]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/gcc-interface/ada-tree.h
Fix small issues with -fgnat-encodings=minimal
[gcc.git] / gcc / ada / gcc-interface / ada-tree.h
1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * A D A - T R E E *
6 * *
7 * C Header File *
8 * *
9 * Copyright (C) 1992-2019, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
25
26 /* The resulting tree type. */
27 union GTY((desc ("0"),
28 chain_next ("CODE_CONTAINS_STRUCT (TREE_CODE (&%h.generic), TS_COMMON) ? ((union lang_tree_node *) TREE_CHAIN (&%h.generic)) : NULL")))
29 lang_tree_node
30 {
31 union tree_node GTY((tag ("0"),
32 desc ("tree_node_structure (&%h)"))) generic;
33 };
34
35 /* Ada uses the lang_decl and lang_type fields to hold a tree. */
36 struct GTY(()) lang_type { tree t1; tree t2; };
37 struct GTY(()) lang_decl { tree t; };
38
39 extern struct lang_type *get_lang_specific (tree node);
40
41 /* Macros to get and set the trees in TYPE_LANG_SPECIFIC. */
42 #define GET_TYPE_LANG_SPECIFIC(NODE) \
43 (TYPE_LANG_SPECIFIC (NODE) ? TYPE_LANG_SPECIFIC (NODE)->t1 : NULL_TREE)
44
45 #define SET_TYPE_LANG_SPECIFIC(NODE, X) (get_lang_specific (NODE)->t1 = (X))
46
47 #define GET_TYPE_LANG_SPECIFIC2(NODE) \
48 (TYPE_LANG_SPECIFIC (NODE) ? TYPE_LANG_SPECIFIC (NODE)->t2 : NULL_TREE)
49
50 #define SET_TYPE_LANG_SPECIFIC2(NODE, X) (get_lang_specific (NODE)->t2 = (X))
51
52 /* Macros to get and set the tree in DECL_LANG_SPECIFIC. */
53 #define GET_DECL_LANG_SPECIFIC(NODE) \
54 (DECL_LANG_SPECIFIC (NODE) ? DECL_LANG_SPECIFIC (NODE)->t : NULL_TREE)
55
56 #define SET_DECL_LANG_SPECIFIC(NODE, X) \
57 do { \
58 tree tmp = (X); \
59 if (!DECL_LANG_SPECIFIC (NODE)) \
60 DECL_LANG_SPECIFIC (NODE) \
61 = ggc_alloc<struct lang_decl> (); \
62 DECL_LANG_SPECIFIC (NODE)->t = tmp; \
63 } while (0)
64
65
66 /* Flags added to type nodes. */
67
68 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is a
69 record being used as a fat pointer (only true for RECORD_TYPE). */
70 #define TYPE_FAT_POINTER_P(NODE) \
71 TYPE_LANG_FLAG_0 (RECORD_OR_UNION_CHECK (NODE))
72
73 #define TYPE_IS_FAT_POINTER_P(NODE) \
74 (TREE_CODE (NODE) == RECORD_TYPE && TYPE_FAT_POINTER_P (NODE))
75
76 /* For integral types and array types, nonzero if this is an implementation
77 type for a bit-packed array type. Such types should not be extended to a
78 larger size or validated against a specified size. */
79 #define TYPE_BIT_PACKED_ARRAY_TYPE_P(NODE) \
80 TYPE_LANG_FLAG_0 (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE))
81
82 #define BIT_PACKED_ARRAY_TYPE_P(NODE) \
83 ((TREE_CODE (NODE) == INTEGER_TYPE || TREE_CODE (NODE) == ARRAY_TYPE) \
84 && TYPE_BIT_PACKED_ARRAY_TYPE_P (NODE))
85
86 /* For FUNCTION_TYPE and METHOD_TYPE, nonzero if the function returns by
87 direct reference, i.e. the callee returns a pointer to a memory location
88 it has allocated and the caller only needs to dereference the pointer. */
89 #define TYPE_RETURN_BY_DIRECT_REF_P(NODE) \
90 TYPE_LANG_FLAG_0 (FUNC_OR_METHOD_CHECK (NODE))
91
92 /* For INTEGER_TYPE, nonzero if this is a modular type with a modulus that
93 is not equal to two to the power of its mode's size. */
94 #define TYPE_MODULAR_P(NODE) TYPE_LANG_FLAG_1 (INTEGER_TYPE_CHECK (NODE))
95
96 /* For ARRAY_TYPE, nonzero if this type corresponds to a dimension of
97 an Ada array other than the first. */
98 #define TYPE_MULTI_ARRAY_P(NODE) TYPE_LANG_FLAG_1 (ARRAY_TYPE_CHECK (NODE))
99
100 /* For FUNCTION_TYPE and METHOD_TYPE, nonzero if function returns an
101 unconstrained array or record type. */
102 #define TYPE_RETURN_UNCONSTRAINED_P(NODE) \
103 TYPE_LANG_FLAG_1 (FUNC_OR_METHOD_CHECK (NODE))
104
105 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this denotes
106 a justified modular type (will only be true for RECORD_TYPE). */
107 #define TYPE_JUSTIFIED_MODULAR_P(NODE) \
108 TYPE_LANG_FLAG_1 (RECORD_OR_UNION_CHECK (NODE))
109
110 /* Nonzero in an arithmetic subtype if this is a subtype not known to the
111 front-end. */
112 #define TYPE_EXTRA_SUBTYPE_P(NODE) TYPE_LANG_FLAG_2 (INTEGER_TYPE_CHECK (NODE))
113
114 #define TYPE_IS_EXTRA_SUBTYPE_P(NODE) \
115 (TREE_CODE (NODE) == INTEGER_TYPE && TYPE_EXTRA_SUBTYPE_P (NODE))
116
117 /* Nonzero for an aggregate type if this is a by-reference type. We also
118 set this on an ENUMERAL_TYPE that is dummy. */
119 #define TYPE_BY_REFERENCE_P(NODE) \
120 TYPE_LANG_FLAG_2 (TREE_CHECK5 (NODE, RECORD_TYPE, UNION_TYPE, \
121 ARRAY_TYPE, UNCONSTRAINED_ARRAY_TYPE, \
122 ENUMERAL_TYPE))
123
124 #define TYPE_IS_BY_REFERENCE_P(NODE) \
125 ((TREE_CODE (NODE) == RECORD_TYPE \
126 || TREE_CODE (NODE) == UNION_TYPE \
127 || TREE_CODE (NODE) == ARRAY_TYPE \
128 || TREE_CODE (NODE) == UNCONSTRAINED_ARRAY_TYPE \
129 || TREE_CODE (NODE) == ENUMERAL_TYPE) \
130 && TYPE_BY_REFERENCE_P (NODE))
131
132 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is the
133 type for an object whose type includes its template in addition to
134 its value (only true for RECORD_TYPE). */
135 #define TYPE_CONTAINS_TEMPLATE_P(NODE) \
136 TYPE_LANG_FLAG_3 (RECORD_OR_UNION_CHECK (NODE))
137
138 /* For INTEGER_TYPE, nonzero if it implements a fixed-point type. */
139 #define TYPE_FIXED_POINT_P(NODE) \
140 TYPE_LANG_FLAG_3 (INTEGER_TYPE_CHECK (NODE))
141
142 #define TYPE_IS_FIXED_POINT_P(NODE) \
143 (TREE_CODE (NODE) == INTEGER_TYPE && TYPE_FIXED_POINT_P (NODE))
144
145 /* True if NODE is a thin pointer. */
146 #define TYPE_IS_THIN_POINTER_P(NODE) \
147 (POINTER_TYPE_P (NODE) \
148 && TREE_CODE (TREE_TYPE (NODE)) == RECORD_TYPE \
149 && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (NODE)))
150
151 /* True if TYPE is either a fat or thin pointer to an unconstrained
152 array. */
153 #define TYPE_IS_FAT_OR_THIN_POINTER_P(NODE) \
154 (TYPE_IS_FAT_POINTER_P (NODE) || TYPE_IS_THIN_POINTER_P (NODE))
155
156 /* For INTEGER_TYPEs, nonzero if the type has a biased representation. */
157 #define TYPE_BIASED_REPRESENTATION_P(NODE) \
158 TYPE_LANG_FLAG_4 (INTEGER_TYPE_CHECK (NODE))
159
160 /* For ARRAY_TYPEs, nonzero if the array type has Convention_Fortran. */
161 #define TYPE_CONVENTION_FORTRAN_P(NODE) \
162 TYPE_LANG_FLAG_4 (ARRAY_TYPE_CHECK (NODE))
163
164 /* For RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE, nonzero if this is a dummy
165 type, made to correspond to a private or incomplete type. */
166 #define TYPE_DUMMY_P(NODE) \
167 TYPE_LANG_FLAG_4 (TREE_CHECK3 (NODE, RECORD_TYPE, UNION_TYPE, ENUMERAL_TYPE))
168
169 #define TYPE_IS_DUMMY_P(NODE) \
170 ((TREE_CODE (NODE) == RECORD_TYPE \
171 || TREE_CODE (NODE) == UNION_TYPE \
172 || TREE_CODE (NODE) == ENUMERAL_TYPE) \
173 && TYPE_DUMMY_P (NODE))
174
175 /* For an INTEGER_TYPE, nonzero if TYPE_ACTUAL_BOUNDS is present. */
176 #define TYPE_HAS_ACTUAL_BOUNDS_P(NODE) \
177 TYPE_LANG_FLAG_5 (INTEGER_TYPE_CHECK (NODE))
178
179 /* For a RECORD_TYPE, nonzero if this was made just to supply needed
180 padding or alignment. */
181 #define TYPE_PADDING_P(NODE) TYPE_LANG_FLAG_5 (RECORD_TYPE_CHECK (NODE))
182
183 #define TYPE_IS_PADDING_P(NODE) \
184 (TREE_CODE (NODE) == RECORD_TYPE && TYPE_PADDING_P (NODE))
185
186 /* True for a non-dummy type if TYPE can alias any other types. */
187 #define TYPE_UNIVERSAL_ALIASING_P(NODE) TYPE_LANG_FLAG_6 (NODE)
188
189 /* True for a dummy type if TYPE appears in a profile. */
190 #define TYPE_DUMMY_IN_PROFILE_P(NODE) TYPE_LANG_FLAG_6 (NODE)
191
192 /* True if objects of this type are guaranteed to be properly aligned. */
193 #define TYPE_ALIGN_OK(NODE) TYPE_LANG_FLAG_7 (NODE)
194
195 /* True for types that implement a packed array and for original packed array
196 types. */
197 #define TYPE_IMPL_PACKED_ARRAY_P(NODE) \
198 ((TREE_CODE (NODE) == ARRAY_TYPE && TYPE_PACKED (NODE)) \
199 || (TREE_CODE (NODE) == INTEGER_TYPE && TYPE_BIT_PACKED_ARRAY_TYPE_P (NODE)))
200
201 /* True for types that can hold a debug type. */
202 #define TYPE_CAN_HAVE_DEBUG_TYPE_P(NODE) (!TYPE_IMPL_PACKED_ARRAY_P (NODE))
203
204 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, this holds the maximum
205 alignment value the type ought to have. */
206 #define TYPE_MAX_ALIGN(NODE) (TYPE_PRECISION (RECORD_OR_UNION_CHECK (NODE)))
207
208 /* For an UNCONSTRAINED_ARRAY_TYPE, this is the record containing both the
209 template and the object.
210
211 ??? We also put this on an ENUMERAL_TYPE that is dummy. Technically,
212 this is a conflict on the minval field, but there doesn't seem to be
213 simple fix, so we'll live with this kludge for now. */
214 #define TYPE_OBJECT_RECORD_TYPE(NODE) \
215 (TYPE_MIN_VALUE_RAW (TREE_CHECK2 ((NODE), UNCONSTRAINED_ARRAY_TYPE, \
216 ENUMERAL_TYPE)))
217
218 /* For numerical types, this is the GCC lower bound of the type. The GCC
219 type system is based on the invariant that an object X of a given type
220 cannot hold at run time a value smaller than its lower bound; otherwise
221 the behavior is undefined. The optimizer takes advantage of this and
222 considers that the assertion X >= LB is always true. */
223 #define TYPE_GCC_MIN_VALUE(NODE) \
224 (TYPE_MIN_VALUE_RAW (NUMERICAL_TYPE_CHECK (NODE)))
225
226 /* For numerical types, this is the GCC upper bound of the type. The GCC
227 type system is based on the invariant that an object X of a given type
228 cannot hold at run time a value larger than its upper bound; otherwise
229 the behavior is undefined. The optimizer takes advantage of this and
230 considers that the assertion X <= UB is always true. */
231 #define TYPE_GCC_MAX_VALUE(NODE) \
232 (TYPE_MAX_VALUE_RAW (NUMERICAL_TYPE_CHECK (NODE)))
233
234 /* For a FUNCTION_TYPE and METHOD_TYPE, if the function has parameters passed
235 by copy in/copy out, this is the list of nodes used to specify the return
236 values of these parameters. For a full description of the copy in/copy out
237 parameter passing mechanism refer to the routine gnat_to_gnu_entity. */
238 #define TYPE_CI_CO_LIST(NODE) TYPE_LANG_SLOT_1 (FUNC_OR_METHOD_CHECK (NODE))
239
240 /* For an ARRAY_TYPE with variable size, this is the padding type built for
241 the array type when it is itself the component type of another array. */
242 #define TYPE_PADDING_FOR_COMPONENT(NODE) \
243 TYPE_LANG_SLOT_1 (ARRAY_TYPE_CHECK (NODE))
244
245 /* For a VECTOR_TYPE, this is the representative array type. */
246 #define TYPE_REPRESENTATIVE_ARRAY(NODE) \
247 TYPE_LANG_SLOT_1 (VECTOR_TYPE_CHECK (NODE))
248
249 /* For numerical types, this holds various RM-defined values. */
250 #define TYPE_RM_VALUES(NODE) TYPE_LANG_SLOT_1 (NUMERICAL_TYPE_CHECK (NODE))
251
252 /* Macros to get and set the individual values in TYPE_RM_VALUES. */
253 #define TYPE_RM_VALUE(NODE, N) \
254 (TYPE_RM_VALUES (NODE) \
255 ? TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) : NULL_TREE)
256
257 #define SET_TYPE_RM_VALUE(NODE, N, X) \
258 do { \
259 tree tmp = (X); \
260 if (!TYPE_RM_VALUES (NODE)) \
261 TYPE_RM_VALUES (NODE) = make_tree_vec (3); \
262 /* ??? The field is not visited by the generic \
263 code so we need to mark it manually. */ \
264 MARK_VISITED (tmp); \
265 TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) = tmp; \
266 } while (0)
267
268 /* For numerical types, this is the RM size of the type, aka its precision.
269 There is a discrepancy between what is called precision here (and more
270 generally throughout gigi) and what is called precision in the GCC type
271 system: in the former case it's TYPE_RM_SIZE whereas it's TYPE_PRECISION
272 in the latter case. They are not identical because of the need to support
273 invalid values.
274
275 These values can be outside the range of values allowed by the RM size
276 but they must nevertheless be valid in the GCC type system, otherwise
277 the optimizer can pretend that they simply don't exist. Therefore they
278 must be within the range of values allowed by the precision in the GCC
279 sense, hence TYPE_PRECISION be set to the Esize, not the RM size. */
280 #define TYPE_RM_SIZE(NODE) TYPE_RM_VALUE ((NODE), 0)
281 #define SET_TYPE_RM_SIZE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 0, (X))
282
283 /* For numerical types, this is the RM lower bound of the type. There is
284 again a discrepancy between this lower bound and the GCC lower bound,
285 again because of the need to support invalid values.
286
287 These values can be outside the range of values allowed by the RM lower
288 bound but they must nevertheless be valid in the GCC type system, otherwise
289 the optimizer can pretend that they simply don't exist. Therefore they
290 must be within the range of values allowed by the lower bound in the GCC
291 sense, hence the GCC lower bound be set to that of the base type.
292
293 This lower bound is translated directly without the adjustments that may
294 be required for type compatibility, so it will generally be necessary to
295 convert it to the base type of the numerical type before using it. */
296 #define TYPE_RM_MIN_VALUE(NODE) TYPE_RM_VALUE ((NODE), 1)
297 #define SET_TYPE_RM_MIN_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 1, (X))
298
299 /* For numerical types, this is the RM upper bound of the type. There is
300 again a discrepancy between this upper bound and the GCC upper bound,
301 again because of the need to support invalid values.
302
303 These values can be outside the range of values allowed by the RM upper
304 bound but they must nevertheless be valid in the GCC type system, otherwise
305 the optimizer can pretend that they simply don't exist. Therefore they
306 must be within the range of values allowed by the upper bound in the GCC
307 sense, hence the GCC upper bound be set to that of the base type.
308
309 This upper bound is translated directly without the adjustments that may
310 be required for type compatibility, so it will generally be necessary to
311 convert it to the base type of the numerical type before using it. */
312 #define TYPE_RM_MAX_VALUE(NODE) TYPE_RM_VALUE ((NODE), 2)
313 #define SET_TYPE_RM_MAX_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 2, (X))
314
315 /* For numerical types, this is the lower bound of the type, i.e. the RM lower
316 bound for language-defined types and the GCC lower bound for others. */
317 #undef TYPE_MIN_VALUE
318 #define TYPE_MIN_VALUE(NODE) \
319 (TYPE_RM_MIN_VALUE (NODE) \
320 ? TYPE_RM_MIN_VALUE (NODE) : TYPE_GCC_MIN_VALUE (NODE))
321
322 /* For numerical types, this is the upper bound of the type, i.e. the RM upper
323 bound for language-defined types and the GCC upper bound for others. */
324 #undef TYPE_MAX_VALUE
325 #define TYPE_MAX_VALUE(NODE) \
326 (TYPE_RM_MAX_VALUE (NODE) \
327 ? TYPE_RM_MAX_VALUE (NODE) : TYPE_GCC_MAX_VALUE (NODE))
328
329 /* For an INTEGER_TYPE with TYPE_MODULAR_P, this is the value of the
330 modulus. */
331 #define TYPE_MODULUS(NODE) \
332 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
333 #define SET_TYPE_MODULUS(NODE, X) \
334 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
335
336 /* For an INTEGER_TYPE that is the TYPE_DOMAIN of some ARRAY_TYPE, this is
337 the type corresponding to the Ada index type. It is necessary to keep
338 these 2 views for every array type because the TYPE_DOMAIN is subject
339 to strong constraints in GENERIC: it must be a subtype of SIZETYPE and
340 may not be superflat, i.e. the upper bound must always be larger or
341 equal to the lower bound minus 1 (i.e. the canonical length formula
342 must always yield a non-negative number), which means that at least
343 one of the bounds may need to be a conditional expression. There are
344 no such constraints on the TYPE_INDEX_TYPE because gigi is prepared to
345 deal with the superflat case; moreover the TYPE_INDEX_TYPE is used as
346 the index type for the debug info and, therefore, needs to be as close
347 as possible to the source index type. */
348 #define TYPE_INDEX_TYPE(NODE) \
349 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
350 #define SET_TYPE_INDEX_TYPE(NODE, X) \
351 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
352
353 /* For an INTEGER_TYPE with TYPE_HAS_ACTUAL_BOUNDS_P or an ARRAY_TYPE, this is
354 the index type that should be used when the actual bounds are required for
355 a template. This is used in the case of packed arrays. */
356 #define TYPE_ACTUAL_BOUNDS(NODE) \
357 GET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE))
358 #define SET_TYPE_ACTUAL_BOUNDS(NODE, X) \
359 SET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE), X)
360
361 /* For a POINTER_TYPE that points to the template type of an unconstrained
362 array type, this is the address to be used in a null fat pointer. */
363 #define TYPE_NULL_BOUNDS(NODE) \
364 GET_TYPE_LANG_SPECIFIC (POINTER_TYPE_CHECK (NODE))
365 #define SET_TYPE_NULL_BOUNDS(NODE, X) \
366 SET_TYPE_LANG_SPECIFIC (POINTER_TYPE_CHECK (NODE), X)
367
368 /* For a RECORD_TYPE that is a fat pointer, this is the type for the
369 unconstrained array. Likewise for a RECORD_TYPE that is pointed
370 to by a thin pointer, if it is made for the unconstrained array
371 type itself; the field is NULL_TREE if the RECORD_TYPE is made
372 for a constrained subtype of the array type. */
373 #define TYPE_UNCONSTRAINED_ARRAY(NODE) \
374 GET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE))
375 #define SET_TYPE_UNCONSTRAINED_ARRAY(NODE, X) \
376 SET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE), X)
377
378 /* For other RECORD_TYPEs and all UNION_TYPEs and QUAL_UNION_TYPEs, this is
379 the Ada size of the object. This differs from the GCC size in that it
380 does not include any rounding up to the alignment of the type. */
381 #define TYPE_ADA_SIZE(NODE) \
382 GET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE))
383 #define SET_TYPE_ADA_SIZE(NODE, X) \
384 SET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE), X)
385
386 /* For an INTEGER_TYPE with TYPE_IS_FIXED_POINT_P, this is the value of the
387 scale factor. Modular types, index types (sizetype subtypes) and
388 fixed-point types are totally distinct types, so there is no problem with
389 sharing type lang specific's first slot. */
390 #define TYPE_SCALE_FACTOR(NODE) \
391 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
392 #define SET_TYPE_SCALE_FACTOR(NODE, X) \
393 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
394
395 /* For types with TYPE_CAN_HAVE_DEBUG_TYPE_P, this is the type to use in
396 debugging information. */
397 #define TYPE_DEBUG_TYPE(NODE) \
398 GET_TYPE_LANG_SPECIFIC2 (NODE)
399 #define SET_TYPE_DEBUG_TYPE(NODE, X) \
400 SET_TYPE_LANG_SPECIFIC2 (NODE, X)
401
402 /* For types with TYPE_IMPL_PACKED_ARRAY_P, this is the original packed
403 array type. Note that this predicate is true for original packed array
404 types, so these cannot have a debug type. */
405 #define TYPE_ORIGINAL_PACKED_ARRAY(NODE) \
406 GET_TYPE_LANG_SPECIFIC2 (NODE)
407 #define SET_TYPE_ORIGINAL_PACKED_ARRAY(NODE, X) \
408 SET_TYPE_LANG_SPECIFIC2 (NODE, X)
409
410
411 /* Flags added to decl nodes. */
412
413 /* Nonzero in a FUNCTION_DECL that represents a stubbed function
414 discriminant. */
415 #define DECL_STUBBED_P(NODE) DECL_LANG_FLAG_0 (FUNCTION_DECL_CHECK (NODE))
416
417 /* Nonzero in a VAR_DECL if it is guaranteed to be constant after having
418 been elaborated and TREE_READONLY is not set on it. */
419 #define DECL_READONLY_ONCE_ELAB(NODE) DECL_LANG_FLAG_0 (VAR_DECL_CHECK (NODE))
420
421 /* Nonzero in a CONST_DECL if its value is (essentially) the address of a
422 constant CONSTRUCTOR. */
423 #define DECL_CONST_ADDRESS_P(NODE) DECL_LANG_FLAG_0 (CONST_DECL_CHECK (NODE))
424
425 /* Nonzero in a FIELD_DECL if it is declared as aliased. */
426 #define DECL_ALIASED_P(NODE) DECL_LANG_FLAG_0 (FIELD_DECL_CHECK (NODE))
427
428 /* Nonzero in a TYPE_DECL if this is the declaration of a Taft amendment type
429 in the main unit, i.e. the full declaration is available. */
430 #define DECL_TAFT_TYPE_P(NODE) DECL_LANG_FLAG_0 (TYPE_DECL_CHECK (NODE))
431
432 /* Nonzero in a PARM_DECL passed by reference but for which only a restricted
433 form of aliasing is allowed. The first restriction comes explicitly from
434 the RM 6.2(12) clause: there is no read-after-write dependency between a
435 store based on such a PARM_DECL and a load not based on this PARM_DECL,
436 so stores based on such PARM_DECLs can be sunk past all loads based on
437 a distinct object. The second restriction can be inferred from the same
438 clause: there is no write-after-write dependency between a store based
439 on such a PARM_DECL and a store based on a distinct such PARM_DECL, as
440 the compiler would be allowed to pass the parameters by copy and the
441 order of assignment to actual parameters after a call is arbitrary as
442 per the RM 6.4.1(17) clause, so stores based on distinct such PARM_DECLs
443 can be swapped. */
444 #define DECL_RESTRICTED_ALIASING_P(NODE) \
445 DECL_LANG_FLAG_0 (PARM_DECL_CHECK (NODE))
446
447 /* Nonzero in a DECL if it is always used by reference, i.e. an INDIRECT_REF
448 is needed to access the object. */
449 #define DECL_BY_REF_P(NODE) DECL_LANG_FLAG_1 (NODE)
450
451 /* Nonzero in a DECL if it is made for a pointer that can never be null. */
452 #define DECL_CAN_NEVER_BE_NULL_P(NODE) DECL_LANG_FLAG_2 (NODE)
453
454 /* Nonzero in a VAR_DECL if it is made for a loop parameter. */
455 #define DECL_LOOP_PARM_P(NODE) DECL_LANG_FLAG_3 (VAR_DECL_CHECK (NODE))
456
457 /* Nonzero in a FIELD_DECL that is a dummy built for some internal reason. */
458 #define DECL_INTERNAL_P(NODE) DECL_LANG_FLAG_3 (FIELD_DECL_CHECK (NODE))
459
460 /* Nonzero in a PARM_DECL if it is made for an Ada array being passed to a
461 foreign convention subprogram. */
462 #define DECL_BY_COMPONENT_PTR_P(NODE) DECL_LANG_FLAG_3 (PARM_DECL_CHECK (NODE))
463
464 /* Nonzero in a FUNCTION_DECL that corresponds to an elaboration procedure. */
465 #define DECL_ELABORATION_PROC_P(NODE) \
466 DECL_LANG_FLAG_3 (FUNCTION_DECL_CHECK (NODE))
467
468 /* Nonzero in a CONST_DECL, VAR_DECL or PARM_DECL if it is made for a pointer
469 that points to something which is readonly. */
470 #define DECL_POINTS_TO_READONLY_P(NODE) DECL_LANG_FLAG_4 (NODE)
471
472 /* Nonzero in a FIELD_DECL if it is invariant once set, for example if it is
473 a discriminant of a discriminated type without default expression. */
474 #define DECL_INVARIANT_P(NODE) DECL_LANG_FLAG_4 (FIELD_DECL_CHECK (NODE))
475
476 /* Nonzero in a FUNCTION_DECL if this is a definition, i.e. if it was created
477 by a call to gnat_to_gnu_entity with definition set to True. */
478 #define DECL_FUNCTION_IS_DEF(NODE) \
479 DECL_LANG_FLAG_4 (FUNCTION_DECL_CHECK (NODE))
480
481 /* Nonzero in a VAR_DECL if it is a temporary created to hold the return
482 value of a function call or 'reference to a function call. */
483 #define DECL_RETURN_VALUE_P(NODE) DECL_LANG_FLAG_5 (VAR_DECL_CHECK (NODE))
484
485 /* Nonzero in a PARM_DECL if its mechanism was forced to by-reference. */
486 #define DECL_FORCED_BY_REF_P(NODE) DECL_LANG_FLAG_5 (PARM_DECL_CHECK (NODE))
487
488 /* In a FIELD_DECL corresponding to a discriminant, contains the
489 discriminant number. */
490 #define DECL_DISCRIMINANT_NUMBER(NODE) DECL_INITIAL (FIELD_DECL_CHECK (NODE))
491
492 /* In a CONST_DECL, points to a VAR_DECL that is allocatable to
493 memory. Used when a scalar constant is aliased or has its
494 address taken. */
495 #define DECL_CONST_CORRESPONDING_VAR(NODE) \
496 GET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE))
497 #define SET_DECL_CONST_CORRESPONDING_VAR(NODE, X) \
498 SET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE), X)
499
500 /* In a FIELD_DECL, points to the FIELD_DECL that was the ultimate
501 source of the decl. */
502 #define DECL_ORIGINAL_FIELD(NODE) \
503 GET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE))
504 #define SET_DECL_ORIGINAL_FIELD(NODE, X) \
505 SET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE), X)
506
507 /* Set DECL_ORIGINAL_FIELD of FIELD1 to (that of) FIELD2. */
508 #define SET_DECL_ORIGINAL_FIELD_TO_FIELD(FIELD1, FIELD2) \
509 SET_DECL_ORIGINAL_FIELD ((FIELD1), \
510 DECL_ORIGINAL_FIELD (FIELD2) \
511 ? DECL_ORIGINAL_FIELD (FIELD2) : (FIELD2))
512
513 /* Return true if FIELD1 and FIELD2 represent the same field. */
514 #define SAME_FIELD_P(FIELD1, FIELD2) \
515 ((FIELD1) == (FIELD2) \
516 || DECL_ORIGINAL_FIELD (FIELD1) == (FIELD2) \
517 || (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2) \
518 || (DECL_ORIGINAL_FIELD (FIELD1) \
519 && (DECL_ORIGINAL_FIELD (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2))))
520
521 /* In a VAR_DECL with the DECL_LOOP_PARM_P flag set, points to the special
522 induction variable that is built under certain circumstances, if any. */
523 #define DECL_INDUCTION_VAR(NODE) \
524 GET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE))
525 #define SET_DECL_INDUCTION_VAR(NODE, X) \
526 SET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE), X)
527
528 /* In a VAR_DECL without the DECL_LOOP_PARM_P flag set and that is a renaming
529 pointer, points to the object being renamed, if any. */
530 #define DECL_RENAMED_OBJECT(NODE) \
531 GET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE))
532 #define SET_DECL_RENAMED_OBJECT(NODE, X) \
533 SET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE), X)
534
535 /* In a TYPE_DECL, points to the parallel type if any, otherwise 0. */
536 #define DECL_PARALLEL_TYPE(NODE) \
537 GET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE))
538 #define SET_DECL_PARALLEL_TYPE(NODE, X) \
539 SET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE), X)
540
541
542 /* Flags added to ref nodes. */
543
544 /* Nonzero means this node will not trap. */
545 #undef TREE_THIS_NOTRAP
546 #define TREE_THIS_NOTRAP(NODE) \
547 (TREE_CHECK4 (NODE, INDIRECT_REF, ARRAY_REF, UNCONSTRAINED_ARRAY_REF, \
548 ARRAY_RANGE_REF)->base.nothrow_flag)
549
550
551 /* Fields and macros for statements. */
552 #define IS_ADA_STMT(NODE) \
553 (STATEMENT_CLASS_P (NODE) && TREE_CODE (NODE) >= STMT_STMT)
554
555 #define STMT_STMT_STMT(NODE) TREE_OPERAND_CHECK_CODE (NODE, STMT_STMT, 0)
556
557 #define LOOP_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 0)
558 #define LOOP_STMT_UPDATE(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 1)
559 #define LOOP_STMT_BODY(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 2)
560 #define LOOP_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 3)
561
562 /* A loop statement is conceptually made up of 6 sub-statements:
563
564 loop:
565 TOP_CONDITION
566 TOP_UPDATE
567 BODY
568 BOTTOM_CONDITION
569 BOTTOM_UPDATE
570 GOTO loop
571
572 However, only 4 of them can exist for a given loop, the pair of conditions
573 and the pair of updates being mutually exclusive. The default setting is
574 TOP_CONDITION and BOTTOM_UPDATE and the following couple of flags are used
575 to toggle the individual settings. */
576 #define LOOP_STMT_BOTTOM_COND_P(NODE) TREE_LANG_FLAG_0 (LOOP_STMT_CHECK (NODE))
577 #define LOOP_STMT_TOP_UPDATE_P(NODE) TREE_LANG_FLAG_1 (LOOP_STMT_CHECK (NODE))
578
579 /* Optimization hints on loops. */
580 #define LOOP_STMT_IVDEP(NODE) TREE_LANG_FLAG_2 (LOOP_STMT_CHECK (NODE))
581 #define LOOP_STMT_NO_UNROLL(NODE) TREE_LANG_FLAG_3 (LOOP_STMT_CHECK (NODE))
582 #define LOOP_STMT_UNROLL(NODE) TREE_LANG_FLAG_4 (LOOP_STMT_CHECK (NODE))
583 #define LOOP_STMT_NO_VECTOR(NODE) TREE_LANG_FLAG_5 (LOOP_STMT_CHECK (NODE))
584 #define LOOP_STMT_VECTOR(NODE) TREE_LANG_FLAG_6 (LOOP_STMT_CHECK (NODE))
585
586 #define EXIT_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 0)
587 #define EXIT_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 1)
588
589 /* Small kludge to be able to define Ada built-in functions locally.
590 We overload them on top of the HSAIL/BRIG builtin functions. */
591 #define BUILT_IN_LIKELY BUILT_IN_HSAIL_WORKITEMABSID
592 #define BUILT_IN_UNLIKELY BUILT_IN_HSAIL_GRIDSIZE
This page took 0.076226 seconds and 5 git commands to generate.