]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/gcc-interface/ada-tree.h
150dd8654deba1d341b9c552078176d7d4f8ea5e
[gcc.git] / gcc / ada / gcc-interface / ada-tree.h
1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * A D A - T R E E *
6 * *
7 * C Header File *
8 * *
9 * Copyright (C) 1992-2011, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
25
26 /* The resulting tree type. */
27 union GTY((desc ("0"),
28 chain_next ("CODE_CONTAINS_STRUCT (TREE_CODE (&%h.generic), TS_COMMON) ? ((union lang_tree_node *) TREE_CHAIN (&%h.generic)) : NULL")))
29 lang_tree_node
30 {
31 union tree_node GTY((tag ("0"),
32 desc ("tree_node_structure (&%h)"))) generic;
33 };
34
35 /* Ada uses the lang_decl and lang_type fields to hold a tree.
36
37 FIXME: the variable_size annotation here is needed because these types are
38 variable-sized in some other front-ends. Due to gengtype deficiency, the
39 GTY options of such types have to agree across all front-ends. */
40 struct GTY((variable_size)) lang_type { tree t; };
41 struct GTY((variable_size)) lang_decl { tree t; };
42
43 /* Macros to get and set the tree in TYPE_LANG_SPECIFIC. */
44 #define GET_TYPE_LANG_SPECIFIC(NODE) \
45 (TYPE_LANG_SPECIFIC (NODE) ? TYPE_LANG_SPECIFIC (NODE)->t : NULL_TREE)
46
47 #define SET_TYPE_LANG_SPECIFIC(NODE, X) \
48 do { \
49 tree tmp = (X); \
50 if (!TYPE_LANG_SPECIFIC (NODE)) \
51 TYPE_LANG_SPECIFIC (NODE) \
52 = ggc_alloc_lang_type (sizeof (struct lang_type)); \
53 TYPE_LANG_SPECIFIC (NODE)->t = tmp; \
54 } while (0)
55
56 /* Macros to get and set the tree in DECL_LANG_SPECIFIC. */
57 #define GET_DECL_LANG_SPECIFIC(NODE) \
58 (DECL_LANG_SPECIFIC (NODE) ? DECL_LANG_SPECIFIC (NODE)->t : NULL_TREE)
59
60 #define SET_DECL_LANG_SPECIFIC(NODE, X) \
61 do { \
62 tree tmp = (X); \
63 if (!DECL_LANG_SPECIFIC (NODE)) \
64 DECL_LANG_SPECIFIC (NODE) \
65 = ggc_alloc_lang_decl (sizeof (struct lang_decl)); \
66 DECL_LANG_SPECIFIC (NODE)->t = tmp; \
67 } while (0)
68
69
70 /* Flags added to type nodes. */
71
72 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is a
73 record being used as a fat pointer (only true for RECORD_TYPE). */
74 #define TYPE_FAT_POINTER_P(NODE) \
75 TYPE_LANG_FLAG_0 (RECORD_OR_UNION_CHECK (NODE))
76
77 #define TYPE_IS_FAT_POINTER_P(NODE) \
78 (TREE_CODE (NODE) == RECORD_TYPE && TYPE_FAT_POINTER_P (NODE))
79
80 /* For integral types and array types, nonzero if this is a packed array type
81 used for bit-packed types. Such types should not be extended to a larger
82 size or validated against a specified size. */
83 #define TYPE_PACKED_ARRAY_TYPE_P(NODE) TYPE_LANG_FLAG_0 (NODE)
84
85 #define TYPE_IS_PACKED_ARRAY_TYPE_P(NODE) \
86 ((TREE_CODE (NODE) == INTEGER_TYPE || TREE_CODE (NODE) == ARRAY_TYPE) \
87 && TYPE_PACKED_ARRAY_TYPE_P (NODE))
88
89 /* For INTEGER_TYPE, nonzero if this is a modular type with a modulus that
90 is not equal to two to the power of its mode's size. */
91 #define TYPE_MODULAR_P(NODE) TYPE_LANG_FLAG_1 (INTEGER_TYPE_CHECK (NODE))
92
93 /* For ARRAY_TYPE, nonzero if this type corresponds to a dimension of
94 an Ada array other than the first. */
95 #define TYPE_MULTI_ARRAY_P(NODE) TYPE_LANG_FLAG_1 (ARRAY_TYPE_CHECK (NODE))
96
97 /* For FUNCTION_TYPE, nonzero if this denotes a function returning an
98 unconstrained array or record. */
99 #define TYPE_RETURN_UNCONSTRAINED_P(NODE) \
100 TYPE_LANG_FLAG_1 (FUNCTION_TYPE_CHECK (NODE))
101
102 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this denotes
103 a justified modular type (will only be true for RECORD_TYPE). */
104 #define TYPE_JUSTIFIED_MODULAR_P(NODE) \
105 TYPE_LANG_FLAG_1 (RECORD_OR_UNION_CHECK (NODE))
106
107 /* Nonzero in an arithmetic subtype if this is a subtype not known to the
108 front-end. */
109 #define TYPE_EXTRA_SUBTYPE_P(NODE) TYPE_LANG_FLAG_2 (INTEGER_TYPE_CHECK (NODE))
110
111 /* For RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE, nonzero if this is the
112 type for an object whose type includes its template in addition to
113 its value (only true for RECORD_TYPE). */
114 #define TYPE_CONTAINS_TEMPLATE_P(NODE) \
115 TYPE_LANG_FLAG_3 (RECORD_OR_UNION_CHECK (NODE))
116
117 /* For INTEGER_TYPE, nonzero if this really represents a VAX
118 floating-point type. */
119 #define TYPE_VAX_FLOATING_POINT_P(NODE) \
120 TYPE_LANG_FLAG_3 (INTEGER_TYPE_CHECK (NODE))
121
122 /* True if NODE is a thin pointer. */
123 #define TYPE_IS_THIN_POINTER_P(NODE) \
124 (POINTER_TYPE_P (NODE) \
125 && TREE_CODE (TREE_TYPE (NODE)) == RECORD_TYPE \
126 && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (NODE)))
127
128 /* True if TYPE is either a fat or thin pointer to an unconstrained
129 array. */
130 #define TYPE_IS_FAT_OR_THIN_POINTER_P(NODE) \
131 (TYPE_IS_FAT_POINTER_P (NODE) || TYPE_IS_THIN_POINTER_P (NODE))
132
133 /* For INTEGER_TYPEs, nonzero if the type has a biased representation. */
134 #define TYPE_BIASED_REPRESENTATION_P(NODE) \
135 TYPE_LANG_FLAG_4 (INTEGER_TYPE_CHECK (NODE))
136
137 /* For ARRAY_TYPEs, nonzero if the array type has Convention_Fortran. */
138 #define TYPE_CONVENTION_FORTRAN_P(NODE) \
139 TYPE_LANG_FLAG_4 (ARRAY_TYPE_CHECK (NODE))
140
141 /* For FUNCTION_TYPEs, nonzero if the function returns by direct reference,
142 i.e. the callee returns a pointer to a memory location it has allocated
143 and the caller only needs to dereference the pointer. */
144 #define TYPE_RETURN_BY_DIRECT_REF_P(NODE) \
145 TYPE_LANG_FLAG_4 (FUNCTION_TYPE_CHECK (NODE))
146
147 /* For VOID_TYPE, ENUMERAL_TYPE, UNION_TYPE, and RECORD_TYPE, nonzero if this
148 is a dummy type, made to correspond to a private or incomplete type. */
149 #define TYPE_DUMMY_P(NODE) TYPE_LANG_FLAG_4 (NODE)
150
151 #define TYPE_IS_DUMMY_P(NODE) \
152 ((TREE_CODE (NODE) == VOID_TYPE || TREE_CODE (NODE) == RECORD_TYPE \
153 || TREE_CODE (NODE) == UNION_TYPE || TREE_CODE (NODE) == ENUMERAL_TYPE) \
154 && TYPE_DUMMY_P (NODE))
155
156 /* For an INTEGER_TYPE, nonzero if TYPE_ACTUAL_BOUNDS is present. */
157 #define TYPE_HAS_ACTUAL_BOUNDS_P(NODE) \
158 TYPE_LANG_FLAG_5 (INTEGER_TYPE_CHECK (NODE))
159
160 /* For a RECORD_TYPE, nonzero if this was made just to supply needed
161 padding or alignment. */
162 #define TYPE_PADDING_P(NODE) TYPE_LANG_FLAG_5 (RECORD_TYPE_CHECK (NODE))
163
164 #define TYPE_IS_PADDING_P(NODE) \
165 (TREE_CODE (NODE) == RECORD_TYPE && TYPE_PADDING_P (NODE))
166
167 /* True if TYPE can alias any other types. */
168 #define TYPE_UNIVERSAL_ALIASING_P(NODE) TYPE_LANG_FLAG_6 (NODE)
169
170 /* In an UNCONSTRAINED_ARRAY_TYPE, this is the record containing both the
171 template and the object.
172
173 ??? We also put this on an ENUMERAL_TYPE that is dummy. Technically,
174 this is a conflict on the minval field, but there doesn't seem to be
175 simple fix, so we'll live with this kludge for now. */
176 #define TYPE_OBJECT_RECORD_TYPE(NODE) \
177 (TYPE_MINVAL (TREE_CHECK2 ((NODE), UNCONSTRAINED_ARRAY_TYPE, ENUMERAL_TYPE)))
178
179 /* For numerical types, this is the GCC lower bound of the type. The GCC
180 type system is based on the invariant that an object X of a given type
181 cannot hold at run time a value smaller than its lower bound; otherwise
182 the behavior is undefined. The optimizer takes advantage of this and
183 considers that the assertion X >= LB is always true. */
184 #define TYPE_GCC_MIN_VALUE(NODE) (TYPE_MINVAL (NUMERICAL_TYPE_CHECK (NODE)))
185
186 /* For numerical types, this is the GCC upper bound of the type. The GCC
187 type system is based on the invariant that an object X of a given type
188 cannot hold at run time a value larger than its upper bound; otherwise
189 the behavior is undefined. The optimizer takes advantage of this and
190 considers that the assertion X <= UB is always true. */
191 #define TYPE_GCC_MAX_VALUE(NODE) (TYPE_MAXVAL (NUMERICAL_TYPE_CHECK (NODE)))
192
193 /* For a FUNCTION_TYPE, if the subprogram has parameters passed by copy in/
194 copy out, this is the list of nodes used to specify the return values of
195 the out (or in out) parameters that are passed by copy in/copy out. For
196 a full description of the copy in/copy out parameter passing mechanism
197 refer to the routine gnat_to_gnu_entity. */
198 #define TYPE_CI_CO_LIST(NODE) TYPE_LANG_SLOT_1 (FUNCTION_TYPE_CHECK (NODE))
199
200 /* For a VECTOR_TYPE, this is the representative array type. */
201 #define TYPE_REPRESENTATIVE_ARRAY(NODE) \
202 TYPE_LANG_SLOT_1 (VECTOR_TYPE_CHECK (NODE))
203
204 /* For numerical types, this holds various RM-defined values. */
205 #define TYPE_RM_VALUES(NODE) TYPE_LANG_SLOT_1 (NUMERICAL_TYPE_CHECK (NODE))
206
207 /* Macros to get and set the individual values in TYPE_RM_VALUES. */
208 #define TYPE_RM_VALUE(NODE, N) \
209 (TYPE_RM_VALUES (NODE) \
210 ? TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) : NULL_TREE)
211
212 #define SET_TYPE_RM_VALUE(NODE, N, X) \
213 do { \
214 tree tmp = (X); \
215 if (!TYPE_RM_VALUES (NODE)) \
216 TYPE_RM_VALUES (NODE) = make_tree_vec (3); \
217 /* ??? The field is not visited by the generic \
218 code so we need to mark it manually. */ \
219 MARK_VISITED (tmp); \
220 TREE_VEC_ELT (TYPE_RM_VALUES (NODE), (N)) = tmp; \
221 } while (0)
222
223 /* For numerical types, this is the RM size of the type, aka its precision.
224 There is a discrepancy between what is called precision here (and more
225 generally throughout gigi) and what is called precision in the GCC type
226 system: in the former case it's TYPE_RM_SIZE whereas it's TYPE_PRECISION
227 in the latter case. They are not identical because of the need to support
228 invalid values.
229
230 These values can be outside the range of values allowed by the RM size
231 but they must nevertheless be valid in the GCC type system, otherwise
232 the optimizer can pretend that they simply don't exist. Therefore they
233 must be within the range of values allowed by the precision in the GCC
234 sense, hence TYPE_PRECISION be set to the Esize, not the RM size. */
235 #define TYPE_RM_SIZE(NODE) TYPE_RM_VALUE ((NODE), 0)
236 #define SET_TYPE_RM_SIZE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 0, (X))
237
238 /* For numerical types, this is the RM lower bound of the type. There is
239 again a discrepancy between this lower bound and the GCC lower bound,
240 again because of the need to support invalid values.
241
242 These values can be outside the range of values allowed by the RM lower
243 bound but they must nevertheless be valid in the GCC type system, otherwise
244 the optimizer can pretend that they simply don't exist. Therefore they
245 must be within the range of values allowed by the lower bound in the GCC
246 sense, hence the GCC lower bound be set to that of the base type. */
247 #define TYPE_RM_MIN_VALUE(NODE) TYPE_RM_VALUE ((NODE), 1)
248 #define SET_TYPE_RM_MIN_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 1, (X))
249
250 /* For numerical types, this is the RM upper bound of the type. There is
251 again a discrepancy between this upper bound and the GCC upper bound,
252 again because of the need to support invalid values.
253
254 These values can be outside the range of values allowed by the RM upper
255 bound but they must nevertheless be valid in the GCC type system, otherwise
256 the optimizer can pretend that they simply don't exist. Therefore they
257 must be within the range of values allowed by the upper bound in the GCC
258 sense, hence the GCC upper bound be set to that of the base type. */
259 #define TYPE_RM_MAX_VALUE(NODE) TYPE_RM_VALUE ((NODE), 2)
260 #define SET_TYPE_RM_MAX_VALUE(NODE, X) SET_TYPE_RM_VALUE ((NODE), 2, (X))
261
262 /* For numerical types, this is the lower bound of the type, i.e. the RM lower
263 bound for language-defined types and the GCC lower bound for others. */
264 #undef TYPE_MIN_VALUE
265 #define TYPE_MIN_VALUE(NODE) \
266 (TYPE_RM_MIN_VALUE (NODE) \
267 ? TYPE_RM_MIN_VALUE (NODE) : TYPE_GCC_MIN_VALUE (NODE))
268
269 /* For numerical types, this is the upper bound of the type, i.e. the RM upper
270 bound for language-defined types and the GCC upper bound for others. */
271 #undef TYPE_MAX_VALUE
272 #define TYPE_MAX_VALUE(NODE) \
273 (TYPE_RM_MAX_VALUE (NODE) \
274 ? TYPE_RM_MAX_VALUE (NODE) : TYPE_GCC_MAX_VALUE (NODE))
275
276 /* For an INTEGER_TYPE with TYPE_MODULAR_P, this is the value of the
277 modulus. */
278 #define TYPE_MODULUS(NODE) GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
279 #define SET_TYPE_MODULUS(NODE, X) \
280 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
281
282 /* For an INTEGER_TYPE with TYPE_VAX_FLOATING_POINT_P, this is the
283 Digits_Value. */
284 #define TYPE_DIGITS_VALUE(NODE) \
285 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
286 #define SET_TYPE_DIGITS_VALUE(NODE, X) \
287 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
288
289 /* For an INTEGER_TYPE that is the TYPE_DOMAIN of some ARRAY_TYPE, this is
290 the type corresponding to the Ada index type. */
291 #define TYPE_INDEX_TYPE(NODE) \
292 GET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE))
293 #define SET_TYPE_INDEX_TYPE(NODE, X) \
294 SET_TYPE_LANG_SPECIFIC (INTEGER_TYPE_CHECK (NODE), X)
295
296 /* For an INTEGER_TYPE with TYPE_HAS_ACTUAL_BOUNDS_P or an ARRAY_TYPE, this is
297 the index type that should be used when the actual bounds are required for
298 a template. This is used in the case of packed arrays. */
299 #define TYPE_ACTUAL_BOUNDS(NODE) \
300 GET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE))
301 #define SET_TYPE_ACTUAL_BOUNDS(NODE, X) \
302 SET_TYPE_LANG_SPECIFIC (TREE_CHECK2 (NODE, INTEGER_TYPE, ARRAY_TYPE), X)
303
304 /* For a RECORD_TYPE that is a fat pointer, this is the type for the
305 unconstrained object. Likewise for a RECORD_TYPE that is pointed
306 to by a thin pointer. */
307 #define TYPE_UNCONSTRAINED_ARRAY(NODE) \
308 GET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE))
309 #define SET_TYPE_UNCONSTRAINED_ARRAY(NODE, X) \
310 SET_TYPE_LANG_SPECIFIC (RECORD_TYPE_CHECK (NODE), X)
311
312 /* For other RECORD_TYPEs and all UNION_TYPEs and QUAL_UNION_TYPEs, this is
313 the Ada size of the object. This differs from the GCC size in that it
314 does not include any rounding up to the alignment of the type. */
315 #define TYPE_ADA_SIZE(NODE) \
316 GET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE))
317 #define SET_TYPE_ADA_SIZE(NODE, X) \
318 SET_TYPE_LANG_SPECIFIC (RECORD_OR_UNION_CHECK (NODE), X)
319
320
321 /* Flags added to decl nodes. */
322
323 /* Nonzero in a FUNCTION_DECL that represents a stubbed function
324 discriminant. */
325 #define DECL_STUBBED_P(NODE) DECL_LANG_FLAG_0 (FUNCTION_DECL_CHECK (NODE))
326
327 /* Nonzero in a VAR_DECL if it is guaranteed to be constant after having
328 been elaborated and TREE_READONLY is not set on it. */
329 #define DECL_READONLY_ONCE_ELAB(NODE) DECL_LANG_FLAG_0 (VAR_DECL_CHECK (NODE))
330
331 /* Nonzero in a CONST_DECL if its value is (essentially) the address of a
332 constant CONSTRUCTOR. */
333 #define DECL_CONST_ADDRESS_P(NODE) DECL_LANG_FLAG_0 (CONST_DECL_CHECK (NODE))
334
335 /* Nonzero in a PARM_DECL if it is always used by double reference, i.e. a
336 pair of INDIRECT_REFs is needed to access the object. */
337 #define DECL_BY_DOUBLE_REF_P(NODE) DECL_LANG_FLAG_0 (PARM_DECL_CHECK (NODE))
338
339 /* Nonzero in a TYPE_DECL if this is the declaration of a Taft amendment type
340 in the main unit, i.e. the full declaration is available. */
341 #define DECL_TAFT_TYPE_P(NODE) DECL_LANG_FLAG_0 (TYPE_DECL_CHECK (NODE))
342
343 /* Nonzero in a DECL if it is always used by reference, i.e. an INDIRECT_REF
344 is needed to access the object. */
345 #define DECL_BY_REF_P(NODE) DECL_LANG_FLAG_1 (NODE)
346
347 /* Nonzero in a FIELD_DECL that is a dummy built for some internal reason. */
348 #define DECL_INTERNAL_P(NODE) DECL_LANG_FLAG_3 (FIELD_DECL_CHECK (NODE))
349
350 /* Nonzero in a PARM_DECL if it is made for an Ada array being passed to a
351 foreign convention subprogram. */
352 #define DECL_BY_COMPONENT_PTR_P(NODE) DECL_LANG_FLAG_3 (PARM_DECL_CHECK (NODE))
353
354 /* Nonzero in a FUNCTION_DECL that corresponds to an elaboration procedure. */
355 #define DECL_ELABORATION_PROC_P(NODE) \
356 DECL_LANG_FLAG_3 (FUNCTION_DECL_CHECK (NODE))
357
358 /* Nonzero in a DECL if it is made for a pointer that points to something which
359 is readonly. Used mostly for fat pointers. */
360 #define DECL_POINTS_TO_READONLY_P(NODE) DECL_LANG_FLAG_4 (NODE)
361
362 /* Nonzero in a PARM_DECL if we are to pass by descriptor. */
363 #define DECL_BY_DESCRIPTOR_P(NODE) DECL_LANG_FLAG_5 (PARM_DECL_CHECK (NODE))
364
365 /* Nonzero in a VAR_DECL if it is a pointer renaming a global object. */
366 #define DECL_RENAMING_GLOBAL_P(NODE) DECL_LANG_FLAG_5 (VAR_DECL_CHECK (NODE))
367
368 /* In a FIELD_DECL corresponding to a discriminant, contains the
369 discriminant number. */
370 #define DECL_DISCRIMINANT_NUMBER(NODE) DECL_INITIAL (FIELD_DECL_CHECK (NODE))
371
372 /* In a CONST_DECL, points to a VAR_DECL that is allocatable to
373 memory. Used when a scalar constant is aliased or has its
374 address taken. */
375 #define DECL_CONST_CORRESPONDING_VAR(NODE) \
376 GET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE))
377 #define SET_DECL_CONST_CORRESPONDING_VAR(NODE, X) \
378 SET_DECL_LANG_SPECIFIC (CONST_DECL_CHECK (NODE), X)
379
380 /* In a FIELD_DECL, points to the FIELD_DECL that was the ultimate
381 source of the decl. */
382 #define DECL_ORIGINAL_FIELD(NODE) \
383 GET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE))
384 #define SET_DECL_ORIGINAL_FIELD(NODE, X) \
385 SET_DECL_LANG_SPECIFIC (FIELD_DECL_CHECK (NODE), X)
386
387 /* Set DECL_ORIGINAL_FIELD of FIELD1 to (that of) FIELD2. */
388 #define SET_DECL_ORIGINAL_FIELD_TO_FIELD(FIELD1, FIELD2) \
389 SET_DECL_ORIGINAL_FIELD ((FIELD1), \
390 DECL_ORIGINAL_FIELD (FIELD2) \
391 ? DECL_ORIGINAL_FIELD (FIELD2) : (FIELD2))
392
393 /* Return true if FIELD1 and FIELD2 represent the same field. */
394 #define SAME_FIELD_P(FIELD1, FIELD2) \
395 ((FIELD1) == (FIELD2) \
396 || DECL_ORIGINAL_FIELD (FIELD1) == (FIELD2) \
397 || (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2) \
398 || (DECL_ORIGINAL_FIELD (FIELD1) \
399 && (DECL_ORIGINAL_FIELD (FIELD1) == DECL_ORIGINAL_FIELD (FIELD2))))
400
401 /* In a VAR_DECL, points to the object being renamed if the VAR_DECL is a
402 renaming pointer, otherwise 0. Note that this object is guaranteed to
403 be protected against multiple evaluations. */
404 #define DECL_RENAMED_OBJECT(NODE) \
405 GET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE))
406 #define SET_DECL_RENAMED_OBJECT(NODE, X) \
407 SET_DECL_LANG_SPECIFIC (VAR_DECL_CHECK (NODE), X)
408
409 /* In a TYPE_DECL, points to the parallel type if any, otherwise 0. */
410 #define DECL_PARALLEL_TYPE(NODE) \
411 GET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE))
412 #define SET_DECL_PARALLEL_TYPE(NODE, X) \
413 SET_DECL_LANG_SPECIFIC (TYPE_DECL_CHECK (NODE), X)
414
415 /* In a FUNCTION_DECL, points to the stub associated with the function
416 if any, otherwise 0. */
417 #define DECL_FUNCTION_STUB(NODE) \
418 GET_DECL_LANG_SPECIFIC (FUNCTION_DECL_CHECK (NODE))
419 #define SET_DECL_FUNCTION_STUB(NODE, X) \
420 SET_DECL_LANG_SPECIFIC (FUNCTION_DECL_CHECK (NODE), X)
421
422 /* In a PARM_DECL, points to the alternate TREE_TYPE. */
423 #define DECL_PARM_ALT_TYPE(NODE) \
424 GET_DECL_LANG_SPECIFIC (PARM_DECL_CHECK (NODE))
425 #define SET_DECL_PARM_ALT_TYPE(NODE, X) \
426 SET_DECL_LANG_SPECIFIC (PARM_DECL_CHECK (NODE), X)
427
428
429 /* Flags added to ref nodes. */
430
431 /* Nonzero means this node will not trap. */
432 #undef TREE_THIS_NOTRAP
433 #define TREE_THIS_NOTRAP(NODE) \
434 (TREE_CHECK4 (NODE, INDIRECT_REF, ARRAY_REF, UNCONSTRAINED_ARRAY_REF, \
435 ARRAY_RANGE_REF)->base.nothrow_flag)
436
437
438 /* Fields and macros for statements. */
439 #define IS_ADA_STMT(NODE) \
440 (STATEMENT_CLASS_P (NODE) && TREE_CODE (NODE) >= STMT_STMT)
441
442 #define STMT_STMT_STMT(NODE) TREE_OPERAND_CHECK_CODE (NODE, STMT_STMT, 0)
443
444 #define LOOP_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 0)
445 #define LOOP_STMT_UPDATE(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 1)
446 #define LOOP_STMT_BODY(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 2)
447 #define LOOP_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, LOOP_STMT, 3)
448
449 /* A loop statement is conceptually made up of 6 sub-statements:
450
451 loop:
452 TOP_CONDITION
453 TOP_UPDATE
454 BODY
455 BOTTOM_CONDITION
456 BOTTOM_UPDATE
457 GOTO loop
458
459 However, only 4 of them can exist for a given loop, the pair of conditions
460 and the pair of updates being mutually exclusive. The default setting is
461 TOP_CONDITION and BOTTOM_UPDATE and the following couple of flags are used
462 to toggle the individual settings. */
463 #define LOOP_STMT_BOTTOM_COND_P(NODE) TREE_LANG_FLAG_0 (LOOP_STMT_CHECK (NODE))
464 #define LOOP_STMT_TOP_UPDATE_P(NODE) TREE_LANG_FLAG_1 (LOOP_STMT_CHECK (NODE))
465
466 #define EXIT_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 0)
467 #define EXIT_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 1)
This page took 0.056117 seconds and 4 git commands to generate.