]> gcc.gnu.org Git - gcc.git/blame_incremental - gcc/stmt.c
(call_insn_operand): New funcion.
[gcc.git] / gcc / stmt.c
... / ...
CommitLineData
1/* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file handles the generation of rtl code from tree structure
22 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
23 It also creates the rtl expressions for parameters and auto variables
24 and has full responsibility for allocating stack slots.
25
26 The functions whose names start with `expand_' are called by the
27 parser to generate RTL instructions for various kinds of constructs.
28
29 Some control and binding constructs require calling several such
30 functions at different times. For example, a simple if-then
31 is expanded by calling `expand_start_cond' (with the condition-expression
32 as argument) before parsing the then-clause and calling `expand_end_cond'
33 after parsing the then-clause. */
34
35#include "config.h"
36
37#include <stdio.h>
38#include <ctype.h>
39
40#include "rtl.h"
41#include "tree.h"
42#include "flags.h"
43#include "function.h"
44#include "insn-flags.h"
45#include "insn-config.h"
46#include "insn-codes.h"
47#include "expr.h"
48#include "hard-reg-set.h"
49#include "obstack.h"
50#include "loop.h"
51#include "recog.h"
52
53#define obstack_chunk_alloc xmalloc
54#define obstack_chunk_free free
55struct obstack stmt_obstack;
56
57/* Filename and line number of last line-number note,
58 whether we actually emitted it or not. */
59char *emit_filename;
60int emit_lineno;
61
62/* Nonzero if within a ({...}) grouping, in which case we must
63 always compute a value for each expr-stmt in case it is the last one. */
64
65int expr_stmts_for_value;
66
67/* Each time we expand an expression-statement,
68 record the expr's type and its RTL value here. */
69
70static tree last_expr_type;
71static rtx last_expr_value;
72
73/* Each time we expand the end of a binding contour (in `expand_end_bindings')
74 and we emit a new NOTE_INSN_BLOCK_END note, we save a pointer to it here.
75 This is used by the `remember_end_note' function to record the endpoint
76 of each generated block in its associated BLOCK node. */
77
78static rtx last_block_end_note;
79
80/* Number of binding contours started so far in this function. */
81
82int block_start_count;
83
84/* Nonzero if function being compiled needs to
85 return the address of where it has put a structure value. */
86
87extern int current_function_returns_pcc_struct;
88
89/* Label that will go on parm cleanup code, if any.
90 Jumping to this label runs cleanup code for parameters, if
91 such code must be run. Following this code is the logical return label. */
92
93extern rtx cleanup_label;
94
95/* Label that will go on function epilogue.
96 Jumping to this label serves as a "return" instruction
97 on machines which require execution of the epilogue on all returns. */
98
99extern rtx return_label;
100
101/* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs.
102 So we can mark them all live at the end of the function, if nonopt. */
103extern rtx save_expr_regs;
104
105/* Offset to end of allocated area of stack frame.
106 If stack grows down, this is the address of the last stack slot allocated.
107 If stack grows up, this is the address for the next slot. */
108extern int frame_offset;
109
110/* Label to jump back to for tail recursion, or 0 if we have
111 not yet needed one for this function. */
112extern rtx tail_recursion_label;
113
114/* Place after which to insert the tail_recursion_label if we need one. */
115extern rtx tail_recursion_reentry;
116
117/* Location at which to save the argument pointer if it will need to be
118 referenced. There are two cases where this is done: if nonlocal gotos
119 exist, or if vars whose is an offset from the argument pointer will be
120 needed by inner routines. */
121
122extern rtx arg_pointer_save_area;
123
124/* Chain of all RTL_EXPRs that have insns in them. */
125extern tree rtl_expr_chain;
126
127#if 0 /* Turned off because 0 seems to work just as well. */
128/* Cleanup lists are required for binding levels regardless of whether
129 that binding level has cleanups or not. This node serves as the
130 cleanup list whenever an empty list is required. */
131static tree empty_cleanup_list;
132#endif
133\f
134/* Functions and data structures for expanding case statements. */
135
136/* Case label structure, used to hold info on labels within case
137 statements. We handle "range" labels; for a single-value label
138 as in C, the high and low limits are the same.
139
140 A chain of case nodes is initially maintained via the RIGHT fields
141 in the nodes. Nodes with higher case values are later in the list.
142
143 Switch statements can be output in one of two forms. A branch table
144 is used if there are more than a few labels and the labels are dense
145 within the range between the smallest and largest case value. If a
146 branch table is used, no further manipulations are done with the case
147 node chain.
148
149 The alternative to the use of a branch table is to generate a series
150 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
151 and PARENT fields to hold a binary tree. Initially the tree is
152 totally unbalanced, with everything on the right. We balance the tree
153 with nodes on the left having lower case values than the parent
154 and nodes on the right having higher values. We then output the tree
155 in order. */
156
157struct case_node
158{
159 struct case_node *left; /* Left son in binary tree */
160 struct case_node *right; /* Right son in binary tree; also node chain */
161 struct case_node *parent; /* Parent of node in binary tree */
162 tree low; /* Lowest index value for this label */
163 tree high; /* Highest index value for this label */
164 tree code_label; /* Label to jump to when node matches */
165};
166
167typedef struct case_node case_node;
168typedef struct case_node *case_node_ptr;
169
170/* These are used by estimate_case_costs and balance_case_nodes. */
171
172/* This must be a signed type, and non-ANSI compilers lack signed char. */
173static short *cost_table;
174static int use_cost_table;
175
176static int estimate_case_costs ();
177static void balance_case_nodes ();
178static void emit_case_nodes ();
179static void group_case_nodes ();
180static void emit_jump_if_reachable ();
181
182static int warn_if_unused_value ();
183static void expand_goto_internal ();
184static int expand_fixup ();
185void fixup_gotos ();
186void free_temp_slots ();
187static void expand_cleanups ();
188static void expand_null_return_1 ();
189static int tail_recursion_args ();
190static void do_jump_if_equal ();
191\f
192/* Stack of control and binding constructs we are currently inside.
193
194 These constructs begin when you call `expand_start_WHATEVER'
195 and end when you call `expand_end_WHATEVER'. This stack records
196 info about how the construct began that tells the end-function
197 what to do. It also may provide information about the construct
198 to alter the behavior of other constructs within the body.
199 For example, they may affect the behavior of C `break' and `continue'.
200
201 Each construct gets one `struct nesting' object.
202 All of these objects are chained through the `all' field.
203 `nesting_stack' points to the first object (innermost construct).
204 The position of an entry on `nesting_stack' is in its `depth' field.
205
206 Each type of construct has its own individual stack.
207 For example, loops have `loop_stack'. Each object points to the
208 next object of the same type through the `next' field.
209
210 Some constructs are visible to `break' exit-statements and others
211 are not. Which constructs are visible depends on the language.
212 Therefore, the data structure allows each construct to be visible
213 or not, according to the args given when the construct is started.
214 The construct is visible if the `exit_label' field is non-null.
215 In that case, the value should be a CODE_LABEL rtx. */
216
217struct nesting
218{
219 struct nesting *all;
220 struct nesting *next;
221 int depth;
222 rtx exit_label;
223 union
224 {
225 /* For conds (if-then and if-then-else statements). */
226 struct
227 {
228 /* Label for the end of the if construct.
229 There is none if EXITFLAG was not set
230 and no `else' has been seen yet. */
231 rtx endif_label;
232 /* Label for the end of this alternative.
233 This may be the end of the if or the next else/elseif. */
234 rtx next_label;
235 } cond;
236 /* For loops. */
237 struct
238 {
239 /* Label at the top of the loop; place to loop back to. */
240 rtx start_label;
241 /* Label at the end of the whole construct. */
242 rtx end_label;
243 /* Label for `continue' statement to jump to;
244 this is in front of the stepper of the loop. */
245 rtx continue_label;
246 } loop;
247 /* For variable binding contours. */
248 struct
249 {
250 /* Sequence number of this binding contour within the function,
251 in order of entry. */
252 int block_start_count;
253 /* Nonzero => value to restore stack to on exit. */
254 rtx stack_level;
255 /* The NOTE that starts this contour.
256 Used by expand_goto to check whether the destination
257 is within each contour or not. */
258 rtx first_insn;
259 /* Innermost containing binding contour that has a stack level. */
260 struct nesting *innermost_stack_block;
261 /* List of cleanups to be run on exit from this contour.
262 This is a list of expressions to be evaluated.
263 The TREE_PURPOSE of each link is the ..._DECL node
264 which the cleanup pertains to. */
265 tree cleanups;
266 /* List of cleanup-lists of blocks containing this block,
267 as they were at the locus where this block appears.
268 There is an element for each containing block,
269 ordered innermost containing block first.
270 The tail of this list can be 0 (was empty_cleanup_list),
271 if all remaining elements would be empty lists.
272 The element's TREE_VALUE is the cleanup-list of that block,
273 which may be null. */
274 tree outer_cleanups;
275 /* Chain of labels defined inside this binding contour.
276 For contours that have stack levels or cleanups. */
277 struct label_chain *label_chain;
278 /* Number of function calls seen, as of start of this block. */
279 int function_call_count;
280 } block;
281 /* For switch (C) or case (Pascal) statements,
282 and also for dummies (see `expand_start_case_dummy'). */
283 struct
284 {
285 /* The insn after which the case dispatch should finally
286 be emitted. Zero for a dummy. */
287 rtx start;
288 /* A list of case labels, kept in ascending order by value
289 as the list is built.
290 During expand_end_case, this list may be rearranged into a
291 nearly balanced binary tree. */
292 struct case_node *case_list;
293 /* Label to jump to if no case matches. */
294 tree default_label;
295 /* The expression to be dispatched on. */
296 tree index_expr;
297 /* Type that INDEX_EXPR should be converted to. */
298 tree nominal_type;
299 /* Number of range exprs in case statement. */
300 int num_ranges;
301 /* Name of this kind of statement, for warnings. */
302 char *printname;
303 /* Nonzero if a case label has been seen in this case stmt. */
304 char seenlabel;
305 } case_stmt;
306 /* For exception contours. */
307 struct
308 {
309 /* List of exceptions raised. This is a TREE_LIST
310 of whatever you want. */
311 tree raised;
312 /* List of exceptions caught. This is also a TREE_LIST
313 of whatever you want. As a special case, it has the
314 value `void_type_node' if it handles default exceptions. */
315 tree handled;
316
317 /* First insn of TRY block, in case resumptive model is needed. */
318 rtx first_insn;
319 /* Label for the catch clauses. */
320 rtx except_label;
321 /* Label for unhandled exceptions. */
322 rtx unhandled_label;
323 /* Label at the end of whole construct. */
324 rtx after_label;
325 /* Label which "escapes" the exception construct.
326 Like EXIT_LABEL for BREAK construct, but for exceptions. */
327 rtx escape_label;
328 } except_stmt;
329 } data;
330};
331
332/* Chain of all pending binding contours. */
333struct nesting *block_stack;
334
335/* If any new stacks are added here, add them to POPSTACKS too. */
336
337/* Chain of all pending binding contours that restore stack levels
338 or have cleanups. */
339struct nesting *stack_block_stack;
340
341/* Chain of all pending conditional statements. */
342struct nesting *cond_stack;
343
344/* Chain of all pending loops. */
345struct nesting *loop_stack;
346
347/* Chain of all pending case or switch statements. */
348struct nesting *case_stack;
349
350/* Chain of all pending exception contours. */
351struct nesting *except_stack;
352
353/* Separate chain including all of the above,
354 chained through the `all' field. */
355struct nesting *nesting_stack;
356
357/* Number of entries on nesting_stack now. */
358int nesting_depth;
359
360/* Allocate and return a new `struct nesting'. */
361
362#define ALLOC_NESTING() \
363 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
364
365/* Pop the nesting stack element by element until we pop off
366 the element which is at the top of STACK.
367 Update all the other stacks, popping off elements from them
368 as we pop them from nesting_stack. */
369
370#define POPSTACK(STACK) \
371do { struct nesting *target = STACK; \
372 struct nesting *this; \
373 do { this = nesting_stack; \
374 if (loop_stack == this) \
375 loop_stack = loop_stack->next; \
376 if (cond_stack == this) \
377 cond_stack = cond_stack->next; \
378 if (block_stack == this) \
379 block_stack = block_stack->next; \
380 if (stack_block_stack == this) \
381 stack_block_stack = stack_block_stack->next; \
382 if (case_stack == this) \
383 case_stack = case_stack->next; \
384 if (except_stack == this) \
385 except_stack = except_stack->next; \
386 nesting_depth = nesting_stack->depth - 1; \
387 nesting_stack = this->all; \
388 obstack_free (&stmt_obstack, this); } \
389 while (this != target); } while (0)
390\f
391/* In some cases it is impossible to generate code for a forward goto
392 until the label definition is seen. This happens when it may be necessary
393 for the goto to reset the stack pointer: we don't yet know how to do that.
394 So expand_goto puts an entry on this fixup list.
395 Each time a binding contour that resets the stack is exited,
396 we check each fixup.
397 If the target label has now been defined, we can insert the proper code. */
398
399struct goto_fixup
400{
401 /* Points to following fixup. */
402 struct goto_fixup *next;
403 /* Points to the insn before the jump insn.
404 If more code must be inserted, it goes after this insn. */
405 rtx before_jump;
406 /* The LABEL_DECL that this jump is jumping to, or 0
407 for break, continue or return. */
408 tree target;
409 /* The BLOCK for the place where this goto was found. */
410 tree context;
411 /* The CODE_LABEL rtx that this is jumping to. */
412 rtx target_rtl;
413 /* Number of binding contours started in current function
414 before the label reference. */
415 int block_start_count;
416 /* The outermost stack level that should be restored for this jump.
417 Each time a binding contour that resets the stack is exited,
418 if the target label is *not* yet defined, this slot is updated. */
419 rtx stack_level;
420 /* List of lists of cleanup expressions to be run by this goto.
421 There is one element for each block that this goto is within.
422 The tail of this list can be 0 (was empty_cleanup_list),
423 if all remaining elements would be empty.
424 The TREE_VALUE contains the cleanup list of that block as of the
425 time this goto was seen.
426 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
427 tree cleanup_list_list;
428};
429
430static struct goto_fixup *goto_fixup_chain;
431
432/* Within any binding contour that must restore a stack level,
433 all labels are recorded with a chain of these structures. */
434
435struct label_chain
436{
437 /* Points to following fixup. */
438 struct label_chain *next;
439 tree label;
440};
441\f
442void
443init_stmt ()
444{
445 gcc_obstack_init (&stmt_obstack);
446#if 0
447 empty_cleanup_list = build_tree_list (NULL_TREE, NULL_TREE);
448#endif
449}
450
451void
452init_stmt_for_function ()
453{
454 /* We are not currently within any block, conditional, loop or case. */
455 block_stack = 0;
456 loop_stack = 0;
457 case_stack = 0;
458 cond_stack = 0;
459 nesting_stack = 0;
460 nesting_depth = 0;
461
462 block_start_count = 0;
463
464 /* No gotos have been expanded yet. */
465 goto_fixup_chain = 0;
466
467 /* We are not processing a ({...}) grouping. */
468 expr_stmts_for_value = 0;
469 last_expr_type = 0;
470}
471
472void
473save_stmt_status (p)
474 struct function *p;
475{
476 p->block_stack = block_stack;
477 p->stack_block_stack = stack_block_stack;
478 p->cond_stack = cond_stack;
479 p->loop_stack = loop_stack;
480 p->case_stack = case_stack;
481 p->nesting_stack = nesting_stack;
482 p->nesting_depth = nesting_depth;
483 p->block_start_count = block_start_count;
484 p->last_expr_type = last_expr_type;
485 p->last_expr_value = last_expr_value;
486 p->expr_stmts_for_value = expr_stmts_for_value;
487 p->emit_filename = emit_filename;
488 p->emit_lineno = emit_lineno;
489 p->goto_fixup_chain = goto_fixup_chain;
490}
491
492void
493restore_stmt_status (p)
494 struct function *p;
495{
496 block_stack = p->block_stack;
497 stack_block_stack = p->stack_block_stack;
498 cond_stack = p->cond_stack;
499 loop_stack = p->loop_stack;
500 case_stack = p->case_stack;
501 nesting_stack = p->nesting_stack;
502 nesting_depth = p->nesting_depth;
503 block_start_count = p->block_start_count;
504 last_expr_type = p->last_expr_type;
505 last_expr_value = p->last_expr_value;
506 expr_stmts_for_value = p->expr_stmts_for_value;
507 emit_filename = p->emit_filename;
508 emit_lineno = p->emit_lineno;
509 goto_fixup_chain = p->goto_fixup_chain;
510}
511\f
512/* Emit a no-op instruction. */
513
514void
515emit_nop ()
516{
517 rtx last_insn = get_last_insn ();
518 if (!optimize
519 && (GET_CODE (last_insn) == CODE_LABEL
520 || prev_real_insn (last_insn) == 0))
521 emit_insn (gen_nop ());
522}
523\f
524/* Return the rtx-label that corresponds to a LABEL_DECL,
525 creating it if necessary. */
526
527rtx
528label_rtx (label)
529 tree label;
530{
531 if (TREE_CODE (label) != LABEL_DECL)
532 abort ();
533
534 if (DECL_RTL (label))
535 return DECL_RTL (label);
536
537 return DECL_RTL (label) = gen_label_rtx ();
538}
539
540/* Add an unconditional jump to LABEL as the next sequential instruction. */
541
542void
543emit_jump (label)
544 rtx label;
545{
546 do_pending_stack_adjust ();
547 emit_jump_insn (gen_jump (label));
548 emit_barrier ();
549}
550
551/* Emit code to jump to the address
552 specified by the pointer expression EXP. */
553
554void
555expand_computed_goto (exp)
556 tree exp;
557{
558 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
559 emit_queue ();
560 emit_indirect_jump (x);
561}
562\f
563/* Handle goto statements and the labels that they can go to. */
564
565/* Specify the location in the RTL code of a label LABEL,
566 which is a LABEL_DECL tree node.
567
568 This is used for the kind of label that the user can jump to with a
569 goto statement, and for alternatives of a switch or case statement.
570 RTL labels generated for loops and conditionals don't go through here;
571 they are generated directly at the RTL level, by other functions below.
572
573 Note that this has nothing to do with defining label *names*.
574 Languages vary in how they do that and what that even means. */
575
576void
577expand_label (label)
578 tree label;
579{
580 struct label_chain *p;
581
582 do_pending_stack_adjust ();
583 emit_label (label_rtx (label));
584 if (DECL_NAME (label))
585 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
586
587 if (stack_block_stack != 0)
588 {
589 p = (struct label_chain *) oballoc (sizeof (struct label_chain));
590 p->next = stack_block_stack->data.block.label_chain;
591 stack_block_stack->data.block.label_chain = p;
592 p->label = label;
593 }
594}
595
596/* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
597 from nested functions. */
598
599void
600declare_nonlocal_label (label)
601 tree label;
602{
603 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
604 LABEL_PRESERVE_P (label_rtx (label)) = 1;
605 if (nonlocal_goto_handler_slot == 0)
606 {
607 nonlocal_goto_handler_slot
608 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
609 emit_stack_save (SAVE_NONLOCAL,
610 &nonlocal_goto_stack_level,
611 PREV_INSN (tail_recursion_reentry));
612 }
613}
614
615/* Generate RTL code for a `goto' statement with target label LABEL.
616 LABEL should be a LABEL_DECL tree node that was or will later be
617 defined with `expand_label'. */
618
619void
620expand_goto (label)
621 tree label;
622{
623 /* Check for a nonlocal goto to a containing function. */
624 tree context = decl_function_context (label);
625 if (context != 0 && context != current_function_decl)
626 {
627 struct function *p = find_function_data (context);
628 rtx label_ref = gen_rtx (LABEL_REF, Pmode, label_rtx (label));
629 rtx temp;
630
631 p->has_nonlocal_label = 1;
632 LABEL_REF_NONLOCAL_P (label_ref) = 1;
633
634 /* Copy the rtl for the slots so that they won't be shared in
635 case the virtual stack vars register gets instantiated differently
636 in the parent than in the child. */
637
638#if HAVE_nonlocal_goto
639 if (HAVE_nonlocal_goto)
640 emit_insn (gen_nonlocal_goto (lookup_static_chain (label),
641 copy_rtx (p->nonlocal_goto_handler_slot),
642 copy_rtx (p->nonlocal_goto_stack_level),
643 label_ref));
644 else
645#endif
646 {
647 rtx addr;
648
649 /* Restore frame pointer for containing function.
650 This sets the actual hard register used for the frame pointer
651 to the location of the function's incoming static chain info.
652 The non-local goto handler will then adjust it to contain the
653 proper value and reload the argument pointer, if needed. */
654 emit_move_insn (frame_pointer_rtx, lookup_static_chain (label));
655
656 /* We have now loaded the frame pointer hardware register with
657 the address of that corresponds to the start of the virtual
658 stack vars. So replace virtual_stack_vars_rtx in all
659 addresses we use with stack_pointer_rtx. */
660
661 /* Get addr of containing function's current nonlocal goto handler,
662 which will do any cleanups and then jump to the label. */
663 addr = copy_rtx (p->nonlocal_goto_handler_slot);
664 temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx,
665 frame_pointer_rtx));
666
667 /* Restore the stack pointer. Note this uses fp just restored. */
668 addr = p->nonlocal_goto_stack_level;
669 if (addr)
670 addr = replace_rtx (copy_rtx (addr),
671 virtual_stack_vars_rtx, frame_pointer_rtx);
672
673 emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX);
674
675 /* Put in the static chain register the nonlocal label address. */
676 emit_move_insn (static_chain_rtx, label_ref);
677 /* USE of frame_pointer_rtx added for consistency; not clear if
678 really needed. */
679 emit_insn (gen_rtx (USE, VOIDmode, frame_pointer_rtx));
680 emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx));
681 emit_insn (gen_rtx (USE, VOIDmode, static_chain_rtx));
682 emit_indirect_jump (temp);
683 }
684 }
685 else
686 expand_goto_internal (label, label_rtx (label), NULL_RTX);
687}
688
689/* Generate RTL code for a `goto' statement with target label BODY.
690 LABEL should be a LABEL_REF.
691 LAST_INSN, if non-0, is the rtx we should consider as the last
692 insn emitted (for the purposes of cleaning up a return). */
693
694static void
695expand_goto_internal (body, label, last_insn)
696 tree body;
697 rtx label;
698 rtx last_insn;
699{
700 struct nesting *block;
701 rtx stack_level = 0;
702
703 if (GET_CODE (label) != CODE_LABEL)
704 abort ();
705
706 /* If label has already been defined, we can tell now
707 whether and how we must alter the stack level. */
708
709 if (PREV_INSN (label) != 0)
710 {
711 /* Find the innermost pending block that contains the label.
712 (Check containment by comparing insn-uids.)
713 Then restore the outermost stack level within that block,
714 and do cleanups of all blocks contained in it. */
715 for (block = block_stack; block; block = block->next)
716 {
717 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
718 break;
719 if (block->data.block.stack_level != 0)
720 stack_level = block->data.block.stack_level;
721 /* Execute the cleanups for blocks we are exiting. */
722 if (block->data.block.cleanups != 0)
723 {
724 expand_cleanups (block->data.block.cleanups, NULL_TREE);
725 do_pending_stack_adjust ();
726 }
727 }
728
729 if (stack_level)
730 {
731 /* Ensure stack adjust isn't done by emit_jump, as this would clobber
732 the stack pointer. This one should be deleted as dead by flow. */
733 clear_pending_stack_adjust ();
734 do_pending_stack_adjust ();
735 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
736 }
737
738 if (body != 0 && DECL_TOO_LATE (body))
739 error ("jump to `%s' invalidly jumps into binding contour",
740 IDENTIFIER_POINTER (DECL_NAME (body)));
741 }
742 /* Label not yet defined: may need to put this goto
743 on the fixup list. */
744 else if (! expand_fixup (body, label, last_insn))
745 {
746 /* No fixup needed. Record that the label is the target
747 of at least one goto that has no fixup. */
748 if (body != 0)
749 TREE_ADDRESSABLE (body) = 1;
750 }
751
752 emit_jump (label);
753}
754\f
755/* Generate if necessary a fixup for a goto
756 whose target label in tree structure (if any) is TREE_LABEL
757 and whose target in rtl is RTL_LABEL.
758
759 If LAST_INSN is nonzero, we pretend that the jump appears
760 after insn LAST_INSN instead of at the current point in the insn stream.
761
762 The fixup will be used later to insert insns just before the goto.
763 Those insns will restore the stack level as appropriate for the
764 target label, and will (in the case of C++) also invoke any object
765 destructors which have to be invoked when we exit the scopes which
766 are exited by the goto.
767
768 Value is nonzero if a fixup is made. */
769
770static int
771expand_fixup (tree_label, rtl_label, last_insn)
772 tree tree_label;
773 rtx rtl_label;
774 rtx last_insn;
775{
776 struct nesting *block, *end_block;
777
778 /* See if we can recognize which block the label will be output in.
779 This is possible in some very common cases.
780 If we succeed, set END_BLOCK to that block.
781 Otherwise, set it to 0. */
782
783 if (cond_stack
784 && (rtl_label == cond_stack->data.cond.endif_label
785 || rtl_label == cond_stack->data.cond.next_label))
786 end_block = cond_stack;
787 /* If we are in a loop, recognize certain labels which
788 are likely targets. This reduces the number of fixups
789 we need to create. */
790 else if (loop_stack
791 && (rtl_label == loop_stack->data.loop.start_label
792 || rtl_label == loop_stack->data.loop.end_label
793 || rtl_label == loop_stack->data.loop.continue_label))
794 end_block = loop_stack;
795 else
796 end_block = 0;
797
798 /* Now set END_BLOCK to the binding level to which we will return. */
799
800 if (end_block)
801 {
802 struct nesting *next_block = end_block->all;
803 block = block_stack;
804
805 /* First see if the END_BLOCK is inside the innermost binding level.
806 If so, then no cleanups or stack levels are relevant. */
807 while (next_block && next_block != block)
808 next_block = next_block->all;
809
810 if (next_block)
811 return 0;
812
813 /* Otherwise, set END_BLOCK to the innermost binding level
814 which is outside the relevant control-structure nesting. */
815 next_block = block_stack->next;
816 for (block = block_stack; block != end_block; block = block->all)
817 if (block == next_block)
818 next_block = next_block->next;
819 end_block = next_block;
820 }
821
822 /* Does any containing block have a stack level or cleanups?
823 If not, no fixup is needed, and that is the normal case
824 (the only case, for standard C). */
825 for (block = block_stack; block != end_block; block = block->next)
826 if (block->data.block.stack_level != 0
827 || block->data.block.cleanups != 0)
828 break;
829
830 if (block != end_block)
831 {
832 /* Ok, a fixup is needed. Add a fixup to the list of such. */
833 struct goto_fixup *fixup
834 = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup));
835 /* In case an old stack level is restored, make sure that comes
836 after any pending stack adjust. */
837 /* ?? If the fixup isn't to come at the present position,
838 doing the stack adjust here isn't useful. Doing it with our
839 settings at that location isn't useful either. Let's hope
840 someone does it! */
841 if (last_insn == 0)
842 do_pending_stack_adjust ();
843 fixup->target = tree_label;
844 fixup->target_rtl = rtl_label;
845
846 /* Create a BLOCK node and a corresponding matched set of
847 NOTE_INSN_BEGIN_BLOCK and NOTE_INSN_END_BLOCK notes at
848 this point. The notes will encapsulate any and all fixup
849 code which we might later insert at this point in the insn
850 stream. Also, the BLOCK node will be the parent (i.e. the
851 `SUPERBLOCK') of any other BLOCK nodes which we might create
852 later on when we are expanding the fixup code. */
853
854 {
855 register rtx original_before_jump
856 = last_insn ? last_insn : get_last_insn ();
857
858 start_sequence ();
859 pushlevel (0);
860 fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
861 last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
862 fixup->context = poplevel (1, 0, 0); /* Create the BLOCK node now! */
863 end_sequence ();
864 emit_insns_after (fixup->before_jump, original_before_jump);
865 }
866
867 fixup->block_start_count = block_start_count;
868 fixup->stack_level = 0;
869 fixup->cleanup_list_list
870 = (((block->data.block.outer_cleanups
871#if 0
872 && block->data.block.outer_cleanups != empty_cleanup_list
873#endif
874 )
875 || block->data.block.cleanups)
876 ? tree_cons (NULL_TREE, block->data.block.cleanups,
877 block->data.block.outer_cleanups)
878 : 0);
879 fixup->next = goto_fixup_chain;
880 goto_fixup_chain = fixup;
881 }
882
883 return block != 0;
884}
885
886/* When exiting a binding contour, process all pending gotos requiring fixups.
887 THISBLOCK is the structure that describes the block being exited.
888 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
889 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
890 FIRST_INSN is the insn that began this contour.
891
892 Gotos that jump out of this contour must restore the
893 stack level and do the cleanups before actually jumping.
894
895 DONT_JUMP_IN nonzero means report error there is a jump into this
896 contour from before the beginning of the contour.
897 This is also done if STACK_LEVEL is nonzero. */
898
899void
900fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
901 struct nesting *thisblock;
902 rtx stack_level;
903 tree cleanup_list;
904 rtx first_insn;
905 int dont_jump_in;
906{
907 register struct goto_fixup *f, *prev;
908
909 /* F is the fixup we are considering; PREV is the previous one. */
910 /* We run this loop in two passes so that cleanups of exited blocks
911 are run first, and blocks that are exited are marked so
912 afterwards. */
913
914 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
915 {
916 /* Test for a fixup that is inactive because it is already handled. */
917 if (f->before_jump == 0)
918 {
919 /* Delete inactive fixup from the chain, if that is easy to do. */
920 if (prev != 0)
921 prev->next = f->next;
922 }
923 /* Has this fixup's target label been defined?
924 If so, we can finalize it. */
925 else if (PREV_INSN (f->target_rtl) != 0)
926 {
927 register rtx cleanup_insns;
928
929 /* Get the first non-label after the label
930 this goto jumps to. If that's before this scope begins,
931 we don't have a jump into the scope. */
932 rtx after_label = f->target_rtl;
933 while (after_label != 0 && GET_CODE (after_label) == CODE_LABEL)
934 after_label = NEXT_INSN (after_label);
935
936 /* If this fixup jumped into this contour from before the beginning
937 of this contour, report an error. */
938 /* ??? Bug: this does not detect jumping in through intermediate
939 blocks that have stack levels or cleanups.
940 It detects only a problem with the innermost block
941 around the label. */
942 if (f->target != 0
943 && (dont_jump_in || stack_level || cleanup_list)
944 /* If AFTER_LABEL is 0, it means the jump goes to the end
945 of the rtl, which means it jumps into this scope. */
946 && (after_label == 0
947 || INSN_UID (first_insn) < INSN_UID (after_label))
948 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
949 && ! DECL_REGISTER (f->target))
950 {
951 error_with_decl (f->target,
952 "label `%s' used before containing binding contour");
953 /* Prevent multiple errors for one label. */
954 DECL_REGISTER (f->target) = 1;
955 }
956
957 /* We will expand the cleanups into a sequence of their own and
958 then later on we will attach this new sequence to the insn
959 stream just ahead of the actual jump insn. */
960
961 start_sequence ();
962
963 /* Temporarily restore the lexical context where we will
964 logically be inserting the fixup code. We do this for the
965 sake of getting the debugging information right. */
966
967 pushlevel (0);
968 set_block (f->context);
969
970 /* Expand the cleanups for blocks this jump exits. */
971 if (f->cleanup_list_list)
972 {
973 tree lists;
974 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
975 /* Marked elements correspond to blocks that have been closed.
976 Do their cleanups. */
977 if (TREE_ADDRESSABLE (lists)
978 && TREE_VALUE (lists) != 0)
979 {
980 expand_cleanups (TREE_VALUE (lists), 0);
981 /* Pop any pushes done in the cleanups,
982 in case function is about to return. */
983 do_pending_stack_adjust ();
984 }
985 }
986
987 /* Restore stack level for the biggest contour that this
988 jump jumps out of. */
989 if (f->stack_level)
990 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
991
992 /* Finish up the sequence containing the insns which implement the
993 necessary cleanups, and then attach that whole sequence to the
994 insn stream just ahead of the actual jump insn. Attaching it
995 at that point insures that any cleanups which are in fact
996 implicit C++ object destructions (which must be executed upon
997 leaving the block) appear (to the debugger) to be taking place
998 in an area of the generated code where the object(s) being
999 destructed are still "in scope". */
1000
1001 cleanup_insns = get_insns ();
1002 poplevel (1, 0, 0);
1003
1004 end_sequence ();
1005 emit_insns_after (cleanup_insns, f->before_jump);
1006
1007
1008 f->before_jump = 0;
1009 }
1010 }
1011
1012 /* Mark the cleanups of exited blocks so that they are executed
1013 by the code above. */
1014 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1015 if (f->before_jump != 0
1016 && PREV_INSN (f->target_rtl) == 0
1017 /* Label has still not appeared. If we are exiting a block with
1018 a stack level to restore, that started before the fixup,
1019 mark this stack level as needing restoration
1020 when the fixup is later finalized.
1021 Also mark the cleanup_list_list element for F
1022 that corresponds to this block, so that ultimately
1023 this block's cleanups will be executed by the code above. */
1024 && thisblock != 0
1025 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared,
1026 it means the label is undefined. That's erroneous, but possible. */
1027 && (thisblock->data.block.block_start_count
1028 <= f->block_start_count))
1029 {
1030 tree lists = f->cleanup_list_list;
1031 for (; lists; lists = TREE_CHAIN (lists))
1032 /* If the following elt. corresponds to our containing block
1033 then the elt. must be for this block. */
1034 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1035 TREE_ADDRESSABLE (lists) = 1;
1036
1037 if (stack_level)
1038 f->stack_level = stack_level;
1039 }
1040}
1041\f
1042/* Generate RTL for an asm statement (explicit assembler code).
1043 BODY is a STRING_CST node containing the assembler code text,
1044 or an ADDR_EXPR containing a STRING_CST. */
1045
1046void
1047expand_asm (body)
1048 tree body;
1049{
1050 if (TREE_CODE (body) == ADDR_EXPR)
1051 body = TREE_OPERAND (body, 0);
1052
1053 emit_insn (gen_rtx (ASM_INPUT, VOIDmode,
1054 TREE_STRING_POINTER (body)));
1055 last_expr_type = 0;
1056}
1057
1058/* Generate RTL for an asm statement with arguments.
1059 STRING is the instruction template.
1060 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1061 Each output or input has an expression in the TREE_VALUE and
1062 a constraint-string in the TREE_PURPOSE.
1063 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1064 that is clobbered by this insn.
1065
1066 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1067 Some elements of OUTPUTS may be replaced with trees representing temporary
1068 values. The caller should copy those temporary values to the originally
1069 specified lvalues.
1070
1071 VOL nonzero means the insn is volatile; don't optimize it. */
1072
1073void
1074expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1075 tree string, outputs, inputs, clobbers;
1076 int vol;
1077 char *filename;
1078 int line;
1079{
1080 rtvec argvec, constraints;
1081 rtx body;
1082 int ninputs = list_length (inputs);
1083 int noutputs = list_length (outputs);
1084 int nclobbers;
1085 tree tail;
1086 register int i;
1087 /* Vector of RTX's of evaluated output operands. */
1088 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1089 /* The insn we have emitted. */
1090 rtx insn;
1091
1092 /* Count the number of meaningful clobbered registers, ignoring what
1093 we would ignore later. */
1094 nclobbers = 0;
1095 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1096 {
1097 char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1098 i = decode_reg_name (regname);
1099 if (i >= 0 || i == -4)
1100 ++nclobbers;
1101 }
1102
1103 last_expr_type = 0;
1104
1105 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1106 {
1107 tree val = TREE_VALUE (tail);
1108 tree val1;
1109 int j;
1110 int found_equal;
1111
1112 /* If there's an erroneous arg, emit no insn. */
1113 if (TREE_TYPE (val) == error_mark_node)
1114 return;
1115
1116 /* Make sure constraint has `=' and does not have `+'. */
1117
1118 found_equal = 0;
1119 for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
1120 {
1121 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
1122 {
1123 error ("output operand constraint contains `+'");
1124 return;
1125 }
1126 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '=')
1127 found_equal = 1;
1128 }
1129 if (! found_equal)
1130 {
1131 error ("output operand constraint lacks `='");
1132 return;
1133 }
1134
1135 /* If an output operand is not a variable or indirect ref,
1136 or a part of one,
1137 create a SAVE_EXPR which is a pseudo-reg
1138 to act as an intermediate temporary.
1139 Make the asm insn write into that, then copy it to
1140 the real output operand. */
1141
1142 while (TREE_CODE (val) == COMPONENT_REF
1143 || TREE_CODE (val) == ARRAY_REF)
1144 val = TREE_OPERAND (val, 0);
1145
1146 if (TREE_CODE (val) != VAR_DECL
1147 && TREE_CODE (val) != PARM_DECL
1148 && TREE_CODE (val) != INDIRECT_REF)
1149 TREE_VALUE (tail) = save_expr (TREE_VALUE (tail));
1150
1151 output_rtx[i] = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1152 }
1153
1154 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1155 {
1156 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1157 return;
1158 }
1159
1160 /* Make vectors for the expression-rtx and constraint strings. */
1161
1162 argvec = rtvec_alloc (ninputs);
1163 constraints = rtvec_alloc (ninputs);
1164
1165 body = gen_rtx (ASM_OPERANDS, VOIDmode,
1166 TREE_STRING_POINTER (string), "", 0, argvec, constraints,
1167 filename, line);
1168 MEM_VOLATILE_P (body) = vol;
1169
1170 /* Eval the inputs and put them into ARGVEC.
1171 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1172
1173 i = 0;
1174 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1175 {
1176 int j;
1177
1178 /* If there's an erroneous arg, emit no insn,
1179 because the ASM_INPUT would get VOIDmode
1180 and that could cause a crash in reload. */
1181 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1182 return;
1183 if (TREE_PURPOSE (tail) == NULL_TREE)
1184 {
1185 error ("hard register `%s' listed as input operand to `asm'",
1186 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1187 return;
1188 }
1189
1190 /* Make sure constraint has neither `=' nor `+'. */
1191
1192 for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++)
1193 if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '='
1194 || TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+')
1195 {
1196 error ("input operand constraint contains `%c'",
1197 TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]);
1198 return;
1199 }
1200
1201 XVECEXP (body, 3, i) /* argvec */
1202 = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1203 XVECEXP (body, 4, i) /* constraints */
1204 = gen_rtx (ASM_INPUT, TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1205 TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1206 i++;
1207 }
1208
1209 /* Protect all the operands from the queue,
1210 now that they have all been evaluated. */
1211
1212 for (i = 0; i < ninputs; i++)
1213 XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0);
1214
1215 for (i = 0; i < noutputs; i++)
1216 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1217
1218 /* Now, for each output, construct an rtx
1219 (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1220 ARGVEC CONSTRAINTS))
1221 If there is more than one, put them inside a PARALLEL. */
1222
1223 if (noutputs == 1 && nclobbers == 0)
1224 {
1225 XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
1226 insn = emit_insn (gen_rtx (SET, VOIDmode, output_rtx[0], body));
1227 }
1228 else if (noutputs == 0 && nclobbers == 0)
1229 {
1230 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1231 insn = emit_insn (body);
1232 }
1233 else
1234 {
1235 rtx obody = body;
1236 int num = noutputs;
1237 if (num == 0) num = 1;
1238 body = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num + nclobbers));
1239
1240 /* For each output operand, store a SET. */
1241
1242 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1243 {
1244 XVECEXP (body, 0, i)
1245 = gen_rtx (SET, VOIDmode,
1246 output_rtx[i],
1247 gen_rtx (ASM_OPERANDS, VOIDmode,
1248 TREE_STRING_POINTER (string),
1249 TREE_STRING_POINTER (TREE_PURPOSE (tail)),
1250 i, argvec, constraints,
1251 filename, line));
1252 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1253 }
1254
1255 /* If there are no outputs (but there are some clobbers)
1256 store the bare ASM_OPERANDS into the PARALLEL. */
1257
1258 if (i == 0)
1259 XVECEXP (body, 0, i++) = obody;
1260
1261 /* Store (clobber REG) for each clobbered register specified. */
1262
1263 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1264 {
1265 char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1266 int j = decode_reg_name (regname);
1267
1268 if (j < 0)
1269 {
1270 if (j == -3) /* `cc', which is not a register */
1271 continue;
1272
1273 if (j == -4) /* `memory', don't cache memory across asm */
1274 {
1275 XVECEXP (body, 0, i++)
1276 = gen_rtx (CLOBBER, VOIDmode,
1277 gen_rtx (MEM, QImode,
1278 gen_rtx (SCRATCH, VOIDmode, 0)));
1279 continue;
1280 }
1281
1282 error ("unknown register name `%s' in `asm'", regname);
1283 return;
1284 }
1285
1286 /* Use QImode since that's guaranteed to clobber just one reg. */
1287 XVECEXP (body, 0, i++)
1288 = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, QImode, j));
1289 }
1290
1291 insn = emit_insn (body);
1292 }
1293
1294 free_temp_slots ();
1295}
1296\f
1297/* Generate RTL to evaluate the expression EXP
1298 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
1299
1300void
1301expand_expr_stmt (exp)
1302 tree exp;
1303{
1304 /* If -W, warn about statements with no side effects,
1305 except for an explicit cast to void (e.g. for assert()), and
1306 except inside a ({...}) where they may be useful. */
1307 if (expr_stmts_for_value == 0 && exp != error_mark_node)
1308 {
1309 if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused)
1310 && !(TREE_CODE (exp) == CONVERT_EXPR
1311 && TREE_TYPE (exp) == void_type_node))
1312 warning_with_file_and_line (emit_filename, emit_lineno,
1313 "statement with no effect");
1314 else if (warn_unused)
1315 warn_if_unused_value (exp);
1316 }
1317 last_expr_type = TREE_TYPE (exp);
1318 if (! flag_syntax_only)
1319 last_expr_value = expand_expr (exp,
1320 (expr_stmts_for_value
1321 ? NULL_RTX : const0_rtx),
1322 VOIDmode, 0);
1323
1324 /* If all we do is reference a volatile value in memory,
1325 copy it to a register to be sure it is actually touched. */
1326 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
1327 && TREE_THIS_VOLATILE (exp))
1328 {
1329 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
1330 ;
1331 else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
1332 copy_to_reg (last_expr_value);
1333 else
1334 {
1335 rtx lab = gen_label_rtx ();
1336
1337 /* Compare the value with itself to reference it. */
1338 emit_cmp_insn (last_expr_value, last_expr_value, EQ,
1339 expand_expr (TYPE_SIZE (last_expr_type),
1340 NULL_RTX, VOIDmode, 0),
1341 BLKmode, 0,
1342 TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT);
1343 emit_jump_insn ((*bcc_gen_fctn[(int) EQ]) (lab));
1344 emit_label (lab);
1345 }
1346 }
1347
1348 /* If this expression is part of a ({...}) and is in memory, we may have
1349 to preserve temporaries. */
1350 preserve_temp_slots (last_expr_value);
1351
1352 /* Free any temporaries used to evaluate this expression. Any temporary
1353 used as a result of this expression will already have been preserved
1354 above. */
1355 free_temp_slots ();
1356
1357 emit_queue ();
1358}
1359
1360/* Warn if EXP contains any computations whose results are not used.
1361 Return 1 if a warning is printed; 0 otherwise. */
1362
1363static int
1364warn_if_unused_value (exp)
1365 tree exp;
1366{
1367 if (TREE_USED (exp))
1368 return 0;
1369
1370 switch (TREE_CODE (exp))
1371 {
1372 case PREINCREMENT_EXPR:
1373 case POSTINCREMENT_EXPR:
1374 case PREDECREMENT_EXPR:
1375 case POSTDECREMENT_EXPR:
1376 case MODIFY_EXPR:
1377 case INIT_EXPR:
1378 case TARGET_EXPR:
1379 case CALL_EXPR:
1380 case METHOD_CALL_EXPR:
1381 case RTL_EXPR:
1382 case WITH_CLEANUP_EXPR:
1383 case EXIT_EXPR:
1384 /* We don't warn about COND_EXPR because it may be a useful
1385 construct if either arm contains a side effect. */
1386 case COND_EXPR:
1387 return 0;
1388
1389 case BIND_EXPR:
1390 /* For a binding, warn if no side effect within it. */
1391 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1392
1393 case TRUTH_ORIF_EXPR:
1394 case TRUTH_ANDIF_EXPR:
1395 /* In && or ||, warn if 2nd operand has no side effect. */
1396 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1397
1398 case COMPOUND_EXPR:
1399 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
1400 return 1;
1401 /* Let people do `(foo (), 0)' without a warning. */
1402 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1403 return 0;
1404 return warn_if_unused_value (TREE_OPERAND (exp, 1));
1405
1406 case NOP_EXPR:
1407 case CONVERT_EXPR:
1408 case NON_LVALUE_EXPR:
1409 /* Don't warn about values cast to void. */
1410 if (TREE_TYPE (exp) == void_type_node)
1411 return 0;
1412 /* Don't warn about conversions not explicit in the user's program. */
1413 if (TREE_NO_UNUSED_WARNING (exp))
1414 return 0;
1415 /* Assignment to a cast usually results in a cast of a modify.
1416 Don't complain about that. */
1417 if (TREE_CODE (TREE_OPERAND (exp, 0)) == MODIFY_EXPR)
1418 return 0;
1419 /* Sometimes it results in a cast of a cast of a modify.
1420 Don't complain about that. */
1421 if ((TREE_CODE (TREE_OPERAND (exp, 0)) == CONVERT_EXPR
1422 || TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR)
1423 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == MODIFY_EXPR)
1424 return 0;
1425
1426 default:
1427 /* Referencing a volatile value is a side effect, so don't warn. */
1428 if ((TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
1429 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
1430 && TREE_THIS_VOLATILE (exp))
1431 return 0;
1432 warning_with_file_and_line (emit_filename, emit_lineno,
1433 "value computed is not used");
1434 return 1;
1435 }
1436}
1437
1438/* Clear out the memory of the last expression evaluated. */
1439
1440void
1441clear_last_expr ()
1442{
1443 last_expr_type = 0;
1444}
1445
1446/* Begin a statement which will return a value.
1447 Return the RTL_EXPR for this statement expr.
1448 The caller must save that value and pass it to expand_end_stmt_expr. */
1449
1450tree
1451expand_start_stmt_expr ()
1452{
1453 /* Make the RTL_EXPR node temporary, not momentary,
1454 so that rtl_expr_chain doesn't become garbage. */
1455 int momentary = suspend_momentary ();
1456 tree t = make_node (RTL_EXPR);
1457 resume_momentary (momentary);
1458 start_sequence ();
1459 NO_DEFER_POP;
1460 expr_stmts_for_value++;
1461 return t;
1462}
1463
1464/* Restore the previous state at the end of a statement that returns a value.
1465 Returns a tree node representing the statement's value and the
1466 insns to compute the value.
1467
1468 The nodes of that expression have been freed by now, so we cannot use them.
1469 But we don't want to do that anyway; the expression has already been
1470 evaluated and now we just want to use the value. So generate a RTL_EXPR
1471 with the proper type and RTL value.
1472
1473 If the last substatement was not an expression,
1474 return something with type `void'. */
1475
1476tree
1477expand_end_stmt_expr (t)
1478 tree t;
1479{
1480 OK_DEFER_POP;
1481
1482 if (last_expr_type == 0)
1483 {
1484 last_expr_type = void_type_node;
1485 last_expr_value = const0_rtx;
1486 }
1487 else if (last_expr_value == 0)
1488 /* There are some cases where this can happen, such as when the
1489 statement is void type. */
1490 last_expr_value = const0_rtx;
1491 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
1492 /* Remove any possible QUEUED. */
1493 last_expr_value = protect_from_queue (last_expr_value, 0);
1494
1495 emit_queue ();
1496
1497 TREE_TYPE (t) = last_expr_type;
1498 RTL_EXPR_RTL (t) = last_expr_value;
1499 RTL_EXPR_SEQUENCE (t) = get_insns ();
1500
1501 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
1502
1503 end_sequence ();
1504
1505 /* Don't consider deleting this expr or containing exprs at tree level. */
1506 TREE_SIDE_EFFECTS (t) = 1;
1507 /* Propagate volatility of the actual RTL expr. */
1508 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
1509
1510 last_expr_type = 0;
1511 expr_stmts_for_value--;
1512
1513 return t;
1514}
1515\f
1516/* The exception handling nesting looks like this:
1517
1518 <-- Level N-1
1519 { <-- exception handler block
1520 <-- Level N
1521 <-- in an exception handler
1522 { <-- try block
1523 : <-- in a TRY block
1524 : <-- in an exception handler
1525 :
1526 }
1527
1528 { <-- except block
1529 : <-- in an except block
1530 : <-- in an exception handler
1531 :
1532 }
1533
1534 }
1535*/
1536
1537/* Return nonzero iff in a try block at level LEVEL. */
1538
1539int
1540in_try_block (level)
1541 int level;
1542{
1543 struct nesting *n = except_stack;
1544 while (1)
1545 {
1546 while (n && n->data.except_stmt.after_label != 0)
1547 n = n->next;
1548 if (n == 0)
1549 return 0;
1550 if (level == 0)
1551 return n != 0;
1552 level--;
1553 n = n->next;
1554 }
1555}
1556
1557/* Return nonzero iff in an except block at level LEVEL. */
1558
1559int
1560in_except_block (level)
1561 int level;
1562{
1563 struct nesting *n = except_stack;
1564 while (1)
1565 {
1566 while (n && n->data.except_stmt.after_label == 0)
1567 n = n->next;
1568 if (n == 0)
1569 return 0;
1570 if (level == 0)
1571 return n != 0;
1572 level--;
1573 n = n->next;
1574 }
1575}
1576
1577/* Return nonzero iff in an exception handler at level LEVEL. */
1578
1579int
1580in_exception_handler (level)
1581 int level;
1582{
1583 struct nesting *n = except_stack;
1584 while (n && level--)
1585 n = n->next;
1586 return n != 0;
1587}
1588
1589/* Record the fact that the current exception nesting raises
1590 exception EX. If not in an exception handler, return 0. */
1591int
1592expand_raise (ex)
1593 tree ex;
1594{
1595 tree *raises_ptr;
1596
1597 if (except_stack == 0)
1598 return 0;
1599 raises_ptr = &except_stack->data.except_stmt.raised;
1600 if (! value_member (ex, *raises_ptr))
1601 *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
1602 return 1;
1603}
1604
1605/* Generate RTL for the start of a try block.
1606
1607 TRY_CLAUSE is the condition to test to enter the try block. */
1608
1609void
1610expand_start_try (try_clause, exitflag, escapeflag)
1611 tree try_clause;
1612 int exitflag;
1613 int escapeflag;
1614{
1615 struct nesting *thishandler = ALLOC_NESTING ();
1616
1617 /* Make an entry on cond_stack for the cond we are entering. */
1618
1619 thishandler->next = except_stack;
1620 thishandler->all = nesting_stack;
1621 thishandler->depth = ++nesting_depth;
1622 thishandler->data.except_stmt.raised = 0;
1623 thishandler->data.except_stmt.handled = 0;
1624 thishandler->data.except_stmt.first_insn = get_insns ();
1625 thishandler->data.except_stmt.except_label = gen_label_rtx ();
1626 thishandler->data.except_stmt.unhandled_label = 0;
1627 thishandler->data.except_stmt.after_label = 0;
1628 thishandler->data.except_stmt.escape_label
1629 = escapeflag ? thishandler->data.except_stmt.except_label : 0;
1630 thishandler->exit_label = exitflag ? gen_label_rtx () : 0;
1631 except_stack = thishandler;
1632 nesting_stack = thishandler;
1633
1634 do_jump (try_clause, thishandler->data.except_stmt.except_label, NULL_RTX);
1635}
1636
1637/* End of a TRY block. Nothing to do for now. */
1638
1639void
1640expand_end_try ()
1641{
1642 except_stack->data.except_stmt.after_label = gen_label_rtx ();
1643 expand_goto_internal (NULL_TREE, except_stack->data.except_stmt.after_label,
1644 NULL_RTX);
1645}
1646
1647/* Start an `except' nesting contour.
1648 EXITFLAG says whether this contour should be able to `exit' something.
1649 ESCAPEFLAG says whether this contour should be escapable. */
1650
1651void
1652expand_start_except (exitflag, escapeflag)
1653 int exitflag;
1654 int escapeflag;
1655{
1656 if (exitflag)
1657 {
1658 struct nesting *n;
1659 /* An `exit' from catch clauses goes out to next exit level,
1660 if there is one. Otherwise, it just goes to the end
1661 of the construct. */
1662 for (n = except_stack->next; n; n = n->next)
1663 if (n->exit_label != 0)
1664 {
1665 except_stack->exit_label = n->exit_label;
1666 break;
1667 }
1668 if (n == 0)
1669 except_stack->exit_label = except_stack->data.except_stmt.after_label;
1670 }
1671 if (escapeflag)
1672 {
1673 struct nesting *n;
1674 /* An `escape' from catch clauses goes out to next escape level,
1675 if there is one. Otherwise, it just goes to the end
1676 of the construct. */
1677 for (n = except_stack->next; n; n = n->next)
1678 if (n->data.except_stmt.escape_label != 0)
1679 {
1680 except_stack->data.except_stmt.escape_label
1681 = n->data.except_stmt.escape_label;
1682 break;
1683 }
1684 if (n == 0)
1685 except_stack->data.except_stmt.escape_label
1686 = except_stack->data.except_stmt.after_label;
1687 }
1688 do_pending_stack_adjust ();
1689 emit_label (except_stack->data.except_stmt.except_label);
1690}
1691
1692/* Generate code to `escape' from an exception contour. This
1693 is like `exiting', but does not conflict with constructs which
1694 use `exit_label'.
1695
1696 Return nonzero if this contour is escapable, otherwise
1697 return zero, and language-specific code will emit the
1698 appropriate error message. */
1699int
1700expand_escape_except ()
1701{
1702 struct nesting *n;
1703 last_expr_type = 0;
1704 for (n = except_stack; n; n = n->next)
1705 if (n->data.except_stmt.escape_label != 0)
1706 {
1707 expand_goto_internal (NULL_TREE,
1708 n->data.except_stmt.escape_label, NULL_RTX);
1709 return 1;
1710 }
1711
1712 return 0;
1713}
1714
1715/* Finish processing and `except' contour.
1716 Culls out all exceptions which might be raise but not
1717 handled, and returns the list to the caller.
1718 Language-specific code is responsible for dealing with these
1719 exceptions. */
1720
1721tree
1722expand_end_except ()
1723{
1724 struct nesting *n;
1725 tree raised = NULL_TREE;
1726
1727 do_pending_stack_adjust ();
1728 emit_label (except_stack->data.except_stmt.after_label);
1729
1730 n = except_stack->next;
1731 if (n)
1732 {
1733 /* Propagate exceptions raised but not handled to next
1734 highest level. */
1735 tree handled = except_stack->data.except_stmt.raised;
1736 if (handled != void_type_node)
1737 {
1738 tree prev = NULL_TREE;
1739 raised = except_stack->data.except_stmt.raised;
1740 while (handled)
1741 {
1742 tree this_raise;
1743 for (this_raise = raised, prev = 0; this_raise;
1744 this_raise = TREE_CHAIN (this_raise))
1745 {
1746 if (value_member (TREE_VALUE (this_raise), handled))
1747 {
1748 if (prev)
1749 TREE_CHAIN (prev) = TREE_CHAIN (this_raise);
1750 else
1751 {
1752 raised = TREE_CHAIN (raised);
1753 if (raised == NULL_TREE)
1754 goto nada;
1755 }
1756 }
1757 else
1758 prev = this_raise;
1759 }
1760 handled = TREE_CHAIN (handled);
1761 }
1762 if (prev == NULL_TREE)
1763 prev = raised;
1764 if (prev)
1765 TREE_CHAIN (prev) = n->data.except_stmt.raised;
1766 nada:
1767 n->data.except_stmt.raised = raised;
1768 }
1769 }
1770
1771 POPSTACK (except_stack);
1772 last_expr_type = 0;
1773 return raised;
1774}
1775
1776/* Record that exception EX is caught by this exception handler.
1777 Return nonzero if in exception handling construct, otherwise return 0. */
1778int
1779expand_catch (ex)
1780 tree ex;
1781{
1782 tree *raises_ptr;
1783
1784 if (except_stack == 0)
1785 return 0;
1786 raises_ptr = &except_stack->data.except_stmt.handled;
1787 if (*raises_ptr != void_type_node
1788 && ex != NULL_TREE
1789 && ! value_member (ex, *raises_ptr))
1790 *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr);
1791 return 1;
1792}
1793
1794/* Record that this exception handler catches all exceptions.
1795 Return nonzero if in exception handling construct, otherwise return 0. */
1796
1797int
1798expand_catch_default ()
1799{
1800 if (except_stack == 0)
1801 return 0;
1802 except_stack->data.except_stmt.handled = void_type_node;
1803 return 1;
1804}
1805
1806int
1807expand_end_catch ()
1808{
1809 if (except_stack == 0 || except_stack->data.except_stmt.after_label == 0)
1810 return 0;
1811 expand_goto_internal (NULL_TREE, except_stack->data.except_stmt.after_label,
1812 NULL_RTX);
1813 return 1;
1814}
1815\f
1816/* Generate RTL for the start of an if-then. COND is the expression
1817 whose truth should be tested.
1818
1819 If EXITFLAG is nonzero, this conditional is visible to
1820 `exit_something'. */
1821
1822void
1823expand_start_cond (cond, exitflag)
1824 tree cond;
1825 int exitflag;
1826{
1827 struct nesting *thiscond = ALLOC_NESTING ();
1828
1829 /* Make an entry on cond_stack for the cond we are entering. */
1830
1831 thiscond->next = cond_stack;
1832 thiscond->all = nesting_stack;
1833 thiscond->depth = ++nesting_depth;
1834 thiscond->data.cond.next_label = gen_label_rtx ();
1835 /* Before we encounter an `else', we don't need a separate exit label
1836 unless there are supposed to be exit statements
1837 to exit this conditional. */
1838 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
1839 thiscond->data.cond.endif_label = thiscond->exit_label;
1840 cond_stack = thiscond;
1841 nesting_stack = thiscond;
1842
1843 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
1844}
1845
1846/* Generate RTL between then-clause and the elseif-clause
1847 of an if-then-elseif-.... */
1848
1849void
1850expand_start_elseif (cond)
1851 tree cond;
1852{
1853 if (cond_stack->data.cond.endif_label == 0)
1854 cond_stack->data.cond.endif_label = gen_label_rtx ();
1855 emit_jump (cond_stack->data.cond.endif_label);
1856 emit_label (cond_stack->data.cond.next_label);
1857 cond_stack->data.cond.next_label = gen_label_rtx ();
1858 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
1859}
1860
1861/* Generate RTL between the then-clause and the else-clause
1862 of an if-then-else. */
1863
1864void
1865expand_start_else ()
1866{
1867 if (cond_stack->data.cond.endif_label == 0)
1868 cond_stack->data.cond.endif_label = gen_label_rtx ();
1869 emit_jump (cond_stack->data.cond.endif_label);
1870 emit_label (cond_stack->data.cond.next_label);
1871 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
1872}
1873
1874/* Generate RTL for the end of an if-then.
1875 Pop the record for it off of cond_stack. */
1876
1877void
1878expand_end_cond ()
1879{
1880 struct nesting *thiscond = cond_stack;
1881
1882 do_pending_stack_adjust ();
1883 if (thiscond->data.cond.next_label)
1884 emit_label (thiscond->data.cond.next_label);
1885 if (thiscond->data.cond.endif_label)
1886 emit_label (thiscond->data.cond.endif_label);
1887
1888 POPSTACK (cond_stack);
1889 last_expr_type = 0;
1890}
1891\f
1892/* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
1893 loop should be exited by `exit_something'. This is a loop for which
1894 `expand_continue' will jump to the top of the loop.
1895
1896 Make an entry on loop_stack to record the labels associated with
1897 this loop. */
1898
1899struct nesting *
1900expand_start_loop (exit_flag)
1901 int exit_flag;
1902{
1903 register struct nesting *thisloop = ALLOC_NESTING ();
1904
1905 /* Make an entry on loop_stack for the loop we are entering. */
1906
1907 thisloop->next = loop_stack;
1908 thisloop->all = nesting_stack;
1909 thisloop->depth = ++nesting_depth;
1910 thisloop->data.loop.start_label = gen_label_rtx ();
1911 thisloop->data.loop.end_label = gen_label_rtx ();
1912 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
1913 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
1914 loop_stack = thisloop;
1915 nesting_stack = thisloop;
1916
1917 do_pending_stack_adjust ();
1918 emit_queue ();
1919 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1920 emit_label (thisloop->data.loop.start_label);
1921
1922 return thisloop;
1923}
1924
1925/* Like expand_start_loop but for a loop where the continuation point
1926 (for expand_continue_loop) will be specified explicitly. */
1927
1928struct nesting *
1929expand_start_loop_continue_elsewhere (exit_flag)
1930 int exit_flag;
1931{
1932 struct nesting *thisloop = expand_start_loop (exit_flag);
1933 loop_stack->data.loop.continue_label = gen_label_rtx ();
1934 return thisloop;
1935}
1936
1937/* Specify the continuation point for a loop started with
1938 expand_start_loop_continue_elsewhere.
1939 Use this at the point in the code to which a continue statement
1940 should jump. */
1941
1942void
1943expand_loop_continue_here ()
1944{
1945 do_pending_stack_adjust ();
1946 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1947 emit_label (loop_stack->data.loop.continue_label);
1948}
1949
1950/* Finish a loop. Generate a jump back to the top and the loop-exit label.
1951 Pop the block off of loop_stack. */
1952
1953void
1954expand_end_loop ()
1955{
1956 register rtx insn = get_last_insn ();
1957 register rtx start_label = loop_stack->data.loop.start_label;
1958 rtx last_test_insn = 0;
1959 int num_insns = 0;
1960
1961 /* Mark the continue-point at the top of the loop if none elsewhere. */
1962 if (start_label == loop_stack->data.loop.continue_label)
1963 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
1964
1965 do_pending_stack_adjust ();
1966
1967 /* If optimizing, perhaps reorder the loop. If the loop
1968 starts with a conditional exit, roll that to the end
1969 where it will optimize together with the jump back.
1970
1971 We look for the last conditional branch to the exit that we encounter
1972 before hitting 30 insns or a CALL_INSN. If we see an unconditional
1973 branch to the exit first, use it.
1974
1975 We must also stop at NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes
1976 because moving them is not valid. */
1977
1978 if (optimize
1979 &&
1980 ! (GET_CODE (insn) == JUMP_INSN
1981 && GET_CODE (PATTERN (insn)) == SET
1982 && SET_DEST (PATTERN (insn)) == pc_rtx
1983 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
1984 {
1985 /* Scan insns from the top of the loop looking for a qualified
1986 conditional exit. */
1987 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
1988 insn = NEXT_INSN (insn))
1989 {
1990 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == CODE_LABEL)
1991 break;
1992
1993 if (GET_CODE (insn) == NOTE
1994 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1995 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1996 break;
1997
1998 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
1999 num_insns++;
2000
2001 if (last_test_insn && num_insns > 30)
2002 break;
2003
2004 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == SET
2005 && SET_DEST (PATTERN (insn)) == pc_rtx
2006 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE
2007 && ((GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == LABEL_REF
2008 && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0)
2009 == loop_stack->data.loop.end_label))
2010 || (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 2)) == LABEL_REF
2011 && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0)
2012 == loop_stack->data.loop.end_label))))
2013 last_test_insn = insn;
2014
2015 if (last_test_insn == 0 && GET_CODE (insn) == JUMP_INSN
2016 && GET_CODE (PATTERN (insn)) == SET
2017 && SET_DEST (PATTERN (insn)) == pc_rtx
2018 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF
2019 && (XEXP (SET_SRC (PATTERN (insn)), 0)
2020 == loop_stack->data.loop.end_label))
2021 /* Include BARRIER. */
2022 last_test_insn = NEXT_INSN (insn);
2023 }
2024
2025 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2026 {
2027 /* We found one. Move everything from there up
2028 to the end of the loop, and add a jump into the loop
2029 to jump to there. */
2030 register rtx newstart_label = gen_label_rtx ();
2031 register rtx start_move = start_label;
2032
2033 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2034 then we want to move this note also. */
2035 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2036 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2037 == NOTE_INSN_LOOP_CONT))
2038 start_move = PREV_INSN (start_move);
2039
2040 emit_label_after (newstart_label, PREV_INSN (start_move));
2041 reorder_insns (start_move, last_test_insn, get_last_insn ());
2042 emit_jump_insn_after (gen_jump (start_label),
2043 PREV_INSN (newstart_label));
2044 emit_barrier_after (PREV_INSN (newstart_label));
2045 start_label = newstart_label;
2046 }
2047 }
2048
2049 emit_jump (start_label);
2050 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
2051 emit_label (loop_stack->data.loop.end_label);
2052
2053 POPSTACK (loop_stack);
2054
2055 last_expr_type = 0;
2056}
2057
2058/* Generate a jump to the current loop's continue-point.
2059 This is usually the top of the loop, but may be specified
2060 explicitly elsewhere. If not currently inside a loop,
2061 return 0 and do nothing; caller will print an error message. */
2062
2063int
2064expand_continue_loop (whichloop)
2065 struct nesting *whichloop;
2066{
2067 last_expr_type = 0;
2068 if (whichloop == 0)
2069 whichloop = loop_stack;
2070 if (whichloop == 0)
2071 return 0;
2072 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2073 NULL_RTX);
2074 return 1;
2075}
2076
2077/* Generate a jump to exit the current loop. If not currently inside a loop,
2078 return 0 and do nothing; caller will print an error message. */
2079
2080int
2081expand_exit_loop (whichloop)
2082 struct nesting *whichloop;
2083{
2084 last_expr_type = 0;
2085 if (whichloop == 0)
2086 whichloop = loop_stack;
2087 if (whichloop == 0)
2088 return 0;
2089 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2090 return 1;
2091}
2092
2093/* Generate a conditional jump to exit the current loop if COND
2094 evaluates to zero. If not currently inside a loop,
2095 return 0 and do nothing; caller will print an error message. */
2096
2097int
2098expand_exit_loop_if_false (whichloop, cond)
2099 struct nesting *whichloop;
2100 tree cond;
2101{
2102 last_expr_type = 0;
2103 if (whichloop == 0)
2104 whichloop = loop_stack;
2105 if (whichloop == 0)
2106 return 0;
2107 do_jump (cond, whichloop->data.loop.end_label, NULL_RTX);
2108 return 1;
2109}
2110
2111/* Return non-zero if we should preserve sub-expressions as separate
2112 pseudos. We never do so if we aren't optimizing. We always do so
2113 if -fexpensive-optimizations.
2114
2115 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2116 the loop may still be a small one. */
2117
2118int
2119preserve_subexpressions_p ()
2120{
2121 rtx insn;
2122
2123 if (flag_expensive_optimizations)
2124 return 1;
2125
2126 if (optimize == 0 || loop_stack == 0)
2127 return 0;
2128
2129 insn = get_last_insn_anywhere ();
2130
2131 return (insn
2132 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2133 < n_non_fixed_regs * 3));
2134
2135}
2136
2137/* Generate a jump to exit the current loop, conditional, binding contour
2138 or case statement. Not all such constructs are visible to this function,
2139 only those started with EXIT_FLAG nonzero. Individual languages use
2140 the EXIT_FLAG parameter to control which kinds of constructs you can
2141 exit this way.
2142
2143 If not currently inside anything that can be exited,
2144 return 0 and do nothing; caller will print an error message. */
2145
2146int
2147expand_exit_something ()
2148{
2149 struct nesting *n;
2150 last_expr_type = 0;
2151 for (n = nesting_stack; n; n = n->all)
2152 if (n->exit_label != 0)
2153 {
2154 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2155 return 1;
2156 }
2157
2158 return 0;
2159}
2160\f
2161/* Generate RTL to return from the current function, with no value.
2162 (That is, we do not do anything about returning any value.) */
2163
2164void
2165expand_null_return ()
2166{
2167 struct nesting *block = block_stack;
2168 rtx last_insn = 0;
2169
2170 /* Does any pending block have cleanups? */
2171
2172 while (block && block->data.block.cleanups == 0)
2173 block = block->next;
2174
2175 /* If yes, use a goto to return, since that runs cleanups. */
2176
2177 expand_null_return_1 (last_insn, block != 0);
2178}
2179
2180/* Generate RTL to return from the current function, with value VAL. */
2181
2182void
2183expand_value_return (val)
2184 rtx val;
2185{
2186 struct nesting *block = block_stack;
2187 rtx last_insn = get_last_insn ();
2188 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2189
2190 /* Copy the value to the return location
2191 unless it's already there. */
2192
2193 if (return_reg != val)
2194 {
2195#ifdef PROMOTE_FUNCTION_RETURN
2196 enum machine_mode mode = DECL_MODE (DECL_RESULT (current_function_decl));
2197 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2198 int unsignedp = TREE_UNSIGNED (type);
2199
2200 if (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE
2201 || TREE_CODE (type) == BOOLEAN_TYPE || TREE_CODE (type) == CHAR_TYPE
2202 || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == POINTER_TYPE
2203 || TREE_CODE (type) == OFFSET_TYPE)
2204 {
2205 PROMOTE_MODE (mode, unsignedp, type);
2206 }
2207
2208 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
2209 convert_move (return_reg, val, unsignedp);
2210 else
2211#endif
2212 emit_move_insn (return_reg, val);
2213 }
2214 if (GET_CODE (return_reg) == REG
2215 && REGNO (return_reg) < FIRST_PSEUDO_REGISTER)
2216 emit_insn (gen_rtx (USE, VOIDmode, return_reg));
2217
2218 /* Does any pending block have cleanups? */
2219
2220 while (block && block->data.block.cleanups == 0)
2221 block = block->next;
2222
2223 /* If yes, use a goto to return, since that runs cleanups.
2224 Use LAST_INSN to put cleanups *before* the move insn emitted above. */
2225
2226 expand_null_return_1 (last_insn, block != 0);
2227}
2228
2229/* Output a return with no value. If LAST_INSN is nonzero,
2230 pretend that the return takes place after LAST_INSN.
2231 If USE_GOTO is nonzero then don't use a return instruction;
2232 go to the return label instead. This causes any cleanups
2233 of pending blocks to be executed normally. */
2234
2235static void
2236expand_null_return_1 (last_insn, use_goto)
2237 rtx last_insn;
2238 int use_goto;
2239{
2240 rtx end_label = cleanup_label ? cleanup_label : return_label;
2241
2242 clear_pending_stack_adjust ();
2243 do_pending_stack_adjust ();
2244 last_expr_type = 0;
2245
2246 /* PCC-struct return always uses an epilogue. */
2247 if (current_function_returns_pcc_struct || use_goto)
2248 {
2249 if (end_label == 0)
2250 end_label = return_label = gen_label_rtx ();
2251 expand_goto_internal (NULL_TREE, end_label, last_insn);
2252 return;
2253 }
2254
2255 /* Otherwise output a simple return-insn if one is available,
2256 unless it won't do the job. */
2257#ifdef HAVE_return
2258 if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2259 {
2260 emit_jump_insn (gen_return ());
2261 emit_barrier ();
2262 return;
2263 }
2264#endif
2265
2266 /* Otherwise jump to the epilogue. */
2267 expand_goto_internal (NULL_TREE, end_label, last_insn);
2268}
2269\f
2270/* Generate RTL to evaluate the expression RETVAL and return it
2271 from the current function. */
2272
2273void
2274expand_return (retval)
2275 tree retval;
2276{
2277 /* If there are any cleanups to be performed, then they will
2278 be inserted following LAST_INSN. It is desirable
2279 that the last_insn, for such purposes, should be the
2280 last insn before computing the return value. Otherwise, cleanups
2281 which call functions can clobber the return value. */
2282 /* ??? rms: I think that is erroneous, because in C++ it would
2283 run destructors on variables that might be used in the subsequent
2284 computation of the return value. */
2285 rtx last_insn = 0;
2286 register rtx val = 0;
2287 register rtx op0;
2288 tree retval_rhs;
2289 int cleanups;
2290 struct nesting *block;
2291
2292 /* If function wants no value, give it none. */
2293 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2294 {
2295 expand_expr (retval, NULL_RTX, VOIDmode, 0);
2296 emit_queue ();
2297 expand_null_return ();
2298 return;
2299 }
2300
2301 /* Are any cleanups needed? E.g. C++ destructors to be run? */
2302 cleanups = any_pending_cleanups (1);
2303
2304 if (TREE_CODE (retval) == RESULT_DECL)
2305 retval_rhs = retval;
2306 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
2307 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
2308 retval_rhs = TREE_OPERAND (retval, 1);
2309 else if (TREE_TYPE (retval) == void_type_node)
2310 /* Recognize tail-recursive call to void function. */
2311 retval_rhs = retval;
2312 else
2313 retval_rhs = NULL_TREE;
2314
2315 /* Only use `last_insn' if there are cleanups which must be run. */
2316 if (cleanups || cleanup_label != 0)
2317 last_insn = get_last_insn ();
2318
2319 /* Distribute return down conditional expr if either of the sides
2320 may involve tail recursion (see test below). This enhances the number
2321 of tail recursions we see. Don't do this always since it can produce
2322 sub-optimal code in some cases and we distribute assignments into
2323 conditional expressions when it would help. */
2324
2325 if (optimize && retval_rhs != 0
2326 && frame_offset == 0
2327 && TREE_CODE (retval_rhs) == COND_EXPR
2328 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
2329 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
2330 {
2331 rtx label = gen_label_rtx ();
2332 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
2333 expand_return (build (MODIFY_EXPR, TREE_TYPE (current_function_decl),
2334 DECL_RESULT (current_function_decl),
2335 TREE_OPERAND (retval_rhs, 1)));
2336 emit_label (label);
2337 expand_return (build (MODIFY_EXPR, TREE_TYPE (current_function_decl),
2338 DECL_RESULT (current_function_decl),
2339 TREE_OPERAND (retval_rhs, 2)));
2340 return;
2341 }
2342
2343 /* For tail-recursive call to current function,
2344 just jump back to the beginning.
2345 It's unsafe if any auto variable in this function
2346 has its address taken; for simplicity,
2347 require stack frame to be empty. */
2348 if (optimize && retval_rhs != 0
2349 && frame_offset == 0
2350 && TREE_CODE (retval_rhs) == CALL_EXPR
2351 && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR
2352 && TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0) == current_function_decl
2353 /* Finish checking validity, and if valid emit code
2354 to set the argument variables for the new call. */
2355 && tail_recursion_args (TREE_OPERAND (retval_rhs, 1),
2356 DECL_ARGUMENTS (current_function_decl)))
2357 {
2358 if (tail_recursion_label == 0)
2359 {
2360 tail_recursion_label = gen_label_rtx ();
2361 emit_label_after (tail_recursion_label,
2362 tail_recursion_reentry);
2363 }
2364 emit_queue ();
2365 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
2366 emit_barrier ();
2367 return;
2368 }
2369#ifdef HAVE_return
2370 /* This optimization is safe if there are local cleanups
2371 because expand_null_return takes care of them.
2372 ??? I think it should also be safe when there is a cleanup label,
2373 because expand_null_return takes care of them, too.
2374 Any reason why not? */
2375 if (HAVE_return && cleanup_label == 0
2376 && ! current_function_returns_pcc_struct)
2377 {
2378 /* If this is return x == y; then generate
2379 if (x == y) return 1; else return 0;
2380 if we can do it with explicit return insns. */
2381 if (retval_rhs)
2382 switch (TREE_CODE (retval_rhs))
2383 {
2384 case EQ_EXPR:
2385 case NE_EXPR:
2386 case GT_EXPR:
2387 case GE_EXPR:
2388 case LT_EXPR:
2389 case LE_EXPR:
2390 case TRUTH_ANDIF_EXPR:
2391 case TRUTH_ORIF_EXPR:
2392 case TRUTH_AND_EXPR:
2393 case TRUTH_OR_EXPR:
2394 case TRUTH_NOT_EXPR:
2395 case TRUTH_XOR_EXPR:
2396 op0 = gen_label_rtx ();
2397 jumpifnot (retval_rhs, op0);
2398 expand_value_return (const1_rtx);
2399 emit_label (op0);
2400 expand_value_return (const0_rtx);
2401 return;
2402 }
2403 }
2404#endif /* HAVE_return */
2405
2406 if (cleanups
2407 && retval_rhs != 0
2408 && TREE_TYPE (retval_rhs) != void_type_node
2409 && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG)
2410 {
2411 /* Calculate the return value into a pseudo reg. */
2412 val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
2413 emit_queue ();
2414 /* All temporaries have now been used. */
2415 free_temp_slots ();
2416 /* Return the calculated value, doing cleanups first. */
2417 expand_value_return (val);
2418 }
2419 else
2420 {
2421 /* No cleanups or no hard reg used;
2422 calculate value into hard return reg. */
2423 expand_expr (retval, NULL_RTX, VOIDmode, 0);
2424 emit_queue ();
2425 free_temp_slots ();
2426 expand_value_return (DECL_RTL (DECL_RESULT (current_function_decl)));
2427 }
2428}
2429
2430/* Return 1 if the end of the generated RTX is not a barrier.
2431 This means code already compiled can drop through. */
2432
2433int
2434drop_through_at_end_p ()
2435{
2436 rtx insn = get_last_insn ();
2437 while (insn && GET_CODE (insn) == NOTE)
2438 insn = PREV_INSN (insn);
2439 return insn && GET_CODE (insn) != BARRIER;
2440}
2441\f
2442/* Emit code to alter this function's formal parms for a tail-recursive call.
2443 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
2444 FORMALS is the chain of decls of formals.
2445 Return 1 if this can be done;
2446 otherwise return 0 and do not emit any code. */
2447
2448static int
2449tail_recursion_args (actuals, formals)
2450 tree actuals, formals;
2451{
2452 register tree a = actuals, f = formals;
2453 register int i;
2454 register rtx *argvec;
2455
2456 /* Check that number and types of actuals are compatible
2457 with the formals. This is not always true in valid C code.
2458 Also check that no formal needs to be addressable
2459 and that all formals are scalars. */
2460
2461 /* Also count the args. */
2462
2463 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
2464 {
2465 if (TREE_TYPE (TREE_VALUE (a)) != TREE_TYPE (f))
2466 return 0;
2467 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
2468 return 0;
2469 }
2470 if (a != 0 || f != 0)
2471 return 0;
2472
2473 /* Compute all the actuals. */
2474
2475 argvec = (rtx *) alloca (i * sizeof (rtx));
2476
2477 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
2478 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
2479
2480 /* Find which actual values refer to current values of previous formals.
2481 Copy each of them now, before any formal is changed. */
2482
2483 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
2484 {
2485 int copy = 0;
2486 register int j;
2487 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
2488 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
2489 { copy = 1; break; }
2490 if (copy)
2491 argvec[i] = copy_to_reg (argvec[i]);
2492 }
2493
2494 /* Store the values of the actuals into the formals. */
2495
2496 for (f = formals, a = actuals, i = 0; f;
2497 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
2498 {
2499 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
2500 emit_move_insn (DECL_RTL (f), argvec[i]);
2501 else
2502 convert_move (DECL_RTL (f), argvec[i],
2503 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
2504 }
2505
2506 free_temp_slots ();
2507 return 1;
2508}
2509\f
2510/* Generate the RTL code for entering a binding contour.
2511 The variables are declared one by one, by calls to `expand_decl'.
2512
2513 EXIT_FLAG is nonzero if this construct should be visible to
2514 `exit_something'. */
2515
2516void
2517expand_start_bindings (exit_flag)
2518 int exit_flag;
2519{
2520 struct nesting *thisblock = ALLOC_NESTING ();
2521
2522 rtx note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
2523
2524 /* Make an entry on block_stack for the block we are entering. */
2525
2526 thisblock->next = block_stack;
2527 thisblock->all = nesting_stack;
2528 thisblock->depth = ++nesting_depth;
2529 thisblock->data.block.stack_level = 0;
2530 thisblock->data.block.cleanups = 0;
2531 thisblock->data.block.function_call_count = 0;
2532#if 0
2533 if (block_stack)
2534 {
2535 if (block_stack->data.block.cleanups == NULL_TREE
2536 && (block_stack->data.block.outer_cleanups == NULL_TREE
2537 || block_stack->data.block.outer_cleanups == empty_cleanup_list))
2538 thisblock->data.block.outer_cleanups = empty_cleanup_list;
2539 else
2540 thisblock->data.block.outer_cleanups
2541 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
2542 block_stack->data.block.outer_cleanups);
2543 }
2544 else
2545 thisblock->data.block.outer_cleanups = 0;
2546#endif
2547#if 1
2548 if (block_stack
2549 && !(block_stack->data.block.cleanups == NULL_TREE
2550 && block_stack->data.block.outer_cleanups == NULL_TREE))
2551 thisblock->data.block.outer_cleanups
2552 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
2553 block_stack->data.block.outer_cleanups);
2554 else
2555 thisblock->data.block.outer_cleanups = 0;
2556#endif
2557 thisblock->data.block.label_chain = 0;
2558 thisblock->data.block.innermost_stack_block = stack_block_stack;
2559 thisblock->data.block.first_insn = note;
2560 thisblock->data.block.block_start_count = ++block_start_count;
2561 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
2562 block_stack = thisblock;
2563 nesting_stack = thisblock;
2564
2565 /* Make a new level for allocating stack slots. */
2566 push_temp_slots ();
2567}
2568
2569/* Given a pointer to a BLOCK node, save a pointer to the most recently
2570 generated NOTE_INSN_BLOCK_END in the BLOCK_END_NOTE field of the given
2571 BLOCK node. */
2572
2573void
2574remember_end_note (block)
2575 register tree block;
2576{
2577 BLOCK_END_NOTE (block) = last_block_end_note;
2578 last_block_end_note = NULL_RTX;
2579}
2580
2581/* Generate RTL code to terminate a binding contour.
2582 VARS is the chain of VAR_DECL nodes
2583 for the variables bound in this contour.
2584 MARK_ENDS is nonzero if we should put a note at the beginning
2585 and end of this binding contour.
2586
2587 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
2588 (That is true automatically if the contour has a saved stack level.) */
2589
2590void
2591expand_end_bindings (vars, mark_ends, dont_jump_in)
2592 tree vars;
2593 int mark_ends;
2594 int dont_jump_in;
2595{
2596 register struct nesting *thisblock = block_stack;
2597 register tree decl;
2598
2599 if (warn_unused)
2600 for (decl = vars; decl; decl = TREE_CHAIN (decl))
2601 if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL
2602 && ! DECL_IN_SYSTEM_HEADER (decl))
2603 warning_with_decl (decl, "unused variable `%s'");
2604
2605 if (thisblock->exit_label)
2606 {
2607 do_pending_stack_adjust ();
2608 emit_label (thisblock->exit_label);
2609 }
2610
2611 /* If necessary, make a handler for nonlocal gotos taking
2612 place in the function calls in this block. */
2613 if (function_call_count != thisblock->data.block.function_call_count
2614 && nonlocal_labels
2615 /* Make handler for outermost block
2616 if there were any nonlocal gotos to this function. */
2617 && (thisblock->next == 0 ? current_function_has_nonlocal_label
2618 /* Make handler for inner block if it has something
2619 special to do when you jump out of it. */
2620 : (thisblock->data.block.cleanups != 0
2621 || thisblock->data.block.stack_level != 0)))
2622 {
2623 tree link;
2624 rtx afterward = gen_label_rtx ();
2625 rtx handler_label = gen_label_rtx ();
2626 rtx save_receiver = gen_reg_rtx (Pmode);
2627
2628 /* Don't let jump_optimize delete the handler. */
2629 LABEL_PRESERVE_P (handler_label) = 1;
2630
2631 /* Record the handler address in the stack slot for that purpose,
2632 during this block, saving and restoring the outer value. */
2633 if (thisblock->next != 0)
2634 {
2635 emit_move_insn (nonlocal_goto_handler_slot, save_receiver);
2636 emit_insn_before (gen_move_insn (save_receiver,
2637 nonlocal_goto_handler_slot),
2638 thisblock->data.block.first_insn);
2639 }
2640 emit_insn_before (gen_move_insn (nonlocal_goto_handler_slot,
2641 gen_rtx (LABEL_REF, Pmode,
2642 handler_label)),
2643 thisblock->data.block.first_insn);
2644
2645 /* Jump around the handler; it runs only when specially invoked. */
2646 emit_jump (afterward);
2647 emit_label (handler_label);
2648
2649#ifdef HAVE_nonlocal_goto
2650 if (! HAVE_nonlocal_goto)
2651#endif
2652 /* First adjust our frame pointer to its actual value. It was
2653 previously set to the start of the virtual area corresponding to
2654 the stacked variables when we branched here and now needs to be
2655 adjusted to the actual hardware fp value.
2656
2657 Assignments are to virtual registers are converted by
2658 instantiate_virtual_regs into the corresponding assignment
2659 to the underlying register (fp in this case) that makes
2660 the original assignment true.
2661 So the following insn will actually be
2662 decrementing fp by STARTING_FRAME_OFFSET. */
2663 emit_move_insn (virtual_stack_vars_rtx, frame_pointer_rtx);
2664
2665#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2666 if (fixed_regs[ARG_POINTER_REGNUM])
2667 {
2668#ifdef ELIMINABLE_REGS
2669 /* If the argument pointer can be eliminated in favor of the
2670 frame pointer, we don't need to restore it. We assume here
2671 that if such an elimination is present, it can always be used.
2672 This is the case on all known machines; if we don't make this
2673 assumption, we do unnecessary saving on many machines. */
2674 static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS;
2675 int i;
2676
2677 for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++)
2678 if (elim_regs[i].from == ARG_POINTER_REGNUM
2679 && elim_regs[i].to == FRAME_POINTER_REGNUM)
2680 break;
2681
2682 if (i == sizeof elim_regs / sizeof elim_regs [0])
2683#endif
2684 {
2685 /* Now restore our arg pointer from the address at which it
2686 was saved in our stack frame.
2687 If there hasn't be space allocated for it yet, make
2688 some now. */
2689 if (arg_pointer_save_area == 0)
2690 arg_pointer_save_area
2691 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
2692 emit_move_insn (virtual_incoming_args_rtx,
2693 /* We need a pseudo here, or else
2694 instantiate_virtual_regs_1 complains. */
2695 copy_to_reg (arg_pointer_save_area));
2696 }
2697 }
2698#endif
2699
2700 /* The handler expects the desired label address in the static chain
2701 register. It tests the address and does an appropriate jump
2702 to whatever label is desired. */
2703 for (link = nonlocal_labels; link; link = TREE_CHAIN (link))
2704 /* Skip any labels we shouldn't be able to jump to from here. */
2705 if (! DECL_TOO_LATE (TREE_VALUE (link)))
2706 {
2707 rtx not_this = gen_label_rtx ();
2708 rtx this = gen_label_rtx ();
2709 do_jump_if_equal (static_chain_rtx,
2710 gen_rtx (LABEL_REF, Pmode, DECL_RTL (TREE_VALUE (link))),
2711 this, 0);
2712 emit_jump (not_this);
2713 emit_label (this);
2714 expand_goto (TREE_VALUE (link));
2715 emit_label (not_this);
2716 }
2717 /* If label is not recognized, abort. */
2718 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "abort"), 0,
2719 VOIDmode, 0);
2720 emit_label (afterward);
2721 }
2722
2723 /* Don't allow jumping into a block that has cleanups or a stack level. */
2724 if (dont_jump_in
2725 || thisblock->data.block.stack_level != 0
2726 || thisblock->data.block.cleanups != 0)
2727 {
2728 struct label_chain *chain;
2729
2730 /* Any labels in this block are no longer valid to go to.
2731 Mark them to cause an error message. */
2732 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
2733 {
2734 DECL_TOO_LATE (chain->label) = 1;
2735 /* If any goto without a fixup came to this label,
2736 that must be an error, because gotos without fixups
2737 come from outside all saved stack-levels and all cleanups. */
2738 if (TREE_ADDRESSABLE (chain->label))
2739 error_with_decl (chain->label,
2740 "label `%s' used before containing binding contour");
2741 }
2742 }
2743
2744 /* Restore stack level in effect before the block
2745 (only if variable-size objects allocated). */
2746 /* Perform any cleanups associated with the block. */
2747
2748 if (thisblock->data.block.stack_level != 0
2749 || thisblock->data.block.cleanups != 0)
2750 {
2751 /* Don't let cleanups affect ({...}) constructs. */
2752 int old_expr_stmts_for_value = expr_stmts_for_value;
2753 rtx old_last_expr_value = last_expr_value;
2754 tree old_last_expr_type = last_expr_type;
2755 expr_stmts_for_value = 0;
2756
2757 /* Do the cleanups. */
2758 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE);
2759 do_pending_stack_adjust ();
2760
2761 expr_stmts_for_value = old_expr_stmts_for_value;
2762 last_expr_value = old_last_expr_value;
2763 last_expr_type = old_last_expr_type;
2764
2765 /* Restore the stack level. */
2766
2767 if (thisblock->data.block.stack_level != 0)
2768 {
2769 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
2770 thisblock->data.block.stack_level, NULL_RTX);
2771 if (nonlocal_goto_handler_slot != 0)
2772 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
2773 NULL_RTX);
2774 }
2775
2776 /* Any gotos out of this block must also do these things.
2777 Also report any gotos with fixups that came to labels in this
2778 level. */
2779 fixup_gotos (thisblock,
2780 thisblock->data.block.stack_level,
2781 thisblock->data.block.cleanups,
2782 thisblock->data.block.first_insn,
2783 dont_jump_in);
2784 }
2785
2786 /* Mark the beginning and end of the scope if requested.
2787 We do this now, after running cleanups on the variables
2788 just going out of scope, so they are in scope for their cleanups. */
2789
2790 if (mark_ends)
2791 last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
2792 else
2793 /* Get rid of the beginning-mark if we don't make an end-mark. */
2794 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
2795
2796 /* If doing stupid register allocation, make sure lives of all
2797 register variables declared here extend thru end of scope. */
2798
2799 if (obey_regdecls)
2800 for (decl = vars; decl; decl = TREE_CHAIN (decl))
2801 {
2802 rtx rtl = DECL_RTL (decl);
2803 if (TREE_CODE (decl) == VAR_DECL && rtl != 0)
2804 use_variable (rtl);
2805 }
2806
2807 /* Restore block_stack level for containing block. */
2808
2809 stack_block_stack = thisblock->data.block.innermost_stack_block;
2810 POPSTACK (block_stack);
2811
2812 /* Pop the stack slot nesting and free any slots at this level. */
2813 pop_temp_slots ();
2814}
2815\f
2816/* Generate RTL for the automatic variable declaration DECL.
2817 (Other kinds of declarations are simply ignored if seen here.)
2818 CLEANUP is an expression to be executed at exit from this binding contour;
2819 for example, in C++, it might call the destructor for this variable.
2820
2821 If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them
2822 either before or after calling `expand_decl' but before compiling
2823 any subsequent expressions. This is because CLEANUP may be expanded
2824 more than once, on different branches of execution.
2825 For the same reason, CLEANUP may not contain a CALL_EXPR
2826 except as its topmost node--else `preexpand_calls' would get confused.
2827
2828 If CLEANUP is nonzero and DECL is zero, we record a cleanup
2829 that is not associated with any particular variable.
2830
2831 There is no special support here for C++ constructors.
2832 They should be handled by the proper code in DECL_INITIAL. */
2833
2834void
2835expand_decl (decl)
2836 register tree decl;
2837{
2838 struct nesting *thisblock = block_stack;
2839 tree type = TREE_TYPE (decl);
2840
2841 /* Only automatic variables need any expansion done.
2842 Static and external variables, and external functions,
2843 will be handled by `assemble_variable' (called from finish_decl).
2844 TYPE_DECL and CONST_DECL require nothing.
2845 PARM_DECLs are handled in `assign_parms'. */
2846
2847 if (TREE_CODE (decl) != VAR_DECL)
2848 return;
2849 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
2850 return;
2851
2852 /* Create the RTL representation for the variable. */
2853
2854 if (type == error_mark_node)
2855 DECL_RTL (decl) = gen_rtx (MEM, BLKmode, const0_rtx);
2856 else if (DECL_SIZE (decl) == 0)
2857 /* Variable with incomplete type. */
2858 {
2859 if (DECL_INITIAL (decl) == 0)
2860 /* Error message was already done; now avoid a crash. */
2861 DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1);
2862 else
2863 /* An initializer is going to decide the size of this array.
2864 Until we know the size, represent its address with a reg. */
2865 DECL_RTL (decl) = gen_rtx (MEM, BLKmode, gen_reg_rtx (Pmode));
2866 }
2867 else if (DECL_MODE (decl) != BLKmode
2868 /* If -ffloat-store, don't put explicit float vars
2869 into regs. */
2870 && !(flag_float_store
2871 && TREE_CODE (type) == REAL_TYPE)
2872 && ! TREE_THIS_VOLATILE (decl)
2873 && ! TREE_ADDRESSABLE (decl)
2874 && (DECL_REGISTER (decl) || ! obey_regdecls))
2875 {
2876 /* Automatic variable that can go in a register. */
2877 enum machine_mode reg_mode = DECL_MODE (decl);
2878 int unsignedp = TREE_UNSIGNED (type);
2879
2880 if (TREE_CODE (type) == INTEGER_TYPE || TREE_CODE (type) == ENUMERAL_TYPE
2881 || TREE_CODE (type) == BOOLEAN_TYPE || TREE_CODE (type) == CHAR_TYPE
2882 || TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == POINTER_TYPE
2883 || TREE_CODE (type) == OFFSET_TYPE)
2884 {
2885 PROMOTE_MODE (reg_mode, unsignedp, type);
2886 }
2887
2888 DECL_RTL (decl) = gen_reg_rtx (reg_mode);
2889 if (TREE_CODE (type) == POINTER_TYPE)
2890 mark_reg_pointer (DECL_RTL (decl));
2891 REG_USERVAR_P (DECL_RTL (decl)) = 1;
2892 }
2893 else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
2894 {
2895 /* Variable of fixed size that goes on the stack. */
2896 rtx oldaddr = 0;
2897 rtx addr;
2898
2899 /* If we previously made RTL for this decl, it must be an array
2900 whose size was determined by the initializer.
2901 The old address was a register; set that register now
2902 to the proper address. */
2903 if (DECL_RTL (decl) != 0)
2904 {
2905 if (GET_CODE (DECL_RTL (decl)) != MEM
2906 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
2907 abort ();
2908 oldaddr = XEXP (DECL_RTL (decl), 0);
2909 }
2910
2911 DECL_RTL (decl)
2912 = assign_stack_temp (DECL_MODE (decl),
2913 ((TREE_INT_CST_LOW (DECL_SIZE (decl))
2914 + BITS_PER_UNIT - 1)
2915 / BITS_PER_UNIT),
2916 1);
2917
2918 /* Set alignment we actually gave this decl. */
2919 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
2920 : GET_MODE_BITSIZE (DECL_MODE (decl)));
2921
2922 if (oldaddr)
2923 {
2924 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
2925 if (addr != oldaddr)
2926 emit_move_insn (oldaddr, addr);
2927 }
2928
2929 /* If this is a memory ref that contains aggregate components,
2930 mark it as such for cse and loop optimize. */
2931 MEM_IN_STRUCT_P (DECL_RTL (decl))
2932 = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
2933 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
2934 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
2935 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
2936#if 0
2937 /* If this is in memory because of -ffloat-store,
2938 set the volatile bit, to prevent optimizations from
2939 undoing the effects. */
2940 if (flag_float_store && TREE_CODE (type) == REAL_TYPE)
2941 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
2942#endif
2943 }
2944 else
2945 /* Dynamic-size object: must push space on the stack. */
2946 {
2947 rtx address, size;
2948
2949 /* Record the stack pointer on entry to block, if have
2950 not already done so. */
2951 if (thisblock->data.block.stack_level == 0)
2952 {
2953 do_pending_stack_adjust ();
2954 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
2955 &thisblock->data.block.stack_level,
2956 thisblock->data.block.first_insn);
2957 stack_block_stack = thisblock;
2958 }
2959
2960 /* Compute the variable's size, in bytes. */
2961 size = expand_expr (size_binop (CEIL_DIV_EXPR,
2962 DECL_SIZE (decl),
2963 size_int (BITS_PER_UNIT)),
2964 NULL_RTX, VOIDmode, 0);
2965 free_temp_slots ();
2966
2967 /* This is equivalent to calling alloca. */
2968 current_function_calls_alloca = 1;
2969
2970 /* Allocate space on the stack for the variable. */
2971 address = allocate_dynamic_stack_space (size, NULL_RTX,
2972 DECL_ALIGN (decl));
2973
2974 if (nonlocal_goto_handler_slot != 0)
2975 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
2976
2977 /* Reference the variable indirect through that rtx. */
2978 DECL_RTL (decl) = gen_rtx (MEM, DECL_MODE (decl), address);
2979
2980 /* If this is a memory ref that contains aggregate components,
2981 mark it as such for cse and loop optimize. */
2982 MEM_IN_STRUCT_P (DECL_RTL (decl))
2983 = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
2984 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
2985 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
2986 || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE);
2987
2988 /* Indicate the alignment we actually gave this variable. */
2989#ifdef STACK_BOUNDARY
2990 DECL_ALIGN (decl) = STACK_BOUNDARY;
2991#else
2992 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
2993#endif
2994 }
2995
2996 if (TREE_THIS_VOLATILE (decl))
2997 MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
2998 if (TREE_READONLY (decl))
2999 RTX_UNCHANGING_P (DECL_RTL (decl)) = 1;
3000
3001 /* If doing stupid register allocation, make sure life of any
3002 register variable starts here, at the start of its scope. */
3003
3004 if (obey_regdecls)
3005 use_variable (DECL_RTL (decl));
3006}
3007\f
3008/* Emit code to perform the initialization of a declaration DECL. */
3009
3010void
3011expand_decl_init (decl)
3012 tree decl;
3013{
3014 int was_used = TREE_USED (decl);
3015
3016 if (TREE_STATIC (decl))
3017 return;
3018
3019 /* Compute and store the initial value now. */
3020
3021 if (DECL_INITIAL (decl) == error_mark_node)
3022 {
3023 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
3024 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
3025 || code == POINTER_TYPE)
3026 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
3027 0, 0);
3028 emit_queue ();
3029 }
3030 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
3031 {
3032 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
3033 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
3034 emit_queue ();
3035 }
3036
3037 /* Don't let the initialization count as "using" the variable. */
3038 TREE_USED (decl) = was_used;
3039
3040 /* Free any temporaries we made while initializing the decl. */
3041 free_temp_slots ();
3042}
3043
3044/* CLEANUP is an expression to be executed at exit from this binding contour;
3045 for example, in C++, it might call the destructor for this variable.
3046
3047 If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them
3048 either before or after calling `expand_decl' but before compiling
3049 any subsequent expressions. This is because CLEANUP may be expanded
3050 more than once, on different branches of execution.
3051 For the same reason, CLEANUP may not contain a CALL_EXPR
3052 except as its topmost node--else `preexpand_calls' would get confused.
3053
3054 If CLEANUP is nonzero and DECL is zero, we record a cleanup
3055 that is not associated with any particular variable. */
3056
3057int
3058expand_decl_cleanup (decl, cleanup)
3059 tree decl, cleanup;
3060{
3061 struct nesting *thisblock = block_stack;
3062
3063 /* Error if we are not in any block. */
3064 if (thisblock == 0)
3065 return 0;
3066
3067 /* Record the cleanup if there is one. */
3068
3069 if (cleanup != 0)
3070 {
3071 thisblock->data.block.cleanups
3072 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
3073 /* If this block has a cleanup, it belongs in stack_block_stack. */
3074 stack_block_stack = thisblock;
3075 }
3076 return 1;
3077}
3078\f
3079/* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
3080 DECL_ELTS is the list of elements that belong to DECL's type.
3081 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
3082
3083void
3084expand_anon_union_decl (decl, cleanup, decl_elts)
3085 tree decl, cleanup, decl_elts;
3086{
3087 struct nesting *thisblock = block_stack;
3088 rtx x;
3089
3090 expand_decl (decl, cleanup);
3091 x = DECL_RTL (decl);
3092
3093 while (decl_elts)
3094 {
3095 tree decl_elt = TREE_VALUE (decl_elts);
3096 tree cleanup_elt = TREE_PURPOSE (decl_elts);
3097 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
3098
3099 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
3100 instead create a new MEM rtx with the proper mode. */
3101 if (GET_CODE (x) == MEM)
3102 {
3103 if (mode == GET_MODE (x))
3104 DECL_RTL (decl_elt) = x;
3105 else
3106 {
3107 DECL_RTL (decl_elt) = gen_rtx (MEM, mode, copy_rtx (XEXP (x, 0)));
3108 MEM_IN_STRUCT_P (DECL_RTL (decl_elt)) = MEM_IN_STRUCT_P (x);
3109 RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x);
3110 }
3111 }
3112 else if (GET_CODE (x) == REG)
3113 {
3114 if (mode == GET_MODE (x))
3115 DECL_RTL (decl_elt) = x;
3116 else
3117 DECL_RTL (decl_elt) = gen_rtx (SUBREG, mode, x, 0);
3118 }
3119 else
3120 abort ();
3121
3122 /* Record the cleanup if there is one. */
3123
3124 if (cleanup != 0)
3125 thisblock->data.block.cleanups
3126 = temp_tree_cons (decl_elt, cleanup_elt,
3127 thisblock->data.block.cleanups);
3128
3129 decl_elts = TREE_CHAIN (decl_elts);
3130 }
3131}
3132\f
3133/* Expand a list of cleanups LIST.
3134 Elements may be expressions or may be nested lists.
3135
3136 If DONT_DO is nonnull, then any list-element
3137 whose TREE_PURPOSE matches DONT_DO is omitted.
3138 This is sometimes used to avoid a cleanup associated with
3139 a value that is being returned out of the scope. */
3140
3141static void
3142expand_cleanups (list, dont_do)
3143 tree list;
3144 tree dont_do;
3145{
3146 tree tail;
3147 for (tail = list; tail; tail = TREE_CHAIN (tail))
3148 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
3149 {
3150 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
3151 expand_cleanups (TREE_VALUE (tail), dont_do);
3152 else
3153 {
3154 /* Cleanups may be run multiple times. For example,
3155 when exiting a binding contour, we expand the
3156 cleanups associated with that contour. When a goto
3157 within that binding contour has a target outside that
3158 contour, it will expand all cleanups from its scope to
3159 the target. Though the cleanups are expanded multiple
3160 times, the control paths are non-overlapping so the
3161 cleanups will not be executed twice. */
3162 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
3163 free_temp_slots ();
3164 }
3165 }
3166}
3167
3168/* Move all cleanups from the current block_stack
3169 to the containing block_stack, where they are assumed to
3170 have been created. If anything can cause a temporary to
3171 be created, but not expanded for more than one level of
3172 block_stacks, then this code will have to change. */
3173
3174void
3175move_cleanups_up ()
3176{
3177 struct nesting *block = block_stack;
3178 struct nesting *outer = block->next;
3179
3180 outer->data.block.cleanups
3181 = chainon (block->data.block.cleanups,
3182 outer->data.block.cleanups);
3183 block->data.block.cleanups = 0;
3184}
3185
3186tree
3187last_cleanup_this_contour ()
3188{
3189 if (block_stack == 0)
3190 return 0;
3191
3192 return block_stack->data.block.cleanups;
3193}
3194
3195/* Return 1 if there are any pending cleanups at this point.
3196 If THIS_CONTOUR is nonzero, check the current contour as well.
3197 Otherwise, look only at the contours that enclose this one. */
3198
3199int
3200any_pending_cleanups (this_contour)
3201 int this_contour;
3202{
3203 struct nesting *block;
3204
3205 if (block_stack == 0)
3206 return 0;
3207
3208 if (this_contour && block_stack->data.block.cleanups != NULL)
3209 return 1;
3210 if (block_stack->data.block.cleanups == 0
3211 && (block_stack->data.block.outer_cleanups == 0
3212#if 0
3213 || block_stack->data.block.outer_cleanups == empty_cleanup_list
3214#endif
3215 ))
3216 return 0;
3217
3218 for (block = block_stack->next; block; block = block->next)
3219 if (block->data.block.cleanups != 0)
3220 return 1;
3221
3222 return 0;
3223}
3224\f
3225/* Enter a case (Pascal) or switch (C) statement.
3226 Push a block onto case_stack and nesting_stack
3227 to accumulate the case-labels that are seen
3228 and to record the labels generated for the statement.
3229
3230 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
3231 Otherwise, this construct is transparent for `exit_something'.
3232
3233 EXPR is the index-expression to be dispatched on.
3234 TYPE is its nominal type. We could simply convert EXPR to this type,
3235 but instead we take short cuts. */
3236
3237void
3238expand_start_case (exit_flag, expr, type, printname)
3239 int exit_flag;
3240 tree expr;
3241 tree type;
3242 char *printname;
3243{
3244 register struct nesting *thiscase = ALLOC_NESTING ();
3245
3246 /* Make an entry on case_stack for the case we are entering. */
3247
3248 thiscase->next = case_stack;
3249 thiscase->all = nesting_stack;
3250 thiscase->depth = ++nesting_depth;
3251 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
3252 thiscase->data.case_stmt.case_list = 0;
3253 thiscase->data.case_stmt.index_expr = expr;
3254 thiscase->data.case_stmt.nominal_type = type;
3255 thiscase->data.case_stmt.default_label = 0;
3256 thiscase->data.case_stmt.num_ranges = 0;
3257 thiscase->data.case_stmt.printname = printname;
3258 thiscase->data.case_stmt.seenlabel = 0;
3259 case_stack = thiscase;
3260 nesting_stack = thiscase;
3261
3262 do_pending_stack_adjust ();
3263
3264 /* Make sure case_stmt.start points to something that won't
3265 need any transformation before expand_end_case. */
3266 if (GET_CODE (get_last_insn ()) != NOTE)
3267 emit_note (NULL_PTR, NOTE_INSN_DELETED);
3268
3269 thiscase->data.case_stmt.start = get_last_insn ();
3270}
3271
3272/* Start a "dummy case statement" within which case labels are invalid
3273 and are not connected to any larger real case statement.
3274 This can be used if you don't want to let a case statement jump
3275 into the middle of certain kinds of constructs. */
3276
3277void
3278expand_start_case_dummy ()
3279{
3280 register struct nesting *thiscase = ALLOC_NESTING ();
3281
3282 /* Make an entry on case_stack for the dummy. */
3283
3284 thiscase->next = case_stack;
3285 thiscase->all = nesting_stack;
3286 thiscase->depth = ++nesting_depth;
3287 thiscase->exit_label = 0;
3288 thiscase->data.case_stmt.case_list = 0;
3289 thiscase->data.case_stmt.start = 0;
3290 thiscase->data.case_stmt.nominal_type = 0;
3291 thiscase->data.case_stmt.default_label = 0;
3292 thiscase->data.case_stmt.num_ranges = 0;
3293 case_stack = thiscase;
3294 nesting_stack = thiscase;
3295}
3296
3297/* End a dummy case statement. */
3298
3299void
3300expand_end_case_dummy ()
3301{
3302 POPSTACK (case_stack);
3303}
3304
3305/* Return the data type of the index-expression
3306 of the innermost case statement, or null if none. */
3307
3308tree
3309case_index_expr_type ()
3310{
3311 if (case_stack)
3312 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
3313 return 0;
3314}
3315\f
3316/* Accumulate one case or default label inside a case or switch statement.
3317 VALUE is the value of the case (a null pointer, for a default label).
3318
3319 If not currently inside a case or switch statement, return 1 and do
3320 nothing. The caller will print a language-specific error message.
3321 If VALUE is a duplicate or overlaps, return 2 and do nothing
3322 except store the (first) duplicate node in *DUPLICATE.
3323 If VALUE is out of range, return 3 and do nothing.
3324 If we are jumping into the scope of a cleaup or var-sized array, return 5.
3325 Return 0 on success.
3326
3327 Extended to handle range statements. */
3328
3329int
3330pushcase (value, label, duplicate)
3331 register tree value;
3332 register tree label;
3333 tree *duplicate;
3334{
3335 register struct case_node **l;
3336 register struct case_node *n;
3337 tree index_type;
3338 tree nominal_type;
3339
3340 /* Fail if not inside a real case statement. */
3341 if (! (case_stack && case_stack->data.case_stmt.start))
3342 return 1;
3343
3344 if (stack_block_stack
3345 && stack_block_stack->depth > case_stack->depth)
3346 return 5;
3347
3348 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
3349 nominal_type = case_stack->data.case_stmt.nominal_type;
3350
3351 /* If the index is erroneous, avoid more problems: pretend to succeed. */
3352 if (index_type == error_mark_node)
3353 return 0;
3354
3355 /* Convert VALUE to the type in which the comparisons are nominally done. */
3356 if (value != 0)
3357 value = convert (nominal_type, value);
3358
3359 /* If this is the first label, warn if any insns have been emitted. */
3360 if (case_stack->data.case_stmt.seenlabel == 0)
3361 {
3362 rtx insn;
3363 for (insn = case_stack->data.case_stmt.start;
3364 insn;
3365 insn = NEXT_INSN (insn))
3366 {
3367 if (GET_CODE (insn) == CODE_LABEL)
3368 break;
3369 if (GET_CODE (insn) != NOTE
3370 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
3371 {
3372 warning ("unreachable code at beginning of %s",
3373 case_stack->data.case_stmt.printname);
3374 break;
3375 }
3376 }
3377 }
3378 case_stack->data.case_stmt.seenlabel = 1;
3379
3380 /* Fail if this value is out of range for the actual type of the index
3381 (which may be narrower than NOMINAL_TYPE). */
3382 if (value != 0 && ! int_fits_type_p (value, index_type))
3383 return 3;
3384
3385 /* Fail if this is a duplicate or overlaps another entry. */
3386 if (value == 0)
3387 {
3388 if (case_stack->data.case_stmt.default_label != 0)
3389 {
3390 *duplicate = case_stack->data.case_stmt.default_label;
3391 return 2;
3392 }
3393 case_stack->data.case_stmt.default_label = label;
3394 }
3395 else
3396 {
3397 /* Find the elt in the chain before which to insert the new value,
3398 to keep the chain sorted in increasing order.
3399 But report an error if this element is a duplicate. */
3400 for (l = &case_stack->data.case_stmt.case_list;
3401 /* Keep going past elements distinctly less than VALUE. */
3402 *l != 0 && tree_int_cst_lt ((*l)->high, value);
3403 l = &(*l)->right)
3404 ;
3405 if (*l)
3406 {
3407 /* Element we will insert before must be distinctly greater;
3408 overlap means error. */
3409 if (! tree_int_cst_lt (value, (*l)->low))
3410 {
3411 *duplicate = (*l)->code_label;
3412 return 2;
3413 }
3414 }
3415
3416 /* Add this label to the chain, and succeed.
3417 Copy VALUE so it is on temporary rather than momentary
3418 obstack and will thus survive till the end of the case statement. */
3419 n = (struct case_node *) oballoc (sizeof (struct case_node));
3420 n->left = 0;
3421 n->right = *l;
3422 n->high = n->low = copy_node (value);
3423 n->code_label = label;
3424 *l = n;
3425 }
3426
3427 expand_label (label);
3428 return 0;
3429}
3430
3431/* Like pushcase but this case applies to all values
3432 between VALUE1 and VALUE2 (inclusive).
3433 The return value is the same as that of pushcase
3434 but there is one additional error code:
3435 4 means the specified range was empty. */
3436
3437int
3438pushcase_range (value1, value2, label, duplicate)
3439 register tree value1, value2;
3440 register tree label;
3441 tree *duplicate;
3442{
3443 register struct case_node **l;
3444 register struct case_node *n;
3445 tree index_type;
3446 tree nominal_type;
3447
3448 /* Fail if not inside a real case statement. */
3449 if (! (case_stack && case_stack->data.case_stmt.start))
3450 return 1;
3451
3452 if (stack_block_stack
3453 && stack_block_stack->depth > case_stack->depth)
3454 return 5;
3455
3456 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
3457 nominal_type = case_stack->data.case_stmt.nominal_type;
3458
3459 /* If the index is erroneous, avoid more problems: pretend to succeed. */
3460 if (index_type == error_mark_node)
3461 return 0;
3462
3463 /* If this is the first label, warn if any insns have been emitted. */
3464 if (case_stack->data.case_stmt.seenlabel == 0)
3465 {
3466 rtx insn;
3467 for (insn = case_stack->data.case_stmt.start;
3468 insn;
3469 insn = NEXT_INSN (insn))
3470 {
3471 if (GET_CODE (insn) == CODE_LABEL)
3472 break;
3473 if (GET_CODE (insn) != NOTE
3474 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
3475 {
3476 warning ("unreachable code at beginning of %s",
3477 case_stack->data.case_stmt.printname);
3478 break;
3479 }
3480 }
3481 }
3482 case_stack->data.case_stmt.seenlabel = 1;
3483
3484 /* Convert VALUEs to type in which the comparisons are nominally done. */
3485 if (value1 == 0) /* Negative infinity. */
3486 value1 = TYPE_MIN_VALUE(index_type);
3487 value1 = convert (nominal_type, value1);
3488
3489 if (value2 == 0) /* Positive infinity. */
3490 value2 = TYPE_MAX_VALUE(index_type);
3491 value2 = convert (nominal_type, value2);
3492
3493 /* Fail if these values are out of range. */
3494 if (! int_fits_type_p (value1, index_type))
3495 return 3;
3496
3497 if (! int_fits_type_p (value2, index_type))
3498 return 3;
3499
3500 /* Fail if the range is empty. */
3501 if (tree_int_cst_lt (value2, value1))
3502 return 4;
3503
3504 /* If the bounds are equal, turn this into the one-value case. */
3505 if (tree_int_cst_equal (value1, value2))
3506 return pushcase (value1, label, duplicate);
3507
3508 /* Find the elt in the chain before which to insert the new value,
3509 to keep the chain sorted in increasing order.
3510 But report an error if this element is a duplicate. */
3511 for (l = &case_stack->data.case_stmt.case_list;
3512 /* Keep going past elements distinctly less than this range. */
3513 *l != 0 && tree_int_cst_lt ((*l)->high, value1);
3514 l = &(*l)->right)
3515 ;
3516 if (*l)
3517 {
3518 /* Element we will insert before must be distinctly greater;
3519 overlap means error. */
3520 if (! tree_int_cst_lt (value2, (*l)->low))
3521 {
3522 *duplicate = (*l)->code_label;
3523 return 2;
3524 }
3525 }
3526
3527 /* Add this label to the chain, and succeed.
3528 Copy VALUE1, VALUE2 so they are on temporary rather than momentary
3529 obstack and will thus survive till the end of the case statement. */
3530
3531 n = (struct case_node *) oballoc (sizeof (struct case_node));
3532 n->left = 0;
3533 n->right = *l;
3534 n->low = copy_node (value1);
3535 n->high = copy_node (value2);
3536 n->code_label = label;
3537 *l = n;
3538
3539 expand_label (label);
3540
3541 case_stack->data.case_stmt.num_ranges++;
3542
3543 return 0;
3544}
3545\f
3546/* Called when the index of a switch statement is an enumerated type
3547 and there is no default label.
3548
3549 Checks that all enumeration literals are covered by the case
3550 expressions of a switch. Also, warn if there are any extra
3551 switch cases that are *not* elements of the enumerated type.
3552
3553 If all enumeration literals were covered by the case expressions,
3554 turn one of the expressions into the default expression since it should
3555 not be possible to fall through such a switch. */
3556
3557void
3558check_for_full_enumeration_handling (type)
3559 tree type;
3560{
3561 register struct case_node *n;
3562 register struct case_node **l;
3563 register tree chain;
3564 int all_values = 1;
3565
3566 /* The time complexity of this loop is currently O(N * M), with
3567 N being the number of members in the enumerated type, and
3568 M being the number of case expressions in the switch. */
3569
3570 for (chain = TYPE_VALUES (type);
3571 chain;
3572 chain = TREE_CHAIN (chain))
3573 {
3574 /* Find a match between enumeral and case expression, if possible.
3575 Quit looking when we've gone too far (since case expressions
3576 are kept sorted in ascending order). Warn about enumerators not
3577 handled in the switch statement case expression list. */
3578
3579 for (n = case_stack->data.case_stmt.case_list;
3580 n && tree_int_cst_lt (n->high, TREE_VALUE (chain));
3581 n = n->right)
3582 ;
3583
3584 if (!n || tree_int_cst_lt (TREE_VALUE (chain), n->low))
3585 {
3586 if (warn_switch)
3587 warning ("enumeration value `%s' not handled in switch",
3588 IDENTIFIER_POINTER (TREE_PURPOSE (chain)));
3589 all_values = 0;
3590 }
3591 }
3592
3593 /* Now we go the other way around; we warn if there are case
3594 expressions that don't correspond to enumerators. This can
3595 occur since C and C++ don't enforce type-checking of
3596 assignments to enumeration variables. */
3597
3598 if (warn_switch)
3599 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
3600 {
3601 for (chain = TYPE_VALUES (type);
3602 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
3603 chain = TREE_CHAIN (chain))
3604 ;
3605
3606 if (!chain)
3607 {
3608 if (TYPE_NAME (type) == 0)
3609 warning ("case value `%d' not in enumerated type",
3610 TREE_INT_CST_LOW (n->low));
3611 else
3612 warning ("case value `%d' not in enumerated type `%s'",
3613 TREE_INT_CST_LOW (n->low),
3614 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
3615 == IDENTIFIER_NODE)
3616 ? TYPE_NAME (type)
3617 : DECL_NAME (TYPE_NAME (type))));
3618 }
3619 if (!tree_int_cst_equal (n->low, n->high))
3620 {
3621 for (chain = TYPE_VALUES (type);
3622 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
3623 chain = TREE_CHAIN (chain))
3624 ;
3625
3626 if (!chain)
3627 {
3628 if (TYPE_NAME (type) == 0)
3629 warning ("case value `%d' not in enumerated type",
3630 TREE_INT_CST_LOW (n->high));
3631 else
3632 warning ("case value `%d' not in enumerated type `%s'",
3633 TREE_INT_CST_LOW (n->high),
3634 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
3635 == IDENTIFIER_NODE)
3636 ? TYPE_NAME (type)
3637 : DECL_NAME (TYPE_NAME (type))));
3638 }
3639 }
3640 }
3641
3642 /* If all values were found as case labels, make one of them the default
3643 label. Thus, this switch will never fall through. We arbitrarily pick
3644 the last one to make the default since this is likely the most
3645 efficient choice. */
3646
3647 if (all_values)
3648 {
3649 for (l = &case_stack->data.case_stmt.case_list;
3650 (*l)->right != 0;
3651 l = &(*l)->right)
3652 ;
3653
3654 case_stack->data.case_stmt.default_label = (*l)->code_label;
3655 *l = 0;
3656 }
3657}
3658\f
3659/* Terminate a case (Pascal) or switch (C) statement
3660 in which ORIG_INDEX is the expression to be tested.
3661 Generate the code to test it and jump to the right place. */
3662
3663void
3664expand_end_case (orig_index)
3665 tree orig_index;
3666{
3667 tree minval, maxval, range;
3668 rtx default_label = 0;
3669 register struct case_node *n;
3670 int count;
3671 rtx index;
3672 rtx table_label = gen_label_rtx ();
3673 int ncases;
3674 rtx *labelvec;
3675 register int i;
3676 rtx before_case;
3677 register struct nesting *thiscase = case_stack;
3678 tree index_expr = thiscase->data.case_stmt.index_expr;
3679 int unsignedp = TREE_UNSIGNED (TREE_TYPE (index_expr));
3680
3681 do_pending_stack_adjust ();
3682
3683 /* An ERROR_MARK occurs for various reasons including invalid data type. */
3684 if (TREE_TYPE (index_expr) != error_mark_node)
3685 {
3686 /* If switch expression was an enumerated type, check that all
3687 enumeration literals are covered by the cases.
3688 No sense trying this if there's a default case, however. */
3689
3690 if (!thiscase->data.case_stmt.default_label
3691 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
3692 && TREE_CODE (index_expr) != INTEGER_CST)
3693 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
3694
3695 /* If this is the first label, warn if any insns have been emitted. */
3696 if (thiscase->data.case_stmt.seenlabel == 0)
3697 {
3698 rtx insn;
3699 for (insn = get_last_insn ();
3700 insn != case_stack->data.case_stmt.start;
3701 insn = PREV_INSN (insn))
3702 if (GET_CODE (insn) != NOTE
3703 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn))!= USE))
3704 {
3705 warning ("unreachable code at beginning of %s",
3706 case_stack->data.case_stmt.printname);
3707 break;
3708 }
3709 }
3710
3711 /* If we don't have a default-label, create one here,
3712 after the body of the switch. */
3713 if (thiscase->data.case_stmt.default_label == 0)
3714 {
3715 thiscase->data.case_stmt.default_label
3716 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
3717 expand_label (thiscase->data.case_stmt.default_label);
3718 }
3719 default_label = label_rtx (thiscase->data.case_stmt.default_label);
3720
3721 before_case = get_last_insn ();
3722
3723 /* Simplify the case-list before we count it. */
3724 group_case_nodes (thiscase->data.case_stmt.case_list);
3725
3726 /* Get upper and lower bounds of case values.
3727 Also convert all the case values to the index expr's data type. */
3728
3729 count = 0;
3730 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
3731 {
3732 /* Check low and high label values are integers. */
3733 if (TREE_CODE (n->low) != INTEGER_CST)
3734 abort ();
3735 if (TREE_CODE (n->high) != INTEGER_CST)
3736 abort ();
3737
3738 n->low = convert (TREE_TYPE (index_expr), n->low);
3739 n->high = convert (TREE_TYPE (index_expr), n->high);
3740
3741 /* Count the elements and track the largest and smallest
3742 of them (treating them as signed even if they are not). */
3743 if (count++ == 0)
3744 {
3745 minval = n->low;
3746 maxval = n->high;
3747 }
3748 else
3749 {
3750 if (INT_CST_LT (n->low, minval))
3751 minval = n->low;
3752 if (INT_CST_LT (maxval, n->high))
3753 maxval = n->high;
3754 }
3755 /* A range counts double, since it requires two compares. */
3756 if (! tree_int_cst_equal (n->low, n->high))
3757 count++;
3758 }
3759
3760 /* Compute span of values. */
3761 if (count != 0)
3762 range = fold (build (MINUS_EXPR, TREE_TYPE (index_expr),
3763 maxval, minval));
3764
3765 if (count == 0 || TREE_CODE (TREE_TYPE (index_expr)) == ERROR_MARK)
3766 {
3767 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
3768 emit_queue ();
3769 emit_jump (default_label);
3770 }
3771 /* If range of values is much bigger than number of values,
3772 make a sequence of conditional branches instead of a dispatch.
3773 If the switch-index is a constant, do it this way
3774 because we can optimize it. */
3775
3776#ifndef CASE_VALUES_THRESHOLD
3777#ifdef HAVE_casesi
3778#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
3779#else
3780 /* If machine does not have a case insn that compares the
3781 bounds, this means extra overhead for dispatch tables
3782 which raises the threshold for using them. */
3783#define CASE_VALUES_THRESHOLD 5
3784#endif /* HAVE_casesi */
3785#endif /* CASE_VALUES_THRESHOLD */
3786
3787 else if (TREE_INT_CST_HIGH (range) != 0
3788 || count < CASE_VALUES_THRESHOLD
3789 || ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range))
3790 > 10 * count)
3791 || TREE_CODE (index_expr) == INTEGER_CST
3792 /* These will reduce to a constant. */
3793 || (TREE_CODE (index_expr) == CALL_EXPR
3794 && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
3795 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
3796 && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE)
3797 || (TREE_CODE (index_expr) == COMPOUND_EXPR
3798 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
3799 {
3800 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
3801
3802 /* If the index is a short or char that we do not have
3803 an insn to handle comparisons directly, convert it to
3804 a full integer now, rather than letting each comparison
3805 generate the conversion. */
3806
3807 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
3808 && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code
3809 == CODE_FOR_nothing))
3810 {
3811 enum machine_mode wider_mode;
3812 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
3813 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3814 if (cmp_optab->handlers[(int) wider_mode].insn_code
3815 != CODE_FOR_nothing)
3816 {
3817 index = convert_to_mode (wider_mode, index, unsignedp);
3818 break;
3819 }
3820 }
3821
3822 emit_queue ();
3823 do_pending_stack_adjust ();
3824
3825 index = protect_from_queue (index, 0);
3826 if (GET_CODE (index) == MEM)
3827 index = copy_to_reg (index);
3828 if (GET_CODE (index) == CONST_INT
3829 || TREE_CODE (index_expr) == INTEGER_CST)
3830 {
3831 /* Make a tree node with the proper constant value
3832 if we don't already have one. */
3833 if (TREE_CODE (index_expr) != INTEGER_CST)
3834 {
3835 index_expr
3836 = build_int_2 (INTVAL (index),
3837 !unsignedp && INTVAL (index) >= 0 ? 0 : -1);
3838 index_expr = convert (TREE_TYPE (index_expr), index_expr);
3839 }
3840
3841 /* For constant index expressions we need only
3842 issue a unconditional branch to the appropriate
3843 target code. The job of removing any unreachable
3844 code is left to the optimisation phase if the
3845 "-O" option is specified. */
3846 for (n = thiscase->data.case_stmt.case_list;
3847 n;
3848 n = n->right)
3849 {
3850 if (! tree_int_cst_lt (index_expr, n->low)
3851 && ! tree_int_cst_lt (n->high, index_expr))
3852 break;
3853 }
3854 if (n)
3855 emit_jump (label_rtx (n->code_label));
3856 else
3857 emit_jump (default_label);
3858 }
3859 else
3860 {
3861 /* If the index expression is not constant we generate
3862 a binary decision tree to select the appropriate
3863 target code. This is done as follows:
3864
3865 The list of cases is rearranged into a binary tree,
3866 nearly optimal assuming equal probability for each case.
3867
3868 The tree is transformed into RTL, eliminating
3869 redundant test conditions at the same time.
3870
3871 If program flow could reach the end of the
3872 decision tree an unconditional jump to the
3873 default code is emitted. */
3874
3875 use_cost_table
3876 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
3877 && estimate_case_costs (thiscase->data.case_stmt.case_list));
3878 balance_case_nodes (&thiscase->data.case_stmt.case_list,
3879 NULL_PTR);
3880 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
3881 default_label, TREE_TYPE (index_expr));
3882 emit_jump_if_reachable (default_label);
3883 }
3884 }
3885 else
3886 {
3887 int win = 0;
3888#ifdef HAVE_casesi
3889 if (HAVE_casesi)
3890 {
3891 enum machine_mode index_mode = SImode;
3892 int index_bits = GET_MODE_BITSIZE (index_mode);
3893
3894 /* Convert the index to SImode. */
3895 if (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (index_expr)))
3896 > GET_MODE_BITSIZE (index_mode))
3897 {
3898 enum machine_mode omode = TYPE_MODE (TREE_TYPE (index_expr));
3899 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
3900
3901 /* We must handle the endpoints in the original mode. */
3902 index_expr = build (MINUS_EXPR, TREE_TYPE (index_expr),
3903 index_expr, minval);
3904 minval = integer_zero_node;
3905 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
3906 emit_cmp_insn (rangertx, index, LTU, NULL_RTX, omode, 0, 0);
3907 emit_jump_insn (gen_bltu (default_label));
3908 /* Now we can safely truncate. */
3909 index = convert_to_mode (index_mode, index, 0);
3910 }
3911 else
3912 {
3913 if (TYPE_MODE (TREE_TYPE (index_expr)) != index_mode)
3914 index_expr = convert (type_for_size (index_bits, 0),
3915 index_expr);
3916 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
3917 }
3918 emit_queue ();
3919 index = protect_from_queue (index, 0);
3920 do_pending_stack_adjust ();
3921
3922 emit_jump_insn (gen_casesi (index, expand_expr (minval, NULL_RTX,
3923 VOIDmode, 0),
3924 expand_expr (range, NULL_RTX,
3925 VOIDmode, 0),
3926 table_label, default_label));
3927 win = 1;
3928 }
3929#endif
3930#ifdef HAVE_tablejump
3931 if (! win && HAVE_tablejump)
3932 {
3933 index_expr = convert (thiscase->data.case_stmt.nominal_type,
3934 fold (build (MINUS_EXPR,
3935 TREE_TYPE (index_expr),
3936 index_expr, minval)));
3937 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
3938 emit_queue ();
3939 index = protect_from_queue (index, 0);
3940 do_pending_stack_adjust ();
3941
3942 do_tablejump (index, TYPE_MODE (TREE_TYPE (index_expr)),
3943 expand_expr (range, NULL_RTX, VOIDmode, 0),
3944 table_label, default_label);
3945 win = 1;
3946 }
3947#endif
3948 if (! win)
3949 abort ();
3950
3951 /* Get table of labels to jump to, in order of case index. */
3952
3953 ncases = TREE_INT_CST_LOW (range) + 1;
3954 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
3955 bzero (labelvec, ncases * sizeof (rtx));
3956
3957 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
3958 {
3959 register HOST_WIDE_INT i
3960 = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (minval);
3961
3962 while (1)
3963 {
3964 labelvec[i]
3965 = gen_rtx (LABEL_REF, Pmode, label_rtx (n->code_label));
3966 if (i + TREE_INT_CST_LOW (minval)
3967 == TREE_INT_CST_LOW (n->high))
3968 break;
3969 i++;
3970 }
3971 }
3972
3973 /* Fill in the gaps with the default. */
3974 for (i = 0; i < ncases; i++)
3975 if (labelvec[i] == 0)
3976 labelvec[i] = gen_rtx (LABEL_REF, Pmode, default_label);
3977
3978 /* Output the table */
3979 emit_label (table_label);
3980
3981 /* This would be a lot nicer if CASE_VECTOR_PC_RELATIVE
3982 were an expression, instead of an #ifdef/#ifndef. */
3983 if (
3984#ifdef CASE_VECTOR_PC_RELATIVE
3985 1 ||
3986#endif
3987 flag_pic)
3988 emit_jump_insn (gen_rtx (ADDR_DIFF_VEC, CASE_VECTOR_MODE,
3989 gen_rtx (LABEL_REF, Pmode, table_label),
3990 gen_rtvec_v (ncases, labelvec)));
3991 else
3992 emit_jump_insn (gen_rtx (ADDR_VEC, CASE_VECTOR_MODE,
3993 gen_rtvec_v (ncases, labelvec)));
3994
3995 /* If the case insn drops through the table,
3996 after the table we must jump to the default-label.
3997 Otherwise record no drop-through after the table. */
3998#ifdef CASE_DROPS_THROUGH
3999 emit_jump (default_label);
4000#else
4001 emit_barrier ();
4002#endif
4003 }
4004
4005 before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ());
4006 reorder_insns (before_case, get_last_insn (),
4007 thiscase->data.case_stmt.start);
4008 }
4009 if (thiscase->exit_label)
4010 emit_label (thiscase->exit_label);
4011
4012 POPSTACK (case_stack);
4013
4014 free_temp_slots ();
4015}
4016
4017/* Generate code to jump to LABEL if OP1 and OP2 are equal. */
4018
4019static void
4020do_jump_if_equal (op1, op2, label, unsignedp)
4021 rtx op1, op2, label;
4022 int unsignedp;
4023{
4024 if (GET_CODE (op1) == CONST_INT
4025 && GET_CODE (op2) == CONST_INT)
4026 {
4027 if (INTVAL (op1) == INTVAL (op2))
4028 emit_jump (label);
4029 }
4030 else
4031 {
4032 enum machine_mode mode = GET_MODE (op1);
4033 if (mode == VOIDmode)
4034 mode = GET_MODE (op2);
4035 emit_cmp_insn (op1, op2, EQ, NULL_RTX, mode, unsignedp, 0);
4036 emit_jump_insn (gen_beq (label));
4037 }
4038}
4039\f
4040/* Not all case values are encountered equally. This function
4041 uses a heuristic to weight case labels, in cases where that
4042 looks like a reasonable thing to do.
4043
4044 Right now, all we try to guess is text, and we establish the
4045 following weights:
4046
4047 chars above space: 16
4048 digits: 16
4049 default: 12
4050 space, punct: 8
4051 tab: 4
4052 newline: 2
4053 other "\" chars: 1
4054 remaining chars: 0
4055
4056 If we find any cases in the switch that are not either -1 or in the range
4057 of valid ASCII characters, or are control characters other than those
4058 commonly used with "\", don't treat this switch scanning text.
4059
4060 Return 1 if these nodes are suitable for cost estimation, otherwise
4061 return 0. */
4062
4063static int
4064estimate_case_costs (node)
4065 case_node_ptr node;
4066{
4067 tree min_ascii = build_int_2 (-1, -1);
4068 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
4069 case_node_ptr n;
4070 int i;
4071
4072 /* If we haven't already made the cost table, make it now. Note that the
4073 lower bound of the table is -1, not zero. */
4074
4075 if (cost_table == NULL)
4076 {
4077 cost_table = ((short *) xmalloc (129 * sizeof (short))) + 1;
4078 bzero (cost_table - 1, 129 * sizeof (short));
4079
4080 for (i = 0; i < 128; i++)
4081 {
4082 if (isalnum (i))
4083 cost_table[i] = 16;
4084 else if (ispunct (i))
4085 cost_table[i] = 8;
4086 else if (iscntrl (i))
4087 cost_table[i] = -1;
4088 }
4089
4090 cost_table[' '] = 8;
4091 cost_table['\t'] = 4;
4092 cost_table['\0'] = 4;
4093 cost_table['\n'] = 2;
4094 cost_table['\f'] = 1;
4095 cost_table['\v'] = 1;
4096 cost_table['\b'] = 1;
4097 }
4098
4099 /* See if all the case expressions look like text. It is text if the
4100 constant is >= -1 and the highest constant is <= 127. Do all comparisons
4101 as signed arithmetic since we don't want to ever access cost_table with a
4102 value less than -1. Also check that none of the constants in a range
4103 are strange control characters. */
4104
4105 for (n = node; n; n = n->right)
4106 {
4107 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
4108 return 0;
4109
4110 for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++)
4111 if (cost_table[i] < 0)
4112 return 0;
4113 }
4114
4115 /* All interesting values are within the range of interesting
4116 ASCII characters. */
4117 return 1;
4118}
4119
4120/* Scan an ordered list of case nodes
4121 combining those with consecutive values or ranges.
4122
4123 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
4124
4125static void
4126group_case_nodes (head)
4127 case_node_ptr head;
4128{
4129 case_node_ptr node = head;
4130
4131 while (node)
4132 {
4133 rtx lb = next_real_insn (label_rtx (node->code_label));
4134 case_node_ptr np = node;
4135
4136 /* Try to group the successors of NODE with NODE. */
4137 while (((np = np->right) != 0)
4138 /* Do they jump to the same place? */
4139 && next_real_insn (label_rtx (np->code_label)) == lb
4140 /* Are their ranges consecutive? */
4141 && tree_int_cst_equal (np->low,
4142 fold (build (PLUS_EXPR,
4143 TREE_TYPE (node->high),
4144 node->high,
4145 integer_one_node)))
4146 /* An overflow is not consecutive. */
4147 && tree_int_cst_lt (node->high,
4148 fold (build (PLUS_EXPR,
4149 TREE_TYPE (node->high),
4150 node->high,
4151 integer_one_node))))
4152 {
4153 node->high = np->high;
4154 }
4155 /* NP is the first node after NODE which can't be grouped with it.
4156 Delete the nodes in between, and move on to that node. */
4157 node->right = np;
4158 node = np;
4159 }
4160}
4161
4162/* Take an ordered list of case nodes
4163 and transform them into a near optimal binary tree,
4164 on the assumption that any target code selection value is as
4165 likely as any other.
4166
4167 The transformation is performed by splitting the ordered
4168 list into two equal sections plus a pivot. The parts are
4169 then attached to the pivot as left and right branches. Each
4170 branch is is then transformed recursively. */
4171
4172static void
4173balance_case_nodes (head, parent)
4174 case_node_ptr *head;
4175 case_node_ptr parent;
4176{
4177 register case_node_ptr np;
4178
4179 np = *head;
4180 if (np)
4181 {
4182 int cost = 0;
4183 int i = 0;
4184 int ranges = 0;
4185 register case_node_ptr *npp;
4186 case_node_ptr left;
4187
4188 /* Count the number of entries on branch. Also count the ranges. */
4189
4190 while (np)
4191 {
4192 if (!tree_int_cst_equal (np->low, np->high))
4193 {
4194 ranges++;
4195 if (use_cost_table)
4196 cost += cost_table[TREE_INT_CST_LOW (np->high)];
4197 }
4198
4199 if (use_cost_table)
4200 cost += cost_table[TREE_INT_CST_LOW (np->low)];
4201
4202 i++;
4203 np = np->right;
4204 }
4205
4206 if (i > 2)
4207 {
4208 /* Split this list if it is long enough for that to help. */
4209 npp = head;
4210 left = *npp;
4211 if (use_cost_table)
4212 {
4213 /* Find the place in the list that bisects the list's total cost,
4214 Here I gets half the total cost. */
4215 int n_moved = 0;
4216 i = (cost + 1) / 2;
4217 while (1)
4218 {
4219 /* Skip nodes while their cost does not reach that amount. */
4220 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
4221 i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)];
4222 i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)];
4223 if (i <= 0)
4224 break;
4225 npp = &(*npp)->right;
4226 n_moved += 1;
4227 }
4228 if (n_moved == 0)
4229 {
4230 /* Leave this branch lopsided, but optimize left-hand
4231 side and fill in `parent' fields for right-hand side. */
4232 np = *head;
4233 np->parent = parent;
4234 balance_case_nodes (&np->left, np);
4235 for (; np->right; np = np->right)
4236 np->right->parent = np;
4237 return;
4238 }
4239 }
4240 /* If there are just three nodes, split at the middle one. */
4241 else if (i == 3)
4242 npp = &(*npp)->right;
4243 else
4244 {
4245 /* Find the place in the list that bisects the list's total cost,
4246 where ranges count as 2.
4247 Here I gets half the total cost. */
4248 i = (i + ranges + 1) / 2;
4249 while (1)
4250 {
4251 /* Skip nodes while their cost does not reach that amount. */
4252 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
4253 i--;
4254 i--;
4255 if (i <= 0)
4256 break;
4257 npp = &(*npp)->right;
4258 }
4259 }
4260 *head = np = *npp;
4261 *npp = 0;
4262 np->parent = parent;
4263 np->left = left;
4264
4265 /* Optimize each of the two split parts. */
4266 balance_case_nodes (&np->left, np);
4267 balance_case_nodes (&np->right, np);
4268 }
4269 else
4270 {
4271 /* Else leave this branch as one level,
4272 but fill in `parent' fields. */
4273 np = *head;
4274 np->parent = parent;
4275 for (; np->right; np = np->right)
4276 np->right->parent = np;
4277 }
4278 }
4279}
4280\f
4281/* Search the parent sections of the case node tree
4282 to see if a test for the lower bound of NODE would be redundant.
4283 INDEX_TYPE is the type of the index expression.
4284
4285 The instructions to generate the case decision tree are
4286 output in the same order as nodes are processed so it is
4287 known that if a parent node checks the range of the current
4288 node minus one that the current node is bounded at its lower
4289 span. Thus the test would be redundant. */
4290
4291static int
4292node_has_low_bound (node, index_type)
4293 case_node_ptr node;
4294 tree index_type;
4295{
4296 tree low_minus_one;
4297 case_node_ptr pnode;
4298
4299 /* If the lower bound of this node is the lowest value in the index type,
4300 we need not test it. */
4301
4302 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
4303 return 1;
4304
4305 /* If this node has a left branch, the value at the left must be less
4306 than that at this node, so it cannot be bounded at the bottom and
4307 we need not bother testing any further. */
4308
4309 if (node->left)
4310 return 0;
4311
4312 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
4313 node->low, integer_one_node));
4314
4315 /* If the subtraction above overflowed, we can't verify anything.
4316 Otherwise, look for a parent that tests our value - 1. */
4317
4318 if (! tree_int_cst_lt (low_minus_one, node->low))
4319 return 0;
4320
4321 for (pnode = node->parent; pnode; pnode = pnode->parent)
4322 if (tree_int_cst_equal (low_minus_one, pnode->high))
4323 return 1;
4324
4325 return 0;
4326}
4327
4328/* Search the parent sections of the case node tree
4329 to see if a test for the upper bound of NODE would be redundant.
4330 INDEX_TYPE is the type of the index expression.
4331
4332 The instructions to generate the case decision tree are
4333 output in the same order as nodes are processed so it is
4334 known that if a parent node checks the range of the current
4335 node plus one that the current node is bounded at its upper
4336 span. Thus the test would be redundant. */
4337
4338static int
4339node_has_high_bound (node, index_type)
4340 case_node_ptr node;
4341 tree index_type;
4342{
4343 tree high_plus_one;
4344 case_node_ptr pnode;
4345
4346 /* If the upper bound of this node is the highest value in the type
4347 of the index expression, we need not test against it. */
4348
4349 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
4350 return 1;
4351
4352 /* If this node has a right branch, the value at the right must be greater
4353 than that at this node, so it cannot be bounded at the top and
4354 we need not bother testing any further. */
4355
4356 if (node->right)
4357 return 0;
4358
4359 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
4360 node->high, integer_one_node));
4361
4362 /* If the addition above overflowed, we can't verify anything.
4363 Otherwise, look for a parent that tests our value + 1. */
4364
4365 if (! tree_int_cst_lt (node->high, high_plus_one))
4366 return 0;
4367
4368 for (pnode = node->parent; pnode; pnode = pnode->parent)
4369 if (tree_int_cst_equal (high_plus_one, pnode->low))
4370 return 1;
4371
4372 return 0;
4373}
4374
4375/* Search the parent sections of the
4376 case node tree to see if both tests for the upper and lower
4377 bounds of NODE would be redundant. */
4378
4379static int
4380node_is_bounded (node, index_type)
4381 case_node_ptr node;
4382 tree index_type;
4383{
4384 return (node_has_low_bound (node, index_type)
4385 && node_has_high_bound (node, index_type));
4386}
4387
4388/* Emit an unconditional jump to LABEL unless it would be dead code. */
4389
4390static void
4391emit_jump_if_reachable (label)
4392 rtx label;
4393{
4394 if (GET_CODE (get_last_insn ()) != BARRIER)
4395 emit_jump (label);
4396}
4397\f
4398/* Emit step-by-step code to select a case for the value of INDEX.
4399 The thus generated decision tree follows the form of the
4400 case-node binary tree NODE, whose nodes represent test conditions.
4401 INDEX_TYPE is the type of the index of the switch.
4402
4403 Care is taken to prune redundant tests from the decision tree
4404 by detecting any boundary conditions already checked by
4405 emitted rtx. (See node_has_high_bound, node_has_low_bound
4406 and node_is_bounded, above.)
4407
4408 Where the test conditions can be shown to be redundant we emit
4409 an unconditional jump to the target code. As a further
4410 optimization, the subordinates of a tree node are examined to
4411 check for bounded nodes. In this case conditional and/or
4412 unconditional jumps as a result of the boundary check for the
4413 current node are arranged to target the subordinates associated
4414 code for out of bound conditions on the current node node.
4415
4416 We can assume that when control reaches the code generated here,
4417 the index value has already been compared with the parents
4418 of this node, and determined to be on the same side of each parent
4419 as this node is. Thus, if this node tests for the value 51,
4420 and a parent tested for 52, we don't need to consider
4421 the possibility of a value greater than 51. If another parent
4422 tests for the value 50, then this node need not test anything. */
4423
4424static void
4425emit_case_nodes (index, node, default_label, index_type)
4426 rtx index;
4427 case_node_ptr node;
4428 rtx default_label;
4429 tree index_type;
4430{
4431 /* If INDEX has an unsigned type, we must make unsigned branches. */
4432 int unsignedp = TREE_UNSIGNED (index_type);
4433 typedef rtx rtx_function ();
4434 rtx_function *gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt;
4435 rtx_function *gen_bge_pat = unsignedp ? gen_bgeu : gen_bge;
4436 rtx_function *gen_blt_pat = unsignedp ? gen_bltu : gen_blt;
4437 rtx_function *gen_ble_pat = unsignedp ? gen_bleu : gen_ble;
4438 enum machine_mode mode = GET_MODE (index);
4439
4440 /* See if our parents have already tested everything for us.
4441 If they have, emit an unconditional jump for this node. */
4442 if (node_is_bounded (node, index_type))
4443 emit_jump (label_rtx (node->code_label));
4444
4445 else if (tree_int_cst_equal (node->low, node->high))
4446 {
4447 /* Node is single valued. First see if the index expression matches
4448 this node and then check our children, if any. */
4449
4450 do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
4451 label_rtx (node->code_label), unsignedp);
4452
4453 if (node->right != 0 && node->left != 0)
4454 {
4455 /* This node has children on both sides.
4456 Dispatch to one side or the other
4457 by comparing the index value with this node's value.
4458 If one subtree is bounded, check that one first,
4459 so we can avoid real branches in the tree. */
4460
4461 if (node_is_bounded (node->right, index_type))
4462 {
4463 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4464 VOIDmode, 0),
4465 GT, NULL_RTX, mode, unsignedp, 0);
4466
4467 emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label)));
4468 emit_case_nodes (index, node->left, default_label, index_type);
4469 }
4470
4471 else if (node_is_bounded (node->left, index_type))
4472 {
4473 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4474 VOIDmode, 0),
4475 LT, NULL_RTX, mode, unsignedp, 0);
4476 emit_jump_insn ((*gen_blt_pat) (label_rtx (node->left->code_label)));
4477 emit_case_nodes (index, node->right, default_label, index_type);
4478 }
4479
4480 else
4481 {
4482 /* Neither node is bounded. First distinguish the two sides;
4483 then emit the code for one side at a time. */
4484
4485 tree test_label
4486 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
4487
4488 /* See if the value is on the right. */
4489 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4490 VOIDmode, 0),
4491 GT, NULL_RTX, mode, unsignedp, 0);
4492 emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label)));
4493
4494 /* Value must be on the left.
4495 Handle the left-hand subtree. */
4496 emit_case_nodes (index, node->left, default_label, index_type);
4497 /* If left-hand subtree does nothing,
4498 go to default. */
4499 emit_jump_if_reachable (default_label);
4500
4501 /* Code branches here for the right-hand subtree. */
4502 expand_label (test_label);
4503 emit_case_nodes (index, node->right, default_label, index_type);
4504 }
4505 }
4506
4507 else if (node->right != 0 && node->left == 0)
4508 {
4509 /* Here we have a right child but no left so we issue conditional
4510 branch to default and process the right child.
4511
4512 Omit the conditional branch to default if we it avoid only one
4513 right child; it costs too much space to save so little time. */
4514
4515 if (node->right->right || node->right->left
4516 || !tree_int_cst_equal (node->right->low, node->right->high))
4517 {
4518 if (!node_has_low_bound (node, index_type))
4519 {
4520 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4521 VOIDmode, 0),
4522 LT, NULL_RTX, mode, unsignedp, 0);
4523 emit_jump_insn ((*gen_blt_pat) (default_label));
4524 }
4525
4526 emit_case_nodes (index, node->right, default_label, index_type);
4527 }
4528 else
4529 /* We cannot process node->right normally
4530 since we haven't ruled out the numbers less than
4531 this node's value. So handle node->right explicitly. */
4532 do_jump_if_equal (index,
4533 expand_expr (node->right->low, NULL_RTX,
4534 VOIDmode, 0),
4535 label_rtx (node->right->code_label), unsignedp);
4536 }
4537
4538 else if (node->right == 0 && node->left != 0)
4539 {
4540 /* Just one subtree, on the left. */
4541
4542#if 0 /* The following code and comment were formerly part
4543 of the condition here, but they didn't work
4544 and I don't understand what the idea was. -- rms. */
4545 /* If our "most probable entry" is less probable
4546 than the default label, emit a jump to
4547 the default label using condition codes
4548 already lying around. With no right branch,
4549 a branch-greater-than will get us to the default
4550 label correctly. */
4551 if (use_cost_table
4552 && cost_table[TREE_INT_CST_LOW (node->high)] < 12)
4553 ;
4554#endif /* 0 */
4555 if (node->left->left || node->left->right
4556 || !tree_int_cst_equal (node->left->low, node->left->high))
4557 {
4558 if (!node_has_high_bound (node, index_type))
4559 {
4560 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4561 VOIDmode, 0),
4562 GT, NULL_RTX, mode, unsignedp, 0);
4563 emit_jump_insn ((*gen_bgt_pat) (default_label));
4564 }
4565
4566 emit_case_nodes (index, node->left, default_label, index_type);
4567 }
4568 else
4569 /* We cannot process node->left normally
4570 since we haven't ruled out the numbers less than
4571 this node's value. So handle node->left explicitly. */
4572 do_jump_if_equal (index,
4573 expand_expr (node->left->low, NULL_RTX,
4574 VOIDmode, 0),
4575 label_rtx (node->left->code_label), unsignedp);
4576 }
4577 }
4578 else
4579 {
4580 /* Node is a range. These cases are very similar to those for a single
4581 value, except that we do not start by testing whether this node
4582 is the one to branch to. */
4583
4584 if (node->right != 0 && node->left != 0)
4585 {
4586 /* Node has subtrees on both sides.
4587 If the right-hand subtree is bounded,
4588 test for it first, since we can go straight there.
4589 Otherwise, we need to make a branch in the control structure,
4590 then handle the two subtrees. */
4591 tree test_label = 0;
4592
4593 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4594 VOIDmode, 0),
4595 GT, NULL_RTX, mode, unsignedp, 0);
4596
4597 if (node_is_bounded (node->right, index_type))
4598 /* Right hand node is fully bounded so we can eliminate any
4599 testing and branch directly to the target code. */
4600 emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label)));
4601 else
4602 {
4603 /* Right hand node requires testing.
4604 Branch to a label where we will handle it later. */
4605
4606 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
4607 emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label)));
4608 }
4609
4610 /* Value belongs to this node or to the left-hand subtree. */
4611
4612 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
4613 GE, NULL_RTX, mode, unsignedp, 0);
4614 emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label)));
4615
4616 /* Handle the left-hand subtree. */
4617 emit_case_nodes (index, node->left, default_label, index_type);
4618
4619 /* If right node had to be handled later, do that now. */
4620
4621 if (test_label)
4622 {
4623 /* If the left-hand subtree fell through,
4624 don't let it fall into the right-hand subtree. */
4625 emit_jump_if_reachable (default_label);
4626
4627 expand_label (test_label);
4628 emit_case_nodes (index, node->right, default_label, index_type);
4629 }
4630 }
4631
4632 else if (node->right != 0 && node->left == 0)
4633 {
4634 /* Deal with values to the left of this node,
4635 if they are possible. */
4636 if (!node_has_low_bound (node, index_type))
4637 {
4638 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX,
4639 VOIDmode, 0),
4640 LT, NULL_RTX, mode, unsignedp, 0);
4641 emit_jump_insn ((*gen_blt_pat) (default_label));
4642 }
4643
4644 /* Value belongs to this node or to the right-hand subtree. */
4645
4646 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4647 VOIDmode, 0),
4648 LE, NULL_RTX, mode, unsignedp, 0);
4649 emit_jump_insn ((*gen_ble_pat) (label_rtx (node->code_label)));
4650
4651 emit_case_nodes (index, node->right, default_label, index_type);
4652 }
4653
4654 else if (node->right == 0 && node->left != 0)
4655 {
4656 /* Deal with values to the right of this node,
4657 if they are possible. */
4658 if (!node_has_high_bound (node, index_type))
4659 {
4660 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4661 VOIDmode, 0),
4662 GT, NULL_RTX, mode, unsignedp, 0);
4663 emit_jump_insn ((*gen_bgt_pat) (default_label));
4664 }
4665
4666 /* Value belongs to this node or to the left-hand subtree. */
4667
4668 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
4669 GE, NULL_RTX, mode, unsignedp, 0);
4670 emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label)));
4671
4672 emit_case_nodes (index, node->left, default_label, index_type);
4673 }
4674
4675 else
4676 {
4677 /* Node has no children so we check low and high bounds to remove
4678 redundant tests. Only one of the bounds can exist,
4679 since otherwise this node is bounded--a case tested already. */
4680
4681 if (!node_has_high_bound (node, index_type))
4682 {
4683 emit_cmp_insn (index, expand_expr (node->high, NULL_RTX,
4684 VOIDmode, 0),
4685 GT, NULL_RTX, mode, unsignedp, 0);
4686 emit_jump_insn ((*gen_bgt_pat) (default_label));
4687 }
4688
4689 if (!node_has_low_bound (node, index_type))
4690 {
4691 emit_cmp_insn (index, expand_expr (node->low, NULL_RTX,
4692 VOIDmode, 0),
4693 LT, NULL_RTX, mode, unsignedp, 0);
4694 emit_jump_insn ((*gen_blt_pat) (default_label));
4695 }
4696
4697 emit_jump (label_rtx (node->code_label));
4698 }
4699 }
4700}
4701\f
4702/* These routines are used by the loop unrolling code. They copy BLOCK trees
4703 so that the debugging info will be correct for the unrolled loop. */
4704
4705/* Indexed by block number, contains a pointer to the N'th block node. */
4706
4707static tree *block_vector;
4708
4709void
4710find_loop_tree_blocks ()
4711{
4712 tree block = DECL_INITIAL (current_function_decl);
4713
4714 /* There first block is for the function body, and does not have
4715 corresponding block notes. Don't include it in the block vector. */
4716 block = BLOCK_SUBBLOCKS (block);
4717
4718 block_vector = identify_blocks (block, get_insns ());
4719}
4720
4721void
4722unroll_block_trees ()
4723{
4724 tree block = DECL_INITIAL (current_function_decl);
4725
4726 reorder_blocks (block_vector, block, get_insns ());
4727}
4728
This page took 0.05805 seconds and 5 git commands to generate.