]>
Commit | Line | Data |
---|---|---|
1 | /* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, | |
2 | and support for XFmode IEEE extended real floating point arithmetic. | |
3 | Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. | |
4 | Contributed by Stephen L. Moshier (moshier@world.std.com). | |
5 | ||
6 | This file is part of GNU CC. | |
7 | ||
8 | GNU CC is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GNU CC is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GNU CC; see the file COPYING. If not, write to | |
20 | the Free Software Foundation, 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include <stdio.h> | |
24 | #include <errno.h> | |
25 | #include "config.h" | |
26 | #include "tree.h" | |
27 | ||
28 | #ifndef errno | |
29 | extern int errno; | |
30 | #endif | |
31 | ||
32 | /* To enable support of XFmode extended real floating point, define | |
33 | LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). | |
34 | ||
35 | To support cross compilation between IEEE, VAX and IBM floating | |
36 | point formats, define REAL_ARITHMETIC in the tm.h file. | |
37 | ||
38 | In either case the machine files (tm.h) must not contain any code | |
39 | that tries to use host floating point arithmetic to convert | |
40 | REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, | |
41 | etc. In cross-compile situations a REAL_VALUE_TYPE may not | |
42 | be intelligible to the host computer's native arithmetic. | |
43 | ||
44 | The emulator defaults to the host's floating point format so that | |
45 | its decimal conversion functions can be used if desired (see | |
46 | real.h). | |
47 | ||
48 | The first part of this file interfaces gcc to a floating point | |
49 | arithmetic suite that was not written with gcc in mind. Avoid | |
50 | changing the low-level arithmetic routines unless you have suitable | |
51 | test programs available. A special version of the PARANOIA floating | |
52 | point arithmetic tester, modified for this purpose, can be found on | |
53 | usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of | |
54 | XFmode and TFmode transcendental functions, can be obtained by ftp from | |
55 | netlib.att.com: netlib/cephes. */ | |
56 | \f | |
57 | /* Type of computer arithmetic. | |
58 | Only one of DEC, IBM, IEEE, or UNK should get defined. | |
59 | ||
60 | `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically | |
61 | to big-endian IEEE floating-point data structure. This definition | |
62 | should work in SFmode `float' type and DFmode `double' type on | |
63 | virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE | |
64 | has been defined to be 96, then IEEE also invokes the particular | |
65 | XFmode (`long double' type) data structure used by the Motorola | |
66 | 680x0 series processors. | |
67 | ||
68 | `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to | |
69 | little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE | |
70 | has been defined to be 96, then IEEE also invokes the particular | |
71 | XFmode `long double' data structure used by the Intel 80x86 series | |
72 | processors. | |
73 | ||
74 | `DEC' refers specifically to the Digital Equipment Corp PDP-11 | |
75 | and VAX floating point data structure. This model currently | |
76 | supports no type wider than DFmode. | |
77 | ||
78 | `IBM' refers specifically to the IBM System/370 and compatible | |
79 | floating point data structure. This model currently supports | |
80 | no type wider than DFmode. The IBM conversions were contributed by | |
81 | frank@atom.ansto.gov.au (Frank Crawford). | |
82 | ||
83 | If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) | |
84 | then `long double' and `double' are both implemented, but they | |
85 | both mean DFmode. In this case, the software floating-point | |
86 | support available here is activated by writing | |
87 | #define REAL_ARITHMETIC | |
88 | in tm.h. | |
89 | ||
90 | The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support | |
91 | and may deactivate XFmode since `long double' is used to refer | |
92 | to both modes. | |
93 | ||
94 | The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN, | |
95 | contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>, | |
96 | separate the floating point unit's endian-ness from that of | |
97 | the integer addressing. This permits one to define a big-endian | |
98 | FPU on a little-endian machine (e.g., ARM). An extension to | |
99 | BYTES_BIG_ENDIAN may be required for some machines in the future. | |
100 | These optional macros may be defined in tm.h. In real.h, they | |
101 | default to WORDS_BIG_ENDIAN, etc., so there is no need to define | |
102 | them for any normal host or target machine on which the floats | |
103 | and the integers have the same endian-ness. */ | |
104 | ||
105 | ||
106 | /* The following converts gcc macros into the ones used by this file. */ | |
107 | ||
108 | /* REAL_ARITHMETIC defined means that macros in real.h are | |
109 | defined to call emulator functions. */ | |
110 | #ifdef REAL_ARITHMETIC | |
111 | ||
112 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
113 | /* PDP-11, Pro350, VAX: */ | |
114 | #define DEC 1 | |
115 | #else /* it's not VAX */ | |
116 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT | |
117 | /* IBM System/370 style */ | |
118 | #define IBM 1 | |
119 | #else /* it's also not an IBM */ | |
120 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT | |
121 | #define IEEE | |
122 | #else /* it's not IEEE either */ | |
123 | /* UNKnown arithmetic. We don't support this and can't go on. */ | |
124 | unknown arithmetic type | |
125 | #define UNK 1 | |
126 | #endif /* not IEEE */ | |
127 | #endif /* not IBM */ | |
128 | #endif /* not VAX */ | |
129 | ||
130 | #define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN | |
131 | ||
132 | #else | |
133 | /* REAL_ARITHMETIC not defined means that the *host's* data | |
134 | structure will be used. It may differ by endian-ness from the | |
135 | target machine's structure and will get its ends swapped | |
136 | accordingly (but not here). Probably only the decimal <-> binary | |
137 | functions in this file will actually be used in this case. */ | |
138 | ||
139 | #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
140 | #define DEC 1 | |
141 | #else /* it's not VAX */ | |
142 | #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT | |
143 | /* IBM System/370 style */ | |
144 | #define IBM 1 | |
145 | #else /* it's also not an IBM */ | |
146 | #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT | |
147 | #define IEEE | |
148 | #else /* it's not IEEE either */ | |
149 | unknown arithmetic type | |
150 | #define UNK 1 | |
151 | #endif /* not IEEE */ | |
152 | #endif /* not IBM */ | |
153 | #endif /* not VAX */ | |
154 | ||
155 | #define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN | |
156 | ||
157 | #endif /* REAL_ARITHMETIC not defined */ | |
158 | ||
159 | /* Define INFINITY for support of infinity. | |
160 | Define NANS for support of Not-a-Number's (NaN's). */ | |
161 | #if !defined(DEC) && !defined(IBM) | |
162 | #define INFINITY | |
163 | #define NANS | |
164 | #endif | |
165 | ||
166 | /* Support of NaNs requires support of infinity. */ | |
167 | #ifdef NANS | |
168 | #ifndef INFINITY | |
169 | #define INFINITY | |
170 | #endif | |
171 | #endif | |
172 | \f | |
173 | /* Find a host integer type that is at least 16 bits wide, | |
174 | and another type at least twice whatever that size is. */ | |
175 | ||
176 | #if HOST_BITS_PER_CHAR >= 16 | |
177 | #define EMUSHORT char | |
178 | #define EMUSHORT_SIZE HOST_BITS_PER_CHAR | |
179 | #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) | |
180 | #else | |
181 | #if HOST_BITS_PER_SHORT >= 16 | |
182 | #define EMUSHORT short | |
183 | #define EMUSHORT_SIZE HOST_BITS_PER_SHORT | |
184 | #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) | |
185 | #else | |
186 | #if HOST_BITS_PER_INT >= 16 | |
187 | #define EMUSHORT int | |
188 | #define EMUSHORT_SIZE HOST_BITS_PER_INT | |
189 | #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) | |
190 | #else | |
191 | #if HOST_BITS_PER_LONG >= 16 | |
192 | #define EMUSHORT long | |
193 | #define EMUSHORT_SIZE HOST_BITS_PER_LONG | |
194 | #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) | |
195 | #else | |
196 | /* You will have to modify this program to have a smaller unit size. */ | |
197 | #define EMU_NON_COMPILE | |
198 | #endif | |
199 | #endif | |
200 | #endif | |
201 | #endif | |
202 | ||
203 | #if HOST_BITS_PER_SHORT >= EMULONG_SIZE | |
204 | #define EMULONG short | |
205 | #else | |
206 | #if HOST_BITS_PER_INT >= EMULONG_SIZE | |
207 | #define EMULONG int | |
208 | #else | |
209 | #if HOST_BITS_PER_LONG >= EMULONG_SIZE | |
210 | #define EMULONG long | |
211 | #else | |
212 | #if HOST_BITS_PER_LONG_LONG >= EMULONG_SIZE | |
213 | #define EMULONG long long int | |
214 | #else | |
215 | /* You will have to modify this program to have a smaller unit size. */ | |
216 | #define EMU_NON_COMPILE | |
217 | #endif | |
218 | #endif | |
219 | #endif | |
220 | #endif | |
221 | ||
222 | ||
223 | /* The host interface doesn't work if no 16-bit size exists. */ | |
224 | #if EMUSHORT_SIZE != 16 | |
225 | #define EMU_NON_COMPILE | |
226 | #endif | |
227 | ||
228 | /* OK to continue compilation. */ | |
229 | #ifndef EMU_NON_COMPILE | |
230 | ||
231 | /* Construct macros to translate between REAL_VALUE_TYPE and e type. | |
232 | In GET_REAL and PUT_REAL, r and e are pointers. | |
233 | A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations | |
234 | in memory, with no holes. */ | |
235 | ||
236 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
237 | /* Number of 16 bit words in external e type format */ | |
238 | #define NE 6 | |
239 | #define MAXDECEXP 4932 | |
240 | #define MINDECEXP -4956 | |
241 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) | |
242 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
243 | #else /* no XFmode */ | |
244 | #if LONG_DOUBLE_TYPE_SIZE == 128 | |
245 | #define NE 10 | |
246 | #define MAXDECEXP 4932 | |
247 | #define MINDECEXP -4977 | |
248 | #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) | |
249 | #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) | |
250 | #else | |
251 | #define NE 6 | |
252 | #define MAXDECEXP 4932 | |
253 | #define MINDECEXP -4956 | |
254 | #ifdef REAL_ARITHMETIC | |
255 | /* Emulator uses target format internally | |
256 | but host stores it in host endian-ness. */ | |
257 | ||
258 | #define GET_REAL(r,e) \ | |
259 | do { \ | |
260 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ | |
261 | e53toe ((unsigned EMUSHORT *) (r), (e)); \ | |
262 | else \ | |
263 | { \ | |
264 | unsigned EMUSHORT w[4]; \ | |
265 | w[3] = ((EMUSHORT *) r)[0]; \ | |
266 | w[2] = ((EMUSHORT *) r)[1]; \ | |
267 | w[1] = ((EMUSHORT *) r)[2]; \ | |
268 | w[0] = ((EMUSHORT *) r)[3]; \ | |
269 | e53toe (w, (e)); \ | |
270 | } \ | |
271 | } while (0) | |
272 | ||
273 | #define PUT_REAL(e,r) \ | |
274 | do { \ | |
275 | if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ | |
276 | etoe53 ((e), (unsigned EMUSHORT *) (r)); \ | |
277 | else \ | |
278 | { \ | |
279 | unsigned EMUSHORT w[4]; \ | |
280 | etoe53 ((e), w); \ | |
281 | *((EMUSHORT *) r) = w[3]; \ | |
282 | *((EMUSHORT *) r + 1) = w[2]; \ | |
283 | *((EMUSHORT *) r + 2) = w[1]; \ | |
284 | *((EMUSHORT *) r + 3) = w[0]; \ | |
285 | } \ | |
286 | } while (0) | |
287 | ||
288 | #else /* not REAL_ARITHMETIC */ | |
289 | ||
290 | /* emulator uses host format */ | |
291 | #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e)) | |
292 | #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r)) | |
293 | ||
294 | #endif /* not REAL_ARITHMETIC */ | |
295 | #endif /* not TFmode */ | |
296 | #endif /* no XFmode */ | |
297 | ||
298 | ||
299 | /* Number of 16 bit words in internal format */ | |
300 | #define NI (NE+3) | |
301 | ||
302 | /* Array offset to exponent */ | |
303 | #define E 1 | |
304 | ||
305 | /* Array offset to high guard word */ | |
306 | #define M 2 | |
307 | ||
308 | /* Number of bits of precision */ | |
309 | #define NBITS ((NI-4)*16) | |
310 | ||
311 | /* Maximum number of decimal digits in ASCII conversion | |
312 | * = NBITS*log10(2) | |
313 | */ | |
314 | #define NDEC (NBITS*8/27) | |
315 | ||
316 | /* The exponent of 1.0 */ | |
317 | #define EXONE (0x3fff) | |
318 | ||
319 | extern int extra_warnings; | |
320 | extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; | |
321 | extern unsigned EMUSHORT elog2[], esqrt2[]; | |
322 | ||
323 | static void endian PROTO((unsigned EMUSHORT *, long *, | |
324 | enum machine_mode)); | |
325 | static void eclear PROTO((unsigned EMUSHORT *)); | |
326 | static void emov PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
327 | static void eabs PROTO((unsigned EMUSHORT *)); | |
328 | static void eneg PROTO((unsigned EMUSHORT *)); | |
329 | static int eisneg PROTO((unsigned EMUSHORT *)); | |
330 | static int eisinf PROTO((unsigned EMUSHORT *)); | |
331 | static int eisnan PROTO((unsigned EMUSHORT *)); | |
332 | static void einfin PROTO((unsigned EMUSHORT *)); | |
333 | static void enan PROTO((unsigned EMUSHORT *, int)); | |
334 | static void emovi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
335 | static void emovo PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
336 | static void ecleaz PROTO((unsigned EMUSHORT *)); | |
337 | static void ecleazs PROTO((unsigned EMUSHORT *)); | |
338 | static void emovz PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
339 | static void einan PROTO((unsigned EMUSHORT *)); | |
340 | static int eiisnan PROTO((unsigned EMUSHORT *)); | |
341 | static int eiisneg PROTO((unsigned EMUSHORT *)); | |
342 | static void eiinfin PROTO((unsigned EMUSHORT *)); | |
343 | static int eiisinf PROTO((unsigned EMUSHORT *)); | |
344 | static int ecmpm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
345 | static void eshdn1 PROTO((unsigned EMUSHORT *)); | |
346 | static void eshup1 PROTO((unsigned EMUSHORT *)); | |
347 | static void eshdn8 PROTO((unsigned EMUSHORT *)); | |
348 | static void eshup8 PROTO((unsigned EMUSHORT *)); | |
349 | static void eshup6 PROTO((unsigned EMUSHORT *)); | |
350 | static void eshdn6 PROTO((unsigned EMUSHORT *)); | |
351 | static void eaddm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));\f | |
352 | static void esubm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
353 | static void m16m PROTO((unsigned int, unsigned short *, | |
354 | unsigned short *)); | |
355 | static int edivm PROTO((unsigned short *, unsigned short *)); | |
356 | static int emulm PROTO((unsigned short *, unsigned short *)); | |
357 | static void emdnorm PROTO((unsigned EMUSHORT *, int, int, EMULONG, int)); | |
358 | static void esub PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
359 | unsigned EMUSHORT *)); | |
360 | static void eadd PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
361 | unsigned EMUSHORT *)); | |
362 | static void eadd1 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
363 | unsigned EMUSHORT *)); | |
364 | static void ediv PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
365 | unsigned EMUSHORT *)); | |
366 | static void emul PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
367 | unsigned EMUSHORT *)); | |
368 | static void e53toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
369 | static void e64toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
370 | static void e113toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
371 | static void e24toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
372 | static void etoe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
373 | static void toe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
374 | static void etoe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
375 | static void toe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
376 | static void etoe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
377 | static void toe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
378 | static void etoe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
379 | static void toe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
380 | static int ecmp PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
381 | static void eround PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
382 | static void ltoe PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
383 | static void ultoe PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *)); | |
384 | static void eifrac PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *, | |
385 | unsigned EMUSHORT *)); | |
386 | static void euifrac PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *, | |
387 | unsigned EMUSHORT *)); | |
388 | static int eshift PROTO((unsigned EMUSHORT *, int)); | |
389 | static int enormlz PROTO((unsigned EMUSHORT *)); | |
390 | static void e24toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
391 | static void e53toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
392 | static void e64toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
393 | static void e113toasc PROTO((unsigned EMUSHORT *, char *, int)); | |
394 | static void etoasc PROTO((unsigned EMUSHORT *, char *, int)); | |
395 | static void asctoe24 PROTO((char *, unsigned EMUSHORT *)); | |
396 | static void asctoe53 PROTO((char *, unsigned EMUSHORT *)); | |
397 | static void asctoe64 PROTO((char *, unsigned EMUSHORT *)); | |
398 | static void asctoe113 PROTO((char *, unsigned EMUSHORT *)); | |
399 | static void asctoe PROTO((char *, unsigned EMUSHORT *)); | |
400 | static void asctoeg PROTO((char *, unsigned EMUSHORT *, int)); | |
401 | static void efloor PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
402 | static void efrexp PROTO((unsigned EMUSHORT *, int *, | |
403 | unsigned EMUSHORT *)); | |
404 | static void eldexp PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *)); | |
405 | static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
406 | unsigned EMUSHORT *)); | |
407 | static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
408 | static void mtherr PROTO((char *, int)); | |
409 | static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
410 | static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
411 | static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
412 | static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
413 | enum machine_mode)); | |
414 | static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
415 | enum machine_mode)); | |
416 | static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, | |
417 | enum machine_mode)); | |
418 | static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode)); | |
419 | static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
420 | static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
421 | static void etoudi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
422 | static void etodi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
423 | static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); | |
424 | \f | |
425 | /* Copy 32-bit numbers obtained from array containing 16-bit numbers, | |
426 | swapping ends if required, into output array of longs. The | |
427 | result is normally passed to fprintf by the ASM_OUTPUT_ macros. */ | |
428 | ||
429 | static void | |
430 | endian (e, x, mode) | |
431 | unsigned EMUSHORT e[]; | |
432 | long x[]; | |
433 | enum machine_mode mode; | |
434 | { | |
435 | unsigned long th, t; | |
436 | ||
437 | if (REAL_WORDS_BIG_ENDIAN) | |
438 | { | |
439 | switch (mode) | |
440 | { | |
441 | ||
442 | case TFmode: | |
443 | /* Swap halfwords in the fourth long. */ | |
444 | th = (unsigned long) e[6] & 0xffff; | |
445 | t = (unsigned long) e[7] & 0xffff; | |
446 | t |= th << 16; | |
447 | x[3] = (long) t; | |
448 | ||
449 | case XFmode: | |
450 | ||
451 | /* Swap halfwords in the third long. */ | |
452 | th = (unsigned long) e[4] & 0xffff; | |
453 | t = (unsigned long) e[5] & 0xffff; | |
454 | t |= th << 16; | |
455 | x[2] = (long) t; | |
456 | /* fall into the double case */ | |
457 | ||
458 | case DFmode: | |
459 | ||
460 | /* swap halfwords in the second word */ | |
461 | th = (unsigned long) e[2] & 0xffff; | |
462 | t = (unsigned long) e[3] & 0xffff; | |
463 | t |= th << 16; | |
464 | x[1] = (long) t; | |
465 | /* fall into the float case */ | |
466 | ||
467 | case HFmode: | |
468 | case SFmode: | |
469 | ||
470 | /* swap halfwords in the first word */ | |
471 | th = (unsigned long) e[0] & 0xffff; | |
472 | t = (unsigned long) e[1] & 0xffff; | |
473 | t |= th << 16; | |
474 | x[0] = (long) t; | |
475 | break; | |
476 | ||
477 | default: | |
478 | abort (); | |
479 | } | |
480 | } | |
481 | else | |
482 | { | |
483 | /* Pack the output array without swapping. */ | |
484 | ||
485 | switch (mode) | |
486 | { | |
487 | ||
488 | case TFmode: | |
489 | ||
490 | /* Pack the fourth long. */ | |
491 | th = (unsigned long) e[7] & 0xffff; | |
492 | t = (unsigned long) e[6] & 0xffff; | |
493 | t |= th << 16; | |
494 | x[3] = (long) t; | |
495 | ||
496 | case XFmode: | |
497 | ||
498 | /* Pack the third long. | |
499 | Each element of the input REAL_VALUE_TYPE array has 16 useful bits | |
500 | in it. */ | |
501 | th = (unsigned long) e[5] & 0xffff; | |
502 | t = (unsigned long) e[4] & 0xffff; | |
503 | t |= th << 16; | |
504 | x[2] = (long) t; | |
505 | /* fall into the double case */ | |
506 | ||
507 | case DFmode: | |
508 | ||
509 | /* pack the second long */ | |
510 | th = (unsigned long) e[3] & 0xffff; | |
511 | t = (unsigned long) e[2] & 0xffff; | |
512 | t |= th << 16; | |
513 | x[1] = (long) t; | |
514 | /* fall into the float case */ | |
515 | ||
516 | case HFmode: | |
517 | case SFmode: | |
518 | ||
519 | /* pack the first long */ | |
520 | th = (unsigned long) e[1] & 0xffff; | |
521 | t = (unsigned long) e[0] & 0xffff; | |
522 | t |= th << 16; | |
523 | x[0] = (long) t; | |
524 | break; | |
525 | ||
526 | default: | |
527 | abort (); | |
528 | } | |
529 | } | |
530 | } | |
531 | ||
532 | ||
533 | /* This is the implementation of the REAL_ARITHMETIC macro. */ | |
534 | ||
535 | void | |
536 | earith (value, icode, r1, r2) | |
537 | REAL_VALUE_TYPE *value; | |
538 | int icode; | |
539 | REAL_VALUE_TYPE *r1; | |
540 | REAL_VALUE_TYPE *r2; | |
541 | { | |
542 | unsigned EMUSHORT d1[NE], d2[NE], v[NE]; | |
543 | enum tree_code code; | |
544 | ||
545 | GET_REAL (r1, d1); | |
546 | GET_REAL (r2, d2); | |
547 | #ifdef NANS | |
548 | /* Return NaN input back to the caller. */ | |
549 | if (eisnan (d1)) | |
550 | { | |
551 | PUT_REAL (d1, value); | |
552 | return; | |
553 | } | |
554 | if (eisnan (d2)) | |
555 | { | |
556 | PUT_REAL (d2, value); | |
557 | return; | |
558 | } | |
559 | #endif | |
560 | code = (enum tree_code) icode; | |
561 | switch (code) | |
562 | { | |
563 | case PLUS_EXPR: | |
564 | eadd (d2, d1, v); | |
565 | break; | |
566 | ||
567 | case MINUS_EXPR: | |
568 | esub (d2, d1, v); /* d1 - d2 */ | |
569 | break; | |
570 | ||
571 | case MULT_EXPR: | |
572 | emul (d2, d1, v); | |
573 | break; | |
574 | ||
575 | case RDIV_EXPR: | |
576 | #ifndef REAL_INFINITY | |
577 | if (ecmp (d2, ezero) == 0) | |
578 | { | |
579 | #ifdef NANS | |
580 | enan (v, eisneg (d1) ^ eisneg (d2)); | |
581 | break; | |
582 | #else | |
583 | abort (); | |
584 | #endif | |
585 | } | |
586 | #endif | |
587 | ediv (d2, d1, v); /* d1/d2 */ | |
588 | break; | |
589 | ||
590 | case MIN_EXPR: /* min (d1,d2) */ | |
591 | if (ecmp (d1, d2) < 0) | |
592 | emov (d1, v); | |
593 | else | |
594 | emov (d2, v); | |
595 | break; | |
596 | ||
597 | case MAX_EXPR: /* max (d1,d2) */ | |
598 | if (ecmp (d1, d2) > 0) | |
599 | emov (d1, v); | |
600 | else | |
601 | emov (d2, v); | |
602 | break; | |
603 | default: | |
604 | emov (ezero, v); | |
605 | break; | |
606 | } | |
607 | PUT_REAL (v, value); | |
608 | } | |
609 | ||
610 | ||
611 | /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT. | |
612 | implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */ | |
613 | ||
614 | REAL_VALUE_TYPE | |
615 | etrunci (x) | |
616 | REAL_VALUE_TYPE x; | |
617 | { | |
618 | unsigned EMUSHORT f[NE], g[NE]; | |
619 | REAL_VALUE_TYPE r; | |
620 | HOST_WIDE_INT l; | |
621 | ||
622 | GET_REAL (&x, g); | |
623 | #ifdef NANS | |
624 | if (eisnan (g)) | |
625 | return (x); | |
626 | #endif | |
627 | eifrac (g, &l, f); | |
628 | ltoe (&l, g); | |
629 | PUT_REAL (g, &r); | |
630 | return (r); | |
631 | } | |
632 | ||
633 | ||
634 | /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT; | |
635 | implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */ | |
636 | ||
637 | REAL_VALUE_TYPE | |
638 | etruncui (x) | |
639 | REAL_VALUE_TYPE x; | |
640 | { | |
641 | unsigned EMUSHORT f[NE], g[NE]; | |
642 | REAL_VALUE_TYPE r; | |
643 | unsigned HOST_WIDE_INT l; | |
644 | ||
645 | GET_REAL (&x, g); | |
646 | #ifdef NANS | |
647 | if (eisnan (g)) | |
648 | return (x); | |
649 | #endif | |
650 | euifrac (g, &l, f); | |
651 | ultoe (&l, g); | |
652 | PUT_REAL (g, &r); | |
653 | return (r); | |
654 | } | |
655 | ||
656 | ||
657 | /* This is the REAL_VALUE_ATOF function. It converts a decimal string to | |
658 | binary, rounding off as indicated by the machine_mode argument. Then it | |
659 | promotes the rounded value to REAL_VALUE_TYPE. */ | |
660 | ||
661 | REAL_VALUE_TYPE | |
662 | ereal_atof (s, t) | |
663 | char *s; | |
664 | enum machine_mode t; | |
665 | { | |
666 | unsigned EMUSHORT tem[NE], e[NE]; | |
667 | REAL_VALUE_TYPE r; | |
668 | ||
669 | switch (t) | |
670 | { | |
671 | case HFmode: | |
672 | case SFmode: | |
673 | asctoe24 (s, tem); | |
674 | e24toe (tem, e); | |
675 | break; | |
676 | case DFmode: | |
677 | asctoe53 (s, tem); | |
678 | e53toe (tem, e); | |
679 | break; | |
680 | case XFmode: | |
681 | asctoe64 (s, tem); | |
682 | e64toe (tem, e); | |
683 | break; | |
684 | case TFmode: | |
685 | asctoe113 (s, tem); | |
686 | e113toe (tem, e); | |
687 | break; | |
688 | default: | |
689 | asctoe (s, e); | |
690 | } | |
691 | PUT_REAL (e, &r); | |
692 | return (r); | |
693 | } | |
694 | ||
695 | ||
696 | /* Expansion of REAL_NEGATE. */ | |
697 | ||
698 | REAL_VALUE_TYPE | |
699 | ereal_negate (x) | |
700 | REAL_VALUE_TYPE x; | |
701 | { | |
702 | unsigned EMUSHORT e[NE]; | |
703 | REAL_VALUE_TYPE r; | |
704 | ||
705 | GET_REAL (&x, e); | |
706 | eneg (e); | |
707 | PUT_REAL (e, &r); | |
708 | return (r); | |
709 | } | |
710 | ||
711 | ||
712 | /* Round real toward zero to HOST_WIDE_INT; | |
713 | implements REAL_VALUE_FIX (x). */ | |
714 | ||
715 | HOST_WIDE_INT | |
716 | efixi (x) | |
717 | REAL_VALUE_TYPE x; | |
718 | { | |
719 | unsigned EMUSHORT f[NE], g[NE]; | |
720 | HOST_WIDE_INT l; | |
721 | ||
722 | GET_REAL (&x, f); | |
723 | #ifdef NANS | |
724 | if (eisnan (f)) | |
725 | { | |
726 | warning ("conversion from NaN to int"); | |
727 | return (-1); | |
728 | } | |
729 | #endif | |
730 | eifrac (f, &l, g); | |
731 | return l; | |
732 | } | |
733 | ||
734 | /* Round real toward zero to unsigned HOST_WIDE_INT | |
735 | implements REAL_VALUE_UNSIGNED_FIX (x). | |
736 | Negative input returns zero. */ | |
737 | ||
738 | unsigned HOST_WIDE_INT | |
739 | efixui (x) | |
740 | REAL_VALUE_TYPE x; | |
741 | { | |
742 | unsigned EMUSHORT f[NE], g[NE]; | |
743 | unsigned HOST_WIDE_INT l; | |
744 | ||
745 | GET_REAL (&x, f); | |
746 | #ifdef NANS | |
747 | if (eisnan (f)) | |
748 | { | |
749 | warning ("conversion from NaN to unsigned int"); | |
750 | return (-1); | |
751 | } | |
752 | #endif | |
753 | euifrac (f, &l, g); | |
754 | return l; | |
755 | } | |
756 | ||
757 | ||
758 | /* REAL_VALUE_FROM_INT macro. */ | |
759 | ||
760 | void | |
761 | ereal_from_int (d, i, j, mode) | |
762 | REAL_VALUE_TYPE *d; | |
763 | HOST_WIDE_INT i, j; | |
764 | enum machine_mode mode; | |
765 | { | |
766 | unsigned EMUSHORT df[NE], dg[NE]; | |
767 | HOST_WIDE_INT low, high; | |
768 | int sign; | |
769 | ||
770 | if (GET_MODE_CLASS (mode) != MODE_FLOAT) | |
771 | abort (); | |
772 | sign = 0; | |
773 | low = i; | |
774 | if ((high = j) < 0) | |
775 | { | |
776 | sign = 1; | |
777 | /* complement and add 1 */ | |
778 | high = ~high; | |
779 | if (low) | |
780 | low = -low; | |
781 | else | |
782 | high += 1; | |
783 | } | |
784 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); | |
785 | ultoe ((unsigned HOST_WIDE_INT *) &high, dg); | |
786 | emul (dg, df, dg); | |
787 | ultoe ((unsigned HOST_WIDE_INT *) &low, df); | |
788 | eadd (df, dg, dg); | |
789 | if (sign) | |
790 | eneg (dg); | |
791 | ||
792 | /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. | |
793 | Avoid double-rounding errors later by rounding off now from the | |
794 | extra-wide internal format to the requested precision. */ | |
795 | switch (GET_MODE_BITSIZE (mode)) | |
796 | { | |
797 | case 32: | |
798 | etoe24 (dg, df); | |
799 | e24toe (df, dg); | |
800 | break; | |
801 | ||
802 | case 64: | |
803 | etoe53 (dg, df); | |
804 | e53toe (df, dg); | |
805 | break; | |
806 | ||
807 | case 96: | |
808 | etoe64 (dg, df); | |
809 | e64toe (df, dg); | |
810 | break; | |
811 | ||
812 | case 128: | |
813 | etoe113 (dg, df); | |
814 | e113toe (df, dg); | |
815 | break; | |
816 | ||
817 | default: | |
818 | abort (); | |
819 | } | |
820 | ||
821 | PUT_REAL (dg, d); | |
822 | } | |
823 | ||
824 | ||
825 | /* REAL_VALUE_FROM_UNSIGNED_INT macro. */ | |
826 | ||
827 | void | |
828 | ereal_from_uint (d, i, j, mode) | |
829 | REAL_VALUE_TYPE *d; | |
830 | unsigned HOST_WIDE_INT i, j; | |
831 | enum machine_mode mode; | |
832 | { | |
833 | unsigned EMUSHORT df[NE], dg[NE]; | |
834 | unsigned HOST_WIDE_INT low, high; | |
835 | ||
836 | if (GET_MODE_CLASS (mode) != MODE_FLOAT) | |
837 | abort (); | |
838 | low = i; | |
839 | high = j; | |
840 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); | |
841 | ultoe (&high, dg); | |
842 | emul (dg, df, dg); | |
843 | ultoe (&low, df); | |
844 | eadd (df, dg, dg); | |
845 | ||
846 | /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. | |
847 | Avoid double-rounding errors later by rounding off now from the | |
848 | extra-wide internal format to the requested precision. */ | |
849 | switch (GET_MODE_BITSIZE (mode)) | |
850 | { | |
851 | case 32: | |
852 | etoe24 (dg, df); | |
853 | e24toe (df, dg); | |
854 | break; | |
855 | ||
856 | case 64: | |
857 | etoe53 (dg, df); | |
858 | e53toe (df, dg); | |
859 | break; | |
860 | ||
861 | case 96: | |
862 | etoe64 (dg, df); | |
863 | e64toe (df, dg); | |
864 | break; | |
865 | ||
866 | case 128: | |
867 | etoe113 (dg, df); | |
868 | e113toe (df, dg); | |
869 | break; | |
870 | ||
871 | default: | |
872 | abort (); | |
873 | } | |
874 | ||
875 | PUT_REAL (dg, d); | |
876 | } | |
877 | ||
878 | ||
879 | /* REAL_VALUE_TO_INT macro. */ | |
880 | ||
881 | void | |
882 | ereal_to_int (low, high, rr) | |
883 | HOST_WIDE_INT *low, *high; | |
884 | REAL_VALUE_TYPE rr; | |
885 | { | |
886 | unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; | |
887 | int s; | |
888 | ||
889 | GET_REAL (&rr, d); | |
890 | #ifdef NANS | |
891 | if (eisnan (d)) | |
892 | { | |
893 | warning ("conversion from NaN to int"); | |
894 | *low = -1; | |
895 | *high = -1; | |
896 | return; | |
897 | } | |
898 | #endif | |
899 | /* convert positive value */ | |
900 | s = 0; | |
901 | if (eisneg (d)) | |
902 | { | |
903 | eneg (d); | |
904 | s = 1; | |
905 | } | |
906 | eldexp (eone, HOST_BITS_PER_WIDE_INT, df); | |
907 | ediv (df, d, dg); /* dg = d / 2^32 is the high word */ | |
908 | euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh); | |
909 | emul (df, dh, dg); /* fractional part is the low word */ | |
910 | euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh); | |
911 | if (s) | |
912 | { | |
913 | /* complement and add 1 */ | |
914 | *high = ~(*high); | |
915 | if (*low) | |
916 | *low = -(*low); | |
917 | else | |
918 | *high += 1; | |
919 | } | |
920 | } | |
921 | ||
922 | ||
923 | /* REAL_VALUE_LDEXP macro. */ | |
924 | ||
925 | REAL_VALUE_TYPE | |
926 | ereal_ldexp (x, n) | |
927 | REAL_VALUE_TYPE x; | |
928 | int n; | |
929 | { | |
930 | unsigned EMUSHORT e[NE], y[NE]; | |
931 | REAL_VALUE_TYPE r; | |
932 | ||
933 | GET_REAL (&x, e); | |
934 | #ifdef NANS | |
935 | if (eisnan (e)) | |
936 | return (x); | |
937 | #endif | |
938 | eldexp (e, n, y); | |
939 | PUT_REAL (y, &r); | |
940 | return (r); | |
941 | } | |
942 | ||
943 | /* These routines are conditionally compiled because functions | |
944 | of the same names may be defined in fold-const.c. */ | |
945 | ||
946 | #ifdef REAL_ARITHMETIC | |
947 | ||
948 | /* Check for infinity in a REAL_VALUE_TYPE. */ | |
949 | ||
950 | int | |
951 | target_isinf (x) | |
952 | REAL_VALUE_TYPE x; | |
953 | { | |
954 | unsigned EMUSHORT e[NE]; | |
955 | ||
956 | #ifdef INFINITY | |
957 | GET_REAL (&x, e); | |
958 | return (eisinf (e)); | |
959 | #else | |
960 | return 0; | |
961 | #endif | |
962 | } | |
963 | ||
964 | /* Check whether a REAL_VALUE_TYPE item is a NaN. */ | |
965 | ||
966 | int | |
967 | target_isnan (x) | |
968 | REAL_VALUE_TYPE x; | |
969 | { | |
970 | unsigned EMUSHORT e[NE]; | |
971 | ||
972 | #ifdef NANS | |
973 | GET_REAL (&x, e); | |
974 | return (eisnan (e)); | |
975 | #else | |
976 | return (0); | |
977 | #endif | |
978 | } | |
979 | ||
980 | ||
981 | /* Check for a negative REAL_VALUE_TYPE number. | |
982 | This just checks the sign bit, so that -0 counts as negative. */ | |
983 | ||
984 | int | |
985 | target_negative (x) | |
986 | REAL_VALUE_TYPE x; | |
987 | { | |
988 | return ereal_isneg (x); | |
989 | } | |
990 | ||
991 | /* Expansion of REAL_VALUE_TRUNCATE. | |
992 | The result is in floating point, rounded to nearest or even. */ | |
993 | ||
994 | REAL_VALUE_TYPE | |
995 | real_value_truncate (mode, arg) | |
996 | enum machine_mode mode; | |
997 | REAL_VALUE_TYPE arg; | |
998 | { | |
999 | unsigned EMUSHORT e[NE], t[NE]; | |
1000 | REAL_VALUE_TYPE r; | |
1001 | ||
1002 | GET_REAL (&arg, e); | |
1003 | #ifdef NANS | |
1004 | if (eisnan (e)) | |
1005 | return (arg); | |
1006 | #endif | |
1007 | eclear (t); | |
1008 | switch (mode) | |
1009 | { | |
1010 | case TFmode: | |
1011 | etoe113 (e, t); | |
1012 | e113toe (t, t); | |
1013 | break; | |
1014 | ||
1015 | case XFmode: | |
1016 | etoe64 (e, t); | |
1017 | e64toe (t, t); | |
1018 | break; | |
1019 | ||
1020 | case DFmode: | |
1021 | etoe53 (e, t); | |
1022 | e53toe (t, t); | |
1023 | break; | |
1024 | ||
1025 | case HFmode: | |
1026 | case SFmode: | |
1027 | etoe24 (e, t); | |
1028 | e24toe (t, t); | |
1029 | break; | |
1030 | ||
1031 | case SImode: | |
1032 | r = etrunci (arg); | |
1033 | return (r); | |
1034 | ||
1035 | /* If an unsupported type was requested, presume that | |
1036 | the machine files know something useful to do with | |
1037 | the unmodified value. */ | |
1038 | ||
1039 | default: | |
1040 | return (arg); | |
1041 | } | |
1042 | PUT_REAL (t, &r); | |
1043 | return (r); | |
1044 | } | |
1045 | ||
1046 | /* Try to change R into its exact multiplicative inverse in machine mode | |
1047 | MODE. Return nonzero function value if successful. */ | |
1048 | ||
1049 | int | |
1050 | exact_real_inverse (mode, r) | |
1051 | enum machine_mode mode; | |
1052 | REAL_VALUE_TYPE *r; | |
1053 | { | |
1054 | unsigned EMUSHORT e[NE], einv[NE]; | |
1055 | REAL_VALUE_TYPE rinv; | |
1056 | int i; | |
1057 | ||
1058 | GET_REAL (r, e); | |
1059 | ||
1060 | /* Test for input in range. Don't transform IEEE special values. */ | |
1061 | if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0)) | |
1062 | return 0; | |
1063 | ||
1064 | /* Test for a power of 2: all significand bits zero except the MSB. | |
1065 | We are assuming the target has binary (or hex) arithmetic. */ | |
1066 | if (e[NE - 2] != 0x8000) | |
1067 | return 0; | |
1068 | ||
1069 | for (i = 0; i < NE - 2; i++) | |
1070 | { | |
1071 | if (e[i] != 0) | |
1072 | return 0; | |
1073 | } | |
1074 | ||
1075 | /* Compute the inverse and truncate it to the required mode. */ | |
1076 | ediv (e, eone, einv); | |
1077 | PUT_REAL (einv, &rinv); | |
1078 | rinv = real_value_truncate (mode, rinv); | |
1079 | ||
1080 | #ifdef CHECK_FLOAT_VALUE | |
1081 | /* This check is not redundant. It may, for example, flush | |
1082 | a supposedly IEEE denormal value to zero. */ | |
1083 | i = 0; | |
1084 | if (CHECK_FLOAT_VALUE (mode, rinv, i)) | |
1085 | return 0; | |
1086 | #endif | |
1087 | GET_REAL (&rinv, einv); | |
1088 | ||
1089 | /* Check the bits again, because the truncation might have | |
1090 | generated an arbitrary saturation value on overflow. */ | |
1091 | if (einv[NE - 2] != 0x8000) | |
1092 | return 0; | |
1093 | ||
1094 | for (i = 0; i < NE - 2; i++) | |
1095 | { | |
1096 | if (einv[i] != 0) | |
1097 | return 0; | |
1098 | } | |
1099 | ||
1100 | /* Fail if the computed inverse is out of range. */ | |
1101 | if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0)) | |
1102 | return 0; | |
1103 | ||
1104 | /* Output the reciprocal and return success flag. */ | |
1105 | PUT_REAL (einv, r); | |
1106 | return 1; | |
1107 | } | |
1108 | #endif /* REAL_ARITHMETIC defined */ | |
1109 | ||
1110 | /* Used for debugging--print the value of R in human-readable format | |
1111 | on stderr. */ | |
1112 | ||
1113 | void | |
1114 | debug_real (r) | |
1115 | REAL_VALUE_TYPE r; | |
1116 | { | |
1117 | char dstr[30]; | |
1118 | ||
1119 | REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr); | |
1120 | fprintf (stderr, "%s", dstr); | |
1121 | } | |
1122 | ||
1123 | \f | |
1124 | /* The following routines convert REAL_VALUE_TYPE to the various floating | |
1125 | point formats that are meaningful to supported computers. | |
1126 | ||
1127 | The results are returned in 32-bit pieces, each piece stored in a `long'. | |
1128 | This is so they can be printed by statements like | |
1129 | ||
1130 | fprintf (file, "%lx, %lx", L[0], L[1]); | |
1131 | ||
1132 | that will work on both narrow- and wide-word host computers. */ | |
1133 | ||
1134 | /* Convert R to a 128-bit long double precision value. The output array L | |
1135 | contains four 32-bit pieces of the result, in the order they would appear | |
1136 | in memory. */ | |
1137 | ||
1138 | void | |
1139 | etartdouble (r, l) | |
1140 | REAL_VALUE_TYPE r; | |
1141 | long l[]; | |
1142 | { | |
1143 | unsigned EMUSHORT e[NE]; | |
1144 | ||
1145 | GET_REAL (&r, e); | |
1146 | etoe113 (e, e); | |
1147 | endian (e, l, TFmode); | |
1148 | } | |
1149 | ||
1150 | /* Convert R to a double extended precision value. The output array L | |
1151 | contains three 32-bit pieces of the result, in the order they would | |
1152 | appear in memory. */ | |
1153 | ||
1154 | void | |
1155 | etarldouble (r, l) | |
1156 | REAL_VALUE_TYPE r; | |
1157 | long l[]; | |
1158 | { | |
1159 | unsigned EMUSHORT e[NE]; | |
1160 | ||
1161 | GET_REAL (&r, e); | |
1162 | etoe64 (e, e); | |
1163 | endian (e, l, XFmode); | |
1164 | } | |
1165 | ||
1166 | /* Convert R to a double precision value. The output array L contains two | |
1167 | 32-bit pieces of the result, in the order they would appear in memory. */ | |
1168 | ||
1169 | void | |
1170 | etardouble (r, l) | |
1171 | REAL_VALUE_TYPE r; | |
1172 | long l[]; | |
1173 | { | |
1174 | unsigned EMUSHORT e[NE]; | |
1175 | ||
1176 | GET_REAL (&r, e); | |
1177 | etoe53 (e, e); | |
1178 | endian (e, l, DFmode); | |
1179 | } | |
1180 | ||
1181 | /* Convert R to a single precision float value stored in the least-significant | |
1182 | bits of a `long'. */ | |
1183 | ||
1184 | long | |
1185 | etarsingle (r) | |
1186 | REAL_VALUE_TYPE r; | |
1187 | { | |
1188 | unsigned EMUSHORT e[NE]; | |
1189 | long l; | |
1190 | ||
1191 | GET_REAL (&r, e); | |
1192 | etoe24 (e, e); | |
1193 | endian (e, &l, SFmode); | |
1194 | return ((long) l); | |
1195 | } | |
1196 | ||
1197 | /* Convert X to a decimal ASCII string S for output to an assembly | |
1198 | language file. Note, there is no standard way to spell infinity or | |
1199 | a NaN, so these values may require special treatment in the tm.h | |
1200 | macros. */ | |
1201 | ||
1202 | void | |
1203 | ereal_to_decimal (x, s) | |
1204 | REAL_VALUE_TYPE x; | |
1205 | char *s; | |
1206 | { | |
1207 | unsigned EMUSHORT e[NE]; | |
1208 | ||
1209 | GET_REAL (&x, e); | |
1210 | etoasc (e, s, 20); | |
1211 | } | |
1212 | ||
1213 | /* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y, | |
1214 | or -2 if either is a NaN. */ | |
1215 | ||
1216 | int | |
1217 | ereal_cmp (x, y) | |
1218 | REAL_VALUE_TYPE x, y; | |
1219 | { | |
1220 | unsigned EMUSHORT ex[NE], ey[NE]; | |
1221 | ||
1222 | GET_REAL (&x, ex); | |
1223 | GET_REAL (&y, ey); | |
1224 | return (ecmp (ex, ey)); | |
1225 | } | |
1226 | ||
1227 | /* Return 1 if the sign bit of X is set, else return 0. */ | |
1228 | ||
1229 | int | |
1230 | ereal_isneg (x) | |
1231 | REAL_VALUE_TYPE x; | |
1232 | { | |
1233 | unsigned EMUSHORT ex[NE]; | |
1234 | ||
1235 | GET_REAL (&x, ex); | |
1236 | return (eisneg (ex)); | |
1237 | } | |
1238 | ||
1239 | /* End of REAL_ARITHMETIC interface */ | |
1240 | \f | |
1241 | /* | |
1242 | Extended precision IEEE binary floating point arithmetic routines | |
1243 | ||
1244 | Numbers are stored in C language as arrays of 16-bit unsigned | |
1245 | short integers. The arguments of the routines are pointers to | |
1246 | the arrays. | |
1247 | ||
1248 | External e type data structure, similar to Intel 8087 chip | |
1249 | temporary real format but possibly with a larger significand: | |
1250 | ||
1251 | NE-1 significand words (least significant word first, | |
1252 | most significant bit is normally set) | |
1253 | exponent (value = EXONE for 1.0, | |
1254 | top bit is the sign) | |
1255 | ||
1256 | ||
1257 | Internal exploded e-type data structure of a number (a "word" is 16 bits): | |
1258 | ||
1259 | ei[0] sign word (0 for positive, 0xffff for negative) | |
1260 | ei[1] biased exponent (value = EXONE for the number 1.0) | |
1261 | ei[2] high guard word (always zero after normalization) | |
1262 | ei[3] | |
1263 | to ei[NI-2] significand (NI-4 significand words, | |
1264 | most significant word first, | |
1265 | most significant bit is set) | |
1266 | ei[NI-1] low guard word (0x8000 bit is rounding place) | |
1267 | ||
1268 | ||
1269 | ||
1270 | Routines for external format e-type numbers | |
1271 | ||
1272 | asctoe (string, e) ASCII string to extended double e type | |
1273 | asctoe64 (string, &d) ASCII string to long double | |
1274 | asctoe53 (string, &d) ASCII string to double | |
1275 | asctoe24 (string, &f) ASCII string to single | |
1276 | asctoeg (string, e, prec) ASCII string to specified precision | |
1277 | e24toe (&f, e) IEEE single precision to e type | |
1278 | e53toe (&d, e) IEEE double precision to e type | |
1279 | e64toe (&d, e) IEEE long double precision to e type | |
1280 | e113toe (&d, e) 128-bit long double precision to e type | |
1281 | eabs (e) absolute value | |
1282 | eadd (a, b, c) c = b + a | |
1283 | eclear (e) e = 0 | |
1284 | ecmp (a, b) Returns 1 if a > b, 0 if a == b, | |
1285 | -1 if a < b, -2 if either a or b is a NaN. | |
1286 | ediv (a, b, c) c = b / a | |
1287 | efloor (a, b) truncate to integer, toward -infinity | |
1288 | efrexp (a, exp, s) extract exponent and significand | |
1289 | eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction | |
1290 | euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction | |
1291 | einfin (e) set e to infinity, leaving its sign alone | |
1292 | eldexp (a, n, b) multiply by 2**n | |
1293 | emov (a, b) b = a | |
1294 | emul (a, b, c) c = b * a | |
1295 | eneg (e) e = -e | |
1296 | eround (a, b) b = nearest integer value to a | |
1297 | esub (a, b, c) c = b - a | |
1298 | e24toasc (&f, str, n) single to ASCII string, n digits after decimal | |
1299 | e53toasc (&d, str, n) double to ASCII string, n digits after decimal | |
1300 | e64toasc (&d, str, n) 80-bit long double to ASCII string | |
1301 | e113toasc (&d, str, n) 128-bit long double to ASCII string | |
1302 | etoasc (e, str, n) e to ASCII string, n digits after decimal | |
1303 | etoe24 (e, &f) convert e type to IEEE single precision | |
1304 | etoe53 (e, &d) convert e type to IEEE double precision | |
1305 | etoe64 (e, &d) convert e type to IEEE long double precision | |
1306 | ltoe (&l, e) HOST_WIDE_INT to e type | |
1307 | ultoe (&l, e) unsigned HOST_WIDE_INT to e type | |
1308 | eisneg (e) 1 if sign bit of e != 0, else 0 | |
1309 | eisinf (e) 1 if e has maximum exponent (non-IEEE) | |
1310 | or is infinite (IEEE) | |
1311 | eisnan (e) 1 if e is a NaN | |
1312 | ||
1313 | ||
1314 | Routines for internal format exploded e-type numbers | |
1315 | ||
1316 | eaddm (ai, bi) add significands, bi = bi + ai | |
1317 | ecleaz (ei) ei = 0 | |
1318 | ecleazs (ei) set ei = 0 but leave its sign alone | |
1319 | ecmpm (ai, bi) compare significands, return 1, 0, or -1 | |
1320 | edivm (ai, bi) divide significands, bi = bi / ai | |
1321 | emdnorm (ai,l,s,exp) normalize and round off | |
1322 | emovi (a, ai) convert external a to internal ai | |
1323 | emovo (ai, a) convert internal ai to external a | |
1324 | emovz (ai, bi) bi = ai, low guard word of bi = 0 | |
1325 | emulm (ai, bi) multiply significands, bi = bi * ai | |
1326 | enormlz (ei) left-justify the significand | |
1327 | eshdn1 (ai) shift significand and guards down 1 bit | |
1328 | eshdn8 (ai) shift down 8 bits | |
1329 | eshdn6 (ai) shift down 16 bits | |
1330 | eshift (ai, n) shift ai n bits up (or down if n < 0) | |
1331 | eshup1 (ai) shift significand and guards up 1 bit | |
1332 | eshup8 (ai) shift up 8 bits | |
1333 | eshup6 (ai) shift up 16 bits | |
1334 | esubm (ai, bi) subtract significands, bi = bi - ai | |
1335 | eiisinf (ai) 1 if infinite | |
1336 | eiisnan (ai) 1 if a NaN | |
1337 | eiisneg (ai) 1 if sign bit of ai != 0, else 0 | |
1338 | einan (ai) set ai = NaN | |
1339 | eiinfin (ai) set ai = infinity | |
1340 | ||
1341 | The result is always normalized and rounded to NI-4 word precision | |
1342 | after each arithmetic operation. | |
1343 | ||
1344 | Exception flags are NOT fully supported. | |
1345 | ||
1346 | Signaling NaN's are NOT supported; they are treated the same | |
1347 | as quiet NaN's. | |
1348 | ||
1349 | Define INFINITY for support of infinity; otherwise a | |
1350 | saturation arithmetic is implemented. | |
1351 | ||
1352 | Define NANS for support of Not-a-Number items; otherwise the | |
1353 | arithmetic will never produce a NaN output, and might be confused | |
1354 | by a NaN input. | |
1355 | If NaN's are supported, the output of `ecmp (a,b)' is -2 if | |
1356 | either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' | |
1357 | may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' | |
1358 | if in doubt. | |
1359 | ||
1360 | Denormals are always supported here where appropriate (e.g., not | |
1361 | for conversion to DEC numbers). */ | |
1362 | ||
1363 | /* Definitions for error codes that are passed to the common error handling | |
1364 | routine mtherr. | |
1365 | ||
1366 | For Digital Equipment PDP-11 and VAX computers, certain | |
1367 | IBM systems, and others that use numbers with a 56-bit | |
1368 | significand, the symbol DEC should be defined. In this | |
1369 | mode, most floating point constants are given as arrays | |
1370 | of octal integers to eliminate decimal to binary conversion | |
1371 | errors that might be introduced by the compiler. | |
1372 | ||
1373 | For computers, such as IBM PC, that follow the IEEE | |
1374 | Standard for Binary Floating Point Arithmetic (ANSI/IEEE | |
1375 | Std 754-1985), the symbol IEEE should be defined. | |
1376 | These numbers have 53-bit significands. In this mode, constants | |
1377 | are provided as arrays of hexadecimal 16 bit integers. | |
1378 | The endian-ness of generated values is controlled by | |
1379 | REAL_WORDS_BIG_ENDIAN. | |
1380 | ||
1381 | To accommodate other types of computer arithmetic, all | |
1382 | constants are also provided in a normal decimal radix | |
1383 | which one can hope are correctly converted to a suitable | |
1384 | format by the available C language compiler. To invoke | |
1385 | this mode, the symbol UNK is defined. | |
1386 | ||
1387 | An important difference among these modes is a predefined | |
1388 | set of machine arithmetic constants for each. The numbers | |
1389 | MACHEP (the machine roundoff error), MAXNUM (largest number | |
1390 | represented), and several other parameters are preset by | |
1391 | the configuration symbol. Check the file const.c to | |
1392 | ensure that these values are correct for your computer. | |
1393 | ||
1394 | For ANSI C compatibility, define ANSIC equal to 1. Currently | |
1395 | this affects only the atan2 function and others that use it. */ | |
1396 | ||
1397 | /* Constant definitions for math error conditions. */ | |
1398 | ||
1399 | #define DOMAIN 1 /* argument domain error */ | |
1400 | #define SING 2 /* argument singularity */ | |
1401 | #define OVERFLOW 3 /* overflow range error */ | |
1402 | #define UNDERFLOW 4 /* underflow range error */ | |
1403 | #define TLOSS 5 /* total loss of precision */ | |
1404 | #define PLOSS 6 /* partial loss of precision */ | |
1405 | #define INVALID 7 /* NaN-producing operation */ | |
1406 | ||
1407 | /* e type constants used by high precision check routines */ | |
1408 | ||
1409 | #if LONG_DOUBLE_TYPE_SIZE == 128 | |
1410 | /* 0.0 */ | |
1411 | unsigned EMUSHORT ezero[NE] = | |
1412 | {0x0000, 0x0000, 0x0000, 0x0000, | |
1413 | 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; | |
1414 | extern unsigned EMUSHORT ezero[]; | |
1415 | ||
1416 | /* 5.0E-1 */ | |
1417 | unsigned EMUSHORT ehalf[NE] = | |
1418 | {0x0000, 0x0000, 0x0000, 0x0000, | |
1419 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,}; | |
1420 | extern unsigned EMUSHORT ehalf[]; | |
1421 | ||
1422 | /* 1.0E0 */ | |
1423 | unsigned EMUSHORT eone[NE] = | |
1424 | {0x0000, 0x0000, 0x0000, 0x0000, | |
1425 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; | |
1426 | extern unsigned EMUSHORT eone[]; | |
1427 | ||
1428 | /* 2.0E0 */ | |
1429 | unsigned EMUSHORT etwo[NE] = | |
1430 | {0x0000, 0x0000, 0x0000, 0x0000, | |
1431 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,}; | |
1432 | extern unsigned EMUSHORT etwo[]; | |
1433 | ||
1434 | /* 3.2E1 */ | |
1435 | unsigned EMUSHORT e32[NE] = | |
1436 | {0x0000, 0x0000, 0x0000, 0x0000, | |
1437 | 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,}; | |
1438 | extern unsigned EMUSHORT e32[]; | |
1439 | ||
1440 | /* 6.93147180559945309417232121458176568075500134360255E-1 */ | |
1441 | unsigned EMUSHORT elog2[NE] = | |
1442 | {0x40f3, 0xf6af, 0x03f2, 0xb398, | |
1443 | 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1444 | extern unsigned EMUSHORT elog2[]; | |
1445 | ||
1446 | /* 1.41421356237309504880168872420969807856967187537695E0 */ | |
1447 | unsigned EMUSHORT esqrt2[NE] = | |
1448 | {0x1d6f, 0xbe9f, 0x754a, 0x89b3, | |
1449 | 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1450 | extern unsigned EMUSHORT esqrt2[]; | |
1451 | ||
1452 | /* 3.14159265358979323846264338327950288419716939937511E0 */ | |
1453 | unsigned EMUSHORT epi[NE] = | |
1454 | {0x2902, 0x1cd1, 0x80dc, 0x628b, | |
1455 | 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1456 | extern unsigned EMUSHORT epi[]; | |
1457 | ||
1458 | #else | |
1459 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
1460 | unsigned EMUSHORT ezero[NE] = | |
1461 | {0, 0000000, 0000000, 0000000, 0000000, 0000000,}; | |
1462 | unsigned EMUSHORT ehalf[NE] = | |
1463 | {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; | |
1464 | unsigned EMUSHORT eone[NE] = | |
1465 | {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; | |
1466 | unsigned EMUSHORT etwo[NE] = | |
1467 | {0, 0000000, 0000000, 0000000, 0100000, 0040000,}; | |
1468 | unsigned EMUSHORT e32[NE] = | |
1469 | {0, 0000000, 0000000, 0000000, 0100000, 0040004,}; | |
1470 | unsigned EMUSHORT elog2[NE] = | |
1471 | {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; | |
1472 | unsigned EMUSHORT esqrt2[NE] = | |
1473 | {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; | |
1474 | unsigned EMUSHORT epi[NE] = | |
1475 | {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; | |
1476 | #endif | |
1477 | ||
1478 | /* Control register for rounding precision. | |
1479 | This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */ | |
1480 | ||
1481 | int rndprc = NBITS; | |
1482 | extern int rndprc; | |
1483 | ||
1484 | /* Clear out entire e-type number X. */ | |
1485 | ||
1486 | static void | |
1487 | eclear (x) | |
1488 | register unsigned EMUSHORT *x; | |
1489 | { | |
1490 | register int i; | |
1491 | ||
1492 | for (i = 0; i < NE; i++) | |
1493 | *x++ = 0; | |
1494 | } | |
1495 | ||
1496 | /* Move e-type number from A to B. */ | |
1497 | ||
1498 | static void | |
1499 | emov (a, b) | |
1500 | register unsigned EMUSHORT *a, *b; | |
1501 | { | |
1502 | register int i; | |
1503 | ||
1504 | for (i = 0; i < NE; i++) | |
1505 | *b++ = *a++; | |
1506 | } | |
1507 | ||
1508 | ||
1509 | /* Absolute value of e-type X. */ | |
1510 | ||
1511 | static void | |
1512 | eabs (x) | |
1513 | unsigned EMUSHORT x[]; | |
1514 | { | |
1515 | /* sign is top bit of last word of external format */ | |
1516 | x[NE - 1] &= 0x7fff; | |
1517 | } | |
1518 | ||
1519 | /* Negate the e-type number X. */ | |
1520 | ||
1521 | static void | |
1522 | eneg (x) | |
1523 | unsigned EMUSHORT x[]; | |
1524 | { | |
1525 | ||
1526 | x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ | |
1527 | } | |
1528 | ||
1529 | /* Return 1 if sign bit of e-type number X is nonzero, else zero. */ | |
1530 | ||
1531 | static int | |
1532 | eisneg (x) | |
1533 | unsigned EMUSHORT x[]; | |
1534 | { | |
1535 | ||
1536 | if (x[NE - 1] & 0x8000) | |
1537 | return (1); | |
1538 | else | |
1539 | return (0); | |
1540 | } | |
1541 | ||
1542 | /* Return 1 if e-type number X is infinity, else return zero. */ | |
1543 | ||
1544 | static int | |
1545 | eisinf (x) | |
1546 | unsigned EMUSHORT x[]; | |
1547 | { | |
1548 | ||
1549 | #ifdef NANS | |
1550 | if (eisnan (x)) | |
1551 | return (0); | |
1552 | #endif | |
1553 | if ((x[NE - 1] & 0x7fff) == 0x7fff) | |
1554 | return (1); | |
1555 | else | |
1556 | return (0); | |
1557 | } | |
1558 | ||
1559 | /* Check if e-type number is not a number. The bit pattern is one that we | |
1560 | defined, so we know for sure how to detect it. */ | |
1561 | ||
1562 | static int | |
1563 | eisnan (x) | |
1564 | unsigned EMUSHORT x[]; | |
1565 | { | |
1566 | #ifdef NANS | |
1567 | int i; | |
1568 | ||
1569 | /* NaN has maximum exponent */ | |
1570 | if ((x[NE - 1] & 0x7fff) != 0x7fff) | |
1571 | return (0); | |
1572 | /* ... and non-zero significand field. */ | |
1573 | for (i = 0; i < NE - 1; i++) | |
1574 | { | |
1575 | if (*x++ != 0) | |
1576 | return (1); | |
1577 | } | |
1578 | #endif | |
1579 | ||
1580 | return (0); | |
1581 | } | |
1582 | ||
1583 | /* Fill e-type number X with infinity pattern (IEEE) | |
1584 | or largest possible number (non-IEEE). */ | |
1585 | ||
1586 | static void | |
1587 | einfin (x) | |
1588 | register unsigned EMUSHORT *x; | |
1589 | { | |
1590 | register int i; | |
1591 | ||
1592 | #ifdef INFINITY | |
1593 | for (i = 0; i < NE - 1; i++) | |
1594 | *x++ = 0; | |
1595 | *x |= 32767; | |
1596 | #else | |
1597 | for (i = 0; i < NE - 1; i++) | |
1598 | *x++ = 0xffff; | |
1599 | *x |= 32766; | |
1600 | if (rndprc < NBITS) | |
1601 | { | |
1602 | if (rndprc == 113) | |
1603 | { | |
1604 | *(x - 9) = 0; | |
1605 | *(x - 8) = 0; | |
1606 | } | |
1607 | if (rndprc == 64) | |
1608 | { | |
1609 | *(x - 5) = 0; | |
1610 | } | |
1611 | if (rndprc == 53) | |
1612 | { | |
1613 | *(x - 4) = 0xf800; | |
1614 | } | |
1615 | else | |
1616 | { | |
1617 | *(x - 4) = 0; | |
1618 | *(x - 3) = 0; | |
1619 | *(x - 2) = 0xff00; | |
1620 | } | |
1621 | } | |
1622 | #endif | |
1623 | } | |
1624 | ||
1625 | /* Output an e-type NaN. | |
1626 | This generates Intel's quiet NaN pattern for extended real. | |
1627 | The exponent is 7fff, the leading mantissa word is c000. */ | |
1628 | ||
1629 | static void | |
1630 | enan (x, sign) | |
1631 | register unsigned EMUSHORT *x; | |
1632 | int sign; | |
1633 | { | |
1634 | register int i; | |
1635 | ||
1636 | for (i = 0; i < NE - 2; i++) | |
1637 | *x++ = 0; | |
1638 | *x++ = 0xc000; | |
1639 | *x = (sign << 15) | 0x7fff; | |
1640 | } | |
1641 | ||
1642 | /* Move in an e-type number A, converting it to exploded e-type B. */ | |
1643 | ||
1644 | static void | |
1645 | emovi (a, b) | |
1646 | unsigned EMUSHORT *a, *b; | |
1647 | { | |
1648 | register unsigned EMUSHORT *p, *q; | |
1649 | int i; | |
1650 | ||
1651 | q = b; | |
1652 | p = a + (NE - 1); /* point to last word of external number */ | |
1653 | /* get the sign bit */ | |
1654 | if (*p & 0x8000) | |
1655 | *q++ = 0xffff; | |
1656 | else | |
1657 | *q++ = 0; | |
1658 | /* get the exponent */ | |
1659 | *q = *p--; | |
1660 | *q++ &= 0x7fff; /* delete the sign bit */ | |
1661 | #ifdef INFINITY | |
1662 | if ((*(q - 1) & 0x7fff) == 0x7fff) | |
1663 | { | |
1664 | #ifdef NANS | |
1665 | if (eisnan (a)) | |
1666 | { | |
1667 | *q++ = 0; | |
1668 | for (i = 3; i < NI; i++) | |
1669 | *q++ = *p--; | |
1670 | return; | |
1671 | } | |
1672 | #endif | |
1673 | ||
1674 | for (i = 2; i < NI; i++) | |
1675 | *q++ = 0; | |
1676 | return; | |
1677 | } | |
1678 | #endif | |
1679 | ||
1680 | /* clear high guard word */ | |
1681 | *q++ = 0; | |
1682 | /* move in the significand */ | |
1683 | for (i = 0; i < NE - 1; i++) | |
1684 | *q++ = *p--; | |
1685 | /* clear low guard word */ | |
1686 | *q = 0; | |
1687 | } | |
1688 | ||
1689 | /* Move out exploded e-type number A, converting it to e type B. */ | |
1690 | ||
1691 | static void | |
1692 | emovo (a, b) | |
1693 | unsigned EMUSHORT *a, *b; | |
1694 | { | |
1695 | register unsigned EMUSHORT *p, *q; | |
1696 | unsigned EMUSHORT i; | |
1697 | int j; | |
1698 | ||
1699 | p = a; | |
1700 | q = b + (NE - 1); /* point to output exponent */ | |
1701 | /* combine sign and exponent */ | |
1702 | i = *p++; | |
1703 | if (i) | |
1704 | *q-- = *p++ | 0x8000; | |
1705 | else | |
1706 | *q-- = *p++; | |
1707 | #ifdef INFINITY | |
1708 | if (*(p - 1) == 0x7fff) | |
1709 | { | |
1710 | #ifdef NANS | |
1711 | if (eiisnan (a)) | |
1712 | { | |
1713 | enan (b, eiisneg (a)); | |
1714 | return; | |
1715 | } | |
1716 | #endif | |
1717 | einfin (b); | |
1718 | return; | |
1719 | } | |
1720 | #endif | |
1721 | /* skip over guard word */ | |
1722 | ++p; | |
1723 | /* move the significand */ | |
1724 | for (j = 0; j < NE - 1; j++) | |
1725 | *q-- = *p++; | |
1726 | } | |
1727 | ||
1728 | /* Clear out exploded e-type number XI. */ | |
1729 | ||
1730 | static void | |
1731 | ecleaz (xi) | |
1732 | register unsigned EMUSHORT *xi; | |
1733 | { | |
1734 | register int i; | |
1735 | ||
1736 | for (i = 0; i < NI; i++) | |
1737 | *xi++ = 0; | |
1738 | } | |
1739 | ||
1740 | /* Clear out exploded e-type XI, but don't touch the sign. */ | |
1741 | ||
1742 | static void | |
1743 | ecleazs (xi) | |
1744 | register unsigned EMUSHORT *xi; | |
1745 | { | |
1746 | register int i; | |
1747 | ||
1748 | ++xi; | |
1749 | for (i = 0; i < NI - 1; i++) | |
1750 | *xi++ = 0; | |
1751 | } | |
1752 | ||
1753 | /* Move exploded e-type number from A to B. */ | |
1754 | ||
1755 | static void | |
1756 | emovz (a, b) | |
1757 | register unsigned EMUSHORT *a, *b; | |
1758 | { | |
1759 | register int i; | |
1760 | ||
1761 | for (i = 0; i < NI - 1; i++) | |
1762 | *b++ = *a++; | |
1763 | /* clear low guard word */ | |
1764 | *b = 0; | |
1765 | } | |
1766 | ||
1767 | /* Generate exploded e-type NaN. | |
1768 | The explicit pattern for this is maximum exponent and | |
1769 | top two significant bits set. */ | |
1770 | ||
1771 | static void | |
1772 | einan (x) | |
1773 | unsigned EMUSHORT x[]; | |
1774 | { | |
1775 | ||
1776 | ecleaz (x); | |
1777 | x[E] = 0x7fff; | |
1778 | x[M + 1] = 0xc000; | |
1779 | } | |
1780 | ||
1781 | /* Return nonzero if exploded e-type X is a NaN. */ | |
1782 | ||
1783 | static int | |
1784 | eiisnan (x) | |
1785 | unsigned EMUSHORT x[]; | |
1786 | { | |
1787 | int i; | |
1788 | ||
1789 | if ((x[E] & 0x7fff) == 0x7fff) | |
1790 | { | |
1791 | for (i = M + 1; i < NI; i++) | |
1792 | { | |
1793 | if (x[i] != 0) | |
1794 | return (1); | |
1795 | } | |
1796 | } | |
1797 | return (0); | |
1798 | } | |
1799 | ||
1800 | /* Return nonzero if sign of exploded e-type X is nonzero. */ | |
1801 | ||
1802 | static int | |
1803 | eiisneg (x) | |
1804 | unsigned EMUSHORT x[]; | |
1805 | { | |
1806 | ||
1807 | return x[0] != 0; | |
1808 | } | |
1809 | ||
1810 | /* Fill exploded e-type X with infinity pattern. | |
1811 | This has maximum exponent and significand all zeros. */ | |
1812 | ||
1813 | static void | |
1814 | eiinfin (x) | |
1815 | unsigned EMUSHORT x[]; | |
1816 | { | |
1817 | ||
1818 | ecleaz (x); | |
1819 | x[E] = 0x7fff; | |
1820 | } | |
1821 | ||
1822 | /* Return nonzero if exploded e-type X is infinite. */ | |
1823 | ||
1824 | static int | |
1825 | eiisinf (x) | |
1826 | unsigned EMUSHORT x[]; | |
1827 | { | |
1828 | ||
1829 | #ifdef NANS | |
1830 | if (eiisnan (x)) | |
1831 | return (0); | |
1832 | #endif | |
1833 | if ((x[E] & 0x7fff) == 0x7fff) | |
1834 | return (1); | |
1835 | return (0); | |
1836 | } | |
1837 | ||
1838 | ||
1839 | /* Compare significands of numbers in internal exploded e-type format. | |
1840 | Guard words are included in the comparison. | |
1841 | ||
1842 | Returns +1 if a > b | |
1843 | 0 if a == b | |
1844 | -1 if a < b */ | |
1845 | ||
1846 | static int | |
1847 | ecmpm (a, b) | |
1848 | register unsigned EMUSHORT *a, *b; | |
1849 | { | |
1850 | int i; | |
1851 | ||
1852 | a += M; /* skip up to significand area */ | |
1853 | b += M; | |
1854 | for (i = M; i < NI; i++) | |
1855 | { | |
1856 | if (*a++ != *b++) | |
1857 | goto difrnt; | |
1858 | } | |
1859 | return (0); | |
1860 | ||
1861 | difrnt: | |
1862 | if (*(--a) > *(--b)) | |
1863 | return (1); | |
1864 | else | |
1865 | return (-1); | |
1866 | } | |
1867 | ||
1868 | /* Shift significand of exploded e-type X down by 1 bit. */ | |
1869 | ||
1870 | static void | |
1871 | eshdn1 (x) | |
1872 | register unsigned EMUSHORT *x; | |
1873 | { | |
1874 | register unsigned EMUSHORT bits; | |
1875 | int i; | |
1876 | ||
1877 | x += M; /* point to significand area */ | |
1878 | ||
1879 | bits = 0; | |
1880 | for (i = M; i < NI; i++) | |
1881 | { | |
1882 | if (*x & 1) | |
1883 | bits |= 1; | |
1884 | *x >>= 1; | |
1885 | if (bits & 2) | |
1886 | *x |= 0x8000; | |
1887 | bits <<= 1; | |
1888 | ++x; | |
1889 | } | |
1890 | } | |
1891 | ||
1892 | /* Shift significand of exploded e-type X up by 1 bit. */ | |
1893 | ||
1894 | static void | |
1895 | eshup1 (x) | |
1896 | register unsigned EMUSHORT *x; | |
1897 | { | |
1898 | register unsigned EMUSHORT bits; | |
1899 | int i; | |
1900 | ||
1901 | x += NI - 1; | |
1902 | bits = 0; | |
1903 | ||
1904 | for (i = M; i < NI; i++) | |
1905 | { | |
1906 | if (*x & 0x8000) | |
1907 | bits |= 1; | |
1908 | *x <<= 1; | |
1909 | if (bits & 2) | |
1910 | *x |= 1; | |
1911 | bits <<= 1; | |
1912 | --x; | |
1913 | } | |
1914 | } | |
1915 | ||
1916 | ||
1917 | /* Shift significand of exploded e-type X down by 8 bits. */ | |
1918 | ||
1919 | static void | |
1920 | eshdn8 (x) | |
1921 | register unsigned EMUSHORT *x; | |
1922 | { | |
1923 | register unsigned EMUSHORT newbyt, oldbyt; | |
1924 | int i; | |
1925 | ||
1926 | x += M; | |
1927 | oldbyt = 0; | |
1928 | for (i = M; i < NI; i++) | |
1929 | { | |
1930 | newbyt = *x << 8; | |
1931 | *x >>= 8; | |
1932 | *x |= oldbyt; | |
1933 | oldbyt = newbyt; | |
1934 | ++x; | |
1935 | } | |
1936 | } | |
1937 | ||
1938 | /* Shift significand of exploded e-type X up by 8 bits. */ | |
1939 | ||
1940 | static void | |
1941 | eshup8 (x) | |
1942 | register unsigned EMUSHORT *x; | |
1943 | { | |
1944 | int i; | |
1945 | register unsigned EMUSHORT newbyt, oldbyt; | |
1946 | ||
1947 | x += NI - 1; | |
1948 | oldbyt = 0; | |
1949 | ||
1950 | for (i = M; i < NI; i++) | |
1951 | { | |
1952 | newbyt = *x >> 8; | |
1953 | *x <<= 8; | |
1954 | *x |= oldbyt; | |
1955 | oldbyt = newbyt; | |
1956 | --x; | |
1957 | } | |
1958 | } | |
1959 | ||
1960 | /* Shift significand of exploded e-type X up by 16 bits. */ | |
1961 | ||
1962 | static void | |
1963 | eshup6 (x) | |
1964 | register unsigned EMUSHORT *x; | |
1965 | { | |
1966 | int i; | |
1967 | register unsigned EMUSHORT *p; | |
1968 | ||
1969 | p = x + M; | |
1970 | x += M + 1; | |
1971 | ||
1972 | for (i = M; i < NI - 1; i++) | |
1973 | *p++ = *x++; | |
1974 | ||
1975 | *p = 0; | |
1976 | } | |
1977 | ||
1978 | /* Shift significand of exploded e-type X down by 16 bits. */ | |
1979 | ||
1980 | static void | |
1981 | eshdn6 (x) | |
1982 | register unsigned EMUSHORT *x; | |
1983 | { | |
1984 | int i; | |
1985 | register unsigned EMUSHORT *p; | |
1986 | ||
1987 | x += NI - 1; | |
1988 | p = x + 1; | |
1989 | ||
1990 | for (i = M; i < NI - 1; i++) | |
1991 | *(--p) = *(--x); | |
1992 | ||
1993 | *(--p) = 0; | |
1994 | } | |
1995 | ||
1996 | /* Add significands of exploded e-type X and Y. X + Y replaces Y. */ | |
1997 | ||
1998 | static void | |
1999 | eaddm (x, y) | |
2000 | unsigned EMUSHORT *x, *y; | |
2001 | { | |
2002 | register unsigned EMULONG a; | |
2003 | int i; | |
2004 | unsigned int carry; | |
2005 | ||
2006 | x += NI - 1; | |
2007 | y += NI - 1; | |
2008 | carry = 0; | |
2009 | for (i = M; i < NI; i++) | |
2010 | { | |
2011 | a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; | |
2012 | if (a & 0x10000) | |
2013 | carry = 1; | |
2014 | else | |
2015 | carry = 0; | |
2016 | *y = (unsigned EMUSHORT) a; | |
2017 | --x; | |
2018 | --y; | |
2019 | } | |
2020 | } | |
2021 | ||
2022 | /* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */ | |
2023 | ||
2024 | static void | |
2025 | esubm (x, y) | |
2026 | unsigned EMUSHORT *x, *y; | |
2027 | { | |
2028 | unsigned EMULONG a; | |
2029 | int i; | |
2030 | unsigned int carry; | |
2031 | ||
2032 | x += NI - 1; | |
2033 | y += NI - 1; | |
2034 | carry = 0; | |
2035 | for (i = M; i < NI; i++) | |
2036 | { | |
2037 | a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; | |
2038 | if (a & 0x10000) | |
2039 | carry = 1; | |
2040 | else | |
2041 | carry = 0; | |
2042 | *y = (unsigned EMUSHORT) a; | |
2043 | --x; | |
2044 | --y; | |
2045 | } | |
2046 | } | |
2047 | ||
2048 | ||
2049 | static unsigned EMUSHORT equot[NI]; | |
2050 | ||
2051 | ||
2052 | #if 0 | |
2053 | /* Radix 2 shift-and-add versions of multiply and divide */ | |
2054 | ||
2055 | ||
2056 | /* Divide significands */ | |
2057 | ||
2058 | int | |
2059 | edivm (den, num) | |
2060 | unsigned EMUSHORT den[], num[]; | |
2061 | { | |
2062 | int i; | |
2063 | register unsigned EMUSHORT *p, *q; | |
2064 | unsigned EMUSHORT j; | |
2065 | ||
2066 | p = &equot[0]; | |
2067 | *p++ = num[0]; | |
2068 | *p++ = num[1]; | |
2069 | ||
2070 | for (i = M; i < NI; i++) | |
2071 | { | |
2072 | *p++ = 0; | |
2073 | } | |
2074 | ||
2075 | /* Use faster compare and subtraction if denominator has only 15 bits of | |
2076 | significance. */ | |
2077 | ||
2078 | p = &den[M + 2]; | |
2079 | if (*p++ == 0) | |
2080 | { | |
2081 | for (i = M + 3; i < NI; i++) | |
2082 | { | |
2083 | if (*p++ != 0) | |
2084 | goto fulldiv; | |
2085 | } | |
2086 | if ((den[M + 1] & 1) != 0) | |
2087 | goto fulldiv; | |
2088 | eshdn1 (num); | |
2089 | eshdn1 (den); | |
2090 | ||
2091 | p = &den[M + 1]; | |
2092 | q = &num[M + 1]; | |
2093 | ||
2094 | for (i = 0; i < NBITS + 2; i++) | |
2095 | { | |
2096 | if (*p <= *q) | |
2097 | { | |
2098 | *q -= *p; | |
2099 | j = 1; | |
2100 | } | |
2101 | else | |
2102 | { | |
2103 | j = 0; | |
2104 | } | |
2105 | eshup1 (equot); | |
2106 | equot[NI - 2] |= j; | |
2107 | eshup1 (num); | |
2108 | } | |
2109 | goto divdon; | |
2110 | } | |
2111 | ||
2112 | /* The number of quotient bits to calculate is NBITS + 1 scaling guard | |
2113 | bit + 1 roundoff bit. */ | |
2114 | ||
2115 | fulldiv: | |
2116 | ||
2117 | p = &equot[NI - 2]; | |
2118 | for (i = 0; i < NBITS + 2; i++) | |
2119 | { | |
2120 | if (ecmpm (den, num) <= 0) | |
2121 | { | |
2122 | esubm (den, num); | |
2123 | j = 1; /* quotient bit = 1 */ | |
2124 | } | |
2125 | else | |
2126 | j = 0; | |
2127 | eshup1 (equot); | |
2128 | *p |= j; | |
2129 | eshup1 (num); | |
2130 | } | |
2131 | ||
2132 | divdon: | |
2133 | ||
2134 | eshdn1 (equot); | |
2135 | eshdn1 (equot); | |
2136 | ||
2137 | /* test for nonzero remainder after roundoff bit */ | |
2138 | p = &num[M]; | |
2139 | j = 0; | |
2140 | for (i = M; i < NI; i++) | |
2141 | { | |
2142 | j |= *p++; | |
2143 | } | |
2144 | if (j) | |
2145 | j = 1; | |
2146 | ||
2147 | ||
2148 | for (i = 0; i < NI; i++) | |
2149 | num[i] = equot[i]; | |
2150 | return ((int) j); | |
2151 | } | |
2152 | ||
2153 | ||
2154 | /* Multiply significands */ | |
2155 | ||
2156 | int | |
2157 | emulm (a, b) | |
2158 | unsigned EMUSHORT a[], b[]; | |
2159 | { | |
2160 | unsigned EMUSHORT *p, *q; | |
2161 | int i, j, k; | |
2162 | ||
2163 | equot[0] = b[0]; | |
2164 | equot[1] = b[1]; | |
2165 | for (i = M; i < NI; i++) | |
2166 | equot[i] = 0; | |
2167 | ||
2168 | p = &a[NI - 2]; | |
2169 | k = NBITS; | |
2170 | while (*p == 0) /* significand is not supposed to be zero */ | |
2171 | { | |
2172 | eshdn6 (a); | |
2173 | k -= 16; | |
2174 | } | |
2175 | if ((*p & 0xff) == 0) | |
2176 | { | |
2177 | eshdn8 (a); | |
2178 | k -= 8; | |
2179 | } | |
2180 | ||
2181 | q = &equot[NI - 1]; | |
2182 | j = 0; | |
2183 | for (i = 0; i < k; i++) | |
2184 | { | |
2185 | if (*p & 1) | |
2186 | eaddm (b, equot); | |
2187 | /* remember if there were any nonzero bits shifted out */ | |
2188 | if (*q & 1) | |
2189 | j |= 1; | |
2190 | eshdn1 (a); | |
2191 | eshdn1 (equot); | |
2192 | } | |
2193 | ||
2194 | for (i = 0; i < NI; i++) | |
2195 | b[i] = equot[i]; | |
2196 | ||
2197 | /* return flag for lost nonzero bits */ | |
2198 | return (j); | |
2199 | } | |
2200 | ||
2201 | #else | |
2202 | ||
2203 | /* Radix 65536 versions of multiply and divide. */ | |
2204 | ||
2205 | /* Multiply significand of e-type number B | |
2206 | by 16-bit quantity A, return e-type result to C. */ | |
2207 | ||
2208 | static void | |
2209 | m16m (a, b, c) | |
2210 | unsigned int a; | |
2211 | unsigned EMUSHORT b[], c[]; | |
2212 | { | |
2213 | register unsigned EMUSHORT *pp; | |
2214 | register unsigned EMULONG carry; | |
2215 | unsigned EMUSHORT *ps; | |
2216 | unsigned EMUSHORT p[NI]; | |
2217 | unsigned EMULONG aa, m; | |
2218 | int i; | |
2219 | ||
2220 | aa = a; | |
2221 | pp = &p[NI-2]; | |
2222 | *pp++ = 0; | |
2223 | *pp = 0; | |
2224 | ps = &b[NI-1]; | |
2225 | ||
2226 | for (i=M+1; i<NI; i++) | |
2227 | { | |
2228 | if (*ps == 0) | |
2229 | { | |
2230 | --ps; | |
2231 | --pp; | |
2232 | *(pp-1) = 0; | |
2233 | } | |
2234 | else | |
2235 | { | |
2236 | m = (unsigned EMULONG) aa * *ps--; | |
2237 | carry = (m & 0xffff) + *pp; | |
2238 | *pp-- = (unsigned EMUSHORT)carry; | |
2239 | carry = (carry >> 16) + (m >> 16) + *pp; | |
2240 | *pp = (unsigned EMUSHORT)carry; | |
2241 | *(pp-1) = carry >> 16; | |
2242 | } | |
2243 | } | |
2244 | for (i=M; i<NI; i++) | |
2245 | c[i] = p[i]; | |
2246 | } | |
2247 | ||
2248 | /* Divide significands of exploded e-types NUM / DEN. Neither the | |
2249 | numerator NUM nor the denominator DEN is permitted to have its high guard | |
2250 | word nonzero. */ | |
2251 | ||
2252 | static int | |
2253 | edivm (den, num) | |
2254 | unsigned EMUSHORT den[], num[]; | |
2255 | { | |
2256 | int i; | |
2257 | register unsigned EMUSHORT *p; | |
2258 | unsigned EMULONG tnum; | |
2259 | unsigned EMUSHORT j, tdenm, tquot; | |
2260 | unsigned EMUSHORT tprod[NI+1]; | |
2261 | ||
2262 | p = &equot[0]; | |
2263 | *p++ = num[0]; | |
2264 | *p++ = num[1]; | |
2265 | ||
2266 | for (i=M; i<NI; i++) | |
2267 | { | |
2268 | *p++ = 0; | |
2269 | } | |
2270 | eshdn1 (num); | |
2271 | tdenm = den[M+1]; | |
2272 | for (i=M; i<NI; i++) | |
2273 | { | |
2274 | /* Find trial quotient digit (the radix is 65536). */ | |
2275 | tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1]; | |
2276 | ||
2277 | /* Do not execute the divide instruction if it will overflow. */ | |
2278 | if ((tdenm * 0xffffL) < tnum) | |
2279 | tquot = 0xffff; | |
2280 | else | |
2281 | tquot = tnum / tdenm; | |
2282 | /* Multiply denominator by trial quotient digit. */ | |
2283 | m16m ((unsigned int)tquot, den, tprod); | |
2284 | /* The quotient digit may have been overestimated. */ | |
2285 | if (ecmpm (tprod, num) > 0) | |
2286 | { | |
2287 | tquot -= 1; | |
2288 | esubm (den, tprod); | |
2289 | if (ecmpm (tprod, num) > 0) | |
2290 | { | |
2291 | tquot -= 1; | |
2292 | esubm (den, tprod); | |
2293 | } | |
2294 | } | |
2295 | esubm (tprod, num); | |
2296 | equot[i] = tquot; | |
2297 | eshup6(num); | |
2298 | } | |
2299 | /* test for nonzero remainder after roundoff bit */ | |
2300 | p = &num[M]; | |
2301 | j = 0; | |
2302 | for (i=M; i<NI; i++) | |
2303 | { | |
2304 | j |= *p++; | |
2305 | } | |
2306 | if (j) | |
2307 | j = 1; | |
2308 | ||
2309 | for (i=0; i<NI; i++) | |
2310 | num[i] = equot[i]; | |
2311 | ||
2312 | return ((int)j); | |
2313 | } | |
2314 | ||
2315 | /* Multiply significands of exploded e-type A and B, result in B. */ | |
2316 | ||
2317 | static int | |
2318 | emulm (a, b) | |
2319 | unsigned EMUSHORT a[], b[]; | |
2320 | { | |
2321 | unsigned EMUSHORT *p, *q; | |
2322 | unsigned EMUSHORT pprod[NI]; | |
2323 | unsigned EMUSHORT j; | |
2324 | int i; | |
2325 | ||
2326 | equot[0] = b[0]; | |
2327 | equot[1] = b[1]; | |
2328 | for (i=M; i<NI; i++) | |
2329 | equot[i] = 0; | |
2330 | ||
2331 | j = 0; | |
2332 | p = &a[NI-1]; | |
2333 | q = &equot[NI-1]; | |
2334 | for (i=M+1; i<NI; i++) | |
2335 | { | |
2336 | if (*p == 0) | |
2337 | { | |
2338 | --p; | |
2339 | } | |
2340 | else | |
2341 | { | |
2342 | m16m ((unsigned int) *p--, b, pprod); | |
2343 | eaddm(pprod, equot); | |
2344 | } | |
2345 | j |= *q; | |
2346 | eshdn6(equot); | |
2347 | } | |
2348 | ||
2349 | for (i=0; i<NI; i++) | |
2350 | b[i] = equot[i]; | |
2351 | ||
2352 | /* return flag for lost nonzero bits */ | |
2353 | return ((int)j); | |
2354 | } | |
2355 | #endif | |
2356 | ||
2357 | ||
2358 | /* Normalize and round off. | |
2359 | ||
2360 | The internal format number to be rounded is S. | |
2361 | Input LOST is 0 if the value is exact. This is the so-called sticky bit. | |
2362 | ||
2363 | Input SUBFLG indicates whether the number was obtained | |
2364 | by a subtraction operation. In that case if LOST is nonzero | |
2365 | then the number is slightly smaller than indicated. | |
2366 | ||
2367 | Input EXP is the biased exponent, which may be negative. | |
2368 | the exponent field of S is ignored but is replaced by | |
2369 | EXP as adjusted by normalization and rounding. | |
2370 | ||
2371 | Input RCNTRL is the rounding control. If it is nonzero, the | |
2372 | returned value will be rounded to RNDPRC bits. | |
2373 | ||
2374 | For future reference: In order for emdnorm to round off denormal | |
2375 | significands at the right point, the input exponent must be | |
2376 | adjusted to be the actual value it would have after conversion to | |
2377 | the final floating point type. This adjustment has been | |
2378 | implemented for all type conversions (etoe53, etc.) and decimal | |
2379 | conversions, but not for the arithmetic functions (eadd, etc.). | |
2380 | Data types having standard 15-bit exponents are not affected by | |
2381 | this, but SFmode and DFmode are affected. For example, ediv with | |
2382 | rndprc = 24 will not round correctly to 24-bit precision if the | |
2383 | result is denormal. */ | |
2384 | ||
2385 | static int rlast = -1; | |
2386 | static int rw = 0; | |
2387 | static unsigned EMUSHORT rmsk = 0; | |
2388 | static unsigned EMUSHORT rmbit = 0; | |
2389 | static unsigned EMUSHORT rebit = 0; | |
2390 | static int re = 0; | |
2391 | static unsigned EMUSHORT rbit[NI]; | |
2392 | ||
2393 | static void | |
2394 | emdnorm (s, lost, subflg, exp, rcntrl) | |
2395 | unsigned EMUSHORT s[]; | |
2396 | int lost; | |
2397 | int subflg; | |
2398 | EMULONG exp; | |
2399 | int rcntrl; | |
2400 | { | |
2401 | int i, j; | |
2402 | unsigned EMUSHORT r; | |
2403 | ||
2404 | /* Normalize */ | |
2405 | j = enormlz (s); | |
2406 | ||
2407 | /* a blank significand could mean either zero or infinity. */ | |
2408 | #ifndef INFINITY | |
2409 | if (j > NBITS) | |
2410 | { | |
2411 | ecleazs (s); | |
2412 | return; | |
2413 | } | |
2414 | #endif | |
2415 | exp -= j; | |
2416 | #ifndef INFINITY | |
2417 | if (exp >= 32767L) | |
2418 | goto overf; | |
2419 | #else | |
2420 | if ((j > NBITS) && (exp < 32767)) | |
2421 | { | |
2422 | ecleazs (s); | |
2423 | return; | |
2424 | } | |
2425 | #endif | |
2426 | if (exp < 0L) | |
2427 | { | |
2428 | if (exp > (EMULONG) (-NBITS - 1)) | |
2429 | { | |
2430 | j = (int) exp; | |
2431 | i = eshift (s, j); | |
2432 | if (i) | |
2433 | lost = 1; | |
2434 | } | |
2435 | else | |
2436 | { | |
2437 | ecleazs (s); | |
2438 | return; | |
2439 | } | |
2440 | } | |
2441 | /* Round off, unless told not to by rcntrl. */ | |
2442 | if (rcntrl == 0) | |
2443 | goto mdfin; | |
2444 | /* Set up rounding parameters if the control register changed. */ | |
2445 | if (rndprc != rlast) | |
2446 | { | |
2447 | ecleaz (rbit); | |
2448 | switch (rndprc) | |
2449 | { | |
2450 | default: | |
2451 | case NBITS: | |
2452 | rw = NI - 1; /* low guard word */ | |
2453 | rmsk = 0xffff; | |
2454 | rmbit = 0x8000; | |
2455 | re = rw - 1; | |
2456 | rebit = 1; | |
2457 | break; | |
2458 | case 113: | |
2459 | rw = 10; | |
2460 | rmsk = 0x7fff; | |
2461 | rmbit = 0x4000; | |
2462 | rebit = 0x8000; | |
2463 | re = rw; | |
2464 | break; | |
2465 | case 64: | |
2466 | rw = 7; | |
2467 | rmsk = 0xffff; | |
2468 | rmbit = 0x8000; | |
2469 | re = rw - 1; | |
2470 | rebit = 1; | |
2471 | break; | |
2472 | /* For DEC or IBM arithmetic */ | |
2473 | case 56: | |
2474 | rw = 6; | |
2475 | rmsk = 0xff; | |
2476 | rmbit = 0x80; | |
2477 | rebit = 0x100; | |
2478 | re = rw; | |
2479 | break; | |
2480 | case 53: | |
2481 | rw = 6; | |
2482 | rmsk = 0x7ff; | |
2483 | rmbit = 0x0400; | |
2484 | rebit = 0x800; | |
2485 | re = rw; | |
2486 | break; | |
2487 | case 24: | |
2488 | rw = 4; | |
2489 | rmsk = 0xff; | |
2490 | rmbit = 0x80; | |
2491 | rebit = 0x100; | |
2492 | re = rw; | |
2493 | break; | |
2494 | } | |
2495 | rbit[re] = rebit; | |
2496 | rlast = rndprc; | |
2497 | } | |
2498 | ||
2499 | /* Shift down 1 temporarily if the data structure has an implied | |
2500 | most significant bit and the number is denormal. | |
2501 | Intel long double denormals also lose one bit of precision. */ | |
2502 | if ((exp <= 0) && (rndprc != NBITS) | |
2503 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
2504 | { | |
2505 | lost |= s[NI - 1] & 1; | |
2506 | eshdn1 (s); | |
2507 | } | |
2508 | /* Clear out all bits below the rounding bit, | |
2509 | remembering in r if any were nonzero. */ | |
2510 | r = s[rw] & rmsk; | |
2511 | if (rndprc < NBITS) | |
2512 | { | |
2513 | i = rw + 1; | |
2514 | while (i < NI) | |
2515 | { | |
2516 | if (s[i]) | |
2517 | r |= 1; | |
2518 | s[i] = 0; | |
2519 | ++i; | |
2520 | } | |
2521 | } | |
2522 | s[rw] &= ~rmsk; | |
2523 | if ((r & rmbit) != 0) | |
2524 | { | |
2525 | if (r == rmbit) | |
2526 | { | |
2527 | if (lost == 0) | |
2528 | { /* round to even */ | |
2529 | if ((s[re] & rebit) == 0) | |
2530 | goto mddone; | |
2531 | } | |
2532 | else | |
2533 | { | |
2534 | if (subflg != 0) | |
2535 | goto mddone; | |
2536 | } | |
2537 | } | |
2538 | eaddm (rbit, s); | |
2539 | } | |
2540 | mddone: | |
2541 | /* Undo the temporary shift for denormal values. */ | |
2542 | if ((exp <= 0) && (rndprc != NBITS) | |
2543 | && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) | |
2544 | { | |
2545 | eshup1 (s); | |
2546 | } | |
2547 | if (s[2] != 0) | |
2548 | { /* overflow on roundoff */ | |
2549 | eshdn1 (s); | |
2550 | exp += 1; | |
2551 | } | |
2552 | mdfin: | |
2553 | s[NI - 1] = 0; | |
2554 | if (exp >= 32767L) | |
2555 | { | |
2556 | #ifndef INFINITY | |
2557 | overf: | |
2558 | #endif | |
2559 | #ifdef INFINITY | |
2560 | s[1] = 32767; | |
2561 | for (i = 2; i < NI - 1; i++) | |
2562 | s[i] = 0; | |
2563 | if (extra_warnings) | |
2564 | warning ("floating point overflow"); | |
2565 | #else | |
2566 | s[1] = 32766; | |
2567 | s[2] = 0; | |
2568 | for (i = M + 1; i < NI - 1; i++) | |
2569 | s[i] = 0xffff; | |
2570 | s[NI - 1] = 0; | |
2571 | if ((rndprc < 64) || (rndprc == 113)) | |
2572 | { | |
2573 | s[rw] &= ~rmsk; | |
2574 | if (rndprc == 24) | |
2575 | { | |
2576 | s[5] = 0; | |
2577 | s[6] = 0; | |
2578 | } | |
2579 | } | |
2580 | #endif | |
2581 | return; | |
2582 | } | |
2583 | if (exp < 0) | |
2584 | s[1] = 0; | |
2585 | else | |
2586 | s[1] = (unsigned EMUSHORT) exp; | |
2587 | } | |
2588 | ||
2589 | /* Subtract. C = B - A, all e type numbers. */ | |
2590 | ||
2591 | static int subflg = 0; | |
2592 | ||
2593 | static void | |
2594 | esub (a, b, c) | |
2595 | unsigned EMUSHORT *a, *b, *c; | |
2596 | { | |
2597 | ||
2598 | #ifdef NANS | |
2599 | if (eisnan (a)) | |
2600 | { | |
2601 | emov (a, c); | |
2602 | return; | |
2603 | } | |
2604 | if (eisnan (b)) | |
2605 | { | |
2606 | emov (b, c); | |
2607 | return; | |
2608 | } | |
2609 | /* Infinity minus infinity is a NaN. | |
2610 | Test for subtracting infinities of the same sign. */ | |
2611 | if (eisinf (a) && eisinf (b) | |
2612 | && ((eisneg (a) ^ eisneg (b)) == 0)) | |
2613 | { | |
2614 | mtherr ("esub", INVALID); | |
2615 | enan (c, 0); | |
2616 | return; | |
2617 | } | |
2618 | #endif | |
2619 | subflg = 1; | |
2620 | eadd1 (a, b, c); | |
2621 | } | |
2622 | ||
2623 | /* Add. C = A + B, all e type. */ | |
2624 | ||
2625 | static void | |
2626 | eadd (a, b, c) | |
2627 | unsigned EMUSHORT *a, *b, *c; | |
2628 | { | |
2629 | ||
2630 | #ifdef NANS | |
2631 | /* NaN plus anything is a NaN. */ | |
2632 | if (eisnan (a)) | |
2633 | { | |
2634 | emov (a, c); | |
2635 | return; | |
2636 | } | |
2637 | if (eisnan (b)) | |
2638 | { | |
2639 | emov (b, c); | |
2640 | return; | |
2641 | } | |
2642 | /* Infinity minus infinity is a NaN. | |
2643 | Test for adding infinities of opposite signs. */ | |
2644 | if (eisinf (a) && eisinf (b) | |
2645 | && ((eisneg (a) ^ eisneg (b)) != 0)) | |
2646 | { | |
2647 | mtherr ("esub", INVALID); | |
2648 | enan (c, 0); | |
2649 | return; | |
2650 | } | |
2651 | #endif | |
2652 | subflg = 0; | |
2653 | eadd1 (a, b, c); | |
2654 | } | |
2655 | ||
2656 | /* Arithmetic common to both addition and subtraction. */ | |
2657 | ||
2658 | static void | |
2659 | eadd1 (a, b, c) | |
2660 | unsigned EMUSHORT *a, *b, *c; | |
2661 | { | |
2662 | unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; | |
2663 | int i, lost, j, k; | |
2664 | EMULONG lt, lta, ltb; | |
2665 | ||
2666 | #ifdef INFINITY | |
2667 | if (eisinf (a)) | |
2668 | { | |
2669 | emov (a, c); | |
2670 | if (subflg) | |
2671 | eneg (c); | |
2672 | return; | |
2673 | } | |
2674 | if (eisinf (b)) | |
2675 | { | |
2676 | emov (b, c); | |
2677 | return; | |
2678 | } | |
2679 | #endif | |
2680 | emovi (a, ai); | |
2681 | emovi (b, bi); | |
2682 | if (subflg) | |
2683 | ai[0] = ~ai[0]; | |
2684 | ||
2685 | /* compare exponents */ | |
2686 | lta = ai[E]; | |
2687 | ltb = bi[E]; | |
2688 | lt = lta - ltb; | |
2689 | if (lt > 0L) | |
2690 | { /* put the larger number in bi */ | |
2691 | emovz (bi, ci); | |
2692 | emovz (ai, bi); | |
2693 | emovz (ci, ai); | |
2694 | ltb = bi[E]; | |
2695 | lt = -lt; | |
2696 | } | |
2697 | lost = 0; | |
2698 | if (lt != 0L) | |
2699 | { | |
2700 | if (lt < (EMULONG) (-NBITS - 1)) | |
2701 | goto done; /* answer same as larger addend */ | |
2702 | k = (int) lt; | |
2703 | lost = eshift (ai, k); /* shift the smaller number down */ | |
2704 | } | |
2705 | else | |
2706 | { | |
2707 | /* exponents were the same, so must compare significands */ | |
2708 | i = ecmpm (ai, bi); | |
2709 | if (i == 0) | |
2710 | { /* the numbers are identical in magnitude */ | |
2711 | /* if different signs, result is zero */ | |
2712 | if (ai[0] != bi[0]) | |
2713 | { | |
2714 | eclear (c); | |
2715 | return; | |
2716 | } | |
2717 | /* if same sign, result is double */ | |
2718 | /* double denormalized tiny number */ | |
2719 | if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) | |
2720 | { | |
2721 | eshup1 (bi); | |
2722 | goto done; | |
2723 | } | |
2724 | /* add 1 to exponent unless both are zero! */ | |
2725 | for (j = 1; j < NI - 1; j++) | |
2726 | { | |
2727 | if (bi[j] != 0) | |
2728 | { | |
2729 | ltb += 1; | |
2730 | if (ltb >= 0x7fff) | |
2731 | { | |
2732 | eclear (c); | |
2733 | if (ai[0] != 0) | |
2734 | eneg (c); | |
2735 | einfin (c); | |
2736 | return; | |
2737 | } | |
2738 | break; | |
2739 | } | |
2740 | } | |
2741 | bi[E] = (unsigned EMUSHORT) ltb; | |
2742 | goto done; | |
2743 | } | |
2744 | if (i > 0) | |
2745 | { /* put the larger number in bi */ | |
2746 | emovz (bi, ci); | |
2747 | emovz (ai, bi); | |
2748 | emovz (ci, ai); | |
2749 | } | |
2750 | } | |
2751 | if (ai[0] == bi[0]) | |
2752 | { | |
2753 | eaddm (ai, bi); | |
2754 | subflg = 0; | |
2755 | } | |
2756 | else | |
2757 | { | |
2758 | esubm (ai, bi); | |
2759 | subflg = 1; | |
2760 | } | |
2761 | emdnorm (bi, lost, subflg, ltb, 64); | |
2762 | ||
2763 | done: | |
2764 | emovo (bi, c); | |
2765 | } | |
2766 | ||
2767 | /* Divide: C = B/A, all e type. */ | |
2768 | ||
2769 | static void | |
2770 | ediv (a, b, c) | |
2771 | unsigned EMUSHORT *a, *b, *c; | |
2772 | { | |
2773 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2774 | int i, sign; | |
2775 | EMULONG lt, lta, ltb; | |
2776 | ||
2777 | /* IEEE says if result is not a NaN, the sign is "-" if and only if | |
2778 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2779 | sign = eisneg(a) ^ eisneg(b); | |
2780 | ||
2781 | #ifdef NANS | |
2782 | /* Return any NaN input. */ | |
2783 | if (eisnan (a)) | |
2784 | { | |
2785 | emov (a, c); | |
2786 | return; | |
2787 | } | |
2788 | if (eisnan (b)) | |
2789 | { | |
2790 | emov (b, c); | |
2791 | return; | |
2792 | } | |
2793 | /* Zero over zero, or infinity over infinity, is a NaN. */ | |
2794 | if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) | |
2795 | || (eisinf (a) && eisinf (b))) | |
2796 | { | |
2797 | mtherr ("ediv", INVALID); | |
2798 | enan (c, sign); | |
2799 | return; | |
2800 | } | |
2801 | #endif | |
2802 | /* Infinity over anything else is infinity. */ | |
2803 | #ifdef INFINITY | |
2804 | if (eisinf (b)) | |
2805 | { | |
2806 | einfin (c); | |
2807 | goto divsign; | |
2808 | } | |
2809 | /* Anything else over infinity is zero. */ | |
2810 | if (eisinf (a)) | |
2811 | { | |
2812 | eclear (c); | |
2813 | goto divsign; | |
2814 | } | |
2815 | #endif | |
2816 | emovi (a, ai); | |
2817 | emovi (b, bi); | |
2818 | lta = ai[E]; | |
2819 | ltb = bi[E]; | |
2820 | if (bi[E] == 0) | |
2821 | { /* See if numerator is zero. */ | |
2822 | for (i = 1; i < NI - 1; i++) | |
2823 | { | |
2824 | if (bi[i] != 0) | |
2825 | { | |
2826 | ltb -= enormlz (bi); | |
2827 | goto dnzro1; | |
2828 | } | |
2829 | } | |
2830 | eclear (c); | |
2831 | goto divsign; | |
2832 | } | |
2833 | dnzro1: | |
2834 | ||
2835 | if (ai[E] == 0) | |
2836 | { /* possible divide by zero */ | |
2837 | for (i = 1; i < NI - 1; i++) | |
2838 | { | |
2839 | if (ai[i] != 0) | |
2840 | { | |
2841 | lta -= enormlz (ai); | |
2842 | goto dnzro2; | |
2843 | } | |
2844 | } | |
2845 | /* Divide by zero is not an invalid operation. | |
2846 | It is a divide-by-zero operation! */ | |
2847 | einfin (c); | |
2848 | mtherr ("ediv", SING); | |
2849 | goto divsign; | |
2850 | } | |
2851 | dnzro2: | |
2852 | ||
2853 | i = edivm (ai, bi); | |
2854 | /* calculate exponent */ | |
2855 | lt = ltb - lta + EXONE; | |
2856 | emdnorm (bi, i, 0, lt, 64); | |
2857 | emovo (bi, c); | |
2858 | ||
2859 | divsign: | |
2860 | ||
2861 | if (sign | |
2862 | #ifndef IEEE | |
2863 | && (ecmp (c, ezero) != 0) | |
2864 | #endif | |
2865 | ) | |
2866 | *(c+(NE-1)) |= 0x8000; | |
2867 | else | |
2868 | *(c+(NE-1)) &= ~0x8000; | |
2869 | } | |
2870 | ||
2871 | /* Multiply e-types A and B, return e-type product C. */ | |
2872 | ||
2873 | static void | |
2874 | emul (a, b, c) | |
2875 | unsigned EMUSHORT *a, *b, *c; | |
2876 | { | |
2877 | unsigned EMUSHORT ai[NI], bi[NI]; | |
2878 | int i, j, sign; | |
2879 | EMULONG lt, lta, ltb; | |
2880 | ||
2881 | /* IEEE says if result is not a NaN, the sign is "-" if and only if | |
2882 | operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ | |
2883 | sign = eisneg(a) ^ eisneg(b); | |
2884 | ||
2885 | #ifdef NANS | |
2886 | /* NaN times anything is the same NaN. */ | |
2887 | if (eisnan (a)) | |
2888 | { | |
2889 | emov (a, c); | |
2890 | return; | |
2891 | } | |
2892 | if (eisnan (b)) | |
2893 | { | |
2894 | emov (b, c); | |
2895 | return; | |
2896 | } | |
2897 | /* Zero times infinity is a NaN. */ | |
2898 | if ((eisinf (a) && (ecmp (b, ezero) == 0)) | |
2899 | || (eisinf (b) && (ecmp (a, ezero) == 0))) | |
2900 | { | |
2901 | mtherr ("emul", INVALID); | |
2902 | enan (c, sign); | |
2903 | return; | |
2904 | } | |
2905 | #endif | |
2906 | /* Infinity times anything else is infinity. */ | |
2907 | #ifdef INFINITY | |
2908 | if (eisinf (a) || eisinf (b)) | |
2909 | { | |
2910 | einfin (c); | |
2911 | goto mulsign; | |
2912 | } | |
2913 | #endif | |
2914 | emovi (a, ai); | |
2915 | emovi (b, bi); | |
2916 | lta = ai[E]; | |
2917 | ltb = bi[E]; | |
2918 | if (ai[E] == 0) | |
2919 | { | |
2920 | for (i = 1; i < NI - 1; i++) | |
2921 | { | |
2922 | if (ai[i] != 0) | |
2923 | { | |
2924 | lta -= enormlz (ai); | |
2925 | goto mnzer1; | |
2926 | } | |
2927 | } | |
2928 | eclear (c); | |
2929 | goto mulsign; | |
2930 | } | |
2931 | mnzer1: | |
2932 | ||
2933 | if (bi[E] == 0) | |
2934 | { | |
2935 | for (i = 1; i < NI - 1; i++) | |
2936 | { | |
2937 | if (bi[i] != 0) | |
2938 | { | |
2939 | ltb -= enormlz (bi); | |
2940 | goto mnzer2; | |
2941 | } | |
2942 | } | |
2943 | eclear (c); | |
2944 | goto mulsign; | |
2945 | } | |
2946 | mnzer2: | |
2947 | ||
2948 | /* Multiply significands */ | |
2949 | j = emulm (ai, bi); | |
2950 | /* calculate exponent */ | |
2951 | lt = lta + ltb - (EXONE - 1); | |
2952 | emdnorm (bi, j, 0, lt, 64); | |
2953 | emovo (bi, c); | |
2954 | ||
2955 | mulsign: | |
2956 | ||
2957 | if (sign | |
2958 | #ifndef IEEE | |
2959 | && (ecmp (c, ezero) != 0) | |
2960 | #endif | |
2961 | ) | |
2962 | *(c+(NE-1)) |= 0x8000; | |
2963 | else | |
2964 | *(c+(NE-1)) &= ~0x8000; | |
2965 | } | |
2966 | ||
2967 | /* Convert double precision PE to e-type Y. */ | |
2968 | ||
2969 | static void | |
2970 | e53toe (pe, y) | |
2971 | unsigned EMUSHORT *pe, *y; | |
2972 | { | |
2973 | #ifdef DEC | |
2974 | ||
2975 | dectoe (pe, y); | |
2976 | ||
2977 | #else | |
2978 | #ifdef IBM | |
2979 | ||
2980 | ibmtoe (pe, y, DFmode); | |
2981 | ||
2982 | #else | |
2983 | register unsigned EMUSHORT r; | |
2984 | register unsigned EMUSHORT *e, *p; | |
2985 | unsigned EMUSHORT yy[NI]; | |
2986 | int denorm, k; | |
2987 | ||
2988 | e = pe; | |
2989 | denorm = 0; /* flag if denormalized number */ | |
2990 | ecleaz (yy); | |
2991 | if (! REAL_WORDS_BIG_ENDIAN) | |
2992 | e += 3; | |
2993 | r = *e; | |
2994 | yy[0] = 0; | |
2995 | if (r & 0x8000) | |
2996 | yy[0] = 0xffff; | |
2997 | yy[M] = (r & 0x0f) | 0x10; | |
2998 | r &= ~0x800f; /* strip sign and 4 significand bits */ | |
2999 | #ifdef INFINITY | |
3000 | if (r == 0x7ff0) | |
3001 | { | |
3002 | #ifdef NANS | |
3003 | if (! REAL_WORDS_BIG_ENDIAN) | |
3004 | { | |
3005 | if (((pe[3] & 0xf) != 0) || (pe[2] != 0) | |
3006 | || (pe[1] != 0) || (pe[0] != 0)) | |
3007 | { | |
3008 | enan (y, yy[0] != 0); | |
3009 | return; | |
3010 | } | |
3011 | } | |
3012 | else | |
3013 | { | |
3014 | if (((pe[0] & 0xf) != 0) || (pe[1] != 0) | |
3015 | || (pe[2] != 0) || (pe[3] != 0)) | |
3016 | { | |
3017 | enan (y, yy[0] != 0); | |
3018 | return; | |
3019 | } | |
3020 | } | |
3021 | #endif /* NANS */ | |
3022 | eclear (y); | |
3023 | einfin (y); | |
3024 | if (yy[0]) | |
3025 | eneg (y); | |
3026 | return; | |
3027 | } | |
3028 | #endif /* INFINITY */ | |
3029 | r >>= 4; | |
3030 | /* If zero exponent, then the significand is denormalized. | |
3031 | So take back the understood high significand bit. */ | |
3032 | ||
3033 | if (r == 0) | |
3034 | { | |
3035 | denorm = 1; | |
3036 | yy[M] &= ~0x10; | |
3037 | } | |
3038 | r += EXONE - 01777; | |
3039 | yy[E] = r; | |
3040 | p = &yy[M + 1]; | |
3041 | #ifdef IEEE | |
3042 | if (! REAL_WORDS_BIG_ENDIAN) | |
3043 | { | |
3044 | *p++ = *(--e); | |
3045 | *p++ = *(--e); | |
3046 | *p++ = *(--e); | |
3047 | } | |
3048 | else | |
3049 | { | |
3050 | ++e; | |
3051 | *p++ = *e++; | |
3052 | *p++ = *e++; | |
3053 | *p++ = *e++; | |
3054 | } | |
3055 | #endif | |
3056 | eshift (yy, -5); | |
3057 | if (denorm) | |
3058 | { /* if zero exponent, then normalize the significand */ | |
3059 | if ((k = enormlz (yy)) > NBITS) | |
3060 | ecleazs (yy); | |
3061 | else | |
3062 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
3063 | } | |
3064 | emovo (yy, y); | |
3065 | #endif /* not IBM */ | |
3066 | #endif /* not DEC */ | |
3067 | } | |
3068 | ||
3069 | /* Convert double extended precision float PE to e type Y. */ | |
3070 | ||
3071 | static void | |
3072 | e64toe (pe, y) | |
3073 | unsigned EMUSHORT *pe, *y; | |
3074 | { | |
3075 | unsigned EMUSHORT yy[NI]; | |
3076 | unsigned EMUSHORT *e, *p, *q; | |
3077 | int i; | |
3078 | ||
3079 | e = pe; | |
3080 | p = yy; | |
3081 | for (i = 0; i < NE - 5; i++) | |
3082 | *p++ = 0; | |
3083 | /* This precision is not ordinarily supported on DEC or IBM. */ | |
3084 | #ifdef DEC | |
3085 | for (i = 0; i < 5; i++) | |
3086 | *p++ = *e++; | |
3087 | #endif | |
3088 | #ifdef IBM | |
3089 | p = &yy[0] + (NE - 1); | |
3090 | *p-- = *e++; | |
3091 | ++e; | |
3092 | for (i = 0; i < 5; i++) | |
3093 | *p-- = *e++; | |
3094 | #endif | |
3095 | #ifdef IEEE | |
3096 | if (! REAL_WORDS_BIG_ENDIAN) | |
3097 | { | |
3098 | for (i = 0; i < 5; i++) | |
3099 | *p++ = *e++; | |
3100 | ||
3101 | /* For denormal long double Intel format, shift significand up one | |
3102 | -- but only if the top significand bit is zero. A top bit of 1 | |
3103 | is "pseudodenormal" when the exponent is zero. */ | |
3104 | if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) | |
3105 | { | |
3106 | unsigned EMUSHORT temp[NI]; | |
3107 | ||
3108 | emovi(yy, temp); | |
3109 | eshup1(temp); | |
3110 | emovo(temp,y); | |
3111 | return; | |
3112 | } | |
3113 | } | |
3114 | else | |
3115 | { | |
3116 | p = &yy[0] + (NE - 1); | |
3117 | #ifdef ARM_EXTENDED_IEEE_FORMAT | |
3118 | /* For ARMs, the exponent is in the lowest 15 bits of the word. */ | |
3119 | *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff); | |
3120 | e += 2; | |
3121 | #else | |
3122 | *p-- = *e++; | |
3123 | ++e; | |
3124 | #endif | |
3125 | for (i = 0; i < 4; i++) | |
3126 | *p-- = *e++; | |
3127 | } | |
3128 | #endif | |
3129 | #ifdef INFINITY | |
3130 | /* Point to the exponent field and check max exponent cases. */ | |
3131 | p = &yy[NE - 1]; | |
3132 | if ((*p & 0x7fff) == 0x7fff) | |
3133 | { | |
3134 | #ifdef NANS | |
3135 | if (! REAL_WORDS_BIG_ENDIAN) | |
3136 | { | |
3137 | for (i = 0; i < 4; i++) | |
3138 | { | |
3139 | if ((i != 3 && pe[i] != 0) | |
3140 | /* Anything but 0x8000 here, including 0, is a NaN. */ | |
3141 | || (i == 3 && pe[i] != 0x8000)) | |
3142 | { | |
3143 | enan (y, (*p & 0x8000) != 0); | |
3144 | return; | |
3145 | } | |
3146 | } | |
3147 | } | |
3148 | else | |
3149 | { | |
3150 | #ifdef ARM_EXTENDED_IEEE_FORMAT | |
3151 | for (i = 2; i <= 5; i++) | |
3152 | { | |
3153 | if (pe[i] != 0) | |
3154 | { | |
3155 | enan (y, (*p & 0x8000) != 0); | |
3156 | return; | |
3157 | } | |
3158 | } | |
3159 | #else /* not ARM */ | |
3160 | /* In Motorola extended precision format, the most significant | |
3161 | bit of an infinity mantissa could be either 1 or 0. It is | |
3162 | the lower order bits that tell whether the value is a NaN. */ | |
3163 | if ((pe[2] & 0x7fff) != 0) | |
3164 | goto bigend_nan; | |
3165 | ||
3166 | for (i = 3; i <= 5; i++) | |
3167 | { | |
3168 | if (pe[i] != 0) | |
3169 | { | |
3170 | bigend_nan: | |
3171 | enan (y, (*p & 0x8000) != 0); | |
3172 | return; | |
3173 | } | |
3174 | } | |
3175 | #endif /* not ARM */ | |
3176 | } | |
3177 | #endif /* NANS */ | |
3178 | eclear (y); | |
3179 | einfin (y); | |
3180 | if (*p & 0x8000) | |
3181 | eneg (y); | |
3182 | return; | |
3183 | } | |
3184 | #endif /* INFINITY */ | |
3185 | p = yy; | |
3186 | q = y; | |
3187 | for (i = 0; i < NE; i++) | |
3188 | *q++ = *p++; | |
3189 | } | |
3190 | ||
3191 | /* Convert 128-bit long double precision float PE to e type Y. */ | |
3192 | ||
3193 | static void | |
3194 | e113toe (pe, y) | |
3195 | unsigned EMUSHORT *pe, *y; | |
3196 | { | |
3197 | register unsigned EMUSHORT r; | |
3198 | unsigned EMUSHORT *e, *p; | |
3199 | unsigned EMUSHORT yy[NI]; | |
3200 | int denorm, i; | |
3201 | ||
3202 | e = pe; | |
3203 | denorm = 0; | |
3204 | ecleaz (yy); | |
3205 | #ifdef IEEE | |
3206 | if (! REAL_WORDS_BIG_ENDIAN) | |
3207 | e += 7; | |
3208 | #endif | |
3209 | r = *e; | |
3210 | yy[0] = 0; | |
3211 | if (r & 0x8000) | |
3212 | yy[0] = 0xffff; | |
3213 | r &= 0x7fff; | |
3214 | #ifdef INFINITY | |
3215 | if (r == 0x7fff) | |
3216 | { | |
3217 | #ifdef NANS | |
3218 | if (! REAL_WORDS_BIG_ENDIAN) | |
3219 | { | |
3220 | for (i = 0; i < 7; i++) | |
3221 | { | |
3222 | if (pe[i] != 0) | |
3223 | { | |
3224 | enan (y, yy[0] != 0); | |
3225 | return; | |
3226 | } | |
3227 | } | |
3228 | } | |
3229 | else | |
3230 | { | |
3231 | for (i = 1; i < 8; i++) | |
3232 | { | |
3233 | if (pe[i] != 0) | |
3234 | { | |
3235 | enan (y, yy[0] != 0); | |
3236 | return; | |
3237 | } | |
3238 | } | |
3239 | } | |
3240 | #endif /* NANS */ | |
3241 | eclear (y); | |
3242 | einfin (y); | |
3243 | if (yy[0]) | |
3244 | eneg (y); | |
3245 | return; | |
3246 | } | |
3247 | #endif /* INFINITY */ | |
3248 | yy[E] = r; | |
3249 | p = &yy[M + 1]; | |
3250 | #ifdef IEEE | |
3251 | if (! REAL_WORDS_BIG_ENDIAN) | |
3252 | { | |
3253 | for (i = 0; i < 7; i++) | |
3254 | *p++ = *(--e); | |
3255 | } | |
3256 | else | |
3257 | { | |
3258 | ++e; | |
3259 | for (i = 0; i < 7; i++) | |
3260 | *p++ = *e++; | |
3261 | } | |
3262 | #endif | |
3263 | /* If denormal, remove the implied bit; else shift down 1. */ | |
3264 | if (r == 0) | |
3265 | { | |
3266 | yy[M] = 0; | |
3267 | } | |
3268 | else | |
3269 | { | |
3270 | yy[M] = 1; | |
3271 | eshift (yy, -1); | |
3272 | } | |
3273 | emovo (yy, y); | |
3274 | } | |
3275 | ||
3276 | /* Convert single precision float PE to e type Y. */ | |
3277 | ||
3278 | static void | |
3279 | e24toe (pe, y) | |
3280 | unsigned EMUSHORT *pe, *y; | |
3281 | { | |
3282 | #ifdef IBM | |
3283 | ||
3284 | ibmtoe (pe, y, SFmode); | |
3285 | ||
3286 | #else | |
3287 | register unsigned EMUSHORT r; | |
3288 | register unsigned EMUSHORT *e, *p; | |
3289 | unsigned EMUSHORT yy[NI]; | |
3290 | int denorm, k; | |
3291 | ||
3292 | e = pe; | |
3293 | denorm = 0; /* flag if denormalized number */ | |
3294 | ecleaz (yy); | |
3295 | #ifdef IEEE | |
3296 | if (! REAL_WORDS_BIG_ENDIAN) | |
3297 | e += 1; | |
3298 | #endif | |
3299 | #ifdef DEC | |
3300 | e += 1; | |
3301 | #endif | |
3302 | r = *e; | |
3303 | yy[0] = 0; | |
3304 | if (r & 0x8000) | |
3305 | yy[0] = 0xffff; | |
3306 | yy[M] = (r & 0x7f) | 0200; | |
3307 | r &= ~0x807f; /* strip sign and 7 significand bits */ | |
3308 | #ifdef INFINITY | |
3309 | if (r == 0x7f80) | |
3310 | { | |
3311 | #ifdef NANS | |
3312 | if (REAL_WORDS_BIG_ENDIAN) | |
3313 | { | |
3314 | if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) | |
3315 | { | |
3316 | enan (y, yy[0] != 0); | |
3317 | return; | |
3318 | } | |
3319 | } | |
3320 | else | |
3321 | { | |
3322 | if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) | |
3323 | { | |
3324 | enan (y, yy[0] != 0); | |
3325 | return; | |
3326 | } | |
3327 | } | |
3328 | #endif /* NANS */ | |
3329 | eclear (y); | |
3330 | einfin (y); | |
3331 | if (yy[0]) | |
3332 | eneg (y); | |
3333 | return; | |
3334 | } | |
3335 | #endif /* INFINITY */ | |
3336 | r >>= 7; | |
3337 | /* If zero exponent, then the significand is denormalized. | |
3338 | So take back the understood high significand bit. */ | |
3339 | if (r == 0) | |
3340 | { | |
3341 | denorm = 1; | |
3342 | yy[M] &= ~0200; | |
3343 | } | |
3344 | r += EXONE - 0177; | |
3345 | yy[E] = r; | |
3346 | p = &yy[M + 1]; | |
3347 | #ifdef DEC | |
3348 | *p++ = *(--e); | |
3349 | #endif | |
3350 | #ifdef IEEE | |
3351 | if (! REAL_WORDS_BIG_ENDIAN) | |
3352 | *p++ = *(--e); | |
3353 | else | |
3354 | { | |
3355 | ++e; | |
3356 | *p++ = *e++; | |
3357 | } | |
3358 | #endif | |
3359 | eshift (yy, -8); | |
3360 | if (denorm) | |
3361 | { /* if zero exponent, then normalize the significand */ | |
3362 | if ((k = enormlz (yy)) > NBITS) | |
3363 | ecleazs (yy); | |
3364 | else | |
3365 | yy[E] -= (unsigned EMUSHORT) (k - 1); | |
3366 | } | |
3367 | emovo (yy, y); | |
3368 | #endif /* not IBM */ | |
3369 | } | |
3370 | ||
3371 | /* Convert e-type X to IEEE 128-bit long double format E. */ | |
3372 | ||
3373 | static void | |
3374 | etoe113 (x, e) | |
3375 | unsigned EMUSHORT *x, *e; | |
3376 | { | |
3377 | unsigned EMUSHORT xi[NI]; | |
3378 | EMULONG exp; | |
3379 | int rndsav; | |
3380 | ||
3381 | #ifdef NANS | |
3382 | if (eisnan (x)) | |
3383 | { | |
3384 | make_nan (e, eisneg (x), TFmode); | |
3385 | return; | |
3386 | } | |
3387 | #endif | |
3388 | emovi (x, xi); | |
3389 | exp = (EMULONG) xi[E]; | |
3390 | #ifdef INFINITY | |
3391 | if (eisinf (x)) | |
3392 | goto nonorm; | |
3393 | #endif | |
3394 | /* round off to nearest or even */ | |
3395 | rndsav = rndprc; | |
3396 | rndprc = 113; | |
3397 | emdnorm (xi, 0, 0, exp, 64); | |
3398 | rndprc = rndsav; | |
3399 | nonorm: | |
3400 | toe113 (xi, e); | |
3401 | } | |
3402 | ||
3403 | /* Convert exploded e-type X, that has already been rounded to | |
3404 | 113-bit precision, to IEEE 128-bit long double format Y. */ | |
3405 | ||
3406 | static void | |
3407 | toe113 (a, b) | |
3408 | unsigned EMUSHORT *a, *b; | |
3409 | { | |
3410 | register unsigned EMUSHORT *p, *q; | |
3411 | unsigned EMUSHORT i; | |
3412 | ||
3413 | #ifdef NANS | |
3414 | if (eiisnan (a)) | |
3415 | { | |
3416 | make_nan (b, eiisneg (a), TFmode); | |
3417 | return; | |
3418 | } | |
3419 | #endif | |
3420 | p = a; | |
3421 | if (REAL_WORDS_BIG_ENDIAN) | |
3422 | q = b; | |
3423 | else | |
3424 | q = b + 7; /* point to output exponent */ | |
3425 | ||
3426 | /* If not denormal, delete the implied bit. */ | |
3427 | if (a[E] != 0) | |
3428 | { | |
3429 | eshup1 (a); | |
3430 | } | |
3431 | /* combine sign and exponent */ | |
3432 | i = *p++; | |
3433 | if (REAL_WORDS_BIG_ENDIAN) | |
3434 | { | |
3435 | if (i) | |
3436 | *q++ = *p++ | 0x8000; | |
3437 | else | |
3438 | *q++ = *p++; | |
3439 | } | |
3440 | else | |
3441 | { | |
3442 | if (i) | |
3443 | *q-- = *p++ | 0x8000; | |
3444 | else | |
3445 | *q-- = *p++; | |
3446 | } | |
3447 | /* skip over guard word */ | |
3448 | ++p; | |
3449 | /* move the significand */ | |
3450 | if (REAL_WORDS_BIG_ENDIAN) | |
3451 | { | |
3452 | for (i = 0; i < 7; i++) | |
3453 | *q++ = *p++; | |
3454 | } | |
3455 | else | |
3456 | { | |
3457 | for (i = 0; i < 7; i++) | |
3458 | *q-- = *p++; | |
3459 | } | |
3460 | } | |
3461 | ||
3462 | /* Convert e-type X to IEEE double extended format E. */ | |
3463 | ||
3464 | static void | |
3465 | etoe64 (x, e) | |
3466 | unsigned EMUSHORT *x, *e; | |
3467 | { | |
3468 | unsigned EMUSHORT xi[NI]; | |
3469 | EMULONG exp; | |
3470 | int rndsav; | |
3471 | ||
3472 | #ifdef NANS | |
3473 | if (eisnan (x)) | |
3474 | { | |
3475 | make_nan (e, eisneg (x), XFmode); | |
3476 | return; | |
3477 | } | |
3478 | #endif | |
3479 | emovi (x, xi); | |
3480 | /* adjust exponent for offset */ | |
3481 | exp = (EMULONG) xi[E]; | |
3482 | #ifdef INFINITY | |
3483 | if (eisinf (x)) | |
3484 | goto nonorm; | |
3485 | #endif | |
3486 | /* round off to nearest or even */ | |
3487 | rndsav = rndprc; | |
3488 | rndprc = 64; | |
3489 | emdnorm (xi, 0, 0, exp, 64); | |
3490 | rndprc = rndsav; | |
3491 | nonorm: | |
3492 | toe64 (xi, e); | |
3493 | } | |
3494 | ||
3495 | /* Convert exploded e-type X, that has already been rounded to | |
3496 | 64-bit precision, to IEEE double extended format Y. */ | |
3497 | ||
3498 | static void | |
3499 | toe64 (a, b) | |
3500 | unsigned EMUSHORT *a, *b; | |
3501 | { | |
3502 | register unsigned EMUSHORT *p, *q; | |
3503 | unsigned EMUSHORT i; | |
3504 | ||
3505 | #ifdef NANS | |
3506 | if (eiisnan (a)) | |
3507 | { | |
3508 | make_nan (b, eiisneg (a), XFmode); | |
3509 | return; | |
3510 | } | |
3511 | #endif | |
3512 | /* Shift denormal long double Intel format significand down one bit. */ | |
3513 | if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN) | |
3514 | eshdn1 (a); | |
3515 | p = a; | |
3516 | #ifdef IBM | |
3517 | q = b; | |
3518 | #endif | |
3519 | #ifdef DEC | |
3520 | q = b + 4; | |
3521 | #endif | |
3522 | #ifdef IEEE | |
3523 | if (REAL_WORDS_BIG_ENDIAN) | |
3524 | q = b; | |
3525 | else | |
3526 | { | |
3527 | q = b + 4; /* point to output exponent */ | |
3528 | #if LONG_DOUBLE_TYPE_SIZE == 96 | |
3529 | /* Clear the last two bytes of 12-byte Intel format */ | |
3530 | *(q+1) = 0; | |
3531 | #endif | |
3532 | } | |
3533 | #endif | |
3534 | ||
3535 | /* combine sign and exponent */ | |
3536 | i = *p++; | |
3537 | #ifdef IBM | |
3538 | if (i) | |
3539 | *q++ = *p++ | 0x8000; | |
3540 | else | |
3541 | *q++ = *p++; | |
3542 | *q++ = 0; | |
3543 | #endif | |
3544 | #ifdef DEC | |
3545 | if (i) | |
3546 | *q-- = *p++ | 0x8000; | |
3547 | else | |
3548 | *q-- = *p++; | |
3549 | #endif | |
3550 | #ifdef IEEE | |
3551 | if (REAL_WORDS_BIG_ENDIAN) | |
3552 | { | |
3553 | #ifdef ARM_EXTENDED_IEEE_FORMAT | |
3554 | /* The exponent is in the lowest 15 bits of the first word. */ | |
3555 | *q++ = i ? 0x8000 : 0; | |
3556 | *q++ = *p++; | |
3557 | #else | |
3558 | if (i) | |
3559 | *q++ = *p++ | 0x8000; | |
3560 | else | |
3561 | *q++ = *p++; | |
3562 | *q++ = 0; | |
3563 | #endif | |
3564 | } | |
3565 | else | |
3566 | { | |
3567 | if (i) | |
3568 | *q-- = *p++ | 0x8000; | |
3569 | else | |
3570 | *q-- = *p++; | |
3571 | } | |
3572 | #endif | |
3573 | /* skip over guard word */ | |
3574 | ++p; | |
3575 | /* move the significand */ | |
3576 | #ifdef IBM | |
3577 | for (i = 0; i < 4; i++) | |
3578 | *q++ = *p++; | |
3579 | #endif | |
3580 | #ifdef DEC | |
3581 | for (i = 0; i < 4; i++) | |
3582 | *q-- = *p++; | |
3583 | #endif | |
3584 | #ifdef IEEE | |
3585 | if (REAL_WORDS_BIG_ENDIAN) | |
3586 | { | |
3587 | for (i = 0; i < 4; i++) | |
3588 | *q++ = *p++; | |
3589 | } | |
3590 | else | |
3591 | { | |
3592 | #ifdef INFINITY | |
3593 | if (eiisinf (a)) | |
3594 | { | |
3595 | /* Intel long double infinity significand. */ | |
3596 | *q-- = 0x8000; | |
3597 | *q-- = 0; | |
3598 | *q-- = 0; | |
3599 | *q = 0; | |
3600 | return; | |
3601 | } | |
3602 | #endif | |
3603 | for (i = 0; i < 4; i++) | |
3604 | *q-- = *p++; | |
3605 | } | |
3606 | #endif | |
3607 | } | |
3608 | ||
3609 | /* e type to double precision. */ | |
3610 | ||
3611 | #ifdef DEC | |
3612 | /* Convert e-type X to DEC-format double E. */ | |
3613 | ||
3614 | static void | |
3615 | etoe53 (x, e) | |
3616 | unsigned EMUSHORT *x, *e; | |
3617 | { | |
3618 | etodec (x, e); /* see etodec.c */ | |
3619 | } | |
3620 | ||
3621 | /* Convert exploded e-type X, that has already been rounded to | |
3622 | 56-bit double precision, to DEC double Y. */ | |
3623 | ||
3624 | static void | |
3625 | toe53 (x, y) | |
3626 | unsigned EMUSHORT *x, *y; | |
3627 | { | |
3628 | todec (x, y); | |
3629 | } | |
3630 | ||
3631 | #else | |
3632 | #ifdef IBM | |
3633 | /* Convert e-type X to IBM 370-format double E. */ | |
3634 | ||
3635 | static void | |
3636 | etoe53 (x, e) | |
3637 | unsigned EMUSHORT *x, *e; | |
3638 | { | |
3639 | etoibm (x, e, DFmode); | |
3640 | } | |
3641 | ||
3642 | /* Convert exploded e-type X, that has already been rounded to | |
3643 | 56-bit precision, to IBM 370 double Y. */ | |
3644 | ||
3645 | static void | |
3646 | toe53 (x, y) | |
3647 | unsigned EMUSHORT *x, *y; | |
3648 | { | |
3649 | toibm (x, y, DFmode); | |
3650 | } | |
3651 | ||
3652 | #else /* it's neither DEC nor IBM */ | |
3653 | ||
3654 | /* Convert e-type X to IEEE double E. */ | |
3655 | ||
3656 | static void | |
3657 | etoe53 (x, e) | |
3658 | unsigned EMUSHORT *x, *e; | |
3659 | { | |
3660 | unsigned EMUSHORT xi[NI]; | |
3661 | EMULONG exp; | |
3662 | int rndsav; | |
3663 | ||
3664 | #ifdef NANS | |
3665 | if (eisnan (x)) | |
3666 | { | |
3667 | make_nan (e, eisneg (x), DFmode); | |
3668 | return; | |
3669 | } | |
3670 | #endif | |
3671 | emovi (x, xi); | |
3672 | /* adjust exponent for offsets */ | |
3673 | exp = (EMULONG) xi[E] - (EXONE - 0x3ff); | |
3674 | #ifdef INFINITY | |
3675 | if (eisinf (x)) | |
3676 | goto nonorm; | |
3677 | #endif | |
3678 | /* round off to nearest or even */ | |
3679 | rndsav = rndprc; | |
3680 | rndprc = 53; | |
3681 | emdnorm (xi, 0, 0, exp, 64); | |
3682 | rndprc = rndsav; | |
3683 | nonorm: | |
3684 | toe53 (xi, e); | |
3685 | } | |
3686 | ||
3687 | /* Convert exploded e-type X, that has already been rounded to | |
3688 | 53-bit precision, to IEEE double Y. */ | |
3689 | ||
3690 | static void | |
3691 | toe53 (x, y) | |
3692 | unsigned EMUSHORT *x, *y; | |
3693 | { | |
3694 | unsigned EMUSHORT i; | |
3695 | unsigned EMUSHORT *p; | |
3696 | ||
3697 | #ifdef NANS | |
3698 | if (eiisnan (x)) | |
3699 | { | |
3700 | make_nan (y, eiisneg (x), DFmode); | |
3701 | return; | |
3702 | } | |
3703 | #endif | |
3704 | p = &x[0]; | |
3705 | #ifdef IEEE | |
3706 | if (! REAL_WORDS_BIG_ENDIAN) | |
3707 | y += 3; | |
3708 | #endif | |
3709 | *y = 0; /* output high order */ | |
3710 | if (*p++) | |
3711 | *y = 0x8000; /* output sign bit */ | |
3712 | ||
3713 | i = *p++; | |
3714 | if (i >= (unsigned int) 2047) | |
3715 | { | |
3716 | /* Saturate at largest number less than infinity. */ | |
3717 | #ifdef INFINITY | |
3718 | *y |= 0x7ff0; | |
3719 | if (! REAL_WORDS_BIG_ENDIAN) | |
3720 | { | |
3721 | *(--y) = 0; | |
3722 | *(--y) = 0; | |
3723 | *(--y) = 0; | |
3724 | } | |
3725 | else | |
3726 | { | |
3727 | ++y; | |
3728 | *y++ = 0; | |
3729 | *y++ = 0; | |
3730 | *y++ = 0; | |
3731 | } | |
3732 | #else | |
3733 | *y |= (unsigned EMUSHORT) 0x7fef; | |
3734 | if (! REAL_WORDS_BIG_ENDIAN) | |
3735 | { | |
3736 | *(--y) = 0xffff; | |
3737 | *(--y) = 0xffff; | |
3738 | *(--y) = 0xffff; | |
3739 | } | |
3740 | else | |
3741 | { | |
3742 | ++y; | |
3743 | *y++ = 0xffff; | |
3744 | *y++ = 0xffff; | |
3745 | *y++ = 0xffff; | |
3746 | } | |
3747 | #endif | |
3748 | return; | |
3749 | } | |
3750 | if (i == 0) | |
3751 | { | |
3752 | eshift (x, 4); | |
3753 | } | |
3754 | else | |
3755 | { | |
3756 | i <<= 4; | |
3757 | eshift (x, 5); | |
3758 | } | |
3759 | i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ | |
3760 | *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ | |
3761 | if (! REAL_WORDS_BIG_ENDIAN) | |
3762 | { | |
3763 | *(--y) = *p++; | |
3764 | *(--y) = *p++; | |
3765 | *(--y) = *p; | |
3766 | } | |
3767 | else | |
3768 | { | |
3769 | ++y; | |
3770 | *y++ = *p++; | |
3771 | *y++ = *p++; | |
3772 | *y++ = *p++; | |
3773 | } | |
3774 | } | |
3775 | ||
3776 | #endif /* not IBM */ | |
3777 | #endif /* not DEC */ | |
3778 | ||
3779 | ||
3780 | ||
3781 | /* e type to single precision. */ | |
3782 | ||
3783 | #ifdef IBM | |
3784 | /* Convert e-type X to IBM 370 float E. */ | |
3785 | ||
3786 | static void | |
3787 | etoe24 (x, e) | |
3788 | unsigned EMUSHORT *x, *e; | |
3789 | { | |
3790 | etoibm (x, e, SFmode); | |
3791 | } | |
3792 | ||
3793 | /* Convert exploded e-type X, that has already been rounded to | |
3794 | float precision, to IBM 370 float Y. */ | |
3795 | ||
3796 | static void | |
3797 | toe24 (x, y) | |
3798 | unsigned EMUSHORT *x, *y; | |
3799 | { | |
3800 | toibm (x, y, SFmode); | |
3801 | } | |
3802 | ||
3803 | #else | |
3804 | /* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */ | |
3805 | ||
3806 | static void | |
3807 | etoe24 (x, e) | |
3808 | unsigned EMUSHORT *x, *e; | |
3809 | { | |
3810 | EMULONG exp; | |
3811 | unsigned EMUSHORT xi[NI]; | |
3812 | int rndsav; | |
3813 | ||
3814 | #ifdef NANS | |
3815 | if (eisnan (x)) | |
3816 | { | |
3817 | make_nan (e, eisneg (x), SFmode); | |
3818 | return; | |
3819 | } | |
3820 | #endif | |
3821 | emovi (x, xi); | |
3822 | /* adjust exponent for offsets */ | |
3823 | exp = (EMULONG) xi[E] - (EXONE - 0177); | |
3824 | #ifdef INFINITY | |
3825 | if (eisinf (x)) | |
3826 | goto nonorm; | |
3827 | #endif | |
3828 | /* round off to nearest or even */ | |
3829 | rndsav = rndprc; | |
3830 | rndprc = 24; | |
3831 | emdnorm (xi, 0, 0, exp, 64); | |
3832 | rndprc = rndsav; | |
3833 | nonorm: | |
3834 | toe24 (xi, e); | |
3835 | } | |
3836 | ||
3837 | /* Convert exploded e-type X, that has already been rounded to | |
3838 | float precision, to IEEE float Y. */ | |
3839 | ||
3840 | static void | |
3841 | toe24 (x, y) | |
3842 | unsigned EMUSHORT *x, *y; | |
3843 | { | |
3844 | unsigned EMUSHORT i; | |
3845 | unsigned EMUSHORT *p; | |
3846 | ||
3847 | #ifdef NANS | |
3848 | if (eiisnan (x)) | |
3849 | { | |
3850 | make_nan (y, eiisneg (x), SFmode); | |
3851 | return; | |
3852 | } | |
3853 | #endif | |
3854 | p = &x[0]; | |
3855 | #ifdef IEEE | |
3856 | if (! REAL_WORDS_BIG_ENDIAN) | |
3857 | y += 1; | |
3858 | #endif | |
3859 | #ifdef DEC | |
3860 | y += 1; | |
3861 | #endif | |
3862 | *y = 0; /* output high order */ | |
3863 | if (*p++) | |
3864 | *y = 0x8000; /* output sign bit */ | |
3865 | ||
3866 | i = *p++; | |
3867 | /* Handle overflow cases. */ | |
3868 | if (i >= 255) | |
3869 | { | |
3870 | #ifdef INFINITY | |
3871 | *y |= (unsigned EMUSHORT) 0x7f80; | |
3872 | #ifdef DEC | |
3873 | *(--y) = 0; | |
3874 | #endif | |
3875 | #ifdef IEEE | |
3876 | if (! REAL_WORDS_BIG_ENDIAN) | |
3877 | *(--y) = 0; | |
3878 | else | |
3879 | { | |
3880 | ++y; | |
3881 | *y = 0; | |
3882 | } | |
3883 | #endif | |
3884 | #else /* no INFINITY */ | |
3885 | *y |= (unsigned EMUSHORT) 0x7f7f; | |
3886 | #ifdef DEC | |
3887 | *(--y) = 0xffff; | |
3888 | #endif | |
3889 | #ifdef IEEE | |
3890 | if (! REAL_WORDS_BIG_ENDIAN) | |
3891 | *(--y) = 0xffff; | |
3892 | else | |
3893 | { | |
3894 | ++y; | |
3895 | *y = 0xffff; | |
3896 | } | |
3897 | #endif | |
3898 | #ifdef ERANGE | |
3899 | errno = ERANGE; | |
3900 | #endif | |
3901 | #endif /* no INFINITY */ | |
3902 | return; | |
3903 | } | |
3904 | if (i == 0) | |
3905 | { | |
3906 | eshift (x, 7); | |
3907 | } | |
3908 | else | |
3909 | { | |
3910 | i <<= 7; | |
3911 | eshift (x, 8); | |
3912 | } | |
3913 | i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ | |
3914 | /* High order output already has sign bit set. */ | |
3915 | *y |= i; | |
3916 | #ifdef DEC | |
3917 | *(--y) = *p; | |
3918 | #endif | |
3919 | #ifdef IEEE | |
3920 | if (! REAL_WORDS_BIG_ENDIAN) | |
3921 | *(--y) = *p; | |
3922 | else | |
3923 | { | |
3924 | ++y; | |
3925 | *y = *p; | |
3926 | } | |
3927 | #endif | |
3928 | } | |
3929 | #endif /* not IBM */ | |
3930 | ||
3931 | /* Compare two e type numbers. | |
3932 | Return +1 if a > b | |
3933 | 0 if a == b | |
3934 | -1 if a < b | |
3935 | -2 if either a or b is a NaN. */ | |
3936 | ||
3937 | static int | |
3938 | ecmp (a, b) | |
3939 | unsigned EMUSHORT *a, *b; | |
3940 | { | |
3941 | unsigned EMUSHORT ai[NI], bi[NI]; | |
3942 | register unsigned EMUSHORT *p, *q; | |
3943 | register int i; | |
3944 | int msign; | |
3945 | ||
3946 | #ifdef NANS | |
3947 | if (eisnan (a) || eisnan (b)) | |
3948 | return (-2); | |
3949 | #endif | |
3950 | emovi (a, ai); | |
3951 | p = ai; | |
3952 | emovi (b, bi); | |
3953 | q = bi; | |
3954 | ||
3955 | if (*p != *q) | |
3956 | { /* the signs are different */ | |
3957 | /* -0 equals + 0 */ | |
3958 | for (i = 1; i < NI - 1; i++) | |
3959 | { | |
3960 | if (ai[i] != 0) | |
3961 | goto nzro; | |
3962 | if (bi[i] != 0) | |
3963 | goto nzro; | |
3964 | } | |
3965 | return (0); | |
3966 | nzro: | |
3967 | if (*p == 0) | |
3968 | return (1); | |
3969 | else | |
3970 | return (-1); | |
3971 | } | |
3972 | /* both are the same sign */ | |
3973 | if (*p == 0) | |
3974 | msign = 1; | |
3975 | else | |
3976 | msign = -1; | |
3977 | i = NI - 1; | |
3978 | do | |
3979 | { | |
3980 | if (*p++ != *q++) | |
3981 | { | |
3982 | goto diff; | |
3983 | } | |
3984 | } | |
3985 | while (--i > 0); | |
3986 | ||
3987 | return (0); /* equality */ | |
3988 | ||
3989 | diff: | |
3990 | ||
3991 | if (*(--p) > *(--q)) | |
3992 | return (msign); /* p is bigger */ | |
3993 | else | |
3994 | return (-msign); /* p is littler */ | |
3995 | } | |
3996 | ||
3997 | /* Find e-type nearest integer to X, as floor (X + 0.5). */ | |
3998 | ||
3999 | static void | |
4000 | eround (x, y) | |
4001 | unsigned EMUSHORT *x, *y; | |
4002 | { | |
4003 | eadd (ehalf, x, y); | |
4004 | efloor (y, y); | |
4005 | } | |
4006 | ||
4007 | /* Convert HOST_WIDE_INT LP to e type Y. */ | |
4008 | ||
4009 | static void | |
4010 | ltoe (lp, y) | |
4011 | HOST_WIDE_INT *lp; | |
4012 | unsigned EMUSHORT *y; | |
4013 | { | |
4014 | unsigned EMUSHORT yi[NI]; | |
4015 | unsigned HOST_WIDE_INT ll; | |
4016 | int k; | |
4017 | ||
4018 | ecleaz (yi); | |
4019 | if (*lp < 0) | |
4020 | { | |
4021 | /* make it positive */ | |
4022 | ll = (unsigned HOST_WIDE_INT) (-(*lp)); | |
4023 | yi[0] = 0xffff; /* put correct sign in the e type number */ | |
4024 | } | |
4025 | else | |
4026 | { | |
4027 | ll = (unsigned HOST_WIDE_INT) (*lp); | |
4028 | } | |
4029 | /* move the long integer to yi significand area */ | |
4030 | #if HOST_BITS_PER_WIDE_INT == 64 | |
4031 | yi[M] = (unsigned EMUSHORT) (ll >> 48); | |
4032 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
4033 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
4034 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
4035 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
4036 | #else | |
4037 | yi[M] = (unsigned EMUSHORT) (ll >> 16); | |
4038 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
4039 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ | |
4040 | #endif | |
4041 | ||
4042 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
4043 | ecleaz (yi); /* it was zero */ | |
4044 | else | |
4045 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
4046 | emovo (yi, y); /* output the answer */ | |
4047 | } | |
4048 | ||
4049 | /* Convert unsigned HOST_WIDE_INT LP to e type Y. */ | |
4050 | ||
4051 | static void | |
4052 | ultoe (lp, y) | |
4053 | unsigned HOST_WIDE_INT *lp; | |
4054 | unsigned EMUSHORT *y; | |
4055 | { | |
4056 | unsigned EMUSHORT yi[NI]; | |
4057 | unsigned HOST_WIDE_INT ll; | |
4058 | int k; | |
4059 | ||
4060 | ecleaz (yi); | |
4061 | ll = *lp; | |
4062 | ||
4063 | /* move the long integer to ayi significand area */ | |
4064 | #if HOST_BITS_PER_WIDE_INT == 64 | |
4065 | yi[M] = (unsigned EMUSHORT) (ll >> 48); | |
4066 | yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); | |
4067 | yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); | |
4068 | yi[M + 3] = (unsigned EMUSHORT) ll; | |
4069 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
4070 | #else | |
4071 | yi[M] = (unsigned EMUSHORT) (ll >> 16); | |
4072 | yi[M + 1] = (unsigned EMUSHORT) ll; | |
4073 | yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ | |
4074 | #endif | |
4075 | ||
4076 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
4077 | ecleaz (yi); /* it was zero */ | |
4078 | else | |
4079 | yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ | |
4080 | emovo (yi, y); /* output the answer */ | |
4081 | } | |
4082 | ||
4083 | ||
4084 | /* Find signed HOST_WIDE_INT integer I and floating point fractional | |
4085 | part FRAC of e-type (packed internal format) floating point input X. | |
4086 | The integer output I has the sign of the input, except that | |
4087 | positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC. | |
4088 | The output e-type fraction FRAC is the positive fractional | |
4089 | part of abs (X). */ | |
4090 | ||
4091 | static void | |
4092 | eifrac (x, i, frac) | |
4093 | unsigned EMUSHORT *x; | |
4094 | HOST_WIDE_INT *i; | |
4095 | unsigned EMUSHORT *frac; | |
4096 | { | |
4097 | unsigned EMUSHORT xi[NI]; | |
4098 | int j, k; | |
4099 | unsigned HOST_WIDE_INT ll; | |
4100 | ||
4101 | emovi (x, xi); | |
4102 | k = (int) xi[E] - (EXONE - 1); | |
4103 | if (k <= 0) | |
4104 | { | |
4105 | /* if exponent <= 0, integer = 0 and real output is fraction */ | |
4106 | *i = 0L; | |
4107 | emovo (xi, frac); | |
4108 | return; | |
4109 | } | |
4110 | if (k > (HOST_BITS_PER_WIDE_INT - 1)) | |
4111 | { | |
4112 | /* long integer overflow: output large integer | |
4113 | and correct fraction */ | |
4114 | if (xi[0]) | |
4115 | *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1); | |
4116 | else | |
4117 | { | |
4118 | #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
4119 | /* In this case, let it overflow and convert as if unsigned. */ | |
4120 | euifrac (x, &ll, frac); | |
4121 | *i = (HOST_WIDE_INT) ll; | |
4122 | return; | |
4123 | #else | |
4124 | /* In other cases, return the largest positive integer. */ | |
4125 | *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1; | |
4126 | #endif | |
4127 | } | |
4128 | eshift (xi, k); | |
4129 | if (extra_warnings) | |
4130 | warning ("overflow on truncation to integer"); | |
4131 | } | |
4132 | else if (k > 16) | |
4133 | { | |
4134 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
4135 | then shift up by 16's. */ | |
4136 | j = k - ((k >> 4) << 4); | |
4137 | eshift (xi, j); | |
4138 | ll = xi[M]; | |
4139 | k -= j; | |
4140 | do | |
4141 | { | |
4142 | eshup6 (xi); | |
4143 | ll = (ll << 16) | xi[M]; | |
4144 | } | |
4145 | while ((k -= 16) > 0); | |
4146 | *i = ll; | |
4147 | if (xi[0]) | |
4148 | *i = -(*i); | |
4149 | } | |
4150 | else | |
4151 | { | |
4152 | /* shift not more than 16 bits */ | |
4153 | eshift (xi, k); | |
4154 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; | |
4155 | if (xi[0]) | |
4156 | *i = -(*i); | |
4157 | } | |
4158 | xi[0] = 0; | |
4159 | xi[E] = EXONE - 1; | |
4160 | xi[M] = 0; | |
4161 | if ((k = enormlz (xi)) > NBITS) | |
4162 | ecleaz (xi); | |
4163 | else | |
4164 | xi[E] -= (unsigned EMUSHORT) k; | |
4165 | ||
4166 | emovo (xi, frac); | |
4167 | } | |
4168 | ||
4169 | ||
4170 | /* Find unsigned HOST_WIDE_INT integer I and floating point fractional part | |
4171 | FRAC of e-type X. A negative input yields integer output = 0 but | |
4172 | correct fraction. */ | |
4173 | ||
4174 | static void | |
4175 | euifrac (x, i, frac) | |
4176 | unsigned EMUSHORT *x; | |
4177 | unsigned HOST_WIDE_INT *i; | |
4178 | unsigned EMUSHORT *frac; | |
4179 | { | |
4180 | unsigned HOST_WIDE_INT ll; | |
4181 | unsigned EMUSHORT xi[NI]; | |
4182 | int j, k; | |
4183 | ||
4184 | emovi (x, xi); | |
4185 | k = (int) xi[E] - (EXONE - 1); | |
4186 | if (k <= 0) | |
4187 | { | |
4188 | /* if exponent <= 0, integer = 0 and argument is fraction */ | |
4189 | *i = 0L; | |
4190 | emovo (xi, frac); | |
4191 | return; | |
4192 | } | |
4193 | if (k > HOST_BITS_PER_WIDE_INT) | |
4194 | { | |
4195 | /* Long integer overflow: output large integer | |
4196 | and correct fraction. | |
4197 | Note, the BSD microvax compiler says that ~(0UL) | |
4198 | is a syntax error. */ | |
4199 | *i = ~(0L); | |
4200 | eshift (xi, k); | |
4201 | if (extra_warnings) | |
4202 | warning ("overflow on truncation to unsigned integer"); | |
4203 | } | |
4204 | else if (k > 16) | |
4205 | { | |
4206 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
4207 | then shift up by 16's. */ | |
4208 | j = k - ((k >> 4) << 4); | |
4209 | eshift (xi, j); | |
4210 | ll = xi[M]; | |
4211 | k -= j; | |
4212 | do | |
4213 | { | |
4214 | eshup6 (xi); | |
4215 | ll = (ll << 16) | xi[M]; | |
4216 | } | |
4217 | while ((k -= 16) > 0); | |
4218 | *i = ll; | |
4219 | } | |
4220 | else | |
4221 | { | |
4222 | /* shift not more than 16 bits */ | |
4223 | eshift (xi, k); | |
4224 | *i = (HOST_WIDE_INT) xi[M] & 0xffff; | |
4225 | } | |
4226 | ||
4227 | if (xi[0]) /* A negative value yields unsigned integer 0. */ | |
4228 | *i = 0L; | |
4229 | ||
4230 | xi[0] = 0; | |
4231 | xi[E] = EXONE - 1; | |
4232 | xi[M] = 0; | |
4233 | if ((k = enormlz (xi)) > NBITS) | |
4234 | ecleaz (xi); | |
4235 | else | |
4236 | xi[E] -= (unsigned EMUSHORT) k; | |
4237 | ||
4238 | emovo (xi, frac); | |
4239 | } | |
4240 | ||
4241 | /* Shift the significand of exploded e-type X up or down by SC bits. */ | |
4242 | ||
4243 | static int | |
4244 | eshift (x, sc) | |
4245 | unsigned EMUSHORT *x; | |
4246 | int sc; | |
4247 | { | |
4248 | unsigned EMUSHORT lost; | |
4249 | unsigned EMUSHORT *p; | |
4250 | ||
4251 | if (sc == 0) | |
4252 | return (0); | |
4253 | ||
4254 | lost = 0; | |
4255 | p = x + NI - 1; | |
4256 | ||
4257 | if (sc < 0) | |
4258 | { | |
4259 | sc = -sc; | |
4260 | while (sc >= 16) | |
4261 | { | |
4262 | lost |= *p; /* remember lost bits */ | |
4263 | eshdn6 (x); | |
4264 | sc -= 16; | |
4265 | } | |
4266 | ||
4267 | while (sc >= 8) | |
4268 | { | |
4269 | lost |= *p & 0xff; | |
4270 | eshdn8 (x); | |
4271 | sc -= 8; | |
4272 | } | |
4273 | ||
4274 | while (sc > 0) | |
4275 | { | |
4276 | lost |= *p & 1; | |
4277 | eshdn1 (x); | |
4278 | sc -= 1; | |
4279 | } | |
4280 | } | |
4281 | else | |
4282 | { | |
4283 | while (sc >= 16) | |
4284 | { | |
4285 | eshup6 (x); | |
4286 | sc -= 16; | |
4287 | } | |
4288 | ||
4289 | while (sc >= 8) | |
4290 | { | |
4291 | eshup8 (x); | |
4292 | sc -= 8; | |
4293 | } | |
4294 | ||
4295 | while (sc > 0) | |
4296 | { | |
4297 | eshup1 (x); | |
4298 | sc -= 1; | |
4299 | } | |
4300 | } | |
4301 | if (lost) | |
4302 | lost = 1; | |
4303 | return ((int) lost); | |
4304 | } | |
4305 | ||
4306 | /* Shift normalize the significand area of exploded e-type X. | |
4307 | Return the shift count (up = positive). */ | |
4308 | ||
4309 | static int | |
4310 | enormlz (x) | |
4311 | unsigned EMUSHORT x[]; | |
4312 | { | |
4313 | register unsigned EMUSHORT *p; | |
4314 | int sc; | |
4315 | ||
4316 | sc = 0; | |
4317 | p = &x[M]; | |
4318 | if (*p != 0) | |
4319 | goto normdn; | |
4320 | ++p; | |
4321 | if (*p & 0x8000) | |
4322 | return (0); /* already normalized */ | |
4323 | while (*p == 0) | |
4324 | { | |
4325 | eshup6 (x); | |
4326 | sc += 16; | |
4327 | ||
4328 | /* With guard word, there are NBITS+16 bits available. | |
4329 | Return true if all are zero. */ | |
4330 | if (sc > NBITS) | |
4331 | return (sc); | |
4332 | } | |
4333 | /* see if high byte is zero */ | |
4334 | while ((*p & 0xff00) == 0) | |
4335 | { | |
4336 | eshup8 (x); | |
4337 | sc += 8; | |
4338 | } | |
4339 | /* now shift 1 bit at a time */ | |
4340 | while ((*p & 0x8000) == 0) | |
4341 | { | |
4342 | eshup1 (x); | |
4343 | sc += 1; | |
4344 | if (sc > NBITS) | |
4345 | { | |
4346 | mtherr ("enormlz", UNDERFLOW); | |
4347 | return (sc); | |
4348 | } | |
4349 | } | |
4350 | return (sc); | |
4351 | ||
4352 | /* Normalize by shifting down out of the high guard word | |
4353 | of the significand */ | |
4354 | normdn: | |
4355 | ||
4356 | if (*p & 0xff00) | |
4357 | { | |
4358 | eshdn8 (x); | |
4359 | sc -= 8; | |
4360 | } | |
4361 | while (*p != 0) | |
4362 | { | |
4363 | eshdn1 (x); | |
4364 | sc -= 1; | |
4365 | ||
4366 | if (sc < -NBITS) | |
4367 | { | |
4368 | mtherr ("enormlz", OVERFLOW); | |
4369 | return (sc); | |
4370 | } | |
4371 | } | |
4372 | return (sc); | |
4373 | } | |
4374 | ||
4375 | /* Powers of ten used in decimal <-> binary conversions. */ | |
4376 | ||
4377 | #define NTEN 12 | |
4378 | #define MAXP 4096 | |
4379 | ||
4380 | #if LONG_DOUBLE_TYPE_SIZE == 128 | |
4381 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
4382 | { | |
4383 | {0x6576, 0x4a92, 0x804a, 0x153f, | |
4384 | 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4385 | {0x6a32, 0xce52, 0x329a, 0x28ce, | |
4386 | 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4387 | {0x526c, 0x50ce, 0xf18b, 0x3d28, | |
4388 | 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4389 | {0x9c66, 0x58f8, 0xbc50, 0x5c54, | |
4390 | 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4391 | {0x851e, 0xeab7, 0x98fe, 0x901b, | |
4392 | 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4393 | {0x0235, 0x0137, 0x36b1, 0x336c, | |
4394 | 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4395 | {0x50f8, 0x25fb, 0xc76b, 0x6b71, | |
4396 | 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4397 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4398 | 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4399 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4400 | 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4401 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4402 | 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4403 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4404 | 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4405 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4406 | 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4407 | {0x0000, 0x0000, 0x0000, 0x0000, | |
4408 | 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4409 | }; | |
4410 | ||
4411 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4412 | { | |
4413 | {0x2030, 0xcffc, 0xa1c3, 0x8123, | |
4414 | 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4415 | {0x8264, 0xd2cb, 0xf2ea, 0x12d4, | |
4416 | 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4417 | {0xf53f, 0xf698, 0x6bd3, 0x0158, | |
4418 | 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4419 | {0xe731, 0x04d4, 0xe3f2, 0xd332, | |
4420 | 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4421 | {0xa23e, 0x5308, 0xfefb, 0x1155, | |
4422 | 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4423 | {0xe26d, 0xdbde, 0xd05d, 0xb3f6, | |
4424 | 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4425 | {0x2a20, 0x6224, 0x47b3, 0x98d7, | |
4426 | 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4427 | {0x0b5b, 0x4af2, 0xa581, 0x18ed, | |
4428 | 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4429 | {0xbf71, 0xa9b3, 0x7989, 0xbe68, | |
4430 | 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4431 | {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, | |
4432 | 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4433 | {0xc155, 0xa4a8, 0x404e, 0x6113, | |
4434 | 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4435 | {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, | |
4436 | 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4437 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, | |
4438 | 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4439 | }; | |
4440 | #else | |
4441 | /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ | |
4442 | static unsigned EMUSHORT etens[NTEN + 1][NE] = | |
4443 | { | |
4444 | {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ | |
4445 | {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ | |
4446 | {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, | |
4447 | {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, | |
4448 | {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, | |
4449 | {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, | |
4450 | {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, | |
4451 | {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, | |
4452 | {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, | |
4453 | {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, | |
4454 | {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, | |
4455 | {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, | |
4456 | {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ | |
4457 | }; | |
4458 | ||
4459 | static unsigned EMUSHORT emtens[NTEN + 1][NE] = | |
4460 | { | |
4461 | {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ | |
4462 | {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ | |
4463 | {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, | |
4464 | {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, | |
4465 | {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, | |
4466 | {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, | |
4467 | {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, | |
4468 | {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, | |
4469 | {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, | |
4470 | {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, | |
4471 | {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, | |
4472 | {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, | |
4473 | {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ | |
4474 | }; | |
4475 | #endif | |
4476 | ||
4477 | /* Convert float value X to ASCII string STRING with NDIG digits after | |
4478 | the decimal point. */ | |
4479 | ||
4480 | static void | |
4481 | e24toasc (x, string, ndigs) | |
4482 | unsigned EMUSHORT x[]; | |
4483 | char *string; | |
4484 | int ndigs; | |
4485 | { | |
4486 | unsigned EMUSHORT w[NI]; | |
4487 | ||
4488 | e24toe (x, w); | |
4489 | etoasc (w, string, ndigs); | |
4490 | } | |
4491 | ||
4492 | /* Convert double value X to ASCII string STRING with NDIG digits after | |
4493 | the decimal point. */ | |
4494 | ||
4495 | static void | |
4496 | e53toasc (x, string, ndigs) | |
4497 | unsigned EMUSHORT x[]; | |
4498 | char *string; | |
4499 | int ndigs; | |
4500 | { | |
4501 | unsigned EMUSHORT w[NI]; | |
4502 | ||
4503 | e53toe (x, w); | |
4504 | etoasc (w, string, ndigs); | |
4505 | } | |
4506 | ||
4507 | /* Convert double extended value X to ASCII string STRING with NDIG digits | |
4508 | after the decimal point. */ | |
4509 | ||
4510 | static void | |
4511 | e64toasc (x, string, ndigs) | |
4512 | unsigned EMUSHORT x[]; | |
4513 | char *string; | |
4514 | int ndigs; | |
4515 | { | |
4516 | unsigned EMUSHORT w[NI]; | |
4517 | ||
4518 | e64toe (x, w); | |
4519 | etoasc (w, string, ndigs); | |
4520 | } | |
4521 | ||
4522 | /* Convert 128-bit long double value X to ASCII string STRING with NDIG digits | |
4523 | after the decimal point. */ | |
4524 | ||
4525 | static void | |
4526 | e113toasc (x, string, ndigs) | |
4527 | unsigned EMUSHORT x[]; | |
4528 | char *string; | |
4529 | int ndigs; | |
4530 | { | |
4531 | unsigned EMUSHORT w[NI]; | |
4532 | ||
4533 | e113toe (x, w); | |
4534 | etoasc (w, string, ndigs); | |
4535 | } | |
4536 | ||
4537 | /* Convert e-type X to ASCII string STRING with NDIGS digits after | |
4538 | the decimal point. */ | |
4539 | ||
4540 | static char wstring[80]; /* working storage for ASCII output */ | |
4541 | ||
4542 | static void | |
4543 | etoasc (x, string, ndigs) | |
4544 | unsigned EMUSHORT x[]; | |
4545 | char *string; | |
4546 | int ndigs; | |
4547 | { | |
4548 | EMUSHORT digit; | |
4549 | unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; | |
4550 | unsigned EMUSHORT *p, *r, *ten; | |
4551 | unsigned EMUSHORT sign; | |
4552 | int i, j, k, expon, rndsav; | |
4553 | char *s, *ss; | |
4554 | unsigned EMUSHORT m; | |
4555 | ||
4556 | ||
4557 | rndsav = rndprc; | |
4558 | ss = string; | |
4559 | s = wstring; | |
4560 | *ss = '\0'; | |
4561 | *s = '\0'; | |
4562 | #ifdef NANS | |
4563 | if (eisnan (x)) | |
4564 | { | |
4565 | sprintf (wstring, " NaN "); | |
4566 | goto bxit; | |
4567 | } | |
4568 | #endif | |
4569 | rndprc = NBITS; /* set to full precision */ | |
4570 | emov (x, y); /* retain external format */ | |
4571 | if (y[NE - 1] & 0x8000) | |
4572 | { | |
4573 | sign = 0xffff; | |
4574 | y[NE - 1] &= 0x7fff; | |
4575 | } | |
4576 | else | |
4577 | { | |
4578 | sign = 0; | |
4579 | } | |
4580 | expon = 0; | |
4581 | ten = &etens[NTEN][0]; | |
4582 | emov (eone, t); | |
4583 | /* Test for zero exponent */ | |
4584 | if (y[NE - 1] == 0) | |
4585 | { | |
4586 | for (k = 0; k < NE - 1; k++) | |
4587 | { | |
4588 | if (y[k] != 0) | |
4589 | goto tnzro; /* denormalized number */ | |
4590 | } | |
4591 | goto isone; /* valid all zeros */ | |
4592 | } | |
4593 | tnzro: | |
4594 | ||
4595 | /* Test for infinity. */ | |
4596 | if (y[NE - 1] == 0x7fff) | |
4597 | { | |
4598 | if (sign) | |
4599 | sprintf (wstring, " -Infinity "); | |
4600 | else | |
4601 | sprintf (wstring, " Infinity "); | |
4602 | goto bxit; | |
4603 | } | |
4604 | ||
4605 | /* Test for exponent nonzero but significand denormalized. | |
4606 | * This is an error condition. | |
4607 | */ | |
4608 | if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) | |
4609 | { | |
4610 | mtherr ("etoasc", DOMAIN); | |
4611 | sprintf (wstring, "NaN"); | |
4612 | goto bxit; | |
4613 | } | |
4614 | ||
4615 | /* Compare to 1.0 */ | |
4616 | i = ecmp (eone, y); | |
4617 | if (i == 0) | |
4618 | goto isone; | |
4619 | ||
4620 | if (i == -2) | |
4621 | abort (); | |
4622 | ||
4623 | if (i < 0) | |
4624 | { /* Number is greater than 1 */ | |
4625 | /* Convert significand to an integer and strip trailing decimal zeros. */ | |
4626 | emov (y, u); | |
4627 | u[NE - 1] = EXONE + NBITS - 1; | |
4628 | ||
4629 | p = &etens[NTEN - 4][0]; | |
4630 | m = 16; | |
4631 | do | |
4632 | { | |
4633 | ediv (p, u, t); | |
4634 | efloor (t, w); | |
4635 | for (j = 0; j < NE - 1; j++) | |
4636 | { | |
4637 | if (t[j] != w[j]) | |
4638 | goto noint; | |
4639 | } | |
4640 | emov (t, u); | |
4641 | expon += (int) m; | |
4642 | noint: | |
4643 | p += NE; | |
4644 | m >>= 1; | |
4645 | } | |
4646 | while (m != 0); | |
4647 | ||
4648 | /* Rescale from integer significand */ | |
4649 | u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); | |
4650 | emov (u, y); | |
4651 | /* Find power of 10 */ | |
4652 | emov (eone, t); | |
4653 | m = MAXP; | |
4654 | p = &etens[0][0]; | |
4655 | /* An unordered compare result shouldn't happen here. */ | |
4656 | while (ecmp (ten, u) <= 0) | |
4657 | { | |
4658 | if (ecmp (p, u) <= 0) | |
4659 | { | |
4660 | ediv (p, u, u); | |
4661 | emul (p, t, t); | |
4662 | expon += (int) m; | |
4663 | } | |
4664 | m >>= 1; | |
4665 | if (m == 0) | |
4666 | break; | |
4667 | p += NE; | |
4668 | } | |
4669 | } | |
4670 | else | |
4671 | { /* Number is less than 1.0 */ | |
4672 | /* Pad significand with trailing decimal zeros. */ | |
4673 | if (y[NE - 1] == 0) | |
4674 | { | |
4675 | while ((y[NE - 2] & 0x8000) == 0) | |
4676 | { | |
4677 | emul (ten, y, y); | |
4678 | expon -= 1; | |
4679 | } | |
4680 | } | |
4681 | else | |
4682 | { | |
4683 | emovi (y, w); | |
4684 | for (i = 0; i < NDEC + 1; i++) | |
4685 | { | |
4686 | if ((w[NI - 1] & 0x7) != 0) | |
4687 | break; | |
4688 | /* multiply by 10 */ | |
4689 | emovz (w, u); | |
4690 | eshdn1 (u); | |
4691 | eshdn1 (u); | |
4692 | eaddm (w, u); | |
4693 | u[1] += 3; | |
4694 | while (u[2] != 0) | |
4695 | { | |
4696 | eshdn1 (u); | |
4697 | u[1] += 1; | |
4698 | } | |
4699 | if (u[NI - 1] != 0) | |
4700 | break; | |
4701 | if (eone[NE - 1] <= u[1]) | |
4702 | break; | |
4703 | emovz (u, w); | |
4704 | expon -= 1; | |
4705 | } | |
4706 | emovo (w, y); | |
4707 | } | |
4708 | k = -MAXP; | |
4709 | p = &emtens[0][0]; | |
4710 | r = &etens[0][0]; | |
4711 | emov (y, w); | |
4712 | emov (eone, t); | |
4713 | while (ecmp (eone, w) > 0) | |
4714 | { | |
4715 | if (ecmp (p, w) >= 0) | |
4716 | { | |
4717 | emul (r, w, w); | |
4718 | emul (r, t, t); | |
4719 | expon += k; | |
4720 | } | |
4721 | k /= 2; | |
4722 | if (k == 0) | |
4723 | break; | |
4724 | p += NE; | |
4725 | r += NE; | |
4726 | } | |
4727 | ediv (t, eone, t); | |
4728 | } | |
4729 | isone: | |
4730 | /* Find the first (leading) digit. */ | |
4731 | emovi (t, w); | |
4732 | emovz (w, t); | |
4733 | emovi (y, w); | |
4734 | emovz (w, y); | |
4735 | eiremain (t, y); | |
4736 | digit = equot[NI - 1]; | |
4737 | while ((digit == 0) && (ecmp (y, ezero) != 0)) | |
4738 | { | |
4739 | eshup1 (y); | |
4740 | emovz (y, u); | |
4741 | eshup1 (u); | |
4742 | eshup1 (u); | |
4743 | eaddm (u, y); | |
4744 | eiremain (t, y); | |
4745 | digit = equot[NI - 1]; | |
4746 | expon -= 1; | |
4747 | } | |
4748 | s = wstring; | |
4749 | if (sign) | |
4750 | *s++ = '-'; | |
4751 | else | |
4752 | *s++ = ' '; | |
4753 | /* Examine number of digits requested by caller. */ | |
4754 | if (ndigs < 0) | |
4755 | ndigs = 0; | |
4756 | if (ndigs > NDEC) | |
4757 | ndigs = NDEC; | |
4758 | if (digit == 10) | |
4759 | { | |
4760 | *s++ = '1'; | |
4761 | *s++ = '.'; | |
4762 | if (ndigs > 0) | |
4763 | { | |
4764 | *s++ = '0'; | |
4765 | ndigs -= 1; | |
4766 | } | |
4767 | expon += 1; | |
4768 | } | |
4769 | else | |
4770 | { | |
4771 | *s++ = (char)digit + '0'; | |
4772 | *s++ = '.'; | |
4773 | } | |
4774 | /* Generate digits after the decimal point. */ | |
4775 | for (k = 0; k <= ndigs; k++) | |
4776 | { | |
4777 | /* multiply current number by 10, without normalizing */ | |
4778 | eshup1 (y); | |
4779 | emovz (y, u); | |
4780 | eshup1 (u); | |
4781 | eshup1 (u); | |
4782 | eaddm (u, y); | |
4783 | eiremain (t, y); | |
4784 | *s++ = (char) equot[NI - 1] + '0'; | |
4785 | } | |
4786 | digit = equot[NI - 1]; | |
4787 | --s; | |
4788 | ss = s; | |
4789 | /* round off the ASCII string */ | |
4790 | if (digit > 4) | |
4791 | { | |
4792 | /* Test for critical rounding case in ASCII output. */ | |
4793 | if (digit == 5) | |
4794 | { | |
4795 | emovo (y, t); | |
4796 | if (ecmp (t, ezero) != 0) | |
4797 | goto roun; /* round to nearest */ | |
4798 | if ((*(s - 1) & 1) == 0) | |
4799 | goto doexp; /* round to even */ | |
4800 | } | |
4801 | /* Round up and propagate carry-outs */ | |
4802 | roun: | |
4803 | --s; | |
4804 | k = *s & 0x7f; | |
4805 | /* Carry out to most significant digit? */ | |
4806 | if (k == '.') | |
4807 | { | |
4808 | --s; | |
4809 | k = *s; | |
4810 | k += 1; | |
4811 | *s = (char) k; | |
4812 | /* Most significant digit carries to 10? */ | |
4813 | if (k > '9') | |
4814 | { | |
4815 | expon += 1; | |
4816 | *s = '1'; | |
4817 | } | |
4818 | goto doexp; | |
4819 | } | |
4820 | /* Round up and carry out from less significant digits */ | |
4821 | k += 1; | |
4822 | *s = (char) k; | |
4823 | if (k > '9') | |
4824 | { | |
4825 | *s = '0'; | |
4826 | goto roun; | |
4827 | } | |
4828 | } | |
4829 | doexp: | |
4830 | /* | |
4831 | if (expon >= 0) | |
4832 | sprintf (ss, "e+%d", expon); | |
4833 | else | |
4834 | sprintf (ss, "e%d", expon); | |
4835 | */ | |
4836 | sprintf (ss, "e%d", expon); | |
4837 | bxit: | |
4838 | rndprc = rndsav; | |
4839 | /* copy out the working string */ | |
4840 | s = string; | |
4841 | ss = wstring; | |
4842 | while (*ss == ' ') /* strip possible leading space */ | |
4843 | ++ss; | |
4844 | while ((*s++ = *ss++) != '\0') | |
4845 | ; | |
4846 | } | |
4847 | ||
4848 | ||
4849 | /* Convert ASCII string to floating point. | |
4850 | ||
4851 | Numeric input is a free format decimal number of any length, with | |
4852 | or without decimal point. Entering E after the number followed by an | |
4853 | integer number causes the second number to be interpreted as a power of | |
4854 | 10 to be multiplied by the first number (i.e., "scientific" notation). */ | |
4855 | ||
4856 | /* Convert ASCII string S to single precision float value Y. */ | |
4857 | ||
4858 | static void | |
4859 | asctoe24 (s, y) | |
4860 | char *s; | |
4861 | unsigned EMUSHORT *y; | |
4862 | { | |
4863 | asctoeg (s, y, 24); | |
4864 | } | |
4865 | ||
4866 | ||
4867 | /* Convert ASCII string S to double precision value Y. */ | |
4868 | ||
4869 | static void | |
4870 | asctoe53 (s, y) | |
4871 | char *s; | |
4872 | unsigned EMUSHORT *y; | |
4873 | { | |
4874 | #if defined(DEC) || defined(IBM) | |
4875 | asctoeg (s, y, 56); | |
4876 | #else | |
4877 | asctoeg (s, y, 53); | |
4878 | #endif | |
4879 | } | |
4880 | ||
4881 | ||
4882 | /* Convert ASCII string S to double extended value Y. */ | |
4883 | ||
4884 | static void | |
4885 | asctoe64 (s, y) | |
4886 | char *s; | |
4887 | unsigned EMUSHORT *y; | |
4888 | { | |
4889 | asctoeg (s, y, 64); | |
4890 | } | |
4891 | ||
4892 | /* Convert ASCII string S to 128-bit long double Y. */ | |
4893 | ||
4894 | static void | |
4895 | asctoe113 (s, y) | |
4896 | char *s; | |
4897 | unsigned EMUSHORT *y; | |
4898 | { | |
4899 | asctoeg (s, y, 113); | |
4900 | } | |
4901 | ||
4902 | /* Convert ASCII string S to e type Y. */ | |
4903 | ||
4904 | static void | |
4905 | asctoe (s, y) | |
4906 | char *s; | |
4907 | unsigned EMUSHORT *y; | |
4908 | { | |
4909 | asctoeg (s, y, NBITS); | |
4910 | } | |
4911 | ||
4912 | /* Convert ASCII string SS to e type Y, with a specified rounding precision | |
4913 | of OPREC bits. */ | |
4914 | ||
4915 | static void | |
4916 | asctoeg (ss, y, oprec) | |
4917 | char *ss; | |
4918 | unsigned EMUSHORT *y; | |
4919 | int oprec; | |
4920 | { | |
4921 | unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; | |
4922 | int esign, decflg, sgnflg, nexp, exp, prec, lost; | |
4923 | int k, trail, c, rndsav; | |
4924 | EMULONG lexp; | |
4925 | unsigned EMUSHORT nsign, *p; | |
4926 | char *sp, *s, *lstr; | |
4927 | ||
4928 | /* Copy the input string. */ | |
4929 | lstr = (char *) alloca (strlen (ss) + 1); | |
4930 | s = ss; | |
4931 | while (*s == ' ') /* skip leading spaces */ | |
4932 | ++s; | |
4933 | sp = lstr; | |
4934 | while ((*sp++ = *s++) != '\0') | |
4935 | ; | |
4936 | s = lstr; | |
4937 | ||
4938 | rndsav = rndprc; | |
4939 | rndprc = NBITS; /* Set to full precision */ | |
4940 | lost = 0; | |
4941 | nsign = 0; | |
4942 | decflg = 0; | |
4943 | sgnflg = 0; | |
4944 | nexp = 0; | |
4945 | exp = 0; | |
4946 | prec = 0; | |
4947 | ecleaz (yy); | |
4948 | trail = 0; | |
4949 | ||
4950 | nxtcom: | |
4951 | k = *s - '0'; | |
4952 | if ((k >= 0) && (k <= 9)) | |
4953 | { | |
4954 | /* Ignore leading zeros */ | |
4955 | if ((prec == 0) && (decflg == 0) && (k == 0)) | |
4956 | goto donchr; | |
4957 | /* Identify and strip trailing zeros after the decimal point. */ | |
4958 | if ((trail == 0) && (decflg != 0)) | |
4959 | { | |
4960 | sp = s; | |
4961 | while ((*sp >= '0') && (*sp <= '9')) | |
4962 | ++sp; | |
4963 | /* Check for syntax error */ | |
4964 | c = *sp & 0x7f; | |
4965 | if ((c != 'e') && (c != 'E') && (c != '\0') | |
4966 | && (c != '\n') && (c != '\r') && (c != ' ') | |
4967 | && (c != ',')) | |
4968 | goto error; | |
4969 | --sp; | |
4970 | while (*sp == '0') | |
4971 | *sp-- = 'z'; | |
4972 | trail = 1; | |
4973 | if (*s == 'z') | |
4974 | goto donchr; | |
4975 | } | |
4976 | ||
4977 | /* If enough digits were given to more than fill up the yy register, | |
4978 | continuing until overflow into the high guard word yy[2] | |
4979 | guarantees that there will be a roundoff bit at the top | |
4980 | of the low guard word after normalization. */ | |
4981 | ||
4982 | if (yy[2] == 0) | |
4983 | { | |
4984 | if (decflg) | |
4985 | nexp += 1; /* count digits after decimal point */ | |
4986 | eshup1 (yy); /* multiply current number by 10 */ | |
4987 | emovz (yy, xt); | |
4988 | eshup1 (xt); | |
4989 | eshup1 (xt); | |
4990 | eaddm (xt, yy); | |
4991 | ecleaz (xt); | |
4992 | xt[NI - 2] = (unsigned EMUSHORT) k; | |
4993 | eaddm (xt, yy); | |
4994 | } | |
4995 | else | |
4996 | { | |
4997 | /* Mark any lost non-zero digit. */ | |
4998 | lost |= k; | |
4999 | /* Count lost digits before the decimal point. */ | |
5000 | if (decflg == 0) | |
5001 | nexp -= 1; | |
5002 | } | |
5003 | prec += 1; | |
5004 | goto donchr; | |
5005 | } | |
5006 | ||
5007 | switch (*s) | |
5008 | { | |
5009 | case 'z': | |
5010 | break; | |
5011 | case 'E': | |
5012 | case 'e': | |
5013 | goto expnt; | |
5014 | case '.': /* decimal point */ | |
5015 | if (decflg) | |
5016 | goto error; | |
5017 | ++decflg; | |
5018 | break; | |
5019 | case '-': | |
5020 | nsign = 0xffff; | |
5021 | if (sgnflg) | |
5022 | goto error; | |
5023 | ++sgnflg; | |
5024 | break; | |
5025 | case '+': | |
5026 | if (sgnflg) | |
5027 | goto error; | |
5028 | ++sgnflg; | |
5029 | break; | |
5030 | case ',': | |
5031 | case ' ': | |
5032 | case '\0': | |
5033 | case '\n': | |
5034 | case '\r': | |
5035 | goto daldone; | |
5036 | case 'i': | |
5037 | case 'I': | |
5038 | goto infinite; | |
5039 | default: | |
5040 | error: | |
5041 | #ifdef NANS | |
5042 | einan (yy); | |
5043 | #else | |
5044 | mtherr ("asctoe", DOMAIN); | |
5045 | eclear (yy); | |
5046 | #endif | |
5047 | goto aexit; | |
5048 | } | |
5049 | donchr: | |
5050 | ++s; | |
5051 | goto nxtcom; | |
5052 | ||
5053 | /* Exponent interpretation */ | |
5054 | expnt: | |
5055 | /* 0.0eXXX is zero, regardless of XXX. Check for the 0.0. */ | |
5056 | for (k = 0; k < NI; k++) | |
5057 | { | |
5058 | if (yy[k] != 0) | |
5059 | goto read_expnt; | |
5060 | } | |
5061 | goto aexit; | |
5062 | ||
5063 | read_expnt: | |
5064 | esign = 1; | |
5065 | exp = 0; | |
5066 | ++s; | |
5067 | /* check for + or - */ | |
5068 | if (*s == '-') | |
5069 | { | |
5070 | esign = -1; | |
5071 | ++s; | |
5072 | } | |
5073 | if (*s == '+') | |
5074 | ++s; | |
5075 | while ((*s >= '0') && (*s <= '9')) | |
5076 | { | |
5077 | exp *= 10; | |
5078 | exp += *s++ - '0'; | |
5079 | if (exp > -(MINDECEXP)) | |
5080 | { | |
5081 | if (esign < 0) | |
5082 | goto zero; | |
5083 | else | |
5084 | goto infinite; | |
5085 | } | |
5086 | } | |
5087 | if (esign < 0) | |
5088 | exp = -exp; | |
5089 | if (exp > MAXDECEXP) | |
5090 | { | |
5091 | infinite: | |
5092 | ecleaz (yy); | |
5093 | yy[E] = 0x7fff; /* infinity */ | |
5094 | goto aexit; | |
5095 | } | |
5096 | if (exp < MINDECEXP) | |
5097 | { | |
5098 | zero: | |
5099 | ecleaz (yy); | |
5100 | goto aexit; | |
5101 | } | |
5102 | ||
5103 | daldone: | |
5104 | nexp = exp - nexp; | |
5105 | /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ | |
5106 | while ((nexp > 0) && (yy[2] == 0)) | |
5107 | { | |
5108 | emovz (yy, xt); | |
5109 | eshup1 (xt); | |
5110 | eshup1 (xt); | |
5111 | eaddm (yy, xt); | |
5112 | eshup1 (xt); | |
5113 | if (xt[2] != 0) | |
5114 | break; | |
5115 | nexp -= 1; | |
5116 | emovz (xt, yy); | |
5117 | } | |
5118 | if ((k = enormlz (yy)) > NBITS) | |
5119 | { | |
5120 | ecleaz (yy); | |
5121 | goto aexit; | |
5122 | } | |
5123 | lexp = (EXONE - 1 + NBITS) - k; | |
5124 | emdnorm (yy, lost, 0, lexp, 64); | |
5125 | ||
5126 | /* Convert to external format: | |
5127 | ||
5128 | Multiply by 10**nexp. If precision is 64 bits, | |
5129 | the maximum relative error incurred in forming 10**n | |
5130 | for 0 <= n <= 324 is 8.2e-20, at 10**180. | |
5131 | For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. | |
5132 | For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */ | |
5133 | ||
5134 | lexp = yy[E]; | |
5135 | if (nexp == 0) | |
5136 | { | |
5137 | k = 0; | |
5138 | goto expdon; | |
5139 | } | |
5140 | esign = 1; | |
5141 | if (nexp < 0) | |
5142 | { | |
5143 | nexp = -nexp; | |
5144 | esign = -1; | |
5145 | if (nexp > 4096) | |
5146 | { | |
5147 | /* Punt. Can't handle this without 2 divides. */ | |
5148 | emovi (etens[0], tt); | |
5149 | lexp -= tt[E]; | |
5150 | k = edivm (tt, yy); | |
5151 | lexp += EXONE; | |
5152 | nexp -= 4096; | |
5153 | } | |
5154 | } | |
5155 | p = &etens[NTEN][0]; | |
5156 | emov (eone, xt); | |
5157 | exp = 1; | |
5158 | do | |
5159 | { | |
5160 | if (exp & nexp) | |
5161 | emul (p, xt, xt); | |
5162 | p -= NE; | |
5163 | exp = exp + exp; | |
5164 | } | |
5165 | while (exp <= MAXP); | |
5166 | ||
5167 | emovi (xt, tt); | |
5168 | if (esign < 0) | |
5169 | { | |
5170 | lexp -= tt[E]; | |
5171 | k = edivm (tt, yy); | |
5172 | lexp += EXONE; | |
5173 | } | |
5174 | else | |
5175 | { | |
5176 | lexp += tt[E]; | |
5177 | k = emulm (tt, yy); | |
5178 | lexp -= EXONE - 1; | |
5179 | } | |
5180 | ||
5181 | expdon: | |
5182 | ||
5183 | /* Round and convert directly to the destination type */ | |
5184 | if (oprec == 53) | |
5185 | lexp -= EXONE - 0x3ff; | |
5186 | #ifdef IBM | |
5187 | else if (oprec == 24 || oprec == 56) | |
5188 | lexp -= EXONE - (0x41 << 2); | |
5189 | #else | |
5190 | else if (oprec == 24) | |
5191 | lexp -= EXONE - 0177; | |
5192 | #endif | |
5193 | #ifdef DEC | |
5194 | else if (oprec == 56) | |
5195 | lexp -= EXONE - 0201; | |
5196 | #endif | |
5197 | rndprc = oprec; | |
5198 | emdnorm (yy, k, 0, lexp, 64); | |
5199 | ||
5200 | aexit: | |
5201 | ||
5202 | rndprc = rndsav; | |
5203 | yy[0] = nsign; | |
5204 | switch (oprec) | |
5205 | { | |
5206 | #ifdef DEC | |
5207 | case 56: | |
5208 | todec (yy, y); /* see etodec.c */ | |
5209 | break; | |
5210 | #endif | |
5211 | #ifdef IBM | |
5212 | case 56: | |
5213 | toibm (yy, y, DFmode); | |
5214 | break; | |
5215 | #endif | |
5216 | case 53: | |
5217 | toe53 (yy, y); | |
5218 | break; | |
5219 | case 24: | |
5220 | toe24 (yy, y); | |
5221 | break; | |
5222 | case 64: | |
5223 | toe64 (yy, y); | |
5224 | break; | |
5225 | case 113: | |
5226 | toe113 (yy, y); | |
5227 | break; | |
5228 | case NBITS: | |
5229 | emovo (yy, y); | |
5230 | break; | |
5231 | } | |
5232 | } | |
5233 | ||
5234 | ||
5235 | ||
5236 | /* Return Y = largest integer not greater than X (truncated toward minus | |
5237 | infinity). */ | |
5238 | ||
5239 | static unsigned EMUSHORT bmask[] = | |
5240 | { | |
5241 | 0xffff, | |
5242 | 0xfffe, | |
5243 | 0xfffc, | |
5244 | 0xfff8, | |
5245 | 0xfff0, | |
5246 | 0xffe0, | |
5247 | 0xffc0, | |
5248 | 0xff80, | |
5249 | 0xff00, | |
5250 | 0xfe00, | |
5251 | 0xfc00, | |
5252 | 0xf800, | |
5253 | 0xf000, | |
5254 | 0xe000, | |
5255 | 0xc000, | |
5256 | 0x8000, | |
5257 | 0x0000, | |
5258 | }; | |
5259 | ||
5260 | static void | |
5261 | efloor (x, y) | |
5262 | unsigned EMUSHORT x[], y[]; | |
5263 | { | |
5264 | register unsigned EMUSHORT *p; | |
5265 | int e, expon, i; | |
5266 | unsigned EMUSHORT f[NE]; | |
5267 | ||
5268 | emov (x, f); /* leave in external format */ | |
5269 | expon = (int) f[NE - 1]; | |
5270 | e = (expon & 0x7fff) - (EXONE - 1); | |
5271 | if (e <= 0) | |
5272 | { | |
5273 | eclear (y); | |
5274 | goto isitneg; | |
5275 | } | |
5276 | /* number of bits to clear out */ | |
5277 | e = NBITS - e; | |
5278 | emov (f, y); | |
5279 | if (e <= 0) | |
5280 | return; | |
5281 | ||
5282 | p = &y[0]; | |
5283 | while (e >= 16) | |
5284 | { | |
5285 | *p++ = 0; | |
5286 | e -= 16; | |
5287 | } | |
5288 | /* clear the remaining bits */ | |
5289 | *p &= bmask[e]; | |
5290 | /* truncate negatives toward minus infinity */ | |
5291 | isitneg: | |
5292 | ||
5293 | if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) | |
5294 | { | |
5295 | for (i = 0; i < NE - 1; i++) | |
5296 | { | |
5297 | if (f[i] != y[i]) | |
5298 | { | |
5299 | esub (eone, y, y); | |
5300 | break; | |
5301 | } | |
5302 | } | |
5303 | } | |
5304 | } | |
5305 | ||
5306 | ||
5307 | /* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1. | |
5308 | For example, 1.1 = 0.55 * 2^1. */ | |
5309 | ||
5310 | static void | |
5311 | efrexp (x, exp, s) | |
5312 | unsigned EMUSHORT x[]; | |
5313 | int *exp; | |
5314 | unsigned EMUSHORT s[]; | |
5315 | { | |
5316 | unsigned EMUSHORT xi[NI]; | |
5317 | EMULONG li; | |
5318 | ||
5319 | emovi (x, xi); | |
5320 | /* Handle denormalized numbers properly using long integer exponent. */ | |
5321 | li = (EMULONG) ((EMUSHORT) xi[1]); | |
5322 | ||
5323 | if (li == 0) | |
5324 | { | |
5325 | li -= enormlz (xi); | |
5326 | } | |
5327 | xi[1] = 0x3ffe; | |
5328 | emovo (xi, s); | |
5329 | *exp = (int) (li - 0x3ffe); | |
5330 | } | |
5331 | ||
5332 | /* Return e type Y = X * 2^PWR2. */ | |
5333 | ||
5334 | static void | |
5335 | eldexp (x, pwr2, y) | |
5336 | unsigned EMUSHORT x[]; | |
5337 | int pwr2; | |
5338 | unsigned EMUSHORT y[]; | |
5339 | { | |
5340 | unsigned EMUSHORT xi[NI]; | |
5341 | EMULONG li; | |
5342 | int i; | |
5343 | ||
5344 | emovi (x, xi); | |
5345 | li = xi[1]; | |
5346 | li += pwr2; | |
5347 | i = 0; | |
5348 | emdnorm (xi, i, i, li, 64); | |
5349 | emovo (xi, y); | |
5350 | } | |
5351 | ||
5352 | ||
5353 | /* C = remainder after dividing B by A, all e type values. | |
5354 | Least significant integer quotient bits left in EQUOT. */ | |
5355 | ||
5356 | static void | |
5357 | eremain (a, b, c) | |
5358 | unsigned EMUSHORT a[], b[], c[]; | |
5359 | { | |
5360 | unsigned EMUSHORT den[NI], num[NI]; | |
5361 | ||
5362 | #ifdef NANS | |
5363 | if (eisinf (b) | |
5364 | || (ecmp (a, ezero) == 0) | |
5365 | || eisnan (a) | |
5366 | || eisnan (b)) | |
5367 | { | |
5368 | enan (c, 0); | |
5369 | return; | |
5370 | } | |
5371 | #endif | |
5372 | if (ecmp (a, ezero) == 0) | |
5373 | { | |
5374 | mtherr ("eremain", SING); | |
5375 | eclear (c); | |
5376 | return; | |
5377 | } | |
5378 | emovi (a, den); | |
5379 | emovi (b, num); | |
5380 | eiremain (den, num); | |
5381 | /* Sign of remainder = sign of quotient */ | |
5382 | if (a[0] == b[0]) | |
5383 | num[0] = 0; | |
5384 | else | |
5385 | num[0] = 0xffff; | |
5386 | emovo (num, c); | |
5387 | } | |
5388 | ||
5389 | /* Return quotient of exploded e-types NUM / DEN in EQUOT, | |
5390 | remainder in NUM. */ | |
5391 | ||
5392 | static void | |
5393 | eiremain (den, num) | |
5394 | unsigned EMUSHORT den[], num[]; | |
5395 | { | |
5396 | EMULONG ld, ln; | |
5397 | unsigned EMUSHORT j; | |
5398 | ||
5399 | ld = den[E]; | |
5400 | ld -= enormlz (den); | |
5401 | ln = num[E]; | |
5402 | ln -= enormlz (num); | |
5403 | ecleaz (equot); | |
5404 | while (ln >= ld) | |
5405 | { | |
5406 | if (ecmpm (den, num) <= 0) | |
5407 | { | |
5408 | esubm (den, num); | |
5409 | j = 1; | |
5410 | } | |
5411 | else | |
5412 | j = 0; | |
5413 | eshup1 (equot); | |
5414 | equot[NI - 1] |= j; | |
5415 | eshup1 (num); | |
5416 | ln -= 1; | |
5417 | } | |
5418 | emdnorm (num, 0, 0, ln, 0); | |
5419 | } | |
5420 | ||
5421 | /* Report an error condition CODE encountered in function NAME. | |
5422 | CODE is one of the following: | |
5423 | ||
5424 | Mnemonic Value Significance | |
5425 | ||
5426 | DOMAIN 1 argument domain error | |
5427 | SING 2 function singularity | |
5428 | OVERFLOW 3 overflow range error | |
5429 | UNDERFLOW 4 underflow range error | |
5430 | TLOSS 5 total loss of precision | |
5431 | PLOSS 6 partial loss of precision | |
5432 | INVALID 7 NaN - producing operation | |
5433 | EDOM 33 Unix domain error code | |
5434 | ERANGE 34 Unix range error code | |
5435 | ||
5436 | The order of appearance of the following messages is bound to the | |
5437 | error codes defined above. */ | |
5438 | ||
5439 | #define NMSGS 8 | |
5440 | static char *ermsg[NMSGS] = | |
5441 | { | |
5442 | "unknown", /* error code 0 */ | |
5443 | "domain", /* error code 1 */ | |
5444 | "singularity", /* et seq. */ | |
5445 | "overflow", | |
5446 | "underflow", | |
5447 | "total loss of precision", | |
5448 | "partial loss of precision", | |
5449 | "invalid operation" | |
5450 | }; | |
5451 | ||
5452 | int merror = 0; | |
5453 | extern int merror; | |
5454 | ||
5455 | static void | |
5456 | mtherr (name, code) | |
5457 | char *name; | |
5458 | int code; | |
5459 | { | |
5460 | char errstr[80]; | |
5461 | ||
5462 | /* The string passed by the calling program is supposed to be the | |
5463 | name of the function in which the error occurred. | |
5464 | The code argument selects which error message string will be printed. */ | |
5465 | ||
5466 | if ((code <= 0) || (code >= NMSGS)) | |
5467 | code = 0; | |
5468 | sprintf (errstr, " %s %s error", name, ermsg[code]); | |
5469 | if (extra_warnings) | |
5470 | warning (errstr); | |
5471 | /* Set global error message word */ | |
5472 | merror = code + 1; | |
5473 | } | |
5474 | ||
5475 | #ifdef DEC | |
5476 | /* Convert DEC double precision D to e type E. */ | |
5477 | ||
5478 | static void | |
5479 | dectoe (d, e) | |
5480 | unsigned EMUSHORT *d; | |
5481 | unsigned EMUSHORT *e; | |
5482 | { | |
5483 | unsigned EMUSHORT y[NI]; | |
5484 | register unsigned EMUSHORT r, *p; | |
5485 | ||
5486 | ecleaz (y); /* start with a zero */ | |
5487 | p = y; /* point to our number */ | |
5488 | r = *d; /* get DEC exponent word */ | |
5489 | if (*d & (unsigned int) 0x8000) | |
5490 | *p = 0xffff; /* fill in our sign */ | |
5491 | ++p; /* bump pointer to our exponent word */ | |
5492 | r &= 0x7fff; /* strip the sign bit */ | |
5493 | if (r == 0) /* answer = 0 if high order DEC word = 0 */ | |
5494 | goto done; | |
5495 | ||
5496 | ||
5497 | r >>= 7; /* shift exponent word down 7 bits */ | |
5498 | r += EXONE - 0201; /* subtract DEC exponent offset */ | |
5499 | /* add our e type exponent offset */ | |
5500 | *p++ = r; /* to form our exponent */ | |
5501 | ||
5502 | r = *d++; /* now do the high order mantissa */ | |
5503 | r &= 0177; /* strip off the DEC exponent and sign bits */ | |
5504 | r |= 0200; /* the DEC understood high order mantissa bit */ | |
5505 | *p++ = r; /* put result in our high guard word */ | |
5506 | ||
5507 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5508 | *p++ = *d++; | |
5509 | *p = *d; | |
5510 | ||
5511 | eshdn8 (y); /* shift our mantissa down 8 bits */ | |
5512 | done: | |
5513 | emovo (y, e); | |
5514 | } | |
5515 | ||
5516 | /* Convert e type X to DEC double precision D. */ | |
5517 | ||
5518 | static void | |
5519 | etodec (x, d) | |
5520 | unsigned EMUSHORT *x, *d; | |
5521 | { | |
5522 | unsigned EMUSHORT xi[NI]; | |
5523 | EMULONG exp; | |
5524 | int rndsav; | |
5525 | ||
5526 | emovi (x, xi); | |
5527 | /* Adjust exponent for offsets. */ | |
5528 | exp = (EMULONG) xi[E] - (EXONE - 0201); | |
5529 | /* Round off to nearest or even. */ | |
5530 | rndsav = rndprc; | |
5531 | rndprc = 56; | |
5532 | emdnorm (xi, 0, 0, exp, 64); | |
5533 | rndprc = rndsav; | |
5534 | todec (xi, d); | |
5535 | } | |
5536 | ||
5537 | /* Convert exploded e-type X, that has already been rounded to | |
5538 | 56-bit precision, to DEC format double Y. */ | |
5539 | ||
5540 | static void | |
5541 | todec (x, y) | |
5542 | unsigned EMUSHORT *x, *y; | |
5543 | { | |
5544 | unsigned EMUSHORT i; | |
5545 | unsigned EMUSHORT *p; | |
5546 | ||
5547 | p = x; | |
5548 | *y = 0; | |
5549 | if (*p++) | |
5550 | *y = 0100000; | |
5551 | i = *p++; | |
5552 | if (i == 0) | |
5553 | { | |
5554 | *y++ = 0; | |
5555 | *y++ = 0; | |
5556 | *y++ = 0; | |
5557 | *y++ = 0; | |
5558 | return; | |
5559 | } | |
5560 | if (i > 0377) | |
5561 | { | |
5562 | *y++ |= 077777; | |
5563 | *y++ = 0xffff; | |
5564 | *y++ = 0xffff; | |
5565 | *y++ = 0xffff; | |
5566 | #ifdef ERANGE | |
5567 | errno = ERANGE; | |
5568 | #endif | |
5569 | return; | |
5570 | } | |
5571 | i &= 0377; | |
5572 | i <<= 7; | |
5573 | eshup8 (x); | |
5574 | x[M] &= 0177; | |
5575 | i |= x[M]; | |
5576 | *y++ |= i; | |
5577 | *y++ = x[M + 1]; | |
5578 | *y++ = x[M + 2]; | |
5579 | *y++ = x[M + 3]; | |
5580 | } | |
5581 | #endif /* DEC */ | |
5582 | ||
5583 | #ifdef IBM | |
5584 | /* Convert IBM single/double precision to e type. */ | |
5585 | ||
5586 | static void | |
5587 | ibmtoe (d, e, mode) | |
5588 | unsigned EMUSHORT *d; | |
5589 | unsigned EMUSHORT *e; | |
5590 | enum machine_mode mode; | |
5591 | { | |
5592 | unsigned EMUSHORT y[NI]; | |
5593 | register unsigned EMUSHORT r, *p; | |
5594 | int rndsav; | |
5595 | ||
5596 | ecleaz (y); /* start with a zero */ | |
5597 | p = y; /* point to our number */ | |
5598 | r = *d; /* get IBM exponent word */ | |
5599 | if (*d & (unsigned int) 0x8000) | |
5600 | *p = 0xffff; /* fill in our sign */ | |
5601 | ++p; /* bump pointer to our exponent word */ | |
5602 | r &= 0x7f00; /* strip the sign bit */ | |
5603 | r >>= 6; /* shift exponent word down 6 bits */ | |
5604 | /* in fact shift by 8 right and 2 left */ | |
5605 | r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */ | |
5606 | /* add our e type exponent offset */ | |
5607 | *p++ = r; /* to form our exponent */ | |
5608 | ||
5609 | *p++ = *d++ & 0xff; /* now do the high order mantissa */ | |
5610 | /* strip off the IBM exponent and sign bits */ | |
5611 | if (mode != SFmode) /* there are only 2 words in SFmode */ | |
5612 | { | |
5613 | *p++ = *d++; /* fill in the rest of our mantissa */ | |
5614 | *p++ = *d++; | |
5615 | } | |
5616 | *p = *d; | |
5617 | ||
5618 | if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0) | |
5619 | y[0] = y[E] = 0; | |
5620 | else | |
5621 | y[E] -= 5 + enormlz (y); /* now normalise the mantissa */ | |
5622 | /* handle change in RADIX */ | |
5623 | emovo (y, e); | |
5624 | } | |
5625 | ||
5626 | ||
5627 | ||
5628 | /* Convert e type to IBM single/double precision. */ | |
5629 | ||
5630 | static void | |
5631 | etoibm (x, d, mode) | |
5632 | unsigned EMUSHORT *x, *d; | |
5633 | enum machine_mode mode; | |
5634 | { | |
5635 | unsigned EMUSHORT xi[NI]; | |
5636 | EMULONG exp; | |
5637 | int rndsav; | |
5638 | ||
5639 | emovi (x, xi); | |
5640 | exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */ | |
5641 | /* round off to nearest or even */ | |
5642 | rndsav = rndprc; | |
5643 | rndprc = 56; | |
5644 | emdnorm (xi, 0, 0, exp, 64); | |
5645 | rndprc = rndsav; | |
5646 | toibm (xi, d, mode); | |
5647 | } | |
5648 | ||
5649 | static void | |
5650 | toibm (x, y, mode) | |
5651 | unsigned EMUSHORT *x, *y; | |
5652 | enum machine_mode mode; | |
5653 | { | |
5654 | unsigned EMUSHORT i; | |
5655 | unsigned EMUSHORT *p; | |
5656 | int r; | |
5657 | ||
5658 | p = x; | |
5659 | *y = 0; | |
5660 | if (*p++) | |
5661 | *y = 0x8000; | |
5662 | i = *p++; | |
5663 | if (i == 0) | |
5664 | { | |
5665 | *y++ = 0; | |
5666 | *y++ = 0; | |
5667 | if (mode != SFmode) | |
5668 | { | |
5669 | *y++ = 0; | |
5670 | *y++ = 0; | |
5671 | } | |
5672 | return; | |
5673 | } | |
5674 | r = i & 0x3; | |
5675 | i >>= 2; | |
5676 | if (i > 0x7f) | |
5677 | { | |
5678 | *y++ |= 0x7fff; | |
5679 | *y++ = 0xffff; | |
5680 | if (mode != SFmode) | |
5681 | { | |
5682 | *y++ = 0xffff; | |
5683 | *y++ = 0xffff; | |
5684 | } | |
5685 | #ifdef ERANGE | |
5686 | errno = ERANGE; | |
5687 | #endif | |
5688 | return; | |
5689 | } | |
5690 | i &= 0x7f; | |
5691 | *y |= (i << 8); | |
5692 | eshift (x, r + 5); | |
5693 | *y++ |= x[M]; | |
5694 | *y++ = x[M + 1]; | |
5695 | if (mode != SFmode) | |
5696 | { | |
5697 | *y++ = x[M + 2]; | |
5698 | *y++ = x[M + 3]; | |
5699 | } | |
5700 | } | |
5701 | #endif /* IBM */ | |
5702 | ||
5703 | /* Output a binary NaN bit pattern in the target machine's format. */ | |
5704 | ||
5705 | /* If special NaN bit patterns are required, define them in tm.h | |
5706 | as arrays of unsigned 16-bit shorts. Otherwise, use the default | |
5707 | patterns here. */ | |
5708 | #ifdef TFMODE_NAN | |
5709 | TFMODE_NAN; | |
5710 | #else | |
5711 | #ifdef IEEE | |
5712 | unsigned EMUSHORT TFbignan[8] = | |
5713 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
5714 | unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; | |
5715 | #endif | |
5716 | #endif | |
5717 | ||
5718 | #ifdef XFMODE_NAN | |
5719 | XFMODE_NAN; | |
5720 | #else | |
5721 | #ifdef IEEE | |
5722 | unsigned EMUSHORT XFbignan[6] = | |
5723 | {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; | |
5724 | unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; | |
5725 | #endif | |
5726 | #endif | |
5727 | ||
5728 | #ifdef DFMODE_NAN | |
5729 | DFMODE_NAN; | |
5730 | #else | |
5731 | #ifdef IEEE | |
5732 | unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; | |
5733 | unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8}; | |
5734 | #endif | |
5735 | #endif | |
5736 | ||
5737 | #ifdef SFMODE_NAN | |
5738 | SFMODE_NAN; | |
5739 | #else | |
5740 | #ifdef IEEE | |
5741 | unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff}; | |
5742 | unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0}; | |
5743 | #endif | |
5744 | #endif | |
5745 | ||
5746 | ||
5747 | static void | |
5748 | make_nan (nan, sign, mode) | |
5749 | unsigned EMUSHORT *nan; | |
5750 | int sign; | |
5751 | enum machine_mode mode; | |
5752 | { | |
5753 | int n; | |
5754 | unsigned EMUSHORT *p; | |
5755 | ||
5756 | switch (mode) | |
5757 | { | |
5758 | /* Possibly the `reserved operand' patterns on a VAX can be | |
5759 | used like NaN's, but probably not in the same way as IEEE. */ | |
5760 | #if !defined(DEC) && !defined(IBM) | |
5761 | case TFmode: | |
5762 | n = 8; | |
5763 | if (REAL_WORDS_BIG_ENDIAN) | |
5764 | p = TFbignan; | |
5765 | else | |
5766 | p = TFlittlenan; | |
5767 | break; | |
5768 | case XFmode: | |
5769 | n = 6; | |
5770 | if (REAL_WORDS_BIG_ENDIAN) | |
5771 | p = XFbignan; | |
5772 | else | |
5773 | p = XFlittlenan; | |
5774 | break; | |
5775 | case DFmode: | |
5776 | n = 4; | |
5777 | if (REAL_WORDS_BIG_ENDIAN) | |
5778 | p = DFbignan; | |
5779 | else | |
5780 | p = DFlittlenan; | |
5781 | break; | |
5782 | case HFmode: | |
5783 | case SFmode: | |
5784 | n = 2; | |
5785 | if (REAL_WORDS_BIG_ENDIAN) | |
5786 | p = SFbignan; | |
5787 | else | |
5788 | p = SFlittlenan; | |
5789 | break; | |
5790 | #endif | |
5791 | default: | |
5792 | abort (); | |
5793 | } | |
5794 | if (REAL_WORDS_BIG_ENDIAN) | |
5795 | *nan++ = (sign << 15) | *p++; | |
5796 | while (--n != 0) | |
5797 | *nan++ = *p++; | |
5798 | if (! REAL_WORDS_BIG_ENDIAN) | |
5799 | *nan = (sign << 15) | *p; | |
5800 | } | |
5801 | ||
5802 | /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE. | |
5803 | This is the inverse of the function `etarsingle' invoked by | |
5804 | REAL_VALUE_TO_TARGET_SINGLE. */ | |
5805 | ||
5806 | REAL_VALUE_TYPE | |
5807 | ereal_from_float (f) | |
5808 | HOST_WIDE_INT f; | |
5809 | { | |
5810 | REAL_VALUE_TYPE r; | |
5811 | unsigned EMUSHORT s[2]; | |
5812 | unsigned EMUSHORT e[NE]; | |
5813 | ||
5814 | /* Convert 32 bit integer to array of 16 bit pieces in target machine order. | |
5815 | This is the inverse operation to what the function `endian' does. */ | |
5816 | if (REAL_WORDS_BIG_ENDIAN) | |
5817 | { | |
5818 | s[0] = (unsigned EMUSHORT) (f >> 16); | |
5819 | s[1] = (unsigned EMUSHORT) f; | |
5820 | } | |
5821 | else | |
5822 | { | |
5823 | s[0] = (unsigned EMUSHORT) f; | |
5824 | s[1] = (unsigned EMUSHORT) (f >> 16); | |
5825 | } | |
5826 | /* Convert and promote the target float to E-type. */ | |
5827 | e24toe (s, e); | |
5828 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5829 | PUT_REAL (e, &r); | |
5830 | return r; | |
5831 | } | |
5832 | ||
5833 | ||
5834 | /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE. | |
5835 | This is the inverse of the function `etardouble' invoked by | |
5836 | REAL_VALUE_TO_TARGET_DOUBLE. | |
5837 | ||
5838 | The DFmode is stored as an array of HOST_WIDE_INT in the target's | |
5839 | data format, with no holes in the bit packing. The first element | |
5840 | of the input array holds the bits that would come first in the | |
5841 | target computer's memory. */ | |
5842 | ||
5843 | REAL_VALUE_TYPE | |
5844 | ereal_from_double (d) | |
5845 | HOST_WIDE_INT d[]; | |
5846 | { | |
5847 | REAL_VALUE_TYPE r; | |
5848 | unsigned EMUSHORT s[4]; | |
5849 | unsigned EMUSHORT e[NE]; | |
5850 | ||
5851 | /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ | |
5852 | if (REAL_WORDS_BIG_ENDIAN) | |
5853 | { | |
5854 | s[0] = (unsigned EMUSHORT) (d[0] >> 16); | |
5855 | s[1] = (unsigned EMUSHORT) d[0]; | |
5856 | #if HOST_BITS_PER_WIDE_INT == 32 | |
5857 | s[2] = (unsigned EMUSHORT) (d[1] >> 16); | |
5858 | s[3] = (unsigned EMUSHORT) d[1]; | |
5859 | #else | |
5860 | /* In this case the entire target double is contained in the | |
5861 | first array element. The second element of the input is | |
5862 | ignored. */ | |
5863 | s[2] = (unsigned EMUSHORT) (d[0] >> 48); | |
5864 | s[3] = (unsigned EMUSHORT) (d[0] >> 32); | |
5865 | #endif | |
5866 | } | |
5867 | else | |
5868 | { | |
5869 | /* Target float words are little-endian. */ | |
5870 | s[0] = (unsigned EMUSHORT) d[0]; | |
5871 | s[1] = (unsigned EMUSHORT) (d[0] >> 16); | |
5872 | #if HOST_BITS_PER_WIDE_INT == 32 | |
5873 | s[2] = (unsigned EMUSHORT) d[1]; | |
5874 | s[3] = (unsigned EMUSHORT) (d[1] >> 16); | |
5875 | #else | |
5876 | s[2] = (unsigned EMUSHORT) (d[0] >> 32); | |
5877 | s[3] = (unsigned EMUSHORT) (d[0] >> 48); | |
5878 | #endif | |
5879 | } | |
5880 | /* Convert target double to E-type. */ | |
5881 | e53toe (s, e); | |
5882 | /* Output E-type to REAL_VALUE_TYPE. */ | |
5883 | PUT_REAL (e, &r); | |
5884 | return r; | |
5885 | } | |
5886 | ||
5887 | ||
5888 | /* Convert target computer unsigned 64-bit integer to e-type. | |
5889 | The endian-ness of DImode follows the convention for integers, | |
5890 | so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */ | |
5891 | ||
5892 | static void | |
5893 | uditoe (di, e) | |
5894 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5895 | unsigned EMUSHORT *e; | |
5896 | { | |
5897 | unsigned EMUSHORT yi[NI]; | |
5898 | int k; | |
5899 | ||
5900 | ecleaz (yi); | |
5901 | if (WORDS_BIG_ENDIAN) | |
5902 | { | |
5903 | for (k = M; k < M + 4; k++) | |
5904 | yi[k] = *di++; | |
5905 | } | |
5906 | else | |
5907 | { | |
5908 | for (k = M + 3; k >= M; k--) | |
5909 | yi[k] = *di++; | |
5910 | } | |
5911 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
5912 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5913 | ecleaz (yi); /* it was zero */ | |
5914 | else | |
5915 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5916 | emovo (yi, e); | |
5917 | } | |
5918 | ||
5919 | /* Convert target computer signed 64-bit integer to e-type. */ | |
5920 | ||
5921 | static void | |
5922 | ditoe (di, e) | |
5923 | unsigned EMUSHORT *di; /* Address of the 64-bit int. */ | |
5924 | unsigned EMUSHORT *e; | |
5925 | { | |
5926 | unsigned EMULONG acc; | |
5927 | unsigned EMUSHORT yi[NI]; | |
5928 | unsigned EMUSHORT carry; | |
5929 | int k, sign; | |
5930 | ||
5931 | ecleaz (yi); | |
5932 | if (WORDS_BIG_ENDIAN) | |
5933 | { | |
5934 | for (k = M; k < M + 4; k++) | |
5935 | yi[k] = *di++; | |
5936 | } | |
5937 | else | |
5938 | { | |
5939 | for (k = M + 3; k >= M; k--) | |
5940 | yi[k] = *di++; | |
5941 | } | |
5942 | /* Take absolute value */ | |
5943 | sign = 0; | |
5944 | if (yi[M] & 0x8000) | |
5945 | { | |
5946 | sign = 1; | |
5947 | carry = 0; | |
5948 | for (k = M + 3; k >= M; k--) | |
5949 | { | |
5950 | acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry; | |
5951 | yi[k] = acc; | |
5952 | carry = 0; | |
5953 | if (acc & 0x10000) | |
5954 | carry = 1; | |
5955 | } | |
5956 | } | |
5957 | yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ | |
5958 | if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ | |
5959 | ecleaz (yi); /* it was zero */ | |
5960 | else | |
5961 | yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ | |
5962 | emovo (yi, e); | |
5963 | if (sign) | |
5964 | eneg (e); | |
5965 | } | |
5966 | ||
5967 | ||
5968 | /* Convert e-type to unsigned 64-bit int. */ | |
5969 | ||
5970 | static void | |
5971 | etoudi (x, i) | |
5972 | unsigned EMUSHORT *x; | |
5973 | unsigned EMUSHORT *i; | |
5974 | { | |
5975 | unsigned EMUSHORT xi[NI]; | |
5976 | int j, k; | |
5977 | ||
5978 | emovi (x, xi); | |
5979 | if (xi[0]) | |
5980 | { | |
5981 | xi[M] = 0; | |
5982 | goto noshift; | |
5983 | } | |
5984 | k = (int) xi[E] - (EXONE - 1); | |
5985 | if (k <= 0) | |
5986 | { | |
5987 | for (j = 0; j < 4; j++) | |
5988 | *i++ = 0; | |
5989 | return; | |
5990 | } | |
5991 | if (k > 64) | |
5992 | { | |
5993 | for (j = 0; j < 4; j++) | |
5994 | *i++ = 0xffff; | |
5995 | if (extra_warnings) | |
5996 | warning ("overflow on truncation to integer"); | |
5997 | return; | |
5998 | } | |
5999 | if (k > 16) | |
6000 | { | |
6001 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
6002 | then shift up by 16's. */ | |
6003 | j = k - ((k >> 4) << 4); | |
6004 | if (j == 0) | |
6005 | j = 16; | |
6006 | eshift (xi, j); | |
6007 | if (WORDS_BIG_ENDIAN) | |
6008 | *i++ = xi[M]; | |
6009 | else | |
6010 | { | |
6011 | i += 3; | |
6012 | *i-- = xi[M]; | |
6013 | } | |
6014 | k -= j; | |
6015 | do | |
6016 | { | |
6017 | eshup6 (xi); | |
6018 | if (WORDS_BIG_ENDIAN) | |
6019 | *i++ = xi[M]; | |
6020 | else | |
6021 | *i-- = xi[M]; | |
6022 | } | |
6023 | while ((k -= 16) > 0); | |
6024 | } | |
6025 | else | |
6026 | { | |
6027 | /* shift not more than 16 bits */ | |
6028 | eshift (xi, k); | |
6029 | ||
6030 | noshift: | |
6031 | ||
6032 | if (WORDS_BIG_ENDIAN) | |
6033 | { | |
6034 | i += 3; | |
6035 | *i-- = xi[M]; | |
6036 | *i-- = 0; | |
6037 | *i-- = 0; | |
6038 | *i = 0; | |
6039 | } | |
6040 | else | |
6041 | { | |
6042 | *i++ = xi[M]; | |
6043 | *i++ = 0; | |
6044 | *i++ = 0; | |
6045 | *i = 0; | |
6046 | } | |
6047 | } | |
6048 | } | |
6049 | ||
6050 | ||
6051 | /* Convert e-type to signed 64-bit int. */ | |
6052 | ||
6053 | static void | |
6054 | etodi (x, i) | |
6055 | unsigned EMUSHORT *x; | |
6056 | unsigned EMUSHORT *i; | |
6057 | { | |
6058 | unsigned EMULONG acc; | |
6059 | unsigned EMUSHORT xi[NI]; | |
6060 | unsigned EMUSHORT carry; | |
6061 | unsigned EMUSHORT *isave; | |
6062 | int j, k; | |
6063 | ||
6064 | emovi (x, xi); | |
6065 | k = (int) xi[E] - (EXONE - 1); | |
6066 | if (k <= 0) | |
6067 | { | |
6068 | for (j = 0; j < 4; j++) | |
6069 | *i++ = 0; | |
6070 | return; | |
6071 | } | |
6072 | if (k > 64) | |
6073 | { | |
6074 | for (j = 0; j < 4; j++) | |
6075 | *i++ = 0xffff; | |
6076 | if (extra_warnings) | |
6077 | warning ("overflow on truncation to integer"); | |
6078 | return; | |
6079 | } | |
6080 | isave = i; | |
6081 | if (k > 16) | |
6082 | { | |
6083 | /* Shift more than 16 bits: first shift up k-16 mod 16, | |
6084 | then shift up by 16's. */ | |
6085 | j = k - ((k >> 4) << 4); | |
6086 | if (j == 0) | |
6087 | j = 16; | |
6088 | eshift (xi, j); | |
6089 | if (WORDS_BIG_ENDIAN) | |
6090 | *i++ = xi[M]; | |
6091 | else | |
6092 | { | |
6093 | i += 3; | |
6094 | *i-- = xi[M]; | |
6095 | } | |
6096 | k -= j; | |
6097 | do | |
6098 | { | |
6099 | eshup6 (xi); | |
6100 | if (WORDS_BIG_ENDIAN) | |
6101 | *i++ = xi[M]; | |
6102 | else | |
6103 | *i-- = xi[M]; | |
6104 | } | |
6105 | while ((k -= 16) > 0); | |
6106 | } | |
6107 | else | |
6108 | { | |
6109 | /* shift not more than 16 bits */ | |
6110 | eshift (xi, k); | |
6111 | ||
6112 | if (WORDS_BIG_ENDIAN) | |
6113 | { | |
6114 | i += 3; | |
6115 | *i = xi[M]; | |
6116 | *i-- = 0; | |
6117 | *i-- = 0; | |
6118 | *i = 0; | |
6119 | } | |
6120 | else | |
6121 | { | |
6122 | *i++ = xi[M]; | |
6123 | *i++ = 0; | |
6124 | *i++ = 0; | |
6125 | *i = 0; | |
6126 | } | |
6127 | } | |
6128 | /* Negate if negative */ | |
6129 | if (xi[0]) | |
6130 | { | |
6131 | carry = 0; | |
6132 | if (WORDS_BIG_ENDIAN) | |
6133 | isave += 3; | |
6134 | for (k = 0; k < 4; k++) | |
6135 | { | |
6136 | acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry; | |
6137 | if (WORDS_BIG_ENDIAN) | |
6138 | *isave-- = acc; | |
6139 | else | |
6140 | *isave++ = acc; | |
6141 | carry = 0; | |
6142 | if (acc & 0x10000) | |
6143 | carry = 1; | |
6144 | } | |
6145 | } | |
6146 | } | |
6147 | ||
6148 | ||
6149 | /* Longhand square root routine. */ | |
6150 | ||
6151 | ||
6152 | static int esqinited = 0; | |
6153 | static unsigned short sqrndbit[NI]; | |
6154 | ||
6155 | static void | |
6156 | esqrt (x, y) | |
6157 | unsigned EMUSHORT *x, *y; | |
6158 | { | |
6159 | unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI]; | |
6160 | EMULONG m, exp; | |
6161 | int i, j, k, n, nlups; | |
6162 | ||
6163 | if (esqinited == 0) | |
6164 | { | |
6165 | ecleaz (sqrndbit); | |
6166 | sqrndbit[NI - 2] = 1; | |
6167 | esqinited = 1; | |
6168 | } | |
6169 | /* Check for arg <= 0 */ | |
6170 | i = ecmp (x, ezero); | |
6171 | if (i <= 0) | |
6172 | { | |
6173 | if (i == -1) | |
6174 | { | |
6175 | mtherr ("esqrt", DOMAIN); | |
6176 | eclear (y); | |
6177 | } | |
6178 | else | |
6179 | emov (x, y); | |
6180 | return; | |
6181 | } | |
6182 | ||
6183 | #ifdef INFINITY | |
6184 | if (eisinf (x)) | |
6185 | { | |
6186 | eclear (y); | |
6187 | einfin (y); | |
6188 | return; | |
6189 | } | |
6190 | #endif | |
6191 | /* Bring in the arg and renormalize if it is denormal. */ | |
6192 | emovi (x, xx); | |
6193 | m = (EMULONG) xx[1]; /* local long word exponent */ | |
6194 | if (m == 0) | |
6195 | m -= enormlz (xx); | |
6196 | ||
6197 | /* Divide exponent by 2 */ | |
6198 | m -= 0x3ffe; | |
6199 | exp = (unsigned short) ((m / 2) + 0x3ffe); | |
6200 | ||
6201 | /* Adjust if exponent odd */ | |
6202 | if ((m & 1) != 0) | |
6203 | { | |
6204 | if (m > 0) | |
6205 | exp += 1; | |
6206 | eshdn1 (xx); | |
6207 | } | |
6208 | ||
6209 | ecleaz (sq); | |
6210 | ecleaz (num); | |
6211 | n = 8; /* get 8 bits of result per inner loop */ | |
6212 | nlups = rndprc; | |
6213 | j = 0; | |
6214 | ||
6215 | while (nlups > 0) | |
6216 | { | |
6217 | /* bring in next word of arg */ | |
6218 | if (j < NE) | |
6219 | num[NI - 1] = xx[j + 3]; | |
6220 | /* Do additional bit on last outer loop, for roundoff. */ | |
6221 | if (nlups <= 8) | |
6222 | n = nlups + 1; | |
6223 | for (i = 0; i < n; i++) | |
6224 | { | |
6225 | /* Next 2 bits of arg */ | |
6226 | eshup1 (num); | |
6227 | eshup1 (num); | |
6228 | /* Shift up answer */ | |
6229 | eshup1 (sq); | |
6230 | /* Make trial divisor */ | |
6231 | for (k = 0; k < NI; k++) | |
6232 | temp[k] = sq[k]; | |
6233 | eshup1 (temp); | |
6234 | eaddm (sqrndbit, temp); | |
6235 | /* Subtract and insert answer bit if it goes in */ | |
6236 | if (ecmpm (temp, num) <= 0) | |
6237 | { | |
6238 | esubm (temp, num); | |
6239 | sq[NI - 2] |= 1; | |
6240 | } | |
6241 | } | |
6242 | nlups -= n; | |
6243 | j += 1; | |
6244 | } | |
6245 | ||
6246 | /* Adjust for extra, roundoff loop done. */ | |
6247 | exp += (NBITS - 1) - rndprc; | |
6248 | ||
6249 | /* Sticky bit = 1 if the remainder is nonzero. */ | |
6250 | k = 0; | |
6251 | for (i = 3; i < NI; i++) | |
6252 | k |= (int) num[i]; | |
6253 | ||
6254 | /* Renormalize and round off. */ | |
6255 | emdnorm (sq, k, 0, exp, 64); | |
6256 | emovo (sq, y); | |
6257 | } | |
6258 | #endif /* EMU_NON_COMPILE not defined */ | |
6259 | \f | |
6260 | /* Return the binary precision of the significand for a given | |
6261 | floating point mode. The mode can hold an integer value | |
6262 | that many bits wide, without losing any bits. */ | |
6263 | ||
6264 | int | |
6265 | significand_size (mode) | |
6266 | enum machine_mode mode; | |
6267 | { | |
6268 | ||
6269 | /* Don't test the modes, but their sizes, lest this | |
6270 | code won't work for BITS_PER_UNIT != 8 . */ | |
6271 | ||
6272 | switch (GET_MODE_BITSIZE (mode)) | |
6273 | { | |
6274 | case 32: | |
6275 | return 24; | |
6276 | ||
6277 | case 64: | |
6278 | #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT | |
6279 | return 53; | |
6280 | #else | |
6281 | #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT | |
6282 | return 56; | |
6283 | #else | |
6284 | #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT | |
6285 | return 56; | |
6286 | #else | |
6287 | abort (); | |
6288 | #endif | |
6289 | #endif | |
6290 | #endif | |
6291 | ||
6292 | case 96: | |
6293 | return 64; | |
6294 | case 128: | |
6295 | return 113; | |
6296 | ||
6297 | default: | |
6298 | abort (); | |
6299 | } | |
6300 | } |