3816 Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
3817 then
3818 -- Same specialization of message
3819
3820 if Is_Static_Expression (N) then
3821 Apply_Compile_Time_Constraint_Error
3822 (N, "null string literal not allowed for}",
3823 CE_Length_Check_Failed,
3824 Ent => Bas,
3825 Typ => First_Subtype (Bas));
3826 else
3827 Apply_Compile_Time_Constraint_Error
3828 (N, "null string value not allowed for}",
3829 CE_Length_Check_Failed,
3830 Ent => Bas,
3831 Typ => First_Subtype (Bas),
3832 Warn => True);
3833 end if;
3834 end if;
3835 end if;
3836 end Eval_String_Literal;
3837
3838 --------------------------
3839 -- Eval_Type_Conversion --
3840 --------------------------
3841
3842 -- A type conversion is potentially static if its subtype mark is for a
3843 -- static scalar subtype, and its operand expression is potentially static
3844 -- (RM 4.9(10)).
3845
3846 procedure Eval_Type_Conversion (N : Node_Id) is
3847 Operand : constant Node_Id := Expression (N);
3848 Source_Type : constant Entity_Id := Etype (Operand);
3849 Target_Type : constant Entity_Id := Etype (N);
3850
3851 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
3852 -- Returns true if type T is an integer type, or if it is a fixed-point
3853 -- type to be treated as an integer (i.e. the flag Conversion_OK is set
3854 -- on the conversion node).
3855
3856 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
3857 -- Returns true if type T is a floating-point type, or if it is a
3858 -- fixed-point type that is not to be treated as an integer (i.e. the
3859 -- flag Conversion_OK is not set on the conversion node).
3860
3861 ------------------------------
3862 -- To_Be_Treated_As_Integer --
3863 ------------------------------
3864
3865 function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
3866 begin
3867 return
3868 Is_Integer_Type (T)
3869 or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
3870 end To_Be_Treated_As_Integer;
3871
3872 ---------------------------
3873 -- To_Be_Treated_As_Real --
3874 ---------------------------
3875
3876 function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
3877 begin
3878 return
3879 Is_Floating_Point_Type (T)
3880 or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
3881 end To_Be_Treated_As_Real;
3882
3883 -- Local variables
3884
3885 Fold : Boolean;
3886 Stat : Boolean;
3887
3888 -- Start of processing for Eval_Type_Conversion
3889
3890 begin
3891 -- Cannot fold if target type is non-static or if semantic error
3892
3893 if not Is_Static_Subtype (Target_Type) then
3894 Check_Non_Static_Context (Operand);
3895 return;
3896 elsif Error_Posted (N) then
3897 return;
3898 end if;
3899
3900 -- If not foldable we are done
3901
3902 Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
3903
3904 if not Fold then
3905 return;
3906
3907 -- Don't try fold if target type has constraint error bounds
3908
3909 elsif not Is_OK_Static_Subtype (Target_Type) then
3910 Set_Raises_Constraint_Error (N);
3911 return;
3912 end if;
3913
3914 -- Remaining processing depends on operand types. Note that in the
3915 -- following type test, fixed-point counts as real unless the flag
3916 -- Conversion_OK is set, in which case it counts as integer.
3917
3918 -- Fold conversion, case of string type. The result is not static
3919
3920 if Is_String_Type (Target_Type) then
3921 Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
3922 return;
3923
3924 -- Fold conversion, case of integer target type
3925
3926 elsif To_Be_Treated_As_Integer (Target_Type) then
3927 declare
3928 Result : Uint;
3929
3930 begin
3931 -- Integer to integer conversion
3932
3933 if To_Be_Treated_As_Integer (Source_Type) then
3934 Result := Expr_Value (Operand);
3935
3936 -- Real to integer conversion
3937
3938 else
3939 Result := UR_To_Uint (Expr_Value_R (Operand));
3940 end if;
3941
3942 -- If fixed-point type (Conversion_OK must be set), then the
3943 -- result is logically an integer, but we must replace the
3944 -- conversion with the corresponding real literal, since the
3945 -- type from a semantic point of view is still fixed-point.
3946
3947 if Is_Fixed_Point_Type (Target_Type) then
3948 Fold_Ureal
3949 (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
3950
3951 -- Otherwise result is integer literal
3952
3953 else
3954 Fold_Uint (N, Result, Stat);
3955 end if;
3956 end;
3957
3958 -- Fold conversion, case of real target type
3959
3960 elsif To_Be_Treated_As_Real (Target_Type) then
3961 declare
3962 Result : Ureal;
3963
3964 begin
3965 if To_Be_Treated_As_Real (Source_Type) then
3966 Result := Expr_Value_R (Operand);
3967 else
3968 Result := UR_From_Uint (Expr_Value (Operand));
3969 end if;
3970
3971 Fold_Ureal (N, Result, Stat);
3972 end;
3973
3974 -- Enumeration types
3975
3976 else
3977 Fold_Uint (N, Expr_Value (Operand), Stat);
3978 end if;
3979
3980 if Is_Out_Of_Range (N, Etype (N), Assume_Valid => True) then
3981 Out_Of_Range (N);
3982 end if;
3983
3984 end Eval_Type_Conversion;
3985
3986 -------------------
3987 -- Eval_Unary_Op --
3988 -------------------
3989
3990 -- Predefined unary operators are static functions (RM 4.9(20)) and thus
3991 -- are potentially static if the operand is potentially static (RM 4.9(7)).
3992
3993 procedure Eval_Unary_Op (N : Node_Id) is
3994 Right : constant Node_Id := Right_Opnd (N);
3995 Otype : Entity_Id := Empty;
3996 Stat : Boolean;
3997 Fold : Boolean;
3998
3999 begin
4000 -- If not foldable we are done
4001
4002 Test_Expression_Is_Foldable (N, Right, Stat, Fold);
4003
4004 if not Fold then
4005 return;
4006 end if;
4007
4008 if Etype (Right) = Universal_Integer
4009 or else
4010 Etype (Right) = Universal_Real
4011 then
4012 Otype := Find_Universal_Operator_Type (N);
4013 end if;
4014
4015 -- Fold for integer case
4016
4017 if Is_Integer_Type (Etype (N)) then
4018 declare
4019 Rint : constant Uint := Expr_Value (Right);
4020 Result : Uint;
4021
4022 begin
4023 -- In the case of modular unary plus and abs there is no need
4024 -- to adjust the result of the operation since if the original
4025 -- operand was in bounds the result will be in the bounds of the
4026 -- modular type. However, in the case of modular unary minus the
4027 -- result may go out of the bounds of the modular type and needs
4028 -- adjustment.
4029
4030 if Nkind (N) = N_Op_Plus then
4031 Result := Rint;
4032
4033 elsif Nkind (N) = N_Op_Minus then
4034 if Is_Modular_Integer_Type (Etype (N)) then
4035 Result := (-Rint) mod Modulus (Etype (N));
4036 else
4037 Result := (-Rint);
4038 end if;
4039
4040 else
4041 pragma Assert (Nkind (N) = N_Op_Abs);
4042 Result := abs Rint;
4043 end if;
4044
4045 Fold_Uint (N, Result, Stat);
4046 end;
4047
4048 -- Fold for real case
4049
4050 elsif Is_Real_Type (Etype (N)) then
4051 declare
4052 Rreal : constant Ureal := Expr_Value_R (Right);
4053 Result : Ureal;
4054
4055 begin
4056 if Nkind (N) = N_Op_Plus then
4057 Result := Rreal;
4058 elsif Nkind (N) = N_Op_Minus then
4059 Result := UR_Negate (Rreal);
4060 else
4061 pragma Assert (Nkind (N) = N_Op_Abs);
4062 Result := abs Rreal;
4063 end if;
4064
4065 Fold_Ureal (N, Result, Stat);
4066 end;
4067 end if;
4068
4069 -- If the operator was resolved to a specific type, make sure that type
4070 -- is frozen even if the expression is folded into a literal (which has
4071 -- a universal type).
4072
4073 if Present (Otype) then
4074 Freeze_Before (N, Otype);
4075 end if;
4076 end Eval_Unary_Op;
4077
4078 -------------------------------
4079 -- Eval_Unchecked_Conversion --
4080 -------------------------------
4081
4082 -- Unchecked conversions can never be static, so the only required
4083 -- processing is to check for a non-static context for the operand.
4084
4085 procedure Eval_Unchecked_Conversion (N : Node_Id) is
4086 begin
4087 Check_Non_Static_Context (Expression (N));
4088 end Eval_Unchecked_Conversion;
4089
4090 --------------------
4091 -- Expr_Rep_Value --
4092 --------------------
4093
4094 function Expr_Rep_Value (N : Node_Id) return Uint is
4095 Kind : constant Node_Kind := Nkind (N);
4096 Ent : Entity_Id;
4097
4098 begin
4099 if Is_Entity_Name (N) then
4100 Ent := Entity (N);
4101
4102 -- An enumeration literal that was either in the source or created
4103 -- as a result of static evaluation.
4104
4105 if Ekind (Ent) = E_Enumeration_Literal then
4106 return Enumeration_Rep (Ent);
4107
4108 -- A user defined static constant
4109
4110 else
4111 pragma Assert (Ekind (Ent) = E_Constant);
4112 return Expr_Rep_Value (Constant_Value (Ent));
4113 end if;
4114
4115 -- An integer literal that was either in the source or created as a
4116 -- result of static evaluation.
4117
4118 elsif Kind = N_Integer_Literal then
4119 return Intval (N);
4120
4121 -- A real literal for a fixed-point type. This must be the fixed-point
4122 -- case, either the literal is of a fixed-point type, or it is a bound
4123 -- of a fixed-point type, with type universal real. In either case we
4124 -- obtain the desired value from Corresponding_Integer_Value.
4125
4126 elsif Kind = N_Real_Literal then
4127 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4128 return Corresponding_Integer_Value (N);
4129
4130 -- Otherwise must be character literal
4131
4132 else
4133 pragma Assert (Kind = N_Character_Literal);
4134 Ent := Entity (N);
4135
4136 -- Since Character literals of type Standard.Character don't have any
4137 -- defining character literals built for them, they do not have their
4138 -- Entity set, so just use their Char code. Otherwise for user-
4139 -- defined character literals use their Pos value as usual which is
4140 -- the same as the Rep value.
4141
4142 if No (Ent) then
4143 return Char_Literal_Value (N);
4144 else
4145 return Enumeration_Rep (Ent);
4146 end if;
4147 end if;
4148 end Expr_Rep_Value;
4149
4150 ----------------
4151 -- Expr_Value --
4152 ----------------
4153
4154 function Expr_Value (N : Node_Id) return Uint is
4155 Kind : constant Node_Kind := Nkind (N);
4156 CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
4157 Ent : Entity_Id;
4158 Val : Uint;
4159
4160 begin
4161 -- If already in cache, then we know it's compile time known and we can
4162 -- return the value that was previously stored in the cache since
4163 -- compile time known values cannot change.
4164
4165 if CV_Ent.N = N then
4166 return CV_Ent.V;
4167 end if;
4168
4169 -- Otherwise proceed to test value
4170
4171 if Is_Entity_Name (N) then
4172 Ent := Entity (N);
4173
4174 -- An enumeration literal that was either in the source or created as
4175 -- a result of static evaluation.
4176
4177 if Ekind (Ent) = E_Enumeration_Literal then
4178 Val := Enumeration_Pos (Ent);
4179
4180 -- A user defined static constant
4181
4182 else
4183 pragma Assert (Ekind (Ent) = E_Constant);
4184 Val := Expr_Value (Constant_Value (Ent));
4185 end if;
4186
4187 -- An integer literal that was either in the source or created as a
4188 -- result of static evaluation.
4189
4190 elsif Kind = N_Integer_Literal then
4191 Val := Intval (N);
4192
4193 -- A real literal for a fixed-point type. This must be the fixed-point
4194 -- case, either the literal is of a fixed-point type, or it is a bound
4195 -- of a fixed-point type, with type universal real. In either case we
4196 -- obtain the desired value from Corresponding_Integer_Value.
4197
4198 elsif Kind = N_Real_Literal then
4199 pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
4200 Val := Corresponding_Integer_Value (N);
4201
4202 -- Otherwise must be character literal
4203
4204 else
4205 pragma Assert (Kind = N_Character_Literal);
4206 Ent := Entity (N);
4207
4208 -- Since Character literals of type Standard.Character don't
4209 -- have any defining character literals built for them, they
4210 -- do not have their Entity set, so just use their Char
4211 -- code. Otherwise for user-defined character literals use
4212 -- their Pos value as usual.
4213
4214 if No (Ent) then
4215 Val := Char_Literal_Value (N);
4216 else
4217 Val := Enumeration_Pos (Ent);
4218 end if;
4219 end if;
4220
4221 -- Come here with Val set to value to be returned, set cache
4222
4223 CV_Ent.N := N;
4224 CV_Ent.V := Val;
4225 return Val;
4226 end Expr_Value;
4227
4228 ------------------
4229 -- Expr_Value_E --
4230 ------------------
4231
4232 function Expr_Value_E (N : Node_Id) return Entity_Id is
4233 Ent : constant Entity_Id := Entity (N);
4234 begin
4235 if Ekind (Ent) = E_Enumeration_Literal then
4236 return Ent;
4237 else
4238 pragma Assert (Ekind (Ent) = E_Constant);
4239 return Expr_Value_E (Constant_Value (Ent));
4240 end if;
4241 end Expr_Value_E;
4242
4243 ------------------
4244 -- Expr_Value_R --
4245 ------------------
4246
4247 function Expr_Value_R (N : Node_Id) return Ureal is
4248 Kind : constant Node_Kind := Nkind (N);
4249 Ent : Entity_Id;
4250
4251 begin
4252 if Kind = N_Real_Literal then
4253 return Realval (N);
4254
4255 elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
4256 Ent := Entity (N);
4257 pragma Assert (Ekind (Ent) = E_Constant);
4258 return Expr_Value_R (Constant_Value (Ent));
4259
4260 elsif Kind = N_Integer_Literal then
4261 return UR_From_Uint (Expr_Value (N));
4262
4263 -- Here, we have a node that cannot be interpreted as a compile time
4264 -- constant. That is definitely an error.
4265
4266 else
4267 raise Program_Error;
4268 end if;
4269 end Expr_Value_R;
4270
4271 ------------------
4272 -- Expr_Value_S --
4273 ------------------
4274
4275 function Expr_Value_S (N : Node_Id) return Node_Id is
4276 begin
4277 if Nkind (N) = N_String_Literal then
4278 return N;
4279 else
4280 pragma Assert (Ekind (Entity (N)) = E_Constant);
4281 return Expr_Value_S (Constant_Value (Entity (N)));
4282 end if;
4283 end Expr_Value_S;
4284
4285 ----------------------------------
4286 -- Find_Universal_Operator_Type --
4287 ----------------------------------
4288
4289 function Find_Universal_Operator_Type (N : Node_Id) return Entity_Id is
4290 PN : constant Node_Id := Parent (N);
4291 Call : constant Node_Id := Original_Node (N);
4292 Is_Int : constant Boolean := Is_Integer_Type (Etype (N));
4293
4294 Is_Fix : constant Boolean :=
4295 Nkind (N) in N_Binary_Op
4296 and then Nkind (Right_Opnd (N)) /= Nkind (Left_Opnd (N));
4297 -- A mixed-mode operation in this context indicates the presence of
4298 -- fixed-point type in the designated package.
4299
4300 Is_Relational : constant Boolean := Etype (N) = Standard_Boolean;
4301 -- Case where N is a relational (or membership) operator (else it is an
4302 -- arithmetic one).
4303
4304 In_Membership : constant Boolean :=
4305 Nkind (PN) in N_Membership_Test
4306 and then
4307 Nkind (Right_Opnd (PN)) = N_Range
4308 and then
4309 Is_Universal_Numeric_Type (Etype (Left_Opnd (PN)))
4310 and then
4311 Is_Universal_Numeric_Type
4312 (Etype (Low_Bound (Right_Opnd (PN))))
4313 and then
4314 Is_Universal_Numeric_Type
4315 (Etype (High_Bound (Right_Opnd (PN))));
4316 -- Case where N is part of a membership test with a universal range
4317
4318 E : Entity_Id;
4319 Pack : Entity_Id;
4320 Typ1 : Entity_Id := Empty;
4321 Priv_E : Entity_Id;
4322
4323 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean;
4324 -- Check whether one operand is a mixed-mode operation that requires the
4325 -- presence of a fixed-point type. Given that all operands are universal
4326 -- and have been constant-folded, retrieve the original function call.
4327
4328 ---------------------------
4329 -- Is_Mixed_Mode_Operand --
4330 ---------------------------
4331
4332 function Is_Mixed_Mode_Operand (Op : Node_Id) return Boolean is
4333 Onod : constant Node_Id := Original_Node (Op);
4334 begin
4335 return Nkind (Onod) = N_Function_Call
4336 and then Present (Next_Actual (First_Actual (Onod)))
4337 and then Etype (First_Actual (Onod)) /=
4338 Etype (Next_Actual (First_Actual (Onod)));
4339 end Is_Mixed_Mode_Operand;
4340
4341 -- Start of processing for Find_Universal_Operator_Type
4342
4343 begin
4344 if Nkind (Call) /= N_Function_Call
4345 or else Nkind (Name (Call)) /= N_Expanded_Name
4346 then
4347 return Empty;
4348
4349 -- There are several cases where the context does not imply the type of
4350 -- the operands:
4351 -- - the universal expression appears in a type conversion;
4352 -- - the expression is a relational operator applied to universal
4353 -- operands;
4354 -- - the expression is a membership test with a universal operand
4355 -- and a range with universal bounds.
4356
4357 elsif Nkind (Parent (N)) = N_Type_Conversion
4358 or else Is_Relational
4359 or else In_Membership
4360 then
4361 Pack := Entity (Prefix (Name (Call)));
4362
4363 -- If the prefix is a package declared elsewhere, iterate over its
4364 -- visible entities, otherwise iterate over all declarations in the
4365 -- designated scope.
4366
4367 if Ekind (Pack) = E_Package
4368 and then not In_Open_Scopes (Pack)
4369 then
4370 Priv_E := First_Private_Entity (Pack);
4371 else
4372 Priv_E := Empty;
4373 end if;
4374
4375 Typ1 := Empty;
4376 E := First_Entity (Pack);
4377 while Present (E) and then E /= Priv_E loop
4378 if Is_Numeric_Type (E)
4379 and then Nkind (Parent (E)) /= N_Subtype_Declaration
4380 and then Comes_From_Source (E)
4381 and then Is_Integer_Type (E) = Is_Int
4382 and then (Nkind (N) in N_Unary_Op
4383 or else Is_Relational
4384 or else Is_Fixed_Point_Type (E) = Is_Fix)
4385 then
4386 if No (Typ1) then
4387 Typ1 := E;
4388
4389 -- Before emitting an error, check for the presence of a
4390 -- mixed-mode operation that specifies a fixed point type.
4391
4392 elsif Is_Relational
4393 and then
4394 (Is_Mixed_Mode_Operand (Left_Opnd (N))
4395 or else Is_Mixed_Mode_Operand (Right_Opnd (N)))
4396 and then Is_Fixed_Point_Type (E) /= Is_Fixed_Point_Type (Typ1)
4397
4398 then
4399 if Is_Fixed_Point_Type (E) then
4400 Typ1 := E;
4401 end if;
4402
4403 else
4404 -- More than one type of the proper class declared in P
4405
4406 Error_Msg_N ("ambiguous operation", N);
4407 Error_Msg_Sloc := Sloc (Typ1);
4408 Error_Msg_N ("\possible interpretation (inherited)#", N);
4409 Error_Msg_Sloc := Sloc (E);
4410 Error_Msg_N ("\possible interpretation (inherited)#", N);
4411 return Empty;
4412 end if;
4413 end if;
4414
4415 Next_Entity (E);
4416 end loop;
4417 end if;
4418
4419 return Typ1;
4420 end Find_Universal_Operator_Type;
4421
4422 --------------------------
4423 -- Flag_Non_Static_Expr --
4424 --------------------------
4425
4426 procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
4427 begin
4428 if Error_Posted (Expr) and then not All_Errors_Mode then
4429 return;
4430 else
4431 Error_Msg_F (Msg, Expr);
4432 Why_Not_Static (Expr);
4433 end if;
4434 end Flag_Non_Static_Expr;
4435
4436 --------------
4437 -- Fold_Str --
4438 --------------
4439
4440 procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
4441 Loc : constant Source_Ptr := Sloc (N);
4442 Typ : constant Entity_Id := Etype (N);
4443
4444 begin
4445 if Raises_Constraint_Error (N) then
4446 Set_Is_Static_Expression (N, Static);
4447 return;
4448 end if;
4449
4450 Rewrite (N, Make_String_Literal (Loc, Strval => Val));
4451
4452 -- We now have the literal with the right value, both the actual type
4453 -- and the expected type of this literal are taken from the expression
4454 -- that was evaluated. So now we do the Analyze and Resolve.
4455
4456 -- Note that we have to reset Is_Static_Expression both after the
4457 -- analyze step (because Resolve will evaluate the literal, which
4458 -- will cause semantic errors if it is marked as static), and after
4459 -- the Resolve step (since Resolve in some cases resets this flag).
4460
4461 Analyze (N);
4462 Set_Is_Static_Expression (N, Static);
4463 Set_Etype (N, Typ);
4464 Resolve (N);
4465 Set_Is_Static_Expression (N, Static);
4466 end Fold_Str;
4467
4468 ---------------
4469 -- Fold_Uint --
4470 ---------------
4471
4472 procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
4473 Loc : constant Source_Ptr := Sloc (N);
4474 Typ : Entity_Id := Etype (N);
4475 Ent : Entity_Id;
4476
4477 begin
4478 if Raises_Constraint_Error (N) then
4479 Set_Is_Static_Expression (N, Static);
4480 return;
4481 end if;
4482
4483 -- If we are folding a named number, retain the entity in the literal,
4484 -- for ASIS use.
4485
4486 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Integer then
4487 Ent := Entity (N);
4488 else
4489 Ent := Empty;
4490 end if;
4491
4492 if Is_Private_Type (Typ) then
4493 Typ := Full_View (Typ);
4494 end if;
4495
4496 -- For a result of type integer, substitute an N_Integer_Literal node
4497 -- for the result of the compile time evaluation of the expression.
4498 -- For ASIS use, set a link to the original named number when not in
4499 -- a generic context.
4500
4501 if Is_Integer_Type (Typ) then
4502 Rewrite (N, Make_Integer_Literal (Loc, Val));
4503 Set_Original_Entity (N, Ent);
4504
4505 -- Otherwise we have an enumeration type, and we substitute either
4506 -- an N_Identifier or N_Character_Literal to represent the enumeration
4507 -- literal corresponding to the given value, which must always be in
4508 -- range, because appropriate tests have already been made for this.
4509
4510 else pragma Assert (Is_Enumeration_Type (Typ));
4511 Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
4512 end if;
4513
4514 -- We now have the literal with the right value, both the actual type
4515 -- and the expected type of this literal are taken from the expression
4516 -- that was evaluated. So now we do the Analyze and Resolve.
4517
4518 -- Note that we have to reset Is_Static_Expression both after the
4519 -- analyze step (because Resolve will evaluate the literal, which
4520 -- will cause semantic errors if it is marked as static), and after
4521 -- the Resolve step (since Resolve in some cases sets this flag).
4522
4523 Analyze (N);
4524 Set_Is_Static_Expression (N, Static);
4525 Set_Etype (N, Typ);
4526 Resolve (N);
4527 Set_Is_Static_Expression (N, Static);
4528 end Fold_Uint;
4529
4530 ----------------
4531 -- Fold_Ureal --
4532 ----------------
4533
4534 procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
4535 Loc : constant Source_Ptr := Sloc (N);
4536 Typ : constant Entity_Id := Etype (N);
4537 Ent : Entity_Id;
4538
4539 begin
4540 if Raises_Constraint_Error (N) then
4541 Set_Is_Static_Expression (N, Static);
4542 return;
4543 end if;
4544
4545 -- If we are folding a named number, retain the entity in the literal,
4546 -- for ASIS use.
4547
4548 if Is_Entity_Name (N) and then Ekind (Entity (N)) = E_Named_Real then
4549 Ent := Entity (N);
4550 else
4551 Ent := Empty;
4552 end if;
4553
4554 Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
4555
4556 -- Set link to original named number, for ASIS use
4557
4558 Set_Original_Entity (N, Ent);
4559
4560 -- We now have the literal with the right value, both the actual type
4561 -- and the expected type of this literal are taken from the expression
4562 -- that was evaluated. So now we do the Analyze and Resolve.
4563
4564 -- Note that we have to reset Is_Static_Expression both after the
4565 -- analyze step (because Resolve will evaluate the literal, which
4566 -- will cause semantic errors if it is marked as static), and after
4567 -- the Resolve step (since Resolve in some cases sets this flag).
4568
4569 Analyze (N);
4570 Set_Is_Static_Expression (N, Static);
4571 Set_Etype (N, Typ);
4572 Resolve (N);
4573 Set_Is_Static_Expression (N, Static);
4574 end Fold_Ureal;
4575
4576 ---------------
4577 -- From_Bits --
4578 ---------------
4579
4580 function From_Bits (B : Bits; T : Entity_Id) return Uint is
4581 V : Uint := Uint_0;
4582
4583 begin
4584 for J in 0 .. B'Last loop
4585 if B (J) then
4586 V := V + 2 ** J;
4587 end if;
4588 end loop;
4589
4590 if Non_Binary_Modulus (T) then
4591 V := V mod Modulus (T);
4592 end if;
4593
4594 return V;
4595 end From_Bits;
4596
4597 --------------------
4598 -- Get_String_Val --
4599 --------------------
4600
4601 function Get_String_Val (N : Node_Id) return Node_Id is
4602 begin
4603 if Nkind_In (N, N_String_Literal, N_Character_Literal) then
4604 return N;
4605 else
4606 pragma Assert (Is_Entity_Name (N));
4607 return Get_String_Val (Constant_Value (Entity (N)));
4608 end if;
4609 end Get_String_Val;
4610
4611 ----------------
4612 -- Initialize --
4613 ----------------
4614
4615 procedure Initialize is
4616 begin
4617 CV_Cache := (others => (Node_High_Bound, Uint_0));
4618 end Initialize;
4619
4620 --------------------
4621 -- In_Subrange_Of --
4622 --------------------
4623
4624 function In_Subrange_Of
4625 (T1 : Entity_Id;
4626 T2 : Entity_Id;
4627 Fixed_Int : Boolean := False) return Boolean
4628 is
4629 L1 : Node_Id;
4630 H1 : Node_Id;
4631
4632 L2 : Node_Id;
4633 H2 : Node_Id;
4634
4635 begin
4636 if T1 = T2 or else Is_Subtype_Of (T1, T2) then
4637 return True;
4638
4639 -- Never in range if both types are not scalar. Don't know if this can
4640 -- actually happen, but just in case.
4641
4642 elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T2) then
4643 return False;
4644
4645 -- If T1 has infinities but T2 doesn't have infinities, then T1 is
4646 -- definitely not compatible with T2.
4647
4648 elsif Is_Floating_Point_Type (T1)
4649 and then Has_Infinities (T1)
4650 and then Is_Floating_Point_Type (T2)
4651 and then not Has_Infinities (T2)
4652 then
4653 return False;
4654
4655 else
4656 L1 := Type_Low_Bound (T1);
4657 H1 := Type_High_Bound (T1);
4658
4659 L2 := Type_Low_Bound (T2);
4660 H2 := Type_High_Bound (T2);
4661
4662 -- Check bounds to see if comparison possible at compile time
4663
4664 if Compile_Time_Compare (L1, L2, Assume_Valid => True) in Compare_GE
4665 and then
4666 Compile_Time_Compare (H1, H2, Assume_Valid => True) in Compare_LE
4667 then
4668 return True;
4669 end if;
4670
4671 -- If bounds not comparable at compile time, then the bounds of T2
4672 -- must be compile time known or we cannot answer the query.
4673
4674 if not Compile_Time_Known_Value (L2)
4675 or else not Compile_Time_Known_Value (H2)
4676 then
4677 return False;
4678 end if;
4679
4680 -- If the bounds of T1 are know at compile time then use these
4681 -- ones, otherwise use the bounds of the base type (which are of
4682 -- course always static).
4683
4684 if not Compile_Time_Known_Value (L1) then
4685 L1 := Type_Low_Bound (Base_Type (T1));
4686 end if;
4687
4688 if not Compile_Time_Known_Value (H1) then
4689 H1 := Type_High_Bound (Base_Type (T1));
4690 end if;
4691
4692 -- Fixed point types should be considered as such only if
4693 -- flag Fixed_Int is set to False.
4694
4695 if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
4696 or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
4697 or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
4698 then
4699 return
4700 Expr_Value_R (L2) <= Expr_Value_R (L1)
4701 and then
4702 Expr_Value_R (H2) >= Expr_Value_R (H1);
4703
4704 else
4705 return
4706 Expr_Value (L2) <= Expr_Value (L1)
4707 and then
4708 Expr_Value (H2) >= Expr_Value (H1);
4709
4710 end if;
4711 end if;
4712
4713 -- If any exception occurs, it means that we have some bug in the compiler
4714 -- possibly triggered by a previous error, or by some unforeseen peculiar
4715 -- occurrence. However, this is only an optimization attempt, so there is
4716 -- really no point in crashing the compiler. Instead we just decide, too
4717 -- bad, we can't figure out the answer in this case after all.
4718
4719 exception
4720 when others =>
4721
4722 -- Debug flag K disables this behavior (useful for debugging)
4723
4724 if Debug_Flag_K then
4725 raise;
4726 else
4727 return False;
4728 end if;
4729 end In_Subrange_Of;
4730
4731 -----------------
4732 -- Is_In_Range --
4733 -----------------
4734
4735 function Is_In_Range
4736 (N : Node_Id;
4737 Typ : Entity_Id;
4738 Assume_Valid : Boolean := False;
4739 Fixed_Int : Boolean := False;
4740 Int_Real : Boolean := False) return Boolean
4741 is
4742 begin
4743 return
4744 Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) = In_Range;
4745 end Is_In_Range;
4746
4747 -------------------
4748 -- Is_Null_Range --
4749 -------------------
4750
4751 function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
4752 Typ : constant Entity_Id := Etype (Lo);
4753
4754 begin
4755 if not Compile_Time_Known_Value (Lo)
4756 or else not Compile_Time_Known_Value (Hi)
4757 then
4758 return False;
4759 end if;
4760
4761 if Is_Discrete_Type (Typ) then
4762 return Expr_Value (Lo) > Expr_Value (Hi);
4763 else pragma Assert (Is_Real_Type (Typ));
4764 return Expr_Value_R (Lo) > Expr_Value_R (Hi);
4765 end if;
4766 end Is_Null_Range;
4767
4768 -------------------------
4769 -- Is_OK_Static_Choice --
4770 -------------------------
4771
4772 function Is_OK_Static_Choice (Choice : Node_Id) return Boolean is
4773 begin
4774 -- Check various possibilities for choice
4775
4776 -- Note: for membership tests, we test more cases than are possible
4777 -- (in particular subtype indication), but it doesn't matter because
4778 -- it just won't occur (we have already done a syntax check).
4779
4780 if Nkind (Choice) = N_Others_Choice then
4781 return True;
4782
4783 elsif Nkind (Choice) = N_Range then
4784 return Is_OK_Static_Range (Choice);
4785
4786 elsif Nkind (Choice) = N_Subtype_Indication
4787 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4788 then
4789 return Is_OK_Static_Subtype (Etype (Choice));
4790
4791 else
4792 return Is_OK_Static_Expression (Choice);
4793 end if;
4794 end Is_OK_Static_Choice;
4795
4796 ------------------------------
4797 -- Is_OK_Static_Choice_List --
4798 ------------------------------
4799
4800 function Is_OK_Static_Choice_List (Choices : List_Id) return Boolean is
4801 Choice : Node_Id;
4802
4803 begin
4804 if not Is_Static_Choice_List (Choices) then
4805 return False;
4806 end if;
4807
4808 Choice := First (Choices);
4809 while Present (Choice) loop
4810 if not Is_OK_Static_Choice (Choice) then
4811 Set_Raises_Constraint_Error (Choice);
4812 return False;
4813 end if;
4814
4815 Next (Choice);
4816 end loop;
4817
4818 return True;
4819 end Is_OK_Static_Choice_List;
4820
4821 -----------------------------
4822 -- Is_OK_Static_Expression --
4823 -----------------------------
4824
4825 function Is_OK_Static_Expression (N : Node_Id) return Boolean is
4826 begin
4827 return Is_Static_Expression (N) and then not Raises_Constraint_Error (N);
4828 end Is_OK_Static_Expression;
4829
4830 ------------------------
4831 -- Is_OK_Static_Range --
4832 ------------------------
4833
4834 -- A static range is a range whose bounds are static expressions, or a
4835 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4836 -- We have already converted range attribute references, so we get the
4837 -- "or" part of this rule without needing a special test.
4838
4839 function Is_OK_Static_Range (N : Node_Id) return Boolean is
4840 begin
4841 return Is_OK_Static_Expression (Low_Bound (N))
4842 and then Is_OK_Static_Expression (High_Bound (N));
4843 end Is_OK_Static_Range;
4844
4845 --------------------------
4846 -- Is_OK_Static_Subtype --
4847 --------------------------
4848
4849 -- Determines if Typ is a static subtype as defined in (RM 4.9(26)) where
4850 -- neither bound raises constraint error when evaluated.
4851
4852 function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
4853 Base_T : constant Entity_Id := Base_Type (Typ);
4854 Anc_Subt : Entity_Id;
4855
4856 begin
4857 -- First a quick check on the non static subtype flag. As described
4858 -- in further detail in Einfo, this flag is not decisive in all cases,
4859 -- but if it is set, then the subtype is definitely non-static.
4860
4861 if Is_Non_Static_Subtype (Typ) then
4862 return False;
4863 end if;
4864
4865 Anc_Subt := Ancestor_Subtype (Typ);
4866
4867 if Anc_Subt = Empty then
4868 Anc_Subt := Base_T;
4869 end if;
4870
4871 if Is_Generic_Type (Root_Type (Base_T))
4872 or else Is_Generic_Actual_Type (Base_T)
4873 then
4874 return False;
4875
4876 elsif Has_Dynamic_Predicate_Aspect (Typ) then
4877 return False;
4878
4879 -- String types
4880
4881 elsif Is_String_Type (Typ) then
4882 return
4883 Ekind (Typ) = E_String_Literal_Subtype
4884 or else
4885 (Is_OK_Static_Subtype (Component_Type (Typ))
4886 and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
4887
4888 -- Scalar types
4889
4890 elsif Is_Scalar_Type (Typ) then
4891 if Base_T = Typ then
4892 return True;
4893
4894 else
4895 -- Scalar_Range (Typ) might be an N_Subtype_Indication, so use
4896 -- Get_Type_{Low,High}_Bound.
4897
4898 return Is_OK_Static_Subtype (Anc_Subt)
4899 and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
4900 and then Is_OK_Static_Expression (Type_High_Bound (Typ));
4901 end if;
4902
4903 -- Types other than string and scalar types are never static
4904
4905 else
4906 return False;
4907 end if;
4908 end Is_OK_Static_Subtype;
4909
4910 ---------------------
4911 -- Is_Out_Of_Range --
4912 ---------------------
4913
4914 function Is_Out_Of_Range
4915 (N : Node_Id;
4916 Typ : Entity_Id;
4917 Assume_Valid : Boolean := False;
4918 Fixed_Int : Boolean := False;
4919 Int_Real : Boolean := False) return Boolean
4920 is
4921 begin
4922 return Test_In_Range (N, Typ, Assume_Valid, Fixed_Int, Int_Real) =
4923 Out_Of_Range;
4924 end Is_Out_Of_Range;
4925
4926 ----------------------
4927 -- Is_Static_Choice --
4928 ----------------------
4929
4930 function Is_Static_Choice (Choice : Node_Id) return Boolean is
4931 begin
4932 -- Check various possibilities for choice
4933
4934 -- Note: for membership tests, we test more cases than are possible
4935 -- (in particular subtype indication), but it doesn't matter because
4936 -- it just won't occur (we have already done a syntax check).
4937
4938 if Nkind (Choice) = N_Others_Choice then
4939 return True;
4940
4941 elsif Nkind (Choice) = N_Range then
4942 return Is_Static_Range (Choice);
4943
4944 elsif Nkind (Choice) = N_Subtype_Indication
4945 or else (Is_Entity_Name (Choice) and then Is_Type (Entity (Choice)))
4946 then
4947 return Is_Static_Subtype (Etype (Choice));
4948
4949 else
4950 return Is_Static_Expression (Choice);
4951 end if;
4952 end Is_Static_Choice;
4953
4954 ---------------------------
4955 -- Is_Static_Choice_List --
4956 ---------------------------
4957
4958 function Is_Static_Choice_List (Choices : List_Id) return Boolean is
4959 Choice : Node_Id;
4960
4961 begin
4962 Choice := First (Choices);
4963 while Present (Choice) loop
4964 if not Is_Static_Choice (Choice) then
4965 return False;
4966 end if;
4967
4968 Next (Choice);
4969 end loop;
4970
4971 return True;
4972 end Is_Static_Choice_List;
4973
4974 ---------------------
4975 -- Is_Static_Range --
4976 ---------------------
4977
4978 -- A static range is a range whose bounds are static expressions, or a
4979 -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
4980 -- We have already converted range attribute references, so we get the
4981 -- "or" part of this rule without needing a special test.
4982
4983 function Is_Static_Range (N : Node_Id) return Boolean is
4984 begin
4985 return Is_Static_Expression (Low_Bound (N))
4986 and then
4987 Is_Static_Expression (High_Bound (N));
4988 end Is_Static_Range;
4989
4990 -----------------------
4991 -- Is_Static_Subtype --
4992 -----------------------
4993
4994 -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
4995
4996 function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
4997 Base_T : constant Entity_Id := Base_Type (Typ);
4998 Anc_Subt : Entity_Id;
4999
5000 begin
5001 -- First a quick check on the non static subtype flag. As described
5002 -- in further detail in Einfo, this flag is not decisive in all cases,
5003 -- but if it is set, then the subtype is definitely non-static.
5004
5005 if Is_Non_Static_Subtype (Typ) then
5006 return False;
5007 end if;
5008
5009 Anc_Subt := Ancestor_Subtype (Typ);
5010
5011 if Anc_Subt = Empty then
5012 Anc_Subt := Base_T;
5013 end if;
5014
5015 if Is_Generic_Type (Root_Type (Base_T))
5016 or else Is_Generic_Actual_Type (Base_T)
5017 then
5018 return False;
5019
5020 -- If there is a dynamic predicate for the type (declared or inherited)
5021 -- the expression is not static.
5022
5023 elsif Has_Dynamic_Predicate_Aspect (Typ)
5024 or else (Is_Derived_Type (Typ)
5025 and then Has_Aspect (Typ, Aspect_Dynamic_Predicate))
5026 then
5027 return False;
5028
5029 -- String types
5030
5031 elsif Is_String_Type (Typ) then
5032 return
5033 Ekind (Typ) = E_String_Literal_Subtype
5034 or else (Is_Static_Subtype (Component_Type (Typ))
5035 and then Is_Static_Subtype (Etype (First_Index (Typ))));
5036
5037 -- Scalar types
5038
5039 elsif Is_Scalar_Type (Typ) then
5040 if Base_T = Typ then
5041 return True;
5042
5043 else
5044 return Is_Static_Subtype (Anc_Subt)
5045 and then Is_Static_Expression (Type_Low_Bound (Typ))
5046 and then Is_Static_Expression (Type_High_Bound (Typ));
5047 end if;
5048
5049 -- Types other than string and scalar types are never static
5050
5051 else
5052 return False;
5053 end if;
5054 end Is_Static_Subtype;
5055
5056 -------------------------------
5057 -- Is_Statically_Unevaluated --
5058 -------------------------------
5059
5060 function Is_Statically_Unevaluated (Expr : Node_Id) return Boolean is
5061 function Check_Case_Expr_Alternative
5062 (CEA : Node_Id) return Match_Result;
5063 -- We have a message emanating from the Expression of a case expression
5064 -- alternative. We examine this alternative, as follows:
5065 --
5066 -- If the selecting expression of the parent case is non-static, or
5067 -- if any of the discrete choices of the given case alternative are
5068 -- non-static or raise Constraint_Error, return Non_Static.
5069 --
5070 -- Otherwise check if the selecting expression matches any of the given
5071 -- discrete choices. If so, the alternative is executed and we return
5072 -- Match, otherwise, the alternative can never be executed, and so we
5073 -- return No_Match.
5074
5075 ---------------------------------
5076 -- Check_Case_Expr_Alternative --
5077 ---------------------------------
5078
5079 function Check_Case_Expr_Alternative
5080 (CEA : Node_Id) return Match_Result
5081 is
5082 Case_Exp : constant Node_Id := Parent (CEA);
5083 Choice : Node_Id;
5084 Prev_CEA : Node_Id;
5085
5086 begin
5087 pragma Assert (Nkind (Case_Exp) = N_Case_Expression);
5088
5089 -- Check that selecting expression is static
5090
5091 if not Is_OK_Static_Expression (Expression (Case_Exp)) then
5092 return Non_Static;
5093 end if;
5094
5095 if not Is_OK_Static_Choice_List (Discrete_Choices (CEA)) then
5096 return Non_Static;
5097 end if;
5098
5099 -- All choices are now known to be static. Now see if alternative
5100 -- matches one of the choices.
5101
5102 Choice := First (Discrete_Choices (CEA));
5103 while Present (Choice) loop
5104
5105 -- Check various possibilities for choice, returning Match if we
5106 -- find the selecting value matches any of the choices. Note that
5107 -- we know we are the last choice, so we don't have to keep going.
5108
5109 if Nkind (Choice) = N_Others_Choice then
5110
5111 -- Others choice is a bit annoying, it matches if none of the
5112 -- previous alternatives matches (note that we know we are the
5113 -- last alternative in this case, so we can just go backwards
5114 -- from us to see if any previous one matches).
5115
5116 Prev_CEA := Prev (CEA);
5117 while Present (Prev_CEA) loop
5118 if Check_Case_Expr_Alternative (Prev_CEA) = Match then
5119 return No_Match;
5120 end if;
5121
5122 Prev (Prev_CEA);
5123 end loop;
5124
5125 return Match;
5126
5127 -- Else we have a normal static choice
5128
5129 elsif Choice_Matches (Expression (Case_Exp), Choice) = Match then
5130 return Match;
5131 end if;
5132
5133 -- If we fall through, it means that the discrete choice did not
5134 -- match the selecting expression, so continue.
5135
5136 Next (Choice);
5137 end loop;
5138
5139 -- If we get through that loop then all choices were static, and none
5140 -- of them matched the selecting expression. So return No_Match.
5141
5142 return No_Match;
5143 end Check_Case_Expr_Alternative;
5144
5145 -- Local variables
5146
5147 P : Node_Id;
5148 OldP : Node_Id;
5149 Choice : Node_Id;
5150
5151 -- Start of processing for Is_Statically_Unevaluated
5152
5153 begin
5154 -- The (32.x) references here are from RM section 4.9
5155
5156 -- (32.1) An expression is statically unevaluated if it is part of ...
5157
5158 -- This means we have to climb the tree looking for one of the cases
5159
5160 P := Expr;
5161 loop
5162 OldP := P;
5163 P := Parent (P);
5164
5165 -- (32.2) The right operand of a static short-circuit control form
5166 -- whose value is determined by its left operand.
5167
5168 -- AND THEN with False as left operand
5169
5170 if Nkind (P) = N_And_Then
5171 and then Compile_Time_Known_Value (Left_Opnd (P))
5172 and then Is_False (Expr_Value (Left_Opnd (P)))
5173 then
5174 return True;
5175
5176 -- OR ELSE with True as left operand
5177
5178 elsif Nkind (P) = N_Or_Else
5179 and then Compile_Time_Known_Value (Left_Opnd (P))
5180 and then Is_True (Expr_Value (Left_Opnd (P)))
5181 then
5182 return True;
5183
5184 -- (32.3) A dependent_expression of an if_expression whose associated
5185 -- condition is static and equals False.
5186
5187 elsif Nkind (P) = N_If_Expression then
5188 declare
5189 Cond : constant Node_Id := First (Expressions (P));
5190 Texp : constant Node_Id := Next (Cond);
5191 Fexp : constant Node_Id := Next (Texp);
5192
5193 begin
5194 if Compile_Time_Known_Value (Cond) then
5195
5196 -- Condition is True and we are in the right operand
5197
5198 if Is_True (Expr_Value (Cond)) and then OldP = Fexp then
5199 return True;
5200
5201 -- Condition is False and we are in the left operand
5202
5203 elsif Is_False (Expr_Value (Cond)) and then OldP = Texp then
5204 return True;
5205 end if;
5206 end if;
5207 end;
5208
5209 -- (32.4) A condition or dependent_expression of an if_expression
5210 -- where the condition corresponding to at least one preceding
5211 -- dependent_expression of the if_expression is static and equals
5212 -- True.
5213
5214 -- This refers to cases like
5215
5216 -- (if True then 1 elsif 1/0=2 then 2 else 3)
5217
5218 -- But we expand elsif's out anyway, so the above looks like:
5219
5220 -- (if True then 1 else (if 1/0=2 then 2 else 3))
5221
5222 -- So for us this is caught by the above check for the 32.3 case.
5223
5224 -- (32.5) A dependent_expression of a case_expression whose
5225 -- selecting_expression is static and whose value is not covered
5226 -- by the corresponding discrete_choice_list.
5227
5228 elsif Nkind (P) = N_Case_Expression_Alternative then
5229
5230 -- First, we have to be in the expression to suppress messages.
5231 -- If we are within one of the choices, we want the message.
5232
5233 if OldP = Expression (P) then
5234
5235 -- Statically unevaluated if alternative does not match
5236
5237 if Check_Case_Expr_Alternative (P) = No_Match then
5238 return True;
5239 end if;
5240 end if;
5241
5242 -- (32.6) A choice_expression (or a simple_expression of a range
5243 -- that occurs as a membership_choice of a membership_choice_list)
5244 -- of a static membership test that is preceded in the enclosing
5245 -- membership_choice_list by another item whose individual
5246 -- membership test (see (RM 4.5.2)) statically yields True.
5247
5248 elsif Nkind (P) in N_Membership_Test then
5249
5250 -- Only possibly unevaluated if simple expression is static
5251
5252 if not Is_OK_Static_Expression (Left_Opnd (P)) then
5253 null;
5254
5255 -- All members of the choice list must be static
5256
5257 elsif (Present (Right_Opnd (P))
5258 and then not Is_OK_Static_Choice (Right_Opnd (P)))
5259 or else (Present (Alternatives (P))
5260 and then
5261 not Is_OK_Static_Choice_List (Alternatives (P)))
5262 then
5263 null;
5264
5265 -- If expression is the one and only alternative, then it is
5266 -- definitely not statically unevaluated, so we only have to
5267 -- test the case where there are alternatives present.
5268
5269 elsif Present (Alternatives (P)) then
5270
5271 -- Look for previous matching Choice
5272
5273 Choice := First (Alternatives (P));
5274 while Present (Choice) loop
5275
5276 -- If we reached us and no previous choices matched, this
5277 -- is not the case where we are statically unevaluated.
5278
5279 exit when OldP = Choice;
5280
5281 -- If a previous choice matches, then that is the case where
5282 -- we know our choice is statically unevaluated.
5283
5284 if Choice_Matches (Left_Opnd (P), Choice) = Match then
5285 return True;
5286 end if;
5287
5288 Next (Choice);
5289 end loop;
5290
5291 -- If we fall through the loop, we were not one of the choices,
5292 -- we must have been the expression, so that is not covered by
5293 -- this rule, and we keep going.
5294
5295 null;
5296 end if;
5297 end if;
5298
5299 -- OK, not statically unevaluated at this level, see if we should
5300 -- keep climbing to look for a higher level reason.
5301
5302 -- Special case for component association in aggregates, where
5303 -- we want to keep climbing up to the parent aggregate.
5304
5305 if Nkind (P) = N_Component_Association
5306 and then Nkind (Parent (P)) = N_Aggregate
5307 then
5308 null;
5309
5310 -- All done if not still within subexpression
5311
5312 else
5313 exit when Nkind (P) not in N_Subexpr;
5314 end if;
5315 end loop;
5316
5317 -- If we fall through the loop, not one of the cases covered!
5318
5319 return False;
5320 end Is_Statically_Unevaluated;
5321
5322 --------------------
5323 -- Not_Null_Range --
5324 --------------------
5325
5326 function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
5327 Typ : constant Entity_Id := Etype (Lo);
5328
5329 begin
5330 if not Compile_Time_Known_Value (Lo)
5331 or else not Compile_Time_Known_Value (Hi)
5332 then
5333 return False;
5334 end if;
5335
5336 if Is_Discrete_Type (Typ) then
5337 return Expr_Value (Lo) <= Expr_Value (Hi);
5338 else pragma Assert (Is_Real_Type (Typ));
5339 return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
5340 end if;
5341 end Not_Null_Range;
5342
5343 -------------
5344 -- OK_Bits --
5345 -------------
5346
5347 function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
5348 begin
5349 -- We allow a maximum of 500,000 bits which seems a reasonable limit
5350
5351 if Bits < 500_000 then
5352 return True;
5353
5354 -- Error if this maximum is exceeded
5355
5356 else
5357 Error_Msg_N ("static value too large, capacity exceeded", N);
5358 return False;
5359 end if;
5360 end OK_Bits;
5361
5362 ------------------
5363 -- Out_Of_Range --
5364 ------------------
5365
5366 procedure Out_Of_Range (N : Node_Id) is
5367 begin
5368 -- If we have the static expression case, then this is an illegality
5369 -- in Ada 95 mode, except that in an instance, we never generate an
5370 -- error (if the error is legitimate, it was already diagnosed in the
5371 -- template).
5372
5373 if Is_Static_Expression (N)
5374 and then not In_Instance
5375 and then not In_Inlined_Body
5376 and then Ada_Version >= Ada_95
5377 then
5378 -- No message if we are statically unevaluated
5379
5380 if Is_Statically_Unevaluated (N) then
5381 null;
5382
5383 -- The expression to compute the length of a packed array is attached
5384 -- to the array type itself, and deserves a separate message.
5385
5386 elsif Nkind (Parent (N)) = N_Defining_Identifier
5387 and then Is_Array_Type (Parent (N))
5388 and then Present (Packed_Array_Impl_Type (Parent (N)))
5389 and then Present (First_Rep_Item (Parent (N)))
5390 then
5391 Error_Msg_N
5392 ("length of packed array must not exceed Integer''Last",
5393 First_Rep_Item (Parent (N)));
5394 Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
5395
5396 -- All cases except the special array case
5397
5398 else
5399 Apply_Compile_Time_Constraint_Error
5400 (N, "value not in range of}", CE_Range_Check_Failed);
5401 end if;
5402
5403 -- Here we generate a warning for the Ada 83 case, or when we are in an
5404 -- instance, or when we have a non-static expression case.
5405
5406 else
5407 Apply_Compile_Time_Constraint_Error
5408 (N, "value not in range of}??", CE_Range_Check_Failed);
5409 end if;
5410 end Out_Of_Range;
5411
5412 ----------------------
5413 -- Predicates_Match --
5414 ----------------------
5415
5416 function Predicates_Match (T1, T2 : Entity_Id) return Boolean is
5417 Pred1 : Node_Id;
5418 Pred2 : Node_Id;
5419
5420 begin
5421 if Ada_Version < Ada_2012 then
5422 return True;
5423
5424 -- Both types must have predicates or lack them
5425
5426 elsif Has_Predicates (T1) /= Has_Predicates (T2) then
5427 return False;
5428
5429 -- Check matching predicates
5430
5431 else
5432 Pred1 :=
5433 Get_Rep_Item
5434 (T1, Name_Static_Predicate, Check_Parents => False);
5435 Pred2 :=
5436 Get_Rep_Item
5437 (T2, Name_Static_Predicate, Check_Parents => False);
5438
5439 -- Subtypes statically match if the predicate comes from the
5440 -- same declaration, which can only happen if one is a subtype
5441 -- of the other and has no explicit predicate.
5442
5443 -- Suppress warnings on order of actuals, which is otherwise
5444 -- triggered by one of the two calls below.
5445
5446 pragma Warnings (Off);
5447 return Pred1 = Pred2
5448 or else (No (Pred1) and then Is_Subtype_Of (T1, T2))
5449 or else (No (Pred2) and then Is_Subtype_Of (T2, T1));
5450 pragma Warnings (On);
5451 end if;
5452 end Predicates_Match;
5453
5454 ---------------------------------------------
5455 -- Real_Or_String_Static_Predicate_Matches --
5456 ---------------------------------------------
5457
5458 function Real_Or_String_Static_Predicate_Matches
5459 (Val : Node_Id;
5460 Typ : Entity_Id) return Boolean
5461 is
5462 Expr : constant Node_Id := Static_Real_Or_String_Predicate (Typ);
5463 -- The predicate expression from the type
5464
5465 Pfun : constant Entity_Id := Predicate_Function (Typ);
5466 -- The entity for the predicate function
5467
5468 Ent_Name : constant Name_Id := Chars (First_Formal (Pfun));
5469 -- The name of the formal of the predicate function. Occurrences of the
5470 -- type name in Expr have been rewritten as references to this formal,
5471 -- and it has a unique name, so we can identify references by this name.
5472
5473 Copy : Node_Id;
5474 -- Copy of the predicate function tree
5475
5476 function Process (N : Node_Id) return Traverse_Result;
5477 -- Function used to process nodes during the traversal in which we will
5478 -- find occurrences of the entity name, and replace such occurrences
5479 -- by a real literal with the value to be tested.
5480
5481 procedure Traverse is new Traverse_Proc (Process);
5482 -- The actual traversal procedure
5483
5484 -------------
5485 -- Process --
5486 -------------
5487
5488 function Process (N : Node_Id) return Traverse_Result is
5489 begin
5490 if Nkind (N) = N_Identifier and then Chars (N) = Ent_Name then
5491 declare
5492 Nod : constant Node_Id := New_Copy (Val);
5493 begin
5494 Set_Sloc (Nod, Sloc (N));
5495 Rewrite (N, Nod);
5496 return Skip;
5497 end;
5498
5499 -- The predicate function may contain string-comparison operations
5500 -- that have been converted into calls to run-time array-comparison
5501 -- routines. To evaluate the predicate statically, we recover the
5502 -- original comparison operation and replace the occurrence of the
5503 -- formal by the static string value. The actuals of the generated
5504 -- call are of the form X'Address.
5505
5506 elsif Nkind (N) in N_Op_Compare
5507 and then Nkind (Left_Opnd (N)) = N_Function_Call
5508 then
5509 declare
5510 C : constant Node_Id := Left_Opnd (N);
5511 F : constant Node_Id := First (Parameter_Associations (C));
5512 L : constant Node_Id := Prefix (F);
5513 R : constant Node_Id := Prefix (Next (F));
5514
5515 begin
5516 -- If an operand is an entity name, it is the formal of the
5517 -- predicate function, so replace it with the string value.
5518 -- It may be either operand in the call. The other operand
5519 -- is a static string from the original predicate.
5520
5521 if Is_Entity_Name (L) then
5522 Rewrite (Left_Opnd (N), New_Copy (Val));
5523 Rewrite (Right_Opnd (N), New_Copy (R));
5524
5525 else
5526 Rewrite (Left_Opnd (N), New_Copy (L));
5527 Rewrite (Right_Opnd (N), New_Copy (Val));
5528 end if;
5529
5530 return Skip;
5531 end;
5532
5533 else
5534 return OK;
5535 end if;
5536 end Process;
5537
5538 -- Start of processing for Real_Or_String_Static_Predicate_Matches
5539
5540 begin
5541 -- First deal with special case of inherited predicate, where the
5542 -- predicate expression looks like:
5543
5544 -- xxPredicate (typ (Ent)) and then Expr
5545
5546 -- where Expr is the predicate expression for this level, and the
5547 -- left operand is the call to evaluate the inherited predicate.
5548
5549 if Nkind (Expr) = N_And_Then
5550 and then Nkind (Left_Opnd (Expr)) = N_Function_Call
5551 and then Is_Predicate_Function (Entity (Name (Left_Opnd (Expr))))
5552 then
5553 -- OK we have the inherited case, so make a call to evaluate the
5554 -- inherited predicate. If that fails, so do we!
5555
5556 if not
5557 Real_Or_String_Static_Predicate_Matches
5558 (Val => Val,
5559 Typ => Etype (First_Formal (Entity (Name (Left_Opnd (Expr))))))
5560 then
5561 return False;
5562 end if;
5563
5564 -- Use the right operand for the continued processing
5565
5566 Copy := Copy_Separate_Tree (Right_Opnd (Expr));
5567
5568 -- Case where call to predicate function appears on its own (this means
5569 -- that the predicate at this level is just inherited from the parent).
5570
5571 elsif Nkind (Expr) = N_Function_Call then
5572 declare
5573 Typ : constant Entity_Id :=
5574 Etype (First_Formal (Entity (Name (Expr))));
5575
5576 begin
5577 -- If the inherited predicate is dynamic, just ignore it. We can't
5578 -- go trying to evaluate a dynamic predicate as a static one!
5579
5580 if Has_Dynamic_Predicate_Aspect (Typ) then
5581 return True;
5582
5583 -- Otherwise inherited predicate is static, check for match
5584
5585 else
5586 return Real_Or_String_Static_Predicate_Matches (Val, Typ);
5587 end if;
5588 end;
5589
5590 -- If not just an inherited predicate, copy whole expression
5591
5592 else
5593 Copy := Copy_Separate_Tree (Expr);
5594 end if;
5595
5596 -- Now we replace occurrences of the entity by the value
5597
5598 Traverse (Copy);
5599
5600 -- And analyze the resulting static expression to see if it is True
5601
5602 Analyze_And_Resolve (Copy, Standard_Boolean);
5603 return Is_True (Expr_Value (Copy));
5604 end Real_Or_String_Static_Predicate_Matches;
5605
5606 -------------------------
5607 -- Rewrite_In_Raise_CE --
5608 -------------------------
5609
5610 procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
5611 Typ : constant Entity_Id := Etype (N);
5612 Stat : constant Boolean := Is_Static_Expression (N);
5613
5614 begin
5615 -- If we want to raise CE in the condition of a N_Raise_CE node, we
5616 -- can just clear the condition if the reason is appropriate. We do
5617 -- not do this operation if the parent has a reason other than range
5618 -- check failed, because otherwise we would change the reason.
5619
5620 if Present (Parent (N))
5621 and then Nkind (Parent (N)) = N_Raise_Constraint_Error
5622 and then Reason (Parent (N)) =
5623 UI_From_Int (RT_Exception_Code'Pos (CE_Range_Check_Failed))
5624 then
5625 Set_Condition (Parent (N), Empty);
5626
5627 -- Else build an explicit N_Raise_CE
5628
5629 else
5630 Rewrite (N,
5631 Make_Raise_Constraint_Error (Sloc (Exp),
5632 Reason => CE_Range_Check_Failed));
5633 Set_Raises_Constraint_Error (N);
5634 Set_Etype (N, Typ);
5635 end if;
5636
5637 -- Set proper flags in result
5638
5639 Set_Raises_Constraint_Error (N, True);
5640 Set_Is_Static_Expression (N, Stat);
5641 end Rewrite_In_Raise_CE;
5642
5643 ---------------------
5644 -- String_Type_Len --
5645 ---------------------
5646
5647 function String_Type_Len (Stype : Entity_Id) return Uint is
5648 NT : constant Entity_Id := Etype (First_Index (Stype));
5649 T : Entity_Id;
5650
5651 begin
5652 if Is_OK_Static_Subtype (NT) then
5653 T := NT;
5654 else
5655 T := Base_Type (NT);
5656 end if;
5657
5658 return Expr_Value (Type_High_Bound (T)) -
5659 Expr_Value (Type_Low_Bound (T)) + 1;
5660 end String_Type_Len;
5661
5662 ------------------------------------
5663 -- Subtypes_Statically_Compatible --
5664 ------------------------------------
5665
5666 function Subtypes_Statically_Compatible
5667 (T1 : Entity_Id;
5668 T2 : Entity_Id;
5669 Formal_Derived_Matching : Boolean := False) return Boolean
5670 is
5671 begin
5672 -- Scalar types
5673
5674 if Is_Scalar_Type (T1) then
5675
5676 -- Definitely compatible if we match
5677
5678 if Subtypes_Statically_Match (T1, T2) then
5679 return True;
5680
5681 -- If either subtype is nonstatic then they're not compatible
5682
5683 elsif not Is_OK_Static_Subtype (T1)
5684 or else
5685 not Is_OK_Static_Subtype (T2)
5686 then
5687 return False;
5688
5689 -- Base types must match, but we don't check that (should we???) but
5690 -- we do at least check that both types are real, or both types are
5691 -- not real.
5692
5693 elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
5694 return False;
5695
5696 -- Here we check the bounds
5697
5698 else
5699 declare
5700 LB1 : constant Node_Id := Type_Low_Bound (T1);
5701 HB1 : constant Node_Id := Type_High_Bound (T1);
5702 LB2 : constant Node_Id := Type_Low_Bound (T2);
5703 HB2 : constant Node_Id := Type_High_Bound (T2);
5704
5705 begin
5706 if Is_Real_Type (T1) then
5707 return
5708 Expr_Value_R (LB1) > Expr_Value_R (HB1)
5709 or else
5710 (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
5711 and then Expr_Value_R (HB1) <= Expr_Value_R (HB2));
5712
5713 else
5714 return
5715 Expr_Value (LB1) > Expr_Value (HB1)
5716 or else
5717 (Expr_Value (LB2) <= Expr_Value (LB1)
5718 and then Expr_Value (HB1) <= Expr_Value (HB2));
5719 end if;
5720 end;
5721 end if;
5722
5723 -- Access types
5724
5725 elsif Is_Access_Type (T1) then
5726 return
5727 (not Is_Constrained (T2)
5728 or else Subtypes_Statically_Match
5729 (Designated_Type (T1), Designated_Type (T2)))
5730 and then not (Can_Never_Be_Null (T2)
5731 and then not Can_Never_Be_Null (T1));
5732
5733 -- All other cases
5734
5735 else
5736 return
5737 (Is_Composite_Type (T1) and then not Is_Constrained (T2))
5738 or else Subtypes_Statically_Match
5739 (T1, T2, Formal_Derived_Matching);
5740 end if;
5741 end Subtypes_Statically_Compatible;
5742
5743 -------------------------------
5744 -- Subtypes_Statically_Match --
5745 -------------------------------
5746
5747 -- Subtypes statically match if they have statically matching constraints
5748 -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
5749 -- they are the same identical constraint, or if they are static and the
5750 -- values match (RM 4.9.1(1)).
5751
5752 -- In addition, in GNAT, the object size (Esize) values of the types must
5753 -- match if they are set (unless checking an actual for a formal derived
5754 -- type). The use of 'Object_Size can cause this to be false even if the
5755 -- types would otherwise match in the RM sense.
5756
5757 function Subtypes_Statically_Match
5758 (T1 : Entity_Id;
5759 T2 : Entity_Id;
5760 Formal_Derived_Matching : Boolean := False) return Boolean
5761 is
5762 begin
5763 -- A type always statically matches itself
5764
5765 if T1 = T2 then
5766 return True;
5767
5768 -- No match if sizes different (from use of 'Object_Size). This test
5769 -- is excluded if Formal_Derived_Matching is True, as the base types
5770 -- can be different in that case and typically have different sizes.
5771 -- ??? Frontend_Layout_On_Target used to set Esizes but this is no
5772 -- longer the case, consider removing the last test below.
5773
5774 elsif not Formal_Derived_Matching
5775 and then Known_Static_Esize (T1)
5776 and then Known_Static_Esize (T2)
5777 and then Esize (T1) /= Esize (T2)
5778 then
5779 return False;
5780
5781 -- No match if predicates do not match
5782
5783 elsif not Predicates_Match (T1, T2) then
5784 return False;
5785
5786 -- Scalar types
5787
5788 elsif Is_Scalar_Type (T1) then
5789
5790 -- Base types must be the same
5791
5792 if Base_Type (T1) /= Base_Type (T2) then
5793 return False;
5794 end if;
5795
5796 -- A constrained numeric subtype never matches an unconstrained
5797 -- subtype, i.e. both types must be constrained or unconstrained.
5798
5799 -- To understand the requirement for this test, see RM 4.9.1(1).
5800 -- As is made clear in RM 3.5.4(11), type Integer, for example is
5801 -- a constrained subtype with constraint bounds matching the bounds
5802 -- of its corresponding unconstrained base type. In this situation,
5803 -- Integer and Integer'Base do not statically match, even though
5804 -- they have the same bounds.
5805
5806 -- We only apply this test to types in Standard and types that appear
5807 -- in user programs. That way, we do not have to be too careful about
5808 -- setting Is_Constrained right for Itypes.
5809
5810 if Is_Numeric_Type (T1)
5811 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5812 and then (Scope (T1) = Standard_Standard
5813 or else Comes_From_Source (T1))
5814 and then (Scope (T2) = Standard_Standard
5815 or else Comes_From_Source (T2))
5816 then
5817 return False;
5818
5819 -- A generic scalar type does not statically match its base type
5820 -- (AI-311). In this case we make sure that the formals, which are
5821 -- first subtypes of their bases, are constrained.
5822
5823 elsif Is_Generic_Type (T1)
5824 and then Is_Generic_Type (T2)
5825 and then (Is_Constrained (T1) /= Is_Constrained (T2))
5826 then
5827 return False;
5828 end if;
5829
5830 -- If there was an error in either range, then just assume the types
5831 -- statically match to avoid further junk errors.
5832
5833 if No (Scalar_Range (T1)) or else No (Scalar_Range (T2))
5834 or else Error_Posted (Scalar_Range (T1))
5835 or else Error_Posted (Scalar_Range (T2))
5836 then
5837 return True;
5838 end if;
5839
5840 -- Otherwise both types have bounds that can be compared
5841
5842 declare
5843 LB1 : constant Node_Id := Type_Low_Bound (T1);
5844 HB1 : constant Node_Id := Type_High_Bound (T1);
5845 LB2 : constant Node_Id := Type_Low_Bound (T2);
5846 HB2 : constant Node_Id := Type_High_Bound (T2);
5847
5848 begin
5849 -- If the bounds are the same tree node, then match (common case)
5850
5851 if LB1 = LB2 and then HB1 = HB2 then
5852 return True;
5853
5854 -- Otherwise bounds must be static and identical value
5855
5856 else
5857 if not Is_OK_Static_Subtype (T1)
5858 or else
5859 not Is_OK_Static_Subtype (T2)
5860 then
5861 return False;
5862
5863 elsif Is_Real_Type (T1) then
5864 return
5865 Expr_Value_R (LB1) = Expr_Value_R (LB2)
5866 and then
5867 Expr_Value_R (HB1) = Expr_Value_R (HB2);
5868
5869 else
5870 return
5871 Expr_Value (LB1) = Expr_Value (LB2)
5872 and then
5873 Expr_Value (HB1) = Expr_Value (HB2);
5874 end if;
5875 end if;
5876 end;
5877
5878 -- Type with discriminants
5879
5880 elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
5881
5882 -- Because of view exchanges in multiple instantiations, conformance
5883 -- checking might try to match a partial view of a type with no
5884 -- discriminants with a full view that has defaulted discriminants.
5885 -- In such a case, use the discriminant constraint of the full view,
5886 -- which must exist because we know that the two subtypes have the
5887 -- same base type.
5888
5889 if Has_Discriminants (T1) /= Has_Discriminants (T2) then
5890 -- A generic actual type is declared through a subtype declaration
5891 -- and may have an inconsistent indication of the presence of
5892 -- discriminants, so check the type it renames.
5893
5894 if Is_Generic_Actual_Type (T1)
5895 and then not Has_Discriminants (Etype (T1))
5896 and then not Has_Discriminants (T2)
5897 then
5898 return True;
5899
5900 elsif In_Instance then
5901 if Is_Private_Type (T2)
5902 and then Present (Full_View (T2))
5903 and then Has_Discriminants (Full_View (T2))
5904 then
5905 return Subtypes_Statically_Match (T1, Full_View (T2));
5906
5907 elsif Is_Private_Type (T1)
5908 and then Present (Full_View (T1))
5909 and then Has_Discriminants (Full_View (T1))
5910 then
5911 return Subtypes_Statically_Match (Full_View (T1), T2);
5912
5913 else
5914 return False;
5915 end if;
5916 else
5917 return False;
5918 end if;
5919 end if;
5920
5921 declare
5922 DL1 : constant Elist_Id := Discriminant_Constraint (T1);
5923 DL2 : constant Elist_Id := Discriminant_Constraint (T2);
5924
5925 DA1 : Elmt_Id;
5926 DA2 : Elmt_Id;
5927
5928 begin
5929 if DL1 = DL2 then
5930 return True;
5931 elsif Is_Constrained (T1) /= Is_Constrained (T2) then
5932 return False;
5933 end if;
5934
5935 -- Now loop through the discriminant constraints
5936
5937 -- Note: the guard here seems necessary, since it is possible at
5938 -- least for DL1 to be No_Elist. Not clear this is reasonable ???
5939
5940 if Present (DL1) and then Present (DL2) then
5941 DA1 := First_Elmt (DL1);
5942 DA2 := First_Elmt (DL2);
5943 while Present (DA1) loop
5944 declare
5945 Expr1 : constant Node_Id := Node (DA1);
5946 Expr2 : constant Node_Id := Node (DA2);
5947
5948 begin
5949 if not Is_OK_Static_Expression (Expr1)
5950 or else not Is_OK_Static_Expression (Expr2)
5951 then
5952 return False;
5953
5954 -- If either expression raised a constraint error,
5955 -- consider the expressions as matching, since this
5956 -- helps to prevent cascading errors.
5957
5958 elsif Raises_Constraint_Error (Expr1)
5959 or else Raises_Constraint_Error (Expr2)
5960 then
5961 null;
5962
5963 elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
5964 return False;
5965 end if;
5966 end;
5967
5968 Next_Elmt (DA1);
5969 Next_Elmt (DA2);
5970 end loop;
5971 end if;
5972 end;
5973
5974 return True;
5975
5976 -- A definite type does not match an indefinite or classwide type.
5977 -- However, a generic type with unknown discriminants may be
5978 -- instantiated with a type with no discriminants, and conformance
5979 -- checking on an inherited operation may compare the actual with the
5980 -- subtype that renames it in the instance.
5981
5982 elsif Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
5983 then
5984 return
5985 Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
5986
5987 -- Array type
5988
5989 elsif Is_Array_Type (T1) then
5990
5991 -- If either subtype is unconstrained then both must be, and if both
5992 -- are unconstrained then no further checking is needed.
5993
5994 if not Is_Constrained (T1) or else not Is_Constrained (T2) then
5995 return not (Is_Constrained (T1) or else Is_Constrained (T2));
5996 end if;
5997
5998 -- Both subtypes are constrained, so check that the index subtypes
5999 -- statically match.
6000
6001 declare
6002 Index1 : Node_Id := First_Index (T1);
6003 Index2 : Node_Id := First_Index (T2);
6004
6005 begin
6006 while Present (Index1) loop
6007 if not
6008 Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
6009 then
6010 return False;
6011 end if;
6012
6013 Next_Index (Index1);
6014 Next_Index (Index2);
6015 end loop;
6016
6017 return True;
6018 end;
6019
6020 elsif Is_Access_Type (T1) then
6021 if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
6022 return False;
6023
6024 elsif Ekind_In (T1, E_Access_Subprogram_Type,
6025 E_Anonymous_Access_Subprogram_Type)
6026 then
6027 return
6028 Subtype_Conformant
6029 (Designated_Type (T1),
6030 Designated_Type (T2));
6031 else
6032 return
6033 Subtypes_Statically_Match
6034 (Designated_Type (T1),
6035 Designated_Type (T2))
6036 and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
6037 end if;
6038
6039 -- All other types definitely match
6040
6041 else
6042 return True;
6043 end if;
6044 end Subtypes_Statically_Match;
6045
6046 ----------
6047 -- Test --
6048 ----------
6049
6050 function Test (Cond : Boolean) return Uint is
6051 begin
6052 if Cond then
6053 return Uint_1;
6054 else
6055 return Uint_0;
6056 end if;
6057 end Test;
6058
6059 ---------------------
6060 -- Test_Comparison --
6061 ---------------------
6062
6063 procedure Test_Comparison
6064 (Op : Node_Id;
6065 Assume_Valid : Boolean;
6066 True_Result : out Boolean;
6067 False_Result : out Boolean)
6068 is
6069 Left : constant Node_Id := Left_Opnd (Op);
6070 Left_Typ : constant Entity_Id := Etype (Left);
6071 Orig_Op : constant Node_Id := Original_Node (Op);
6072
6073 procedure Replacement_Warning (Msg : String);
6074 -- Emit a warning on a comparison that can be replaced by '='
6075
6076 -------------------------
6077 -- Replacement_Warning --
6078 -------------------------
6079
6080 procedure Replacement_Warning (Msg : String) is
6081 begin
6082 if Constant_Condition_Warnings
6083 and then Comes_From_Source (Orig_Op)
6084 and then Is_Integer_Type (Left_Typ)
6085 and then not Error_Posted (Op)
6086 and then not Has_Warnings_Off (Left_Typ)
6087 and then not In_Instance
6088 then
6089 Error_Msg_N (Msg, Op);
6090 end if;
6091 end Replacement_Warning;
6092
6093 -- Local variables
6094
6095 Res : constant Compare_Result :=
6096 Compile_Time_Compare (Left, Right_Opnd (Op), Assume_Valid);
6097
6098 -- Start of processing for Test_Comparison
6099
6100 begin
6101 case N_Op_Compare (Nkind (Op)) is
6102 when N_Op_Eq =>
6103 True_Result := Res = EQ;
6104 False_Result := Res = LT or else Res = GT or else Res = NE;
6105
6106 when N_Op_Ge =>
6107 True_Result := Res in Compare_GE;
6108 False_Result := Res = LT;
6109
6110 if Res = LE and then Nkind (Orig_Op) = N_Op_Ge then
6111 Replacement_Warning
6112 ("can never be greater than, could replace by ""'=""?c?");
6113 end if;
6114
6115 when N_Op_Gt =>
6116 True_Result := Res = GT;
6117 False_Result := Res in Compare_LE;
6118
6119 when N_Op_Le =>
6120 True_Result := Res in Compare_LE;
6121 False_Result := Res = GT;
6122
6123 if Res = GE and then Nkind (Orig_Op) = N_Op_Le then
6124 Replacement_Warning
6125 ("can never be less than, could replace by ""'=""?c?");
6126 end if;
6127
6128 when N_Op_Lt =>
6129 True_Result := Res = LT;
6130 False_Result := Res in Compare_GE;
6131
6132 when N_Op_Ne =>
6133 True_Result := Res = NE or else Res = GT or else Res = LT;
6134 False_Result := Res = EQ;
6135 end case;
6136 end Test_Comparison;
6137
6138 ---------------------------------
6139 -- Test_Expression_Is_Foldable --
6140 ---------------------------------
6141
6142 -- One operand case
6143
6144 procedure Test_Expression_Is_Foldable
6145 (N : Node_Id;
6146 Op1 : Node_Id;
6147 Stat : out Boolean;
6148 Fold : out Boolean)
6149 is
6150 begin
6151 Stat := False;
6152 Fold := False;
6153
6154 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6155 return;
6156 end if;
6157
6158 -- If operand is Any_Type, just propagate to result and do not
6159 -- try to fold, this prevents cascaded errors.
6160
6161 if Etype (Op1) = Any_Type then
6162 Set_Etype (N, Any_Type);
6163 return;
6164
6165 -- If operand raises constraint error, then replace node N with the
6166 -- raise constraint error node, and we are obviously not foldable.
6167 -- Note that this replacement inherits the Is_Static_Expression flag
6168 -- from the operand.
6169
6170 elsif Raises_Constraint_Error (Op1) then
6171 Rewrite_In_Raise_CE (N, Op1);
6172 return;
6173
6174 -- If the operand is not static, then the result is not static, and
6175 -- all we have to do is to check the operand since it is now known
6176 -- to appear in a non-static context.
6177
6178 elsif not Is_Static_Expression (Op1) then
6179 Check_Non_Static_Context (Op1);
6180 Fold := Compile_Time_Known_Value (Op1);
6181 return;
6182
6183 -- An expression of a formal modular type is not foldable because
6184 -- the modulus is unknown.
6185
6186 elsif Is_Modular_Integer_Type (Etype (Op1))
6187 and then Is_Generic_Type (Etype (Op1))
6188 then
6189 Check_Non_Static_Context (Op1);
6190 return;
6191
6192 -- Here we have the case of an operand whose type is OK, which is
6193 -- static, and which does not raise constraint error, we can fold.
6194
6195 else
6196 Set_Is_Static_Expression (N);
6197 Fold := True;
6198 Stat := True;
6199 end if;
6200 end Test_Expression_Is_Foldable;
6201
6202 -- Two operand case
6203
6204 procedure Test_Expression_Is_Foldable
6205 (N : Node_Id;
6206 Op1 : Node_Id;
6207 Op2 : Node_Id;
6208 Stat : out Boolean;
6209 Fold : out Boolean;
6210 CRT_Safe : Boolean := False)
6211 is
6212 Rstat : constant Boolean := Is_Static_Expression (Op1)
6213 and then
6214 Is_Static_Expression (Op2);
6215
6216 begin
6217 Stat := False;
6218 Fold := False;
6219
6220 -- Inhibit folding if -gnatd.f flag set
6221
6222 if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
6223 return;
6224 end if;
6225
6226 -- If either operand is Any_Type, just propagate to result and
6227 -- do not try to fold, this prevents cascaded errors.
6228
6229 if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
6230 Set_Etype (N, Any_Type);
6231 return;
6232
6233 -- If left operand raises constraint error, then replace node N with the
6234 -- Raise_Constraint_Error node, and we are obviously not foldable.
6235 -- Is_Static_Expression is set from the two operands in the normal way,
6236 -- and we check the right operand if it is in a non-static context.
6237
6238 elsif Raises_Constraint_Error (Op1) then
6239 if not Rstat then
6240 Check_Non_Static_Context (Op2);
6241 end if;
6242
6243 Rewrite_In_Raise_CE (N, Op1);
6244 Set_Is_Static_Expression (N, Rstat);
6245 return;
6246
6247 -- Similar processing for the case of the right operand. Note that we
6248 -- don't use this routine for the short-circuit case, so we do not have
6249 -- to worry about that special case here.
6250
6251 elsif Raises_Constraint_Error (Op2) then
6252 if not Rstat then
6253 Check_Non_Static_Context (Op1);
6254 end if;
6255
6256 Rewrite_In_Raise_CE (N, Op2);
6257 Set_Is_Static_Expression (N, Rstat);
6258 return;
6259
6260 -- Exclude expressions of a generic modular type, as above
6261
6262 elsif Is_Modular_Integer_Type (Etype (Op1))
6263 and then Is_Generic_Type (Etype (Op1))
6264 then
6265 Check_Non_Static_Context (Op1);
6266 return;
6267
6268 -- If result is not static, then check non-static contexts on operands
6269 -- since one of them may be static and the other one may not be static.
6270
6271 elsif not Rstat then
6272 Check_Non_Static_Context (Op1);
6273 Check_Non_Static_Context (Op2);
6274
6275 if CRT_Safe then
6276 Fold := CRT_Safe_Compile_Time_Known_Value (Op1)
6277 and then CRT_Safe_Compile_Time_Known_Value (Op2);
6278 else
6279 Fold := Compile_Time_Known_Value (Op1)
6280 and then Compile_Time_Known_Value (Op2);
6281 end if;
6282
6283 return;
6284
6285 -- Else result is static and foldable. Both operands are static, and
6286 -- neither raises constraint error, so we can definitely fold.
6287
6288 else
6289 Set_Is_Static_Expression (N);
6290 Fold := True;
6291 Stat := True;
6292 return;
6293 end if;
6294 end Test_Expression_Is_Foldable;
6295
6296 -------------------
6297 -- Test_In_Range --
6298 -------------------
6299
6300 function Test_In_Range
6301 (N : Node_Id;
6302 Typ : Entity_Id;
6303 Assume_Valid : Boolean;
6304 Fixed_Int : Boolean;
6305 Int_Real : Boolean) return Range_Membership
6306 is
6307 Val : Uint;
6308 Valr : Ureal;
6309
6310 pragma Warnings (Off, Assume_Valid);
6311 -- For now Assume_Valid is unreferenced since the current implementation
6312 -- always returns Unknown if N is not a compile time known value, but we
6313 -- keep the parameter to allow for future enhancements in which we try
6314 -- to get the information in the variable case as well.
6315
6316 begin
6317 -- If an error was posted on expression, then return Unknown, we do not
6318 -- want cascaded errors based on some false analysis of a junk node.
6319
6320 if Error_Posted (N) then
6321 return Unknown;
6322
6323 -- Expression that raises constraint error is an odd case. We certainly
6324 -- do not want to consider it to be in range. It might make sense to
6325 -- consider it always out of range, but this causes incorrect error
6326 -- messages about static expressions out of range. So we just return
6327 -- Unknown, which is always safe.
6328
6329 elsif Raises_Constraint_Error (N) then
6330 return Unknown;
6331
6332 -- Universal types have no range limits, so always in range
6333
6334 elsif Typ = Universal_Integer or else Typ = Universal_Real then
6335 return In_Range;
6336
6337 -- Never known if not scalar type. Don't know if this can actually
6338 -- happen, but our spec allows it, so we must check.
6339
6340 elsif not Is_Scalar_Type (Typ) then
6341 return Unknown;
6342
6343 -- Never known if this is a generic type, since the bounds of generic
6344 -- types are junk. Note that if we only checked for static expressions
6345 -- (instead of compile time known values) below, we would not need this
6346 -- check, because values of a generic type can never be static, but they
6347 -- can be known at compile time.
6348
6349 elsif Is_Generic_Type (Typ) then
6350 return Unknown;
6351
6352 -- Case of a known compile time value, where we can check if it is in
6353 -- the bounds of the given type.
6354
6355 elsif Compile_Time_Known_Value (N) then
6356 declare
6357 Lo : Node_Id;
6358 Hi : Node_Id;
6359
6360 LB_Known : Boolean;
6361 HB_Known : Boolean;
6362
6363 begin
6364 Lo := Type_Low_Bound (Typ);
6365 Hi := Type_High_Bound (Typ);
6366
6367 LB_Known := Compile_Time_Known_Value (Lo);
6368 HB_Known := Compile_Time_Known_Value (Hi);
6369
6370 -- Fixed point types should be considered as such only if flag
6371 -- Fixed_Int is set to False.
6372
6373 if Is_Floating_Point_Type (Typ)
6374 or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
6375 or else Int_Real
6376 then
6377 Valr := Expr_Value_R (N);
6378
6379 if LB_Known and HB_Known then
6380 if Valr >= Expr_Value_R (Lo)
6381 and then
6382 Valr <= Expr_Value_R (Hi)
6383 then
6384 return In_Range;
6385 else
6386 return Out_Of_Range;
6387 end if;
6388
6389 elsif (LB_Known and then Valr < Expr_Value_R (Lo))
6390 or else
6391 (HB_Known and then Valr > Expr_Value_R (Hi))
6392 then
6393 return Out_Of_Range;
6394
6395 else
6396 return Unknown;
6397 end if;
6398
6399 else
6400 Val := Expr_Value (N);
6401
6402 if LB_Known and HB_Known then
6403 if Val >= Expr_Value (Lo) and then Val <= Expr_Value (Hi)
6404 then
6405 return In_Range;
6406 else
6407 return Out_Of_Range;
6408 end if;
6409
6410 elsif (LB_Known and then Val < Expr_Value (Lo))
6411 or else
6412 (HB_Known and then Val > Expr_Value (Hi))
6413 then
6414 return Out_Of_Range;
6415
6416 else
6417 return Unknown;
6418 end if;
6419 end if;
6420 end;
6421
6422 -- Here for value not known at compile time. Case of expression subtype
6423 -- is Typ or is a subtype of Typ, and we can assume expression is valid.
6424 -- In this case we know it is in range without knowing its value.
6425
6426 elsif Assume_Valid
6427 and then (Etype (N) = Typ or else Is_Subtype_Of (Etype (N), Typ))
6428 then
6429 return In_Range;
6430
6431 -- Another special case. For signed integer types, if the target type
6432 -- has Is_Known_Valid set, and the source type does not have a larger
6433 -- size, then the source value must be in range. We exclude biased
6434 -- types, because they bizarrely can generate out of range values.
6435
6436 elsif Is_Signed_Integer_Type (Etype (N))
6437 and then Is_Known_Valid (Typ)
6438 and then Esize (Etype (N)) <= Esize (Typ)
6439 and then not Has_Biased_Representation (Etype (N))
6440 then
6441 return In_Range;
6442
6443 -- For all other cases, result is unknown
6444
6445 else
6446 return Unknown;
6447 end if;
6448 end Test_In_Range;
6449
6450 --------------
6451 -- To_Bits --
6452 --------------
6453
6454 procedure To_Bits (U : Uint; B : out Bits) is
6455 begin
6456 for J in 0 .. B'Last loop
6457 B (J) := (U / (2 ** J)) mod 2 /= 0;
6458 end loop;
6459 end To_Bits;
6460
6461 --------------------
6462 -- Why_Not_Static --
6463 --------------------
6464
6465 procedure Why_Not_Static (Expr : Node_Id) is
6466 N : constant Node_Id := Original_Node (Expr);
6467 Typ : Entity_Id := Empty;
6468 E : Entity_Id;
6469 Alt : Node_Id;
6470 Exp : Node_Id;
6471
6472 procedure Why_Not_Static_List (L : List_Id);
6473 -- A version that can be called on a list of expressions. Finds all
6474 -- non-static violations in any element of the list.
6475
6476 -------------------------
6477 -- Why_Not_Static_List --
6478 -------------------------
6479
6480 procedure Why_Not_Static_List (L : List_Id) is
6481 N : Node_Id;
6482 begin
6483 if Is_Non_Empty_List (L) then
6484 N := First (L);
6485 while Present (N) loop
6486 Why_Not_Static (N);
6487 Next (N);
6488 end loop;
6489 end if;
6490 end Why_Not_Static_List;
6491
6492 -- Start of processing for Why_Not_Static
6493
6494 begin
6495 -- Ignore call on error or empty node
6496
6497 if No (Expr) or else Nkind (Expr) = N_Error then
6498 return;
6499 end if;
6500
6501 -- Preprocessing for sub expressions
6502
6503 if Nkind (Expr) in N_Subexpr then
6504
6505 -- Nothing to do if expression is static
6506
6507 if Is_OK_Static_Expression (Expr) then
6508 return;
6509 end if;
6510
6511 -- Test for constraint error raised
6512
6513 if Raises_Constraint_Error (Expr) then
6514
6515 -- Special case membership to find out which piece to flag
6516
6517 if Nkind (N) in N_Membership_Test then
6518 if Raises_Constraint_Error (Left_Opnd (N)) then
6519 Why_Not_Static (Left_Opnd (N));
6520 return;
6521
6522 elsif Present (Right_Opnd (N))
6523 and then Raises_Constraint_Error (Right_Opnd (N))
6524 then
6525 Why_Not_Static (Right_Opnd (N));
6526 return;
6527
6528 else
6529 pragma Assert (Present (Alternatives (N)));
6530
6531 Alt := First (Alternatives (N));
6532 while Present (Alt) loop
6533 if Raises_Constraint_Error (Alt) then
6534 Why_Not_Static (Alt);
6535 return;
6536 else
6537 Next (Alt);
6538 end if;
6539 end loop;
6540 end if;
6541
6542 -- Special case a range to find out which bound to flag
6543
6544 elsif Nkind (N) = N_Range then
6545 if Raises_Constraint_Error (Low_Bound (N)) then
6546 Why_Not_Static (Low_Bound (N));
6547 return;
6548
6549 elsif Raises_Constraint_Error (High_Bound (N)) then
6550 Why_Not_Static (High_Bound (N));
6551 return;
6552 end if;
6553
6554 -- Special case attribute to see which part to flag
6555
6556 elsif Nkind (N) = N_Attribute_Reference then
6557 if Raises_Constraint_Error (Prefix (N)) then
6558 Why_Not_Static (Prefix (N));
6559 return;
6560 end if;
6561
6562 if Present (Expressions (N)) then
6563 Exp := First (Expressions (N));
6564 while Present (Exp) loop
6565 if Raises_Constraint_Error (Exp) then
6566 Why_Not_Static (Exp);
6567 return;
6568 end if;
6569
6570 Next (Exp);
6571 end loop;
6572 end if;
6573
6574 -- Special case a subtype name
6575
6576 elsif Is_Entity_Name (Expr) and then Is_Type (Entity (Expr)) then
6577 Error_Msg_NE
6578 ("!& is not a static subtype (RM 4.9(26))", N, Entity (Expr));
6579 return;
6580 end if;
6581
6582 -- End of special cases
6583
6584 Error_Msg_N
6585 ("!expression raises exception, cannot be static (RM 4.9(34))",
6586 N);
6587 return;
6588 end if;
6589
6590 -- If no type, then something is pretty wrong, so ignore
6591
6592 Typ := Etype (Expr);
6593
6594 if No (Typ) then
6595 return;
6596 end if;
6597
6598 -- Type must be scalar or string type (but allow Bignum, since this
6599 -- is really a scalar type from our point of view in this diagnosis).
6600
6601 if not Is_Scalar_Type (Typ)
6602 and then not Is_String_Type (Typ)
6603 and then not Is_RTE (Typ, RE_Bignum)
6604 then
6605 Error_Msg_N
6606 ("!static expression must have scalar or string type " &
6607 "(RM 4.9(2))", N);
6608 return;
6609 end if;
6610 end if;
6611
6612 -- If we got through those checks, test particular node kind
6613
6614 case Nkind (N) is
6615
6616 -- Entity name
6617
6618 when N_Expanded_Name
6619 | N_Identifier
6620 | N_Operator_Symbol
6621 =>
6622 E := Entity (N);
6623
6624 if Is_Named_Number (E) then
6625 null;
6626
6627 elsif Ekind (E) = E_Constant then
6628
6629 -- One case we can give a metter message is when we have a
6630 -- string literal created by concatenating an aggregate with
6631 -- an others expression.
6632
6633 Entity_Case : declare
6634 CV : constant Node_Id := Constant_Value (E);
6635 CO : constant Node_Id := Original_Node (CV);
6636
6637 function Is_Aggregate (N : Node_Id) return Boolean;
6638 -- See if node N came from an others aggregate, if so
6639 -- return True and set Error_Msg_Sloc to aggregate.
6640
6641 ------------------
6642 -- Is_Aggregate --
6643 ------------------
6644
6645 function Is_Aggregate (N : Node_Id) return Boolean is
6646 begin
6647 if Nkind (Original_Node (N)) = N_Aggregate then
6648 Error_Msg_Sloc := Sloc (Original_Node (N));
6649 return True;
6650
6651 elsif Is_Entity_Name (N)
6652 and then Ekind (Entity (N)) = E_Constant
6653 and then
6654 Nkind (Original_Node (Constant_Value (Entity (N)))) =
6655 N_Aggregate
6656 then
6657 Error_Msg_Sloc :=
6658 Sloc (Original_Node (Constant_Value (Entity (N))));
6659 return True;
6660
6661 else
6662 return False;
6663 end if;
6664 end Is_Aggregate;
6665
6666 -- Start of processing for Entity_Case
6667
6668 begin
6669 if Is_Aggregate (CV)
6670 or else (Nkind (CO) = N_Op_Concat
6671 and then (Is_Aggregate (Left_Opnd (CO))
6672 or else
6673 Is_Aggregate (Right_Opnd (CO))))
6674 then
6675 Error_Msg_N ("!aggregate (#) is never static", N);
6676
6677 elsif No (CV) or else not Is_Static_Expression (CV) then
6678 Error_Msg_NE
6679 ("!& is not a static constant (RM 4.9(5))", N, E);
6680 end if;
6681 end Entity_Case;
6682
6683 elsif Is_Type (E) then
6684 Error_Msg_NE
6685 ("!& is not a static subtype (RM 4.9(26))", N, E);
6686
6687 else
6688 Error_Msg_NE
6689 ("!& is not static constant or named number "
6690 & "(RM 4.9(5))", N, E);
6691 end if;
6692
6693 -- Binary operator
6694
6695 when N_Binary_Op
6696 | N_Membership_Test
6697 | N_Short_Circuit
6698 =>
6699 if Nkind (N) in N_Op_Shift then
6700 Error_Msg_N
6701 ("!shift functions are never static (RM 4.9(6,18))", N);
6702 else
6703 Why_Not_Static (Left_Opnd (N));
6704 Why_Not_Static (Right_Opnd (N));
6705 end if;
6706
6707 -- Unary operator
6708
6709 when N_Unary_Op =>
6710 Why_Not_Static (Right_Opnd (N));
6711
6712 -- Attribute reference
6713
6714 when N_Attribute_Reference =>
6715 Why_Not_Static_List (Expressions (N));
6716
6717 E := Etype (Prefix (N));
6718
6719 if E = Standard_Void_Type then
6720 return;
6721 end if;
6722
6723 -- Special case non-scalar'Size since this is a common error
6724
6725 if Attribute_Name (N) = Name_Size then
6726 Error_Msg_N
6727 ("!size attribute is only static for static scalar type "
6728 & "(RM 4.9(7,8))", N);
6729
6730 -- Flag array cases
6731
6732 elsif Is_Array_Type (E) then
6733 if not Nam_In (Attribute_Name (N), Name_First,
6734 Name_Last,
6735 Name_Length)
6736 then
6737 Error_Msg_N
6738 ("!static array attribute must be Length, First, or Last "
6739 & "(RM 4.9(8))", N);
6740
6741 -- Since we know the expression is not-static (we already
6742 -- tested for this, must mean array is not static).
6743
6744 else
6745 Error_Msg_N
6746 ("!prefix is non-static array (RM 4.9(8))", Prefix (N));
6747 end if;
6748
6749 return;
6750
6751 -- Special case generic types, since again this is a common source
6752 -- of confusion.
6753
6754 elsif Is_Generic_Actual_Type (E) or else Is_Generic_Type (E) then
6755 Error_Msg_N
6756 ("!attribute of generic type is never static "
6757 & "(RM 4.9(7,8))", N);
6758
6759 elsif Is_OK_Static_Subtype (E) then
6760 null;
6761
6762 elsif Is_Scalar_Type (E) then
6763 Error_Msg_N
6764 ("!prefix type for attribute is not static scalar subtype "
6765 & "(RM 4.9(7))", N);
6766
6767 else
6768 Error_Msg_N
6769 ("!static attribute must apply to array/scalar type "
6770 & "(RM 4.9(7,8))", N);
6771 end if;
6772
6773 -- String literal
6774
6775 when N_String_Literal =>
6776 Error_Msg_N
6777 ("!subtype of string literal is non-static (RM 4.9(4))", N);
6778
6779 -- Explicit dereference
6780
6781 when N_Explicit_Dereference =>
6782 Error_Msg_N
6783 ("!explicit dereference is never static (RM 4.9)", N);
6784
6785 -- Function call
6786
6787 when N_Function_Call =>
6788 Why_Not_Static_List (Parameter_Associations (N));
6789
6790 -- Complain about non-static function call unless we have Bignum
6791 -- which means that the underlying expression is really some
6792 -- scalar arithmetic operation.
6793
6794 if not Is_RTE (Typ, RE_Bignum) then
6795 Error_Msg_N ("!non-static function call (RM 4.9(6,18))", N);
6796 end if;
6797
6798 -- Parameter assocation (test actual parameter)
6799
6800 when N_Parameter_Association =>
6801 Why_Not_Static (Explicit_Actual_Parameter (N));
6802
6803 -- Indexed component
6804
6805 when N_Indexed_Component =>
6806 Error_Msg_N ("!indexed component is never static (RM 4.9)", N);
6807
6808 -- Procedure call
6809
6810 when N_Procedure_Call_Statement =>
6811 Error_Msg_N ("!procedure call is never static (RM 4.9)", N);
6812
6813 -- Qualified expression (test expression)
6814
6815 when N_Qualified_Expression =>
6816 Why_Not_Static (Expression (N));
6817
6818 -- Aggregate
6819
6820 when N_Aggregate
6821 | N_Extension_Aggregate
6822 =>
6823 Error_Msg_N ("!an aggregate is never static (RM 4.9)", N);
6824
6825 -- Range
6826
6827 when N_Range =>
6828 Why_Not_Static (Low_Bound (N));
6829 Why_Not_Static (High_Bound (N));
6830
6831 -- Range constraint, test range expression
6832
6833 when N_Range_Constraint =>
6834 Why_Not_Static (Range_Expression (N));
6835
6836 -- Subtype indication, test constraint
6837
6838 when N_Subtype_Indication =>
6839 Why_Not_Static (Constraint (N));
6840
6841 -- Selected component
6842
6843 when N_Selected_Component =>
6844 Error_Msg_N ("!selected component is never static (RM 4.9)", N);
6845
6846 -- Slice
6847
6848 when N_Slice =>
6849 Error_Msg_N ("!slice is never static (RM 4.9)", N);
6850
6851 when N_Type_Conversion =>
6852 Why_Not_Static (Expression (N));
6853
6854 if not Is_Scalar_Type (Entity (Subtype_Mark (N)))
6855 or else not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
6856 then
6857 Error_Msg_N
6858 ("!static conversion requires static scalar subtype result "
6859 & "(RM 4.9(9))", N);
6860 end if;
6861
6862 -- Unchecked type conversion
6863
6864 when N_Unchecked_Type_Conversion =>
6865 Error_Msg_N
6866 ("!unchecked type conversion is never static (RM 4.9)", N);
6867
6868 -- All other cases, no reason to give
6869
6870 when others =>
6871 null;
6872 end case;
6873 end Why_Not_Static;
6874
6875 end Sem_Eval;
This page took 0.345509 seconds and 5 git commands to generate.