]> gcc.gnu.org Git - gcc.git/blame_incremental - gcc/tree-vectorizer.h
libstdc++: Switch gcc.gnu.org links to https
[gcc.git] / gcc / tree-vectorizer.h
... / ...
CommitLineData
1/* Vectorizer
2 Copyright (C) 2003-2024 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#ifndef GCC_TREE_VECTORIZER_H
22#define GCC_TREE_VECTORIZER_H
23
24typedef class _stmt_vec_info *stmt_vec_info;
25typedef struct _slp_tree *slp_tree;
26
27#include "tree-data-ref.h"
28#include "tree-hash-traits.h"
29#include "target.h"
30#include "internal-fn.h"
31#include "tree-ssa-operands.h"
32#include "gimple-match.h"
33
34/* Used for naming of new temporaries. */
35enum vect_var_kind {
36 vect_simple_var,
37 vect_pointer_var,
38 vect_scalar_var,
39 vect_mask_var
40};
41
42/* Defines type of operation. */
43enum operation_type {
44 unary_op = 1,
45 binary_op,
46 ternary_op
47};
48
49/* Define type of available alignment support. */
50enum dr_alignment_support {
51 dr_unaligned_unsupported,
52 dr_unaligned_supported,
53 dr_explicit_realign,
54 dr_explicit_realign_optimized,
55 dr_aligned
56};
57
58/* Define type of def-use cross-iteration cycle. */
59enum vect_def_type {
60 vect_uninitialized_def = 0,
61 vect_constant_def = 1,
62 vect_external_def,
63 vect_internal_def,
64 vect_induction_def,
65 vect_reduction_def,
66 vect_double_reduction_def,
67 vect_nested_cycle,
68 vect_first_order_recurrence,
69 vect_condition_def,
70 vect_unknown_def_type
71};
72
73/* Define operation type of linear/non-linear induction variable. */
74enum vect_induction_op_type {
75 vect_step_op_add = 0,
76 vect_step_op_neg,
77 vect_step_op_mul,
78 vect_step_op_shl,
79 vect_step_op_shr
80};
81
82/* Define type of reduction. */
83enum vect_reduction_type {
84 TREE_CODE_REDUCTION,
85 COND_REDUCTION,
86 INTEGER_INDUC_COND_REDUCTION,
87 CONST_COND_REDUCTION,
88
89 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
90 to implement:
91
92 for (int i = 0; i < VF; ++i)
93 res = cond[i] ? val[i] : res; */
94 EXTRACT_LAST_REDUCTION,
95
96 /* Use a folding reduction within the loop to implement:
97
98 for (int i = 0; i < VF; ++i)
99 res = res OP val[i];
100
101 (with no reassocation). */
102 FOLD_LEFT_REDUCTION
103};
104
105#define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
106 || ((D) == vect_double_reduction_def) \
107 || ((D) == vect_nested_cycle))
108
109/* Structure to encapsulate information about a group of like
110 instructions to be presented to the target cost model. */
111struct stmt_info_for_cost {
112 int count;
113 enum vect_cost_for_stmt kind;
114 enum vect_cost_model_location where;
115 stmt_vec_info stmt_info;
116 slp_tree node;
117 tree vectype;
118 int misalign;
119};
120
121typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
122
123/* Maps base addresses to an innermost_loop_behavior and the stmt it was
124 derived from that gives the maximum known alignment for that base. */
125typedef hash_map<tree_operand_hash,
126 std::pair<stmt_vec_info, innermost_loop_behavior *> >
127 vec_base_alignments;
128
129/* Represents elements [START, START + LENGTH) of cyclical array OPS*
130 (i.e. OPS repeated to give at least START + LENGTH elements) */
131struct vect_scalar_ops_slice
132{
133 tree op (unsigned int i) const;
134 bool all_same_p () const;
135
136 vec<tree> *ops;
137 unsigned int start;
138 unsigned int length;
139};
140
141/* Return element I of the slice. */
142inline tree
143vect_scalar_ops_slice::op (unsigned int i) const
144{
145 return (*ops)[(i + start) % ops->length ()];
146}
147
148/* Hash traits for vect_scalar_ops_slice. */
149struct vect_scalar_ops_slice_hash : typed_noop_remove<vect_scalar_ops_slice>
150{
151 typedef vect_scalar_ops_slice value_type;
152 typedef vect_scalar_ops_slice compare_type;
153
154 static const bool empty_zero_p = true;
155
156 static void mark_deleted (value_type &s) { s.length = ~0U; }
157 static void mark_empty (value_type &s) { s.length = 0; }
158 static bool is_deleted (const value_type &s) { return s.length == ~0U; }
159 static bool is_empty (const value_type &s) { return s.length == 0; }
160 static hashval_t hash (const value_type &);
161 static bool equal (const value_type &, const compare_type &);
162};
163
164/************************************************************************
165 SLP
166 ************************************************************************/
167typedef vec<std::pair<unsigned, unsigned> > lane_permutation_t;
168typedef auto_vec<std::pair<unsigned, unsigned>, 16> auto_lane_permutation_t;
169typedef vec<unsigned> load_permutation_t;
170typedef auto_vec<unsigned, 16> auto_load_permutation_t;
171
172/* A computation tree of an SLP instance. Each node corresponds to a group of
173 stmts to be packed in a SIMD stmt. */
174struct _slp_tree {
175 _slp_tree ();
176 ~_slp_tree ();
177
178 void push_vec_def (gimple *def);
179 void push_vec_def (tree def) { vec_defs.quick_push (def); }
180
181 /* Nodes that contain def-stmts of this node statements operands. */
182 vec<slp_tree> children;
183
184 /* A group of scalar stmts to be vectorized together. */
185 vec<stmt_vec_info> stmts;
186 /* A group of scalar operands to be vectorized together. */
187 vec<tree> ops;
188 /* The representative that should be used for analysis and
189 code generation. */
190 stmt_vec_info representative;
191
192 /* Load permutation relative to the stores, NULL if there is no
193 permutation. */
194 load_permutation_t load_permutation;
195 /* Lane permutation of the operands scalar lanes encoded as pairs
196 of { operand number, lane number }. The number of elements
197 denotes the number of output lanes. */
198 lane_permutation_t lane_permutation;
199
200 /* Selected SIMD clone's function info. First vector element
201 is SIMD clone's function decl, followed by a pair of trees (base + step)
202 for linear arguments (pair of NULLs for other arguments). */
203 vec<tree> simd_clone_info;
204
205 tree vectype;
206 /* Vectorized defs. */
207 vec<tree> vec_defs;
208 /* Number of vector stmts that are created to replace the group of scalar
209 stmts. It is calculated during the transformation phase as the number of
210 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
211 divided by vector size. */
212 unsigned int vec_stmts_size;
213
214 /* Reference count in the SLP graph. */
215 unsigned int refcnt;
216 /* The maximum number of vector elements for the subtree rooted
217 at this node. */
218 poly_uint64 max_nunits;
219 /* The DEF type of this node. */
220 enum vect_def_type def_type;
221 /* The number of scalar lanes produced by this node. */
222 unsigned int lanes;
223 /* The operation of this node. */
224 enum tree_code code;
225
226 int vertex;
227
228 /* If not NULL this is a cached failed SLP discovery attempt with
229 the lanes that failed during SLP discovery as 'false'. This is
230 a copy of the matches array. */
231 bool *failed;
232
233 /* Allocate from slp_tree_pool. */
234 static void *operator new (size_t);
235
236 /* Return memory to slp_tree_pool. */
237 static void operator delete (void *, size_t);
238
239 /* Linked list of nodes to release when we free the slp_tree_pool. */
240 slp_tree next_node;
241 slp_tree prev_node;
242};
243
244/* The enum describes the type of operations that an SLP instance
245 can perform. */
246
247enum slp_instance_kind {
248 slp_inst_kind_store,
249 slp_inst_kind_reduc_group,
250 slp_inst_kind_reduc_chain,
251 slp_inst_kind_bb_reduc,
252 slp_inst_kind_ctor
253};
254
255/* SLP instance is a sequence of stmts in a loop that can be packed into
256 SIMD stmts. */
257typedef class _slp_instance {
258public:
259 /* The root of SLP tree. */
260 slp_tree root;
261
262 /* For vector constructors, the constructor stmt that the SLP tree is built
263 from, NULL otherwise. */
264 vec<stmt_vec_info> root_stmts;
265
266 /* For slp_inst_kind_bb_reduc the defs that were not vectorized, NULL
267 otherwise. */
268 vec<tree> remain_defs;
269
270 /* The unrolling factor required to vectorized this SLP instance. */
271 poly_uint64 unrolling_factor;
272
273 /* The group of nodes that contain loads of this SLP instance. */
274 vec<slp_tree> loads;
275
276 /* The SLP node containing the reduction PHIs. */
277 slp_tree reduc_phis;
278
279 /* Vector cost of this entry to the SLP graph. */
280 stmt_vector_for_cost cost_vec;
281
282 /* If this instance is the main entry of a subgraph the set of
283 entries into the same subgraph, including itself. */
284 vec<_slp_instance *> subgraph_entries;
285
286 /* The type of operation the SLP instance is performing. */
287 slp_instance_kind kind;
288
289 dump_user_location_t location () const;
290} *slp_instance;
291
292
293/* Access Functions. */
294#define SLP_INSTANCE_TREE(S) (S)->root
295#define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
296#define SLP_INSTANCE_LOADS(S) (S)->loads
297#define SLP_INSTANCE_ROOT_STMTS(S) (S)->root_stmts
298#define SLP_INSTANCE_REMAIN_DEFS(S) (S)->remain_defs
299#define SLP_INSTANCE_KIND(S) (S)->kind
300
301#define SLP_TREE_CHILDREN(S) (S)->children
302#define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
303#define SLP_TREE_SCALAR_OPS(S) (S)->ops
304#define SLP_TREE_REF_COUNT(S) (S)->refcnt
305#define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
306#define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
307#define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
308#define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
309#define SLP_TREE_SIMD_CLONE_INFO(S) (S)->simd_clone_info
310#define SLP_TREE_DEF_TYPE(S) (S)->def_type
311#define SLP_TREE_VECTYPE(S) (S)->vectype
312#define SLP_TREE_REPRESENTATIVE(S) (S)->representative
313#define SLP_TREE_LANES(S) (S)->lanes
314#define SLP_TREE_CODE(S) (S)->code
315
316enum vect_partial_vector_style {
317 vect_partial_vectors_none,
318 vect_partial_vectors_while_ult,
319 vect_partial_vectors_avx512,
320 vect_partial_vectors_len
321};
322
323/* Key for map that records association between
324 scalar conditions and corresponding loop mask, and
325 is populated by vect_record_loop_mask. */
326
327struct scalar_cond_masked_key
328{
329 scalar_cond_masked_key (tree t, unsigned ncopies_)
330 : ncopies (ncopies_)
331 {
332 get_cond_ops_from_tree (t);
333 }
334
335 void get_cond_ops_from_tree (tree);
336
337 unsigned ncopies;
338 bool inverted_p;
339 tree_code code;
340 tree op0;
341 tree op1;
342};
343
344template<>
345struct default_hash_traits<scalar_cond_masked_key>
346{
347 typedef scalar_cond_masked_key compare_type;
348 typedef scalar_cond_masked_key value_type;
349
350 static inline hashval_t
351 hash (value_type v)
352 {
353 inchash::hash h;
354 h.add_int (v.code);
355 inchash::add_expr (v.op0, h, 0);
356 inchash::add_expr (v.op1, h, 0);
357 h.add_int (v.ncopies);
358 h.add_flag (v.inverted_p);
359 return h.end ();
360 }
361
362 static inline bool
363 equal (value_type existing, value_type candidate)
364 {
365 return (existing.ncopies == candidate.ncopies
366 && existing.code == candidate.code
367 && existing.inverted_p == candidate.inverted_p
368 && operand_equal_p (existing.op0, candidate.op0, 0)
369 && operand_equal_p (existing.op1, candidate.op1, 0));
370 }
371
372 static const bool empty_zero_p = true;
373
374 static inline void
375 mark_empty (value_type &v)
376 {
377 v.ncopies = 0;
378 v.inverted_p = false;
379 }
380
381 static inline bool
382 is_empty (value_type v)
383 {
384 return v.ncopies == 0;
385 }
386
387 static inline void mark_deleted (value_type &) {}
388
389 static inline bool is_deleted (const value_type &)
390 {
391 return false;
392 }
393
394 static inline void remove (value_type &) {}
395};
396
397typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
398
399/* Key and map that records association between vector conditions and
400 corresponding loop mask, and is populated by prepare_vec_mask. */
401
402typedef pair_hash<tree_operand_hash, tree_operand_hash> tree_cond_mask_hash;
403typedef hash_set<tree_cond_mask_hash> vec_cond_masked_set_type;
404
405/* Describes two objects whose addresses must be unequal for the vectorized
406 loop to be valid. */
407typedef std::pair<tree, tree> vec_object_pair;
408
409/* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
410 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
411class vec_lower_bound {
412public:
413 vec_lower_bound () {}
414 vec_lower_bound (tree e, bool u, poly_uint64 m)
415 : expr (e), unsigned_p (u), min_value (m) {}
416
417 tree expr;
418 bool unsigned_p;
419 poly_uint64 min_value;
420};
421
422/* Vectorizer state shared between different analyses like vector sizes
423 of the same CFG region. */
424class vec_info_shared {
425public:
426 vec_info_shared();
427 ~vec_info_shared();
428
429 void save_datarefs();
430 void check_datarefs();
431
432 /* The number of scalar stmts. */
433 unsigned n_stmts;
434
435 /* All data references. Freed by free_data_refs, so not an auto_vec. */
436 vec<data_reference_p> datarefs;
437 vec<data_reference> datarefs_copy;
438
439 /* The loop nest in which the data dependences are computed. */
440 auto_vec<loop_p> loop_nest;
441
442 /* All data dependences. Freed by free_dependence_relations, so not
443 an auto_vec. */
444 vec<ddr_p> ddrs;
445};
446
447/* Vectorizer state common between loop and basic-block vectorization. */
448class vec_info {
449public:
450 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
451 enum vec_kind { bb, loop };
452
453 vec_info (vec_kind, vec_info_shared *);
454 ~vec_info ();
455
456 stmt_vec_info add_stmt (gimple *);
457 stmt_vec_info add_pattern_stmt (gimple *, stmt_vec_info);
458 stmt_vec_info lookup_stmt (gimple *);
459 stmt_vec_info lookup_def (tree);
460 stmt_vec_info lookup_single_use (tree);
461 class dr_vec_info *lookup_dr (data_reference *);
462 void move_dr (stmt_vec_info, stmt_vec_info);
463 void remove_stmt (stmt_vec_info);
464 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
465 void insert_on_entry (stmt_vec_info, gimple *);
466 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
467
468 /* The type of vectorization. */
469 vec_kind kind;
470
471 /* Shared vectorizer state. */
472 vec_info_shared *shared;
473
474 /* The mapping of GIMPLE UID to stmt_vec_info. */
475 vec<stmt_vec_info> stmt_vec_infos;
476 /* Whether the above mapping is complete. */
477 bool stmt_vec_info_ro;
478
479 /* Whether we've done a transform we think OK to not update virtual
480 SSA form. */
481 bool any_known_not_updated_vssa;
482
483 /* The SLP graph. */
484 auto_vec<slp_instance> slp_instances;
485
486 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
487 known alignment for that base. */
488 vec_base_alignments base_alignments;
489
490 /* All interleaving chains of stores, represented by the first
491 stmt in the chain. */
492 auto_vec<stmt_vec_info> grouped_stores;
493
494 /* The set of vector modes used in the vectorized region. */
495 mode_set used_vector_modes;
496
497 /* The argument we should pass to related_vector_mode when looking up
498 the vector mode for a scalar mode, or VOIDmode if we haven't yet
499 made any decisions about which vector modes to use. */
500 machine_mode vector_mode;
501
502 /* The basic blocks in the vectorization region. For _loop_vec_info,
503 the memory is internally managed, while for _bb_vec_info, it points
504 to element space of an external auto_vec<>. This inconsistency is
505 not a good class design pattern. TODO: improve it with an unified
506 auto_vec<> whose lifetime is confined to vec_info object. */
507 basic_block *bbs;
508
509 /* The count of the basic blocks in the vectorization region. */
510 unsigned int nbbs;
511
512private:
513 stmt_vec_info new_stmt_vec_info (gimple *stmt);
514 void set_vinfo_for_stmt (gimple *, stmt_vec_info, bool = true);
515 void free_stmt_vec_infos ();
516 void free_stmt_vec_info (stmt_vec_info);
517};
518
519class _loop_vec_info;
520class _bb_vec_info;
521
522template<>
523template<>
524inline bool
525is_a_helper <_loop_vec_info *>::test (vec_info *i)
526{
527 return i->kind == vec_info::loop;
528}
529
530template<>
531template<>
532inline bool
533is_a_helper <_bb_vec_info *>::test (vec_info *i)
534{
535 return i->kind == vec_info::bb;
536}
537
538/* In general, we can divide the vector statements in a vectorized loop
539 into related groups ("rgroups") and say that for each rgroup there is
540 some nS such that the rgroup operates on nS values from one scalar
541 iteration followed by nS values from the next. That is, if VF is the
542 vectorization factor of the loop, the rgroup operates on a sequence:
543
544 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
545
546 where (i,j) represents a scalar value with index j in a scalar
547 iteration with index i.
548
549 [ We use the term "rgroup" to emphasise that this grouping isn't
550 necessarily the same as the grouping of statements used elsewhere.
551 For example, if we implement a group of scalar loads using gather
552 loads, we'll use a separate gather load for each scalar load, and
553 thus each gather load will belong to its own rgroup. ]
554
555 In general this sequence will occupy nV vectors concatenated
556 together. If these vectors have nL lanes each, the total number
557 of scalar values N is given by:
558
559 N = nS * VF = nV * nL
560
561 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
562 are compile-time constants but VF and nL can be variable (if the target
563 supports variable-length vectors).
564
565 In classical vectorization, each iteration of the vector loop would
566 handle exactly VF iterations of the original scalar loop. However,
567 in vector loops that are able to operate on partial vectors, a
568 particular iteration of the vector loop might handle fewer than VF
569 iterations of the scalar loop. The vector lanes that correspond to
570 iterations of the scalar loop are said to be "active" and the other
571 lanes are said to be "inactive".
572
573 In such vector loops, many rgroups need to be controlled to ensure
574 that they have no effect for the inactive lanes. Conceptually, each
575 such rgroup needs a sequence of booleans in the same order as above,
576 but with each (i,j) replaced by a boolean that indicates whether
577 iteration i is active. This sequence occupies nV vector controls
578 that again have nL lanes each. Thus the control sequence as a whole
579 consists of VF independent booleans that are each repeated nS times.
580
581 Taking mask-based approach as a partially-populated vectors example.
582 We make the simplifying assumption that if a sequence of nV masks is
583 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
584 VIEW_CONVERTing it. This holds for all current targets that support
585 fully-masked loops. For example, suppose the scalar loop is:
586
587 float *f;
588 double *d;
589 for (int i = 0; i < n; ++i)
590 {
591 f[i * 2 + 0] += 1.0f;
592 f[i * 2 + 1] += 2.0f;
593 d[i] += 3.0;
594 }
595
596 and suppose that vectors have 256 bits. The vectorized f accesses
597 will belong to one rgroup and the vectorized d access to another:
598
599 f rgroup: nS = 2, nV = 1, nL = 8
600 d rgroup: nS = 1, nV = 1, nL = 4
601 VF = 4
602
603 [ In this simple example the rgroups do correspond to the normal
604 SLP grouping scheme. ]
605
606 If only the first three lanes are active, the masks we need are:
607
608 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
609 d rgroup: 1 | 1 | 1 | 0
610
611 Here we can use a mask calculated for f's rgroup for d's, but not
612 vice versa.
613
614 Thus for each value of nV, it is enough to provide nV masks, with the
615 mask being calculated based on the highest nL (or, equivalently, based
616 on the highest nS) required by any rgroup with that nV. We therefore
617 represent the entire collection of masks as a two-level table, with the
618 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
619 the second being indexed by the mask index 0 <= i < nV. */
620
621/* The controls (like masks or lengths) needed by rgroups with nV vectors,
622 according to the description above. */
623struct rgroup_controls {
624 /* The largest nS for all rgroups that use these controls.
625 For vect_partial_vectors_avx512 this is the constant nscalars_per_iter
626 for all members of the group. */
627 unsigned int max_nscalars_per_iter;
628
629 /* For the largest nS recorded above, the loop controls divide each scalar
630 into FACTOR equal-sized pieces. This is useful if we need to split
631 element-based accesses into byte-based accesses.
632 For vect_partial_vectors_avx512 this records nV instead. */
633 unsigned int factor;
634
635 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
636 For mask-based controls, it is the type of the masks in CONTROLS.
637 For length-based controls, it can be any vector type that has the
638 specified number of elements; the type of the elements doesn't matter. */
639 tree type;
640
641 /* When there is no uniformly used LOOP_VINFO_RGROUP_COMPARE_TYPE this
642 is the rgroup specific type used. */
643 tree compare_type;
644
645 /* A vector of nV controls, in iteration order. */
646 vec<tree> controls;
647
648 /* In case of len_load and len_store with a bias there is only one
649 rgroup. This holds the adjusted loop length for the this rgroup. */
650 tree bias_adjusted_ctrl;
651};
652
653struct vec_loop_masks
654{
655 bool is_empty () const { return mask_set.is_empty (); }
656
657 /* Set to record vectype, nvector pairs. */
658 hash_set<pair_hash <nofree_ptr_hash <tree_node>,
659 int_hash<unsigned, 0>>> mask_set;
660
661 /* rgroup_controls used for the partial vector scheme. */
662 auto_vec<rgroup_controls> rgc_vec;
663};
664
665typedef auto_vec<rgroup_controls> vec_loop_lens;
666
667typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
668
669/* Information about a reduction accumulator from the main loop that could
670 conceivably be reused as the input to a reduction in an epilogue loop. */
671struct vect_reusable_accumulator {
672 /* The final value of the accumulator, which forms the input to the
673 reduction operation. */
674 tree reduc_input;
675
676 /* The stmt_vec_info that describes the reduction (i.e. the one for
677 which is_reduc_info is true). */
678 stmt_vec_info reduc_info;
679};
680
681/*-----------------------------------------------------------------*/
682/* Info on vectorized loops. */
683/*-----------------------------------------------------------------*/
684typedef class _loop_vec_info : public vec_info {
685public:
686 _loop_vec_info (class loop *, vec_info_shared *);
687 ~_loop_vec_info ();
688
689 /* The loop to which this info struct refers to. */
690 class loop *loop;
691
692 /* Number of latch executions. */
693 tree num_itersm1;
694 /* Number of iterations. */
695 tree num_iters;
696 /* Number of iterations of the original loop. */
697 tree num_iters_unchanged;
698 /* Condition under which this loop is analyzed and versioned. */
699 tree num_iters_assumptions;
700
701 /* The cost of the vector code. */
702 class vector_costs *vector_costs;
703
704 /* The cost of the scalar code. */
705 class vector_costs *scalar_costs;
706
707 /* Threshold of number of iterations below which vectorization will not be
708 performed. It is calculated from MIN_PROFITABLE_ITERS and
709 param_min_vect_loop_bound. */
710 unsigned int th;
711
712 /* When applying loop versioning, the vector form should only be used
713 if the number of scalar iterations is >= this value, on top of all
714 the other requirements. Ignored when loop versioning is not being
715 used. */
716 poly_uint64 versioning_threshold;
717
718 /* Unrolling factor */
719 poly_uint64 vectorization_factor;
720
721 /* If this loop is an epilogue loop whose main loop can be skipped,
722 MAIN_LOOP_EDGE is the edge from the main loop to this loop's
723 preheader. SKIP_MAIN_LOOP_EDGE is then the edge that skips the
724 main loop and goes straight to this loop's preheader.
725
726 Both fields are null otherwise. */
727 edge main_loop_edge;
728 edge skip_main_loop_edge;
729
730 /* If this loop is an epilogue loop that might be skipped after executing
731 the main loop, this edge is the one that skips the epilogue. */
732 edge skip_this_loop_edge;
733
734 /* The vectorized form of a standard reduction replaces the original
735 scalar code's final result (a loop-closed SSA PHI) with the result
736 of a vector-to-scalar reduction operation. After vectorization,
737 this variable maps these vector-to-scalar results to information
738 about the reductions that generated them. */
739 hash_map<tree, vect_reusable_accumulator> reusable_accumulators;
740
741 /* The number of times that the target suggested we unroll the vector loop
742 in order to promote more ILP. This value will be used to re-analyze the
743 loop for vectorization and if successful the value will be folded into
744 vectorization_factor (and therefore exactly divides
745 vectorization_factor). */
746 unsigned int suggested_unroll_factor;
747
748 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
749 if there is no particular limit. */
750 unsigned HOST_WIDE_INT max_vectorization_factor;
751
752 /* The masks that a fully-masked loop should use to avoid operating
753 on inactive scalars. */
754 vec_loop_masks masks;
755
756 /* The lengths that a loop with length should use to avoid operating
757 on inactive scalars. */
758 vec_loop_lens lens;
759
760 /* Set of scalar conditions that have loop mask applied. */
761 scalar_cond_masked_set_type scalar_cond_masked_set;
762
763 /* Set of vector conditions that have loop mask applied. */
764 vec_cond_masked_set_type vec_cond_masked_set;
765
766 /* If we are using a loop mask to align memory addresses, this variable
767 contains the number of vector elements that we should skip in the
768 first iteration of the vector loop (i.e. the number of leading
769 elements that should be false in the first mask). */
770 tree mask_skip_niters;
771
772 /* The type that the loop control IV should be converted to before
773 testing which of the VF scalars are active and inactive.
774 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
775 tree rgroup_compare_type;
776
777 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
778 the loop should not be vectorized, if constant non-zero, simd_if_cond
779 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
780 should be versioned on that condition, using scalar loop if the condition
781 is false and vectorized loop otherwise. */
782 tree simd_if_cond;
783
784 /* The type that the vector loop control IV should have when
785 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
786 tree rgroup_iv_type;
787
788 /* The style used for implementing partial vectors when
789 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
790 vect_partial_vector_style partial_vector_style;
791
792 /* Unknown DRs according to which loop was peeled. */
793 class dr_vec_info *unaligned_dr;
794
795 /* peeling_for_alignment indicates whether peeling for alignment will take
796 place, and what the peeling factor should be:
797 peeling_for_alignment = X means:
798 If X=0: Peeling for alignment will not be applied.
799 If X>0: Peel first X iterations.
800 If X=-1: Generate a runtime test to calculate the number of iterations
801 to be peeled, using the dataref recorded in the field
802 unaligned_dr. */
803 int peeling_for_alignment;
804
805 /* The mask used to check the alignment of pointers or arrays. */
806 int ptr_mask;
807
808 /* Data Dependence Relations defining address ranges that are candidates
809 for a run-time aliasing check. */
810 auto_vec<ddr_p> may_alias_ddrs;
811
812 /* Data Dependence Relations defining address ranges together with segment
813 lengths from which the run-time aliasing check is built. */
814 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
815
816 /* Check that the addresses of each pair of objects is unequal. */
817 auto_vec<vec_object_pair> check_unequal_addrs;
818
819 /* List of values that are required to be nonzero. This is used to check
820 whether things like "x[i * n] += 1;" are safe and eventually gets added
821 to the checks for lower bounds below. */
822 auto_vec<tree> check_nonzero;
823
824 /* List of values that need to be checked for a minimum value. */
825 auto_vec<vec_lower_bound> lower_bounds;
826
827 /* Statements in the loop that have data references that are candidates for a
828 runtime (loop versioning) misalignment check. */
829 auto_vec<stmt_vec_info> may_misalign_stmts;
830
831 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
832 auto_vec<stmt_vec_info> reductions;
833
834 /* All reduction chains in the loop, represented by the first
835 stmt in the chain. */
836 auto_vec<stmt_vec_info> reduction_chains;
837
838 /* Cost vector for a single scalar iteration. */
839 auto_vec<stmt_info_for_cost> scalar_cost_vec;
840
841 /* Map of IV base/step expressions to inserted name in the preheader. */
842 hash_map<tree_operand_hash, tree> *ivexpr_map;
843
844 /* Map of OpenMP "omp simd array" scan variables to corresponding
845 rhs of the store of the initializer. */
846 hash_map<tree, tree> *scan_map;
847
848 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
849 applied to the loop, i.e., no unrolling is needed, this is 1. */
850 poly_uint64 slp_unrolling_factor;
851
852 /* The factor used to over weight those statements in an inner loop
853 relative to the loop being vectorized. */
854 unsigned int inner_loop_cost_factor;
855
856 /* Is the loop vectorizable? */
857 bool vectorizable;
858
859 /* Records whether we still have the option of vectorizing this loop
860 using partially-populated vectors; in other words, whether it is
861 still possible for one iteration of the vector loop to handle
862 fewer than VF scalars. */
863 bool can_use_partial_vectors_p;
864
865 /* True if we've decided to use partially-populated vectors, so that
866 the vector loop can handle fewer than VF scalars. */
867 bool using_partial_vectors_p;
868
869 /* True if we've decided to use a decrementing loop control IV that counts
870 scalars. This can be done for any loop that:
871
872 (a) uses length "controls"; and
873 (b) can iterate more than once. */
874 bool using_decrementing_iv_p;
875
876 /* True if we've decided to use output of select_vl to adjust IV of
877 both loop control and data reference pointer. This is only true
878 for single-rgroup control. */
879 bool using_select_vl_p;
880
881 /* True if we've decided to use partially-populated vectors for the
882 epilogue of loop. */
883 bool epil_using_partial_vectors_p;
884
885 /* The bias for len_load and len_store. For now, only 0 and -1 are
886 supported. -1 must be used when a backend does not support
887 len_load/len_store with a length of zero. */
888 signed char partial_load_store_bias;
889
890 /* When we have grouped data accesses with gaps, we may introduce invalid
891 memory accesses. We peel the last iteration of the loop to prevent
892 this. */
893 bool peeling_for_gaps;
894
895 /* When the number of iterations is not a multiple of the vector size
896 we need to peel off iterations at the end to form an epilogue loop. */
897 bool peeling_for_niter;
898
899 /* When the loop has early breaks that we can vectorize we need to peel
900 the loop for the break finding loop. */
901 bool early_breaks;
902
903 /* List of loop additional IV conditionals found in the loop. */
904 auto_vec<gcond *> conds;
905
906 /* Main loop IV cond. */
907 gcond* loop_iv_cond;
908
909 /* True if there are no loop carried data dependencies in the loop.
910 If loop->safelen <= 1, then this is always true, either the loop
911 didn't have any loop carried data dependencies, or the loop is being
912 vectorized guarded with some runtime alias checks, or couldn't
913 be vectorized at all, but then this field shouldn't be used.
914 For loop->safelen >= 2, the user has asserted that there are no
915 backward dependencies, but there still could be loop carried forward
916 dependencies in such loops. This flag will be false if normal
917 vectorizer data dependency analysis would fail or require versioning
918 for alias, but because of loop->safelen >= 2 it has been vectorized
919 even without versioning for alias. E.g. in:
920 #pragma omp simd
921 for (int i = 0; i < m; i++)
922 a[i] = a[i + k] * c;
923 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
924 DTRT even for k > 0 && k < m, but without safelen we would not
925 vectorize this, so this field would be false. */
926 bool no_data_dependencies;
927
928 /* Mark loops having masked stores. */
929 bool has_mask_store;
930
931 /* Queued scaling factor for the scalar loop. */
932 profile_probability scalar_loop_scaling;
933
934 /* If if-conversion versioned this loop before conversion, this is the
935 loop version without if-conversion. */
936 class loop *scalar_loop;
937
938 /* For loops being epilogues of already vectorized loops
939 this points to the original vectorized loop. Otherwise NULL. */
940 _loop_vec_info *orig_loop_info;
941
942 /* Used to store loop_vec_infos of epilogues of this loop during
943 analysis. */
944 vec<_loop_vec_info *> epilogue_vinfos;
945
946 /* The controlling loop IV for the current loop when vectorizing. This IV
947 controls the natural exits of the loop. */
948 edge vec_loop_iv_exit;
949
950 /* The controlling loop IV for the epilogue loop when vectorizing. This IV
951 controls the natural exits of the loop. */
952 edge vec_epilogue_loop_iv_exit;
953
954 /* The controlling loop IV for the scalar loop being vectorized. This IV
955 controls the natural exits of the loop. */
956 edge scalar_loop_iv_exit;
957
958 /* Used to store the list of stores needing to be moved if doing early
959 break vectorization as they would violate the scalar loop semantics if
960 vectorized in their current location. These are stored in order that they
961 need to be moved. */
962 auto_vec<gimple *> early_break_stores;
963
964 /* The final basic block where to move statements to. In the case of
965 multiple exits this could be pretty far away. */
966 basic_block early_break_dest_bb;
967
968 /* Statements whose VUSES need updating if early break vectorization is to
969 happen. */
970 auto_vec<gimple*> early_break_vuses;
971} *loop_vec_info;
972
973/* Access Functions. */
974#define LOOP_VINFO_LOOP(L) (L)->loop
975#define LOOP_VINFO_IV_EXIT(L) (L)->vec_loop_iv_exit
976#define LOOP_VINFO_EPILOGUE_IV_EXIT(L) (L)->vec_epilogue_loop_iv_exit
977#define LOOP_VINFO_SCALAR_IV_EXIT(L) (L)->scalar_loop_iv_exit
978#define LOOP_VINFO_BBS(L) (L)->bbs
979#define LOOP_VINFO_NBBS(L) (L)->nbbs
980#define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
981#define LOOP_VINFO_NITERS(L) (L)->num_iters
982/* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
983 prologue peeling retain total unchanged scalar loop iterations for
984 cost model. */
985#define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
986#define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
987#define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
988#define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
989#define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
990#define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
991#define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
992#define LOOP_VINFO_USING_DECREMENTING_IV_P(L) (L)->using_decrementing_iv_p
993#define LOOP_VINFO_USING_SELECT_VL_P(L) (L)->using_select_vl_p
994#define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
995 (L)->epil_using_partial_vectors_p
996#define LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS(L) (L)->partial_load_store_bias
997#define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
998#define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
999#define LOOP_VINFO_MASKS(L) (L)->masks
1000#define LOOP_VINFO_LENS(L) (L)->lens
1001#define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
1002#define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
1003#define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
1004#define LOOP_VINFO_PARTIAL_VECTORS_STYLE(L) (L)->partial_vector_style
1005#define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
1006#define LOOP_VINFO_N_STMTS(L) (L)->shared->n_stmts
1007#define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
1008#define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
1009#define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
1010#define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
1011#define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
1012#define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
1013#define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
1014#define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
1015#define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
1016#define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
1017#define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
1018#define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
1019#define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
1020#define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
1021#define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
1022#define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
1023#define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
1024#define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
1025#define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
1026#define LOOP_VINFO_EARLY_BREAKS(L) (L)->early_breaks
1027#define LOOP_VINFO_EARLY_BRK_STORES(L) (L)->early_break_stores
1028#define LOOP_VINFO_EARLY_BREAKS_VECT_PEELED(L) \
1029 (single_pred ((L)->loop->latch) != (L)->vec_loop_iv_exit->src)
1030#define LOOP_VINFO_EARLY_BRK_DEST_BB(L) (L)->early_break_dest_bb
1031#define LOOP_VINFO_EARLY_BRK_VUSES(L) (L)->early_break_vuses
1032#define LOOP_VINFO_LOOP_CONDS(L) (L)->conds
1033#define LOOP_VINFO_LOOP_IV_COND(L) (L)->loop_iv_cond
1034#define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
1035#define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
1036#define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
1037#define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
1038#define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
1039#define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
1040#define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
1041#define LOOP_VINFO_INNER_LOOP_COST_FACTOR(L) (L)->inner_loop_cost_factor
1042
1043#define LOOP_VINFO_FULLY_MASKED_P(L) \
1044 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1045 && !LOOP_VINFO_MASKS (L).is_empty ())
1046
1047#define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
1048 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
1049 && !LOOP_VINFO_LENS (L).is_empty ())
1050
1051#define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
1052 ((L)->may_misalign_stmts.length () > 0)
1053#define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
1054 ((L)->comp_alias_ddrs.length () > 0 \
1055 || (L)->check_unequal_addrs.length () > 0 \
1056 || (L)->lower_bounds.length () > 0)
1057#define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
1058 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
1059#define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
1060 (LOOP_VINFO_SIMD_IF_COND (L))
1061#define LOOP_REQUIRES_VERSIONING(L) \
1062 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
1063 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
1064 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
1065 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
1066
1067#define LOOP_VINFO_NITERS_KNOWN_P(L) \
1068 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
1069
1070#define LOOP_VINFO_EPILOGUE_P(L) \
1071 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
1072
1073#define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
1074 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
1075
1076/* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
1077 value signifies success, and a NULL value signifies failure, supporting
1078 propagating an opt_problem * describing the failure back up the call
1079 stack. */
1080typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
1081
1082inline loop_vec_info
1083loop_vec_info_for_loop (class loop *loop)
1084{
1085 return (loop_vec_info) loop->aux;
1086}
1087
1088struct slp_root
1089{
1090 slp_root (slp_instance_kind kind_, vec<stmt_vec_info> stmts_,
1091 vec<stmt_vec_info> roots_, vec<tree> remain_ = vNULL)
1092 : kind(kind_), stmts(stmts_), roots(roots_), remain(remain_) {}
1093 slp_instance_kind kind;
1094 vec<stmt_vec_info> stmts;
1095 vec<stmt_vec_info> roots;
1096 vec<tree> remain;
1097};
1098
1099typedef class _bb_vec_info : public vec_info
1100{
1101public:
1102 _bb_vec_info (vec<basic_block> bbs, vec_info_shared *);
1103 ~_bb_vec_info ();
1104
1105 vec<slp_root> roots;
1106} *bb_vec_info;
1107
1108#define BB_VINFO_BBS(B) (B)->bbs
1109#define BB_VINFO_NBBS(B) (B)->nbbs
1110#define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
1111#define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
1112#define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
1113#define BB_VINFO_DDRS(B) (B)->shared->ddrs
1114
1115/*-----------------------------------------------------------------*/
1116/* Info on vectorized defs. */
1117/*-----------------------------------------------------------------*/
1118enum stmt_vec_info_type {
1119 undef_vec_info_type = 0,
1120 load_vec_info_type,
1121 store_vec_info_type,
1122 shift_vec_info_type,
1123 op_vec_info_type,
1124 call_vec_info_type,
1125 call_simd_clone_vec_info_type,
1126 assignment_vec_info_type,
1127 condition_vec_info_type,
1128 comparison_vec_info_type,
1129 reduc_vec_info_type,
1130 induc_vec_info_type,
1131 type_promotion_vec_info_type,
1132 type_demotion_vec_info_type,
1133 type_conversion_vec_info_type,
1134 cycle_phi_info_type,
1135 lc_phi_info_type,
1136 phi_info_type,
1137 recurr_info_type,
1138 loop_exit_ctrl_vec_info_type
1139};
1140
1141/* Indicates whether/how a variable is used in the scope of loop/basic
1142 block. */
1143enum vect_relevant {
1144 vect_unused_in_scope = 0,
1145
1146 /* The def is only used outside the loop. */
1147 vect_used_only_live,
1148 /* The def is in the inner loop, and the use is in the outer loop, and the
1149 use is a reduction stmt. */
1150 vect_used_in_outer_by_reduction,
1151 /* The def is in the inner loop, and the use is in the outer loop (and is
1152 not part of reduction). */
1153 vect_used_in_outer,
1154
1155 /* defs that feed computations that end up (only) in a reduction. These
1156 defs may be used by non-reduction stmts, but eventually, any
1157 computations/values that are affected by these defs are used to compute
1158 a reduction (i.e. don't get stored to memory, for example). We use this
1159 to identify computations that we can change the order in which they are
1160 computed. */
1161 vect_used_by_reduction,
1162
1163 vect_used_in_scope
1164};
1165
1166/* The type of vectorization that can be applied to the stmt: regular loop-based
1167 vectorization; pure SLP - the stmt is a part of SLP instances and does not
1168 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
1169 a part of SLP instance and also must be loop-based vectorized, since it has
1170 uses outside SLP sequences.
1171
1172 In the loop context the meanings of pure and hybrid SLP are slightly
1173 different. By saying that pure SLP is applied to the loop, we mean that we
1174 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
1175 vectorized without doing any conceptual unrolling, cause we don't pack
1176 together stmts from different iterations, only within a single iteration.
1177 Loop hybrid SLP means that we exploit both intra-iteration and
1178 inter-iteration parallelism (e.g., number of elements in the vector is 4
1179 and the slp-group-size is 2, in which case we don't have enough parallelism
1180 within an iteration, so we obtain the rest of the parallelism from subsequent
1181 iterations by unrolling the loop by 2). */
1182enum slp_vect_type {
1183 loop_vect = 0,
1184 pure_slp,
1185 hybrid
1186};
1187
1188/* Says whether a statement is a load, a store of a vectorized statement
1189 result, or a store of an invariant value. */
1190enum vec_load_store_type {
1191 VLS_LOAD,
1192 VLS_STORE,
1193 VLS_STORE_INVARIANT
1194};
1195
1196/* Describes how we're going to vectorize an individual load or store,
1197 or a group of loads or stores. */
1198enum vect_memory_access_type {
1199 /* An access to an invariant address. This is used only for loads. */
1200 VMAT_INVARIANT,
1201
1202 /* A simple contiguous access. */
1203 VMAT_CONTIGUOUS,
1204
1205 /* A contiguous access that goes down in memory rather than up,
1206 with no additional permutation. This is used only for stores
1207 of invariants. */
1208 VMAT_CONTIGUOUS_DOWN,
1209
1210 /* A simple contiguous access in which the elements need to be permuted
1211 after loading or before storing. Only used for loop vectorization;
1212 SLP uses separate permutes. */
1213 VMAT_CONTIGUOUS_PERMUTE,
1214
1215 /* A simple contiguous access in which the elements need to be reversed
1216 after loading or before storing. */
1217 VMAT_CONTIGUOUS_REVERSE,
1218
1219 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1220 VMAT_LOAD_STORE_LANES,
1221
1222 /* An access in which each scalar element is loaded or stored
1223 individually. */
1224 VMAT_ELEMENTWISE,
1225
1226 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1227 SLP accesses. Each unrolled iteration uses a contiguous load
1228 or store for the whole group, but the groups from separate iterations
1229 are combined in the same way as for VMAT_ELEMENTWISE. */
1230 VMAT_STRIDED_SLP,
1231
1232 /* The access uses gather loads or scatter stores. */
1233 VMAT_GATHER_SCATTER
1234};
1235
1236class dr_vec_info {
1237public:
1238 /* The data reference itself. */
1239 data_reference *dr;
1240 /* The statement that contains the data reference. */
1241 stmt_vec_info stmt;
1242 /* The analysis group this DR belongs to when doing BB vectorization.
1243 DRs of the same group belong to the same conditional execution context. */
1244 unsigned group;
1245 /* The misalignment in bytes of the reference, or -1 if not known. */
1246 int misalignment;
1247 /* The byte alignment that we'd ideally like the reference to have,
1248 and the value that misalignment is measured against. */
1249 poly_uint64 target_alignment;
1250 /* If true the alignment of base_decl needs to be increased. */
1251 bool base_misaligned;
1252 tree base_decl;
1253
1254 /* Stores current vectorized loop's offset. To be added to the DR's
1255 offset to calculate current offset of data reference. */
1256 tree offset;
1257};
1258
1259typedef struct data_reference *dr_p;
1260
1261class _stmt_vec_info {
1262public:
1263
1264 enum stmt_vec_info_type type;
1265
1266 /* Indicates whether this stmts is part of a computation whose result is
1267 used outside the loop. */
1268 bool live;
1269
1270 /* Stmt is part of some pattern (computation idiom) */
1271 bool in_pattern_p;
1272
1273 /* True if the statement was created during pattern recognition as
1274 part of the replacement for RELATED_STMT. This implies that the
1275 statement isn't part of any basic block, although for convenience
1276 its gimple_bb is the same as for RELATED_STMT. */
1277 bool pattern_stmt_p;
1278
1279 /* Is this statement vectorizable or should it be skipped in (partial)
1280 vectorization. */
1281 bool vectorizable;
1282
1283 /* The stmt to which this info struct refers to. */
1284 gimple *stmt;
1285
1286 /* The vector type to be used for the LHS of this statement. */
1287 tree vectype;
1288
1289 /* The vectorized stmts. */
1290 vec<gimple *> vec_stmts;
1291
1292 /* The following is relevant only for stmts that contain a non-scalar
1293 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1294 at most one such data-ref. */
1295
1296 dr_vec_info dr_aux;
1297
1298 /* Information about the data-ref relative to this loop
1299 nest (the loop that is being considered for vectorization). */
1300 innermost_loop_behavior dr_wrt_vec_loop;
1301
1302 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1303 this information is still available in vect_update_ivs_after_vectorizer
1304 where we may not be able to re-analyze the PHI nodes evolution as
1305 peeling for the prologue loop can make it unanalyzable. The evolution
1306 part is still correct after peeling, but the base may have changed from
1307 the version here. */
1308 tree loop_phi_evolution_base_unchanged;
1309 tree loop_phi_evolution_part;
1310 enum vect_induction_op_type loop_phi_evolution_type;
1311
1312 /* Used for various bookkeeping purposes, generally holding a pointer to
1313 some other stmt S that is in some way "related" to this stmt.
1314 Current use of this field is:
1315 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1316 true): S is the "pattern stmt" that represents (and replaces) the
1317 sequence of stmts that constitutes the pattern. Similarly, the
1318 related_stmt of the "pattern stmt" points back to this stmt (which is
1319 the last stmt in the original sequence of stmts that constitutes the
1320 pattern). */
1321 stmt_vec_info related_stmt;
1322
1323 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1324 The sequence is attached to the original statement rather than the
1325 pattern statement. */
1326 gimple_seq pattern_def_seq;
1327
1328 /* Selected SIMD clone's function info. First vector element
1329 is SIMD clone's function decl, followed by a pair of trees (base + step)
1330 for linear arguments (pair of NULLs for other arguments). */
1331 vec<tree> simd_clone_info;
1332
1333 /* Classify the def of this stmt. */
1334 enum vect_def_type def_type;
1335
1336 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1337 enum slp_vect_type slp_type;
1338
1339 /* Interleaving and reduction chains info. */
1340 /* First element in the group. */
1341 stmt_vec_info first_element;
1342 /* Pointer to the next element in the group. */
1343 stmt_vec_info next_element;
1344 /* The size of the group. */
1345 unsigned int size;
1346 /* For stores, number of stores from this group seen. We vectorize the last
1347 one. */
1348 unsigned int store_count;
1349 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1350 is 1. */
1351 unsigned int gap;
1352
1353 /* The minimum negative dependence distance this stmt participates in
1354 or zero if none. */
1355 unsigned int min_neg_dist;
1356
1357 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1358 of the loop induction variable and computation of array indexes. relevant
1359 indicates whether the stmt needs to be vectorized. */
1360 enum vect_relevant relevant;
1361
1362 /* For loads if this is a gather, for stores if this is a scatter. */
1363 bool gather_scatter_p;
1364
1365 /* True if this is an access with loop-invariant stride. */
1366 bool strided_p;
1367
1368 /* For both loads and stores. */
1369 unsigned simd_lane_access_p : 3;
1370
1371 /* Classifies how the load or store is going to be implemented
1372 for loop vectorization. */
1373 vect_memory_access_type memory_access_type;
1374
1375 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1376 tree induc_cond_initial_val;
1377
1378 /* If not NULL the value to be added to compute final reduction value. */
1379 tree reduc_epilogue_adjustment;
1380
1381 /* On a reduction PHI the reduction type as detected by
1382 vect_is_simple_reduction and vectorizable_reduction. */
1383 enum vect_reduction_type reduc_type;
1384
1385 /* The original reduction code, to be used in the epilogue. */
1386 code_helper reduc_code;
1387 /* An internal function we should use in the epilogue. */
1388 internal_fn reduc_fn;
1389
1390 /* On a stmt participating in the reduction the index of the operand
1391 on the reduction SSA cycle. */
1392 int reduc_idx;
1393
1394 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1395 On the def returned by vect_force_simple_reduction the
1396 corresponding PHI. */
1397 stmt_vec_info reduc_def;
1398
1399 /* The vector input type relevant for reduction vectorization. */
1400 tree reduc_vectype_in;
1401
1402 /* The vector type for performing the actual reduction. */
1403 tree reduc_vectype;
1404
1405 /* If IS_REDUC_INFO is true and if the vector code is performing
1406 N scalar reductions in parallel, this variable gives the initial
1407 scalar values of those N reductions. */
1408 vec<tree> reduc_initial_values;
1409
1410 /* If IS_REDUC_INFO is true and if the vector code is performing
1411 N scalar reductions in parallel, this variable gives the vectorized code's
1412 final (scalar) result for each of those N reductions. In other words,
1413 REDUC_SCALAR_RESULTS[I] replaces the original scalar code's loop-closed
1414 SSA PHI for reduction number I. */
1415 vec<tree> reduc_scalar_results;
1416
1417 /* Only meaningful if IS_REDUC_INFO. If non-null, the reduction is
1418 being performed by an epilogue loop and we have decided to reuse
1419 this accumulator from the main loop. */
1420 vect_reusable_accumulator *reused_accumulator;
1421
1422 /* Whether we force a single cycle PHI during reduction vectorization. */
1423 bool force_single_cycle;
1424
1425 /* Whether on this stmt reduction meta is recorded. */
1426 bool is_reduc_info;
1427
1428 /* If nonzero, the lhs of the statement could be truncated to this
1429 many bits without affecting any users of the result. */
1430 unsigned int min_output_precision;
1431
1432 /* If nonzero, all non-boolean input operands have the same precision,
1433 and they could each be truncated to this many bits without changing
1434 the result. */
1435 unsigned int min_input_precision;
1436
1437 /* If OPERATION_BITS is nonzero, the statement could be performed on
1438 an integer with the sign and number of bits given by OPERATION_SIGN
1439 and OPERATION_BITS without changing the result. */
1440 unsigned int operation_precision;
1441 signop operation_sign;
1442
1443 /* If the statement produces a boolean result, this value describes
1444 how we should choose the associated vector type. The possible
1445 values are:
1446
1447 - an integer precision N if we should use the vector mask type
1448 associated with N-bit integers. This is only used if all relevant
1449 input booleans also want the vector mask type for N-bit integers,
1450 or if we can convert them into that form by pattern-matching.
1451
1452 - ~0U if we considered choosing a vector mask type but decided
1453 to treat the boolean as a normal integer type instead.
1454
1455 - 0 otherwise. This means either that the operation isn't one that
1456 could have a vector mask type (and so should have a normal vector
1457 type instead) or that we simply haven't made a choice either way. */
1458 unsigned int mask_precision;
1459
1460 /* True if this is only suitable for SLP vectorization. */
1461 bool slp_vect_only_p;
1462
1463 /* True if this is a pattern that can only be handled by SLP
1464 vectorization. */
1465 bool slp_vect_pattern_only_p;
1466};
1467
1468/* Information about a gather/scatter call. */
1469struct gather_scatter_info {
1470 /* The internal function to use for the gather/scatter operation,
1471 or IFN_LAST if a built-in function should be used instead. */
1472 internal_fn ifn;
1473
1474 /* The FUNCTION_DECL for the built-in gather/scatter function,
1475 or null if an internal function should be used instead. */
1476 tree decl;
1477
1478 /* The loop-invariant base value. */
1479 tree base;
1480
1481 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1482 tree offset;
1483
1484 /* Each offset element should be multiplied by this amount before
1485 being added to the base. */
1486 int scale;
1487
1488 /* The definition type for the vectorized offset. */
1489 enum vect_def_type offset_dt;
1490
1491 /* The type of the vectorized offset. */
1492 tree offset_vectype;
1493
1494 /* The type of the scalar elements after loading or before storing. */
1495 tree element_type;
1496
1497 /* The type of the scalar elements being loaded or stored. */
1498 tree memory_type;
1499};
1500
1501/* Access Functions. */
1502#define STMT_VINFO_TYPE(S) (S)->type
1503#define STMT_VINFO_STMT(S) (S)->stmt
1504#define STMT_VINFO_RELEVANT(S) (S)->relevant
1505#define STMT_VINFO_LIVE_P(S) (S)->live
1506#define STMT_VINFO_VECTYPE(S) (S)->vectype
1507#define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1508#define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1509#define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1510#define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1511#define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1512#define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1513#define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1514#define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1515#define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1516#define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1517#define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1518
1519#define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1520#define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1521#define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1522#define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1523#define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1524#define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1525#define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1526 (S)->dr_wrt_vec_loop.base_misalignment
1527#define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1528 (S)->dr_wrt_vec_loop.offset_alignment
1529#define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1530 (S)->dr_wrt_vec_loop.step_alignment
1531
1532#define STMT_VINFO_DR_INFO(S) \
1533 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1534
1535#define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1536#define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1537#define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1538#define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1539#define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1540#define STMT_VINFO_GROUPED_ACCESS(S) \
1541 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1542#define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1543#define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1544#define STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE(S) (S)->loop_phi_evolution_type
1545#define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1546#define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1547#define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1548#define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1549#define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1550#define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1551#define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1552#define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1553#define STMT_VINFO_SLP_VECT_ONLY_PATTERN(S) (S)->slp_vect_pattern_only_p
1554
1555#define DR_GROUP_FIRST_ELEMENT(S) \
1556 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1557#define DR_GROUP_NEXT_ELEMENT(S) \
1558 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1559#define DR_GROUP_SIZE(S) \
1560 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1561#define DR_GROUP_STORE_COUNT(S) \
1562 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1563#define DR_GROUP_GAP(S) \
1564 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1565
1566#define REDUC_GROUP_FIRST_ELEMENT(S) \
1567 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1568#define REDUC_GROUP_NEXT_ELEMENT(S) \
1569 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1570#define REDUC_GROUP_SIZE(S) \
1571 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1572
1573#define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1574
1575#define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1576#define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1577#define STMT_SLP_TYPE(S) (S)->slp_type
1578
1579/* Contains the scalar or vector costs for a vec_info. */
1580class vector_costs
1581{
1582public:
1583 vector_costs (vec_info *, bool);
1584 virtual ~vector_costs () {}
1585
1586 /* Update the costs in response to adding COUNT copies of a statement.
1587
1588 - WHERE specifies whether the cost occurs in the loop prologue,
1589 the loop body, or the loop epilogue.
1590 - KIND is the kind of statement, which is always meaningful.
1591 - STMT_INFO or NODE, if nonnull, describe the statement that will be
1592 vectorized.
1593 - VECTYPE, if nonnull, is the vector type that the vectorized
1594 statement will operate on. Note that this should be used in
1595 preference to STMT_VINFO_VECTYPE (STMT_INFO) since the latter
1596 is not correct for SLP.
1597 - for unaligned_load and unaligned_store statements, MISALIGN is
1598 the byte misalignment of the load or store relative to the target's
1599 preferred alignment for VECTYPE, or DR_MISALIGNMENT_UNKNOWN
1600 if the misalignment is not known.
1601
1602 Return the calculated cost as well as recording it. The return
1603 value is used for dumping purposes. */
1604 virtual unsigned int add_stmt_cost (int count, vect_cost_for_stmt kind,
1605 stmt_vec_info stmt_info,
1606 slp_tree node,
1607 tree vectype, int misalign,
1608 vect_cost_model_location where);
1609
1610 /* Finish calculating the cost of the code. The results can be
1611 read back using the functions below.
1612
1613 If the costs describe vector code, SCALAR_COSTS gives the costs
1614 of the corresponding scalar code, otherwise it is null. */
1615 virtual void finish_cost (const vector_costs *scalar_costs);
1616
1617 /* The costs in THIS and OTHER both describe ways of vectorizing
1618 a main loop. Return true if the costs described by THIS are
1619 cheaper than the costs described by OTHER. Return false if any
1620 of the following are true:
1621
1622 - THIS and OTHER are of equal cost
1623 - OTHER is better than THIS
1624 - we can't be sure about the relative costs of THIS and OTHER. */
1625 virtual bool better_main_loop_than_p (const vector_costs *other) const;
1626
1627 /* Likewise, but the costs in THIS and OTHER both describe ways of
1628 vectorizing an epilogue loop of MAIN_LOOP. */
1629 virtual bool better_epilogue_loop_than_p (const vector_costs *other,
1630 loop_vec_info main_loop) const;
1631
1632 unsigned int prologue_cost () const;
1633 unsigned int body_cost () const;
1634 unsigned int epilogue_cost () const;
1635 unsigned int outside_cost () const;
1636 unsigned int total_cost () const;
1637 unsigned int suggested_unroll_factor () const;
1638
1639protected:
1640 unsigned int record_stmt_cost (stmt_vec_info, vect_cost_model_location,
1641 unsigned int);
1642 unsigned int adjust_cost_for_freq (stmt_vec_info, vect_cost_model_location,
1643 unsigned int);
1644 int compare_inside_loop_cost (const vector_costs *) const;
1645 int compare_outside_loop_cost (const vector_costs *) const;
1646
1647 /* The region of code that we're considering vectorizing. */
1648 vec_info *m_vinfo;
1649
1650 /* True if we're costing the scalar code, false if we're costing
1651 the vector code. */
1652 bool m_costing_for_scalar;
1653
1654 /* The costs of the three regions, indexed by vect_cost_model_location. */
1655 unsigned int m_costs[3];
1656
1657 /* The suggested unrolling factor determined at finish_cost. */
1658 unsigned int m_suggested_unroll_factor;
1659
1660 /* True if finish_cost has been called. */
1661 bool m_finished;
1662};
1663
1664/* Create costs for VINFO. COSTING_FOR_SCALAR is true if the costs
1665 are for scalar code, false if they are for vector code. */
1666
1667inline
1668vector_costs::vector_costs (vec_info *vinfo, bool costing_for_scalar)
1669 : m_vinfo (vinfo),
1670 m_costing_for_scalar (costing_for_scalar),
1671 m_costs (),
1672 m_suggested_unroll_factor(1),
1673 m_finished (false)
1674{
1675}
1676
1677/* Return the cost of the prologue code (in abstract units). */
1678
1679inline unsigned int
1680vector_costs::prologue_cost () const
1681{
1682 gcc_checking_assert (m_finished);
1683 return m_costs[vect_prologue];
1684}
1685
1686/* Return the cost of the body code (in abstract units). */
1687
1688inline unsigned int
1689vector_costs::body_cost () const
1690{
1691 gcc_checking_assert (m_finished);
1692 return m_costs[vect_body];
1693}
1694
1695/* Return the cost of the epilogue code (in abstract units). */
1696
1697inline unsigned int
1698vector_costs::epilogue_cost () const
1699{
1700 gcc_checking_assert (m_finished);
1701 return m_costs[vect_epilogue];
1702}
1703
1704/* Return the cost of the prologue and epilogue code (in abstract units). */
1705
1706inline unsigned int
1707vector_costs::outside_cost () const
1708{
1709 return prologue_cost () + epilogue_cost ();
1710}
1711
1712/* Return the cost of the prologue, body and epilogue code
1713 (in abstract units). */
1714
1715inline unsigned int
1716vector_costs::total_cost () const
1717{
1718 return body_cost () + outside_cost ();
1719}
1720
1721/* Return the suggested unroll factor. */
1722
1723inline unsigned int
1724vector_costs::suggested_unroll_factor () const
1725{
1726 gcc_checking_assert (m_finished);
1727 return m_suggested_unroll_factor;
1728}
1729
1730#define VECT_MAX_COST 1000
1731
1732/* The maximum number of intermediate steps required in multi-step type
1733 conversion. */
1734#define MAX_INTERM_CVT_STEPS 3
1735
1736#define MAX_VECTORIZATION_FACTOR INT_MAX
1737
1738/* Nonzero if TYPE represents a (scalar) boolean type or type
1739 in the middle-end compatible with it (unsigned precision 1 integral
1740 types). Used to determine which types should be vectorized as
1741 VECTOR_BOOLEAN_TYPE_P. */
1742
1743#define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1744 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1745 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1746 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1747 && TYPE_PRECISION (TYPE) == 1 \
1748 && TYPE_UNSIGNED (TYPE)))
1749
1750inline bool
1751nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1752{
1753 return (loop->inner
1754 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1755}
1756
1757/* PHI is either a scalar reduction phi or a scalar induction phi.
1758 Return the initial value of the variable on entry to the containing
1759 loop. */
1760
1761inline tree
1762vect_phi_initial_value (gphi *phi)
1763{
1764 basic_block bb = gimple_bb (phi);
1765 edge pe = loop_preheader_edge (bb->loop_father);
1766 gcc_assert (pe->dest == bb);
1767 return PHI_ARG_DEF_FROM_EDGE (phi, pe);
1768}
1769
1770/* Return true if STMT_INFO should produce a vector mask type rather than
1771 a normal nonmask type. */
1772
1773inline bool
1774vect_use_mask_type_p (stmt_vec_info stmt_info)
1775{
1776 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1777}
1778
1779/* Return TRUE if a statement represented by STMT_INFO is a part of a
1780 pattern. */
1781
1782inline bool
1783is_pattern_stmt_p (stmt_vec_info stmt_info)
1784{
1785 return stmt_info->pattern_stmt_p;
1786}
1787
1788/* If STMT_INFO is a pattern statement, return the statement that it
1789 replaces, otherwise return STMT_INFO itself. */
1790
1791inline stmt_vec_info
1792vect_orig_stmt (stmt_vec_info stmt_info)
1793{
1794 if (is_pattern_stmt_p (stmt_info))
1795 return STMT_VINFO_RELATED_STMT (stmt_info);
1796 return stmt_info;
1797}
1798
1799/* Return the later statement between STMT1_INFO and STMT2_INFO. */
1800
1801inline stmt_vec_info
1802get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1803{
1804 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1805 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1806 return stmt1_info;
1807 else
1808 return stmt2_info;
1809}
1810
1811/* If STMT_INFO has been replaced by a pattern statement, return the
1812 replacement statement, otherwise return STMT_INFO itself. */
1813
1814inline stmt_vec_info
1815vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1816{
1817 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1818 return STMT_VINFO_RELATED_STMT (stmt_info);
1819 return stmt_info;
1820}
1821
1822/* Return true if BB is a loop header. */
1823
1824inline bool
1825is_loop_header_bb_p (basic_block bb)
1826{
1827 if (bb == (bb->loop_father)->header)
1828 return true;
1829
1830 return false;
1831}
1832
1833/* Return pow2 (X). */
1834
1835inline int
1836vect_pow2 (int x)
1837{
1838 int i, res = 1;
1839
1840 for (i = 0; i < x; i++)
1841 res *= 2;
1842
1843 return res;
1844}
1845
1846/* Alias targetm.vectorize.builtin_vectorization_cost. */
1847
1848inline int
1849builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1850 tree vectype, int misalign)
1851{
1852 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1853 vectype, misalign);
1854}
1855
1856/* Get cost by calling cost target builtin. */
1857
1858inline
1859int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1860{
1861 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1862}
1863
1864/* Alias targetm.vectorize.init_cost. */
1865
1866inline vector_costs *
1867init_cost (vec_info *vinfo, bool costing_for_scalar)
1868{
1869 return targetm.vectorize.create_costs (vinfo, costing_for_scalar);
1870}
1871
1872extern void dump_stmt_cost (FILE *, int, enum vect_cost_for_stmt,
1873 stmt_vec_info, slp_tree, tree, int, unsigned,
1874 enum vect_cost_model_location);
1875
1876/* Alias targetm.vectorize.add_stmt_cost. */
1877
1878inline unsigned
1879add_stmt_cost (vector_costs *costs, int count,
1880 enum vect_cost_for_stmt kind,
1881 stmt_vec_info stmt_info, slp_tree node,
1882 tree vectype, int misalign,
1883 enum vect_cost_model_location where)
1884{
1885 unsigned cost = costs->add_stmt_cost (count, kind, stmt_info, node, vectype,
1886 misalign, where);
1887 if (dump_file && (dump_flags & TDF_DETAILS))
1888 dump_stmt_cost (dump_file, count, kind, stmt_info, node, vectype, misalign,
1889 cost, where);
1890 return cost;
1891}
1892
1893inline unsigned
1894add_stmt_cost (vector_costs *costs, int count, enum vect_cost_for_stmt kind,
1895 enum vect_cost_model_location where)
1896{
1897 gcc_assert (kind == cond_branch_taken || kind == cond_branch_not_taken
1898 || kind == scalar_stmt);
1899 return add_stmt_cost (costs, count, kind, NULL, NULL, NULL_TREE, 0, where);
1900}
1901
1902/* Alias targetm.vectorize.add_stmt_cost. */
1903
1904inline unsigned
1905add_stmt_cost (vector_costs *costs, stmt_info_for_cost *i)
1906{
1907 return add_stmt_cost (costs, i->count, i->kind, i->stmt_info, i->node,
1908 i->vectype, i->misalign, i->where);
1909}
1910
1911/* Alias targetm.vectorize.finish_cost. */
1912
1913inline void
1914finish_cost (vector_costs *costs, const vector_costs *scalar_costs,
1915 unsigned *prologue_cost, unsigned *body_cost,
1916 unsigned *epilogue_cost, unsigned *suggested_unroll_factor = NULL)
1917{
1918 costs->finish_cost (scalar_costs);
1919 *prologue_cost = costs->prologue_cost ();
1920 *body_cost = costs->body_cost ();
1921 *epilogue_cost = costs->epilogue_cost ();
1922 if (suggested_unroll_factor)
1923 *suggested_unroll_factor = costs->suggested_unroll_factor ();
1924}
1925
1926inline void
1927add_stmt_costs (vector_costs *costs, stmt_vector_for_cost *cost_vec)
1928{
1929 stmt_info_for_cost *cost;
1930 unsigned i;
1931 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1932 add_stmt_cost (costs, cost->count, cost->kind, cost->stmt_info,
1933 cost->node, cost->vectype, cost->misalign, cost->where);
1934}
1935
1936/*-----------------------------------------------------------------*/
1937/* Info on data references alignment. */
1938/*-----------------------------------------------------------------*/
1939#define DR_MISALIGNMENT_UNKNOWN (-1)
1940#define DR_MISALIGNMENT_UNINITIALIZED (-2)
1941
1942inline void
1943set_dr_misalignment (dr_vec_info *dr_info, int val)
1944{
1945 dr_info->misalignment = val;
1946}
1947
1948extern int dr_misalignment (dr_vec_info *dr_info, tree vectype,
1949 poly_int64 offset = 0);
1950
1951#define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1952
1953/* Only defined once DR_MISALIGNMENT is defined. */
1954inline const poly_uint64
1955dr_target_alignment (dr_vec_info *dr_info)
1956{
1957 if (STMT_VINFO_GROUPED_ACCESS (dr_info->stmt))
1958 dr_info = STMT_VINFO_DR_INFO (DR_GROUP_FIRST_ELEMENT (dr_info->stmt));
1959 return dr_info->target_alignment;
1960}
1961#define DR_TARGET_ALIGNMENT(DR) dr_target_alignment (DR)
1962
1963inline void
1964set_dr_target_alignment (dr_vec_info *dr_info, poly_uint64 val)
1965{
1966 dr_info->target_alignment = val;
1967}
1968#define SET_DR_TARGET_ALIGNMENT(DR, VAL) set_dr_target_alignment (DR, VAL)
1969
1970/* Return true if data access DR_INFO is aligned to the targets
1971 preferred alignment for VECTYPE (which may be less than a full vector). */
1972
1973inline bool
1974aligned_access_p (dr_vec_info *dr_info, tree vectype)
1975{
1976 return (dr_misalignment (dr_info, vectype) == 0);
1977}
1978
1979/* Return TRUE if the (mis-)alignment of the data access is known with
1980 respect to the targets preferred alignment for VECTYPE, and FALSE
1981 otherwise. */
1982
1983inline bool
1984known_alignment_for_access_p (dr_vec_info *dr_info, tree vectype)
1985{
1986 return (dr_misalignment (dr_info, vectype) != DR_MISALIGNMENT_UNKNOWN);
1987}
1988
1989/* Return the minimum alignment in bytes that the vectorized version
1990 of DR_INFO is guaranteed to have. */
1991
1992inline unsigned int
1993vect_known_alignment_in_bytes (dr_vec_info *dr_info, tree vectype)
1994{
1995 int misalignment = dr_misalignment (dr_info, vectype);
1996 if (misalignment == DR_MISALIGNMENT_UNKNOWN)
1997 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1998 else if (misalignment == 0)
1999 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
2000 return misalignment & -misalignment;
2001}
2002
2003/* Return the behavior of DR_INFO with respect to the vectorization context
2004 (which for outer loop vectorization might not be the behavior recorded
2005 in DR_INFO itself). */
2006
2007inline innermost_loop_behavior *
2008vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
2009{
2010 stmt_vec_info stmt_info = dr_info->stmt;
2011 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
2012 if (loop_vinfo == NULL
2013 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
2014 return &DR_INNERMOST (dr_info->dr);
2015 else
2016 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
2017}
2018
2019/* Return the offset calculated by adding the offset of this DR_INFO to the
2020 corresponding data_reference's offset. If CHECK_OUTER then use
2021 vect_dr_behavior to select the appropriate data_reference to use. */
2022
2023inline tree
2024get_dr_vinfo_offset (vec_info *vinfo,
2025 dr_vec_info *dr_info, bool check_outer = false)
2026{
2027 innermost_loop_behavior *base;
2028 if (check_outer)
2029 base = vect_dr_behavior (vinfo, dr_info);
2030 else
2031 base = &dr_info->dr->innermost;
2032
2033 tree offset = base->offset;
2034
2035 if (!dr_info->offset)
2036 return offset;
2037
2038 offset = fold_convert (sizetype, offset);
2039 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
2040 dr_info->offset);
2041}
2042
2043
2044/* Return the vect cost model for LOOP. */
2045inline enum vect_cost_model
2046loop_cost_model (loop_p loop)
2047{
2048 if (loop != NULL
2049 && loop->force_vectorize
2050 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
2051 return flag_simd_cost_model;
2052 return flag_vect_cost_model;
2053}
2054
2055/* Return true if the vect cost model is unlimited. */
2056inline bool
2057unlimited_cost_model (loop_p loop)
2058{
2059 return loop_cost_model (loop) == VECT_COST_MODEL_UNLIMITED;
2060}
2061
2062/* Return true if the loop described by LOOP_VINFO is fully-masked and
2063 if the first iteration should use a partial mask in order to achieve
2064 alignment. */
2065
2066inline bool
2067vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
2068{
2069 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2070 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
2071}
2072
2073/* Return the number of vectors of type VECTYPE that are needed to get
2074 NUNITS elements. NUNITS should be based on the vectorization factor,
2075 so it is always a known multiple of the number of elements in VECTYPE. */
2076
2077inline unsigned int
2078vect_get_num_vectors (poly_uint64 nunits, tree vectype)
2079{
2080 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
2081}
2082
2083/* Return the number of copies needed for loop vectorization when
2084 a statement operates on vectors of type VECTYPE. This is the
2085 vectorization factor divided by the number of elements in
2086 VECTYPE and is always known at compile time. */
2087
2088inline unsigned int
2089vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
2090{
2091 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
2092}
2093
2094/* Update maximum unit count *MAX_NUNITS so that it accounts for
2095 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
2096
2097inline void
2098vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
2099{
2100 /* All unit counts have the form vec_info::vector_size * X for some
2101 rational X, so two unit sizes must have a common multiple.
2102 Everything is a multiple of the initial value of 1. */
2103 *max_nunits = force_common_multiple (*max_nunits, nunits);
2104}
2105
2106/* Update maximum unit count *MAX_NUNITS so that it accounts for
2107 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
2108 if we haven't yet recorded any vector types. */
2109
2110inline void
2111vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
2112{
2113 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
2114}
2115
2116/* Return the vectorization factor that should be used for costing
2117 purposes while vectorizing the loop described by LOOP_VINFO.
2118 Pick a reasonable estimate if the vectorization factor isn't
2119 known at compile time. */
2120
2121inline unsigned int
2122vect_vf_for_cost (loop_vec_info loop_vinfo)
2123{
2124 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2125}
2126
2127/* Estimate the number of elements in VEC_TYPE for costing purposes.
2128 Pick a reasonable estimate if the exact number isn't known at
2129 compile time. */
2130
2131inline unsigned int
2132vect_nunits_for_cost (tree vec_type)
2133{
2134 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
2135}
2136
2137/* Return the maximum possible vectorization factor for LOOP_VINFO. */
2138
2139inline unsigned HOST_WIDE_INT
2140vect_max_vf (loop_vec_info loop_vinfo)
2141{
2142 unsigned HOST_WIDE_INT vf;
2143 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
2144 return vf;
2145 return MAX_VECTORIZATION_FACTOR;
2146}
2147
2148/* Return the size of the value accessed by unvectorized data reference
2149 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
2150 for the associated gimple statement, since that guarantees that DR_INFO
2151 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
2152 here includes things like V1SI, which can be vectorized in the same way
2153 as a plain SI.) */
2154
2155inline unsigned int
2156vect_get_scalar_dr_size (dr_vec_info *dr_info)
2157{
2158 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
2159}
2160
2161/* Return true if LOOP_VINFO requires a runtime check for whether the
2162 vector loop is profitable. */
2163
2164inline bool
2165vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
2166{
2167 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2168 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2169 && th >= vect_vf_for_cost (loop_vinfo));
2170}
2171
2172/* Return true if CODE is a lane-reducing opcode. */
2173
2174inline bool
2175lane_reducing_op_p (code_helper code)
2176{
2177 return code == DOT_PROD_EXPR || code == WIDEN_SUM_EXPR || code == SAD_EXPR;
2178}
2179
2180/* Return true if STMT is a lane-reducing statement. */
2181
2182inline bool
2183lane_reducing_stmt_p (gimple *stmt)
2184{
2185 if (auto *assign = dyn_cast <gassign *> (stmt))
2186 return lane_reducing_op_p (gimple_assign_rhs_code (assign));
2187 return false;
2188}
2189
2190/* Source location + hotness information. */
2191extern dump_user_location_t vect_location;
2192
2193/* A macro for calling:
2194 dump_begin_scope (MSG, vect_location);
2195 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
2196 and then calling
2197 dump_end_scope ();
2198 once the object goes out of scope, thus capturing the nesting of
2199 the scopes.
2200
2201 These scopes affect dump messages within them: dump messages at the
2202 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
2203 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
2204
2205#define DUMP_VECT_SCOPE(MSG) \
2206 AUTO_DUMP_SCOPE (MSG, vect_location)
2207
2208/* A sentinel class for ensuring that the "vect_location" global gets
2209 reset at the end of a scope.
2210
2211 The "vect_location" global is used during dumping and contains a
2212 location_t, which could contain references to a tree block via the
2213 ad-hoc data. This data is used for tracking inlining information,
2214 but it's not a GC root; it's simply assumed that such locations never
2215 get accessed if the blocks are optimized away.
2216
2217 Hence we need to ensure that such locations are purged at the end
2218 of any operations using them (e.g. via this class). */
2219
2220class auto_purge_vect_location
2221{
2222 public:
2223 ~auto_purge_vect_location ();
2224};
2225
2226/*-----------------------------------------------------------------*/
2227/* Function prototypes. */
2228/*-----------------------------------------------------------------*/
2229
2230/* Simple loop peeling and versioning utilities for vectorizer's purposes -
2231 in tree-vect-loop-manip.cc. */
2232extern void vect_set_loop_condition (class loop *, edge, loop_vec_info,
2233 tree, tree, tree, bool);
2234extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge,
2235 const_edge);
2236class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *, edge,
2237 class loop *, edge,
2238 edge, edge *, bool = true,
2239 vec<basic_block> * = NULL);
2240class loop *vect_loop_versioning (loop_vec_info, gimple *);
2241extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
2242 tree *, tree *, tree *, int, bool, bool,
2243 tree *);
2244extern tree vect_get_main_loop_result (loop_vec_info, tree, tree);
2245extern void vect_prepare_for_masked_peels (loop_vec_info);
2246extern dump_user_location_t find_loop_location (class loop *);
2247extern bool vect_can_advance_ivs_p (loop_vec_info);
2248extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
2249extern edge vec_init_loop_exit_info (class loop *);
2250extern void vect_iv_increment_position (edge, gimple_stmt_iterator *, bool *);
2251
2252/* In tree-vect-stmts.cc. */
2253extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
2254 poly_uint64 = 0);
2255extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
2256extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
2257extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
2258extern tree get_mask_type_for_scalar_type (vec_info *, tree, slp_tree);
2259extern tree get_same_sized_vectype (tree, tree);
2260extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
2261extern bool vect_get_loop_mask_type (loop_vec_info);
2262extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2263 stmt_vec_info * = NULL, gimple ** = NULL);
2264extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
2265 tree *, stmt_vec_info * = NULL,
2266 gimple ** = NULL);
2267extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
2268 unsigned, tree *, slp_tree *,
2269 enum vect_def_type *,
2270 tree *, stmt_vec_info * = NULL);
2271extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
2272extern tree perm_mask_for_reverse (tree);
2273extern bool supportable_widening_operation (vec_info*, code_helper,
2274 stmt_vec_info, tree, tree,
2275 code_helper*, code_helper*,
2276 int*, vec<tree> *);
2277extern bool supportable_narrowing_operation (code_helper, tree, tree,
2278 code_helper *, int *,
2279 vec<tree> *);
2280extern bool supportable_indirect_convert_operation (code_helper,
2281 tree, tree,
2282 vec<std::pair<tree, tree_code> > *,
2283 tree = NULL_TREE);
2284
2285extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2286 enum vect_cost_for_stmt, stmt_vec_info,
2287 tree, int, enum vect_cost_model_location);
2288extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2289 enum vect_cost_for_stmt, slp_tree,
2290 tree, int, enum vect_cost_model_location);
2291extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
2292 enum vect_cost_for_stmt,
2293 enum vect_cost_model_location);
2294
2295/* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
2296
2297inline unsigned
2298record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
2299 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
2300 int misalign, enum vect_cost_model_location where)
2301{
2302 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
2303 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
2304}
2305
2306extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
2307extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
2308 gimple_stmt_iterator *);
2309extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
2310extern tree vect_get_store_rhs (stmt_vec_info);
2311void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
2312 tree op, vec<tree> *, tree = NULL);
2313void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2314 tree, vec<tree> *,
2315 tree = NULL, vec<tree> * = NULL,
2316 tree = NULL, vec<tree> * = NULL,
2317 tree = NULL, vec<tree> * = NULL);
2318void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
2319 tree, tree, vec<tree> *,
2320 tree = NULL, tree = NULL, vec<tree> * = NULL,
2321 tree = NULL, tree = NULL, vec<tree> * = NULL,
2322 tree = NULL, tree = NULL, vec<tree> * = NULL);
2323extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
2324 gimple_stmt_iterator *);
2325extern tree vect_get_slp_vect_def (slp_tree, unsigned);
2326extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
2327 gimple_stmt_iterator *,
2328 slp_tree, slp_instance);
2329extern void vect_remove_stores (vec_info *, stmt_vec_info);
2330extern bool vect_nop_conversion_p (stmt_vec_info);
2331extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
2332 slp_tree,
2333 slp_instance, stmt_vector_for_cost *);
2334extern void vect_get_load_cost (vec_info *, stmt_vec_info, int,
2335 dr_alignment_support, int, bool,
2336 unsigned int *, unsigned int *,
2337 stmt_vector_for_cost *,
2338 stmt_vector_for_cost *, bool);
2339extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
2340 dr_alignment_support, int,
2341 unsigned int *, stmt_vector_for_cost *);
2342extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
2343extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
2344extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
2345extern void optimize_mask_stores (class loop*);
2346extern tree vect_gen_while (gimple_seq *, tree, tree, tree,
2347 const char * = nullptr);
2348extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
2349extern opt_result vect_get_vector_types_for_stmt (vec_info *,
2350 stmt_vec_info, tree *,
2351 tree *, unsigned int = 0);
2352extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
2353
2354/* In tree-if-conv.cc. */
2355extern bool ref_within_array_bound (gimple *, tree);
2356
2357/* In tree-vect-data-refs.cc. */
2358extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
2359extern enum dr_alignment_support vect_supportable_dr_alignment
2360 (vec_info *, dr_vec_info *, tree, int);
2361extern tree vect_get_smallest_scalar_type (stmt_vec_info, tree);
2362extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
2363extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
2364extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
2365extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
2366extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
2367extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
2368extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
2369extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
2370 tree, int, internal_fn *, tree *);
2371extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
2372 gather_scatter_info *);
2373extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
2374 vec<data_reference_p> *,
2375 vec<int> *, int);
2376extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
2377extern void vect_record_base_alignments (vec_info *);
2378extern tree vect_create_data_ref_ptr (vec_info *,
2379 stmt_vec_info, tree, class loop *, tree,
2380 tree *, gimple_stmt_iterator *,
2381 gimple **, bool,
2382 tree = NULL_TREE);
2383extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
2384 stmt_vec_info, tree);
2385extern void vect_copy_ref_info (tree, tree);
2386extern tree vect_create_destination_var (tree, tree);
2387extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
2388extern internal_fn vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2389extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
2390extern internal_fn vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
2391extern void vect_permute_store_chain (vec_info *, vec<tree> &,
2392 unsigned int, stmt_vec_info,
2393 gimple_stmt_iterator *, vec<tree> *);
2394extern tree vect_setup_realignment (vec_info *,
2395 stmt_vec_info, gimple_stmt_iterator *,
2396 tree *, enum dr_alignment_support, tree,
2397 class loop **);
2398extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
2399 int, gimple_stmt_iterator *);
2400extern void vect_record_grouped_load_vectors (vec_info *,
2401 stmt_vec_info, vec<tree>);
2402extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
2403extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
2404 const char * = NULL);
2405extern tree vect_create_addr_base_for_vector_ref (vec_info *,
2406 stmt_vec_info, gimple_seq *,
2407 tree);
2408
2409/* In tree-vect-loop.cc. */
2410extern tree neutral_op_for_reduction (tree, code_helper, tree, bool = true);
2411extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
2412bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
2413/* Used in tree-vect-loop-manip.cc */
2414extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info);
2415/* Used in gimple-loop-interchange.c and tree-parloops.cc. */
2416extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
2417 enum tree_code);
2418extern bool needs_fold_left_reduction_p (tree, code_helper);
2419/* Drive for loop analysis stage. */
2420extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
2421extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
2422extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
2423 tree *, bool);
2424extern tree vect_halve_mask_nunits (tree, machine_mode);
2425extern tree vect_double_mask_nunits (tree, machine_mode);
2426extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
2427 unsigned int, tree, tree);
2428extern tree vect_get_loop_mask (loop_vec_info, gimple_stmt_iterator *,
2429 vec_loop_masks *,
2430 unsigned int, tree, unsigned int);
2431extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
2432 tree, unsigned int);
2433extern tree vect_get_loop_len (loop_vec_info, gimple_stmt_iterator *,
2434 vec_loop_lens *, unsigned int, tree,
2435 unsigned int, unsigned int);
2436extern tree vect_gen_loop_len_mask (loop_vec_info, gimple_stmt_iterator *,
2437 gimple_stmt_iterator *, vec_loop_lens *,
2438 unsigned int, tree, tree, unsigned int,
2439 unsigned int);
2440extern gimple_seq vect_gen_len (tree, tree, tree, tree);
2441extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
2442extern bool reduction_fn_for_scalar_code (code_helper, internal_fn *);
2443
2444/* Drive for loop transformation stage. */
2445extern class loop *vect_transform_loop (loop_vec_info, gimple *);
2446struct vect_loop_form_info
2447{
2448 tree number_of_iterations;
2449 tree number_of_iterationsm1;
2450 tree assumptions;
2451 auto_vec<gcond *> conds;
2452 gcond *inner_loop_cond;
2453 edge loop_exit;
2454};
2455extern opt_result vect_analyze_loop_form (class loop *, vect_loop_form_info *);
2456extern loop_vec_info vect_create_loop_vinfo (class loop *, vec_info_shared *,
2457 const vect_loop_form_info *,
2458 loop_vec_info = nullptr);
2459extern bool vectorizable_live_operation (vec_info *, stmt_vec_info,
2460 slp_tree, slp_instance, int,
2461 bool, stmt_vector_for_cost *);
2462extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2463 slp_tree, slp_instance,
2464 stmt_vector_for_cost *);
2465extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2466 gimple **, slp_tree,
2467 stmt_vector_for_cost *);
2468extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2469 gimple_stmt_iterator *,
2470 gimple **, slp_tree);
2471extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2472 gimple **,
2473 slp_tree, slp_instance);
2474extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2475 gimple **, slp_tree);
2476extern bool vectorizable_phi (vec_info *, stmt_vec_info, gimple **, slp_tree,
2477 stmt_vector_for_cost *);
2478extern bool vectorizable_recurr (loop_vec_info, stmt_vec_info,
2479 gimple **, slp_tree, stmt_vector_for_cost *);
2480extern bool vect_emulated_vector_p (tree);
2481extern bool vect_can_vectorize_without_simd_p (tree_code);
2482extern bool vect_can_vectorize_without_simd_p (code_helper);
2483extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2484 stmt_vector_for_cost *,
2485 stmt_vector_for_cost *,
2486 stmt_vector_for_cost *);
2487extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2488
2489/* Nonlinear induction. */
2490extern tree vect_peel_nonlinear_iv_init (gimple_seq*, tree, tree,
2491 tree, enum vect_induction_op_type);
2492
2493/* In tree-vect-slp.cc. */
2494extern void vect_slp_init (void);
2495extern void vect_slp_fini (void);
2496extern void vect_free_slp_instance (slp_instance);
2497extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, const vec<tree> &,
2498 gimple_stmt_iterator *, poly_uint64,
2499 bool, unsigned *,
2500 unsigned * = nullptr, bool = false);
2501extern bool vect_slp_analyze_operations (vec_info *);
2502extern void vect_schedule_slp (vec_info *, const vec<slp_instance> &);
2503extern opt_result vect_analyze_slp (vec_info *, unsigned);
2504extern bool vect_make_slp_decision (loop_vec_info);
2505extern void vect_detect_hybrid_slp (loop_vec_info);
2506extern void vect_optimize_slp (vec_info *);
2507extern void vect_gather_slp_loads (vec_info *);
2508extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2509extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2510 unsigned n = -1U);
2511extern bool vect_slp_if_converted_bb (basic_block bb, loop_p orig_loop);
2512extern bool vect_slp_function (function *);
2513extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2514extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2515extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2516extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2517 unsigned int * = NULL,
2518 tree * = NULL, tree * = NULL);
2519extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2520 const vec<tree> &, unsigned int, vec<tree> &);
2521extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2522extern slp_tree vect_create_new_slp_node (unsigned, tree_code);
2523extern void vect_free_slp_tree (slp_tree);
2524extern bool compatible_calls_p (gcall *, gcall *);
2525extern int vect_slp_child_index_for_operand (const gimple *, int op, bool);
2526
2527extern tree prepare_vec_mask (loop_vec_info, tree, tree, tree,
2528 gimple_stmt_iterator *);
2529
2530/* In tree-vect-patterns.cc. */
2531extern void
2532vect_mark_pattern_stmts (vec_info *, stmt_vec_info, gimple *, tree);
2533extern bool vect_get_range_info (tree, wide_int*, wide_int*);
2534
2535/* Pattern recognition functions.
2536 Additional pattern recognition functions can (and will) be added
2537 in the future. */
2538void vect_pattern_recog (vec_info *);
2539
2540/* In tree-vectorizer.cc. */
2541unsigned vectorize_loops (void);
2542void vect_free_loop_info_assumptions (class loop *);
2543gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2544bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2545
2546/* SLP Pattern matcher types, tree-vect-slp-patterns.cc. */
2547
2548/* Forward declaration of possible two operands operation that can be matched
2549 by the complex numbers pattern matchers. */
2550enum _complex_operation : unsigned;
2551
2552/* All possible load permute values that could result from the partial data-flow
2553 analysis. */
2554typedef enum _complex_perm_kinds {
2555 PERM_UNKNOWN,
2556 PERM_EVENODD,
2557 PERM_ODDEVEN,
2558 PERM_ODDODD,
2559 PERM_EVENEVEN,
2560 /* Can be combined with any other PERM values. */
2561 PERM_TOP
2562} complex_perm_kinds_t;
2563
2564/* Cache from nodes to the load permutation they represent. */
2565typedef hash_map <slp_tree, complex_perm_kinds_t>
2566 slp_tree_to_load_perm_map_t;
2567
2568/* Cache from nodes pair to being compatible or not. */
2569typedef pair_hash <nofree_ptr_hash <_slp_tree>,
2570 nofree_ptr_hash <_slp_tree>> slp_node_hash;
2571typedef hash_map <slp_node_hash, bool> slp_compat_nodes_map_t;
2572
2573
2574/* Vector pattern matcher base class. All SLP pattern matchers must inherit
2575 from this type. */
2576
2577class vect_pattern
2578{
2579 protected:
2580 /* The number of arguments that the IFN requires. */
2581 unsigned m_num_args;
2582
2583 /* The internal function that will be used when a pattern is created. */
2584 internal_fn m_ifn;
2585
2586 /* The current node being inspected. */
2587 slp_tree *m_node;
2588
2589 /* The list of operands to be the children for the node produced when the
2590 internal function is created. */
2591 vec<slp_tree> m_ops;
2592
2593 /* Default constructor where NODE is the root of the tree to inspect. */
2594 vect_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
2595 {
2596 this->m_ifn = ifn;
2597 this->m_node = node;
2598 this->m_ops.create (0);
2599 if (m_ops)
2600 this->m_ops.safe_splice (*m_ops);
2601 }
2602
2603 public:
2604
2605 /* Create a new instance of the pattern matcher class of the given type. */
2606 static vect_pattern* recognize (slp_tree_to_load_perm_map_t *,
2607 slp_compat_nodes_map_t *, slp_tree *);
2608
2609 /* Build the pattern from the data collected so far. */
2610 virtual void build (vec_info *) = 0;
2611
2612 /* Default destructor. */
2613 virtual ~vect_pattern ()
2614 {
2615 this->m_ops.release ();
2616 }
2617};
2618
2619/* Function pointer to create a new pattern matcher from a generic type. */
2620typedef vect_pattern* (*vect_pattern_decl_t) (slp_tree_to_load_perm_map_t *,
2621 slp_compat_nodes_map_t *,
2622 slp_tree *);
2623
2624/* List of supported pattern matchers. */
2625extern vect_pattern_decl_t slp_patterns[];
2626
2627/* Number of supported pattern matchers. */
2628extern size_t num__slp_patterns;
2629
2630/* ----------------------------------------------------------------------
2631 Target support routines
2632 -----------------------------------------------------------------------
2633 The following routines are provided to simplify costing decisions in
2634 target code. Please add more as needed. */
2635
2636/* Return true if an operaton of kind KIND for STMT_INFO represents
2637 the extraction of an element from a vector in preparation for
2638 storing the element to memory. */
2639inline bool
2640vect_is_store_elt_extraction (vect_cost_for_stmt kind, stmt_vec_info stmt_info)
2641{
2642 return (kind == vec_to_scalar
2643 && STMT_VINFO_DATA_REF (stmt_info)
2644 && DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)));
2645}
2646
2647/* Return true if STMT_INFO represents part of a reduction. */
2648inline bool
2649vect_is_reduction (stmt_vec_info stmt_info)
2650{
2651 return STMT_VINFO_REDUC_IDX (stmt_info) >= 0;
2652}
2653
2654/* If STMT_INFO describes a reduction, return the vect_reduction_type
2655 of the reduction it describes, otherwise return -1. */
2656inline int
2657vect_reduc_type (vec_info *vinfo, stmt_vec_info stmt_info)
2658{
2659 if (loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo))
2660 if (STMT_VINFO_REDUC_DEF (stmt_info))
2661 {
2662 stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
2663 return int (STMT_VINFO_REDUC_TYPE (reduc_info));
2664 }
2665 return -1;
2666}
2667
2668/* If STMT_INFO is a COND_EXPR that includes an embedded comparison, return the
2669 scalar type of the values being compared. Return null otherwise. */
2670inline tree
2671vect_embedded_comparison_type (stmt_vec_info stmt_info)
2672{
2673 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2674 if (gimple_assign_rhs_code (assign) == COND_EXPR)
2675 {
2676 tree cond = gimple_assign_rhs1 (assign);
2677 if (COMPARISON_CLASS_P (cond))
2678 return TREE_TYPE (TREE_OPERAND (cond, 0));
2679 }
2680 return NULL_TREE;
2681}
2682
2683/* If STMT_INFO is a comparison or contains an embedded comparison, return the
2684 scalar type of the values being compared. Return null otherwise. */
2685inline tree
2686vect_comparison_type (stmt_vec_info stmt_info)
2687{
2688 if (auto *assign = dyn_cast<gassign *> (stmt_info->stmt))
2689 if (TREE_CODE_CLASS (gimple_assign_rhs_code (assign)) == tcc_comparison)
2690 return TREE_TYPE (gimple_assign_rhs1 (assign));
2691 return vect_embedded_comparison_type (stmt_info);
2692}
2693
2694/* Return true if STMT_INFO extends the result of a load. */
2695inline bool
2696vect_is_extending_load (class vec_info *vinfo, stmt_vec_info stmt_info)
2697{
2698 /* Although this is quite large for an inline function, this part
2699 at least should be inline. */
2700 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2701 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2702 return false;
2703
2704 tree rhs = gimple_assign_rhs1 (stmt_info->stmt);
2705 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2706 tree rhs_type = TREE_TYPE (rhs);
2707 if (!INTEGRAL_TYPE_P (lhs_type)
2708 || !INTEGRAL_TYPE_P (rhs_type)
2709 || TYPE_PRECISION (lhs_type) <= TYPE_PRECISION (rhs_type))
2710 return false;
2711
2712 stmt_vec_info def_stmt_info = vinfo->lookup_def (rhs);
2713 return (def_stmt_info
2714 && STMT_VINFO_DATA_REF (def_stmt_info)
2715 && DR_IS_READ (STMT_VINFO_DATA_REF (def_stmt_info)));
2716}
2717
2718/* Return true if STMT_INFO is an integer truncation. */
2719inline bool
2720vect_is_integer_truncation (stmt_vec_info stmt_info)
2721{
2722 gassign *assign = dyn_cast <gassign *> (stmt_info->stmt);
2723 if (!assign || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign)))
2724 return false;
2725
2726 tree lhs_type = TREE_TYPE (gimple_assign_lhs (assign));
2727 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (assign));
2728 return (INTEGRAL_TYPE_P (lhs_type)
2729 && INTEGRAL_TYPE_P (rhs_type)
2730 && TYPE_PRECISION (lhs_type) < TYPE_PRECISION (rhs_type));
2731}
2732
2733/* Build a GIMPLE_ASSIGN or GIMPLE_CALL with the tree_code,
2734 or internal_fn contained in ch, respectively. */
2735gimple * vect_gimple_build (tree, code_helper, tree, tree = NULL_TREE);
2736#endif /* GCC_TREE_VECTORIZER_H */
This page took 0.046401 seconds and 6 git commands to generate.