]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/freeze.adb
[multiple changes]
[gcc.git] / gcc / ada / freeze.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
26
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Ch11; use Exp_Ch11;
34 with Exp_Pakd; use Exp_Pakd;
35 with Exp_Util; use Exp_Util;
36 with Exp_Tss; use Exp_Tss;
37 with Layout; use Layout;
38 with Lib.Xref; use Lib.Xref;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Cat; use Sem_Cat;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch7; use Sem_Ch7;
48 with Sem_Ch8; use Sem_Ch8;
49 with Sem_Ch13; use Sem_Ch13;
50 with Sem_Eval; use Sem_Eval;
51 with Sem_Mech; use Sem_Mech;
52 with Sem_Prag; use Sem_Prag;
53 with Sem_Res; use Sem_Res;
54 with Sem_Util; use Sem_Util;
55 with Sinfo; use Sinfo;
56 with Snames; use Snames;
57 with Stand; use Stand;
58 with Targparm; use Targparm;
59 with Tbuild; use Tbuild;
60 with Ttypes; use Ttypes;
61 with Uintp; use Uintp;
62 with Urealp; use Urealp;
63
64 package body Freeze is
65
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
69
70 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
71 -- Typ is a type that is being frozen. If no size clause is given,
72 -- but a default Esize has been computed, then this default Esize is
73 -- adjusted up if necessary to be consistent with a given alignment,
74 -- but never to a value greater than Long_Long_Integer'Size. This
75 -- is used for all discrete types and for fixed-point types.
76
77 procedure Build_And_Analyze_Renamed_Body
78 (Decl : Node_Id;
79 New_S : Entity_Id;
80 After : in out Node_Id);
81 -- Build body for a renaming declaration, insert in tree and analyze.
82
83 procedure Check_Address_Clause (E : Entity_Id);
84 -- Apply legality checks to address clauses for object declarations,
85 -- at the point the object is frozen.
86
87 procedure Check_Strict_Alignment (E : Entity_Id);
88 -- E is a base type. If E is tagged or has a component that is aliased
89 -- or tagged or contains something this is aliased or tagged, set
90 -- Strict_Alignment.
91
92 procedure Check_Unsigned_Type (E : Entity_Id);
93 pragma Inline (Check_Unsigned_Type);
94 -- If E is a fixed-point or discrete type, then all the necessary work
95 -- to freeze it is completed except for possible setting of the flag
96 -- Is_Unsigned_Type, which is done by this procedure. The call has no
97 -- effect if the entity E is not a discrete or fixed-point type.
98
99 procedure Freeze_And_Append
100 (Ent : Entity_Id;
101 Loc : Source_Ptr;
102 Result : in out List_Id);
103 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
104 -- nodes to Result, modifying Result from No_List if necessary.
105
106 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
107 -- Freeze enumeration type. The Esize field is set as processing
108 -- proceeds (i.e. set by default when the type is declared and then
109 -- adjusted by rep clauses. What this procedure does is to make sure
110 -- that if a foreign convention is specified, and no specific size
111 -- is given, then the size must be at least Integer'Size.
112
113 procedure Freeze_Static_Object (E : Entity_Id);
114 -- If an object is frozen which has Is_Statically_Allocated set, then
115 -- all referenced types must also be marked with this flag. This routine
116 -- is in charge of meeting this requirement for the object entity E.
117
118 procedure Freeze_Subprogram (E : Entity_Id);
119 -- Perform freezing actions for a subprogram (create extra formals,
120 -- and set proper default mechanism values). Note that this routine
121 -- is not called for internal subprograms, for which neither of these
122 -- actions is needed (or desirable, we do not want for example to have
123 -- these extra formals present in initialization procedures, where they
124 -- would serve no purpose). In this call E is either a subprogram or
125 -- a subprogram type (i.e. an access to a subprogram).
126
127 function Is_Fully_Defined (T : Entity_Id) return Boolean;
128 -- True if T is not private and has no private components, or has a full
129 -- view. Used to determine whether the designated type of an access type
130 -- should be frozen when the access type is frozen. This is done when an
131 -- allocator is frozen, or an expression that may involve attributes of
132 -- the designated type. Otherwise freezing the access type does not freeze
133 -- the designated type.
134
135 procedure Process_Default_Expressions
136 (E : Entity_Id;
137 After : in out Node_Id);
138 -- This procedure is called for each subprogram to complete processing
139 -- of default expressions at the point where all types are known to be
140 -- frozen. The expressions must be analyzed in full, to make sure that
141 -- all error processing is done (they have only been pre-analyzed). If
142 -- the expression is not an entity or literal, its analysis may generate
143 -- code which must not be executed. In that case we build a function
144 -- body to hold that code. This wrapper function serves no other purpose
145 -- (it used to be called to evaluate the default, but now the default is
146 -- inlined at each point of call).
147
148 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
149 -- Typ is a record or array type that is being frozen. This routine
150 -- sets the default component alignment from the scope stack values
151 -- if the alignment is otherwise not specified.
152
153 procedure Check_Debug_Info_Needed (T : Entity_Id);
154 -- As each entity is frozen, this routine is called to deal with the
155 -- setting of Debug_Info_Needed for the entity. This flag is set if
156 -- the entity comes from source, or if we are in Debug_Generated_Code
157 -- mode or if the -gnatdV debug flag is set. However, it never sets
158 -- the flag if Debug_Info_Off is set.
159
160 procedure Set_Debug_Info_Needed (T : Entity_Id);
161 -- Sets the Debug_Info_Needed flag on entity T if not already set, and
162 -- also on any entities that are needed by T (for an object, the type
163 -- of the object is needed, and for a type, the subsidiary types are
164 -- needed -- see body for details). Never has any effect on T if the
165 -- Debug_Info_Off flag is set.
166
167 procedure Warn_Overlay
168 (Expr : Node_Id;
169 Typ : Entity_Id;
170 Nam : Node_Id);
171 -- Expr is the expression for an address clause for entity Nam whose type
172 -- is Typ. If Typ has a default initialization, and there is no explicit
173 -- initialization in the source declaration, check whether the address
174 -- clause might cause overlaying of an entity, and emit a warning on the
175 -- side effect that the initialization will cause.
176
177 -------------------------------
178 -- Adjust_Esize_For_Alignment --
179 -------------------------------
180
181 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
182 Align : Uint;
183
184 begin
185 if Known_Esize (Typ) and then Known_Alignment (Typ) then
186 Align := Alignment_In_Bits (Typ);
187
188 if Align > Esize (Typ)
189 and then Align <= Standard_Long_Long_Integer_Size
190 then
191 Set_Esize (Typ, Align);
192 end if;
193 end if;
194 end Adjust_Esize_For_Alignment;
195
196 ------------------------------------
197 -- Build_And_Analyze_Renamed_Body --
198 ------------------------------------
199
200 procedure Build_And_Analyze_Renamed_Body
201 (Decl : Node_Id;
202 New_S : Entity_Id;
203 After : in out Node_Id)
204 is
205 Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
206
207 begin
208 Insert_After (After, Body_Node);
209 Mark_Rewrite_Insertion (Body_Node);
210 Analyze (Body_Node);
211 After := Body_Node;
212 end Build_And_Analyze_Renamed_Body;
213
214 ------------------------
215 -- Build_Renamed_Body --
216 ------------------------
217
218 function Build_Renamed_Body
219 (Decl : Node_Id;
220 New_S : Entity_Id) return Node_Id
221 is
222 Loc : constant Source_Ptr := Sloc (New_S);
223 -- We use for the source location of the renamed body, the location
224 -- of the spec entity. It might seem more natural to use the location
225 -- of the renaming declaration itself, but that would be wrong, since
226 -- then the body we create would look as though it was created far
227 -- too late, and this could cause problems with elaboration order
228 -- analysis, particularly in connection with instantiations.
229
230 N : constant Node_Id := Unit_Declaration_Node (New_S);
231 Nam : constant Node_Id := Name (N);
232 Old_S : Entity_Id;
233 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
234 Actuals : List_Id := No_List;
235 Call_Node : Node_Id;
236 Call_Name : Node_Id;
237 Body_Node : Node_Id;
238 Formal : Entity_Id;
239 O_Formal : Entity_Id;
240 Param_Spec : Node_Id;
241
242 begin
243 -- Determine the entity being renamed, which is the target of the
244 -- call statement. If the name is an explicit dereference, this is
245 -- a renaming of a subprogram type rather than a subprogram. The
246 -- name itself is fully analyzed.
247
248 if Nkind (Nam) = N_Selected_Component then
249 Old_S := Entity (Selector_Name (Nam));
250
251 elsif Nkind (Nam) = N_Explicit_Dereference then
252 Old_S := Etype (Nam);
253
254 elsif Nkind (Nam) = N_Indexed_Component then
255 if Is_Entity_Name (Prefix (Nam)) then
256 Old_S := Entity (Prefix (Nam));
257 else
258 Old_S := Entity (Selector_Name (Prefix (Nam)));
259 end if;
260
261 elsif Nkind (Nam) = N_Character_Literal then
262 Old_S := Etype (New_S);
263
264 else
265 Old_S := Entity (Nam);
266 end if;
267
268 if Is_Entity_Name (Nam) then
269
270 -- If the renamed entity is a predefined operator, retain full
271 -- name to ensure its visibility.
272
273 if Ekind (Old_S) = E_Operator
274 and then Nkind (Nam) = N_Expanded_Name
275 then
276 Call_Name := New_Copy (Name (N));
277 else
278 Call_Name := New_Reference_To (Old_S, Loc);
279 end if;
280
281 else
282 Call_Name := New_Copy (Name (N));
283
284 -- The original name may have been overloaded, but
285 -- is fully resolved now.
286
287 Set_Is_Overloaded (Call_Name, False);
288 end if;
289
290 -- For simple renamings, subsequent calls can be expanded directly
291 -- as called to the renamed entity. The body must be generated in
292 -- any case for calls they may appear elsewhere.
293
294 if (Ekind (Old_S) = E_Function
295 or else Ekind (Old_S) = E_Procedure)
296 and then Nkind (Decl) = N_Subprogram_Declaration
297 then
298 Set_Body_To_Inline (Decl, Old_S);
299 end if;
300
301 -- The body generated for this renaming is an internal artifact, and
302 -- does not constitute a freeze point for the called entity.
303
304 Set_Must_Not_Freeze (Call_Name);
305
306 Formal := First_Formal (Defining_Entity (Decl));
307
308 if Present (Formal) then
309 Actuals := New_List;
310
311 while Present (Formal) loop
312 Append (New_Reference_To (Formal, Loc), Actuals);
313 Next_Formal (Formal);
314 end loop;
315 end if;
316
317 -- If the renamed entity is an entry, inherit its profile. For
318 -- other renamings as bodies, both profiles must be subtype
319 -- conformant, so it is not necessary to replace the profile given
320 -- in the declaration. However, default values that are aggregates
321 -- are rewritten when partially analyzed, so we recover the original
322 -- aggregate to insure that subsequent conformity checking works.
323 -- Similarly, if the default expression was constant-folded, recover
324 -- the original expression.
325
326 Formal := First_Formal (Defining_Entity (Decl));
327
328 if Present (Formal) then
329 O_Formal := First_Formal (Old_S);
330 Param_Spec := First (Parameter_Specifications (Spec));
331
332 while Present (Formal) loop
333 if Is_Entry (Old_S) then
334
335 if Nkind (Parameter_Type (Param_Spec)) /=
336 N_Access_Definition
337 then
338 Set_Etype (Formal, Etype (O_Formal));
339 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
340 end if;
341
342 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
343 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
344 Nkind (Default_Value (O_Formal))
345 then
346 Set_Expression (Param_Spec,
347 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
348 end if;
349
350 Next_Formal (Formal);
351 Next_Formal (O_Formal);
352 Next (Param_Spec);
353 end loop;
354 end if;
355
356 -- If the renamed entity is a function, the generated body contains a
357 -- return statement. Otherwise, build a procedure call. If the entity is
358 -- an entry, subsequent analysis of the call will transform it into the
359 -- proper entry or protected operation call. If the renamed entity is
360 -- a character literal, return it directly.
361
362 if Ekind (Old_S) = E_Function
363 or else Ekind (Old_S) = E_Operator
364 or else (Ekind (Old_S) = E_Subprogram_Type
365 and then Etype (Old_S) /= Standard_Void_Type)
366 then
367 Call_Node :=
368 Make_Return_Statement (Loc,
369 Expression =>
370 Make_Function_Call (Loc,
371 Name => Call_Name,
372 Parameter_Associations => Actuals));
373
374 elsif Ekind (Old_S) = E_Enumeration_Literal then
375 Call_Node :=
376 Make_Return_Statement (Loc,
377 Expression => New_Occurrence_Of (Old_S, Loc));
378
379 elsif Nkind (Nam) = N_Character_Literal then
380 Call_Node :=
381 Make_Return_Statement (Loc,
382 Expression => Call_Name);
383
384 else
385 Call_Node :=
386 Make_Procedure_Call_Statement (Loc,
387 Name => Call_Name,
388 Parameter_Associations => Actuals);
389 end if;
390
391 -- Create entities for subprogram body and formals.
392
393 Set_Defining_Unit_Name (Spec,
394 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
395
396 Param_Spec := First (Parameter_Specifications (Spec));
397
398 while Present (Param_Spec) loop
399 Set_Defining_Identifier (Param_Spec,
400 Make_Defining_Identifier (Loc,
401 Chars => Chars (Defining_Identifier (Param_Spec))));
402 Next (Param_Spec);
403 end loop;
404
405 Body_Node :=
406 Make_Subprogram_Body (Loc,
407 Specification => Spec,
408 Declarations => New_List,
409 Handled_Statement_Sequence =>
410 Make_Handled_Sequence_Of_Statements (Loc,
411 Statements => New_List (Call_Node)));
412
413 if Nkind (Decl) /= N_Subprogram_Declaration then
414 Rewrite (N,
415 Make_Subprogram_Declaration (Loc,
416 Specification => Specification (N)));
417 end if;
418
419 -- Link the body to the entity whose declaration it completes. If
420 -- the body is analyzed when the renamed entity is frozen, it may be
421 -- necessary to restore the proper scope (see package Exp_Ch13).
422
423 if Nkind (N) = N_Subprogram_Renaming_Declaration
424 and then Present (Corresponding_Spec (N))
425 then
426 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
427 else
428 Set_Corresponding_Spec (Body_Node, New_S);
429 end if;
430
431 return Body_Node;
432 end Build_Renamed_Body;
433
434 --------------------------
435 -- Check_Address_Clause --
436 --------------------------
437
438 procedure Check_Address_Clause (E : Entity_Id) is
439 Addr : constant Node_Id := Address_Clause (E);
440 Expr : Node_Id;
441 Decl : constant Node_Id := Declaration_Node (E);
442 Typ : constant Entity_Id := Etype (E);
443
444 begin
445 if Present (Addr) then
446 Expr := Expression (Addr);
447
448 -- If we have no initialization of any kind, then we don't
449 -- need to place any restrictions on the address clause, because
450 -- the object will be elaborated after the address clause is
451 -- evaluated. This happens if the declaration has no initial
452 -- expression, or the type has no implicit initialization, or
453 -- the object is imported.
454
455 -- The same holds for all initialized scalar types and all
456 -- access types. Packed bit arrays of size up to 64 are
457 -- represented using a modular type with an initialization
458 -- (to zero) and can be processed like other initialized
459 -- scalar types.
460
461 -- If the type is controlled, code to attach the object to a
462 -- finalization chain is generated at the point of declaration,
463 -- and therefore the elaboration of the object cannot be delayed:
464 -- the address expression must be a constant.
465
466 if (No (Expression (Decl))
467 and then not Controlled_Type (Typ)
468 and then
469 (not Has_Non_Null_Base_Init_Proc (Typ)
470 or else Is_Imported (E)))
471
472 or else
473 (Present (Expression (Decl))
474 and then Is_Scalar_Type (Typ))
475
476 or else
477 Is_Access_Type (Typ)
478
479 or else
480 (Is_Bit_Packed_Array (Typ)
481 and then
482 Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
483 then
484 null;
485
486 -- Otherwise, we require the address clause to be constant
487 -- because the call to the initialization procedure (or the
488 -- attach code) has to happen at the point of the declaration.
489
490 else
491 Check_Constant_Address_Clause (Expr, E);
492 Set_Has_Delayed_Freeze (E, False);
493 end if;
494
495 if not Error_Posted (Expr)
496 and then not Controlled_Type (Typ)
497 then
498 Warn_Overlay (Expr, Typ, Name (Addr));
499 end if;
500 end if;
501 end Check_Address_Clause;
502
503 -----------------------------
504 -- Check_Compile_Time_Size --
505 -----------------------------
506
507 procedure Check_Compile_Time_Size (T : Entity_Id) is
508
509 procedure Set_Small_Size (S : Uint);
510 -- Sets the compile time known size (32 bits or less) in the Esize
511 -- field, checking for a size clause that was given which attempts
512 -- to give a smaller size.
513
514 function Size_Known (T : Entity_Id) return Boolean;
515 -- Recursive function that does all the work
516
517 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
518 -- If T is a constrained subtype, its size is not known if any of its
519 -- discriminant constraints is not static and it is not a null record.
520 -- The test is conservative and doesn't check that the components are
521 -- in fact constrained by non-static discriminant values. Could be made
522 -- more precise ???
523
524 --------------------
525 -- Set_Small_Size --
526 --------------------
527
528 procedure Set_Small_Size (S : Uint) is
529 begin
530 if S > 32 then
531 return;
532
533 elsif Has_Size_Clause (T) then
534 if RM_Size (T) < S then
535 Error_Msg_Uint_1 := S;
536 Error_Msg_NE
537 ("size for & is too small, minimum is ^",
538 Size_Clause (T), T);
539
540 elsif Unknown_Esize (T) then
541 Set_Esize (T, S);
542 end if;
543
544 -- Set sizes if not set already
545
546 else
547 if Unknown_Esize (T) then
548 Set_Esize (T, S);
549 end if;
550
551 if Unknown_RM_Size (T) then
552 Set_RM_Size (T, S);
553 end if;
554 end if;
555 end Set_Small_Size;
556
557 ----------------
558 -- Size_Known --
559 ----------------
560
561 function Size_Known (T : Entity_Id) return Boolean is
562 Index : Entity_Id;
563 Comp : Entity_Id;
564 Ctyp : Entity_Id;
565 Low : Node_Id;
566 High : Node_Id;
567
568 begin
569 if Size_Known_At_Compile_Time (T) then
570 return True;
571
572 elsif Is_Scalar_Type (T)
573 or else Is_Task_Type (T)
574 then
575 return not Is_Generic_Type (T);
576
577 elsif Is_Array_Type (T) then
578 if Ekind (T) = E_String_Literal_Subtype then
579 Set_Small_Size (Component_Size (T) * String_Literal_Length (T));
580 return True;
581
582 elsif not Is_Constrained (T) then
583 return False;
584
585 -- Don't do any recursion on type with error posted, since
586 -- we may have a malformed type that leads us into a loop
587
588 elsif Error_Posted (T) then
589 return False;
590
591 elsif not Size_Known (Component_Type (T)) then
592 return False;
593 end if;
594
595 -- Check for all indexes static, and also compute possible
596 -- size (in case it is less than 32 and may be packable).
597
598 declare
599 Esiz : Uint := Component_Size (T);
600 Dim : Uint;
601
602 begin
603 Index := First_Index (T);
604 while Present (Index) loop
605 if Nkind (Index) = N_Range then
606 Get_Index_Bounds (Index, Low, High);
607
608 elsif Error_Posted (Scalar_Range (Etype (Index))) then
609 return False;
610
611 else
612 Low := Type_Low_Bound (Etype (Index));
613 High := Type_High_Bound (Etype (Index));
614 end if;
615
616 if not Compile_Time_Known_Value (Low)
617 or else not Compile_Time_Known_Value (High)
618 or else Etype (Index) = Any_Type
619 then
620 return False;
621
622 else
623 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
624
625 if Dim >= 0 then
626 Esiz := Esiz * Dim;
627 else
628 Esiz := Uint_0;
629 end if;
630 end if;
631
632 Next_Index (Index);
633 end loop;
634
635 Set_Small_Size (Esiz);
636 return True;
637 end;
638
639 elsif Is_Access_Type (T) then
640 return True;
641
642 elsif Is_Private_Type (T)
643 and then not Is_Generic_Type (T)
644 and then Present (Underlying_Type (T))
645 then
646 -- Don't do any recursion on type with error posted, since
647 -- we may have a malformed type that leads us into a loop
648
649 if Error_Posted (T) then
650 return False;
651 else
652 return Size_Known (Underlying_Type (T));
653 end if;
654
655 elsif Is_Record_Type (T) then
656
657 -- A class-wide type is never considered to have a known size
658
659 if Is_Class_Wide_Type (T) then
660 return False;
661
662 -- A subtype of a variant record must not have non-static
663 -- discriminanted components.
664
665 elsif T /= Base_Type (T)
666 and then not Static_Discriminated_Components (T)
667 then
668 return False;
669
670 -- Don't do any recursion on type with error posted, since
671 -- we may have a malformed type that leads us into a loop
672
673 elsif Error_Posted (T) then
674 return False;
675 end if;
676
677 -- Now look at the components of the record
678
679 declare
680 -- The following two variables are used to keep track of
681 -- the size of packed records if we can tell the size of
682 -- the packed record in the front end. Packed_Size_Known
683 -- is True if so far we can figure out the size. It is
684 -- initialized to True for a packed record, unless the
685 -- record has discriminants. The reason we eliminate the
686 -- discriminated case is that we don't know the way the
687 -- back end lays out discriminated packed records. If
688 -- Packed_Size_Known is True, then Packed_Size is the
689 -- size in bits so far.
690
691 Packed_Size_Known : Boolean :=
692 Is_Packed (T)
693 and then not Has_Discriminants (T);
694
695 Packed_Size : Uint := Uint_0;
696
697 begin
698 -- Test for variant part present
699
700 if Has_Discriminants (T)
701 and then Present (Parent (T))
702 and then Nkind (Parent (T)) = N_Full_Type_Declaration
703 and then Nkind (Type_Definition (Parent (T))) =
704 N_Record_Definition
705 and then not Null_Present (Type_Definition (Parent (T)))
706 and then Present (Variant_Part
707 (Component_List (Type_Definition (Parent (T)))))
708 then
709 -- If variant part is present, and type is unconstrained,
710 -- then we must have defaulted discriminants, or a size
711 -- clause must be present for the type, or else the size
712 -- is definitely not known at compile time.
713
714 if not Is_Constrained (T)
715 and then
716 No (Discriminant_Default_Value
717 (First_Discriminant (T)))
718 and then Unknown_Esize (T)
719 then
720 return False;
721 end if;
722 end if;
723
724 -- Loop through components
725
726 Comp := First_Entity (T);
727 while Present (Comp) loop
728 if Ekind (Comp) = E_Component
729 or else
730 Ekind (Comp) = E_Discriminant
731 then
732 Ctyp := Etype (Comp);
733
734 -- We do not know the packed size if there is a
735 -- component clause present (we possibly could,
736 -- but this would only help in the case of a record
737 -- with partial rep clauses. That's because in the
738 -- case of full rep clauses, the size gets figured
739 -- out anyway by a different circuit).
740
741 if Present (Component_Clause (Comp)) then
742 Packed_Size_Known := False;
743 end if;
744
745 -- We need to identify a component that is an array
746 -- where the index type is an enumeration type with
747 -- non-standard representation, and some bound of the
748 -- type depends on a discriminant.
749
750 -- This is because gigi computes the size by doing a
751 -- substituation of the appropriate discriminant value
752 -- in the size expression for the base type, and gigi
753 -- is not clever enough to evaluate the resulting
754 -- expression (which involves a call to rep_to_pos)
755 -- at compile time.
756
757 -- It would be nice if gigi would either recognize that
758 -- this expression can be computed at compile time, or
759 -- alternatively figured out the size from the subtype
760 -- directly, where all the information is at hand ???
761
762 if Is_Array_Type (Etype (Comp))
763 and then Present (Packed_Array_Type (Etype (Comp)))
764 then
765 declare
766 Ocomp : constant Entity_Id :=
767 Original_Record_Component (Comp);
768 OCtyp : constant Entity_Id := Etype (Ocomp);
769 Ind : Node_Id;
770 Indtyp : Entity_Id;
771 Lo, Hi : Node_Id;
772
773 begin
774 Ind := First_Index (OCtyp);
775 while Present (Ind) loop
776 Indtyp := Etype (Ind);
777
778 if Is_Enumeration_Type (Indtyp)
779 and then Has_Non_Standard_Rep (Indtyp)
780 then
781 Lo := Type_Low_Bound (Indtyp);
782 Hi := Type_High_Bound (Indtyp);
783
784 if Is_Entity_Name (Lo)
785 and then
786 Ekind (Entity (Lo)) = E_Discriminant
787 then
788 return False;
789
790 elsif Is_Entity_Name (Hi)
791 and then
792 Ekind (Entity (Hi)) = E_Discriminant
793 then
794 return False;
795 end if;
796 end if;
797
798 Next_Index (Ind);
799 end loop;
800 end;
801 end if;
802
803 -- Clearly size of record is not known if the size of
804 -- one of the components is not known.
805
806 if not Size_Known (Ctyp) then
807 return False;
808 end if;
809
810 -- Accumulate packed size if possible
811
812 if Packed_Size_Known then
813
814 -- We can only deal with elementary types, since for
815 -- non-elementary components, alignment enters into
816 -- the picture, and we don't know enough to handle
817 -- proper alignment in this context. Packed arrays
818 -- count as elementary if the representation is a
819 -- modular type.
820
821 if Is_Elementary_Type (Ctyp)
822 or else (Is_Array_Type (Ctyp)
823 and then
824 Present (Packed_Array_Type (Ctyp))
825 and then
826 Is_Modular_Integer_Type
827 (Packed_Array_Type (Ctyp)))
828 then
829 -- If RM_Size is known and static, then we can
830 -- keep accumulating the packed size.
831
832 if Known_Static_RM_Size (Ctyp) then
833
834 -- A little glitch, to be removed sometime ???
835 -- gigi does not understand zero sizes yet.
836
837 if RM_Size (Ctyp) = Uint_0 then
838 Packed_Size_Known := False;
839
840 -- Normal case where we can keep accumulating
841 -- the packed array size.
842
843 else
844 Packed_Size := Packed_Size + RM_Size (Ctyp);
845 end if;
846
847 -- If we have a field whose RM_Size is not known
848 -- then we can't figure out the packed size here.
849
850 else
851 Packed_Size_Known := False;
852 end if;
853
854 -- If we have a non-elementary type we can't figure
855 -- out the packed array size (alignment issues).
856
857 else
858 Packed_Size_Known := False;
859 end if;
860 end if;
861 end if;
862
863 Next_Entity (Comp);
864 end loop;
865
866 if Packed_Size_Known then
867 Set_Small_Size (Packed_Size);
868 end if;
869
870 return True;
871 end;
872
873 else
874 return False;
875 end if;
876 end Size_Known;
877
878 -------------------------------------
879 -- Static_Discriminated_Components --
880 -------------------------------------
881
882 function Static_Discriminated_Components
883 (T : Entity_Id) return Boolean
884 is
885 Constraint : Elmt_Id;
886
887 begin
888 if Has_Discriminants (T)
889 and then Present (Discriminant_Constraint (T))
890 and then Present (First_Component (T))
891 then
892 Constraint := First_Elmt (Discriminant_Constraint (T));
893 while Present (Constraint) loop
894 if not Compile_Time_Known_Value (Node (Constraint)) then
895 return False;
896 end if;
897
898 Next_Elmt (Constraint);
899 end loop;
900 end if;
901
902 return True;
903 end Static_Discriminated_Components;
904
905 -- Start of processing for Check_Compile_Time_Size
906
907 begin
908 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
909 end Check_Compile_Time_Size;
910
911 -----------------------------
912 -- Check_Debug_Info_Needed --
913 -----------------------------
914
915 procedure Check_Debug_Info_Needed (T : Entity_Id) is
916 begin
917 if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
918 return;
919
920 elsif Comes_From_Source (T)
921 or else Debug_Generated_Code
922 or else Debug_Flag_VV
923 then
924 Set_Debug_Info_Needed (T);
925 end if;
926 end Check_Debug_Info_Needed;
927
928 ----------------------------
929 -- Check_Strict_Alignment --
930 ----------------------------
931
932 procedure Check_Strict_Alignment (E : Entity_Id) is
933 Comp : Entity_Id;
934
935 begin
936 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
937 Set_Strict_Alignment (E);
938
939 elsif Is_Array_Type (E) then
940 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
941
942 elsif Is_Record_Type (E) then
943 if Is_Limited_Record (E) then
944 Set_Strict_Alignment (E);
945 return;
946 end if;
947
948 Comp := First_Component (E);
949
950 while Present (Comp) loop
951 if not Is_Type (Comp)
952 and then (Strict_Alignment (Etype (Comp))
953 or else Is_Aliased (Comp))
954 then
955 Set_Strict_Alignment (E);
956 return;
957 end if;
958
959 Next_Component (Comp);
960 end loop;
961 end if;
962 end Check_Strict_Alignment;
963
964 -------------------------
965 -- Check_Unsigned_Type --
966 -------------------------
967
968 procedure Check_Unsigned_Type (E : Entity_Id) is
969 Ancestor : Entity_Id;
970 Lo_Bound : Node_Id;
971 Btyp : Entity_Id;
972
973 begin
974 if not Is_Discrete_Or_Fixed_Point_Type (E) then
975 return;
976 end if;
977
978 -- Do not attempt to analyze case where range was in error
979
980 if Error_Posted (Scalar_Range (E)) then
981 return;
982 end if;
983
984 -- The situation that is non trivial is something like
985
986 -- subtype x1 is integer range -10 .. +10;
987 -- subtype x2 is x1 range 0 .. V1;
988 -- subtype x3 is x2 range V2 .. V3;
989 -- subtype x4 is x3 range V4 .. V5;
990
991 -- where Vn are variables. Here the base type is signed, but we still
992 -- know that x4 is unsigned because of the lower bound of x2.
993
994 -- The only way to deal with this is to look up the ancestor chain
995
996 Ancestor := E;
997 loop
998 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
999 return;
1000 end if;
1001
1002 Lo_Bound := Type_Low_Bound (Ancestor);
1003
1004 if Compile_Time_Known_Value (Lo_Bound) then
1005
1006 if Expr_Rep_Value (Lo_Bound) >= 0 then
1007 Set_Is_Unsigned_Type (E, True);
1008 end if;
1009
1010 return;
1011
1012 else
1013 Ancestor := Ancestor_Subtype (Ancestor);
1014
1015 -- If no ancestor had a static lower bound, go to base type
1016
1017 if No (Ancestor) then
1018
1019 -- Note: the reason we still check for a compile time known
1020 -- value for the base type is that at least in the case of
1021 -- generic formals, we can have bounds that fail this test,
1022 -- and there may be other cases in error situations.
1023
1024 Btyp := Base_Type (E);
1025
1026 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1027 return;
1028 end if;
1029
1030 Lo_Bound := Type_Low_Bound (Base_Type (E));
1031
1032 if Compile_Time_Known_Value (Lo_Bound)
1033 and then Expr_Rep_Value (Lo_Bound) >= 0
1034 then
1035 Set_Is_Unsigned_Type (E, True);
1036 end if;
1037
1038 return;
1039 end if;
1040 end if;
1041 end loop;
1042 end Check_Unsigned_Type;
1043
1044 -----------------------------
1045 -- Expand_Atomic_Aggregate --
1046 -----------------------------
1047
1048 procedure Expand_Atomic_Aggregate (E : Entity_Id; Typ : Entity_Id) is
1049 Loc : constant Source_Ptr := Sloc (E);
1050 New_N : Node_Id;
1051 Temp : Entity_Id;
1052
1053 begin
1054 if (Nkind (Parent (E)) = N_Object_Declaration
1055 or else Nkind (Parent (E)) = N_Assignment_Statement)
1056 and then Comes_From_Source (Parent (E))
1057 and then Nkind (E) = N_Aggregate
1058 then
1059 Temp :=
1060 Make_Defining_Identifier (Loc,
1061 New_Internal_Name ('T'));
1062
1063 New_N :=
1064 Make_Object_Declaration (Loc,
1065 Defining_Identifier => Temp,
1066 Object_definition => New_Occurrence_Of (Typ, Loc),
1067 Expression => Relocate_Node (E));
1068 Insert_Before (Parent (E), New_N);
1069 Analyze (New_N);
1070
1071 Set_Expression (Parent (E), New_Occurrence_Of (Temp, Loc));
1072
1073 -- To prevent the temporary from being constant-folded (which
1074 -- would lead to the same piecemeal assignment on the original
1075 -- target) indicate to the back-end that the temporary is a
1076 -- variable with real storage. See description of this flag
1077 -- in Einfo, and the notes on N_Assignment_Statement and
1078 -- N_Object_Declaration in Sinfo.
1079
1080 Set_Is_True_Constant (Temp, False);
1081 end if;
1082 end Expand_Atomic_Aggregate;
1083
1084 ----------------
1085 -- Freeze_All --
1086 ----------------
1087
1088 -- Note: the easy coding for this procedure would be to just build a
1089 -- single list of freeze nodes and then insert them and analyze them
1090 -- all at once. This won't work, because the analysis of earlier freeze
1091 -- nodes may recursively freeze types which would otherwise appear later
1092 -- on in the freeze list. So we must analyze and expand the freeze nodes
1093 -- as they are generated.
1094
1095 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1096 Loc : constant Source_Ptr := Sloc (After);
1097 E : Entity_Id;
1098 Decl : Node_Id;
1099
1100 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1101 -- This is the internal recursive routine that does freezing of
1102 -- entities (but NOT the analysis of default expressions, which
1103 -- should not be recursive, we don't want to analyze those till
1104 -- we are sure that ALL the types are frozen).
1105
1106 --------------------
1107 -- Freeze_All_Ent --
1108 --------------------
1109
1110 procedure Freeze_All_Ent
1111 (From : Entity_Id;
1112 After : in out Node_Id)
1113 is
1114 E : Entity_Id;
1115 Flist : List_Id;
1116 Lastn : Node_Id;
1117
1118 procedure Process_Flist;
1119 -- If freeze nodes are present, insert and analyze, and reset
1120 -- cursor for next insertion.
1121
1122 -------------------
1123 -- Process_Flist --
1124 -------------------
1125
1126 procedure Process_Flist is
1127 begin
1128 if Is_Non_Empty_List (Flist) then
1129 Lastn := Next (After);
1130 Insert_List_After_And_Analyze (After, Flist);
1131
1132 if Present (Lastn) then
1133 After := Prev (Lastn);
1134 else
1135 After := Last (List_Containing (After));
1136 end if;
1137 end if;
1138 end Process_Flist;
1139
1140 -- Start or processing for Freeze_All_Ent
1141
1142 begin
1143 E := From;
1144 while Present (E) loop
1145
1146 -- If the entity is an inner package which is not a package
1147 -- renaming, then its entities must be frozen at this point.
1148 -- Note that such entities do NOT get frozen at the end of
1149 -- the nested package itself (only library packages freeze).
1150
1151 -- Same is true for task declarations, where anonymous records
1152 -- created for entry parameters must be frozen.
1153
1154 if Ekind (E) = E_Package
1155 and then No (Renamed_Object (E))
1156 and then not Is_Child_Unit (E)
1157 and then not Is_Frozen (E)
1158 then
1159 New_Scope (E);
1160 Install_Visible_Declarations (E);
1161 Install_Private_Declarations (E);
1162
1163 Freeze_All (First_Entity (E), After);
1164
1165 End_Package_Scope (E);
1166
1167 elsif Ekind (E) in Task_Kind
1168 and then
1169 (Nkind (Parent (E)) = N_Task_Type_Declaration
1170 or else
1171 Nkind (Parent (E)) = N_Single_Task_Declaration)
1172 then
1173 New_Scope (E);
1174 Freeze_All (First_Entity (E), After);
1175 End_Scope;
1176
1177 -- For a derived tagged type, we must ensure that all the
1178 -- primitive operations of the parent have been frozen, so
1179 -- that their addresses will be in the parent's dispatch table
1180 -- at the point it is inherited.
1181
1182 elsif Ekind (E) = E_Record_Type
1183 and then Is_Tagged_Type (E)
1184 and then Is_Tagged_Type (Etype (E))
1185 and then Is_Derived_Type (E)
1186 then
1187 declare
1188 Prim_List : constant Elist_Id :=
1189 Primitive_Operations (Etype (E));
1190
1191 Prim : Elmt_Id;
1192 Subp : Entity_Id;
1193
1194 begin
1195 Prim := First_Elmt (Prim_List);
1196
1197 while Present (Prim) loop
1198 Subp := Node (Prim);
1199
1200 if Comes_From_Source (Subp)
1201 and then not Is_Frozen (Subp)
1202 then
1203 Flist := Freeze_Entity (Subp, Loc);
1204 Process_Flist;
1205 end if;
1206
1207 Next_Elmt (Prim);
1208 end loop;
1209 end;
1210 end if;
1211
1212 if not Is_Frozen (E) then
1213 Flist := Freeze_Entity (E, Loc);
1214 Process_Flist;
1215 end if;
1216
1217 -- If an incomplete type is still not frozen, this may be
1218 -- a premature freezing because of a body declaration that
1219 -- follows. Indicate where the freezing took place.
1220
1221 -- If the freezing is caused by the end of the current
1222 -- declarative part, it is a Taft Amendment type, and there
1223 -- is no error.
1224
1225 if not Is_Frozen (E)
1226 and then Ekind (E) = E_Incomplete_Type
1227 then
1228 declare
1229 Bod : constant Node_Id := Next (After);
1230
1231 begin
1232 if (Nkind (Bod) = N_Subprogram_Body
1233 or else Nkind (Bod) = N_Entry_Body
1234 or else Nkind (Bod) = N_Package_Body
1235 or else Nkind (Bod) = N_Protected_Body
1236 or else Nkind (Bod) = N_Task_Body
1237 or else Nkind (Bod) in N_Body_Stub)
1238 and then
1239 List_Containing (After) = List_Containing (Parent (E))
1240 then
1241 Error_Msg_Sloc := Sloc (Next (After));
1242 Error_Msg_NE
1243 ("type& is frozen# before its full declaration",
1244 Parent (E), E);
1245 end if;
1246 end;
1247 end if;
1248
1249 Next_Entity (E);
1250 end loop;
1251 end Freeze_All_Ent;
1252
1253 -- Start of processing for Freeze_All
1254
1255 begin
1256 Freeze_All_Ent (From, After);
1257
1258 -- Now that all types are frozen, we can deal with default expressions
1259 -- that require us to build a default expression functions. This is the
1260 -- point at which such functions are constructed (after all types that
1261 -- might be used in such expressions have been frozen).
1262
1263 -- We also add finalization chains to access types whose designated
1264 -- types are controlled. This is normally done when freezing the type,
1265 -- but this misses recursive type definitions where the later members
1266 -- of the recursion introduce controlled components (e.g. 5624-001).
1267
1268 -- Loop through entities
1269
1270 E := From;
1271 while Present (E) loop
1272 if Is_Subprogram (E) then
1273
1274 if not Default_Expressions_Processed (E) then
1275 Process_Default_Expressions (E, After);
1276 end if;
1277
1278 if not Has_Completion (E) then
1279 Decl := Unit_Declaration_Node (E);
1280
1281 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1282 Build_And_Analyze_Renamed_Body (Decl, E, After);
1283
1284 elsif Nkind (Decl) = N_Subprogram_Declaration
1285 and then Present (Corresponding_Body (Decl))
1286 and then
1287 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1288 = N_Subprogram_Renaming_Declaration
1289 then
1290 Build_And_Analyze_Renamed_Body
1291 (Decl, Corresponding_Body (Decl), After);
1292 end if;
1293 end if;
1294
1295 elsif Ekind (E) in Task_Kind
1296 and then
1297 (Nkind (Parent (E)) = N_Task_Type_Declaration
1298 or else
1299 Nkind (Parent (E)) = N_Single_Task_Declaration)
1300 then
1301 declare
1302 Ent : Entity_Id;
1303 begin
1304 Ent := First_Entity (E);
1305
1306 while Present (Ent) loop
1307
1308 if Is_Entry (Ent)
1309 and then not Default_Expressions_Processed (Ent)
1310 then
1311 Process_Default_Expressions (Ent, After);
1312 end if;
1313
1314 Next_Entity (Ent);
1315 end loop;
1316 end;
1317
1318 elsif Is_Access_Type (E)
1319 and then Comes_From_Source (E)
1320 and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
1321 and then Controlled_Type (Designated_Type (E))
1322 and then No (Associated_Final_Chain (E))
1323 then
1324 Build_Final_List (Parent (E), E);
1325 end if;
1326
1327 Next_Entity (E);
1328 end loop;
1329 end Freeze_All;
1330
1331 -----------------------
1332 -- Freeze_And_Append --
1333 -----------------------
1334
1335 procedure Freeze_And_Append
1336 (Ent : Entity_Id;
1337 Loc : Source_Ptr;
1338 Result : in out List_Id)
1339 is
1340 L : constant List_Id := Freeze_Entity (Ent, Loc);
1341 begin
1342 if Is_Non_Empty_List (L) then
1343 if Result = No_List then
1344 Result := L;
1345 else
1346 Append_List (L, Result);
1347 end if;
1348 end if;
1349 end Freeze_And_Append;
1350
1351 -------------------
1352 -- Freeze_Before --
1353 -------------------
1354
1355 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1356 Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
1357 begin
1358 if Is_Non_Empty_List (Freeze_Nodes) then
1359 Insert_Actions (N, Freeze_Nodes);
1360 end if;
1361 end Freeze_Before;
1362
1363 -------------------
1364 -- Freeze_Entity --
1365 -------------------
1366
1367 function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
1368 Comp : Entity_Id;
1369 F_Node : Node_Id;
1370 Result : List_Id;
1371 Indx : Node_Id;
1372 Formal : Entity_Id;
1373 Atype : Entity_Id;
1374
1375 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1376 -- Check that an Access or Unchecked_Access attribute with
1377 -- a prefix which is the current instance type can only be
1378 -- applied when the type is limited.
1379
1380 function After_Last_Declaration return Boolean;
1381 -- If Loc is a freeze_entity that appears after the last declaration
1382 -- in the scope, inhibit error messages on late completion.
1383
1384 procedure Freeze_Record_Type (Rec : Entity_Id);
1385 -- Freeze each component, handle some representation clauses, and
1386 -- freeze primitive operations if this is a tagged type.
1387
1388 ----------------------------
1389 -- After_Last_Declaration --
1390 ----------------------------
1391
1392 function After_Last_Declaration return Boolean is
1393 Spec : constant Node_Id := Parent (Current_Scope);
1394
1395 begin
1396 if Nkind (Spec) = N_Package_Specification then
1397 if Present (Private_Declarations (Spec)) then
1398 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1399
1400 elsif Present (Visible_Declarations (Spec)) then
1401 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1402 else
1403 return False;
1404 end if;
1405
1406 else
1407 return False;
1408 end if;
1409 end After_Last_Declaration;
1410
1411 ----------------------------
1412 -- Check_Current_Instance --
1413 ----------------------------
1414
1415 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1416
1417 function Process (N : Node_Id) return Traverse_Result;
1418 -- Process routine to apply check to given node.
1419
1420 -------------
1421 -- Process --
1422 -------------
1423
1424 function Process (N : Node_Id) return Traverse_Result is
1425 begin
1426 case Nkind (N) is
1427 when N_Attribute_Reference =>
1428 if (Attribute_Name (N) = Name_Access
1429 or else
1430 Attribute_Name (N) = Name_Unchecked_Access)
1431 and then Is_Entity_Name (Prefix (N))
1432 and then Is_Type (Entity (Prefix (N)))
1433 and then Entity (Prefix (N)) = E
1434 then
1435 Error_Msg_N
1436 ("current instance must be a limited type", Prefix (N));
1437 return Abandon;
1438 else
1439 return OK;
1440 end if;
1441
1442 when others => return OK;
1443 end case;
1444 end Process;
1445
1446 procedure Traverse is new Traverse_Proc (Process);
1447
1448 -- Start of processing for Check_Current_Instance
1449
1450 begin
1451 Traverse (Comp_Decl);
1452 end Check_Current_Instance;
1453
1454 ------------------------
1455 -- Freeze_Record_Type --
1456 ------------------------
1457
1458 procedure Freeze_Record_Type (Rec : Entity_Id) is
1459 Comp : Entity_Id;
1460 IR : Node_Id;
1461 Junk : Boolean;
1462 ADC : Node_Id;
1463
1464 Unplaced_Component : Boolean := False;
1465 -- Set True if we find at least one component with no component
1466 -- clause (used to warn about useless Pack pragmas).
1467
1468 Placed_Component : Boolean := False;
1469 -- Set True if we find at least one component with a component
1470 -- clause (used to warn about useless Bit_Order pragmas).
1471
1472 procedure Check_Itype (Desig : Entity_Id);
1473 -- If the component subtype is an access to a constrained subtype
1474 -- of an already frozen type, make the subtype frozen as well. It
1475 -- might otherwise be frozen in the wrong scope, and a freeze node
1476 -- on subtype has no effect.
1477
1478 -----------------
1479 -- Check_Itype --
1480 -----------------
1481
1482 procedure Check_Itype (Desig : Entity_Id) is
1483 begin
1484 if not Is_Frozen (Desig)
1485 and then Is_Frozen (Base_Type (Desig))
1486 then
1487 Set_Is_Frozen (Desig);
1488
1489 -- In addition, add an Itype_Reference to ensure that the
1490 -- access subtype is elaborated early enough. This cannot
1491 -- be done if the subtype may depend on discriminants.
1492
1493 if Ekind (Comp) = E_Component
1494 and then Is_Itype (Etype (Comp))
1495 and then not Has_Discriminants (Rec)
1496 then
1497 IR := Make_Itype_Reference (Sloc (Comp));
1498 Set_Itype (IR, Desig);
1499
1500 if No (Result) then
1501 Result := New_List (IR);
1502 else
1503 Append (IR, Result);
1504 end if;
1505 end if;
1506 end if;
1507 end Check_Itype;
1508
1509 -- Start of processing for Freeze_Record_Type
1510
1511 begin
1512 -- If this is a subtype of a controlled type, declared without
1513 -- a constraint, the _controller may not appear in the component
1514 -- list if the parent was not frozen at the point of subtype
1515 -- declaration. Inherit the _controller component now.
1516
1517 if Rec /= Base_Type (Rec)
1518 and then Has_Controlled_Component (Rec)
1519 then
1520 if Nkind (Parent (Rec)) = N_Subtype_Declaration
1521 and then Is_Entity_Name (Subtype_Indication (Parent (Rec)))
1522 then
1523 Set_First_Entity (Rec, First_Entity (Base_Type (Rec)));
1524
1525 -- If this is an internal type without a declaration, as for a
1526 -- record component, the base type may not yet be frozen, and its
1527 -- controller has not been created. Add an explicit freeze node
1528 -- for the itype, so it will be frozen after the base type.
1529
1530 elsif Is_Itype (Rec)
1531 and then Has_Delayed_Freeze (Base_Type (Rec))
1532 and then
1533 Nkind (Associated_Node_For_Itype (Rec)) =
1534 N_Component_Declaration
1535 then
1536 Ensure_Freeze_Node (Rec);
1537 end if;
1538 end if;
1539
1540 -- Freeze components and embedded subtypes
1541
1542 Comp := First_Entity (Rec);
1543 while Present (Comp) loop
1544 if not Is_Type (Comp) then
1545 Freeze_And_Append (Etype (Comp), Loc, Result);
1546 end if;
1547
1548 -- If the component is an access type with an allocator
1549 -- as default value, the designated type will be frozen
1550 -- by the corresponding expression in init_proc. In order
1551 -- to place the freeze node for the designated type before
1552 -- that for the current record type, freeze it now.
1553
1554 -- Same process if the component is an array of access types,
1555 -- initialized with an aggregate. If the designated type is
1556 -- private, it cannot contain allocators, and it is premature
1557 -- to freeze the type, so we check for this as well.
1558
1559 if Is_Access_Type (Etype (Comp))
1560 and then Present (Parent (Comp))
1561 and then Present (Expression (Parent (Comp)))
1562 and then Nkind (Expression (Parent (Comp))) = N_Allocator
1563 then
1564 declare
1565 Alloc : constant Node_Id := Expression (Parent (Comp));
1566
1567 begin
1568 -- If component is pointer to a classwide type, freeze
1569 -- the specific type in the expression being allocated.
1570 -- The expression may be a subtype indication, in which
1571 -- case freeze the subtype mark.
1572
1573 if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
1574 if Is_Entity_Name (Expression (Alloc)) then
1575 Freeze_And_Append
1576 (Entity (Expression (Alloc)), Loc, Result);
1577 elsif
1578 Nkind (Expression (Alloc)) = N_Subtype_Indication
1579 then
1580 Freeze_And_Append
1581 (Entity (Subtype_Mark (Expression (Alloc))),
1582 Loc, Result);
1583 end if;
1584
1585 elsif Is_Itype (Designated_Type (Etype (Comp))) then
1586 Check_Itype (Designated_Type (Etype (Comp)));
1587
1588 else
1589 Freeze_And_Append
1590 (Designated_Type (Etype (Comp)), Loc, Result);
1591 end if;
1592 end;
1593
1594 elsif Is_Access_Type (Etype (Comp))
1595 and then Is_Itype (Designated_Type (Etype (Comp)))
1596 then
1597 Check_Itype (Designated_Type (Etype (Comp)));
1598
1599 elsif Is_Array_Type (Etype (Comp))
1600 and then Is_Access_Type (Component_Type (Etype (Comp)))
1601 and then Present (Parent (Comp))
1602 and then Nkind (Parent (Comp)) = N_Component_Declaration
1603 and then Present (Expression (Parent (Comp)))
1604 and then Nkind (Expression (Parent (Comp))) = N_Aggregate
1605 and then Is_Fully_Defined
1606 (Designated_Type (Component_Type (Etype (Comp))))
1607 then
1608 Freeze_And_Append
1609 (Designated_Type
1610 (Component_Type (Etype (Comp))), Loc, Result);
1611 end if;
1612
1613 -- Processing for real components (exclude anonymous subtypes)
1614
1615 if Ekind (Comp) = E_Component
1616 or else Ekind (Comp) = E_Discriminant
1617 then
1618 declare
1619 CC : constant Node_Id := Component_Clause (Comp);
1620
1621 begin
1622 -- Check for error of component clause given for variable
1623 -- sized type. We have to delay this test till this point,
1624 -- since the component type has to be frozen for us to know
1625 -- if it is variable length. We omit this test in a generic
1626 -- context, it will be applied at instantiation time.
1627
1628 if Present (CC) then
1629 Placed_Component := True;
1630
1631 if Inside_A_Generic then
1632 null;
1633
1634 elsif not Size_Known_At_Compile_Time
1635 (Underlying_Type (Etype (Comp)))
1636 then
1637 Error_Msg_N
1638 ("component clause not allowed for variable " &
1639 "length component", CC);
1640 end if;
1641
1642 else
1643 Unplaced_Component := True;
1644 end if;
1645
1646 -- Case of component requires byte alignment
1647
1648 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
1649
1650 -- Set the enclosing record to also require byte align
1651
1652 Set_Must_Be_On_Byte_Boundary (Rec);
1653
1654 -- Check for component clause that is inconsistent
1655 -- with the required byte boundary alignment.
1656
1657 if Present (CC)
1658 and then Normalized_First_Bit (Comp) mod
1659 System_Storage_Unit /= 0
1660 then
1661 Error_Msg_N
1662 ("component & must be byte aligned",
1663 Component_Name (Component_Clause (Comp)));
1664 end if;
1665 end if;
1666
1667 -- If component clause is present, then deal with the
1668 -- non-default bit order case. We cannot do this before
1669 -- the freeze point, because there is no required order
1670 -- for the component clause and the bit_order clause.
1671
1672 -- We only do this processing for the base type, and in
1673 -- fact that's important, since otherwise if there are
1674 -- record subtypes, we could reverse the bits once for
1675 -- each subtype, which would be incorrect.
1676
1677 if Present (CC)
1678 and then Reverse_Bit_Order (Rec)
1679 and then Ekind (E) = E_Record_Type
1680 then
1681 declare
1682 CFB : constant Uint := Component_Bit_Offset (Comp);
1683 CSZ : constant Uint := Esize (Comp);
1684 CLC : constant Node_Id := Component_Clause (Comp);
1685 Pos : constant Node_Id := Position (CLC);
1686 FB : constant Node_Id := First_Bit (CLC);
1687
1688 Storage_Unit_Offset : constant Uint :=
1689 CFB / System_Storage_Unit;
1690
1691 Start_Bit : constant Uint :=
1692 CFB mod System_Storage_Unit;
1693
1694 begin
1695 -- Cases where field goes over storage unit boundary
1696
1697 if Start_Bit + CSZ > System_Storage_Unit then
1698
1699 -- Allow multi-byte field but generate warning
1700
1701 if Start_Bit mod System_Storage_Unit = 0
1702 and then CSZ mod System_Storage_Unit = 0
1703 then
1704 Error_Msg_N
1705 ("multi-byte field specified with non-standard"
1706 & " Bit_Order?", CLC);
1707
1708 if Bytes_Big_Endian then
1709 Error_Msg_N
1710 ("bytes are not reversed "
1711 & "(component is big-endian)?", CLC);
1712 else
1713 Error_Msg_N
1714 ("bytes are not reversed "
1715 & "(component is little-endian)?", CLC);
1716 end if;
1717
1718 -- Do not allow non-contiguous field
1719
1720 else
1721 Error_Msg_N
1722 ("attempt to specify non-contiguous field"
1723 & " not permitted", CLC);
1724 Error_Msg_N
1725 ("\(caused by non-standard Bit_Order "
1726 & "specified)", CLC);
1727 end if;
1728
1729 -- Case where field fits in one storage unit
1730
1731 else
1732 -- Give warning if suspicious component clause
1733
1734 if Intval (FB) >= System_Storage_Unit then
1735 Error_Msg_N
1736 ("?Bit_Order clause does not affect " &
1737 "byte ordering", Pos);
1738 Error_Msg_Uint_1 :=
1739 Intval (Pos) + Intval (FB) /
1740 System_Storage_Unit;
1741 Error_Msg_N
1742 ("?position normalized to ^ before bit " &
1743 "order interpreted", Pos);
1744 end if;
1745
1746 -- Here is where we fix up the Component_Bit_Offset
1747 -- value to account for the reverse bit order.
1748 -- Some examples of what needs to be done are:
1749
1750 -- First_Bit .. Last_Bit Component_Bit_Offset
1751 -- old new old new
1752
1753 -- 0 .. 0 7 .. 7 0 7
1754 -- 0 .. 1 6 .. 7 0 6
1755 -- 0 .. 2 5 .. 7 0 5
1756 -- 0 .. 7 0 .. 7 0 4
1757
1758 -- 1 .. 1 6 .. 6 1 6
1759 -- 1 .. 4 3 .. 6 1 3
1760 -- 4 .. 7 0 .. 3 4 0
1761
1762 -- The general rule is that the first bit is
1763 -- is obtained by subtracting the old ending bit
1764 -- from storage_unit - 1.
1765
1766 Set_Component_Bit_Offset
1767 (Comp,
1768 (Storage_Unit_Offset * System_Storage_Unit) +
1769 (System_Storage_Unit - 1) -
1770 (Start_Bit + CSZ - 1));
1771
1772 Set_Normalized_First_Bit
1773 (Comp,
1774 Component_Bit_Offset (Comp) mod
1775 System_Storage_Unit);
1776 end if;
1777 end;
1778 end if;
1779 end;
1780 end if;
1781
1782 Next_Entity (Comp);
1783 end loop;
1784
1785 -- Check for useless pragma Bit_Order
1786
1787 if not Placed_Component and then Reverse_Bit_Order (Rec) then
1788 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
1789 Error_Msg_N ("?Bit_Order specification has no effect", ADC);
1790 Error_Msg_N ("\?since no component clauses were specified", ADC);
1791 end if;
1792
1793 -- Check for useless pragma Pack when all components placed
1794
1795 if Is_Packed (Rec)
1796 and then not Unplaced_Component
1797 and then Warn_On_Redundant_Constructs
1798 then
1799 Error_Msg_N
1800 ("?pragma Pack has no effect, no unplaced components",
1801 Get_Rep_Pragma (Rec, Name_Pack));
1802 Set_Is_Packed (Rec, False);
1803 end if;
1804
1805 -- If this is the record corresponding to a remote type,
1806 -- freeze the remote type here since that is what we are
1807 -- semantically freezing. This prevents having the freeze
1808 -- node for that type in an inner scope.
1809
1810 -- Also, Check for controlled components and unchecked unions.
1811 -- Finally, enforce the restriction that access attributes with
1812 -- a current instance prefix can only apply to limited types.
1813
1814 if Ekind (Rec) = E_Record_Type then
1815 if Present (Corresponding_Remote_Type (Rec)) then
1816 Freeze_And_Append
1817 (Corresponding_Remote_Type (Rec), Loc, Result);
1818 end if;
1819
1820 Comp := First_Component (Rec);
1821 while Present (Comp) loop
1822 if Has_Controlled_Component (Etype (Comp))
1823 or else (Chars (Comp) /= Name_uParent
1824 and then Is_Controlled (Etype (Comp)))
1825 or else (Is_Protected_Type (Etype (Comp))
1826 and then Present
1827 (Corresponding_Record_Type (Etype (Comp)))
1828 and then Has_Controlled_Component
1829 (Corresponding_Record_Type (Etype (Comp))))
1830 then
1831 Set_Has_Controlled_Component (Rec);
1832 exit;
1833 end if;
1834
1835 if Has_Unchecked_Union (Etype (Comp)) then
1836 Set_Has_Unchecked_Union (Rec);
1837 end if;
1838
1839 if Has_Per_Object_Constraint (Comp)
1840 and then not Is_Limited_Type (Rec)
1841 then
1842 -- Scan component declaration for likely misuses of
1843 -- current instance, either in a constraint or in a
1844 -- default expression.
1845
1846 Check_Current_Instance (Parent (Comp));
1847 end if;
1848
1849 Next_Component (Comp);
1850 end loop;
1851 end if;
1852
1853 Set_Component_Alignment_If_Not_Set (Rec);
1854
1855 -- For first subtypes, check if there are any fixed-point
1856 -- fields with component clauses, where we must check the size.
1857 -- This is not done till the freeze point, since for fixed-point
1858 -- types, we do not know the size until the type is frozen.
1859 -- Similar processing applies to bit packed arrays.
1860
1861 if Is_First_Subtype (Rec) then
1862 Comp := First_Component (Rec);
1863
1864 while Present (Comp) loop
1865 if Present (Component_Clause (Comp))
1866 and then (Is_Fixed_Point_Type (Etype (Comp))
1867 or else
1868 Is_Bit_Packed_Array (Etype (Comp)))
1869 then
1870 Check_Size
1871 (Component_Name (Component_Clause (Comp)),
1872 Etype (Comp),
1873 Esize (Comp),
1874 Junk);
1875 end if;
1876
1877 Next_Component (Comp);
1878 end loop;
1879 end if;
1880 end Freeze_Record_Type;
1881
1882 -- Start of processing for Freeze_Entity
1883
1884 begin
1885 -- Do not freeze if already frozen since we only need one freeze node
1886
1887 if Is_Frozen (E) then
1888 return No_List;
1889
1890 -- It is improper to freeze an external entity within a generic
1891 -- because its freeze node will appear in a non-valid context.
1892 -- The entity will be frozen in the proper scope after the current
1893 -- generic is analyzed.
1894
1895 elsif Inside_A_Generic and then External_Ref_In_Generic (E) then
1896 return No_List;
1897
1898 -- Do not freeze a global entity within an inner scope created during
1899 -- expansion. A call to subprogram E within some internal procedure
1900 -- (a stream attribute for example) might require freezing E, but the
1901 -- freeze node must appear in the same declarative part as E itself.
1902 -- The two-pass elaboration mechanism in gigi guarantees that E will
1903 -- be frozen before the inner call is elaborated. We exclude constants
1904 -- from this test, because deferred constants may be frozen early, and
1905 -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
1906 -- comes from source, or is a generic instance, then the freeze point
1907 -- is the one mandated by the language. and we freze the entity.
1908
1909 elsif In_Open_Scopes (Scope (E))
1910 and then Scope (E) /= Current_Scope
1911 and then Ekind (E) /= E_Constant
1912 then
1913 declare
1914 S : Entity_Id := Current_Scope;
1915
1916 begin
1917 while Present (S) loop
1918 if Is_Overloadable (S) then
1919 if Comes_From_Source (S)
1920 or else Is_Generic_Instance (S)
1921 then
1922 exit;
1923 else
1924 return No_List;
1925 end if;
1926 end if;
1927
1928 S := Scope (S);
1929 end loop;
1930 end;
1931
1932 -- Similarly, an inlined instance body may make reference to global
1933 -- entities, but these references cannot be the proper freezing point
1934 -- for them, and the the absence of inlining freezing will take place
1935 -- in their own scope. Normally instance bodies are analyzed after
1936 -- the enclosing compilation, and everything has been frozen at the
1937 -- proper place, but with front-end inlining an instance body is
1938 -- compiled before the end of the enclosing scope, and as a result
1939 -- out-of-order freezing must be prevented.
1940
1941 elsif Front_End_Inlining
1942 and then In_Instance_Body
1943 and then Present (Scope (E))
1944 then
1945 declare
1946 S : Entity_Id := Scope (E);
1947 begin
1948 while Present (S) loop
1949 if Is_Generic_Instance (S) then
1950 exit;
1951 else
1952 S := Scope (S);
1953 end if;
1954 end loop;
1955
1956 if No (S) then
1957 return No_List;
1958 end if;
1959 end;
1960 end if;
1961
1962 -- Here to freeze the entity
1963
1964 Result := No_List;
1965 Set_Is_Frozen (E);
1966
1967 -- Case of entity being frozen is other than a type
1968
1969 if not Is_Type (E) then
1970
1971 -- If entity is exported or imported and does not have an external
1972 -- name, now is the time to provide the appropriate default name.
1973 -- Skip this if the entity is stubbed, since we don't need a name
1974 -- for any stubbed routine.
1975
1976 if (Is_Imported (E) or else Is_Exported (E))
1977 and then No (Interface_Name (E))
1978 and then Convention (E) /= Convention_Stubbed
1979 then
1980 Set_Encoded_Interface_Name
1981 (E, Get_Default_External_Name (E));
1982
1983 -- Special processing for atomic objects appearing in object decls
1984
1985 elsif Is_Atomic (E)
1986 and then Nkind (Parent (E)) = N_Object_Declaration
1987 and then Present (Expression (Parent (E)))
1988 then
1989 declare
1990 Expr : constant Node_Id := Expression (Parent (E));
1991
1992 begin
1993 -- If expression is an aggregate, assign to a temporary to
1994 -- ensure that the actual assignment is done atomically rather
1995 -- than component-wise (the assignment to the temp may be done
1996 -- component-wise, but that is harmless.
1997
1998 if Nkind (Expr) = N_Aggregate then
1999 Expand_Atomic_Aggregate (Expr, Etype (E));
2000
2001 -- If the expression is a reference to a record or array
2002 -- object entity, then reset Is_True_Constant to False so
2003 -- that the compiler will not optimize away the intermediate
2004 -- object, which we need in this case for the same reason
2005 -- (to ensure that the actual assignment is atomic, rather
2006 -- than component-wise).
2007
2008 elsif Is_Entity_Name (Expr)
2009 and then (Is_Record_Type (Etype (Expr))
2010 or else
2011 Is_Array_Type (Etype (Expr)))
2012 then
2013 Set_Is_True_Constant (Entity (Expr), False);
2014 end if;
2015 end;
2016 end if;
2017
2018 -- For a subprogram, freeze all parameter types and also the return
2019 -- type (RM 13.14(14)). However skip this for internal subprograms.
2020 -- This is also the point where any extra formal parameters are
2021 -- created since we now know whether the subprogram will use
2022 -- a foreign convention.
2023
2024 if Is_Subprogram (E) then
2025 if not Is_Internal (E) then
2026 declare
2027 F_Type : Entity_Id;
2028 Warn_Node : Node_Id;
2029
2030 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
2031 -- Determines if given type entity is a fat pointer type
2032 -- used as an argument type or return type to a subprogram
2033 -- with C or C++ convention set.
2034
2035 --------------------------
2036 -- Is_Fat_C_Access_Type --
2037 --------------------------
2038
2039 function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
2040 begin
2041 return (Convention (E) = Convention_C
2042 or else
2043 Convention (E) = Convention_CPP)
2044 and then Is_Access_Type (T)
2045 and then Esize (T) > Ttypes.System_Address_Size;
2046 end Is_Fat_C_Ptr_Type;
2047
2048 begin
2049 -- Loop through formals
2050
2051 Formal := First_Formal (E);
2052 while Present (Formal) loop
2053 F_Type := Etype (Formal);
2054 Freeze_And_Append (F_Type, Loc, Result);
2055
2056 if Is_Private_Type (F_Type)
2057 and then Is_Private_Type (Base_Type (F_Type))
2058 and then No (Full_View (Base_Type (F_Type)))
2059 and then not Is_Generic_Type (F_Type)
2060 and then not Is_Derived_Type (F_Type)
2061 then
2062 -- If the type of a formal is incomplete, subprogram
2063 -- is being frozen prematurely. Within an instance
2064 -- (but not within a wrapper package) this is an
2065 -- an artifact of our need to regard the end of an
2066 -- instantiation as a freeze point. Otherwise it is
2067 -- a definite error.
2068
2069 -- and then not Is_Wrapper_Package (Current_Scope) ???
2070
2071 if In_Instance then
2072 Set_Is_Frozen (E, False);
2073 return No_List;
2074
2075 elsif not After_Last_Declaration then
2076 Error_Msg_Node_1 := F_Type;
2077 Error_Msg
2078 ("type& must be fully defined before this point",
2079 Loc);
2080 end if;
2081 end if;
2082
2083 -- Check bad use of fat C pointer
2084
2085 if Warn_On_Export_Import and then
2086 Is_Fat_C_Ptr_Type (F_Type)
2087 then
2088 Error_Msg_Qual_Level := 1;
2089 Error_Msg_N
2090 ("?type of & does not correspond to C pointer",
2091 Formal);
2092 Error_Msg_Qual_Level := 0;
2093 end if;
2094
2095 -- Check for unconstrained array in exported foreign
2096 -- convention case.
2097
2098 if Convention (E) in Foreign_Convention
2099 and then not Is_Imported (E)
2100 and then Is_Array_Type (F_Type)
2101 and then not Is_Constrained (F_Type)
2102 and then Warn_On_Export_Import
2103 then
2104 Error_Msg_Qual_Level := 1;
2105
2106 -- If this is an inherited operation, place the
2107 -- warning on the derived type declaration, rather
2108 -- than on the original subprogram.
2109
2110 if Nkind (Original_Node (Parent (E))) =
2111 N_Full_Type_Declaration
2112 then
2113 Warn_Node := Parent (E);
2114
2115 if Formal = First_Formal (E) then
2116 Error_Msg_NE
2117 ("?in inherited operation&!", Warn_Node, E);
2118 end if;
2119 else
2120 Warn_Node := Formal;
2121 end if;
2122
2123 Error_Msg_NE
2124 ("?type of argument& is unconstrained array",
2125 Warn_Node, Formal);
2126 Error_Msg_NE
2127 ("?foreign caller must pass bounds explicitly",
2128 Warn_Node, Formal);
2129 Error_Msg_Qual_Level := 0;
2130 end if;
2131
2132 Next_Formal (Formal);
2133 end loop;
2134
2135 -- Check return type
2136
2137 if Ekind (E) = E_Function then
2138 Freeze_And_Append (Etype (E), Loc, Result);
2139
2140 if Warn_On_Export_Import
2141 and then Is_Fat_C_Ptr_Type (Etype (E))
2142 then
2143 Error_Msg_N
2144 ("?return type of& does not correspond to C pointer",
2145 E);
2146
2147 elsif Is_Array_Type (Etype (E))
2148 and then not Is_Constrained (Etype (E))
2149 and then not Is_Imported (E)
2150 and then Convention (E) in Foreign_Convention
2151 and then Warn_On_Export_Import
2152 then
2153 Error_Msg_N
2154 ("?foreign convention function& should not " &
2155 "return unconstrained array", E);
2156 end if;
2157 end if;
2158 end;
2159 end if;
2160
2161 -- Must freeze its parent first if it is a derived subprogram
2162
2163 if Present (Alias (E)) then
2164 Freeze_And_Append (Alias (E), Loc, Result);
2165 end if;
2166
2167 -- If the return type requires a transient scope, and we are on
2168 -- a target allowing functions to return with a depressed stack
2169 -- pointer, then we mark the function as requiring this treatment.
2170
2171 if Ekind (E) = E_Function
2172 and then Functions_Return_By_DSP_On_Target
2173 and then Requires_Transient_Scope (Etype (E))
2174 then
2175 Set_Function_Returns_With_DSP (E);
2176 end if;
2177
2178 if not Is_Internal (E) then
2179 Freeze_Subprogram (E);
2180 end if;
2181
2182 -- Here for other than a subprogram or type
2183
2184 else
2185 -- If entity has a type, and it is not a generic unit, then
2186 -- freeze it first (RM 13.14(10))
2187
2188 if Present (Etype (E))
2189 and then Ekind (E) /= E_Generic_Function
2190 then
2191 Freeze_And_Append (Etype (E), Loc, Result);
2192 end if;
2193
2194 -- For object created by object declaration, perform required
2195 -- categorization (preelaborate and pure) checks. Defer these
2196 -- checks to freeze time since pragma Import inhibits default
2197 -- initialization and thus pragma Import affects these checks.
2198
2199 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
2200 Validate_Object_Declaration (Declaration_Node (E));
2201 Check_Address_Clause (E);
2202 end if;
2203
2204 -- Check that a constant which has a pragma Volatile[_Components]
2205 -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
2206
2207 -- Note: Atomic[_Components] also sets Volatile[_Components]
2208
2209 if Ekind (E) = E_Constant
2210 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
2211 and then not Is_Imported (E)
2212 then
2213 -- Make sure we actually have a pragma, and have not merely
2214 -- inherited the indication from elsewhere (e.g. an address
2215 -- clause, which is not good enough in RM terms!)
2216
2217 if Present (Get_Rep_Pragma (E, Name_Atomic))
2218 or else
2219 Present (Get_Rep_Pragma (E, Name_Atomic_Components))
2220 then
2221 Error_Msg_N
2222 ("stand alone atomic constant must be " &
2223 "imported ('R'M 'C.6(13))", E);
2224
2225 elsif Present (Get_Rep_Pragma (E, Name_Volatile))
2226 or else
2227 Present (Get_Rep_Pragma (E, Name_Volatile_Components))
2228 then
2229 Error_Msg_N
2230 ("stand alone volatile constant must be " &
2231 "imported ('R'M 'C.6(13))", E);
2232 end if;
2233 end if;
2234
2235 -- Static objects require special handling
2236
2237 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
2238 and then Is_Statically_Allocated (E)
2239 then
2240 Freeze_Static_Object (E);
2241 end if;
2242
2243 -- Remaining step is to layout objects
2244
2245 if Ekind (E) = E_Variable
2246 or else
2247 Ekind (E) = E_Constant
2248 or else
2249 Ekind (E) = E_Loop_Parameter
2250 or else
2251 Is_Formal (E)
2252 then
2253 Layout_Object (E);
2254 end if;
2255 end if;
2256
2257 -- Case of a type or subtype being frozen
2258
2259 else
2260 -- The type may be defined in a generic unit. This can occur when
2261 -- freezing a generic function that returns the type (which is
2262 -- defined in a parent unit). It is clearly meaningless to freeze
2263 -- this type. However, if it is a subtype, its size may be determi-
2264 -- nable and used in subsequent checks, so might as well try to
2265 -- compute it.
2266
2267 if Present (Scope (E))
2268 and then Is_Generic_Unit (Scope (E))
2269 then
2270 Check_Compile_Time_Size (E);
2271 return No_List;
2272 end if;
2273
2274 -- Deal with special cases of freezing for subtype
2275
2276 if E /= Base_Type (E) then
2277
2278 -- If ancestor subtype present, freeze that first.
2279 -- Note that this will also get the base type frozen.
2280
2281 Atype := Ancestor_Subtype (E);
2282
2283 if Present (Atype) then
2284 Freeze_And_Append (Atype, Loc, Result);
2285
2286 -- Otherwise freeze the base type of the entity before
2287 -- freezing the entity itself, (RM 13.14(15)).
2288
2289 elsif E /= Base_Type (E) then
2290 Freeze_And_Append (Base_Type (E), Loc, Result);
2291 end if;
2292
2293 -- For a derived type, freeze its parent type first (RM 13.14(15))
2294
2295 elsif Is_Derived_Type (E) then
2296 Freeze_And_Append (Etype (E), Loc, Result);
2297 Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
2298 end if;
2299
2300 -- For array type, freeze index types and component type first
2301 -- before freezing the array (RM 13.14(15)).
2302
2303 if Is_Array_Type (E) then
2304 declare
2305 Ctyp : constant Entity_Id := Component_Type (E);
2306 Pnod : Node_Id;
2307
2308 Non_Standard_Enum : Boolean := False;
2309 -- Set true if any of the index types is an enumeration
2310 -- type with a non-standard representation.
2311
2312 begin
2313 Freeze_And_Append (Ctyp, Loc, Result);
2314
2315 Indx := First_Index (E);
2316 while Present (Indx) loop
2317 Freeze_And_Append (Etype (Indx), Loc, Result);
2318
2319 if Is_Enumeration_Type (Etype (Indx))
2320 and then Has_Non_Standard_Rep (Etype (Indx))
2321 then
2322 Non_Standard_Enum := True;
2323 end if;
2324
2325 Next_Index (Indx);
2326 end loop;
2327
2328 -- Processing that is done only for base types
2329
2330 if Ekind (E) = E_Array_Type then
2331
2332 -- Propagate flags for component type
2333
2334 if Is_Controlled (Component_Type (E))
2335 or else Has_Controlled_Component (Ctyp)
2336 then
2337 Set_Has_Controlled_Component (E);
2338 end if;
2339
2340 if Has_Unchecked_Union (Component_Type (E)) then
2341 Set_Has_Unchecked_Union (E);
2342 end if;
2343
2344 -- If packing was requested or if the component size was set
2345 -- explicitly, then see if bit packing is required. This
2346 -- processing is only done for base types, since all the
2347 -- representation aspects involved are type-related. This
2348 -- is not just an optimization, if we start processing the
2349 -- subtypes, they intefere with the settings on the base
2350 -- type (this is because Is_Packed has a slightly different
2351 -- meaning before and after freezing).
2352
2353 declare
2354 Csiz : Uint;
2355 Esiz : Uint;
2356
2357 begin
2358 if (Is_Packed (E) or else Has_Pragma_Pack (E))
2359 and then not Has_Atomic_Components (E)
2360 and then Known_Static_RM_Size (Ctyp)
2361 then
2362 Csiz := UI_Max (RM_Size (Ctyp), 1);
2363
2364 elsif Known_Component_Size (E) then
2365 Csiz := Component_Size (E);
2366
2367 elsif not Known_Static_Esize (Ctyp) then
2368 Csiz := Uint_0;
2369
2370 else
2371 Esiz := Esize (Ctyp);
2372
2373 -- We can set the component size if it is less than
2374 -- 16, rounding it up to the next storage unit size.
2375
2376 if Esiz <= 8 then
2377 Csiz := Uint_8;
2378 elsif Esiz <= 16 then
2379 Csiz := Uint_16;
2380 else
2381 Csiz := Uint_0;
2382 end if;
2383
2384 -- Set component size up to match alignment if
2385 -- it would otherwise be less than the alignment.
2386 -- This deals with cases of types whose alignment
2387 -- exceeds their sizes (padded types).
2388
2389 if Csiz /= 0 then
2390 declare
2391 A : constant Uint := Alignment_In_Bits (Ctyp);
2392
2393 begin
2394 if Csiz < A then
2395 Csiz := A;
2396 end if;
2397 end;
2398 end if;
2399
2400 end if;
2401
2402 if 1 <= Csiz and then Csiz <= 64 then
2403
2404 -- We set the component size for all cases 1-64
2405
2406 Set_Component_Size (Base_Type (E), Csiz);
2407
2408 -- Check for base type of 8,16,32 bits, where the
2409 -- subtype has a length one less than the base type
2410 -- and is unsigned (e.g. Natural subtype of Integer)
2411
2412 -- In such cases, if a component size was not set
2413 -- explicitly, then generate a warning.
2414
2415 if Has_Pragma_Pack (E)
2416 and then not Has_Component_Size_Clause (E)
2417 and then
2418 (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2419 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2420 then
2421 Error_Msg_Uint_1 := Csiz;
2422 Pnod :=
2423 Get_Rep_Pragma (First_Subtype (E), Name_Pack);
2424
2425 if Present (Pnod) then
2426 Error_Msg_N
2427 ("pragma Pack causes component size to be ^?",
2428 Pnod);
2429 Error_Msg_N
2430 ("\use Component_Size to set desired value",
2431 Pnod);
2432 end if;
2433 end if;
2434
2435 -- Actual packing is not needed for 8,16,32,64
2436 -- Also not needed for 24 if alignment is 1
2437
2438 if Csiz = 8
2439 or else Csiz = 16
2440 or else Csiz = 32
2441 or else Csiz = 64
2442 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2443 then
2444 -- Here the array was requested to be packed, but
2445 -- the packing request had no effect, so Is_Packed
2446 -- is reset.
2447
2448 -- Note: semantically this means that we lose
2449 -- track of the fact that a derived type inherited
2450 -- a pack pragma that was non-effective, but that
2451 -- seems fine.
2452
2453 -- We regard a Pack pragma as a request to set a
2454 -- representation characteristic, and this request
2455 -- may be ignored.
2456
2457 Set_Is_Packed (Base_Type (E), False);
2458
2459 -- In all other cases, packing is indeed needed
2460
2461 else
2462 Set_Has_Non_Standard_Rep (Base_Type (E));
2463 Set_Is_Bit_Packed_Array (Base_Type (E));
2464 Set_Is_Packed (Base_Type (E));
2465 end if;
2466 end if;
2467 end;
2468
2469 -- Processing that is done only for subtypes
2470
2471 else
2472 -- Acquire alignment from base type
2473
2474 if Unknown_Alignment (E) then
2475 Set_Alignment (E, Alignment (Base_Type (E)));
2476 end if;
2477 end if;
2478
2479 -- For bit-packed arrays, check the size
2480
2481 if Is_Bit_Packed_Array (E)
2482 and then Known_Esize (E)
2483 then
2484 declare
2485 Discard : Boolean;
2486 SizC : constant Node_Id := Size_Clause (E);
2487
2488 begin
2489 -- It is not clear if it is possible to have no size
2490 -- clause at this stage, but this is not worth worrying
2491 -- about. Post the error on the entity name in the size
2492 -- clause if present, else on the type entity itself.
2493
2494 if Present (SizC) then
2495 Check_Size (Name (SizC), E, Esize (E), Discard);
2496 else
2497 Check_Size (E, E, Esize (E), Discard);
2498 end if;
2499 end;
2500 end if;
2501
2502 -- Check one common case of a size given where the array
2503 -- needs to be packed, but was not so the size cannot be
2504 -- honored. This would of course be caught by the backend,
2505 -- and indeed we don't catch all cases. The point is that
2506 -- we can give a better error message in those cases that
2507 -- we do catch with the circuitry here.
2508
2509 declare
2510 Lo, Hi : Node_Id;
2511 Ctyp : constant Entity_Id := Component_Type (E);
2512
2513 begin
2514 if Present (Size_Clause (E))
2515 and then Known_Static_Esize (E)
2516 and then not Is_Bit_Packed_Array (E)
2517 and then not Has_Pragma_Pack (E)
2518 and then Number_Dimensions (E) = 1
2519 and then not Has_Component_Size_Clause (E)
2520 and then Known_Static_Esize (Ctyp)
2521 then
2522 Get_Index_Bounds (First_Index (E), Lo, Hi);
2523
2524 if Compile_Time_Known_Value (Lo)
2525 and then Compile_Time_Known_Value (Hi)
2526 and then Known_Static_RM_Size (Ctyp)
2527 and then RM_Size (Ctyp) < 64
2528 then
2529 declare
2530 Lov : constant Uint := Expr_Value (Lo);
2531 Hiv : constant Uint := Expr_Value (Hi);
2532 Len : constant Uint :=
2533 UI_Max (Uint_0, Hiv - Lov + 1);
2534 Rsiz : constant Uint := RM_Size (Ctyp);
2535
2536 -- What we are looking for here is the situation
2537 -- where the Esize given would be exactly right
2538 -- if there was a pragma Pack (resulting in the
2539 -- component size being the same as the RM_Size).
2540 -- Furthermore, the component type size must be
2541 -- an odd size (not a multiple of storage unit)
2542
2543 begin
2544 if Esize (E) = Len * Rsiz
2545 and then Rsiz mod System_Storage_Unit /= 0
2546 then
2547 Error_Msg_NE
2548 ("size given for& too small",
2549 Size_Clause (E), E);
2550 Error_Msg_N
2551 ("\explicit pragma Pack is required",
2552 Size_Clause (E));
2553 end if;
2554 end;
2555 end if;
2556 end if;
2557 end;
2558
2559 -- If any of the index types was an enumeration type with
2560 -- a non-standard rep clause, then we indicate that the
2561 -- array type is always packed (even if it is not bit packed).
2562
2563 if Non_Standard_Enum then
2564 Set_Has_Non_Standard_Rep (Base_Type (E));
2565 Set_Is_Packed (Base_Type (E));
2566 end if;
2567
2568 Set_Component_Alignment_If_Not_Set (E);
2569
2570 -- If the array is packed, we must create the packed array
2571 -- type to be used to actually implement the type. This is
2572 -- only needed for real array types (not for string literal
2573 -- types, since they are present only for the front end).
2574
2575 if Is_Packed (E)
2576 and then Ekind (E) /= E_String_Literal_Subtype
2577 then
2578 Create_Packed_Array_Type (E);
2579 Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
2580
2581 -- Size information of packed array type is copied to the
2582 -- array type, since this is really the representation.
2583
2584 Set_Size_Info (E, Packed_Array_Type (E));
2585 Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
2586 end if;
2587
2588 -- For non-packed arrays set the alignment of the array
2589 -- to the alignment of the component type if it is unknown.
2590 -- Skip this in the atomic case, since atomic arrays may
2591 -- need larger alignments.
2592
2593 if not Is_Packed (E)
2594 and then Unknown_Alignment (E)
2595 and then Known_Alignment (Ctyp)
2596 and then Known_Static_Component_Size (E)
2597 and then Known_Static_Esize (Ctyp)
2598 and then Esize (Ctyp) = Component_Size (E)
2599 and then not Is_Atomic (E)
2600 then
2601 Set_Alignment (E, Alignment (Component_Type (E)));
2602 end if;
2603 end;
2604
2605 -- For a class-wide type, the corresponding specific type is
2606 -- frozen as well (RM 13.14(15))
2607
2608 elsif Is_Class_Wide_Type (E) then
2609 Freeze_And_Append (Root_Type (E), Loc, Result);
2610
2611 -- If the Class_Wide_Type is an Itype (when type is the anonymous
2612 -- parent of a derived type) and it is a library-level entity,
2613 -- generate an itype reference for it. Otherwise, its first
2614 -- explicit reference may be in an inner scope, which will be
2615 -- rejected by the back-end.
2616
2617 if Is_Itype (E)
2618 and then Is_Compilation_Unit (Scope (E))
2619 then
2620 declare
2621 Ref : constant Node_Id := Make_Itype_Reference (Loc);
2622
2623 begin
2624 Set_Itype (Ref, E);
2625 if No (Result) then
2626 Result := New_List (Ref);
2627 else
2628 Append (Ref, Result);
2629 end if;
2630 end;
2631 end if;
2632
2633 -- The equivalent type associated with a class-wide subtype
2634 -- needs to be frozen to ensure that its layout is done.
2635 -- Class-wide subtypes are currently only frozen on targets
2636 -- requiring front-end layout (see New_Class_Wide_Subtype
2637 -- and Make_CW_Equivalent_Type in exp_util.adb).
2638
2639 if Ekind (E) = E_Class_Wide_Subtype
2640 and then Present (Equivalent_Type (E))
2641 then
2642 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2643 end if;
2644
2645 -- For a record (sub)type, freeze all the component types (RM
2646 -- 13.14(15). We test for E_Record_(sub)Type here, rather than
2647 -- using Is_Record_Type, because we don't want to attempt the
2648 -- freeze for the case of a private type with record extension
2649 -- (we will do that later when the full type is frozen).
2650
2651 elsif Ekind (E) = E_Record_Type
2652 or else Ekind (E) = E_Record_Subtype
2653 then
2654 Freeze_Record_Type (E);
2655
2656 -- For a concurrent type, freeze corresponding record type. This
2657 -- does not correpond to any specific rule in the RM, but the
2658 -- record type is essentially part of the concurrent type.
2659 -- Freeze as well all local entities. This includes record types
2660 -- created for entry parameter blocks, and whatever local entities
2661 -- may appear in the private part.
2662
2663 elsif Is_Concurrent_Type (E) then
2664 if Present (Corresponding_Record_Type (E)) then
2665 Freeze_And_Append
2666 (Corresponding_Record_Type (E), Loc, Result);
2667 end if;
2668
2669 Comp := First_Entity (E);
2670
2671 while Present (Comp) loop
2672 if Is_Type (Comp) then
2673 Freeze_And_Append (Comp, Loc, Result);
2674
2675 elsif (Ekind (Comp)) /= E_Function then
2676 Freeze_And_Append (Etype (Comp), Loc, Result);
2677 end if;
2678
2679 Next_Entity (Comp);
2680 end loop;
2681
2682 -- Private types are required to point to the same freeze node
2683 -- as their corresponding full views. The freeze node itself
2684 -- has to point to the partial view of the entity (because
2685 -- from the partial view, we can retrieve the full view, but
2686 -- not the reverse). However, in order to freeze correctly,
2687 -- we need to freeze the full view. If we are freezing at the
2688 -- end of a scope (or within the scope of the private type),
2689 -- the partial and full views will have been swapped, the
2690 -- full view appears first in the entity chain and the swapping
2691 -- mechanism ensures that the pointers are properly set (on
2692 -- scope exit).
2693
2694 -- If we encounter the partial view before the full view
2695 -- (e.g. when freezing from another scope), we freeze the
2696 -- full view, and then set the pointers appropriately since
2697 -- we cannot rely on swapping to fix things up (subtypes in an
2698 -- outer scope might not get swapped).
2699
2700 elsif Is_Incomplete_Or_Private_Type (E)
2701 and then not Is_Generic_Type (E)
2702 then
2703 -- Case of full view present
2704
2705 if Present (Full_View (E)) then
2706
2707 -- If full view has already been frozen, then no
2708 -- further processing is required
2709
2710 if Is_Frozen (Full_View (E)) then
2711
2712 Set_Has_Delayed_Freeze (E, False);
2713 Set_Freeze_Node (E, Empty);
2714 Check_Debug_Info_Needed (E);
2715
2716 -- Otherwise freeze full view and patch the pointers
2717 -- so that the freeze node will elaborate both views
2718 -- in the back-end.
2719
2720 else
2721 declare
2722 Full : constant Entity_Id := Full_View (E);
2723
2724 begin
2725 if Is_Private_Type (Full)
2726 and then Present (Underlying_Full_View (Full))
2727 then
2728 Freeze_And_Append
2729 (Underlying_Full_View (Full), Loc, Result);
2730 end if;
2731
2732 Freeze_And_Append (Full, Loc, Result);
2733
2734 if Has_Delayed_Freeze (E) then
2735 F_Node := Freeze_Node (Full);
2736
2737 if Present (F_Node) then
2738 Set_Freeze_Node (E, F_Node);
2739 Set_Entity (F_Node, E);
2740
2741 else
2742 -- {Incomplete,Private}_Subtypes
2743 -- with Full_Views constrained by discriminants
2744
2745 Set_Has_Delayed_Freeze (E, False);
2746 Set_Freeze_Node (E, Empty);
2747 end if;
2748 end if;
2749 end;
2750
2751 Check_Debug_Info_Needed (E);
2752 end if;
2753
2754 -- AI-117 requires that the convention of a partial view
2755 -- be the same as the convention of the full view. Note
2756 -- that this is a recognized breach of privacy, but it's
2757 -- essential for logical consistency of representation,
2758 -- and the lack of a rule in RM95 was an oversight.
2759
2760 Set_Convention (E, Convention (Full_View (E)));
2761
2762 Set_Size_Known_At_Compile_Time (E,
2763 Size_Known_At_Compile_Time (Full_View (E)));
2764
2765 -- Size information is copied from the full view to the
2766 -- incomplete or private view for consistency
2767
2768 -- We skip this is the full view is not a type. This is
2769 -- very strange of course, and can only happen as a result
2770 -- of certain illegalities, such as a premature attempt to
2771 -- derive from an incomplete type.
2772
2773 if Is_Type (Full_View (E)) then
2774 Set_Size_Info (E, Full_View (E));
2775 Set_RM_Size (E, RM_Size (Full_View (E)));
2776 end if;
2777
2778 return Result;
2779
2780 -- Case of no full view present. If entity is derived or subtype,
2781 -- it is safe to freeze, correctness depends on the frozen status
2782 -- of parent. Otherwise it is either premature usage, or a Taft
2783 -- amendment type, so diagnosis is at the point of use and the
2784 -- type might be frozen later.
2785
2786 elsif E /= Base_Type (E)
2787 or else Is_Derived_Type (E)
2788 then
2789 null;
2790
2791 else
2792 Set_Is_Frozen (E, False);
2793 return No_List;
2794 end if;
2795
2796 -- For access subprogram, freeze types of all formals, the return
2797 -- type was already frozen, since it is the Etype of the function.
2798
2799 elsif Ekind (E) = E_Subprogram_Type then
2800 Formal := First_Formal (E);
2801 while Present (Formal) loop
2802 Freeze_And_Append (Etype (Formal), Loc, Result);
2803 Next_Formal (Formal);
2804 end loop;
2805
2806 -- If the return type requires a transient scope, and we are on
2807 -- a target allowing functions to return with a depressed stack
2808 -- pointer, then we mark the function as requiring this treatment.
2809
2810 if Functions_Return_By_DSP_On_Target
2811 and then Requires_Transient_Scope (Etype (E))
2812 then
2813 Set_Function_Returns_With_DSP (E);
2814 end if;
2815
2816 Freeze_Subprogram (E);
2817
2818 -- For access to a protected subprogram, freeze the equivalent
2819 -- type (however this is not set if we are not generating code)
2820 -- or if this is an anonymous type used just for resolution).
2821
2822 elsif Ekind (E) = E_Access_Protected_Subprogram_Type
2823 and then Operating_Mode = Generate_Code
2824 and then Present (Equivalent_Type (E))
2825 then
2826 Freeze_And_Append (Equivalent_Type (E), Loc, Result);
2827 end if;
2828
2829 -- Generic types are never seen by the back-end, and are also not
2830 -- processed by the expander (since the expander is turned off for
2831 -- generic processing), so we never need freeze nodes for them.
2832
2833 if Is_Generic_Type (E) then
2834 return Result;
2835 end if;
2836
2837 -- Some special processing for non-generic types to complete
2838 -- representation details not known till the freeze point.
2839
2840 if Is_Fixed_Point_Type (E) then
2841 Freeze_Fixed_Point_Type (E);
2842
2843 -- Some error checks required for ordinary fixed-point type.
2844 -- Defer these till the freeze-point since we need the small
2845 -- and range values. We only do these checks for base types
2846
2847 if Is_Ordinary_Fixed_Point_Type (E)
2848 and then E = Base_Type (E)
2849 then
2850 if Small_Value (E) < Ureal_2_M_80 then
2851 Error_Msg_Name_1 := Name_Small;
2852 Error_Msg_N
2853 ("`&''%` is too small, minimum is 2.0'*'*(-80)", E);
2854
2855 elsif Small_Value (E) > Ureal_2_80 then
2856 Error_Msg_Name_1 := Name_Small;
2857 Error_Msg_N
2858 ("`&''%` is too large, maximum is 2.0'*'*80", E);
2859 end if;
2860
2861 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
2862 Error_Msg_Name_1 := Name_First;
2863 Error_Msg_N
2864 ("`&''%` is too small, minimum is -10.0'*'*36", E);
2865 end if;
2866
2867 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
2868 Error_Msg_Name_1 := Name_Last;
2869 Error_Msg_N
2870 ("`&''%` is too large, maximum is 10.0'*'*36", E);
2871 end if;
2872 end if;
2873
2874 elsif Is_Enumeration_Type (E) then
2875 Freeze_Enumeration_Type (E);
2876
2877 elsif Is_Integer_Type (E) then
2878 Adjust_Esize_For_Alignment (E);
2879
2880 elsif Is_Access_Type (E)
2881 and then No (Associated_Storage_Pool (E))
2882 then
2883 Check_Restriction (No_Standard_Storage_Pools, E);
2884 end if;
2885
2886 -- If the current entity is an array or record subtype and has
2887 -- discriminants used to constrain it, it must not freeze, because
2888 -- Freeze_Entity nodes force Gigi to process the frozen type.
2889
2890 if Is_Composite_Type (E) then
2891
2892 if Is_Array_Type (E) then
2893 declare
2894 Index : Node_Id := First_Index (E);
2895 Expr1 : Node_Id;
2896 Expr2 : Node_Id;
2897
2898 begin
2899 while Present (Index) loop
2900 if Etype (Index) /= Any_Type then
2901 Get_Index_Bounds (Index, Expr1, Expr2);
2902
2903 for J in 1 .. 2 loop
2904 if Nkind (Expr1) = N_Identifier
2905 and then Ekind (Entity (Expr1)) = E_Discriminant
2906 then
2907 Set_Has_Delayed_Freeze (E, False);
2908 Set_Freeze_Node (E, Empty);
2909 Check_Debug_Info_Needed (E);
2910 return Result;
2911 end if;
2912
2913 Expr1 := Expr2;
2914 end loop;
2915 end if;
2916
2917 Next_Index (Index);
2918 end loop;
2919 end;
2920
2921 elsif Has_Discriminants (E)
2922 and Is_Constrained (E)
2923 then
2924 declare
2925 Constraint : Elmt_Id;
2926 Expr : Node_Id;
2927
2928 begin
2929 Constraint := First_Elmt (Discriminant_Constraint (E));
2930 while Present (Constraint) loop
2931 Expr := Node (Constraint);
2932 if Nkind (Expr) = N_Identifier
2933 and then Ekind (Entity (Expr)) = E_Discriminant
2934 then
2935 Set_Has_Delayed_Freeze (E, False);
2936 Set_Freeze_Node (E, Empty);
2937 Check_Debug_Info_Needed (E);
2938 return Result;
2939 end if;
2940
2941 Next_Elmt (Constraint);
2942 end loop;
2943 end;
2944 end if;
2945
2946 -- AI-117 requires that all new primitives of a tagged type
2947 -- must inherit the convention of the full view of the type.
2948 -- Inherited and overriding operations are defined to inherit
2949 -- the convention of their parent or overridden subprogram
2950 -- (also specified in AI-117), and that will have occurred
2951 -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
2952 -- Here we set the convention of primitives that are still
2953 -- convention Ada, which will ensure that any new primitives
2954 -- inherit the type's convention. Class-wide types can have
2955 -- a foreign convention inherited from their specific type,
2956 -- but are excluded from this since they don't have any
2957 -- associated primitives.
2958
2959 if Is_Tagged_Type (E)
2960 and then not Is_Class_Wide_Type (E)
2961 and then Convention (E) /= Convention_Ada
2962 then
2963 declare
2964 Prim_List : constant Elist_Id := Primitive_Operations (E);
2965 Prim : Elmt_Id;
2966 begin
2967 Prim := First_Elmt (Prim_List);
2968 while Present (Prim) loop
2969 if Convention (Node (Prim)) = Convention_Ada then
2970 Set_Convention (Node (Prim), Convention (E));
2971 end if;
2972
2973 Next_Elmt (Prim);
2974 end loop;
2975 end;
2976 end if;
2977 end if;
2978
2979 -- Generate primitive operation references for a tagged type
2980
2981 if Is_Tagged_Type (E)
2982 and then not Is_Class_Wide_Type (E)
2983 then
2984 declare
2985 Prim_List : constant Elist_Id := Primitive_Operations (E);
2986 Prim : Elmt_Id;
2987 Ent : Entity_Id;
2988
2989 begin
2990 Prim := First_Elmt (Prim_List);
2991 while Present (Prim) loop
2992 Ent := Node (Prim);
2993
2994 -- If the operation is derived, get the original for
2995 -- cross-reference purposes (it is the original for
2996 -- which we want the xref, and for which the comes
2997 -- from source test needs to be performed).
2998
2999 while Present (Alias (Ent)) loop
3000 Ent := Alias (Ent);
3001 end loop;
3002
3003 Generate_Reference (E, Ent, 'p', Set_Ref => False);
3004 Next_Elmt (Prim);
3005 end loop;
3006
3007 -- If we get an exception, then something peculiar has happened
3008 -- probably as a result of a previous error. Since this is only
3009 -- for non-critical cross-references, ignore the error.
3010
3011 exception
3012 when others => null;
3013 end;
3014 end if;
3015
3016 -- Now that all types from which E may depend are frozen, see
3017 -- if the size is known at compile time, if it must be unsigned,
3018 -- or if strict alignent is required
3019
3020 Check_Compile_Time_Size (E);
3021 Check_Unsigned_Type (E);
3022
3023 if Base_Type (E) = E then
3024 Check_Strict_Alignment (E);
3025 end if;
3026
3027 -- Do not allow a size clause for a type which does not have a size
3028 -- that is known at compile time
3029
3030 if Has_Size_Clause (E)
3031 and then not Size_Known_At_Compile_Time (E)
3032 then
3033 -- Supress this message if errors posted on E, even if we are
3034 -- in all errors mode, since this is often a junk message
3035
3036 if not Error_Posted (E) then
3037 Error_Msg_N
3038 ("size clause not allowed for variable length type",
3039 Size_Clause (E));
3040 end if;
3041 end if;
3042
3043 -- Remaining process is to set/verify the representation information,
3044 -- in particular the size and alignment values. This processing is
3045 -- not required for generic types, since generic types do not play
3046 -- any part in code generation, and so the size and alignment values
3047 -- for suhc types are irrelevant.
3048
3049 if Is_Generic_Type (E) then
3050 return Result;
3051
3052 -- Otherwise we call the layout procedure
3053
3054 else
3055 Layout_Type (E);
3056 end if;
3057
3058 -- End of freeze processing for type entities
3059 end if;
3060
3061 -- Here is where we logically freeze the current entity. If it has a
3062 -- freeze node, then this is the point at which the freeze node is
3063 -- linked into the result list.
3064
3065 if Has_Delayed_Freeze (E) then
3066
3067 -- If a freeze node is already allocated, use it, otherwise allocate
3068 -- a new one. The preallocation happens in the case of anonymous base
3069 -- types, where we preallocate so that we can set First_Subtype_Link.
3070 -- Note that we reset the Sloc to the current freeze location.
3071
3072 if Present (Freeze_Node (E)) then
3073 F_Node := Freeze_Node (E);
3074 Set_Sloc (F_Node, Loc);
3075
3076 else
3077 F_Node := New_Node (N_Freeze_Entity, Loc);
3078 Set_Freeze_Node (E, F_Node);
3079 Set_Access_Types_To_Process (F_Node, No_Elist);
3080 Set_TSS_Elist (F_Node, No_Elist);
3081 Set_Actions (F_Node, No_List);
3082 end if;
3083
3084 Set_Entity (F_Node, E);
3085
3086 if Result = No_List then
3087 Result := New_List (F_Node);
3088 else
3089 Append (F_Node, Result);
3090 end if;
3091 end if;
3092
3093 -- When a type is frozen, the first subtype of the type is frozen as
3094 -- well (RM 13.14(15)). This has to be done after freezing the type,
3095 -- since obviously the first subtype depends on its own base type.
3096
3097 if Is_Type (E) then
3098 Freeze_And_Append (First_Subtype (E), Loc, Result);
3099
3100 -- If we just froze a tagged non-class wide record, then freeze the
3101 -- corresponding class-wide type. This must be done after the tagged
3102 -- type itself is frozen, because the class-wide type refers to the
3103 -- tagged type which generates the class.
3104
3105 if Is_Tagged_Type (E)
3106 and then not Is_Class_Wide_Type (E)
3107 and then Present (Class_Wide_Type (E))
3108 then
3109 Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
3110 end if;
3111 end if;
3112
3113 Check_Debug_Info_Needed (E);
3114
3115 -- Special handling for subprograms
3116
3117 if Is_Subprogram (E) then
3118
3119 -- If subprogram has address clause then reset Is_Public flag, since
3120 -- we do not want the backend to generate external references.
3121
3122 if Present (Address_Clause (E))
3123 and then not Is_Library_Level_Entity (E)
3124 then
3125 Set_Is_Public (E, False);
3126
3127 -- If no address clause and not intrinsic, then for imported
3128 -- subprogram in main unit, generate descriptor if we are in
3129 -- Propagate_Exceptions mode.
3130
3131 elsif Propagate_Exceptions
3132 and then Is_Imported (E)
3133 and then not Is_Intrinsic_Subprogram (E)
3134 and then Convention (E) /= Convention_Stubbed
3135 then
3136 if Result = No_List then
3137 Result := Empty_List;
3138 end if;
3139
3140 Generate_Subprogram_Descriptor_For_Imported_Subprogram
3141 (E, Result);
3142 end if;
3143 end if;
3144
3145 return Result;
3146 end Freeze_Entity;
3147
3148 -----------------------------
3149 -- Freeze_Enumeration_Type --
3150 -----------------------------
3151
3152 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
3153 begin
3154 if Has_Foreign_Convention (Typ)
3155 and then not Has_Size_Clause (Typ)
3156 and then Esize (Typ) < Standard_Integer_Size
3157 then
3158 Init_Esize (Typ, Standard_Integer_Size);
3159 else
3160 Adjust_Esize_For_Alignment (Typ);
3161 end if;
3162 end Freeze_Enumeration_Type;
3163
3164 -----------------------
3165 -- Freeze_Expression --
3166 -----------------------
3167
3168 procedure Freeze_Expression (N : Node_Id) is
3169 In_Def_Exp : constant Boolean := In_Default_Expression;
3170 Typ : Entity_Id;
3171 Nam : Entity_Id;
3172 Desig_Typ : Entity_Id;
3173 P : Node_Id;
3174 Parent_P : Node_Id;
3175
3176 Freeze_Outside : Boolean := False;
3177 -- This flag is set true if the entity must be frozen outside the
3178 -- current subprogram. This happens in the case of expander generated
3179 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
3180 -- not freeze all entities like other bodies, but which nevertheless
3181 -- may reference entities that have to be frozen before the body and
3182 -- obviously cannot be frozen inside the body.
3183
3184 function In_Exp_Body (N : Node_Id) return Boolean;
3185 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
3186 -- it is the handled statement sequence of an expander generated
3187 -- subprogram (init proc, or stream subprogram). If so, it returns
3188 -- True, otherwise False.
3189
3190 -----------------
3191 -- In_Exp_Body --
3192 -----------------
3193
3194 function In_Exp_Body (N : Node_Id) return Boolean is
3195 P : Node_Id;
3196
3197 begin
3198 if Nkind (N) = N_Subprogram_Body then
3199 P := N;
3200 else
3201 P := Parent (N);
3202 end if;
3203
3204 if Nkind (P) /= N_Subprogram_Body then
3205 return False;
3206
3207 else
3208 P := Defining_Unit_Name (Specification (P));
3209
3210 if Nkind (P) = N_Defining_Identifier
3211 and then (Is_Init_Proc (P) or else
3212 Is_TSS (P, TSS_Stream_Input) or else
3213 Is_TSS (P, TSS_Stream_Output) or else
3214 Is_TSS (P, TSS_Stream_Read) or else
3215 Is_TSS (P, TSS_Stream_Write))
3216 then
3217 return True;
3218 else
3219 return False;
3220 end if;
3221 end if;
3222 end In_Exp_Body;
3223
3224 -- Start of processing for Freeze_Expression
3225
3226 begin
3227 -- Immediate return if freezing is inhibited. This flag is set by
3228 -- the analyzer to stop freezing on generated expressions that would
3229 -- cause freezing if they were in the source program, but which are
3230 -- not supposed to freeze, since they are created.
3231
3232 if Must_Not_Freeze (N) then
3233 return;
3234 end if;
3235
3236 -- If expression is non-static, then it does not freeze in a default
3237 -- expression, see section "Handling of Default Expressions" in the
3238 -- spec of package Sem for further details. Note that we have to
3239 -- make sure that we actually have a real expression (if we have
3240 -- a subtype indication, we can't test Is_Static_Expression!)
3241
3242 if In_Def_Exp
3243 and then Nkind (N) in N_Subexpr
3244 and then not Is_Static_Expression (N)
3245 then
3246 return;
3247 end if;
3248
3249 -- Freeze type of expression if not frozen already
3250
3251 Typ := Empty;
3252
3253 if Nkind (N) in N_Has_Etype then
3254 if not Is_Frozen (Etype (N)) then
3255 Typ := Etype (N);
3256
3257 -- Base type may be an derived numeric type that is frozen at
3258 -- the point of declaration, but first_subtype is still unfrozen.
3259
3260 elsif not Is_Frozen (First_Subtype (Etype (N))) then
3261 Typ := First_Subtype (Etype (N));
3262 end if;
3263 end if;
3264
3265 -- For entity name, freeze entity if not frozen already. A special
3266 -- exception occurs for an identifier that did not come from source.
3267 -- We don't let such identifiers freeze a non-internal entity, i.e.
3268 -- an entity that did come from source, since such an identifier was
3269 -- generated by the expander, and cannot have any semantic effect on
3270 -- the freezing semantics. For example, this stops the parameter of
3271 -- an initialization procedure from freezing the variable.
3272
3273 if Is_Entity_Name (N)
3274 and then not Is_Frozen (Entity (N))
3275 and then (Nkind (N) /= N_Identifier
3276 or else Comes_From_Source (N)
3277 or else not Comes_From_Source (Entity (N)))
3278 then
3279 Nam := Entity (N);
3280 else
3281 Nam := Empty;
3282 end if;
3283
3284 -- For an allocator freeze designated type if not frozen already.
3285
3286 -- For an aggregate whose component type is an access type, freeze
3287 -- the designated type now, so that its freeze does not appear within
3288 -- the loop that might be created in the expansion of the aggregate.
3289 -- If the designated type is a private type without full view, the
3290 -- expression cannot contain an allocator, so the type is not frozen.
3291
3292 Desig_Typ := Empty;
3293
3294 case Nkind (N) is
3295 when N_Allocator =>
3296 Desig_Typ := Designated_Type (Etype (N));
3297
3298 when N_Aggregate =>
3299 if Is_Array_Type (Etype (N))
3300 and then Is_Access_Type (Component_Type (Etype (N)))
3301 then
3302 Desig_Typ := Designated_Type (Component_Type (Etype (N)));
3303 end if;
3304
3305 when N_Selected_Component |
3306 N_Indexed_Component |
3307 N_Slice =>
3308
3309 if Is_Access_Type (Etype (Prefix (N))) then
3310 Desig_Typ := Designated_Type (Etype (Prefix (N)));
3311 end if;
3312
3313 when others =>
3314 null;
3315 end case;
3316
3317 if Desig_Typ /= Empty
3318 and then (Is_Frozen (Desig_Typ)
3319 or else (not Is_Fully_Defined (Desig_Typ)))
3320 then
3321 Desig_Typ := Empty;
3322 end if;
3323
3324 -- All done if nothing needs freezing
3325
3326 if No (Typ)
3327 and then No (Nam)
3328 and then No (Desig_Typ)
3329 then
3330 return;
3331 end if;
3332
3333 -- Loop for looking at the right place to insert the freeze nodes
3334 -- exiting from the loop when it is appropriate to insert the freeze
3335 -- node before the current node P.
3336
3337 -- Also checks some special exceptions to the freezing rules. These
3338 -- cases result in a direct return, bypassing the freeze action.
3339
3340 P := N;
3341 loop
3342 Parent_P := Parent (P);
3343
3344 -- If we don't have a parent, then we are not in a well-formed
3345 -- tree. This is an unusual case, but there are some legitimate
3346 -- situations in which this occurs, notably when the expressions
3347 -- in the range of a type declaration are resolved. We simply
3348 -- ignore the freeze request in this case. Is this right ???
3349
3350 if No (Parent_P) then
3351 return;
3352 end if;
3353
3354 -- See if we have got to an appropriate point in the tree
3355
3356 case Nkind (Parent_P) is
3357
3358 -- A special test for the exception of (RM 13.14(8)) for the
3359 -- case of per-object expressions (RM 3.8(18)) occurring in a
3360 -- component definition or a discrete subtype definition. Note
3361 -- that we test for a component declaration which includes both
3362 -- cases we are interested in, and furthermore the tree does not
3363 -- have explicit nodes for either of these two constructs.
3364
3365 when N_Component_Declaration =>
3366
3367 -- The case we want to test for here is an identifier that is
3368 -- a per-object expression, this is either a discriminant that
3369 -- appears in a context other than the component declaration
3370 -- or it is a reference to the type of the enclosing construct.
3371
3372 -- For either of these cases, we skip the freezing
3373
3374 if not In_Default_Expression
3375 and then Nkind (N) = N_Identifier
3376 and then (Present (Entity (N)))
3377 then
3378 -- We recognize the discriminant case by just looking for
3379 -- a reference to a discriminant. It can only be one for
3380 -- the enclosing construct. Skip freezing in this case.
3381
3382 if Ekind (Entity (N)) = E_Discriminant then
3383 return;
3384
3385 -- For the case of a reference to the enclosing record,
3386 -- (or task or protected type), we look for a type that
3387 -- matches the current scope.
3388
3389 elsif Entity (N) = Current_Scope then
3390 return;
3391 end if;
3392 end if;
3393
3394 -- If we have an enumeration literal that appears as the
3395 -- choice in the aggregate of an enumeration representation
3396 -- clause, then freezing does not occur (RM 13.14(10)).
3397
3398 when N_Enumeration_Representation_Clause =>
3399
3400 -- The case we are looking for is an enumeration literal
3401
3402 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
3403 and then Is_Enumeration_Type (Etype (N))
3404 then
3405 -- If enumeration literal appears directly as the choice,
3406 -- do not freeze (this is the normal non-overloade case)
3407
3408 if Nkind (Parent (N)) = N_Component_Association
3409 and then First (Choices (Parent (N))) = N
3410 then
3411 return;
3412
3413 -- If enumeration literal appears as the name of a
3414 -- function which is the choice, then also do not freeze.
3415 -- This happens in the overloaded literal case, where the
3416 -- enumeration literal is temporarily changed to a function
3417 -- call for overloading analysis purposes.
3418
3419 elsif Nkind (Parent (N)) = N_Function_Call
3420 and then
3421 Nkind (Parent (Parent (N))) = N_Component_Association
3422 and then
3423 First (Choices (Parent (Parent (N)))) = Parent (N)
3424 then
3425 return;
3426 end if;
3427 end if;
3428
3429 -- Normally if the parent is a handled sequence of statements,
3430 -- then the current node must be a statement, and that is an
3431 -- appropriate place to insert a freeze node.
3432
3433 when N_Handled_Sequence_Of_Statements =>
3434
3435 -- An exception occurs when the sequence of statements is
3436 -- for an expander generated body that did not do the usual
3437 -- freeze all operation. In this case we usually want to
3438 -- freeze outside this body, not inside it, and we skip
3439 -- past the subprogram body that we are inside.
3440
3441 if In_Exp_Body (Parent_P) then
3442
3443 -- However, we *do* want to freeze at this point if we have
3444 -- an entity to freeze, and that entity is declared *inside*
3445 -- the body of the expander generated procedure. This case
3446 -- is recognized by the scope of the type, which is either
3447 -- the spec for some enclosing body, or (in the case of
3448 -- init_procs, for which there are no separate specs) the
3449 -- current scope.
3450
3451 declare
3452 Subp : constant Node_Id := Parent (Parent_P);
3453 Cspc : Entity_Id;
3454
3455 begin
3456 if Nkind (Subp) = N_Subprogram_Body then
3457 Cspc := Corresponding_Spec (Subp);
3458
3459 if (Present (Typ) and then Scope (Typ) = Cspc)
3460 or else
3461 (Present (Nam) and then Scope (Nam) = Cspc)
3462 then
3463 exit;
3464
3465 elsif Present (Typ)
3466 and then Scope (Typ) = Current_Scope
3467 and then Current_Scope = Defining_Entity (Subp)
3468 then
3469 exit;
3470 end if;
3471 end if;
3472 end;
3473
3474 -- If not that exception to the exception, then this is
3475 -- where we delay the freeze till outside the body.
3476
3477 Parent_P := Parent (Parent_P);
3478 Freeze_Outside := True;
3479
3480 -- Here if normal case where we are in handled statement
3481 -- sequence and want to do the insertion right there.
3482
3483 else
3484 exit;
3485 end if;
3486
3487 -- If parent is a body or a spec or a block, then the current
3488 -- node is a statement or declaration and we can insert the
3489 -- freeze node before it.
3490
3491 when N_Package_Specification |
3492 N_Package_Body |
3493 N_Subprogram_Body |
3494 N_Task_Body |
3495 N_Protected_Body |
3496 N_Entry_Body |
3497 N_Block_Statement => exit;
3498
3499 -- The expander is allowed to define types in any statements list,
3500 -- so any of the following parent nodes also mark a freezing point
3501 -- if the actual node is in a list of statements or declarations.
3502
3503 when N_Exception_Handler |
3504 N_If_Statement |
3505 N_Elsif_Part |
3506 N_Case_Statement_Alternative |
3507 N_Compilation_Unit_Aux |
3508 N_Selective_Accept |
3509 N_Accept_Alternative |
3510 N_Delay_Alternative |
3511 N_Conditional_Entry_Call |
3512 N_Entry_Call_Alternative |
3513 N_Triggering_Alternative |
3514 N_Abortable_Part |
3515 N_Freeze_Entity =>
3516
3517 exit when Is_List_Member (P);
3518
3519 -- Note: The N_Loop_Statement is a special case. A type that
3520 -- appears in the source can never be frozen in a loop (this
3521 -- occurs only because of a loop expanded by the expander),
3522 -- so we keep on going. Otherwise we terminate the search.
3523 -- Same is true of any entity which comes from source. (if they
3524 -- have a predefined type, that type does not appear to come
3525 -- from source, but the entity should not be frozen here).
3526
3527 when N_Loop_Statement =>
3528 exit when not Comes_From_Source (Etype (N))
3529 and then (No (Nam) or else not Comes_From_Source (Nam));
3530
3531 -- For all other cases, keep looking at parents
3532
3533 when others =>
3534 null;
3535 end case;
3536
3537 -- We fall through the case if we did not yet find the proper
3538 -- place in the free for inserting the freeze node, so climb!
3539
3540 P := Parent_P;
3541 end loop;
3542
3543 -- If the expression appears in a record or an initialization
3544 -- procedure, the freeze nodes are collected and attached to
3545 -- the current scope, to be inserted and analyzed on exit from
3546 -- the scope, to insure that generated entities appear in the
3547 -- correct scope. If the expression is a default for a discriminant
3548 -- specification, the scope is still void. The expression can also
3549 -- appear in the discriminant part of a private or concurrent type.
3550
3551 -- The other case requiring this special handling is if we are in
3552 -- a default expression, since in that case we are about to freeze
3553 -- a static type, and the freeze scope needs to be the outer scope,
3554 -- not the scope of the subprogram with the default parameter.
3555
3556 -- For default expressions in generic units, the Move_Freeze_Nodes
3557 -- mechanism (see sem_ch12.adb) takes care of placing them at the
3558 -- proper place, after the generic unit.
3559
3560 if (In_Def_Exp and not Inside_A_Generic)
3561 or else Freeze_Outside
3562 or else (Is_Type (Current_Scope)
3563 and then (not Is_Concurrent_Type (Current_Scope)
3564 or else not Has_Completion (Current_Scope)))
3565 or else Ekind (Current_Scope) = E_Void
3566 then
3567 declare
3568 Loc : constant Source_Ptr := Sloc (Current_Scope);
3569 Freeze_Nodes : List_Id := No_List;
3570
3571 begin
3572 if Present (Desig_Typ) then
3573 Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
3574 end if;
3575
3576 if Present (Typ) then
3577 Freeze_And_Append (Typ, Loc, Freeze_Nodes);
3578 end if;
3579
3580 if Present (Nam) then
3581 Freeze_And_Append (Nam, Loc, Freeze_Nodes);
3582 end if;
3583
3584 if Is_Non_Empty_List (Freeze_Nodes) then
3585 if No (Scope_Stack.Table
3586 (Scope_Stack.Last).Pending_Freeze_Actions)
3587 then
3588 Scope_Stack.Table
3589 (Scope_Stack.Last).Pending_Freeze_Actions :=
3590 Freeze_Nodes;
3591 else
3592 Append_List (Freeze_Nodes, Scope_Stack.Table
3593 (Scope_Stack.Last).Pending_Freeze_Actions);
3594 end if;
3595 end if;
3596 end;
3597
3598 return;
3599 end if;
3600
3601 -- Now we have the right place to do the freezing. First, a special
3602 -- adjustment, if we are in default expression analysis mode, these
3603 -- freeze actions must not be thrown away (normally all inserted
3604 -- actions are thrown away in this mode. However, the freeze actions
3605 -- are from static expressions and one of the important reasons we
3606 -- are doing this special analysis is to get these freeze actions.
3607 -- Therefore we turn off the In_Default_Expression mode to propagate
3608 -- these freeze actions. This also means they get properly analyzed
3609 -- and expanded.
3610
3611 In_Default_Expression := False;
3612
3613 -- Freeze the designated type of an allocator (RM 13.14(13))
3614
3615 if Present (Desig_Typ) then
3616 Freeze_Before (P, Desig_Typ);
3617 end if;
3618
3619 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
3620 -- the enumeration representation clause exception in the loop above.
3621
3622 if Present (Typ) then
3623 Freeze_Before (P, Typ);
3624 end if;
3625
3626 -- Freeze name if one is present (RM 13.14(11))
3627
3628 if Present (Nam) then
3629 Freeze_Before (P, Nam);
3630 end if;
3631
3632 In_Default_Expression := In_Def_Exp;
3633 end Freeze_Expression;
3634
3635 -----------------------------
3636 -- Freeze_Fixed_Point_Type --
3637 -----------------------------
3638
3639 -- Certain fixed-point types and subtypes, including implicit base
3640 -- types and declared first subtypes, have not yet set up a range.
3641 -- This is because the range cannot be set until the Small and Size
3642 -- values are known, and these are not known till the type is frozen.
3643
3644 -- To signal this case, Scalar_Range contains an unanalyzed syntactic
3645 -- range whose bounds are unanalyzed real literals. This routine will
3646 -- recognize this case, and transform this range node into a properly
3647 -- typed range with properly analyzed and resolved values.
3648
3649 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
3650 Rng : constant Node_Id := Scalar_Range (Typ);
3651 Lo : constant Node_Id := Low_Bound (Rng);
3652 Hi : constant Node_Id := High_Bound (Rng);
3653 Btyp : constant Entity_Id := Base_Type (Typ);
3654 Brng : constant Node_Id := Scalar_Range (Btyp);
3655 BLo : constant Node_Id := Low_Bound (Brng);
3656 BHi : constant Node_Id := High_Bound (Brng);
3657 Small : constant Ureal := Small_Value (Typ);
3658 Loval : Ureal;
3659 Hival : Ureal;
3660 Atype : Entity_Id;
3661
3662 Actual_Size : Nat;
3663
3664 function Fsize (Lov, Hiv : Ureal) return Nat;
3665 -- Returns size of type with given bounds. Also leaves these
3666 -- bounds set as the current bounds of the Typ.
3667
3668 -----------
3669 -- Fsize --
3670 -----------
3671
3672 function Fsize (Lov, Hiv : Ureal) return Nat is
3673 begin
3674 Set_Realval (Lo, Lov);
3675 Set_Realval (Hi, Hiv);
3676 return Minimum_Size (Typ);
3677 end Fsize;
3678
3679 -- Start of processing for Freeze_Fixed_Point_Type
3680
3681 begin
3682 -- If Esize of a subtype has not previously been set, set it now
3683
3684 if Unknown_Esize (Typ) then
3685 Atype := Ancestor_Subtype (Typ);
3686
3687 if Present (Atype) then
3688 Set_Esize (Typ, Esize (Atype));
3689 else
3690 Set_Esize (Typ, Esize (Base_Type (Typ)));
3691 end if;
3692 end if;
3693
3694 -- Immediate return if the range is already analyzed. This means
3695 -- that the range is already set, and does not need to be computed
3696 -- by this routine.
3697
3698 if Analyzed (Rng) then
3699 return;
3700 end if;
3701
3702 -- Immediate return if either of the bounds raises Constraint_Error
3703
3704 if Raises_Constraint_Error (Lo)
3705 or else Raises_Constraint_Error (Hi)
3706 then
3707 return;
3708 end if;
3709
3710 Loval := Realval (Lo);
3711 Hival := Realval (Hi);
3712
3713 -- Ordinary fixed-point case
3714
3715 if Is_Ordinary_Fixed_Point_Type (Typ) then
3716
3717 -- For the ordinary fixed-point case, we are allowed to fudge the
3718 -- end-points up or down by small. Generally we prefer to fudge
3719 -- up, i.e. widen the bounds for non-model numbers so that the
3720 -- end points are included. However there are cases in which this
3721 -- cannot be done, and indeed cases in which we may need to narrow
3722 -- the bounds. The following circuit makes the decision.
3723
3724 -- Note: our terminology here is that Incl_EP means that the
3725 -- bounds are widened by Small if necessary to include the end
3726 -- points, and Excl_EP means that the bounds are narrowed by
3727 -- Small to exclude the end-points if this reduces the size.
3728
3729 -- Note that in the Incl case, all we care about is including the
3730 -- end-points. In the Excl case, we want to narrow the bounds as
3731 -- much as permitted by the RM, to give the smallest possible size.
3732
3733 Fudge : declare
3734 Loval_Incl_EP : Ureal;
3735 Hival_Incl_EP : Ureal;
3736
3737 Loval_Excl_EP : Ureal;
3738 Hival_Excl_EP : Ureal;
3739
3740 Size_Incl_EP : Nat;
3741 Size_Excl_EP : Nat;
3742
3743 Model_Num : Ureal;
3744 First_Subt : Entity_Id;
3745 Actual_Lo : Ureal;
3746 Actual_Hi : Ureal;
3747
3748 begin
3749 -- First step. Base types are required to be symmetrical. Right
3750 -- now, the base type range is a copy of the first subtype range.
3751 -- This will be corrected before we are done, but right away we
3752 -- need to deal with the case where both bounds are non-negative.
3753 -- In this case, we set the low bound to the negative of the high
3754 -- bound, to make sure that the size is computed to include the
3755 -- required sign. Note that we do not need to worry about the
3756 -- case of both bounds negative, because the sign will be dealt
3757 -- with anyway. Furthermore we can't just go making such a bound
3758 -- symmetrical, since in a twos-complement system, there is an
3759 -- extra negative value which could not be accomodated on the
3760 -- positive side.
3761
3762 if Typ = Btyp
3763 and then not UR_Is_Negative (Loval)
3764 and then Hival > Loval
3765 then
3766 Loval := -Hival;
3767 Set_Realval (Lo, Loval);
3768 end if;
3769
3770 -- Compute the fudged bounds. If the number is a model number,
3771 -- then we do nothing to include it, but we are allowed to
3772 -- backoff to the next adjacent model number when we exclude
3773 -- it. If it is not a model number then we straddle the two
3774 -- values with the model numbers on either side.
3775
3776 Model_Num := UR_Trunc (Loval / Small) * Small;
3777
3778 if Loval = Model_Num then
3779 Loval_Incl_EP := Model_Num;
3780 else
3781 Loval_Incl_EP := Model_Num - Small;
3782 end if;
3783
3784 -- The low value excluding the end point is Small greater, but
3785 -- we do not do this exclusion if the low value is positive,
3786 -- since it can't help the size and could actually hurt by
3787 -- crossing the high bound.
3788
3789 if UR_Is_Negative (Loval_Incl_EP) then
3790 Loval_Excl_EP := Loval_Incl_EP + Small;
3791 else
3792 Loval_Excl_EP := Loval_Incl_EP;
3793 end if;
3794
3795 -- Similar processing for upper bound and high value
3796
3797 Model_Num := UR_Trunc (Hival / Small) * Small;
3798
3799 if Hival = Model_Num then
3800 Hival_Incl_EP := Model_Num;
3801 else
3802 Hival_Incl_EP := Model_Num + Small;
3803 end if;
3804
3805 if UR_Is_Positive (Hival_Incl_EP) then
3806 Hival_Excl_EP := Hival_Incl_EP - Small;
3807 else
3808 Hival_Excl_EP := Hival_Incl_EP;
3809 end if;
3810
3811 -- One further adjustment is needed. In the case of subtypes,
3812 -- we cannot go outside the range of the base type, or we get
3813 -- peculiarities, and the base type range is already set. This
3814 -- only applies to the Incl values, since clearly the Excl
3815 -- values are already as restricted as they are allowed to be.
3816
3817 if Typ /= Btyp then
3818 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
3819 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
3820 end if;
3821
3822 -- Get size including and excluding end points
3823
3824 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
3825 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
3826
3827 -- No need to exclude end-points if it does not reduce size
3828
3829 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
3830 Loval_Excl_EP := Loval_Incl_EP;
3831 end if;
3832
3833 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
3834 Hival_Excl_EP := Hival_Incl_EP;
3835 end if;
3836
3837 -- Now we set the actual size to be used. We want to use the
3838 -- bounds fudged up to include the end-points but only if this
3839 -- can be done without violating a specifically given size
3840 -- size clause or causing an unacceptable increase in size.
3841
3842 -- Case of size clause given
3843
3844 if Has_Size_Clause (Typ) then
3845
3846 -- Use the inclusive size only if it is consistent with
3847 -- the explicitly specified size.
3848
3849 if Size_Incl_EP <= RM_Size (Typ) then
3850 Actual_Lo := Loval_Incl_EP;
3851 Actual_Hi := Hival_Incl_EP;
3852 Actual_Size := Size_Incl_EP;
3853
3854 -- If the inclusive size is too large, we try excluding
3855 -- the end-points (will be caught later if does not work).
3856
3857 else
3858 Actual_Lo := Loval_Excl_EP;
3859 Actual_Hi := Hival_Excl_EP;
3860 Actual_Size := Size_Excl_EP;
3861 end if;
3862
3863 -- Case of size clause not given
3864
3865 else
3866 -- If we have a base type whose corresponding first subtype
3867 -- has an explicit size that is large enough to include our
3868 -- end-points, then do so. There is no point in working hard
3869 -- to get a base type whose size is smaller than the specified
3870 -- size of the first subtype.
3871
3872 First_Subt := First_Subtype (Typ);
3873
3874 if Has_Size_Clause (First_Subt)
3875 and then Size_Incl_EP <= Esize (First_Subt)
3876 then
3877 Actual_Size := Size_Incl_EP;
3878 Actual_Lo := Loval_Incl_EP;
3879 Actual_Hi := Hival_Incl_EP;
3880
3881 -- If excluding the end-points makes the size smaller and
3882 -- results in a size of 8,16,32,64, then we take the smaller
3883 -- size. For the 64 case, this is compulsory. For the other
3884 -- cases, it seems reasonable. We like to include end points
3885 -- if we can, but not at the expense of moving to the next
3886 -- natural boundary of size.
3887
3888 elsif Size_Incl_EP /= Size_Excl_EP
3889 and then
3890 (Size_Excl_EP = 8 or else
3891 Size_Excl_EP = 16 or else
3892 Size_Excl_EP = 32 or else
3893 Size_Excl_EP = 64)
3894 then
3895 Actual_Size := Size_Excl_EP;
3896 Actual_Lo := Loval_Excl_EP;
3897 Actual_Hi := Hival_Excl_EP;
3898
3899 -- Otherwise we can definitely include the end points
3900
3901 else
3902 Actual_Size := Size_Incl_EP;
3903 Actual_Lo := Loval_Incl_EP;
3904 Actual_Hi := Hival_Incl_EP;
3905 end if;
3906
3907 -- One pathological case: normally we never fudge a low
3908 -- bound down, since it would seem to increase the size
3909 -- (if it has any effect), but for ranges containing a
3910 -- single value, or no values, the high bound can be
3911 -- small too large. Consider:
3912
3913 -- type t is delta 2.0**(-14)
3914 -- range 131072.0 .. 0;
3915
3916 -- That lower bound is *just* outside the range of 32
3917 -- bits, and does need fudging down in this case. Note
3918 -- that the bounds will always have crossed here, since
3919 -- the high bound will be fudged down if necessary, as
3920 -- in the case of:
3921
3922 -- type t is delta 2.0**(-14)
3923 -- range 131072.0 .. 131072.0;
3924
3925 -- So we can detect the situation by looking for crossed
3926 -- bounds, and if the bounds are crossed, and the low
3927 -- bound is greater than zero, we will always back it
3928 -- off by small, since this is completely harmless.
3929
3930 if Actual_Lo > Actual_Hi then
3931 if UR_Is_Positive (Actual_Lo) then
3932 Actual_Lo := Loval_Incl_EP - Small;
3933 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3934
3935 -- And of course, we need to do exactly the same parallel
3936 -- fudge for flat ranges in the negative region.
3937
3938 elsif UR_Is_Negative (Actual_Hi) then
3939 Actual_Hi := Hival_Incl_EP + Small;
3940 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
3941 end if;
3942 end if;
3943 end if;
3944
3945 Set_Realval (Lo, Actual_Lo);
3946 Set_Realval (Hi, Actual_Hi);
3947 end Fudge;
3948
3949 -- For the decimal case, none of this fudging is required, since there
3950 -- are no end-point problems in the decimal case (the end-points are
3951 -- always included).
3952
3953 else
3954 Actual_Size := Fsize (Loval, Hival);
3955 end if;
3956
3957 -- At this stage, the actual size has been calculated and the proper
3958 -- required bounds are stored in the low and high bounds.
3959
3960 if Actual_Size > 64 then
3961 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
3962 Error_Msg_N
3963 ("size required (^) for type& too large, maximum is 64", Typ);
3964 Actual_Size := 64;
3965 end if;
3966
3967 -- Check size against explicit given size
3968
3969 if Has_Size_Clause (Typ) then
3970 if Actual_Size > RM_Size (Typ) then
3971 Error_Msg_Uint_1 := RM_Size (Typ);
3972 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
3973 Error_Msg_NE
3974 ("size given (^) for type& too small, minimum is ^",
3975 Size_Clause (Typ), Typ);
3976
3977 else
3978 Actual_Size := UI_To_Int (Esize (Typ));
3979 end if;
3980
3981 -- Increase size to next natural boundary if no size clause given
3982
3983 else
3984 if Actual_Size <= 8 then
3985 Actual_Size := 8;
3986 elsif Actual_Size <= 16 then
3987 Actual_Size := 16;
3988 elsif Actual_Size <= 32 then
3989 Actual_Size := 32;
3990 else
3991 Actual_Size := 64;
3992 end if;
3993
3994 Init_Esize (Typ, Actual_Size);
3995 Adjust_Esize_For_Alignment (Typ);
3996 end if;
3997
3998 -- If we have a base type, then expand the bounds so that they
3999 -- extend to the full width of the allocated size in bits, to
4000 -- avoid junk range checks on intermediate computations.
4001
4002 if Base_Type (Typ) = Typ then
4003 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
4004 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
4005 end if;
4006
4007 -- Final step is to reanalyze the bounds using the proper type
4008 -- and set the Corresponding_Integer_Value fields of the literals.
4009
4010 Set_Etype (Lo, Empty);
4011 Set_Analyzed (Lo, False);
4012 Analyze (Lo);
4013
4014 -- Resolve with universal fixed if the base type, and the base
4015 -- type if it is a subtype. Note we can't resolve the base type
4016 -- with itself, that would be a reference before definition.
4017
4018 if Typ = Btyp then
4019 Resolve (Lo, Universal_Fixed);
4020 else
4021 Resolve (Lo, Btyp);
4022 end if;
4023
4024 -- Set corresponding integer value for bound
4025
4026 Set_Corresponding_Integer_Value
4027 (Lo, UR_To_Uint (Realval (Lo) / Small));
4028
4029 -- Similar processing for high bound
4030
4031 Set_Etype (Hi, Empty);
4032 Set_Analyzed (Hi, False);
4033 Analyze (Hi);
4034
4035 if Typ = Btyp then
4036 Resolve (Hi, Universal_Fixed);
4037 else
4038 Resolve (Hi, Btyp);
4039 end if;
4040
4041 Set_Corresponding_Integer_Value
4042 (Hi, UR_To_Uint (Realval (Hi) / Small));
4043
4044 -- Set type of range to correspond to bounds
4045
4046 Set_Etype (Rng, Etype (Lo));
4047
4048 -- Set Esize to calculated size if not set already
4049
4050 if Unknown_Esize (Typ) then
4051 Init_Esize (Typ, Actual_Size);
4052 end if;
4053
4054 -- Set RM_Size if not already set. If already set, check value
4055
4056 declare
4057 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
4058
4059 begin
4060 if RM_Size (Typ) /= Uint_0 then
4061 if RM_Size (Typ) < Minsiz then
4062 Error_Msg_Uint_1 := RM_Size (Typ);
4063 Error_Msg_Uint_2 := Minsiz;
4064 Error_Msg_NE
4065 ("size given (^) for type& too small, minimum is ^",
4066 Size_Clause (Typ), Typ);
4067 end if;
4068
4069 else
4070 Set_RM_Size (Typ, Minsiz);
4071 end if;
4072 end;
4073 end Freeze_Fixed_Point_Type;
4074
4075 ------------------
4076 -- Freeze_Itype --
4077 ------------------
4078
4079 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
4080 L : List_Id;
4081
4082 begin
4083 Set_Has_Delayed_Freeze (T);
4084 L := Freeze_Entity (T, Sloc (N));
4085
4086 if Is_Non_Empty_List (L) then
4087 Insert_Actions (N, L);
4088 end if;
4089 end Freeze_Itype;
4090
4091 --------------------------
4092 -- Freeze_Static_Object --
4093 --------------------------
4094
4095 procedure Freeze_Static_Object (E : Entity_Id) is
4096
4097 Cannot_Be_Static : exception;
4098 -- Exception raised if the type of a static object cannot be made
4099 -- static. This happens if the type depends on non-global objects.
4100
4101 procedure Ensure_Expression_Is_SA (N : Node_Id);
4102 -- Called to ensure that an expression used as part of a type
4103 -- definition is statically allocatable, which means that the type
4104 -- of the expression is statically allocatable, and the expression
4105 -- is either static, or a reference to a library level constant.
4106
4107 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
4108 -- Called to mark a type as static, checking that it is possible
4109 -- to set the type as static. If it is not possible, then the
4110 -- exception Cannot_Be_Static is raised.
4111
4112 -----------------------------
4113 -- Ensure_Expression_Is_SA --
4114 -----------------------------
4115
4116 procedure Ensure_Expression_Is_SA (N : Node_Id) is
4117 Ent : Entity_Id;
4118
4119 begin
4120 Ensure_Type_Is_SA (Etype (N));
4121
4122 if Is_Static_Expression (N) then
4123 return;
4124
4125 elsif Nkind (N) = N_Identifier then
4126 Ent := Entity (N);
4127
4128 if Present (Ent)
4129 and then Ekind (Ent) = E_Constant
4130 and then Is_Library_Level_Entity (Ent)
4131 then
4132 return;
4133 end if;
4134 end if;
4135
4136 raise Cannot_Be_Static;
4137 end Ensure_Expression_Is_SA;
4138
4139 -----------------------
4140 -- Ensure_Type_Is_SA --
4141 -----------------------
4142
4143 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
4144 N : Node_Id;
4145 C : Entity_Id;
4146
4147 begin
4148 -- If type is library level, we are all set
4149
4150 if Is_Library_Level_Entity (Typ) then
4151 return;
4152 end if;
4153
4154 -- We are also OK if the type is already marked as statically
4155 -- allocated, which means we processed it before.
4156
4157 if Is_Statically_Allocated (Typ) then
4158 return;
4159 end if;
4160
4161 -- Mark type as statically allocated
4162
4163 Set_Is_Statically_Allocated (Typ);
4164
4165 -- Check that it is safe to statically allocate this type
4166
4167 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
4168 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
4169 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
4170
4171 elsif Is_Array_Type (Typ) then
4172 N := First_Index (Typ);
4173 while Present (N) loop
4174 Ensure_Type_Is_SA (Etype (N));
4175 Next_Index (N);
4176 end loop;
4177
4178 Ensure_Type_Is_SA (Component_Type (Typ));
4179
4180 elsif Is_Access_Type (Typ) then
4181 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
4182
4183 declare
4184 F : Entity_Id;
4185 T : constant Entity_Id := Etype (Designated_Type (Typ));
4186
4187 begin
4188 if T /= Standard_Void_Type then
4189 Ensure_Type_Is_SA (T);
4190 end if;
4191
4192 F := First_Formal (Designated_Type (Typ));
4193
4194 while Present (F) loop
4195 Ensure_Type_Is_SA (Etype (F));
4196 Next_Formal (F);
4197 end loop;
4198 end;
4199
4200 else
4201 Ensure_Type_Is_SA (Designated_Type (Typ));
4202 end if;
4203
4204 elsif Is_Record_Type (Typ) then
4205 C := First_Entity (Typ);
4206
4207 while Present (C) loop
4208 if Ekind (C) = E_Discriminant
4209 or else Ekind (C) = E_Component
4210 then
4211 Ensure_Type_Is_SA (Etype (C));
4212
4213 elsif Is_Type (C) then
4214 Ensure_Type_Is_SA (C);
4215 end if;
4216
4217 Next_Entity (C);
4218 end loop;
4219
4220 elsif Ekind (Typ) = E_Subprogram_Type then
4221 Ensure_Type_Is_SA (Etype (Typ));
4222
4223 C := First_Formal (Typ);
4224 while Present (C) loop
4225 Ensure_Type_Is_SA (Etype (C));
4226 Next_Formal (C);
4227 end loop;
4228
4229 else
4230 raise Cannot_Be_Static;
4231 end if;
4232 end Ensure_Type_Is_SA;
4233
4234 -- Start of processing for Freeze_Static_Object
4235
4236 begin
4237 Ensure_Type_Is_SA (Etype (E));
4238
4239 -- Reset True_Constant flag, since something strange is going on
4240 -- with the scoping here, and our simple value traceing may not
4241 -- be sufficient for this indication to be reliable. We kill the
4242 -- Constant_Value indication for the same reason.
4243
4244 Set_Is_True_Constant (E, False);
4245 Set_Current_Value (E, Empty);
4246
4247 exception
4248 when Cannot_Be_Static =>
4249
4250 -- If the object that cannot be static is imported or exported,
4251 -- then we give an error message saying that this object cannot
4252 -- be imported or exported.
4253
4254 if Is_Imported (E) then
4255 Error_Msg_N
4256 ("& cannot be imported (local type is not constant)", E);
4257
4258 -- Otherwise must be exported, something is wrong if compiler
4259 -- is marking something as statically allocated which cannot be).
4260
4261 else pragma Assert (Is_Exported (E));
4262 Error_Msg_N
4263 ("& cannot be exported (local type is not constant)", E);
4264 end if;
4265 end Freeze_Static_Object;
4266
4267 -----------------------
4268 -- Freeze_Subprogram --
4269 -----------------------
4270
4271 procedure Freeze_Subprogram (E : Entity_Id) is
4272 Retype : Entity_Id;
4273 F : Entity_Id;
4274
4275 begin
4276 -- Subprogram may not have an address clause unless it is imported
4277
4278 if Present (Address_Clause (E)) then
4279 if not Is_Imported (E) then
4280 Error_Msg_N
4281 ("address clause can only be given " &
4282 "for imported subprogram",
4283 Name (Address_Clause (E)));
4284 end if;
4285 end if;
4286
4287 -- Reset the Pure indication on an imported subprogram unless an
4288 -- explicit Pure_Function pragma was present. We do this because
4289 -- otherwise it is an insidious error to call a non-pure function
4290 -- from a pure unit and have calls mysteriously optimized away.
4291 -- What happens here is that the Import can bypass the normal
4292 -- check to ensure that pure units call only pure subprograms.
4293
4294 if Is_Imported (E)
4295 and then Is_Pure (E)
4296 and then not Has_Pragma_Pure_Function (E)
4297 then
4298 Set_Is_Pure (E, False);
4299 end if;
4300
4301 -- For non-foreign convention subprograms, this is where we create
4302 -- the extra formals (for accessibility level and constrained bit
4303 -- information). We delay this till the freeze point precisely so
4304 -- that we know the convention!
4305
4306 if not Has_Foreign_Convention (E) then
4307 Create_Extra_Formals (E);
4308 Set_Mechanisms (E);
4309
4310 -- If this is convention Ada and a Valued_Procedure, that's odd
4311
4312 if Ekind (E) = E_Procedure
4313 and then Is_Valued_Procedure (E)
4314 and then Convention (E) = Convention_Ada
4315 and then Warn_On_Export_Import
4316 then
4317 Error_Msg_N
4318 ("?Valued_Procedure has no effect for convention Ada", E);
4319 Set_Is_Valued_Procedure (E, False);
4320 end if;
4321
4322 -- Case of foreign convention
4323
4324 else
4325 Set_Mechanisms (E);
4326
4327 -- For foreign conventions, warn about return of an
4328 -- unconstrained array.
4329
4330 -- Note: we *do* allow a return by descriptor for the VMS case,
4331 -- though here there is probably more to be done ???
4332
4333 if Ekind (E) = E_Function then
4334 Retype := Underlying_Type (Etype (E));
4335
4336 -- If no return type, probably some other error, e.g. a
4337 -- missing full declaration, so ignore.
4338
4339 if No (Retype) then
4340 null;
4341
4342 -- If the return type is generic, we have emitted a warning
4343 -- earlier on, and there is nothing else to check here.
4344 -- Specific instantiations may lead to erroneous behavior.
4345
4346 elsif Is_Generic_Type (Etype (E)) then
4347 null;
4348
4349 elsif Is_Array_Type (Retype)
4350 and then not Is_Constrained (Retype)
4351 and then Mechanism (E) not in Descriptor_Codes
4352 and then Warn_On_Export_Import
4353 then
4354 Error_Msg_N
4355 ("?foreign convention function& should not return " &
4356 "unconstrained array", E);
4357 return;
4358 end if;
4359 end if;
4360
4361 -- If any of the formals for an exported foreign convention
4362 -- subprogram have defaults, then emit an appropriate warning
4363 -- since this is odd (default cannot be used from non-Ada code)
4364
4365 if Is_Exported (E) then
4366 F := First_Formal (E);
4367 while Present (F) loop
4368 if Warn_On_Export_Import
4369 and then Present (Default_Value (F))
4370 then
4371 Error_Msg_N
4372 ("?parameter cannot be defaulted in non-Ada call",
4373 Default_Value (F));
4374 end if;
4375
4376 Next_Formal (F);
4377 end loop;
4378 end if;
4379 end if;
4380
4381 -- For VMS, descriptor mechanisms for parameters are allowed only
4382 -- for imported subprograms.
4383
4384 if OpenVMS_On_Target then
4385 if not Is_Imported (E) then
4386 F := First_Formal (E);
4387 while Present (F) loop
4388 if Mechanism (F) in Descriptor_Codes then
4389 Error_Msg_N
4390 ("descriptor mechanism for parameter not permitted", F);
4391 Error_Msg_N
4392 ("\can only be used for imported subprogram", F);
4393 end if;
4394
4395 Next_Formal (F);
4396 end loop;
4397 end if;
4398 end if;
4399 end Freeze_Subprogram;
4400
4401 ----------------------
4402 -- Is_Fully_Defined --
4403 ----------------------
4404
4405 function Is_Fully_Defined (T : Entity_Id) return Boolean is
4406 begin
4407 if Ekind (T) = E_Class_Wide_Type then
4408 return Is_Fully_Defined (Etype (T));
4409
4410 elsif Is_Array_Type (T) then
4411 return Is_Fully_Defined (Component_Type (T));
4412
4413 elsif Is_Record_Type (T)
4414 and not Is_Private_Type (T)
4415 then
4416 -- Verify that the record type has no components with
4417 -- private types without completion.
4418
4419 declare
4420 Comp : Entity_Id;
4421
4422 begin
4423 Comp := First_Component (T);
4424
4425 while Present (Comp) loop
4426 if not Is_Fully_Defined (Etype (Comp)) then
4427 return False;
4428 end if;
4429
4430 Next_Component (Comp);
4431 end loop;
4432 return True;
4433 end;
4434
4435 else return not Is_Private_Type (T)
4436 or else Present (Full_View (Base_Type (T)));
4437 end if;
4438 end Is_Fully_Defined;
4439
4440 ---------------------------------
4441 -- Process_Default_Expressions --
4442 ---------------------------------
4443
4444 procedure Process_Default_Expressions
4445 (E : Entity_Id;
4446 After : in out Node_Id)
4447 is
4448 Loc : constant Source_Ptr := Sloc (E);
4449 Dbody : Node_Id;
4450 Formal : Node_Id;
4451 Dcopy : Node_Id;
4452 Dnam : Entity_Id;
4453
4454 begin
4455 Set_Default_Expressions_Processed (E);
4456
4457 -- A subprogram instance and its associated anonymous subprogram
4458 -- share their signature. The default expression functions are defined
4459 -- in the wrapper packages for the anonymous subprogram, and should
4460 -- not be generated again for the instance.
4461
4462 if Is_Generic_Instance (E)
4463 and then Present (Alias (E))
4464 and then Default_Expressions_Processed (Alias (E))
4465 then
4466 return;
4467 end if;
4468
4469 Formal := First_Formal (E);
4470
4471 while Present (Formal) loop
4472 if Present (Default_Value (Formal)) then
4473
4474 -- We work with a copy of the default expression because we
4475 -- do not want to disturb the original, since this would mess
4476 -- up the conformance checking.
4477
4478 Dcopy := New_Copy_Tree (Default_Value (Formal));
4479
4480 -- The analysis of the expression may generate insert actions,
4481 -- which of course must not be executed. We wrap those actions
4482 -- in a procedure that is not called, and later on eliminated.
4483 -- The following cases have no side-effects, and are analyzed
4484 -- directly.
4485
4486 if Nkind (Dcopy) = N_Identifier
4487 or else Nkind (Dcopy) = N_Expanded_Name
4488 or else Nkind (Dcopy) = N_Integer_Literal
4489 or else (Nkind (Dcopy) = N_Real_Literal
4490 and then not Vax_Float (Etype (Dcopy)))
4491 or else Nkind (Dcopy) = N_Character_Literal
4492 or else Nkind (Dcopy) = N_String_Literal
4493 or else Nkind (Dcopy) = N_Null
4494 or else (Nkind (Dcopy) = N_Attribute_Reference
4495 and then
4496 Attribute_Name (Dcopy) = Name_Null_Parameter)
4497 then
4498
4499 -- If there is no default function, we must still do a full
4500 -- analyze call on the default value, to ensure that all
4501 -- error checks are performed, e.g. those associated with
4502 -- static evaluation. Note that this branch will always be
4503 -- taken if the analyzer is turned off (but we still need the
4504 -- error checks).
4505
4506 -- Note: the setting of parent here is to meet the requirement
4507 -- that we can only analyze the expression while attached to
4508 -- the tree. Really the requirement is that the parent chain
4509 -- be set, we don't actually need to be in the tree.
4510
4511 Set_Parent (Dcopy, Declaration_Node (Formal));
4512 Analyze (Dcopy);
4513
4514 -- Default expressions are resolved with their own type if the
4515 -- context is generic, to avoid anomalies with private types.
4516
4517 if Ekind (Scope (E)) = E_Generic_Package then
4518 Resolve (Dcopy);
4519 else
4520 Resolve (Dcopy, Etype (Formal));
4521 end if;
4522
4523 -- If that resolved expression will raise constraint error,
4524 -- then flag the default value as raising constraint error.
4525 -- This allows a proper error message on the calls.
4526
4527 if Raises_Constraint_Error (Dcopy) then
4528 Set_Raises_Constraint_Error (Default_Value (Formal));
4529 end if;
4530
4531 -- If the default is a parameterless call, we use the name of
4532 -- the called function directly, and there is no body to build.
4533
4534 elsif Nkind (Dcopy) = N_Function_Call
4535 and then No (Parameter_Associations (Dcopy))
4536 then
4537 null;
4538
4539 -- Else construct and analyze the body of a wrapper procedure
4540 -- that contains an object declaration to hold the expression.
4541 -- Given that this is done only to complete the analysis, it
4542 -- simpler to build a procedure than a function which might
4543 -- involve secondary stack expansion.
4544
4545 else
4546 Dnam :=
4547 Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
4548
4549 Dbody :=
4550 Make_Subprogram_Body (Loc,
4551 Specification =>
4552 Make_Procedure_Specification (Loc,
4553 Defining_Unit_Name => Dnam),
4554
4555 Declarations => New_List (
4556 Make_Object_Declaration (Loc,
4557 Defining_Identifier =>
4558 Make_Defining_Identifier (Loc,
4559 New_Internal_Name ('T')),
4560 Object_Definition =>
4561 New_Occurrence_Of (Etype (Formal), Loc),
4562 Expression => New_Copy_Tree (Dcopy))),
4563
4564 Handled_Statement_Sequence =>
4565 Make_Handled_Sequence_Of_Statements (Loc,
4566 Statements => New_List));
4567
4568 Set_Scope (Dnam, Scope (E));
4569 Set_Assignment_OK (First (Declarations (Dbody)));
4570 Set_Is_Eliminated (Dnam);
4571 Insert_After (After, Dbody);
4572 Analyze (Dbody);
4573 After := Dbody;
4574 end if;
4575 end if;
4576
4577 Next_Formal (Formal);
4578 end loop;
4579
4580 end Process_Default_Expressions;
4581
4582 ----------------------------------------
4583 -- Set_Component_Alignment_If_Not_Set --
4584 ----------------------------------------
4585
4586 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
4587 begin
4588 -- Ignore if not base type, subtypes don't need anything
4589
4590 if Typ /= Base_Type (Typ) then
4591 return;
4592 end if;
4593
4594 -- Do not override existing representation
4595
4596 if Is_Packed (Typ) then
4597 return;
4598
4599 elsif Has_Specified_Layout (Typ) then
4600 return;
4601
4602 elsif Component_Alignment (Typ) /= Calign_Default then
4603 return;
4604
4605 else
4606 Set_Component_Alignment
4607 (Typ, Scope_Stack.Table
4608 (Scope_Stack.Last).Component_Alignment_Default);
4609 end if;
4610 end Set_Component_Alignment_If_Not_Set;
4611
4612 ---------------------------
4613 -- Set_Debug_Info_Needed --
4614 ---------------------------
4615
4616 procedure Set_Debug_Info_Needed (T : Entity_Id) is
4617 begin
4618 if No (T)
4619 or else Needs_Debug_Info (T)
4620 or else Debug_Info_Off (T)
4621 then
4622 return;
4623 else
4624 Set_Needs_Debug_Info (T);
4625 end if;
4626
4627 if Is_Object (T) then
4628 Set_Debug_Info_Needed (Etype (T));
4629
4630 elsif Is_Type (T) then
4631 Set_Debug_Info_Needed (Etype (T));
4632
4633 if Is_Record_Type (T) then
4634 declare
4635 Ent : Entity_Id := First_Entity (T);
4636 begin
4637 while Present (Ent) loop
4638 Set_Debug_Info_Needed (Ent);
4639 Next_Entity (Ent);
4640 end loop;
4641 end;
4642
4643 elsif Is_Array_Type (T) then
4644 Set_Debug_Info_Needed (Component_Type (T));
4645
4646 declare
4647 Indx : Node_Id := First_Index (T);
4648 begin
4649 while Present (Indx) loop
4650 Set_Debug_Info_Needed (Etype (Indx));
4651 Indx := Next_Index (Indx);
4652 end loop;
4653 end;
4654
4655 if Is_Packed (T) then
4656 Set_Debug_Info_Needed (Packed_Array_Type (T));
4657 end if;
4658
4659 elsif Is_Access_Type (T) then
4660 Set_Debug_Info_Needed (Directly_Designated_Type (T));
4661
4662 elsif Is_Private_Type (T) then
4663 Set_Debug_Info_Needed (Full_View (T));
4664
4665 elsif Is_Protected_Type (T) then
4666 Set_Debug_Info_Needed (Corresponding_Record_Type (T));
4667 end if;
4668 end if;
4669 end Set_Debug_Info_Needed;
4670
4671 ------------------
4672 -- Warn_Overlay --
4673 ------------------
4674
4675 procedure Warn_Overlay
4676 (Expr : Node_Id;
4677 Typ : Entity_Id;
4678 Nam : Entity_Id)
4679 is
4680 Ent : constant Entity_Id := Entity (Nam);
4681 -- The object to which the address clause applies.
4682
4683 Init : Node_Id;
4684 Old : Entity_Id := Empty;
4685 Decl : Node_Id;
4686
4687 begin
4688 -- No warning if address clause overlay warnings are off
4689
4690 if not Address_Clause_Overlay_Warnings then
4691 return;
4692 end if;
4693
4694 -- No warning if there is an explicit initialization
4695
4696 Init := Original_Node (Expression (Declaration_Node (Ent)));
4697
4698 if Present (Init) and then Comes_From_Source (Init) then
4699 return;
4700 end if;
4701
4702 -- We only give the warning for non-imported entities of a type
4703 -- for which a non-null base init proc is defined (or for access
4704 -- types which have implicit null initialization).
4705
4706 if Present (Expr)
4707 and then (Has_Non_Null_Base_Init_Proc (Typ)
4708 or else Is_Access_Type (Typ))
4709 and then not Is_Imported (Ent)
4710 then
4711 if Nkind (Expr) = N_Attribute_Reference
4712 and then Is_Entity_Name (Prefix (Expr))
4713 then
4714 Old := Entity (Prefix (Expr));
4715
4716 elsif Is_Entity_Name (Expr)
4717 and then Ekind (Entity (Expr)) = E_Constant
4718 then
4719 Decl := Declaration_Node (Entity (Expr));
4720
4721 if Nkind (Decl) = N_Object_Declaration
4722 and then Present (Expression (Decl))
4723 and then Nkind (Expression (Decl)) = N_Attribute_Reference
4724 and then Is_Entity_Name (Prefix (Expression (Decl)))
4725 then
4726 Old := Entity (Prefix (Expression (Decl)));
4727
4728 elsif Nkind (Expr) = N_Function_Call then
4729 return;
4730 end if;
4731
4732 -- A function call (most likely to To_Address) is probably not
4733 -- an overlay, so skip warning. Ditto if the function call was
4734 -- inlined and transformed into an entity.
4735
4736 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
4737 return;
4738 end if;
4739
4740 Decl := Next (Parent (Expr));
4741
4742 -- If a pragma Import follows, we assume that it is for the current
4743 -- target of the address clause, and skip the warning.
4744
4745 if Present (Decl)
4746 and then Nkind (Decl) = N_Pragma
4747 and then Chars (Decl) = Name_Import
4748 then
4749 return;
4750 end if;
4751
4752 if Present (Old) then
4753 Error_Msg_Node_2 := Old;
4754 Error_Msg_N
4755 ("default initialization of & may modify &?",
4756 Nam);
4757 else
4758 Error_Msg_N
4759 ("default initialization of & may modify overlaid storage?",
4760 Nam);
4761 end if;
4762
4763 -- Add friendly warning if initialization comes from a packed array
4764 -- component.
4765
4766 if Is_Record_Type (Typ) then
4767 declare
4768 Comp : Entity_Id;
4769
4770 begin
4771 Comp := First_Component (Typ);
4772
4773 while Present (Comp) loop
4774 if Nkind (Parent (Comp)) = N_Component_Declaration
4775 and then Present (Expression (Parent (Comp)))
4776 then
4777 exit;
4778 elsif Is_Array_Type (Etype (Comp))
4779 and then Present (Packed_Array_Type (Etype (Comp)))
4780 then
4781 Error_Msg_NE
4782 ("packed array component& will be initialized to zero?",
4783 Nam, Comp);
4784 exit;
4785 else
4786 Next_Component (Comp);
4787 end if;
4788 end loop;
4789 end;
4790 end if;
4791
4792 Error_Msg_N
4793 ("use pragma Import for & to " &
4794 "suppress initialization ('R'M B.1(24))?",
4795 Nam);
4796 end if;
4797 end Warn_Overlay;
4798
4799 end Freeze;
This page took 0.251357 seconds and 5 git commands to generate.