]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_disp.adb
exp_ch11.adb (Expand_N_Handled_Sequence_Of_Statements): Do not add cleanup actions...
[gcc.git] / gcc / ada / sem_disp.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I S P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Elists; use Elists;
29 with Einfo; use Einfo;
30 with Exp_Disp; use Exp_Disp;
31 with Exp_Util; use Exp_Util;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Tss; use Exp_Tss;
34 with Errout; use Errout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Type; use Sem_Type;
49 with Sem_Util; use Sem_Util;
50 with Snames; use Snames;
51 with Sinfo; use Sinfo;
52 with Targparm; use Targparm;
53 with Tbuild; use Tbuild;
54 with Uintp; use Uintp;
55
56 package body Sem_Disp is
57
58 -----------------------
59 -- Local Subprograms --
60 -----------------------
61
62 procedure Add_Dispatching_Operation
63 (Tagged_Type : Entity_Id;
64 New_Op : Entity_Id);
65 -- Add New_Op in the list of primitive operations of Tagged_Type
66
67 function Check_Controlling_Type
68 (T : Entity_Id;
69 Subp : Entity_Id) return Entity_Id;
70 -- T is the tagged type of a formal parameter or the result of Subp.
71 -- If the subprogram has a controlling parameter or result that matches
72 -- the type, then returns the tagged type of that parameter or result
73 -- (returning the designated tagged type in the case of an access
74 -- parameter); otherwise returns empty.
75
76 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
77 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
78 -- type of S that has the same name of S, a type-conformant profile, an
79 -- original corresponding operation O that is a primitive of a visible
80 -- ancestor of the dispatching type of S and O is visible at the point of
81 -- of declaration of S. If the entity is found the Alias of S is set to the
82 -- original corresponding operation S and its Overridden_Operation is set
83 -- to the found entity; otherwise return Empty.
84 --
85 -- This routine does not search for non-hidden primitives since they are
86 -- covered by the normal Ada 2005 rules.
87
88 -------------------------------
89 -- Add_Dispatching_Operation --
90 -------------------------------
91
92 procedure Add_Dispatching_Operation
93 (Tagged_Type : Entity_Id;
94 New_Op : Entity_Id)
95 is
96 List : constant Elist_Id := Primitive_Operations (Tagged_Type);
97
98 begin
99 -- The dispatching operation may already be on the list, if it is the
100 -- wrapper for an inherited function of a null extension (see Exp_Ch3
101 -- for the construction of function wrappers). The list of primitive
102 -- operations must not contain duplicates.
103
104 Append_Unique_Elmt (New_Op, List);
105 end Add_Dispatching_Operation;
106
107 ---------------------------
108 -- Covers_Some_Interface --
109 ---------------------------
110
111 function Covers_Some_Interface (Prim : Entity_Id) return Boolean is
112 Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
113 Elmt : Elmt_Id;
114 E : Entity_Id;
115
116 begin
117 pragma Assert (Is_Dispatching_Operation (Prim));
118
119 -- Although this is a dispatching primitive we must check if its
120 -- dispatching type is available because it may be the primitive
121 -- of a private type not defined as tagged in its partial view.
122
123 if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
124
125 -- If the tagged type is frozen then the internal entities associated
126 -- with interfaces are available in the list of primitives of the
127 -- tagged type and can be used to speed up this search.
128
129 if Is_Frozen (Tagged_Type) then
130 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
131 while Present (Elmt) loop
132 E := Node (Elmt);
133
134 if Present (Interface_Alias (E))
135 and then Alias (E) = Prim
136 then
137 return True;
138 end if;
139
140 Next_Elmt (Elmt);
141 end loop;
142
143 -- Otherwise we must collect all the interface primitives and check
144 -- if the Prim will override some interface primitive.
145
146 else
147 declare
148 Ifaces_List : Elist_Id;
149 Iface_Elmt : Elmt_Id;
150 Iface : Entity_Id;
151 Iface_Prim : Entity_Id;
152
153 begin
154 Collect_Interfaces (Tagged_Type, Ifaces_List);
155 Iface_Elmt := First_Elmt (Ifaces_List);
156 while Present (Iface_Elmt) loop
157 Iface := Node (Iface_Elmt);
158
159 Elmt := First_Elmt (Primitive_Operations (Iface));
160 while Present (Elmt) loop
161 Iface_Prim := Node (Elmt);
162
163 if Chars (Iface) = Chars (Prim)
164 and then Is_Interface_Conformant
165 (Tagged_Type, Iface_Prim, Prim)
166 then
167 return True;
168 end if;
169
170 Next_Elmt (Elmt);
171 end loop;
172
173 Next_Elmt (Iface_Elmt);
174 end loop;
175 end;
176 end if;
177 end if;
178
179 return False;
180 end Covers_Some_Interface;
181
182 -------------------------------
183 -- Check_Controlling_Formals --
184 -------------------------------
185
186 procedure Check_Controlling_Formals
187 (Typ : Entity_Id;
188 Subp : Entity_Id)
189 is
190 Formal : Entity_Id;
191 Ctrl_Type : Entity_Id;
192
193 begin
194 Formal := First_Formal (Subp);
195 while Present (Formal) loop
196 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
197
198 if Present (Ctrl_Type) then
199
200 -- When controlling type is concurrent and declared within a
201 -- generic or inside an instance use corresponding record type.
202
203 if Is_Concurrent_Type (Ctrl_Type)
204 and then Present (Corresponding_Record_Type (Ctrl_Type))
205 then
206 Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
207 end if;
208
209 if Ctrl_Type = Typ then
210 Set_Is_Controlling_Formal (Formal);
211
212 -- Ada 2005 (AI-231): Anonymous access types that are used in
213 -- controlling parameters exclude null because it is necessary
214 -- to read the tag to dispatch, and null has no tag.
215
216 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
217 Set_Can_Never_Be_Null (Etype (Formal));
218 Set_Is_Known_Non_Null (Etype (Formal));
219 end if;
220
221 -- Check that the parameter's nominal subtype statically
222 -- matches the first subtype.
223
224 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
225 if not Subtypes_Statically_Match
226 (Typ, Designated_Type (Etype (Formal)))
227 then
228 Error_Msg_N
229 ("parameter subtype does not match controlling type",
230 Formal);
231 end if;
232
233 elsif not Subtypes_Statically_Match (Typ, Etype (Formal)) then
234 Error_Msg_N
235 ("parameter subtype does not match controlling type",
236 Formal);
237 end if;
238
239 if Present (Default_Value (Formal)) then
240
241 -- In Ada 2005, access parameters can have defaults
242
243 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
244 and then Ada_Version < Ada_2005
245 then
246 Error_Msg_N
247 ("default not allowed for controlling access parameter",
248 Default_Value (Formal));
249
250 elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
251 Error_Msg_N
252 ("default expression must be a tag indeterminate" &
253 " function call", Default_Value (Formal));
254 end if;
255 end if;
256
257 elsif Comes_From_Source (Subp) then
258 Error_Msg_N
259 ("operation can be dispatching in only one type", Subp);
260 end if;
261 end if;
262
263 Next_Formal (Formal);
264 end loop;
265
266 if Ekind_In (Subp, E_Function, E_Generic_Function) then
267 Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
268
269 if Present (Ctrl_Type) then
270 if Ctrl_Type = Typ then
271 Set_Has_Controlling_Result (Subp);
272
273 -- Check that result subtype statically matches first subtype
274 -- (Ada 2005): Subp may have a controlling access result.
275
276 if Subtypes_Statically_Match (Typ, Etype (Subp))
277 or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
278 and then
279 Subtypes_Statically_Match
280 (Typ, Designated_Type (Etype (Subp))))
281 then
282 null;
283
284 else
285 Error_Msg_N
286 ("result subtype does not match controlling type", Subp);
287 end if;
288
289 elsif Comes_From_Source (Subp) then
290 Error_Msg_N
291 ("operation can be dispatching in only one type", Subp);
292 end if;
293 end if;
294 end if;
295 end Check_Controlling_Formals;
296
297 ----------------------------
298 -- Check_Controlling_Type --
299 ----------------------------
300
301 function Check_Controlling_Type
302 (T : Entity_Id;
303 Subp : Entity_Id) return Entity_Id
304 is
305 Tagged_Type : Entity_Id := Empty;
306
307 begin
308 if Is_Tagged_Type (T) then
309 if Is_First_Subtype (T) then
310 Tagged_Type := T;
311 else
312 Tagged_Type := Base_Type (T);
313 end if;
314
315 elsif Ekind (T) = E_Anonymous_Access_Type
316 and then Is_Tagged_Type (Designated_Type (T))
317 then
318 if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
319 if Is_First_Subtype (Designated_Type (T)) then
320 Tagged_Type := Designated_Type (T);
321 else
322 Tagged_Type := Base_Type (Designated_Type (T));
323 end if;
324
325 -- Ada 2005: an incomplete type can be tagged. An operation with an
326 -- access parameter of the type is dispatching.
327
328 elsif Scope (Designated_Type (T)) = Current_Scope then
329 Tagged_Type := Designated_Type (T);
330
331 -- Ada 2005 (AI-50217)
332
333 elsif From_With_Type (Designated_Type (T))
334 and then Present (Non_Limited_View (Designated_Type (T)))
335 and then Scope (Designated_Type (T)) = Scope (Subp)
336 then
337 if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
338 Tagged_Type := Non_Limited_View (Designated_Type (T));
339 else
340 Tagged_Type := Base_Type (Non_Limited_View
341 (Designated_Type (T)));
342 end if;
343 end if;
344 end if;
345
346 if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
347 return Empty;
348
349 -- The dispatching type and the primitive operation must be defined in
350 -- the same scope, except in the case of internal operations and formal
351 -- abstract subprograms.
352
353 elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
354 and then (not Is_Generic_Type (Tagged_Type)
355 or else not Comes_From_Source (Subp)))
356 or else
357 (Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
358 or else
359 (Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
360 and then
361 Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
362 and then
363 Is_Abstract_Subprogram (Subp))
364 then
365 return Tagged_Type;
366
367 else
368 return Empty;
369 end if;
370 end Check_Controlling_Type;
371
372 ----------------------------
373 -- Check_Dispatching_Call --
374 ----------------------------
375
376 procedure Check_Dispatching_Call (N : Node_Id) is
377 Loc : constant Source_Ptr := Sloc (N);
378 Actual : Node_Id;
379 Formal : Entity_Id;
380 Control : Node_Id := Empty;
381 Func : Entity_Id;
382 Subp_Entity : Entity_Id;
383 Indeterm_Ancestor_Call : Boolean := False;
384 Indeterm_Ctrl_Type : Entity_Id;
385
386 Static_Tag : Node_Id := Empty;
387 -- If a controlling formal has a statically tagged actual, the tag of
388 -- this actual is to be used for any tag-indeterminate actual.
389
390 procedure Check_Direct_Call;
391 -- In the case when the controlling actual is a class-wide type whose
392 -- root type's completion is a task or protected type, the call is in
393 -- fact direct. This routine detects the above case and modifies the
394 -- call accordingly.
395
396 procedure Check_Dispatching_Context;
397 -- If the call is tag-indeterminate and the entity being called is
398 -- abstract, verify that the context is a call that will eventually
399 -- provide a tag for dispatching, or has provided one already.
400
401 -----------------------
402 -- Check_Direct_Call --
403 -----------------------
404
405 procedure Check_Direct_Call is
406 Typ : Entity_Id := Etype (Control);
407
408 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
409 -- Determine whether an entity denotes a user-defined equality
410
411 ------------------------------
412 -- Is_User_Defined_Equality --
413 ------------------------------
414
415 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
416 begin
417 return
418 Ekind (Id) = E_Function
419 and then Chars (Id) = Name_Op_Eq
420 and then Comes_From_Source (Id)
421
422 -- Internally generated equalities have a full type declaration
423 -- as their parent.
424
425 and then Nkind (Parent (Id)) = N_Function_Specification;
426 end Is_User_Defined_Equality;
427
428 -- Start of processing for Check_Direct_Call
429
430 begin
431 -- Predefined primitives do not receive wrappers since they are built
432 -- from scratch for the corresponding record of synchronized types.
433 -- Equality is in general predefined, but is excluded from the check
434 -- when it is user-defined.
435
436 if Is_Predefined_Dispatching_Operation (Subp_Entity)
437 and then not Is_User_Defined_Equality (Subp_Entity)
438 then
439 return;
440 end if;
441
442 if Is_Class_Wide_Type (Typ) then
443 Typ := Root_Type (Typ);
444 end if;
445
446 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
447 Typ := Full_View (Typ);
448 end if;
449
450 if Is_Concurrent_Type (Typ)
451 and then
452 Present (Corresponding_Record_Type (Typ))
453 then
454 Typ := Corresponding_Record_Type (Typ);
455
456 -- The concurrent record's list of primitives should contain a
457 -- wrapper for the entity of the call, retrieve it.
458
459 declare
460 Prim : Entity_Id;
461 Prim_Elmt : Elmt_Id;
462 Wrapper_Found : Boolean := False;
463
464 begin
465 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
466 while Present (Prim_Elmt) loop
467 Prim := Node (Prim_Elmt);
468
469 if Is_Primitive_Wrapper (Prim)
470 and then Wrapped_Entity (Prim) = Subp_Entity
471 then
472 Wrapper_Found := True;
473 exit;
474 end if;
475
476 Next_Elmt (Prim_Elmt);
477 end loop;
478
479 -- A primitive declared between two views should have a
480 -- corresponding wrapper.
481
482 pragma Assert (Wrapper_Found);
483
484 -- Modify the call by setting the proper entity
485
486 Set_Entity (Name (N), Prim);
487 end;
488 end if;
489 end Check_Direct_Call;
490
491 -------------------------------
492 -- Check_Dispatching_Context --
493 -------------------------------
494
495 procedure Check_Dispatching_Context is
496 Subp : constant Entity_Id := Entity (Name (N));
497 Typ : constant Entity_Id := Etype (Subp);
498 Par : Node_Id;
499
500 procedure Abstract_Context_Error;
501 -- Error for abstract call dispatching on result is not dispatching
502
503 ----------------------------
504 -- Abstract_Context_Error --
505 ----------------------------
506
507 procedure Abstract_Context_Error is
508 begin
509 if Ekind (Subp) = E_Function then
510 Error_Msg_N
511 ("call to abstract function must be dispatching", N);
512
513 -- This error can occur for a procedure in the case of a call to
514 -- an abstract formal procedure with a statically tagged operand.
515
516 else
517 Error_Msg_N
518 ("call to abstract procedure must be dispatching",
519 N);
520 end if;
521 end Abstract_Context_Error;
522
523 -- Start of processing for Check_Dispatching_Context
524
525 begin
526 if Is_Abstract_Subprogram (Subp)
527 and then No (Controlling_Argument (N))
528 then
529 if Present (Alias (Subp))
530 and then not Is_Abstract_Subprogram (Alias (Subp))
531 and then No (DTC_Entity (Subp))
532 then
533 -- Private overriding of inherited abstract operation, call is
534 -- legal.
535
536 Set_Entity (Name (N), Alias (Subp));
537 return;
538
539 else
540 -- We need to determine whether the context of the call
541 -- provides a tag to make the call dispatching. This requires
542 -- the call to be the actual in an enclosing call, and that
543 -- actual must be controlling. If the call is an operand of
544 -- equality, the other operand must not ve abstract.
545
546 if not Is_Tagged_Type (Typ)
547 and then not
548 (Ekind (Typ) = E_Anonymous_Access_Type
549 and then Is_Tagged_Type (Designated_Type (Typ)))
550 then
551 Abstract_Context_Error;
552 return;
553 end if;
554
555 Par := Parent (N);
556
557 if Nkind (Par) = N_Parameter_Association then
558 Par := Parent (Par);
559 end if;
560
561 while Present (Par) loop
562 if Nkind_In (Par, N_Function_Call,
563 N_Procedure_Call_Statement)
564 and then Is_Entity_Name (Name (Par))
565 then
566 declare
567 A : Node_Id;
568 F : Entity_Id;
569
570 begin
571 -- Find formal for which call is the actual.
572
573 F := First_Formal (Entity (Name (Par)));
574 A := First_Actual (Par);
575 while Present (F) loop
576 if Is_Controlling_Formal (F)
577 and then (N = A or else Parent (N) = A)
578 then
579 return;
580 end if;
581
582 Next_Formal (F);
583 Next_Actual (A);
584 end loop;
585
586 Error_Msg_N
587 ("call to abstract function must be dispatching", N);
588 return;
589 end;
590
591 -- For equalitiy operators, one of the operands must be
592 -- statically or dynamically tagged.
593
594 elsif Nkind_In (Par, N_Op_Eq, N_Op_Ne) then
595 if N = Right_Opnd (Par)
596 and then Is_Tag_Indeterminate (Left_Opnd (Par))
597 then
598 Abstract_Context_Error;
599
600 elsif N = Left_Opnd (Par)
601 and then Is_Tag_Indeterminate (Right_Opnd (Par))
602 then
603 Abstract_Context_Error;
604 end if;
605
606 return;
607
608 elsif Nkind (Par) = N_Assignment_Statement then
609 return;
610
611 elsif Nkind (Par) = N_Qualified_Expression
612 or else Nkind (Par) = N_Unchecked_Type_Conversion
613 then
614 Par := Parent (Par);
615
616 else
617 Abstract_Context_Error;
618 return;
619 end if;
620 end loop;
621 end if;
622 end if;
623 end Check_Dispatching_Context;
624
625 -- Start of processing for Check_Dispatching_Call
626
627 begin
628 -- Find a controlling argument, if any
629
630 if Present (Parameter_Associations (N)) then
631 Subp_Entity := Entity (Name (N));
632
633 Actual := First_Actual (N);
634 Formal := First_Formal (Subp_Entity);
635 while Present (Actual) loop
636 Control := Find_Controlling_Arg (Actual);
637 exit when Present (Control);
638
639 -- Check for the case where the actual is a tag-indeterminate call
640 -- whose result type is different than the tagged type associated
641 -- with the containing call, but is an ancestor of the type.
642
643 if Is_Controlling_Formal (Formal)
644 and then Is_Tag_Indeterminate (Actual)
645 and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
646 and then Is_Ancestor (Etype (Actual), Etype (Formal))
647 then
648 Indeterm_Ancestor_Call := True;
649 Indeterm_Ctrl_Type := Etype (Formal);
650
651 -- If the formal is controlling but the actual is not, the type
652 -- of the actual is statically known, and may be used as the
653 -- controlling tag for some other tag-indeterminate actual.
654
655 elsif Is_Controlling_Formal (Formal)
656 and then Is_Entity_Name (Actual)
657 and then Is_Tagged_Type (Etype (Actual))
658 then
659 Static_Tag := Actual;
660 end if;
661
662 Next_Actual (Actual);
663 Next_Formal (Formal);
664 end loop;
665
666 -- If the call doesn't have a controlling actual but does have an
667 -- indeterminate actual that requires dispatching treatment, then an
668 -- object is needed that will serve as the controlling argument for
669 -- a dispatching call on the indeterminate actual. This can only
670 -- occur in the unusual situation of a default actual given by
671 -- a tag-indeterminate call and where the type of the call is an
672 -- ancestor of the type associated with a containing call to an
673 -- inherited operation (see AI-239).
674
675 -- Rather than create an object of the tagged type, which would
676 -- be problematic for various reasons (default initialization,
677 -- discriminants), the tag of the containing call's associated
678 -- tagged type is directly used to control the dispatching.
679
680 if No (Control)
681 and then Indeterm_Ancestor_Call
682 and then No (Static_Tag)
683 then
684 Control :=
685 Make_Attribute_Reference (Loc,
686 Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
687 Attribute_Name => Name_Tag);
688
689 Analyze (Control);
690 end if;
691
692 if Present (Control) then
693
694 -- Verify that no controlling arguments are statically tagged
695
696 if Debug_Flag_E then
697 Write_Str ("Found Dispatching call");
698 Write_Int (Int (N));
699 Write_Eol;
700 end if;
701
702 Actual := First_Actual (N);
703 while Present (Actual) loop
704 if Actual /= Control then
705
706 if not Is_Controlling_Actual (Actual) then
707 null; -- Can be anything
708
709 elsif Is_Dynamically_Tagged (Actual) then
710 null; -- Valid parameter
711
712 elsif Is_Tag_Indeterminate (Actual) then
713
714 -- The tag is inherited from the enclosing call (the node
715 -- we are currently analyzing). Explicitly expand the
716 -- actual, since the previous call to Expand (from
717 -- Resolve_Call) had no way of knowing about the
718 -- required dispatching.
719
720 Propagate_Tag (Control, Actual);
721
722 else
723 Error_Msg_N
724 ("controlling argument is not dynamically tagged",
725 Actual);
726 return;
727 end if;
728 end if;
729
730 Next_Actual (Actual);
731 end loop;
732
733 -- Mark call as a dispatching call
734
735 Set_Controlling_Argument (N, Control);
736 Check_Restriction (No_Dispatching_Calls, N);
737
738 -- The dispatching call may need to be converted into a direct
739 -- call in certain cases.
740
741 Check_Direct_Call;
742
743 -- If there is a statically tagged actual and a tag-indeterminate
744 -- call to a function of the ancestor (such as that provided by a
745 -- default), then treat this as a dispatching call and propagate
746 -- the tag to the tag-indeterminate call(s).
747
748 elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
749 Control :=
750 Make_Attribute_Reference (Loc,
751 Prefix =>
752 New_Occurrence_Of (Etype (Static_Tag), Loc),
753 Attribute_Name => Name_Tag);
754
755 Analyze (Control);
756
757 Actual := First_Actual (N);
758 Formal := First_Formal (Subp_Entity);
759 while Present (Actual) loop
760 if Is_Tag_Indeterminate (Actual)
761 and then Is_Controlling_Formal (Formal)
762 then
763 Propagate_Tag (Control, Actual);
764 end if;
765
766 Next_Actual (Actual);
767 Next_Formal (Formal);
768 end loop;
769
770 Check_Dispatching_Context;
771
772 else
773 -- The call is not dispatching, so check that there aren't any
774 -- tag-indeterminate abstract calls left.
775
776 Actual := First_Actual (N);
777 while Present (Actual) loop
778 if Is_Tag_Indeterminate (Actual) then
779
780 -- Function call case
781
782 if Nkind (Original_Node (Actual)) = N_Function_Call then
783 Func := Entity (Name (Original_Node (Actual)));
784
785 -- If the actual is an attribute then it can't be abstract
786 -- (the only current case of a tag-indeterminate attribute
787 -- is the stream Input attribute).
788
789 elsif
790 Nkind (Original_Node (Actual)) = N_Attribute_Reference
791 then
792 Func := Empty;
793
794 -- Only other possibility is a qualified expression whose
795 -- constituent expression is itself a call.
796
797 else
798 Func :=
799 Entity (Name
800 (Original_Node
801 (Expression (Original_Node (Actual)))));
802 end if;
803
804 if Present (Func) and then Is_Abstract_Subprogram (Func) then
805 Error_Msg_N
806 ("call to abstract function must be dispatching", N);
807 end if;
808 end if;
809
810 Next_Actual (Actual);
811 end loop;
812
813 Check_Dispatching_Context;
814 end if;
815
816 else
817 -- If dispatching on result, the enclosing call, if any, will
818 -- determine the controlling argument. Otherwise this is the
819 -- primitive operation of the root type.
820
821 Check_Dispatching_Context;
822 end if;
823 end Check_Dispatching_Call;
824
825 ---------------------------------
826 -- Check_Dispatching_Operation --
827 ---------------------------------
828
829 procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
830 Tagged_Type : Entity_Id;
831 Has_Dispatching_Parent : Boolean := False;
832 Body_Is_Last_Primitive : Boolean := False;
833 Ovr_Subp : Entity_Id := Empty;
834
835 begin
836 if not Ekind_In (Subp, E_Procedure, E_Function) then
837 return;
838 end if;
839
840 Set_Is_Dispatching_Operation (Subp, False);
841 Tagged_Type := Find_Dispatching_Type (Subp);
842
843 -- Ada 2005 (AI-345): Use the corresponding record (if available).
844 -- Required because primitives of concurrent types are attached
845 -- to the corresponding record (not to the concurrent type).
846
847 if Ada_Version >= Ada_2005
848 and then Present (Tagged_Type)
849 and then Is_Concurrent_Type (Tagged_Type)
850 and then Present (Corresponding_Record_Type (Tagged_Type))
851 then
852 Tagged_Type := Corresponding_Record_Type (Tagged_Type);
853 end if;
854
855 -- (AI-345): The task body procedure is not a primitive of the tagged
856 -- type
857
858 if Present (Tagged_Type)
859 and then Is_Concurrent_Record_Type (Tagged_Type)
860 and then Present (Corresponding_Concurrent_Type (Tagged_Type))
861 and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
862 and then Subp = Get_Task_Body_Procedure
863 (Corresponding_Concurrent_Type (Tagged_Type))
864 then
865 return;
866 end if;
867
868 -- If Subp is derived from a dispatching operation then it should
869 -- always be treated as dispatching. In this case various checks
870 -- below will be bypassed. Makes sure that late declarations for
871 -- inherited private subprograms are treated as dispatching, even
872 -- if the associated tagged type is already frozen.
873
874 Has_Dispatching_Parent :=
875 Present (Alias (Subp))
876 and then Is_Dispatching_Operation (Alias (Subp));
877
878 if No (Tagged_Type) then
879
880 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
881 -- with an abstract interface type unless the interface acts as a
882 -- parent type in a derivation. If the interface type is a formal
883 -- type then the operation is not primitive and therefore legal.
884
885 declare
886 E : Entity_Id;
887 Typ : Entity_Id;
888
889 begin
890 E := First_Entity (Subp);
891 while Present (E) loop
892
893 -- For an access parameter, check designated type
894
895 if Ekind (Etype (E)) = E_Anonymous_Access_Type then
896 Typ := Designated_Type (Etype (E));
897 else
898 Typ := Etype (E);
899 end if;
900
901 if Comes_From_Source (Subp)
902 and then Is_Interface (Typ)
903 and then not Is_Class_Wide_Type (Typ)
904 and then not Is_Derived_Type (Typ)
905 and then not Is_Generic_Type (Typ)
906 and then not In_Instance
907 then
908 Error_Msg_N ("??declaration of& is too late!", Subp);
909 Error_Msg_NE -- CODEFIX??
910 ("\??spec should appear immediately after declaration "
911 & "of & !", Subp, Typ);
912 exit;
913 end if;
914
915 Next_Entity (E);
916 end loop;
917
918 -- In case of functions check also the result type
919
920 if Ekind (Subp) = E_Function then
921 if Is_Access_Type (Etype (Subp)) then
922 Typ := Designated_Type (Etype (Subp));
923 else
924 Typ := Etype (Subp);
925 end if;
926
927 -- The following should be better commented, especially since
928 -- we just added several new conditions here ???
929
930 if Comes_From_Source (Subp)
931 and then Is_Interface (Typ)
932 and then not Is_Class_Wide_Type (Typ)
933 and then not Is_Derived_Type (Typ)
934 and then not Is_Generic_Type (Typ)
935 and then not In_Instance
936 then
937 Error_Msg_N ("??declaration of& is too late!", Subp);
938 Error_Msg_NE
939 ("\??spec should appear immediately after declaration "
940 & "of & !", Subp, Typ);
941 end if;
942 end if;
943 end;
944
945 return;
946
947 -- The subprograms build internally after the freezing point (such as
948 -- init procs, interface thunks, type support subprograms, and Offset
949 -- to top functions for accessing interface components in variable
950 -- size tagged types) are not primitives.
951
952 elsif Is_Frozen (Tagged_Type)
953 and then not Comes_From_Source (Subp)
954 and then not Has_Dispatching_Parent
955 then
956 -- Complete decoration of internally built subprograms that override
957 -- a dispatching primitive. These entities correspond with the
958 -- following cases:
959
960 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
961 -- to override functions of nonabstract null extensions. These
962 -- primitives were added to the list of primitives of the tagged
963 -- type by Make_Controlling_Function_Wrappers. However, attribute
964 -- Is_Dispatching_Operation must be set to true.
965
966 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
967 -- primitives.
968
969 -- 3. Subprograms associated with stream attributes (built by
970 -- New_Stream_Subprogram)
971
972 if Present (Old_Subp)
973 and then Present (Overridden_Operation (Subp))
974 and then Is_Dispatching_Operation (Old_Subp)
975 then
976 pragma Assert
977 ((Ekind (Subp) = E_Function
978 and then Is_Dispatching_Operation (Old_Subp)
979 and then Is_Null_Extension (Base_Type (Etype (Subp))))
980 or else
981 (Ekind (Subp) = E_Procedure
982 and then Is_Dispatching_Operation (Old_Subp)
983 and then Present (Alias (Old_Subp))
984 and then Is_Null_Interface_Primitive
985 (Ultimate_Alias (Old_Subp)))
986 or else Get_TSS_Name (Subp) = TSS_Stream_Read
987 or else Get_TSS_Name (Subp) = TSS_Stream_Write);
988
989 Check_Controlling_Formals (Tagged_Type, Subp);
990 Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
991 Set_Is_Dispatching_Operation (Subp);
992 end if;
993
994 return;
995
996 -- The operation may be a child unit, whose scope is the defining
997 -- package, but which is not a primitive operation of the type.
998
999 elsif Is_Child_Unit (Subp) then
1000 return;
1001
1002 -- If the subprogram is not defined in a package spec, the only case
1003 -- where it can be a dispatching op is when it overrides an operation
1004 -- before the freezing point of the type.
1005
1006 elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
1007 or else In_Package_Body (Scope (Subp)))
1008 and then not Has_Dispatching_Parent
1009 then
1010 if not Comes_From_Source (Subp)
1011 or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
1012 then
1013 null;
1014
1015 -- If the type is already frozen, the overriding is not allowed
1016 -- except when Old_Subp is not a dispatching operation (which can
1017 -- occur when Old_Subp was inherited by an untagged type). However,
1018 -- a body with no previous spec freezes the type *after* its
1019 -- declaration, and therefore is a legal overriding (unless the type
1020 -- has already been frozen). Only the first such body is legal.
1021
1022 elsif Present (Old_Subp)
1023 and then Is_Dispatching_Operation (Old_Subp)
1024 then
1025 if Comes_From_Source (Subp)
1026 and then
1027 (Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
1028 or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
1029 then
1030 declare
1031 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1032 Decl_Item : Node_Id;
1033
1034 begin
1035 -- ??? The checks here for whether the type has been frozen
1036 -- prior to the new body are not complete. It's not simple
1037 -- to check frozenness at this point since the body has
1038 -- already caused the type to be prematurely frozen in
1039 -- Analyze_Declarations, but we're forced to recheck this
1040 -- here because of the odd rule interpretation that allows
1041 -- the overriding if the type wasn't frozen prior to the
1042 -- body. The freezing action should probably be delayed
1043 -- until after the spec is seen, but that's a tricky
1044 -- change to the delicate freezing code.
1045
1046 -- Look at each declaration following the type up until the
1047 -- new subprogram body. If any of the declarations is a body
1048 -- then the type has been frozen already so the overriding
1049 -- primitive is illegal.
1050
1051 Decl_Item := Next (Parent (Tagged_Type));
1052 while Present (Decl_Item)
1053 and then (Decl_Item /= Subp_Body)
1054 loop
1055 if Comes_From_Source (Decl_Item)
1056 and then (Nkind (Decl_Item) in N_Proper_Body
1057 or else Nkind (Decl_Item) in N_Body_Stub)
1058 then
1059 Error_Msg_N ("overriding of& is too late!", Subp);
1060 Error_Msg_N
1061 ("\spec should appear immediately after the type!",
1062 Subp);
1063 exit;
1064 end if;
1065
1066 Next (Decl_Item);
1067 end loop;
1068
1069 -- If the subprogram doesn't follow in the list of
1070 -- declarations including the type then the type has
1071 -- definitely been frozen already and the body is illegal.
1072
1073 if No (Decl_Item) then
1074 Error_Msg_N ("overriding of& is too late!", Subp);
1075 Error_Msg_N
1076 ("\spec should appear immediately after the type!",
1077 Subp);
1078
1079 elsif Is_Frozen (Subp) then
1080
1081 -- The subprogram body declares a primitive operation.
1082 -- If the subprogram is already frozen, we must update
1083 -- its dispatching information explicitly here. The
1084 -- information is taken from the overridden subprogram.
1085 -- We must also generate a cross-reference entry because
1086 -- references to other primitives were already created
1087 -- when type was frozen.
1088
1089 Body_Is_Last_Primitive := True;
1090
1091 if Present (DTC_Entity (Old_Subp)) then
1092 Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
1093 Set_DT_Position (Subp, DT_Position (Old_Subp));
1094
1095 if not Restriction_Active (No_Dispatching_Calls) then
1096 if Building_Static_DT (Tagged_Type) then
1097
1098 -- If the static dispatch table has not been
1099 -- built then there is nothing else to do now;
1100 -- otherwise we notify that we cannot build the
1101 -- static dispatch table.
1102
1103 if Has_Dispatch_Table (Tagged_Type) then
1104 Error_Msg_N
1105 ("overriding of& is too late for building" &
1106 " static dispatch tables!", Subp);
1107 Error_Msg_N
1108 ("\spec should appear immediately after" &
1109 " the type!", Subp);
1110 end if;
1111
1112 -- No code required to register primitives in VM
1113 -- targets
1114
1115 elsif VM_Target /= No_VM then
1116 null;
1117
1118 else
1119 Insert_Actions_After (Subp_Body,
1120 Register_Primitive (Sloc (Subp_Body),
1121 Prim => Subp));
1122 end if;
1123
1124 -- Indicate that this is an overriding operation,
1125 -- and replace the overridden entry in the list of
1126 -- primitive operations, which is used for xref
1127 -- generation subsequently.
1128
1129 Generate_Reference (Tagged_Type, Subp, 'P', False);
1130 Override_Dispatching_Operation
1131 (Tagged_Type, Old_Subp, Subp);
1132 end if;
1133 end if;
1134 end if;
1135 end;
1136
1137 else
1138 Error_Msg_N ("overriding of& is too late!", Subp);
1139 Error_Msg_N
1140 ("\subprogram spec should appear immediately after the type!",
1141 Subp);
1142 end if;
1143
1144 -- If the type is not frozen yet and we are not in the overriding
1145 -- case it looks suspiciously like an attempt to define a primitive
1146 -- operation, which requires the declaration to be in a package spec
1147 -- (3.2.3(6)). Only report cases where the type and subprogram are
1148 -- in the same declaration list (by checking the enclosing parent
1149 -- declarations), to avoid spurious warnings on subprograms in
1150 -- instance bodies when the type is declared in the instance spec
1151 -- but hasn't been frozen by the instance body.
1152
1153 elsif not Is_Frozen (Tagged_Type)
1154 and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
1155 then
1156 Error_Msg_N
1157 ("??not dispatching (must be defined in a package spec)", Subp);
1158 return;
1159
1160 -- When the type is frozen, it is legitimate to define a new
1161 -- non-primitive operation.
1162
1163 else
1164 return;
1165 end if;
1166
1167 -- Now, we are sure that the scope is a package spec. If the subprogram
1168 -- is declared after the freezing point of the type that's an error
1169
1170 elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
1171 Error_Msg_N ("this primitive operation is declared too late", Subp);
1172 Error_Msg_NE
1173 ("??no primitive operations for& after this line",
1174 Freeze_Node (Tagged_Type),
1175 Tagged_Type);
1176 return;
1177 end if;
1178
1179 Check_Controlling_Formals (Tagged_Type, Subp);
1180
1181 Ovr_Subp := Old_Subp;
1182
1183 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1184 -- overridden by Subp
1185
1186 if No (Ovr_Subp)
1187 and then Ada_Version >= Ada_2012
1188 then
1189 Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
1190 end if;
1191
1192 -- Now it should be a correct primitive operation, put it in the list
1193
1194 if Present (Ovr_Subp) then
1195
1196 -- If the type has interfaces we complete this check after we set
1197 -- attribute Is_Dispatching_Operation.
1198
1199 Check_Subtype_Conformant (Subp, Ovr_Subp);
1200
1201 if (Chars (Subp) = Name_Initialize
1202 or else Chars (Subp) = Name_Adjust
1203 or else Chars (Subp) = Name_Finalize)
1204 and then Is_Controlled (Tagged_Type)
1205 and then not Is_Visibly_Controlled (Tagged_Type)
1206 then
1207 Set_Overridden_Operation (Subp, Empty);
1208
1209 -- If the subprogram specification carries an overriding
1210 -- indicator, no need for the warning: it is either redundant,
1211 -- or else an error will be reported.
1212
1213 if Nkind (Parent (Subp)) = N_Procedure_Specification
1214 and then
1215 (Must_Override (Parent (Subp))
1216 or else Must_Not_Override (Parent (Subp)))
1217 then
1218 null;
1219
1220 -- Here we need the warning
1221
1222 else
1223 Error_Msg_NE
1224 ("operation does not override inherited&??", Subp, Subp);
1225 end if;
1226
1227 else
1228 Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
1229
1230 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1231 -- that covers abstract interface subprograms we must register it
1232 -- in all the secondary dispatch tables associated with abstract
1233 -- interfaces. We do this now only if not building static tables,
1234 -- nor when the expander is inactive (we avoid trying to register
1235 -- primitives in semantics-only mode, since the type may not have
1236 -- an associated dispatch table). Otherwise the patch code is
1237 -- emitted after those tables are built, to prevent access before
1238 -- elaboration in gigi.
1239
1240 if Body_Is_Last_Primitive and then Full_Expander_Active then
1241 declare
1242 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1243 Elmt : Elmt_Id;
1244 Prim : Node_Id;
1245
1246 begin
1247 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
1248 while Present (Elmt) loop
1249 Prim := Node (Elmt);
1250
1251 -- No code required to register primitives in VM targets
1252
1253 if Present (Alias (Prim))
1254 and then Present (Interface_Alias (Prim))
1255 and then Alias (Prim) = Subp
1256 and then not Building_Static_DT (Tagged_Type)
1257 and then VM_Target = No_VM
1258 then
1259 Insert_Actions_After (Subp_Body,
1260 Register_Primitive (Sloc (Subp_Body), Prim => Prim));
1261 end if;
1262
1263 Next_Elmt (Elmt);
1264 end loop;
1265
1266 -- Redisplay the contents of the updated dispatch table
1267
1268 if Debug_Flag_ZZ then
1269 Write_Str ("Late overriding: ");
1270 Write_DT (Tagged_Type);
1271 end if;
1272 end;
1273 end if;
1274 end if;
1275
1276 -- If the tagged type is a concurrent type then we must be compiling
1277 -- with no code generation (we are either compiling a generic unit or
1278 -- compiling under -gnatc mode) because we have previously tested that
1279 -- no serious errors has been reported. In this case we do not add the
1280 -- primitive to the list of primitives of Tagged_Type but we leave the
1281 -- primitive decorated as a dispatching operation to be able to analyze
1282 -- and report errors associated with the Object.Operation notation.
1283
1284 elsif Is_Concurrent_Type (Tagged_Type) then
1285 pragma Assert (not Expander_Active);
1286 null;
1287
1288 -- If no old subprogram, then we add this as a dispatching operation,
1289 -- but we avoid doing this if an error was posted, to prevent annoying
1290 -- cascaded errors.
1291
1292 elsif not Error_Posted (Subp) then
1293 Add_Dispatching_Operation (Tagged_Type, Subp);
1294 end if;
1295
1296 Set_Is_Dispatching_Operation (Subp, True);
1297
1298 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1299 -- subtype conformance against all the interfaces covered by this
1300 -- primitive.
1301
1302 if Present (Ovr_Subp)
1303 and then Has_Interfaces (Tagged_Type)
1304 then
1305 declare
1306 Ifaces_List : Elist_Id;
1307 Iface_Elmt : Elmt_Id;
1308 Iface_Prim_Elmt : Elmt_Id;
1309 Iface_Prim : Entity_Id;
1310 Ret_Typ : Entity_Id;
1311
1312 begin
1313 Collect_Interfaces (Tagged_Type, Ifaces_List);
1314
1315 Iface_Elmt := First_Elmt (Ifaces_List);
1316 while Present (Iface_Elmt) loop
1317 if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
1318 Iface_Prim_Elmt :=
1319 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
1320 while Present (Iface_Prim_Elmt) loop
1321 Iface_Prim := Node (Iface_Prim_Elmt);
1322
1323 if Is_Interface_Conformant
1324 (Tagged_Type, Iface_Prim, Subp)
1325 then
1326 -- Handle procedures, functions whose return type
1327 -- matches, or functions not returning interfaces
1328
1329 if Ekind (Subp) = E_Procedure
1330 or else Etype (Iface_Prim) = Etype (Subp)
1331 or else not Is_Interface (Etype (Iface_Prim))
1332 then
1333 Check_Subtype_Conformant
1334 (New_Id => Subp,
1335 Old_Id => Iface_Prim,
1336 Err_Loc => Subp,
1337 Skip_Controlling_Formals => True);
1338
1339 -- Handle functions returning interfaces
1340
1341 elsif Implements_Interface
1342 (Etype (Subp), Etype (Iface_Prim))
1343 then
1344 -- Temporarily force both entities to return the
1345 -- same type. Required because Subtype_Conformant
1346 -- does not handle this case.
1347
1348 Ret_Typ := Etype (Iface_Prim);
1349 Set_Etype (Iface_Prim, Etype (Subp));
1350
1351 Check_Subtype_Conformant
1352 (New_Id => Subp,
1353 Old_Id => Iface_Prim,
1354 Err_Loc => Subp,
1355 Skip_Controlling_Formals => True);
1356
1357 Set_Etype (Iface_Prim, Ret_Typ);
1358 end if;
1359 end if;
1360
1361 Next_Elmt (Iface_Prim_Elmt);
1362 end loop;
1363 end if;
1364
1365 Next_Elmt (Iface_Elmt);
1366 end loop;
1367 end;
1368 end if;
1369
1370 if not Body_Is_Last_Primitive then
1371 Set_DT_Position (Subp, No_Uint);
1372
1373 elsif Has_Controlled_Component (Tagged_Type)
1374 and then
1375 (Chars (Subp) = Name_Initialize or else
1376 Chars (Subp) = Name_Adjust or else
1377 Chars (Subp) = Name_Finalize or else
1378 Chars (Subp) = Name_Finalize_Address)
1379 then
1380 declare
1381 F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
1382 Decl : Node_Id;
1383 Old_P : Entity_Id;
1384 Old_Bod : Node_Id;
1385 Old_Spec : Entity_Id;
1386
1387 C_Names : constant array (1 .. 4) of Name_Id :=
1388 (Name_Initialize,
1389 Name_Adjust,
1390 Name_Finalize,
1391 Name_Finalize_Address);
1392
1393 D_Names : constant array (1 .. 4) of TSS_Name_Type :=
1394 (TSS_Deep_Initialize,
1395 TSS_Deep_Adjust,
1396 TSS_Deep_Finalize,
1397 TSS_Finalize_Address);
1398
1399 begin
1400 -- Remove previous controlled function which was constructed and
1401 -- analyzed when the type was frozen. This requires removing the
1402 -- body of the redefined primitive, as well as its specification
1403 -- if needed (there is no spec created for Deep_Initialize, see
1404 -- exp_ch3.adb). We must also dismantle the exception information
1405 -- that may have been generated for it when front end zero-cost
1406 -- tables are enabled.
1407
1408 for J in D_Names'Range loop
1409 Old_P := TSS (Tagged_Type, D_Names (J));
1410
1411 if Present (Old_P)
1412 and then Chars (Subp) = C_Names (J)
1413 then
1414 Old_Bod := Unit_Declaration_Node (Old_P);
1415 Remove (Old_Bod);
1416 Set_Is_Eliminated (Old_P);
1417 Set_Scope (Old_P, Scope (Current_Scope));
1418
1419 if Nkind (Old_Bod) = N_Subprogram_Body
1420 and then Present (Corresponding_Spec (Old_Bod))
1421 then
1422 Old_Spec := Corresponding_Spec (Old_Bod);
1423 Set_Has_Completion (Old_Spec, False);
1424 end if;
1425 end if;
1426 end loop;
1427
1428 Build_Late_Proc (Tagged_Type, Chars (Subp));
1429
1430 -- The new operation is added to the actions of the freeze node
1431 -- for the type, but this node has already been analyzed, so we
1432 -- must retrieve and analyze explicitly the new body.
1433
1434 if Present (F_Node)
1435 and then Present (Actions (F_Node))
1436 then
1437 Decl := Last (Actions (F_Node));
1438 Analyze (Decl);
1439 end if;
1440 end;
1441 end if;
1442 end Check_Dispatching_Operation;
1443
1444 ------------------------------------------
1445 -- Check_Operation_From_Incomplete_Type --
1446 ------------------------------------------
1447
1448 procedure Check_Operation_From_Incomplete_Type
1449 (Subp : Entity_Id;
1450 Typ : Entity_Id)
1451 is
1452 Full : constant Entity_Id := Full_View (Typ);
1453 Parent_Typ : constant Entity_Id := Etype (Full);
1454 Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
1455 New_Prim : constant Elist_Id := Primitive_Operations (Full);
1456 Op1, Op2 : Elmt_Id;
1457 Prev : Elmt_Id := No_Elmt;
1458
1459 function Derives_From (Parent_Subp : Entity_Id) return Boolean;
1460 -- Check that Subp has profile of an operation derived from Parent_Subp.
1461 -- Subp must have a parameter or result type that is Typ or an access
1462 -- parameter or access result type that designates Typ.
1463
1464 ------------------
1465 -- Derives_From --
1466 ------------------
1467
1468 function Derives_From (Parent_Subp : Entity_Id) return Boolean is
1469 F1, F2 : Entity_Id;
1470
1471 begin
1472 if Chars (Parent_Subp) /= Chars (Subp) then
1473 return False;
1474 end if;
1475
1476 -- Check that the type of controlling formals is derived from the
1477 -- parent subprogram's controlling formal type (or designated type
1478 -- if the formal type is an anonymous access type).
1479
1480 F1 := First_Formal (Parent_Subp);
1481 F2 := First_Formal (Subp);
1482 while Present (F1) and then Present (F2) loop
1483 if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
1484 if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
1485 return False;
1486 elsif Designated_Type (Etype (F1)) = Parent_Typ
1487 and then Designated_Type (Etype (F2)) /= Full
1488 then
1489 return False;
1490 end if;
1491
1492 elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
1493 return False;
1494
1495 elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
1496 return False;
1497 end if;
1498
1499 Next_Formal (F1);
1500 Next_Formal (F2);
1501 end loop;
1502
1503 -- Check that a controlling result type is derived from the parent
1504 -- subprogram's result type (or designated type if the result type
1505 -- is an anonymous access type).
1506
1507 if Ekind (Parent_Subp) = E_Function then
1508 if Ekind (Subp) /= E_Function then
1509 return False;
1510
1511 elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
1512 if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
1513 return False;
1514
1515 elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
1516 and then Designated_Type (Etype (Subp)) /= Full
1517 then
1518 return False;
1519 end if;
1520
1521 elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
1522 return False;
1523
1524 elsif Etype (Parent_Subp) = Parent_Typ
1525 and then Etype (Subp) /= Full
1526 then
1527 return False;
1528 end if;
1529
1530 elsif Ekind (Subp) = E_Function then
1531 return False;
1532 end if;
1533
1534 return No (F1) and then No (F2);
1535 end Derives_From;
1536
1537 -- Start of processing for Check_Operation_From_Incomplete_Type
1538
1539 begin
1540 -- The operation may override an inherited one, or may be a new one
1541 -- altogether. The inherited operation will have been hidden by the
1542 -- current one at the point of the type derivation, so it does not
1543 -- appear in the list of primitive operations of the type. We have to
1544 -- find the proper place of insertion in the list of primitive opera-
1545 -- tions by iterating over the list for the parent type.
1546
1547 Op1 := First_Elmt (Old_Prim);
1548 Op2 := First_Elmt (New_Prim);
1549 while Present (Op1) and then Present (Op2) loop
1550 if Derives_From (Node (Op1)) then
1551 if No (Prev) then
1552
1553 -- Avoid adding it to the list of primitives if already there!
1554
1555 if Node (Op2) /= Subp then
1556 Prepend_Elmt (Subp, New_Prim);
1557 end if;
1558
1559 else
1560 Insert_Elmt_After (Subp, Prev);
1561 end if;
1562
1563 return;
1564 end if;
1565
1566 Prev := Op2;
1567 Next_Elmt (Op1);
1568 Next_Elmt (Op2);
1569 end loop;
1570
1571 -- Operation is a new primitive
1572
1573 Append_Elmt (Subp, New_Prim);
1574 end Check_Operation_From_Incomplete_Type;
1575
1576 ---------------------------------------
1577 -- Check_Operation_From_Private_View --
1578 ---------------------------------------
1579
1580 procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
1581 Tagged_Type : Entity_Id;
1582
1583 begin
1584 if Is_Dispatching_Operation (Alias (Subp)) then
1585 Set_Scope (Subp, Current_Scope);
1586 Tagged_Type := Find_Dispatching_Type (Subp);
1587
1588 -- Add Old_Subp to primitive operations if not already present
1589
1590 if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
1591 Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
1592
1593 -- If Old_Subp isn't already marked as dispatching then this is
1594 -- the case of an operation of an untagged private type fulfilled
1595 -- by a tagged type that overrides an inherited dispatching
1596 -- operation, so we set the necessary dispatching attributes here.
1597
1598 if not Is_Dispatching_Operation (Old_Subp) then
1599
1600 -- If the untagged type has no discriminants, and the full
1601 -- view is constrained, there will be a spurious mismatch of
1602 -- subtypes on the controlling arguments, because the tagged
1603 -- type is the internal base type introduced in the derivation.
1604 -- Use the original type to verify conformance, rather than the
1605 -- base type.
1606
1607 if not Comes_From_Source (Tagged_Type)
1608 and then Has_Discriminants (Tagged_Type)
1609 then
1610 declare
1611 Formal : Entity_Id;
1612
1613 begin
1614 Formal := First_Formal (Old_Subp);
1615 while Present (Formal) loop
1616 if Tagged_Type = Base_Type (Etype (Formal)) then
1617 Tagged_Type := Etype (Formal);
1618 end if;
1619
1620 Next_Formal (Formal);
1621 end loop;
1622 end;
1623
1624 if Tagged_Type = Base_Type (Etype (Old_Subp)) then
1625 Tagged_Type := Etype (Old_Subp);
1626 end if;
1627 end if;
1628
1629 Check_Controlling_Formals (Tagged_Type, Old_Subp);
1630 Set_Is_Dispatching_Operation (Old_Subp, True);
1631 Set_DT_Position (Old_Subp, No_Uint);
1632 end if;
1633
1634 -- If the old subprogram is an explicit renaming of some other
1635 -- entity, it is not overridden by the inherited subprogram.
1636 -- Otherwise, update its alias and other attributes.
1637
1638 if Present (Alias (Old_Subp))
1639 and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
1640 N_Subprogram_Renaming_Declaration
1641 then
1642 Set_Alias (Old_Subp, Alias (Subp));
1643
1644 -- The derived subprogram should inherit the abstractness of
1645 -- the parent subprogram (except in the case of a function
1646 -- returning the type). This sets the abstractness properly
1647 -- for cases where a private extension may have inherited an
1648 -- abstract operation, but the full type is derived from a
1649 -- descendant type and inherits a nonabstract version.
1650
1651 if Etype (Subp) /= Tagged_Type then
1652 Set_Is_Abstract_Subprogram
1653 (Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
1654 end if;
1655 end if;
1656 end if;
1657 end if;
1658 end Check_Operation_From_Private_View;
1659
1660 --------------------------
1661 -- Find_Controlling_Arg --
1662 --------------------------
1663
1664 function Find_Controlling_Arg (N : Node_Id) return Node_Id is
1665 Orig_Node : constant Node_Id := Original_Node (N);
1666 Typ : Entity_Id;
1667
1668 begin
1669 if Nkind (Orig_Node) = N_Qualified_Expression then
1670 return Find_Controlling_Arg (Expression (Orig_Node));
1671 end if;
1672
1673 -- Dispatching on result case. If expansion is disabled, the node still
1674 -- has the structure of a function call. However, if the function name
1675 -- is an operator and the call was given in infix form, the original
1676 -- node has no controlling result and we must examine the current node.
1677
1678 if Nkind (N) = N_Function_Call
1679 and then Present (Controlling_Argument (N))
1680 and then Has_Controlling_Result (Entity (Name (N)))
1681 then
1682 return Controlling_Argument (N);
1683
1684 -- If expansion is enabled, the call may have been transformed into
1685 -- an indirect call, and we need to recover the original node.
1686
1687 elsif Nkind (Orig_Node) = N_Function_Call
1688 and then Present (Controlling_Argument (Orig_Node))
1689 and then Has_Controlling_Result (Entity (Name (Orig_Node)))
1690 then
1691 return Controlling_Argument (Orig_Node);
1692
1693 -- Type conversions are dynamically tagged if the target type, or its
1694 -- designated type, are classwide. An interface conversion expands into
1695 -- a dereference, so test must be performed on the original node.
1696
1697 elsif Nkind (Orig_Node) = N_Type_Conversion
1698 and then Nkind (N) = N_Explicit_Dereference
1699 and then Is_Controlling_Actual (N)
1700 then
1701 declare
1702 Target_Type : constant Entity_Id :=
1703 Entity (Subtype_Mark (Orig_Node));
1704
1705 begin
1706 if Is_Class_Wide_Type (Target_Type) then
1707 return N;
1708
1709 elsif Is_Access_Type (Target_Type)
1710 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
1711 then
1712 return N;
1713
1714 else
1715 return Empty;
1716 end if;
1717 end;
1718
1719 -- Normal case
1720
1721 elsif Is_Controlling_Actual (N)
1722 or else
1723 (Nkind (Parent (N)) = N_Qualified_Expression
1724 and then Is_Controlling_Actual (Parent (N)))
1725 then
1726 Typ := Etype (N);
1727
1728 if Is_Access_Type (Typ) then
1729
1730 -- In the case of an Access attribute, use the type of the prefix,
1731 -- since in the case of an actual for an access parameter, the
1732 -- attribute's type may be of a specific designated type, even
1733 -- though the prefix type is class-wide.
1734
1735 if Nkind (N) = N_Attribute_Reference then
1736 Typ := Etype (Prefix (N));
1737
1738 -- An allocator is dispatching if the type of qualified expression
1739 -- is class_wide, in which case this is the controlling type.
1740
1741 elsif Nkind (Orig_Node) = N_Allocator
1742 and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
1743 then
1744 Typ := Etype (Expression (Orig_Node));
1745 else
1746 Typ := Designated_Type (Typ);
1747 end if;
1748 end if;
1749
1750 if Is_Class_Wide_Type (Typ)
1751 or else
1752 (Nkind (Parent (N)) = N_Qualified_Expression
1753 and then Is_Access_Type (Etype (N))
1754 and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
1755 then
1756 return N;
1757 end if;
1758 end if;
1759
1760 return Empty;
1761 end Find_Controlling_Arg;
1762
1763 ---------------------------
1764 -- Find_Dispatching_Type --
1765 ---------------------------
1766
1767 function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
1768 A_Formal : Entity_Id;
1769 Formal : Entity_Id;
1770 Ctrl_Type : Entity_Id;
1771
1772 begin
1773 if Ekind_In (Subp, E_Function, E_Procedure)
1774 and then Present (DTC_Entity (Subp))
1775 then
1776 return Scope (DTC_Entity (Subp));
1777
1778 -- For subprograms internally generated by derivations of tagged types
1779 -- use the alias subprogram as a reference to locate the dispatching
1780 -- type of Subp.
1781
1782 elsif not Comes_From_Source (Subp)
1783 and then Present (Alias (Subp))
1784 and then Is_Dispatching_Operation (Alias (Subp))
1785 then
1786 if Ekind (Alias (Subp)) = E_Function
1787 and then Has_Controlling_Result (Alias (Subp))
1788 then
1789 return Check_Controlling_Type (Etype (Subp), Subp);
1790
1791 else
1792 Formal := First_Formal (Subp);
1793 A_Formal := First_Formal (Alias (Subp));
1794 while Present (A_Formal) loop
1795 if Is_Controlling_Formal (A_Formal) then
1796 return Check_Controlling_Type (Etype (Formal), Subp);
1797 end if;
1798
1799 Next_Formal (Formal);
1800 Next_Formal (A_Formal);
1801 end loop;
1802
1803 pragma Assert (False);
1804 return Empty;
1805 end if;
1806
1807 -- General case
1808
1809 else
1810 Formal := First_Formal (Subp);
1811 while Present (Formal) loop
1812 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
1813
1814 if Present (Ctrl_Type) then
1815 return Ctrl_Type;
1816 end if;
1817
1818 Next_Formal (Formal);
1819 end loop;
1820
1821 -- The subprogram may also be dispatching on result
1822
1823 if Present (Etype (Subp)) then
1824 return Check_Controlling_Type (Etype (Subp), Subp);
1825 end if;
1826 end if;
1827
1828 pragma Assert (not Is_Dispatching_Operation (Subp));
1829 return Empty;
1830 end Find_Dispatching_Type;
1831
1832 --------------------------------------
1833 -- Find_Hidden_Overridden_Primitive --
1834 --------------------------------------
1835
1836 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
1837 is
1838 Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
1839 Elmt : Elmt_Id;
1840 Orig_Prim : Entity_Id;
1841 Prim : Entity_Id;
1842 Vis_List : Elist_Id;
1843
1844 begin
1845 -- This Ada 2012 rule is valid only for type extensions or private
1846 -- extensions.
1847
1848 if No (Tag_Typ)
1849 or else not Is_Record_Type (Tag_Typ)
1850 or else Etype (Tag_Typ) = Tag_Typ
1851 then
1852 return Empty;
1853 end if;
1854
1855 -- Collect the list of visible ancestor of the tagged type
1856
1857 Vis_List := Visible_Ancestors (Tag_Typ);
1858
1859 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
1860 while Present (Elmt) loop
1861 Prim := Node (Elmt);
1862
1863 -- Find an inherited hidden dispatching primitive with the name of S
1864 -- and a type-conformant profile.
1865
1866 if Present (Alias (Prim))
1867 and then Is_Hidden (Alias (Prim))
1868 and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
1869 and then Primitive_Names_Match (S, Prim)
1870 and then Type_Conformant (S, Prim)
1871 then
1872 declare
1873 Vis_Ancestor : Elmt_Id;
1874 Elmt : Elmt_Id;
1875
1876 begin
1877 -- The original corresponding operation of Prim must be an
1878 -- operation of a visible ancestor of the dispatching type S,
1879 -- and the original corresponding operation of S2 must be
1880 -- visible.
1881
1882 Orig_Prim := Original_Corresponding_Operation (Prim);
1883
1884 if Orig_Prim /= Prim
1885 and then Is_Immediately_Visible (Orig_Prim)
1886 then
1887 Vis_Ancestor := First_Elmt (Vis_List);
1888 while Present (Vis_Ancestor) loop
1889 Elmt :=
1890 First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
1891 while Present (Elmt) loop
1892 if Node (Elmt) = Orig_Prim then
1893 Set_Overridden_Operation (S, Prim);
1894 Set_Alias (Prim, Orig_Prim);
1895 return Prim;
1896 end if;
1897
1898 Next_Elmt (Elmt);
1899 end loop;
1900
1901 Next_Elmt (Vis_Ancestor);
1902 end loop;
1903 end if;
1904 end;
1905 end if;
1906
1907 Next_Elmt (Elmt);
1908 end loop;
1909
1910 return Empty;
1911 end Find_Hidden_Overridden_Primitive;
1912
1913 ---------------------------------------
1914 -- Find_Primitive_Covering_Interface --
1915 ---------------------------------------
1916
1917 function Find_Primitive_Covering_Interface
1918 (Tagged_Type : Entity_Id;
1919 Iface_Prim : Entity_Id) return Entity_Id
1920 is
1921 E : Entity_Id;
1922 El : Elmt_Id;
1923
1924 begin
1925 pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
1926 or else (Present (Alias (Iface_Prim))
1927 and then
1928 Is_Interface
1929 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
1930
1931 -- Search in the homonym chain. Done to speed up locating visible
1932 -- entities and required to catch primitives associated with the partial
1933 -- view of private types when processing the corresponding full view.
1934
1935 E := Current_Entity (Iface_Prim);
1936 while Present (E) loop
1937 if Is_Subprogram (E)
1938 and then Is_Dispatching_Operation (E)
1939 and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
1940 then
1941 return E;
1942 end if;
1943
1944 E := Homonym (E);
1945 end loop;
1946
1947 -- Search in the list of primitives of the type. Required to locate
1948 -- the covering primitive if the covering primitive is not visible
1949 -- (for example, non-visible inherited primitive of private type).
1950
1951 El := First_Elmt (Primitive_Operations (Tagged_Type));
1952 while Present (El) loop
1953 E := Node (El);
1954
1955 -- Keep separate the management of internal entities that link
1956 -- primitives with interface primitives from tagged type primitives.
1957
1958 if No (Interface_Alias (E)) then
1959 if Present (Alias (E)) then
1960
1961 -- This interface primitive has not been covered yet
1962
1963 if Alias (E) = Iface_Prim then
1964 return E;
1965
1966 -- The covering primitive was inherited
1967
1968 elsif Overridden_Operation (Ultimate_Alias (E))
1969 = Iface_Prim
1970 then
1971 return E;
1972 end if;
1973 end if;
1974
1975 -- Check if E covers the interface primitive (includes case in
1976 -- which E is an inherited private primitive).
1977
1978 if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
1979 return E;
1980 end if;
1981
1982 -- Use the internal entity that links the interface primitive with
1983 -- the covering primitive to locate the entity.
1984
1985 elsif Interface_Alias (E) = Iface_Prim then
1986 return Alias (E);
1987 end if;
1988
1989 Next_Elmt (El);
1990 end loop;
1991
1992 -- Not found
1993
1994 return Empty;
1995 end Find_Primitive_Covering_Interface;
1996
1997 ---------------------------
1998 -- Inherited_Subprograms --
1999 ---------------------------
2000
2001 function Inherited_Subprograms (S : Entity_Id) return Subprogram_List is
2002 Result : Subprogram_List (1 .. 6000);
2003 -- 6000 here is intended to be infinity. We could use an expandable
2004 -- table, but it would be awfully heavy, and there is no way that we
2005 -- could reasonably exceed this value.
2006
2007 N : Int := 0;
2008 -- Number of entries in Result
2009
2010 Parent_Op : Entity_Id;
2011 -- Traverses the Overridden_Operation chain
2012
2013 procedure Store_IS (E : Entity_Id);
2014 -- Stores E in Result if not already stored
2015
2016 --------------
2017 -- Store_IS --
2018 --------------
2019
2020 procedure Store_IS (E : Entity_Id) is
2021 begin
2022 for J in 1 .. N loop
2023 if E = Result (J) then
2024 return;
2025 end if;
2026 end loop;
2027
2028 N := N + 1;
2029 Result (N) := E;
2030 end Store_IS;
2031
2032 -- Start of processing for Inherited_Subprograms
2033
2034 begin
2035 if Present (S) and then Is_Dispatching_Operation (S) then
2036
2037 -- Deal with direct inheritance
2038
2039 Parent_Op := S;
2040 loop
2041 Parent_Op := Overridden_Operation (Parent_Op);
2042 exit when No (Parent_Op);
2043
2044 if Is_Subprogram (Parent_Op)
2045 or else Is_Generic_Subprogram (Parent_Op)
2046 then
2047 Store_IS (Parent_Op);
2048 end if;
2049 end loop;
2050
2051 -- Now deal with interfaces
2052
2053 declare
2054 Tag_Typ : Entity_Id;
2055 Prim : Entity_Id;
2056 Elmt : Elmt_Id;
2057
2058 begin
2059 Tag_Typ := Find_Dispatching_Type (S);
2060
2061 if Is_Concurrent_Type (Tag_Typ) then
2062 Tag_Typ := Corresponding_Record_Type (Tag_Typ);
2063 end if;
2064
2065 -- Search primitive operations of dispatching type
2066
2067 if Present (Tag_Typ)
2068 and then Present (Primitive_Operations (Tag_Typ))
2069 then
2070 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
2071 while Present (Elmt) loop
2072 Prim := Node (Elmt);
2073
2074 -- The following test eliminates some odd cases in which
2075 -- Ekind (Prim) is Void, to be investigated further ???
2076
2077 if not (Is_Subprogram (Prim)
2078 or else
2079 Is_Generic_Subprogram (Prim))
2080 then
2081 null;
2082
2083 -- For [generic] subprogram, look at interface alias
2084
2085 elsif Present (Interface_Alias (Prim))
2086 and then Alias (Prim) = S
2087 then
2088 -- We have found a primitive covered by S
2089
2090 Store_IS (Interface_Alias (Prim));
2091 end if;
2092
2093 Next_Elmt (Elmt);
2094 end loop;
2095 end if;
2096 end;
2097 end if;
2098
2099 return Result (1 .. N);
2100 end Inherited_Subprograms;
2101
2102 ---------------------------
2103 -- Is_Dynamically_Tagged --
2104 ---------------------------
2105
2106 function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
2107 begin
2108 if Nkind (N) = N_Error then
2109 return False;
2110 else
2111 return Find_Controlling_Arg (N) /= Empty;
2112 end if;
2113 end Is_Dynamically_Tagged;
2114
2115 ---------------------------------
2116 -- Is_Null_Interface_Primitive --
2117 ---------------------------------
2118
2119 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
2120 begin
2121 return Comes_From_Source (E)
2122 and then Is_Dispatching_Operation (E)
2123 and then Ekind (E) = E_Procedure
2124 and then Null_Present (Parent (E))
2125 and then Is_Interface (Find_Dispatching_Type (E));
2126 end Is_Null_Interface_Primitive;
2127
2128 --------------------------
2129 -- Is_Tag_Indeterminate --
2130 --------------------------
2131
2132 function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
2133 Nam : Entity_Id;
2134 Actual : Node_Id;
2135 Orig_Node : constant Node_Id := Original_Node (N);
2136
2137 begin
2138 if Nkind (Orig_Node) = N_Function_Call
2139 and then Is_Entity_Name (Name (Orig_Node))
2140 then
2141 Nam := Entity (Name (Orig_Node));
2142
2143 if not Has_Controlling_Result (Nam) then
2144 return False;
2145
2146 -- The function may have a controlling result, but if the return type
2147 -- is not visibly tagged, then this is not tag-indeterminate.
2148
2149 elsif Is_Access_Type (Etype (Nam))
2150 and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
2151 then
2152 return False;
2153
2154 -- An explicit dereference means that the call has already been
2155 -- expanded and there is no tag to propagate.
2156
2157 elsif Nkind (N) = N_Explicit_Dereference then
2158 return False;
2159
2160 -- If there are no actuals, the call is tag-indeterminate
2161
2162 elsif No (Parameter_Associations (Orig_Node)) then
2163 return True;
2164
2165 else
2166 Actual := First_Actual (Orig_Node);
2167 while Present (Actual) loop
2168 if Is_Controlling_Actual (Actual)
2169 and then not Is_Tag_Indeterminate (Actual)
2170 then
2171 -- One operand is dispatching
2172
2173 return False;
2174 end if;
2175
2176 Next_Actual (Actual);
2177 end loop;
2178
2179 return True;
2180 end if;
2181
2182 elsif Nkind (Orig_Node) = N_Qualified_Expression then
2183 return Is_Tag_Indeterminate (Expression (Orig_Node));
2184
2185 -- Case of a call to the Input attribute (possibly rewritten), which is
2186 -- always tag-indeterminate except when its prefix is a Class attribute.
2187
2188 elsif Nkind (Orig_Node) = N_Attribute_Reference
2189 and then
2190 Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
2191 and then
2192 Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
2193 then
2194 return True;
2195
2196 -- In Ada 2005, a function that returns an anonymous access type can be
2197 -- dispatching, and the dereference of a call to such a function can
2198 -- also be tag-indeterminate if the call itself is.
2199
2200 elsif Nkind (Orig_Node) = N_Explicit_Dereference
2201 and then Ada_Version >= Ada_2005
2202 then
2203 return Is_Tag_Indeterminate (Prefix (Orig_Node));
2204
2205 else
2206 return False;
2207 end if;
2208 end Is_Tag_Indeterminate;
2209
2210 ------------------------------------
2211 -- Override_Dispatching_Operation --
2212 ------------------------------------
2213
2214 procedure Override_Dispatching_Operation
2215 (Tagged_Type : Entity_Id;
2216 Prev_Op : Entity_Id;
2217 New_Op : Entity_Id;
2218 Is_Wrapper : Boolean := False)
2219 is
2220 Elmt : Elmt_Id;
2221 Prim : Node_Id;
2222
2223 begin
2224 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2225 -- we do it unconditionally in Ada 95 now, since this is our pragma!)
2226
2227 if No_Return (Prev_Op) and then not No_Return (New_Op) then
2228 Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
2229 Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
2230 end if;
2231
2232 -- If there is no previous operation to override, the type declaration
2233 -- was malformed, and an error must have been emitted already.
2234
2235 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2236 while Present (Elmt)
2237 and then Node (Elmt) /= Prev_Op
2238 loop
2239 Next_Elmt (Elmt);
2240 end loop;
2241
2242 if No (Elmt) then
2243 return;
2244 end if;
2245
2246 -- The location of entities that come from source in the list of
2247 -- primitives of the tagged type must follow their order of occurrence
2248 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2249 -- primitive of an interface that is not implemented by the parents of
2250 -- this tagged type (that is, it is an alias of an interface primitive
2251 -- generated by Derive_Interface_Progenitors), then we must append the
2252 -- new entity at the end of the list of primitives.
2253
2254 if Present (Alias (Prev_Op))
2255 and then Etype (Tagged_Type) /= Tagged_Type
2256 and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
2257 and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
2258 Tagged_Type, Use_Full_View => True)
2259 and then not Implements_Interface
2260 (Etype (Tagged_Type),
2261 Find_Dispatching_Type (Alias (Prev_Op)))
2262 then
2263 Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
2264 Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
2265
2266 -- The new primitive replaces the overridden entity. Required to ensure
2267 -- that overriding primitive is assigned the same dispatch table slot.
2268
2269 else
2270 Replace_Elmt (Elmt, New_Op);
2271 end if;
2272
2273 if Ada_Version >= Ada_2005
2274 and then Has_Interfaces (Tagged_Type)
2275 then
2276 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2277 -- entities of the overridden primitive to reference New_Op, and
2278 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2279 -- that the new operation is subtype conformant with the interface
2280 -- operations that it implements (for operations inherited from the
2281 -- parent itself, this check is made when building the derived type).
2282
2283 -- Note: This code is executed with internally generated wrappers of
2284 -- functions with controlling result and late overridings.
2285
2286 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2287 while Present (Elmt) loop
2288 Prim := Node (Elmt);
2289
2290 if Prim = New_Op then
2291 null;
2292
2293 -- Note: The check on Is_Subprogram protects the frontend against
2294 -- reading attributes in entities that are not yet fully decorated
2295
2296 elsif Is_Subprogram (Prim)
2297 and then Present (Interface_Alias (Prim))
2298 and then Alias (Prim) = Prev_Op
2299 then
2300 Set_Alias (Prim, New_Op);
2301
2302 -- No further decoration needed yet for internally generated
2303 -- wrappers of controlling functions since (at this stage)
2304 -- they are not yet decorated.
2305
2306 if not Is_Wrapper then
2307 Check_Subtype_Conformant (New_Op, Prim);
2308
2309 Set_Is_Abstract_Subprogram (Prim,
2310 Is_Abstract_Subprogram (New_Op));
2311
2312 -- Ensure that this entity will be expanded to fill the
2313 -- corresponding entry in its dispatch table.
2314
2315 if not Is_Abstract_Subprogram (Prim) then
2316 Set_Has_Delayed_Freeze (Prim);
2317 end if;
2318 end if;
2319 end if;
2320
2321 Next_Elmt (Elmt);
2322 end loop;
2323 end if;
2324
2325 if (not Is_Package_Or_Generic_Package (Current_Scope))
2326 or else not In_Private_Part (Current_Scope)
2327 then
2328 -- Not a private primitive
2329
2330 null;
2331
2332 else pragma Assert (Is_Inherited_Operation (Prev_Op));
2333
2334 -- Make the overriding operation into an alias of the implicit one.
2335 -- In this fashion a call from outside ends up calling the new body
2336 -- even if non-dispatching, and a call from inside calls the over-
2337 -- riding operation because it hides the implicit one. To indicate
2338 -- that the body of Prev_Op is never called, set its dispatch table
2339 -- entity to Empty. If the overridden operation has a dispatching
2340 -- result, so does the overriding one.
2341
2342 Set_Alias (Prev_Op, New_Op);
2343 Set_DTC_Entity (Prev_Op, Empty);
2344 Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
2345 return;
2346 end if;
2347 end Override_Dispatching_Operation;
2348
2349 -------------------
2350 -- Propagate_Tag --
2351 -------------------
2352
2353 procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
2354 Call_Node : Node_Id;
2355 Arg : Node_Id;
2356
2357 begin
2358 if Nkind (Actual) = N_Function_Call then
2359 Call_Node := Actual;
2360
2361 elsif Nkind (Actual) = N_Identifier
2362 and then Nkind (Original_Node (Actual)) = N_Function_Call
2363 then
2364 -- Call rewritten as object declaration when stack-checking is
2365 -- enabled. Propagate tag to expression in declaration, which is
2366 -- original call.
2367
2368 Call_Node := Expression (Parent (Entity (Actual)));
2369
2370 -- Ada 2005: If this is a dereference of a call to a function with a
2371 -- dispatching access-result, the tag is propagated when the dereference
2372 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2373
2374 elsif Nkind (Actual) = N_Explicit_Dereference
2375 and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
2376 then
2377 return;
2378
2379 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2380 -- and in that case we can simply return.
2381
2382 elsif Nkind (Actual) = N_Attribute_Reference then
2383 pragma Assert (Attribute_Name (Actual) = Name_Input);
2384
2385 return;
2386
2387 -- Only other possibilities are parenthesized or qualified expression,
2388 -- or an expander-generated unchecked conversion of a function call to
2389 -- a stream Input attribute.
2390
2391 else
2392 Call_Node := Expression (Actual);
2393 end if;
2394
2395 -- No action needed if the call has been already expanded
2396
2397 if Is_Expanded_Dispatching_Call (Call_Node) then
2398 return;
2399 end if;
2400
2401 -- Do not set the Controlling_Argument if already set. This happens in
2402 -- the special case of _Input (see Exp_Attr, case Input).
2403
2404 if No (Controlling_Argument (Call_Node)) then
2405 Set_Controlling_Argument (Call_Node, Control);
2406 end if;
2407
2408 Arg := First_Actual (Call_Node);
2409 while Present (Arg) loop
2410 if Is_Tag_Indeterminate (Arg) then
2411 Propagate_Tag (Control, Arg);
2412 end if;
2413
2414 Next_Actual (Arg);
2415 end loop;
2416
2417 -- Expansion of dispatching calls is suppressed when VM_Target, because
2418 -- the VM back-ends directly handle the generation of dispatching calls
2419 -- and would have to undo any expansion to an indirect call.
2420
2421 if Tagged_Type_Expansion then
2422 declare
2423 Call_Typ : constant Entity_Id := Etype (Call_Node);
2424
2425 begin
2426 Expand_Dispatching_Call (Call_Node);
2427
2428 -- If the controlling argument is an interface type and the type
2429 -- of Call_Node differs then we must add an implicit conversion to
2430 -- force displacement of the pointer to the object to reference
2431 -- the secondary dispatch table of the interface.
2432
2433 if Is_Interface (Etype (Control))
2434 and then Etype (Control) /= Call_Typ
2435 then
2436 -- Cannot use Convert_To because the previous call to
2437 -- Expand_Dispatching_Call leaves decorated the Call_Node
2438 -- with the type of Control.
2439
2440 Rewrite (Call_Node,
2441 Make_Type_Conversion (Sloc (Call_Node),
2442 Subtype_Mark =>
2443 New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
2444 Expression => Relocate_Node (Call_Node)));
2445 Set_Etype (Call_Node, Etype (Control));
2446 Set_Analyzed (Call_Node);
2447
2448 Expand_Interface_Conversion (Call_Node);
2449 end if;
2450 end;
2451
2452 -- Expansion of a dispatching call results in an indirect call, which in
2453 -- turn causes current values to be killed (see Resolve_Call), so on VM
2454 -- targets we do the call here to ensure consistent warnings between VM
2455 -- and non-VM targets.
2456
2457 else
2458 Kill_Current_Values;
2459 end if;
2460 end Propagate_Tag;
2461
2462 end Sem_Disp;
This page took 0.149443 seconds and 6 git commands to generate.