]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_disp.adb
[multiple changes]
[gcc.git] / gcc / ada / sem_disp.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I S P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Elists; use Elists;
29 with Einfo; use Einfo;
30 with Exp_Disp; use Exp_Disp;
31 with Exp_Util; use Exp_Util;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Tss; use Exp_Tss;
34 with Errout; use Errout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Type; use Sem_Type;
49 with Sem_Util; use Sem_Util;
50 with Snames; use Snames;
51 with Sinfo; use Sinfo;
52 with Targparm; use Targparm;
53 with Tbuild; use Tbuild;
54 with Uintp; use Uintp;
55
56 package body Sem_Disp is
57
58 -----------------------
59 -- Local Subprograms --
60 -----------------------
61
62 procedure Add_Dispatching_Operation
63 (Tagged_Type : Entity_Id;
64 New_Op : Entity_Id);
65 -- Add New_Op in the list of primitive operations of Tagged_Type
66
67 function Check_Controlling_Type
68 (T : Entity_Id;
69 Subp : Entity_Id) return Entity_Id;
70 -- T is the tagged type of a formal parameter or the result of Subp.
71 -- If the subprogram has a controlling parameter or result that matches
72 -- the type, then returns the tagged type of that parameter or result
73 -- (returning the designated tagged type in the case of an access
74 -- parameter); otherwise returns empty.
75
76 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
77 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
78 -- type of S that has the same name of S, a type-conformant profile, an
79 -- original corresponding operation O that is a primitive of a visible
80 -- ancestor of the dispatching type of S and O is visible at the point of
81 -- of declaration of S. If the entity is found the Alias of S is set to the
82 -- original corresponding operation S and its Overridden_Operation is set
83 -- to the found entity; otherwise return Empty.
84 --
85 -- This routine does not search for non-hidden primitives since they are
86 -- covered by the normal Ada 2005 rules.
87
88 -------------------------------
89 -- Add_Dispatching_Operation --
90 -------------------------------
91
92 procedure Add_Dispatching_Operation
93 (Tagged_Type : Entity_Id;
94 New_Op : Entity_Id)
95 is
96 List : constant Elist_Id := Primitive_Operations (Tagged_Type);
97
98 begin
99 -- The dispatching operation may already be on the list, if it is the
100 -- wrapper for an inherited function of a null extension (see Exp_Ch3
101 -- for the construction of function wrappers). The list of primitive
102 -- operations must not contain duplicates.
103
104 Append_Unique_Elmt (New_Op, List);
105 end Add_Dispatching_Operation;
106
107 ---------------------------
108 -- Covers_Some_Interface --
109 ---------------------------
110
111 function Covers_Some_Interface (Prim : Entity_Id) return Boolean is
112 Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
113 Elmt : Elmt_Id;
114 E : Entity_Id;
115
116 begin
117 pragma Assert (Is_Dispatching_Operation (Prim));
118
119 -- Although this is a dispatching primitive we must check if its
120 -- dispatching type is available because it may be the primitive
121 -- of a private type not defined as tagged in its partial view.
122
123 if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
124
125 -- If the tagged type is frozen then the internal entities associated
126 -- with interfaces are available in the list of primitives of the
127 -- tagged type and can be used to speed up this search.
128
129 if Is_Frozen (Tagged_Type) then
130 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
131 while Present (Elmt) loop
132 E := Node (Elmt);
133
134 if Present (Interface_Alias (E))
135 and then Alias (E) = Prim
136 then
137 return True;
138 end if;
139
140 Next_Elmt (Elmt);
141 end loop;
142
143 -- Otherwise we must collect all the interface primitives and check
144 -- if the Prim will override some interface primitive.
145
146 else
147 declare
148 Ifaces_List : Elist_Id;
149 Iface_Elmt : Elmt_Id;
150 Iface : Entity_Id;
151 Iface_Prim : Entity_Id;
152
153 begin
154 Collect_Interfaces (Tagged_Type, Ifaces_List);
155 Iface_Elmt := First_Elmt (Ifaces_List);
156 while Present (Iface_Elmt) loop
157 Iface := Node (Iface_Elmt);
158
159 Elmt := First_Elmt (Primitive_Operations (Iface));
160 while Present (Elmt) loop
161 Iface_Prim := Node (Elmt);
162
163 if Chars (E) = Chars (Prim)
164 and then Is_Interface_Conformant
165 (Tagged_Type, Iface_Prim, Prim)
166 then
167 return True;
168 end if;
169
170 Next_Elmt (Elmt);
171 end loop;
172
173 Next_Elmt (Iface_Elmt);
174 end loop;
175 end;
176 end if;
177 end if;
178
179 return False;
180 end Covers_Some_Interface;
181
182 -------------------------------
183 -- Check_Controlling_Formals --
184 -------------------------------
185
186 procedure Check_Controlling_Formals
187 (Typ : Entity_Id;
188 Subp : Entity_Id)
189 is
190 Formal : Entity_Id;
191 Ctrl_Type : Entity_Id;
192
193 begin
194 Formal := First_Formal (Subp);
195 while Present (Formal) loop
196 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
197
198 if Present (Ctrl_Type) then
199
200 -- When controlling type is concurrent and declared within a
201 -- generic or inside an instance use corresponding record type.
202
203 if Is_Concurrent_Type (Ctrl_Type)
204 and then Present (Corresponding_Record_Type (Ctrl_Type))
205 then
206 Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
207 end if;
208
209 if Ctrl_Type = Typ then
210 Set_Is_Controlling_Formal (Formal);
211
212 -- Ada 2005 (AI-231): Anonymous access types that are used in
213 -- controlling parameters exclude null because it is necessary
214 -- to read the tag to dispatch, and null has no tag.
215
216 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
217 Set_Can_Never_Be_Null (Etype (Formal));
218 Set_Is_Known_Non_Null (Etype (Formal));
219 end if;
220
221 -- Check that the parameter's nominal subtype statically
222 -- matches the first subtype.
223
224 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
225 if not Subtypes_Statically_Match
226 (Typ, Designated_Type (Etype (Formal)))
227 then
228 Error_Msg_N
229 ("parameter subtype does not match controlling type",
230 Formal);
231 end if;
232
233 elsif not Subtypes_Statically_Match (Typ, Etype (Formal)) then
234 Error_Msg_N
235 ("parameter subtype does not match controlling type",
236 Formal);
237 end if;
238
239 if Present (Default_Value (Formal)) then
240
241 -- In Ada 2005, access parameters can have defaults
242
243 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
244 and then Ada_Version < Ada_2005
245 then
246 Error_Msg_N
247 ("default not allowed for controlling access parameter",
248 Default_Value (Formal));
249
250 elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
251 Error_Msg_N
252 ("default expression must be a tag indeterminate" &
253 " function call", Default_Value (Formal));
254 end if;
255 end if;
256
257 elsif Comes_From_Source (Subp) then
258 Error_Msg_N
259 ("operation can be dispatching in only one type", Subp);
260 end if;
261 end if;
262
263 Next_Formal (Formal);
264 end loop;
265
266 if Ekind_In (Subp, E_Function, E_Generic_Function) then
267 Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
268
269 if Present (Ctrl_Type) then
270 if Ctrl_Type = Typ then
271 Set_Has_Controlling_Result (Subp);
272
273 -- Check that result subtype statically matches first subtype
274 -- (Ada 2005): Subp may have a controlling access result.
275
276 if Subtypes_Statically_Match (Typ, Etype (Subp))
277 or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
278 and then
279 Subtypes_Statically_Match
280 (Typ, Designated_Type (Etype (Subp))))
281 then
282 null;
283
284 else
285 Error_Msg_N
286 ("result subtype does not match controlling type", Subp);
287 end if;
288
289 elsif Comes_From_Source (Subp) then
290 Error_Msg_N
291 ("operation can be dispatching in only one type", Subp);
292 end if;
293 end if;
294 end if;
295 end Check_Controlling_Formals;
296
297 ----------------------------
298 -- Check_Controlling_Type --
299 ----------------------------
300
301 function Check_Controlling_Type
302 (T : Entity_Id;
303 Subp : Entity_Id) return Entity_Id
304 is
305 Tagged_Type : Entity_Id := Empty;
306
307 begin
308 if Is_Tagged_Type (T) then
309 if Is_First_Subtype (T) then
310 Tagged_Type := T;
311 else
312 Tagged_Type := Base_Type (T);
313 end if;
314
315 elsif Ekind (T) = E_Anonymous_Access_Type
316 and then Is_Tagged_Type (Designated_Type (T))
317 then
318 if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
319 if Is_First_Subtype (Designated_Type (T)) then
320 Tagged_Type := Designated_Type (T);
321 else
322 Tagged_Type := Base_Type (Designated_Type (T));
323 end if;
324
325 -- Ada 2005: an incomplete type can be tagged. An operation with an
326 -- access parameter of the type is dispatching.
327
328 elsif Scope (Designated_Type (T)) = Current_Scope then
329 Tagged_Type := Designated_Type (T);
330
331 -- Ada 2005 (AI-50217)
332
333 elsif From_With_Type (Designated_Type (T))
334 and then Present (Non_Limited_View (Designated_Type (T)))
335 then
336 if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
337 Tagged_Type := Non_Limited_View (Designated_Type (T));
338 else
339 Tagged_Type := Base_Type (Non_Limited_View
340 (Designated_Type (T)));
341 end if;
342 end if;
343 end if;
344
345 if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
346 return Empty;
347
348 -- The dispatching type and the primitive operation must be defined in
349 -- the same scope, except in the case of internal operations and formal
350 -- abstract subprograms.
351
352 elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
353 and then (not Is_Generic_Type (Tagged_Type)
354 or else not Comes_From_Source (Subp)))
355 or else
356 (Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
357 or else
358 (Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
359 and then
360 Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
361 and then
362 Is_Abstract_Subprogram (Subp))
363 then
364 return Tagged_Type;
365
366 else
367 return Empty;
368 end if;
369 end Check_Controlling_Type;
370
371 ----------------------------
372 -- Check_Dispatching_Call --
373 ----------------------------
374
375 procedure Check_Dispatching_Call (N : Node_Id) is
376 Loc : constant Source_Ptr := Sloc (N);
377 Actual : Node_Id;
378 Formal : Entity_Id;
379 Control : Node_Id := Empty;
380 Func : Entity_Id;
381 Subp_Entity : Entity_Id;
382 Indeterm_Ancestor_Call : Boolean := False;
383 Indeterm_Ctrl_Type : Entity_Id;
384
385 Static_Tag : Node_Id := Empty;
386 -- If a controlling formal has a statically tagged actual, the tag of
387 -- this actual is to be used for any tag-indeterminate actual.
388
389 procedure Check_Direct_Call;
390 -- In the case when the controlling actual is a class-wide type whose
391 -- root type's completion is a task or protected type, the call is in
392 -- fact direct. This routine detects the above case and modifies the
393 -- call accordingly.
394
395 procedure Check_Dispatching_Context;
396 -- If the call is tag-indeterminate and the entity being called is
397 -- abstract, verify that the context is a call that will eventually
398 -- provide a tag for dispatching, or has provided one already.
399
400 -----------------------
401 -- Check_Direct_Call --
402 -----------------------
403
404 procedure Check_Direct_Call is
405 Typ : Entity_Id := Etype (Control);
406
407 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
408 -- Determine whether an entity denotes a user-defined equality
409
410 ------------------------------
411 -- Is_User_Defined_Equality --
412 ------------------------------
413
414 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
415 begin
416 return
417 Ekind (Id) = E_Function
418 and then Chars (Id) = Name_Op_Eq
419 and then Comes_From_Source (Id)
420
421 -- Internally generated equalities have a full type declaration
422 -- as their parent.
423
424 and then Nkind (Parent (Id)) = N_Function_Specification;
425 end Is_User_Defined_Equality;
426
427 -- Start of processing for Check_Direct_Call
428
429 begin
430 -- Predefined primitives do not receive wrappers since they are built
431 -- from scratch for the corresponding record of synchronized types.
432 -- Equality is in general predefined, but is excluded from the check
433 -- when it is user-defined.
434
435 if Is_Predefined_Dispatching_Operation (Subp_Entity)
436 and then not Is_User_Defined_Equality (Subp_Entity)
437 then
438 return;
439 end if;
440
441 if Is_Class_Wide_Type (Typ) then
442 Typ := Root_Type (Typ);
443 end if;
444
445 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
446 Typ := Full_View (Typ);
447 end if;
448
449 if Is_Concurrent_Type (Typ)
450 and then
451 Present (Corresponding_Record_Type (Typ))
452 then
453 Typ := Corresponding_Record_Type (Typ);
454
455 -- The concurrent record's list of primitives should contain a
456 -- wrapper for the entity of the call, retrieve it.
457
458 declare
459 Prim : Entity_Id;
460 Prim_Elmt : Elmt_Id;
461 Wrapper_Found : Boolean := False;
462
463 begin
464 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
465 while Present (Prim_Elmt) loop
466 Prim := Node (Prim_Elmt);
467
468 if Is_Primitive_Wrapper (Prim)
469 and then Wrapped_Entity (Prim) = Subp_Entity
470 then
471 Wrapper_Found := True;
472 exit;
473 end if;
474
475 Next_Elmt (Prim_Elmt);
476 end loop;
477
478 -- A primitive declared between two views should have a
479 -- corresponding wrapper.
480
481 pragma Assert (Wrapper_Found);
482
483 -- Modify the call by setting the proper entity
484
485 Set_Entity (Name (N), Prim);
486 end;
487 end if;
488 end Check_Direct_Call;
489
490 -------------------------------
491 -- Check_Dispatching_Context --
492 -------------------------------
493
494 procedure Check_Dispatching_Context is
495 Subp : constant Entity_Id := Entity (Name (N));
496 Par : Node_Id;
497
498 begin
499 if Is_Abstract_Subprogram (Subp)
500 and then No (Controlling_Argument (N))
501 then
502 if Present (Alias (Subp))
503 and then not Is_Abstract_Subprogram (Alias (Subp))
504 and then No (DTC_Entity (Subp))
505 then
506 -- Private overriding of inherited abstract operation, call is
507 -- legal.
508
509 Set_Entity (Name (N), Alias (Subp));
510 return;
511
512 else
513 Par := Parent (N);
514 while Present (Par) loop
515 if Nkind_In (Par, N_Function_Call,
516 N_Procedure_Call_Statement,
517 N_Assignment_Statement,
518 N_Op_Eq,
519 N_Op_Ne)
520 and then Is_Tagged_Type (Etype (Subp))
521 then
522 return;
523
524 elsif Nkind (Par) = N_Qualified_Expression
525 or else Nkind (Par) = N_Unchecked_Type_Conversion
526 then
527 Par := Parent (Par);
528
529 else
530 if Ekind (Subp) = E_Function then
531 Error_Msg_N
532 ("call to abstract function must be dispatching", N);
533
534 -- This error can occur for a procedure in the case of a
535 -- call to an abstract formal procedure with a statically
536 -- tagged operand.
537
538 else
539 Error_Msg_N
540 ("call to abstract procedure must be dispatching",
541 N);
542 end if;
543
544 return;
545 end if;
546 end loop;
547 end if;
548 end if;
549 end Check_Dispatching_Context;
550
551 -- Start of processing for Check_Dispatching_Call
552
553 begin
554 -- Find a controlling argument, if any
555
556 if Present (Parameter_Associations (N)) then
557 Subp_Entity := Entity (Name (N));
558
559 Actual := First_Actual (N);
560 Formal := First_Formal (Subp_Entity);
561 while Present (Actual) loop
562 Control := Find_Controlling_Arg (Actual);
563 exit when Present (Control);
564
565 -- Check for the case where the actual is a tag-indeterminate call
566 -- whose result type is different than the tagged type associated
567 -- with the containing call, but is an ancestor of the type.
568
569 if Is_Controlling_Formal (Formal)
570 and then Is_Tag_Indeterminate (Actual)
571 and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
572 and then Is_Ancestor (Etype (Actual), Etype (Formal))
573 then
574 Indeterm_Ancestor_Call := True;
575 Indeterm_Ctrl_Type := Etype (Formal);
576
577 -- If the formal is controlling but the actual is not, the type
578 -- of the actual is statically known, and may be used as the
579 -- controlling tag for some other tag-indeterminate actual.
580
581 elsif Is_Controlling_Formal (Formal)
582 and then Is_Entity_Name (Actual)
583 and then Is_Tagged_Type (Etype (Actual))
584 then
585 Static_Tag := Actual;
586 end if;
587
588 Next_Actual (Actual);
589 Next_Formal (Formal);
590 end loop;
591
592 -- If the call doesn't have a controlling actual but does have an
593 -- indeterminate actual that requires dispatching treatment, then an
594 -- object is needed that will serve as the controlling argument for a
595 -- dispatching call on the indeterminate actual. This can only occur
596 -- in the unusual situation of a default actual given by a
597 -- tag-indeterminate call and where the type of the call is an
598 -- ancestor of the type associated with a containing call to an
599 -- inherited operation (see AI-239).
600
601 -- Rather than create an object of the tagged type, which would be
602 -- problematic for various reasons (default initialization,
603 -- discriminants), the tag of the containing call's associated tagged
604 -- type is directly used to control the dispatching.
605
606 if No (Control)
607 and then Indeterm_Ancestor_Call
608 and then No (Static_Tag)
609 then
610 Control :=
611 Make_Attribute_Reference (Loc,
612 Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
613 Attribute_Name => Name_Tag);
614
615 Analyze (Control);
616 end if;
617
618 if Present (Control) then
619
620 -- Verify that no controlling arguments are statically tagged
621
622 if Debug_Flag_E then
623 Write_Str ("Found Dispatching call");
624 Write_Int (Int (N));
625 Write_Eol;
626 end if;
627
628 Actual := First_Actual (N);
629 while Present (Actual) loop
630 if Actual /= Control then
631
632 if not Is_Controlling_Actual (Actual) then
633 null; -- Can be anything
634
635 elsif Is_Dynamically_Tagged (Actual) then
636 null; -- Valid parameter
637
638 elsif Is_Tag_Indeterminate (Actual) then
639
640 -- The tag is inherited from the enclosing call (the node
641 -- we are currently analyzing). Explicitly expand the
642 -- actual, since the previous call to Expand (from
643 -- Resolve_Call) had no way of knowing about the required
644 -- dispatching.
645
646 Propagate_Tag (Control, Actual);
647
648 else
649 Error_Msg_N
650 ("controlling argument is not dynamically tagged",
651 Actual);
652 return;
653 end if;
654 end if;
655
656 Next_Actual (Actual);
657 end loop;
658
659 -- Mark call as a dispatching call
660
661 Set_Controlling_Argument (N, Control);
662 Check_Restriction (No_Dispatching_Calls, N);
663
664 -- The dispatching call may need to be converted into a direct
665 -- call in certain cases.
666
667 Check_Direct_Call;
668
669 -- If there is a statically tagged actual and a tag-indeterminate
670 -- call to a function of the ancestor (such as that provided by a
671 -- default), then treat this as a dispatching call and propagate
672 -- the tag to the tag-indeterminate call(s).
673
674 elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
675 Control :=
676 Make_Attribute_Reference (Loc,
677 Prefix =>
678 New_Occurrence_Of (Etype (Static_Tag), Loc),
679 Attribute_Name => Name_Tag);
680
681 Analyze (Control);
682
683 Actual := First_Actual (N);
684 Formal := First_Formal (Subp_Entity);
685 while Present (Actual) loop
686 if Is_Tag_Indeterminate (Actual)
687 and then Is_Controlling_Formal (Formal)
688 then
689 Propagate_Tag (Control, Actual);
690 end if;
691
692 Next_Actual (Actual);
693 Next_Formal (Formal);
694 end loop;
695
696 Check_Dispatching_Context;
697
698 else
699 -- The call is not dispatching, so check that there aren't any
700 -- tag-indeterminate abstract calls left.
701
702 Actual := First_Actual (N);
703 while Present (Actual) loop
704 if Is_Tag_Indeterminate (Actual) then
705
706 -- Function call case
707
708 if Nkind (Original_Node (Actual)) = N_Function_Call then
709 Func := Entity (Name (Original_Node (Actual)));
710
711 -- If the actual is an attribute then it can't be abstract
712 -- (the only current case of a tag-indeterminate attribute
713 -- is the stream Input attribute).
714
715 elsif
716 Nkind (Original_Node (Actual)) = N_Attribute_Reference
717 then
718 Func := Empty;
719
720 -- Only other possibility is a qualified expression whose
721 -- constituent expression is itself a call.
722
723 else
724 Func :=
725 Entity (Name
726 (Original_Node
727 (Expression (Original_Node (Actual)))));
728 end if;
729
730 if Present (Func) and then Is_Abstract_Subprogram (Func) then
731 Error_Msg_N
732 ("call to abstract function must be dispatching", N);
733 end if;
734 end if;
735
736 Next_Actual (Actual);
737 end loop;
738
739 Check_Dispatching_Context;
740 end if;
741
742 else
743 -- If dispatching on result, the enclosing call, if any, will
744 -- determine the controlling argument. Otherwise this is the
745 -- primitive operation of the root type.
746
747 Check_Dispatching_Context;
748 end if;
749 end Check_Dispatching_Call;
750
751 ---------------------------------
752 -- Check_Dispatching_Operation --
753 ---------------------------------
754
755 procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
756 Tagged_Type : Entity_Id;
757 Has_Dispatching_Parent : Boolean := False;
758 Body_Is_Last_Primitive : Boolean := False;
759 Ovr_Subp : Entity_Id := Empty;
760
761 begin
762 if not Ekind_In (Subp, E_Procedure, E_Function) then
763 return;
764 end if;
765
766 Set_Is_Dispatching_Operation (Subp, False);
767 Tagged_Type := Find_Dispatching_Type (Subp);
768
769 -- Ada 2005 (AI-345): Use the corresponding record (if available).
770 -- Required because primitives of concurrent types are be attached
771 -- to the corresponding record (not to the concurrent type).
772
773 if Ada_Version >= Ada_2005
774 and then Present (Tagged_Type)
775 and then Is_Concurrent_Type (Tagged_Type)
776 and then Present (Corresponding_Record_Type (Tagged_Type))
777 then
778 Tagged_Type := Corresponding_Record_Type (Tagged_Type);
779 end if;
780
781 -- (AI-345): The task body procedure is not a primitive of the tagged
782 -- type
783
784 if Present (Tagged_Type)
785 and then Is_Concurrent_Record_Type (Tagged_Type)
786 and then Present (Corresponding_Concurrent_Type (Tagged_Type))
787 and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
788 and then Subp = Get_Task_Body_Procedure
789 (Corresponding_Concurrent_Type (Tagged_Type))
790 then
791 return;
792 end if;
793
794 -- If Subp is derived from a dispatching operation then it should
795 -- always be treated as dispatching. In this case various checks
796 -- below will be bypassed. Makes sure that late declarations for
797 -- inherited private subprograms are treated as dispatching, even
798 -- if the associated tagged type is already frozen.
799
800 Has_Dispatching_Parent :=
801 Present (Alias (Subp))
802 and then Is_Dispatching_Operation (Alias (Subp));
803
804 if No (Tagged_Type) then
805
806 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
807 -- with an abstract interface type unless the interface acts as a
808 -- parent type in a derivation. If the interface type is a formal
809 -- type then the operation is not primitive and therefore legal.
810
811 declare
812 E : Entity_Id;
813 Typ : Entity_Id;
814
815 begin
816 E := First_Entity (Subp);
817 while Present (E) loop
818
819 -- For an access parameter, check designated type
820
821 if Ekind (Etype (E)) = E_Anonymous_Access_Type then
822 Typ := Designated_Type (Etype (E));
823 else
824 Typ := Etype (E);
825 end if;
826
827 if Comes_From_Source (Subp)
828 and then Is_Interface (Typ)
829 and then not Is_Class_Wide_Type (Typ)
830 and then not Is_Derived_Type (Typ)
831 and then not Is_Generic_Type (Typ)
832 and then not In_Instance
833 then
834 Error_Msg_N ("?declaration of& is too late!", Subp);
835 Error_Msg_NE -- CODEFIX??
836 ("\spec should appear immediately after declaration of &!",
837 Subp, Typ);
838 exit;
839 end if;
840
841 Next_Entity (E);
842 end loop;
843
844 -- In case of functions check also the result type
845
846 if Ekind (Subp) = E_Function then
847 if Is_Access_Type (Etype (Subp)) then
848 Typ := Designated_Type (Etype (Subp));
849 else
850 Typ := Etype (Subp);
851 end if;
852
853 -- The following should be better commented, especially since
854 -- we just added several new conditions here ???
855
856 if Comes_From_Source (Subp)
857 and then Is_Interface (Typ)
858 and then not Is_Class_Wide_Type (Typ)
859 and then not Is_Derived_Type (Typ)
860 and then not Is_Generic_Type (Typ)
861 and then not In_Instance
862 then
863 Error_Msg_N ("?declaration of& is too late!", Subp);
864 Error_Msg_NE
865 ("\spec should appear immediately after declaration of &!",
866 Subp, Typ);
867 end if;
868 end if;
869 end;
870
871 return;
872
873 -- The subprograms build internally after the freezing point (such as
874 -- init procs, interface thunks, type support subprograms, and Offset
875 -- to top functions for accessing interface components in variable
876 -- size tagged types) are not primitives.
877
878 elsif Is_Frozen (Tagged_Type)
879 and then not Comes_From_Source (Subp)
880 and then not Has_Dispatching_Parent
881 then
882 -- Complete decoration of internally built subprograms that override
883 -- a dispatching primitive. These entities correspond with the
884 -- following cases:
885
886 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
887 -- to override functions of nonabstract null extensions. These
888 -- primitives were added to the list of primitives of the tagged
889 -- type by Make_Controlling_Function_Wrappers. However, attribute
890 -- Is_Dispatching_Operation must be set to true.
891
892 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
893 -- primitives.
894
895 -- 3. Subprograms associated with stream attributes (built by
896 -- New_Stream_Subprogram)
897
898 if Present (Old_Subp)
899 and then Present (Overridden_Operation (Subp))
900 and then Is_Dispatching_Operation (Old_Subp)
901 then
902 pragma Assert
903 ((Ekind (Subp) = E_Function
904 and then Is_Dispatching_Operation (Old_Subp)
905 and then Is_Null_Extension (Base_Type (Etype (Subp))))
906 or else
907 (Ekind (Subp) = E_Procedure
908 and then Is_Dispatching_Operation (Old_Subp)
909 and then Present (Alias (Old_Subp))
910 and then Is_Null_Interface_Primitive
911 (Ultimate_Alias (Old_Subp)))
912 or else Get_TSS_Name (Subp) = TSS_Stream_Read
913 or else Get_TSS_Name (Subp) = TSS_Stream_Write);
914
915 Check_Controlling_Formals (Tagged_Type, Subp);
916 Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
917 Set_Is_Dispatching_Operation (Subp);
918 end if;
919
920 return;
921
922 -- The operation may be a child unit, whose scope is the defining
923 -- package, but which is not a primitive operation of the type.
924
925 elsif Is_Child_Unit (Subp) then
926 return;
927
928 -- If the subprogram is not defined in a package spec, the only case
929 -- where it can be a dispatching op is when it overrides an operation
930 -- before the freezing point of the type.
931
932 elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
933 or else In_Package_Body (Scope (Subp)))
934 and then not Has_Dispatching_Parent
935 then
936 if not Comes_From_Source (Subp)
937 or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
938 then
939 null;
940
941 -- If the type is already frozen, the overriding is not allowed
942 -- except when Old_Subp is not a dispatching operation (which can
943 -- occur when Old_Subp was inherited by an untagged type). However,
944 -- a body with no previous spec freezes the type *after* its
945 -- declaration, and therefore is a legal overriding (unless the type
946 -- has already been frozen). Only the first such body is legal.
947
948 elsif Present (Old_Subp)
949 and then Is_Dispatching_Operation (Old_Subp)
950 then
951 if Comes_From_Source (Subp)
952 and then
953 (Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
954 or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
955 then
956 declare
957 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
958 Decl_Item : Node_Id;
959
960 begin
961 -- ??? The checks here for whether the type has been
962 -- frozen prior to the new body are not complete. It's
963 -- not simple to check frozenness at this point since
964 -- the body has already caused the type to be prematurely
965 -- frozen in Analyze_Declarations, but we're forced to
966 -- recheck this here because of the odd rule interpretation
967 -- that allows the overriding if the type wasn't frozen
968 -- prior to the body. The freezing action should probably
969 -- be delayed until after the spec is seen, but that's
970 -- a tricky change to the delicate freezing code.
971
972 -- Look at each declaration following the type up until the
973 -- new subprogram body. If any of the declarations is a body
974 -- then the type has been frozen already so the overriding
975 -- primitive is illegal.
976
977 Decl_Item := Next (Parent (Tagged_Type));
978 while Present (Decl_Item)
979 and then (Decl_Item /= Subp_Body)
980 loop
981 if Comes_From_Source (Decl_Item)
982 and then (Nkind (Decl_Item) in N_Proper_Body
983 or else Nkind (Decl_Item) in N_Body_Stub)
984 then
985 Error_Msg_N ("overriding of& is too late!", Subp);
986 Error_Msg_N
987 ("\spec should appear immediately after the type!",
988 Subp);
989 exit;
990 end if;
991
992 Next (Decl_Item);
993 end loop;
994
995 -- If the subprogram doesn't follow in the list of
996 -- declarations including the type then the type has
997 -- definitely been frozen already and the body is illegal.
998
999 if No (Decl_Item) then
1000 Error_Msg_N ("overriding of& is too late!", Subp);
1001 Error_Msg_N
1002 ("\spec should appear immediately after the type!",
1003 Subp);
1004
1005 elsif Is_Frozen (Subp) then
1006
1007 -- The subprogram body declares a primitive operation.
1008 -- if the subprogram is already frozen, we must update
1009 -- its dispatching information explicitly here. The
1010 -- information is taken from the overridden subprogram.
1011 -- We must also generate a cross-reference entry because
1012 -- references to other primitives were already created
1013 -- when type was frozen.
1014
1015 Body_Is_Last_Primitive := True;
1016
1017 if Present (DTC_Entity (Old_Subp)) then
1018 Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
1019 Set_DT_Position (Subp, DT_Position (Old_Subp));
1020
1021 if not Restriction_Active (No_Dispatching_Calls) then
1022 if Building_Static_DT (Tagged_Type) then
1023
1024 -- If the static dispatch table has not been
1025 -- built then there is nothing else to do now;
1026 -- otherwise we notify that we cannot build the
1027 -- static dispatch table.
1028
1029 if Has_Dispatch_Table (Tagged_Type) then
1030 Error_Msg_N
1031 ("overriding of& is too late for building" &
1032 " static dispatch tables!", Subp);
1033 Error_Msg_N
1034 ("\spec should appear immediately after" &
1035 " the type!", Subp);
1036 end if;
1037
1038 -- No code required to register primitives in VM
1039 -- targets
1040
1041 elsif VM_Target /= No_VM then
1042 null;
1043
1044 else
1045 Insert_Actions_After (Subp_Body,
1046 Register_Primitive (Sloc (Subp_Body),
1047 Prim => Subp));
1048 end if;
1049
1050 -- Indicate that this is an overriding operation,
1051 -- and replace the overridden entry in the list of
1052 -- primitive operations, which is used for xref
1053 -- generation subsequently.
1054
1055 Generate_Reference (Tagged_Type, Subp, 'P', False);
1056 Override_Dispatching_Operation
1057 (Tagged_Type, Old_Subp, Subp);
1058 end if;
1059 end if;
1060 end if;
1061 end;
1062
1063 else
1064 Error_Msg_N ("overriding of& is too late!", Subp);
1065 Error_Msg_N
1066 ("\subprogram spec should appear immediately after the type!",
1067 Subp);
1068 end if;
1069
1070 -- If the type is not frozen yet and we are not in the overriding
1071 -- case it looks suspiciously like an attempt to define a primitive
1072 -- operation, which requires the declaration to be in a package spec
1073 -- (3.2.3(6)). Only report cases where the type and subprogram are
1074 -- in the same declaration list (by checking the enclosing parent
1075 -- declarations), to avoid spurious warnings on subprograms in
1076 -- instance bodies when the type is declared in the instance spec but
1077 -- hasn't been frozen by the instance body.
1078
1079 elsif not Is_Frozen (Tagged_Type)
1080 and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
1081 then
1082 Error_Msg_N
1083 ("?not dispatching (must be defined in a package spec)", Subp);
1084 return;
1085
1086 -- When the type is frozen, it is legitimate to define a new
1087 -- non-primitive operation.
1088
1089 else
1090 return;
1091 end if;
1092
1093 -- Now, we are sure that the scope is a package spec. If the subprogram
1094 -- is declared after the freezing point of the type that's an error
1095
1096 elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
1097 Error_Msg_N ("this primitive operation is declared too late", Subp);
1098 Error_Msg_NE
1099 ("?no primitive operations for& after this line",
1100 Freeze_Node (Tagged_Type),
1101 Tagged_Type);
1102 return;
1103 end if;
1104
1105 Check_Controlling_Formals (Tagged_Type, Subp);
1106
1107 Ovr_Subp := Old_Subp;
1108
1109 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1110 -- overridden by Subp
1111
1112 if No (Ovr_Subp)
1113 and then Ada_Version >= Ada_2012
1114 then
1115 Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
1116 end if;
1117
1118 -- Now it should be a correct primitive operation, put it in the list
1119
1120 if Present (Ovr_Subp) then
1121
1122 -- If the type has interfaces we complete this check after we set
1123 -- attribute Is_Dispatching_Operation.
1124
1125 Check_Subtype_Conformant (Subp, Ovr_Subp);
1126
1127 if (Chars (Subp) = Name_Initialize
1128 or else Chars (Subp) = Name_Adjust
1129 or else Chars (Subp) = Name_Finalize)
1130 and then Is_Controlled (Tagged_Type)
1131 and then not Is_Visibly_Controlled (Tagged_Type)
1132 then
1133 Set_Overridden_Operation (Subp, Empty);
1134
1135 -- If the subprogram specification carries an overriding
1136 -- indicator, no need for the warning: it is either redundant,
1137 -- or else an error will be reported.
1138
1139 if Nkind (Parent (Subp)) = N_Procedure_Specification
1140 and then
1141 (Must_Override (Parent (Subp))
1142 or else Must_Not_Override (Parent (Subp)))
1143 then
1144 null;
1145
1146 -- Here we need the warning
1147
1148 else
1149 Error_Msg_NE
1150 ("operation does not override inherited&?", Subp, Subp);
1151 end if;
1152
1153 else
1154 Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
1155
1156 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1157 -- that covers abstract interface subprograms we must register it
1158 -- in all the secondary dispatch tables associated with abstract
1159 -- interfaces. We do this now only if not building static tables,
1160 -- nor when the expander is inactive (we avoid trying to register
1161 -- primitives in semantics-only mode, since the type may not have
1162 -- an associated dispatch table). Otherwise the patch code is
1163 -- emitted after those tables are built, to prevent access before
1164 -- elaboration in gigi.
1165
1166 if Body_Is_Last_Primitive and then Full_Expander_Active then
1167 declare
1168 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1169 Elmt : Elmt_Id;
1170 Prim : Node_Id;
1171
1172 begin
1173 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
1174 while Present (Elmt) loop
1175 Prim := Node (Elmt);
1176
1177 -- No code required to register primitives in VM targets
1178
1179 if Present (Alias (Prim))
1180 and then Present (Interface_Alias (Prim))
1181 and then Alias (Prim) = Subp
1182 and then not Building_Static_DT (Tagged_Type)
1183 and then VM_Target = No_VM
1184 then
1185 Insert_Actions_After (Subp_Body,
1186 Register_Primitive (Sloc (Subp_Body), Prim => Prim));
1187 end if;
1188
1189 Next_Elmt (Elmt);
1190 end loop;
1191
1192 -- Redisplay the contents of the updated dispatch table
1193
1194 if Debug_Flag_ZZ then
1195 Write_Str ("Late overriding: ");
1196 Write_DT (Tagged_Type);
1197 end if;
1198 end;
1199 end if;
1200 end if;
1201
1202 -- If the tagged type is a concurrent type then we must be compiling
1203 -- with no code generation (we are either compiling a generic unit or
1204 -- compiling under -gnatc mode) because we have previously tested that
1205 -- no serious errors has been reported. In this case we do not add the
1206 -- primitive to the list of primitives of Tagged_Type but we leave the
1207 -- primitive decorated as a dispatching operation to be able to analyze
1208 -- and report errors associated with the Object.Operation notation.
1209
1210 elsif Is_Concurrent_Type (Tagged_Type) then
1211 pragma Assert (not Expander_Active);
1212 null;
1213
1214 -- If no old subprogram, then we add this as a dispatching operation,
1215 -- but we avoid doing this if an error was posted, to prevent annoying
1216 -- cascaded errors.
1217
1218 elsif not Error_Posted (Subp) then
1219 Add_Dispatching_Operation (Tagged_Type, Subp);
1220 end if;
1221
1222 Set_Is_Dispatching_Operation (Subp, True);
1223
1224 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1225 -- subtype conformance against all the interfaces covered by this
1226 -- primitive.
1227
1228 if Present (Ovr_Subp)
1229 and then Has_Interfaces (Tagged_Type)
1230 then
1231 declare
1232 Ifaces_List : Elist_Id;
1233 Iface_Elmt : Elmt_Id;
1234 Iface_Prim_Elmt : Elmt_Id;
1235 Iface_Prim : Entity_Id;
1236 Ret_Typ : Entity_Id;
1237
1238 begin
1239 Collect_Interfaces (Tagged_Type, Ifaces_List);
1240
1241 Iface_Elmt := First_Elmt (Ifaces_List);
1242 while Present (Iface_Elmt) loop
1243 if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
1244 Iface_Prim_Elmt :=
1245 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
1246 while Present (Iface_Prim_Elmt) loop
1247 Iface_Prim := Node (Iface_Prim_Elmt);
1248
1249 if Is_Interface_Conformant
1250 (Tagged_Type, Iface_Prim, Subp)
1251 then
1252 -- Handle procedures, functions whose return type
1253 -- matches, or functions not returning interfaces
1254
1255 if Ekind (Subp) = E_Procedure
1256 or else Etype (Iface_Prim) = Etype (Subp)
1257 or else not Is_Interface (Etype (Iface_Prim))
1258 then
1259 Check_Subtype_Conformant
1260 (New_Id => Subp,
1261 Old_Id => Iface_Prim,
1262 Err_Loc => Subp,
1263 Skip_Controlling_Formals => True);
1264
1265 -- Handle functions returning interfaces
1266
1267 elsif Implements_Interface
1268 (Etype (Subp), Etype (Iface_Prim))
1269 then
1270 -- Temporarily force both entities to return the
1271 -- same type. Required because Subtype_Conformant
1272 -- does not handle this case.
1273
1274 Ret_Typ := Etype (Iface_Prim);
1275 Set_Etype (Iface_Prim, Etype (Subp));
1276
1277 Check_Subtype_Conformant
1278 (New_Id => Subp,
1279 Old_Id => Iface_Prim,
1280 Err_Loc => Subp,
1281 Skip_Controlling_Formals => True);
1282
1283 Set_Etype (Iface_Prim, Ret_Typ);
1284 end if;
1285 end if;
1286
1287 Next_Elmt (Iface_Prim_Elmt);
1288 end loop;
1289 end if;
1290
1291 Next_Elmt (Iface_Elmt);
1292 end loop;
1293 end;
1294 end if;
1295
1296 if not Body_Is_Last_Primitive then
1297 Set_DT_Position (Subp, No_Uint);
1298
1299 elsif Has_Controlled_Component (Tagged_Type)
1300 and then
1301 (Chars (Subp) = Name_Initialize or else
1302 Chars (Subp) = Name_Adjust or else
1303 Chars (Subp) = Name_Finalize or else
1304 Chars (Subp) = Name_Finalize_Address)
1305 then
1306 declare
1307 F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
1308 Decl : Node_Id;
1309 Old_P : Entity_Id;
1310 Old_Bod : Node_Id;
1311 Old_Spec : Entity_Id;
1312
1313 C_Names : constant array (1 .. 4) of Name_Id :=
1314 (Name_Initialize,
1315 Name_Adjust,
1316 Name_Finalize,
1317 Name_Finalize_Address);
1318
1319 D_Names : constant array (1 .. 4) of TSS_Name_Type :=
1320 (TSS_Deep_Initialize,
1321 TSS_Deep_Adjust,
1322 TSS_Deep_Finalize,
1323 TSS_Finalize_Address);
1324
1325 begin
1326 -- Remove previous controlled function which was constructed and
1327 -- analyzed when the type was frozen. This requires removing the
1328 -- body of the redefined primitive, as well as its specification
1329 -- if needed (there is no spec created for Deep_Initialize, see
1330 -- exp_ch3.adb). We must also dismantle the exception information
1331 -- that may have been generated for it when front end zero-cost
1332 -- tables are enabled.
1333
1334 for J in D_Names'Range loop
1335 Old_P := TSS (Tagged_Type, D_Names (J));
1336
1337 if Present (Old_P)
1338 and then Chars (Subp) = C_Names (J)
1339 then
1340 Old_Bod := Unit_Declaration_Node (Old_P);
1341 Remove (Old_Bod);
1342 Set_Is_Eliminated (Old_P);
1343 Set_Scope (Old_P, Scope (Current_Scope));
1344
1345 if Nkind (Old_Bod) = N_Subprogram_Body
1346 and then Present (Corresponding_Spec (Old_Bod))
1347 then
1348 Old_Spec := Corresponding_Spec (Old_Bod);
1349 Set_Has_Completion (Old_Spec, False);
1350 end if;
1351 end if;
1352 end loop;
1353
1354 Build_Late_Proc (Tagged_Type, Chars (Subp));
1355
1356 -- The new operation is added to the actions of the freeze node
1357 -- for the type, but this node has already been analyzed, so we
1358 -- must retrieve and analyze explicitly the new body.
1359
1360 if Present (F_Node)
1361 and then Present (Actions (F_Node))
1362 then
1363 Decl := Last (Actions (F_Node));
1364 Analyze (Decl);
1365 end if;
1366 end;
1367 end if;
1368 end Check_Dispatching_Operation;
1369
1370 ------------------------------------------
1371 -- Check_Operation_From_Incomplete_Type --
1372 ------------------------------------------
1373
1374 procedure Check_Operation_From_Incomplete_Type
1375 (Subp : Entity_Id;
1376 Typ : Entity_Id)
1377 is
1378 Full : constant Entity_Id := Full_View (Typ);
1379 Parent_Typ : constant Entity_Id := Etype (Full);
1380 Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
1381 New_Prim : constant Elist_Id := Primitive_Operations (Full);
1382 Op1, Op2 : Elmt_Id;
1383 Prev : Elmt_Id := No_Elmt;
1384
1385 function Derives_From (Parent_Subp : Entity_Id) return Boolean;
1386 -- Check that Subp has profile of an operation derived from Parent_Subp.
1387 -- Subp must have a parameter or result type that is Typ or an access
1388 -- parameter or access result type that designates Typ.
1389
1390 ------------------
1391 -- Derives_From --
1392 ------------------
1393
1394 function Derives_From (Parent_Subp : Entity_Id) return Boolean is
1395 F1, F2 : Entity_Id;
1396
1397 begin
1398 if Chars (Parent_Subp) /= Chars (Subp) then
1399 return False;
1400 end if;
1401
1402 -- Check that the type of controlling formals is derived from the
1403 -- parent subprogram's controlling formal type (or designated type
1404 -- if the formal type is an anonymous access type).
1405
1406 F1 := First_Formal (Parent_Subp);
1407 F2 := First_Formal (Subp);
1408 while Present (F1) and then Present (F2) loop
1409 if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
1410 if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
1411 return False;
1412 elsif Designated_Type (Etype (F1)) = Parent_Typ
1413 and then Designated_Type (Etype (F2)) /= Full
1414 then
1415 return False;
1416 end if;
1417
1418 elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
1419 return False;
1420
1421 elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
1422 return False;
1423 end if;
1424
1425 Next_Formal (F1);
1426 Next_Formal (F2);
1427 end loop;
1428
1429 -- Check that a controlling result type is derived from the parent
1430 -- subprogram's result type (or designated type if the result type
1431 -- is an anonymous access type).
1432
1433 if Ekind (Parent_Subp) = E_Function then
1434 if Ekind (Subp) /= E_Function then
1435 return False;
1436
1437 elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
1438 if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
1439 return False;
1440
1441 elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
1442 and then Designated_Type (Etype (Subp)) /= Full
1443 then
1444 return False;
1445 end if;
1446
1447 elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
1448 return False;
1449
1450 elsif Etype (Parent_Subp) = Parent_Typ
1451 and then Etype (Subp) /= Full
1452 then
1453 return False;
1454 end if;
1455
1456 elsif Ekind (Subp) = E_Function then
1457 return False;
1458 end if;
1459
1460 return No (F1) and then No (F2);
1461 end Derives_From;
1462
1463 -- Start of processing for Check_Operation_From_Incomplete_Type
1464
1465 begin
1466 -- The operation may override an inherited one, or may be a new one
1467 -- altogether. The inherited operation will have been hidden by the
1468 -- current one at the point of the type derivation, so it does not
1469 -- appear in the list of primitive operations of the type. We have to
1470 -- find the proper place of insertion in the list of primitive opera-
1471 -- tions by iterating over the list for the parent type.
1472
1473 Op1 := First_Elmt (Old_Prim);
1474 Op2 := First_Elmt (New_Prim);
1475 while Present (Op1) and then Present (Op2) loop
1476 if Derives_From (Node (Op1)) then
1477 if No (Prev) then
1478
1479 -- Avoid adding it to the list of primitives if already there!
1480
1481 if Node (Op2) /= Subp then
1482 Prepend_Elmt (Subp, New_Prim);
1483 end if;
1484
1485 else
1486 Insert_Elmt_After (Subp, Prev);
1487 end if;
1488
1489 return;
1490 end if;
1491
1492 Prev := Op2;
1493 Next_Elmt (Op1);
1494 Next_Elmt (Op2);
1495 end loop;
1496
1497 -- Operation is a new primitive
1498
1499 Append_Elmt (Subp, New_Prim);
1500 end Check_Operation_From_Incomplete_Type;
1501
1502 ---------------------------------------
1503 -- Check_Operation_From_Private_View --
1504 ---------------------------------------
1505
1506 procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
1507 Tagged_Type : Entity_Id;
1508
1509 begin
1510 if Is_Dispatching_Operation (Alias (Subp)) then
1511 Set_Scope (Subp, Current_Scope);
1512 Tagged_Type := Find_Dispatching_Type (Subp);
1513
1514 -- Add Old_Subp to primitive operations if not already present
1515
1516 if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
1517 Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
1518
1519 -- If Old_Subp isn't already marked as dispatching then this is
1520 -- the case of an operation of an untagged private type fulfilled
1521 -- by a tagged type that overrides an inherited dispatching
1522 -- operation, so we set the necessary dispatching attributes here.
1523
1524 if not Is_Dispatching_Operation (Old_Subp) then
1525
1526 -- If the untagged type has no discriminants, and the full
1527 -- view is constrained, there will be a spurious mismatch of
1528 -- subtypes on the controlling arguments, because the tagged
1529 -- type is the internal base type introduced in the derivation.
1530 -- Use the original type to verify conformance, rather than the
1531 -- base type.
1532
1533 if not Comes_From_Source (Tagged_Type)
1534 and then Has_Discriminants (Tagged_Type)
1535 then
1536 declare
1537 Formal : Entity_Id;
1538
1539 begin
1540 Formal := First_Formal (Old_Subp);
1541 while Present (Formal) loop
1542 if Tagged_Type = Base_Type (Etype (Formal)) then
1543 Tagged_Type := Etype (Formal);
1544 end if;
1545
1546 Next_Formal (Formal);
1547 end loop;
1548 end;
1549
1550 if Tagged_Type = Base_Type (Etype (Old_Subp)) then
1551 Tagged_Type := Etype (Old_Subp);
1552 end if;
1553 end if;
1554
1555 Check_Controlling_Formals (Tagged_Type, Old_Subp);
1556 Set_Is_Dispatching_Operation (Old_Subp, True);
1557 Set_DT_Position (Old_Subp, No_Uint);
1558 end if;
1559
1560 -- If the old subprogram is an explicit renaming of some other
1561 -- entity, it is not overridden by the inherited subprogram.
1562 -- Otherwise, update its alias and other attributes.
1563
1564 if Present (Alias (Old_Subp))
1565 and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
1566 N_Subprogram_Renaming_Declaration
1567 then
1568 Set_Alias (Old_Subp, Alias (Subp));
1569
1570 -- The derived subprogram should inherit the abstractness
1571 -- of the parent subprogram (except in the case of a function
1572 -- returning the type). This sets the abstractness properly
1573 -- for cases where a private extension may have inherited
1574 -- an abstract operation, but the full type is derived from
1575 -- a descendant type and inherits a nonabstract version.
1576
1577 if Etype (Subp) /= Tagged_Type then
1578 Set_Is_Abstract_Subprogram
1579 (Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
1580 end if;
1581 end if;
1582 end if;
1583 end if;
1584 end Check_Operation_From_Private_View;
1585
1586 --------------------------
1587 -- Find_Controlling_Arg --
1588 --------------------------
1589
1590 function Find_Controlling_Arg (N : Node_Id) return Node_Id is
1591 Orig_Node : constant Node_Id := Original_Node (N);
1592 Typ : Entity_Id;
1593
1594 begin
1595 if Nkind (Orig_Node) = N_Qualified_Expression then
1596 return Find_Controlling_Arg (Expression (Orig_Node));
1597 end if;
1598
1599 -- Dispatching on result case. If expansion is disabled, the node still
1600 -- has the structure of a function call. However, if the function name
1601 -- is an operator and the call was given in infix form, the original
1602 -- node has no controlling result and we must examine the current node.
1603
1604 if Nkind (N) = N_Function_Call
1605 and then Present (Controlling_Argument (N))
1606 and then Has_Controlling_Result (Entity (Name (N)))
1607 then
1608 return Controlling_Argument (N);
1609
1610 -- If expansion is enabled, the call may have been transformed into
1611 -- an indirect call, and we need to recover the original node.
1612
1613 elsif Nkind (Orig_Node) = N_Function_Call
1614 and then Present (Controlling_Argument (Orig_Node))
1615 and then Has_Controlling_Result (Entity (Name (Orig_Node)))
1616 then
1617 return Controlling_Argument (Orig_Node);
1618
1619 -- Normal case
1620
1621 elsif Is_Controlling_Actual (N)
1622 or else
1623 (Nkind (Parent (N)) = N_Qualified_Expression
1624 and then Is_Controlling_Actual (Parent (N)))
1625 then
1626 Typ := Etype (N);
1627
1628 if Is_Access_Type (Typ) then
1629
1630 -- In the case of an Access attribute, use the type of the prefix,
1631 -- since in the case of an actual for an access parameter, the
1632 -- attribute's type may be of a specific designated type, even
1633 -- though the prefix type is class-wide.
1634
1635 if Nkind (N) = N_Attribute_Reference then
1636 Typ := Etype (Prefix (N));
1637
1638 -- An allocator is dispatching if the type of qualified expression
1639 -- is class_wide, in which case this is the controlling type.
1640
1641 elsif Nkind (Orig_Node) = N_Allocator
1642 and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
1643 then
1644 Typ := Etype (Expression (Orig_Node));
1645 else
1646 Typ := Designated_Type (Typ);
1647 end if;
1648 end if;
1649
1650 if Is_Class_Wide_Type (Typ)
1651 or else
1652 (Nkind (Parent (N)) = N_Qualified_Expression
1653 and then Is_Access_Type (Etype (N))
1654 and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
1655 then
1656 return N;
1657 end if;
1658 end if;
1659
1660 return Empty;
1661 end Find_Controlling_Arg;
1662
1663 ---------------------------
1664 -- Find_Dispatching_Type --
1665 ---------------------------
1666
1667 function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
1668 A_Formal : Entity_Id;
1669 Formal : Entity_Id;
1670 Ctrl_Type : Entity_Id;
1671
1672 begin
1673 if Present (DTC_Entity (Subp)) then
1674 return Scope (DTC_Entity (Subp));
1675
1676 -- For subprograms internally generated by derivations of tagged types
1677 -- use the alias subprogram as a reference to locate the dispatching
1678 -- type of Subp.
1679
1680 elsif not Comes_From_Source (Subp)
1681 and then Present (Alias (Subp))
1682 and then Is_Dispatching_Operation (Alias (Subp))
1683 then
1684 if Ekind (Alias (Subp)) = E_Function
1685 and then Has_Controlling_Result (Alias (Subp))
1686 then
1687 return Check_Controlling_Type (Etype (Subp), Subp);
1688
1689 else
1690 Formal := First_Formal (Subp);
1691 A_Formal := First_Formal (Alias (Subp));
1692 while Present (A_Formal) loop
1693 if Is_Controlling_Formal (A_Formal) then
1694 return Check_Controlling_Type (Etype (Formal), Subp);
1695 end if;
1696
1697 Next_Formal (Formal);
1698 Next_Formal (A_Formal);
1699 end loop;
1700
1701 pragma Assert (False);
1702 return Empty;
1703 end if;
1704
1705 -- General case
1706
1707 else
1708 Formal := First_Formal (Subp);
1709 while Present (Formal) loop
1710 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
1711
1712 if Present (Ctrl_Type) then
1713 return Ctrl_Type;
1714 end if;
1715
1716 Next_Formal (Formal);
1717 end loop;
1718
1719 -- The subprogram may also be dispatching on result
1720
1721 if Present (Etype (Subp)) then
1722 return Check_Controlling_Type (Etype (Subp), Subp);
1723 end if;
1724 end if;
1725
1726 pragma Assert (not Is_Dispatching_Operation (Subp));
1727 return Empty;
1728 end Find_Dispatching_Type;
1729
1730 --------------------------------------
1731 -- Find_Hidden_Overridden_Primitive --
1732 --------------------------------------
1733
1734 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
1735 is
1736 Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
1737 Elmt : Elmt_Id;
1738 Orig_Prim : Entity_Id;
1739 Prim : Entity_Id;
1740 Vis_List : Elist_Id;
1741
1742 begin
1743 -- This Ada 2012 rule is valid only for type extensions or private
1744 -- extensions.
1745
1746 if No (Tag_Typ)
1747 or else not Is_Record_Type (Tag_Typ)
1748 or else Etype (Tag_Typ) = Tag_Typ
1749 then
1750 return Empty;
1751 end if;
1752
1753 -- Collect the list of visible ancestor of the tagged type
1754
1755 Vis_List := Visible_Ancestors (Tag_Typ);
1756
1757 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
1758 while Present (Elmt) loop
1759 Prim := Node (Elmt);
1760
1761 -- Find an inherited hidden dispatching primitive with the name of S
1762 -- and a type-conformant profile.
1763
1764 if Present (Alias (Prim))
1765 and then Is_Hidden (Alias (Prim))
1766 and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
1767 and then Primitive_Names_Match (S, Prim)
1768 and then Type_Conformant (S, Prim)
1769 then
1770 declare
1771 Vis_Ancestor : Elmt_Id;
1772 Elmt : Elmt_Id;
1773
1774 begin
1775 -- The original corresponding operation of Prim must be an
1776 -- operation of a visible ancestor of the dispatching type S,
1777 -- and the original corresponding operation of S2 must be
1778 -- visible.
1779
1780 Orig_Prim := Original_Corresponding_Operation (Prim);
1781
1782 if Orig_Prim /= Prim
1783 and then Is_Immediately_Visible (Orig_Prim)
1784 then
1785 Vis_Ancestor := First_Elmt (Vis_List);
1786 while Present (Vis_Ancestor) loop
1787 Elmt :=
1788 First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
1789 while Present (Elmt) loop
1790 if Node (Elmt) = Orig_Prim then
1791 Set_Overridden_Operation (S, Prim);
1792 Set_Alias (Prim, Orig_Prim);
1793 return Prim;
1794 end if;
1795
1796 Next_Elmt (Elmt);
1797 end loop;
1798
1799 Next_Elmt (Vis_Ancestor);
1800 end loop;
1801 end if;
1802 end;
1803 end if;
1804
1805 Next_Elmt (Elmt);
1806 end loop;
1807
1808 return Empty;
1809 end Find_Hidden_Overridden_Primitive;
1810
1811 ---------------------------------------
1812 -- Find_Primitive_Covering_Interface --
1813 ---------------------------------------
1814
1815 function Find_Primitive_Covering_Interface
1816 (Tagged_Type : Entity_Id;
1817 Iface_Prim : Entity_Id) return Entity_Id
1818 is
1819 E : Entity_Id;
1820 El : Elmt_Id;
1821
1822 begin
1823 pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
1824 or else (Present (Alias (Iface_Prim))
1825 and then
1826 Is_Interface
1827 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
1828
1829 -- Search in the homonym chain. Done to speed up locating visible
1830 -- entities and required to catch primitives associated with the partial
1831 -- view of private types when processing the corresponding full view.
1832
1833 E := Current_Entity (Iface_Prim);
1834 while Present (E) loop
1835 if Is_Subprogram (E)
1836 and then Is_Dispatching_Operation (E)
1837 and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
1838 then
1839 return E;
1840 end if;
1841
1842 E := Homonym (E);
1843 end loop;
1844
1845 -- Search in the list of primitives of the type. Required to locate the
1846 -- covering primitive if the covering primitive is not visible (for
1847 -- example, non-visible inherited primitive of private type).
1848
1849 El := First_Elmt (Primitive_Operations (Tagged_Type));
1850 while Present (El) loop
1851 E := Node (El);
1852
1853 -- Keep separate the management of internal entities that link
1854 -- primitives with interface primitives from tagged type primitives.
1855
1856 if No (Interface_Alias (E)) then
1857 if Present (Alias (E)) then
1858
1859 -- This interface primitive has not been covered yet
1860
1861 if Alias (E) = Iface_Prim then
1862 return E;
1863
1864 -- The covering primitive was inherited
1865
1866 elsif Overridden_Operation (Ultimate_Alias (E))
1867 = Iface_Prim
1868 then
1869 return E;
1870 end if;
1871 end if;
1872
1873 -- Check if E covers the interface primitive (includes case in
1874 -- which E is an inherited private primitive).
1875
1876 if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
1877 return E;
1878 end if;
1879
1880 -- Use the internal entity that links the interface primitive with
1881 -- the covering primitive to locate the entity.
1882
1883 elsif Interface_Alias (E) = Iface_Prim then
1884 return Alias (E);
1885 end if;
1886
1887 Next_Elmt (El);
1888 end loop;
1889
1890 -- Not found
1891
1892 return Empty;
1893 end Find_Primitive_Covering_Interface;
1894
1895 ---------------------------
1896 -- Inherited_Subprograms --
1897 ---------------------------
1898
1899 function Inherited_Subprograms (S : Entity_Id) return Subprogram_List is
1900 Result : Subprogram_List (1 .. 6000);
1901 -- 6000 here is intended to be infinity. We could use an expandable
1902 -- table, but it would be awfully heavy, and there is no way that we
1903 -- could reasonably exceed this value.
1904
1905 N : Int := 0;
1906 -- Number of entries in Result
1907
1908 Parent_Op : Entity_Id;
1909 -- Traverses the Overridden_Operation chain
1910
1911 procedure Store_IS (E : Entity_Id);
1912 -- Stores E in Result if not already stored
1913
1914 --------------
1915 -- Store_IS --
1916 --------------
1917
1918 procedure Store_IS (E : Entity_Id) is
1919 begin
1920 for J in 1 .. N loop
1921 if E = Result (J) then
1922 return;
1923 end if;
1924 end loop;
1925
1926 N := N + 1;
1927 Result (N) := E;
1928 end Store_IS;
1929
1930 -- Start of processing for Inherited_Subprograms
1931
1932 begin
1933 if Present (S) and then Is_Dispatching_Operation (S) then
1934
1935 -- Deal with direct inheritance
1936
1937 Parent_Op := S;
1938 loop
1939 Parent_Op := Overridden_Operation (Parent_Op);
1940 exit when No (Parent_Op);
1941
1942 if Is_Subprogram (Parent_Op)
1943 or else Is_Generic_Subprogram (Parent_Op)
1944 then
1945 Store_IS (Parent_Op);
1946 end if;
1947 end loop;
1948
1949 -- Now deal with interfaces
1950
1951 declare
1952 Tag_Typ : Entity_Id;
1953 Prim : Entity_Id;
1954 Elmt : Elmt_Id;
1955
1956 begin
1957 Tag_Typ := Find_Dispatching_Type (S);
1958
1959 if Is_Concurrent_Type (Tag_Typ) then
1960 Tag_Typ := Corresponding_Record_Type (Tag_Typ);
1961 end if;
1962
1963 -- Search primitive operations of dispatching type
1964
1965 if Present (Tag_Typ)
1966 and then Present (Primitive_Operations (Tag_Typ))
1967 then
1968 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
1969 while Present (Elmt) loop
1970 Prim := Node (Elmt);
1971
1972 -- The following test eliminates some odd cases in which
1973 -- Ekind (Prim) is Void, to be investigated further ???
1974
1975 if not (Is_Subprogram (Prim)
1976 or else
1977 Is_Generic_Subprogram (Prim))
1978 then
1979 null;
1980
1981 -- For [generic] subprogram, look at interface alias
1982
1983 elsif Present (Interface_Alias (Prim))
1984 and then Alias (Prim) = S
1985 then
1986 -- We have found a primitive covered by S
1987
1988 Store_IS (Interface_Alias (Prim));
1989 end if;
1990
1991 Next_Elmt (Elmt);
1992 end loop;
1993 end if;
1994 end;
1995 end if;
1996
1997 return Result (1 .. N);
1998 end Inherited_Subprograms;
1999
2000 ---------------------------
2001 -- Is_Dynamically_Tagged --
2002 ---------------------------
2003
2004 function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
2005 begin
2006 if Nkind (N) = N_Error then
2007 return False;
2008 else
2009 return Find_Controlling_Arg (N) /= Empty;
2010 end if;
2011 end Is_Dynamically_Tagged;
2012
2013 ---------------------------------
2014 -- Is_Null_Interface_Primitive --
2015 ---------------------------------
2016
2017 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
2018 begin
2019 return Comes_From_Source (E)
2020 and then Is_Dispatching_Operation (E)
2021 and then Ekind (E) = E_Procedure
2022 and then Null_Present (Parent (E))
2023 and then Is_Interface (Find_Dispatching_Type (E));
2024 end Is_Null_Interface_Primitive;
2025
2026 --------------------------
2027 -- Is_Tag_Indeterminate --
2028 --------------------------
2029
2030 function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
2031 Nam : Entity_Id;
2032 Actual : Node_Id;
2033 Orig_Node : constant Node_Id := Original_Node (N);
2034
2035 begin
2036 if Nkind (Orig_Node) = N_Function_Call
2037 and then Is_Entity_Name (Name (Orig_Node))
2038 then
2039 Nam := Entity (Name (Orig_Node));
2040
2041 if not Has_Controlling_Result (Nam) then
2042 return False;
2043
2044 -- The function may have a controlling result, but if the return type
2045 -- is not visibly tagged, then this is not tag-indeterminate.
2046
2047 elsif Is_Access_Type (Etype (Nam))
2048 and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
2049 then
2050 return False;
2051
2052 -- An explicit dereference means that the call has already been
2053 -- expanded and there is no tag to propagate.
2054
2055 elsif Nkind (N) = N_Explicit_Dereference then
2056 return False;
2057
2058 -- If there are no actuals, the call is tag-indeterminate
2059
2060 elsif No (Parameter_Associations (Orig_Node)) then
2061 return True;
2062
2063 else
2064 Actual := First_Actual (Orig_Node);
2065 while Present (Actual) loop
2066 if Is_Controlling_Actual (Actual)
2067 and then not Is_Tag_Indeterminate (Actual)
2068 then
2069 -- One operand is dispatching
2070
2071 return False;
2072 end if;
2073
2074 Next_Actual (Actual);
2075 end loop;
2076
2077 return True;
2078 end if;
2079
2080 elsif Nkind (Orig_Node) = N_Qualified_Expression then
2081 return Is_Tag_Indeterminate (Expression (Orig_Node));
2082
2083 -- Case of a call to the Input attribute (possibly rewritten), which is
2084 -- always tag-indeterminate except when its prefix is a Class attribute.
2085
2086 elsif Nkind (Orig_Node) = N_Attribute_Reference
2087 and then
2088 Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
2089 and then
2090 Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
2091 then
2092 return True;
2093
2094 -- In Ada 2005, a function that returns an anonymous access type can be
2095 -- dispatching, and the dereference of a call to such a function can
2096 -- also be tag-indeterminate if the call itself is.
2097
2098 elsif Nkind (Orig_Node) = N_Explicit_Dereference
2099 and then Ada_Version >= Ada_2005
2100 then
2101 return Is_Tag_Indeterminate (Prefix (Orig_Node));
2102
2103 else
2104 return False;
2105 end if;
2106 end Is_Tag_Indeterminate;
2107
2108 ------------------------------------
2109 -- Override_Dispatching_Operation --
2110 ------------------------------------
2111
2112 procedure Override_Dispatching_Operation
2113 (Tagged_Type : Entity_Id;
2114 Prev_Op : Entity_Id;
2115 New_Op : Entity_Id)
2116 is
2117 Elmt : Elmt_Id;
2118 Prim : Node_Id;
2119
2120 begin
2121 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2122 -- we do it unconditionally in Ada 95 now, since this is our pragma!)
2123
2124 if No_Return (Prev_Op) and then not No_Return (New_Op) then
2125 Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
2126 Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
2127 end if;
2128
2129 -- If there is no previous operation to override, the type declaration
2130 -- was malformed, and an error must have been emitted already.
2131
2132 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2133 while Present (Elmt)
2134 and then Node (Elmt) /= Prev_Op
2135 loop
2136 Next_Elmt (Elmt);
2137 end loop;
2138
2139 if No (Elmt) then
2140 return;
2141 end if;
2142
2143 -- The location of entities that come from source in the list of
2144 -- primitives of the tagged type must follow their order of occurrence
2145 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2146 -- primitive of an interface that is not implemented by the parents of
2147 -- this tagged type (that is, it is an alias of an interface primitive
2148 -- generated by Derive_Interface_Progenitors), then we must append the
2149 -- new entity at the end of the list of primitives.
2150
2151 if Present (Alias (Prev_Op))
2152 and then Etype (Tagged_Type) /= Tagged_Type
2153 and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
2154 and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
2155 Tagged_Type, Use_Full_View => True)
2156 and then not Implements_Interface
2157 (Etype (Tagged_Type),
2158 Find_Dispatching_Type (Alias (Prev_Op)))
2159 then
2160 Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
2161 Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
2162
2163 -- The new primitive replaces the overridden entity. Required to ensure
2164 -- that overriding primitive is assigned the same dispatch table slot.
2165
2166 else
2167 Replace_Elmt (Elmt, New_Op);
2168 end if;
2169
2170 if Ada_Version >= Ada_2005
2171 and then Has_Interfaces (Tagged_Type)
2172 then
2173 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2174 -- entities of the overridden primitive to reference New_Op, and also
2175 -- propagate the proper value of Is_Abstract_Subprogram. Verify
2176 -- that the new operation is subtype conformant with the interface
2177 -- operations that it implements (for operations inherited from the
2178 -- parent itself, this check is made when building the derived type).
2179
2180 -- Note: This code is only executed in case of late overriding
2181
2182 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2183 while Present (Elmt) loop
2184 Prim := Node (Elmt);
2185
2186 if Prim = New_Op then
2187 null;
2188
2189 -- Note: The check on Is_Subprogram protects the frontend against
2190 -- reading attributes in entities that are not yet fully decorated
2191
2192 elsif Is_Subprogram (Prim)
2193 and then Present (Interface_Alias (Prim))
2194 and then Alias (Prim) = Prev_Op
2195 and then Present (Etype (New_Op))
2196 then
2197 Set_Alias (Prim, New_Op);
2198 Check_Subtype_Conformant (New_Op, Prim);
2199 Set_Is_Abstract_Subprogram (Prim,
2200 Is_Abstract_Subprogram (New_Op));
2201
2202 -- Ensure that this entity will be expanded to fill the
2203 -- corresponding entry in its dispatch table.
2204
2205 if not Is_Abstract_Subprogram (Prim) then
2206 Set_Has_Delayed_Freeze (Prim);
2207 end if;
2208 end if;
2209
2210 Next_Elmt (Elmt);
2211 end loop;
2212 end if;
2213
2214 if (not Is_Package_Or_Generic_Package (Current_Scope))
2215 or else not In_Private_Part (Current_Scope)
2216 then
2217 -- Not a private primitive
2218
2219 null;
2220
2221 else pragma Assert (Is_Inherited_Operation (Prev_Op));
2222
2223 -- Make the overriding operation into an alias of the implicit one.
2224 -- In this fashion a call from outside ends up calling the new body
2225 -- even if non-dispatching, and a call from inside calls the over-
2226 -- riding operation because it hides the implicit one. To indicate
2227 -- that the body of Prev_Op is never called, set its dispatch table
2228 -- entity to Empty. If the overridden operation has a dispatching
2229 -- result, so does the overriding one.
2230
2231 Set_Alias (Prev_Op, New_Op);
2232 Set_DTC_Entity (Prev_Op, Empty);
2233 Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
2234 return;
2235 end if;
2236 end Override_Dispatching_Operation;
2237
2238 -------------------
2239 -- Propagate_Tag --
2240 -------------------
2241
2242 procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
2243 Call_Node : Node_Id;
2244 Arg : Node_Id;
2245
2246 begin
2247 if Nkind (Actual) = N_Function_Call then
2248 Call_Node := Actual;
2249
2250 elsif Nkind (Actual) = N_Identifier
2251 and then Nkind (Original_Node (Actual)) = N_Function_Call
2252 then
2253 -- Call rewritten as object declaration when stack-checking is
2254 -- enabled. Propagate tag to expression in declaration, which is
2255 -- original call.
2256
2257 Call_Node := Expression (Parent (Entity (Actual)));
2258
2259 -- Ada 2005: If this is a dereference of a call to a function with a
2260 -- dispatching access-result, the tag is propagated when the dereference
2261 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2262
2263 elsif Nkind (Actual) = N_Explicit_Dereference
2264 and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
2265 then
2266 return;
2267
2268 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2269 -- and in that case we can simply return.
2270
2271 elsif Nkind (Actual) = N_Attribute_Reference then
2272 pragma Assert (Attribute_Name (Actual) = Name_Input);
2273
2274 return;
2275
2276 -- Only other possibilities are parenthesized or qualified expression,
2277 -- or an expander-generated unchecked conversion of a function call to
2278 -- a stream Input attribute.
2279
2280 else
2281 Call_Node := Expression (Actual);
2282 end if;
2283
2284 -- Do not set the Controlling_Argument if already set. This happens in
2285 -- the special case of _Input (see Exp_Attr, case Input).
2286
2287 if No (Controlling_Argument (Call_Node)) then
2288 Set_Controlling_Argument (Call_Node, Control);
2289 end if;
2290
2291 Arg := First_Actual (Call_Node);
2292 while Present (Arg) loop
2293 if Is_Tag_Indeterminate (Arg) then
2294 Propagate_Tag (Control, Arg);
2295 end if;
2296
2297 Next_Actual (Arg);
2298 end loop;
2299
2300 -- Expansion of dispatching calls is suppressed when VM_Target, because
2301 -- the VM back-ends directly handle the generation of dispatching calls
2302 -- and would have to undo any expansion to an indirect call.
2303
2304 if Tagged_Type_Expansion then
2305 declare
2306 Call_Typ : constant Entity_Id := Etype (Call_Node);
2307
2308 begin
2309 Expand_Dispatching_Call (Call_Node);
2310
2311 -- If the controlling argument is an interface type and the type
2312 -- of Call_Node differs then we must add an implicit conversion to
2313 -- force displacement of the pointer to the object to reference
2314 -- the secondary dispatch table of the interface.
2315
2316 if Is_Interface (Etype (Control))
2317 and then Etype (Control) /= Call_Typ
2318 then
2319 -- Cannot use Convert_To because the previous call to
2320 -- Expand_Dispatching_Call leaves decorated the Call_Node
2321 -- with the type of Control.
2322
2323 Rewrite (Call_Node,
2324 Make_Type_Conversion (Sloc (Call_Node),
2325 Subtype_Mark =>
2326 New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
2327 Expression => Relocate_Node (Call_Node)));
2328 Set_Etype (Call_Node, Etype (Control));
2329 Set_Analyzed (Call_Node);
2330
2331 Expand_Interface_Conversion (Call_Node, Is_Static => False);
2332 end if;
2333 end;
2334
2335 -- Expansion of a dispatching call results in an indirect call, which in
2336 -- turn causes current values to be killed (see Resolve_Call), so on VM
2337 -- targets we do the call here to ensure consistent warnings between VM
2338 -- and non-VM targets.
2339
2340 else
2341 Kill_Current_Values;
2342 end if;
2343 end Propagate_Tag;
2344
2345 end Sem_Disp;
This page took 0.143847 seconds and 6 git commands to generate.