]> gcc.gnu.org Git - gcc.git/blame_incremental - gcc/gimple.c
GCOV: create one intermediate file per a gcno file (PR gcov-profile/82702).
[gcc.git] / gcc / gimple.c
... / ...
CommitLineData
1/* Gimple IR support functions.
2
3 Copyright (C) 2007-2017 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "backend.h"
26#include "tree.h"
27#include "gimple.h"
28#include "ssa.h"
29#include "cgraph.h"
30#include "diagnostic.h"
31#include "alias.h"
32#include "fold-const.h"
33#include "calls.h"
34#include "stor-layout.h"
35#include "internal-fn.h"
36#include "tree-eh.h"
37#include "gimple-iterator.h"
38#include "gimple-walk.h"
39#include "gimplify.h"
40#include "target.h"
41#include "builtins.h"
42#include "selftest.h"
43#include "gimple-pretty-print.h"
44#include "stringpool.h"
45#include "attribs.h"
46#include "asan.h"
47
48
49/* All the tuples have their operand vector (if present) at the very bottom
50 of the structure. Therefore, the offset required to find the
51 operands vector the size of the structure minus the size of the 1
52 element tree array at the end (see gimple_ops). */
53#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
54 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
55EXPORTED_CONST size_t gimple_ops_offset_[] = {
56#include "gsstruct.def"
57};
58#undef DEFGSSTRUCT
59
60#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
61static const size_t gsstruct_code_size[] = {
62#include "gsstruct.def"
63};
64#undef DEFGSSTRUCT
65
66#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
67const char *const gimple_code_name[] = {
68#include "gimple.def"
69};
70#undef DEFGSCODE
71
72#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
73EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
74#include "gimple.def"
75};
76#undef DEFGSCODE
77
78/* Gimple stats. */
79
80int gimple_alloc_counts[(int) gimple_alloc_kind_all];
81int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
82
83/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
84static const char * const gimple_alloc_kind_names[] = {
85 "assignments",
86 "phi nodes",
87 "conditionals",
88 "everything else"
89};
90
91/* Static gimple tuple members. */
92const enum gimple_code gassign::code_;
93const enum gimple_code gcall::code_;
94const enum gimple_code gcond::code_;
95
96
97/* Gimple tuple constructors.
98 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
99 be passed a NULL to start with an empty sequence. */
100
101/* Set the code for statement G to CODE. */
102
103static inline void
104gimple_set_code (gimple *g, enum gimple_code code)
105{
106 g->code = code;
107}
108
109/* Return the number of bytes needed to hold a GIMPLE statement with
110 code CODE. */
111
112static inline size_t
113gimple_size (enum gimple_code code)
114{
115 return gsstruct_code_size[gss_for_code (code)];
116}
117
118/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
119 operands. */
120
121gimple *
122gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
123{
124 size_t size;
125 gimple *stmt;
126
127 size = gimple_size (code);
128 if (num_ops > 0)
129 size += sizeof (tree) * (num_ops - 1);
130
131 if (GATHER_STATISTICS)
132 {
133 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
134 gimple_alloc_counts[(int) kind]++;
135 gimple_alloc_sizes[(int) kind] += size;
136 }
137
138 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
139 gimple_set_code (stmt, code);
140 gimple_set_num_ops (stmt, num_ops);
141
142 /* Do not call gimple_set_modified here as it has other side
143 effects and this tuple is still not completely built. */
144 stmt->modified = 1;
145 gimple_init_singleton (stmt);
146
147 return stmt;
148}
149
150/* Set SUBCODE to be the code of the expression computed by statement G. */
151
152static inline void
153gimple_set_subcode (gimple *g, unsigned subcode)
154{
155 /* We only have 16 bits for the RHS code. Assert that we are not
156 overflowing it. */
157 gcc_assert (subcode < (1 << 16));
158 g->subcode = subcode;
159}
160
161
162
163/* Build a tuple with operands. CODE is the statement to build (which
164 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
165 for the new tuple. NUM_OPS is the number of operands to allocate. */
166
167#define gimple_build_with_ops(c, s, n) \
168 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
169
170static gimple *
171gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
172 unsigned num_ops MEM_STAT_DECL)
173{
174 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
175 gimple_set_subcode (s, subcode);
176
177 return s;
178}
179
180
181/* Build a GIMPLE_RETURN statement returning RETVAL. */
182
183greturn *
184gimple_build_return (tree retval)
185{
186 greturn *s
187 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
188 2));
189 if (retval)
190 gimple_return_set_retval (s, retval);
191 return s;
192}
193
194/* Reset alias information on call S. */
195
196void
197gimple_call_reset_alias_info (gcall *s)
198{
199 if (gimple_call_flags (s) & ECF_CONST)
200 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
201 else
202 pt_solution_reset (gimple_call_use_set (s));
203 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
204 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
205 else
206 pt_solution_reset (gimple_call_clobber_set (s));
207}
208
209/* Helper for gimple_build_call, gimple_build_call_valist,
210 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
211 components of a GIMPLE_CALL statement to function FN with NARGS
212 arguments. */
213
214static inline gcall *
215gimple_build_call_1 (tree fn, unsigned nargs)
216{
217 gcall *s
218 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
219 nargs + 3));
220 if (TREE_CODE (fn) == FUNCTION_DECL)
221 fn = build_fold_addr_expr (fn);
222 gimple_set_op (s, 1, fn);
223 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
224 gimple_call_reset_alias_info (s);
225 return s;
226}
227
228
229/* Build a GIMPLE_CALL statement to function FN with the arguments
230 specified in vector ARGS. */
231
232gcall *
233gimple_build_call_vec (tree fn, vec<tree> args)
234{
235 unsigned i;
236 unsigned nargs = args.length ();
237 gcall *call = gimple_build_call_1 (fn, nargs);
238
239 for (i = 0; i < nargs; i++)
240 gimple_call_set_arg (call, i, args[i]);
241
242 return call;
243}
244
245
246/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
247 arguments. The ... are the arguments. */
248
249gcall *
250gimple_build_call (tree fn, unsigned nargs, ...)
251{
252 va_list ap;
253 gcall *call;
254 unsigned i;
255
256 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
257
258 call = gimple_build_call_1 (fn, nargs);
259
260 va_start (ap, nargs);
261 for (i = 0; i < nargs; i++)
262 gimple_call_set_arg (call, i, va_arg (ap, tree));
263 va_end (ap);
264
265 return call;
266}
267
268
269/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
270 arguments. AP contains the arguments. */
271
272gcall *
273gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
274{
275 gcall *call;
276 unsigned i;
277
278 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
279
280 call = gimple_build_call_1 (fn, nargs);
281
282 for (i = 0; i < nargs; i++)
283 gimple_call_set_arg (call, i, va_arg (ap, tree));
284
285 return call;
286}
287
288
289/* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
290 Build the basic components of a GIMPLE_CALL statement to internal
291 function FN with NARGS arguments. */
292
293static inline gcall *
294gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
295{
296 gcall *s
297 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
298 nargs + 3));
299 s->subcode |= GF_CALL_INTERNAL;
300 gimple_call_set_internal_fn (s, fn);
301 gimple_call_reset_alias_info (s);
302 return s;
303}
304
305
306/* Build a GIMPLE_CALL statement to internal function FN. NARGS is
307 the number of arguments. The ... are the arguments. */
308
309gcall *
310gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
311{
312 va_list ap;
313 gcall *call;
314 unsigned i;
315
316 call = gimple_build_call_internal_1 (fn, nargs);
317 va_start (ap, nargs);
318 for (i = 0; i < nargs; i++)
319 gimple_call_set_arg (call, i, va_arg (ap, tree));
320 va_end (ap);
321
322 return call;
323}
324
325
326/* Build a GIMPLE_CALL statement to internal function FN with the arguments
327 specified in vector ARGS. */
328
329gcall *
330gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
331{
332 unsigned i, nargs;
333 gcall *call;
334
335 nargs = args.length ();
336 call = gimple_build_call_internal_1 (fn, nargs);
337 for (i = 0; i < nargs; i++)
338 gimple_call_set_arg (call, i, args[i]);
339
340 return call;
341}
342
343
344/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
345 assumed to be in GIMPLE form already. Minimal checking is done of
346 this fact. */
347
348gcall *
349gimple_build_call_from_tree (tree t, tree fnptrtype)
350{
351 unsigned i, nargs;
352 gcall *call;
353 tree fndecl = get_callee_fndecl (t);
354
355 gcc_assert (TREE_CODE (t) == CALL_EXPR);
356
357 nargs = call_expr_nargs (t);
358 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
359
360 for (i = 0; i < nargs; i++)
361 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
362
363 gimple_set_block (call, TREE_BLOCK (t));
364
365 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
366 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
367 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
368 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
369 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
370 if (fndecl
371 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
372 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
373 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
374 else
375 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
376 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
377 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
378 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
379 gimple_set_no_warning (call, TREE_NO_WARNING (t));
380 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
381
382 if (fnptrtype)
383 {
384 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
385
386 /* Check if it's an indirect CALL and the type has the
387 nocf_check attribute. In that case propagate the information
388 to the gimple CALL insn. */
389 if (!fndecl)
390 {
391 gcc_assert (POINTER_TYPE_P (fnptrtype));
392 tree fntype = TREE_TYPE (fnptrtype);
393
394 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
395 gimple_call_set_nocf_check (call, TRUE);
396 }
397 }
398
399 return call;
400}
401
402
403/* Build a GIMPLE_ASSIGN statement.
404
405 LHS of the assignment.
406 RHS of the assignment which can be unary or binary. */
407
408gassign *
409gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
410{
411 enum tree_code subcode;
412 tree op1, op2, op3;
413
414 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
415 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
416}
417
418
419/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
420 OP1, OP2 and OP3. */
421
422static inline gassign *
423gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
424 tree op2, tree op3 MEM_STAT_DECL)
425{
426 unsigned num_ops;
427 gassign *p;
428
429 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
430 code). */
431 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
432
433 p = as_a <gassign *> (
434 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
435 PASS_MEM_STAT));
436 gimple_assign_set_lhs (p, lhs);
437 gimple_assign_set_rhs1 (p, op1);
438 if (op2)
439 {
440 gcc_assert (num_ops > 2);
441 gimple_assign_set_rhs2 (p, op2);
442 }
443
444 if (op3)
445 {
446 gcc_assert (num_ops > 3);
447 gimple_assign_set_rhs3 (p, op3);
448 }
449
450 return p;
451}
452
453/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
454 OP1, OP2 and OP3. */
455
456gassign *
457gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
458 tree op2, tree op3 MEM_STAT_DECL)
459{
460 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
461}
462
463/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
464 OP1 and OP2. */
465
466gassign *
467gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
468 tree op2 MEM_STAT_DECL)
469{
470 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
471 PASS_MEM_STAT);
472}
473
474/* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
475
476gassign *
477gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
478{
479 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
480 PASS_MEM_STAT);
481}
482
483
484/* Build a GIMPLE_COND statement.
485
486 PRED is the condition used to compare LHS and the RHS.
487 T_LABEL is the label to jump to if the condition is true.
488 F_LABEL is the label to jump to otherwise. */
489
490gcond *
491gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
492 tree t_label, tree f_label)
493{
494 gcond *p;
495
496 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
497 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
498 gimple_cond_set_lhs (p, lhs);
499 gimple_cond_set_rhs (p, rhs);
500 gimple_cond_set_true_label (p, t_label);
501 gimple_cond_set_false_label (p, f_label);
502 return p;
503}
504
505/* Build a GIMPLE_COND statement from the conditional expression tree
506 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
507
508gcond *
509gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
510{
511 enum tree_code code;
512 tree lhs, rhs;
513
514 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
515 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
516}
517
518/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
519 boolean expression tree COND. */
520
521void
522gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
523{
524 enum tree_code code;
525 tree lhs, rhs;
526
527 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
528 gimple_cond_set_condition (stmt, code, lhs, rhs);
529}
530
531/* Build a GIMPLE_LABEL statement for LABEL. */
532
533glabel *
534gimple_build_label (tree label)
535{
536 glabel *p
537 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
538 gimple_label_set_label (p, label);
539 return p;
540}
541
542/* Build a GIMPLE_GOTO statement to label DEST. */
543
544ggoto *
545gimple_build_goto (tree dest)
546{
547 ggoto *p
548 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
549 gimple_goto_set_dest (p, dest);
550 return p;
551}
552
553
554/* Build a GIMPLE_NOP statement. */
555
556gimple *
557gimple_build_nop (void)
558{
559 return gimple_alloc (GIMPLE_NOP, 0);
560}
561
562
563/* Build a GIMPLE_BIND statement.
564 VARS are the variables in BODY.
565 BLOCK is the containing block. */
566
567gbind *
568gimple_build_bind (tree vars, gimple_seq body, tree block)
569{
570 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
571 gimple_bind_set_vars (p, vars);
572 if (body)
573 gimple_bind_set_body (p, body);
574 if (block)
575 gimple_bind_set_block (p, block);
576 return p;
577}
578
579/* Helper function to set the simple fields of a asm stmt.
580
581 STRING is a pointer to a string that is the asm blocks assembly code.
582 NINPUT is the number of register inputs.
583 NOUTPUT is the number of register outputs.
584 NCLOBBERS is the number of clobbered registers.
585 */
586
587static inline gasm *
588gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
589 unsigned nclobbers, unsigned nlabels)
590{
591 gasm *p;
592 int size = strlen (string);
593
594 /* ASMs with labels cannot have outputs. This should have been
595 enforced by the front end. */
596 gcc_assert (nlabels == 0 || noutputs == 0);
597
598 p = as_a <gasm *> (
599 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
600 ninputs + noutputs + nclobbers + nlabels));
601
602 p->ni = ninputs;
603 p->no = noutputs;
604 p->nc = nclobbers;
605 p->nl = nlabels;
606 p->string = ggc_alloc_string (string, size);
607
608 if (GATHER_STATISTICS)
609 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
610
611 return p;
612}
613
614/* Build a GIMPLE_ASM statement.
615
616 STRING is the assembly code.
617 NINPUT is the number of register inputs.
618 NOUTPUT is the number of register outputs.
619 NCLOBBERS is the number of clobbered registers.
620 INPUTS is a vector of the input register parameters.
621 OUTPUTS is a vector of the output register parameters.
622 CLOBBERS is a vector of the clobbered register parameters.
623 LABELS is a vector of destination labels. */
624
625gasm *
626gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
627 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
628 vec<tree, va_gc> *labels)
629{
630 gasm *p;
631 unsigned i;
632
633 p = gimple_build_asm_1 (string,
634 vec_safe_length (inputs),
635 vec_safe_length (outputs),
636 vec_safe_length (clobbers),
637 vec_safe_length (labels));
638
639 for (i = 0; i < vec_safe_length (inputs); i++)
640 gimple_asm_set_input_op (p, i, (*inputs)[i]);
641
642 for (i = 0; i < vec_safe_length (outputs); i++)
643 gimple_asm_set_output_op (p, i, (*outputs)[i]);
644
645 for (i = 0; i < vec_safe_length (clobbers); i++)
646 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
647
648 for (i = 0; i < vec_safe_length (labels); i++)
649 gimple_asm_set_label_op (p, i, (*labels)[i]);
650
651 return p;
652}
653
654/* Build a GIMPLE_CATCH statement.
655
656 TYPES are the catch types.
657 HANDLER is the exception handler. */
658
659gcatch *
660gimple_build_catch (tree types, gimple_seq handler)
661{
662 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
663 gimple_catch_set_types (p, types);
664 if (handler)
665 gimple_catch_set_handler (p, handler);
666
667 return p;
668}
669
670/* Build a GIMPLE_EH_FILTER statement.
671
672 TYPES are the filter's types.
673 FAILURE is the filter's failure action. */
674
675geh_filter *
676gimple_build_eh_filter (tree types, gimple_seq failure)
677{
678 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
679 gimple_eh_filter_set_types (p, types);
680 if (failure)
681 gimple_eh_filter_set_failure (p, failure);
682
683 return p;
684}
685
686/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
687
688geh_mnt *
689gimple_build_eh_must_not_throw (tree decl)
690{
691 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
692
693 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
694 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
695 gimple_eh_must_not_throw_set_fndecl (p, decl);
696
697 return p;
698}
699
700/* Build a GIMPLE_EH_ELSE statement. */
701
702geh_else *
703gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
704{
705 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
706 gimple_eh_else_set_n_body (p, n_body);
707 gimple_eh_else_set_e_body (p, e_body);
708 return p;
709}
710
711/* Build a GIMPLE_TRY statement.
712
713 EVAL is the expression to evaluate.
714 CLEANUP is the cleanup expression.
715 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
716 whether this is a try/catch or a try/finally respectively. */
717
718gtry *
719gimple_build_try (gimple_seq eval, gimple_seq cleanup,
720 enum gimple_try_flags kind)
721{
722 gtry *p;
723
724 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
725 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
726 gimple_set_subcode (p, kind);
727 if (eval)
728 gimple_try_set_eval (p, eval);
729 if (cleanup)
730 gimple_try_set_cleanup (p, cleanup);
731
732 return p;
733}
734
735/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
736
737 CLEANUP is the cleanup expression. */
738
739gimple *
740gimple_build_wce (gimple_seq cleanup)
741{
742 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
743 if (cleanup)
744 gimple_wce_set_cleanup (p, cleanup);
745
746 return p;
747}
748
749
750/* Build a GIMPLE_RESX statement. */
751
752gresx *
753gimple_build_resx (int region)
754{
755 gresx *p
756 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
757 p->region = region;
758 return p;
759}
760
761
762/* The helper for constructing a gimple switch statement.
763 INDEX is the switch's index.
764 NLABELS is the number of labels in the switch excluding the default.
765 DEFAULT_LABEL is the default label for the switch statement. */
766
767gswitch *
768gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
769{
770 /* nlabels + 1 default label + 1 index. */
771 gcc_checking_assert (default_label);
772 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
773 ERROR_MARK,
774 1 + 1 + nlabels));
775 gimple_switch_set_index (p, index);
776 gimple_switch_set_default_label (p, default_label);
777 return p;
778}
779
780/* Build a GIMPLE_SWITCH statement.
781
782 INDEX is the switch's index.
783 DEFAULT_LABEL is the default label
784 ARGS is a vector of labels excluding the default. */
785
786gswitch *
787gimple_build_switch (tree index, tree default_label, vec<tree> args)
788{
789 unsigned i, nlabels = args.length ();
790
791 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
792
793 /* Copy the labels from the vector to the switch statement. */
794 for (i = 0; i < nlabels; i++)
795 gimple_switch_set_label (p, i + 1, args[i]);
796
797 return p;
798}
799
800/* Build a GIMPLE_EH_DISPATCH statement. */
801
802geh_dispatch *
803gimple_build_eh_dispatch (int region)
804{
805 geh_dispatch *p
806 = as_a <geh_dispatch *> (
807 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
808 p->region = region;
809 return p;
810}
811
812/* Build a new GIMPLE_DEBUG_BIND statement.
813
814 VAR is bound to VALUE; block and location are taken from STMT. */
815
816gdebug *
817gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
818{
819 gdebug *p
820 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
821 (unsigned)GIMPLE_DEBUG_BIND, 2
822 PASS_MEM_STAT));
823 gimple_debug_bind_set_var (p, var);
824 gimple_debug_bind_set_value (p, value);
825 if (stmt)
826 gimple_set_location (p, gimple_location (stmt));
827
828 return p;
829}
830
831
832/* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
833
834 VAR is bound to VALUE; block and location are taken from STMT. */
835
836gdebug *
837gimple_build_debug_source_bind (tree var, tree value,
838 gimple *stmt MEM_STAT_DECL)
839{
840 gdebug *p
841 = as_a <gdebug *> (
842 gimple_build_with_ops_stat (GIMPLE_DEBUG,
843 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
844 PASS_MEM_STAT));
845
846 gimple_debug_source_bind_set_var (p, var);
847 gimple_debug_source_bind_set_value (p, value);
848 if (stmt)
849 gimple_set_location (p, gimple_location (stmt));
850
851 return p;
852}
853
854
855/* Build a GIMPLE_OMP_CRITICAL statement.
856
857 BODY is the sequence of statements for which only one thread can execute.
858 NAME is optional identifier for this critical block.
859 CLAUSES are clauses for this critical block. */
860
861gomp_critical *
862gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
863{
864 gomp_critical *p
865 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
866 gimple_omp_critical_set_name (p, name);
867 gimple_omp_critical_set_clauses (p, clauses);
868 if (body)
869 gimple_omp_set_body (p, body);
870
871 return p;
872}
873
874/* Build a GIMPLE_OMP_FOR statement.
875
876 BODY is sequence of statements inside the for loop.
877 KIND is the `for' variant.
878 CLAUSES, are any of the construct's clauses.
879 COLLAPSE is the collapse count.
880 PRE_BODY is the sequence of statements that are loop invariant. */
881
882gomp_for *
883gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
884 gimple_seq pre_body)
885{
886 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
887 if (body)
888 gimple_omp_set_body (p, body);
889 gimple_omp_for_set_clauses (p, clauses);
890 gimple_omp_for_set_kind (p, kind);
891 p->collapse = collapse;
892 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
893
894 if (pre_body)
895 gimple_omp_for_set_pre_body (p, pre_body);
896
897 return p;
898}
899
900
901/* Build a GIMPLE_OMP_PARALLEL statement.
902
903 BODY is sequence of statements which are executed in parallel.
904 CLAUSES, are the OMP parallel construct's clauses.
905 CHILD_FN is the function created for the parallel threads to execute.
906 DATA_ARG are the shared data argument(s). */
907
908gomp_parallel *
909gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
910 tree data_arg)
911{
912 gomp_parallel *p
913 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
914 if (body)
915 gimple_omp_set_body (p, body);
916 gimple_omp_parallel_set_clauses (p, clauses);
917 gimple_omp_parallel_set_child_fn (p, child_fn);
918 gimple_omp_parallel_set_data_arg (p, data_arg);
919
920 return p;
921}
922
923
924/* Build a GIMPLE_OMP_TASK statement.
925
926 BODY is sequence of statements which are executed by the explicit task.
927 CLAUSES, are the OMP parallel construct's clauses.
928 CHILD_FN is the function created for the parallel threads to execute.
929 DATA_ARG are the shared data argument(s).
930 COPY_FN is the optional function for firstprivate initialization.
931 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
932
933gomp_task *
934gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
935 tree data_arg, tree copy_fn, tree arg_size,
936 tree arg_align)
937{
938 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
939 if (body)
940 gimple_omp_set_body (p, body);
941 gimple_omp_task_set_clauses (p, clauses);
942 gimple_omp_task_set_child_fn (p, child_fn);
943 gimple_omp_task_set_data_arg (p, data_arg);
944 gimple_omp_task_set_copy_fn (p, copy_fn);
945 gimple_omp_task_set_arg_size (p, arg_size);
946 gimple_omp_task_set_arg_align (p, arg_align);
947
948 return p;
949}
950
951
952/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
953
954 BODY is the sequence of statements in the section. */
955
956gimple *
957gimple_build_omp_section (gimple_seq body)
958{
959 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
960 if (body)
961 gimple_omp_set_body (p, body);
962
963 return p;
964}
965
966
967/* Build a GIMPLE_OMP_MASTER statement.
968
969 BODY is the sequence of statements to be executed by just the master. */
970
971gimple *
972gimple_build_omp_master (gimple_seq body)
973{
974 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
975 if (body)
976 gimple_omp_set_body (p, body);
977
978 return p;
979}
980
981/* Build a GIMPLE_OMP_GRID_BODY statement.
982
983 BODY is the sequence of statements to be executed by the kernel. */
984
985gimple *
986gimple_build_omp_grid_body (gimple_seq body)
987{
988 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
989 if (body)
990 gimple_omp_set_body (p, body);
991
992 return p;
993}
994
995/* Build a GIMPLE_OMP_TASKGROUP statement.
996
997 BODY is the sequence of statements to be executed by the taskgroup
998 construct. */
999
1000gimple *
1001gimple_build_omp_taskgroup (gimple_seq body)
1002{
1003 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1004 if (body)
1005 gimple_omp_set_body (p, body);
1006
1007 return p;
1008}
1009
1010
1011/* Build a GIMPLE_OMP_CONTINUE statement.
1012
1013 CONTROL_DEF is the definition of the control variable.
1014 CONTROL_USE is the use of the control variable. */
1015
1016gomp_continue *
1017gimple_build_omp_continue (tree control_def, tree control_use)
1018{
1019 gomp_continue *p
1020 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1021 gimple_omp_continue_set_control_def (p, control_def);
1022 gimple_omp_continue_set_control_use (p, control_use);
1023 return p;
1024}
1025
1026/* Build a GIMPLE_OMP_ORDERED statement.
1027
1028 BODY is the sequence of statements inside a loop that will executed in
1029 sequence.
1030 CLAUSES are clauses for this statement. */
1031
1032gomp_ordered *
1033gimple_build_omp_ordered (gimple_seq body, tree clauses)
1034{
1035 gomp_ordered *p
1036 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1037 gimple_omp_ordered_set_clauses (p, clauses);
1038 if (body)
1039 gimple_omp_set_body (p, body);
1040
1041 return p;
1042}
1043
1044
1045/* Build a GIMPLE_OMP_RETURN statement.
1046 WAIT_P is true if this is a non-waiting return. */
1047
1048gimple *
1049gimple_build_omp_return (bool wait_p)
1050{
1051 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1052 if (wait_p)
1053 gimple_omp_return_set_nowait (p);
1054
1055 return p;
1056}
1057
1058
1059/* Build a GIMPLE_OMP_SECTIONS statement.
1060
1061 BODY is a sequence of section statements.
1062 CLAUSES are any of the OMP sections contsruct's clauses: private,
1063 firstprivate, lastprivate, reduction, and nowait. */
1064
1065gomp_sections *
1066gimple_build_omp_sections (gimple_seq body, tree clauses)
1067{
1068 gomp_sections *p
1069 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1070 if (body)
1071 gimple_omp_set_body (p, body);
1072 gimple_omp_sections_set_clauses (p, clauses);
1073
1074 return p;
1075}
1076
1077
1078/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1079
1080gimple *
1081gimple_build_omp_sections_switch (void)
1082{
1083 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1084}
1085
1086
1087/* Build a GIMPLE_OMP_SINGLE statement.
1088
1089 BODY is the sequence of statements that will be executed once.
1090 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1091 copyprivate, nowait. */
1092
1093gomp_single *
1094gimple_build_omp_single (gimple_seq body, tree clauses)
1095{
1096 gomp_single *p
1097 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1098 if (body)
1099 gimple_omp_set_body (p, body);
1100 gimple_omp_single_set_clauses (p, clauses);
1101
1102 return p;
1103}
1104
1105
1106/* Build a GIMPLE_OMP_TARGET statement.
1107
1108 BODY is the sequence of statements that will be executed.
1109 KIND is the kind of the region.
1110 CLAUSES are any of the construct's clauses. */
1111
1112gomp_target *
1113gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1114{
1115 gomp_target *p
1116 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1117 if (body)
1118 gimple_omp_set_body (p, body);
1119 gimple_omp_target_set_clauses (p, clauses);
1120 gimple_omp_target_set_kind (p, kind);
1121
1122 return p;
1123}
1124
1125
1126/* Build a GIMPLE_OMP_TEAMS statement.
1127
1128 BODY is the sequence of statements that will be executed.
1129 CLAUSES are any of the OMP teams construct's clauses. */
1130
1131gomp_teams *
1132gimple_build_omp_teams (gimple_seq body, tree clauses)
1133{
1134 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1135 if (body)
1136 gimple_omp_set_body (p, body);
1137 gimple_omp_teams_set_clauses (p, clauses);
1138
1139 return p;
1140}
1141
1142
1143/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1144
1145gomp_atomic_load *
1146gimple_build_omp_atomic_load (tree lhs, tree rhs)
1147{
1148 gomp_atomic_load *p
1149 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1150 gimple_omp_atomic_load_set_lhs (p, lhs);
1151 gimple_omp_atomic_load_set_rhs (p, rhs);
1152 return p;
1153}
1154
1155/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1156
1157 VAL is the value we are storing. */
1158
1159gomp_atomic_store *
1160gimple_build_omp_atomic_store (tree val)
1161{
1162 gomp_atomic_store *p
1163 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1164 gimple_omp_atomic_store_set_val (p, val);
1165 return p;
1166}
1167
1168/* Build a GIMPLE_TRANSACTION statement. */
1169
1170gtransaction *
1171gimple_build_transaction (gimple_seq body)
1172{
1173 gtransaction *p
1174 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1175 gimple_transaction_set_body (p, body);
1176 gimple_transaction_set_label_norm (p, 0);
1177 gimple_transaction_set_label_uninst (p, 0);
1178 gimple_transaction_set_label_over (p, 0);
1179 return p;
1180}
1181
1182#if defined ENABLE_GIMPLE_CHECKING
1183/* Complain of a gimple type mismatch and die. */
1184
1185void
1186gimple_check_failed (const gimple *gs, const char *file, int line,
1187 const char *function, enum gimple_code code,
1188 enum tree_code subcode)
1189{
1190 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1191 gimple_code_name[code],
1192 get_tree_code_name (subcode),
1193 gimple_code_name[gimple_code (gs)],
1194 gs->subcode > 0
1195 ? get_tree_code_name ((enum tree_code) gs->subcode)
1196 : "",
1197 function, trim_filename (file), line);
1198}
1199#endif /* ENABLE_GIMPLE_CHECKING */
1200
1201
1202/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1203 *SEQ_P is NULL, a new sequence is allocated. */
1204
1205void
1206gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1207{
1208 gimple_stmt_iterator si;
1209 if (gs == NULL)
1210 return;
1211
1212 si = gsi_last (*seq_p);
1213 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1214}
1215
1216/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1217 *SEQ_P is NULL, a new sequence is allocated. This function is
1218 similar to gimple_seq_add_stmt, but does not scan the operands.
1219 During gimplification, we need to manipulate statement sequences
1220 before the def/use vectors have been constructed. */
1221
1222void
1223gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1224{
1225 gimple_stmt_iterator si;
1226
1227 if (gs == NULL)
1228 return;
1229
1230 si = gsi_last (*seq_p);
1231 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1232}
1233
1234/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1235 NULL, a new sequence is allocated. */
1236
1237void
1238gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1239{
1240 gimple_stmt_iterator si;
1241 if (src == NULL)
1242 return;
1243
1244 si = gsi_last (*dst_p);
1245 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1246}
1247
1248/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1249 NULL, a new sequence is allocated. This function is
1250 similar to gimple_seq_add_seq, but does not scan the operands. */
1251
1252void
1253gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1254{
1255 gimple_stmt_iterator si;
1256 if (src == NULL)
1257 return;
1258
1259 si = gsi_last (*dst_p);
1260 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1261}
1262
1263/* Determine whether to assign a location to the statement GS. */
1264
1265static bool
1266should_carry_location_p (gimple *gs)
1267{
1268 /* Don't emit a line note for a label. We particularly don't want to
1269 emit one for the break label, since it doesn't actually correspond
1270 to the beginning of the loop/switch. */
1271 if (gimple_code (gs) == GIMPLE_LABEL)
1272 return false;
1273
1274 return true;
1275}
1276
1277/* Set the location for gimple statement GS to LOCATION. */
1278
1279static void
1280annotate_one_with_location (gimple *gs, location_t location)
1281{
1282 if (!gimple_has_location (gs)
1283 && !gimple_do_not_emit_location_p (gs)
1284 && should_carry_location_p (gs))
1285 gimple_set_location (gs, location);
1286}
1287
1288/* Set LOCATION for all the statements after iterator GSI in sequence
1289 SEQ. If GSI is pointing to the end of the sequence, start with the
1290 first statement in SEQ. */
1291
1292void
1293annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1294 location_t location)
1295{
1296 if (gsi_end_p (gsi))
1297 gsi = gsi_start (seq);
1298 else
1299 gsi_next (&gsi);
1300
1301 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1302 annotate_one_with_location (gsi_stmt (gsi), location);
1303}
1304
1305/* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1306
1307void
1308annotate_all_with_location (gimple_seq stmt_p, location_t location)
1309{
1310 gimple_stmt_iterator i;
1311
1312 if (gimple_seq_empty_p (stmt_p))
1313 return;
1314
1315 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1316 {
1317 gimple *gs = gsi_stmt (i);
1318 annotate_one_with_location (gs, location);
1319 }
1320}
1321
1322/* Helper function of empty_body_p. Return true if STMT is an empty
1323 statement. */
1324
1325static bool
1326empty_stmt_p (gimple *stmt)
1327{
1328 if (gimple_code (stmt) == GIMPLE_NOP)
1329 return true;
1330 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1331 return empty_body_p (gimple_bind_body (bind_stmt));
1332 return false;
1333}
1334
1335
1336/* Return true if BODY contains nothing but empty statements. */
1337
1338bool
1339empty_body_p (gimple_seq body)
1340{
1341 gimple_stmt_iterator i;
1342
1343 if (gimple_seq_empty_p (body))
1344 return true;
1345 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1346 if (!empty_stmt_p (gsi_stmt (i))
1347 && !is_gimple_debug (gsi_stmt (i)))
1348 return false;
1349
1350 return true;
1351}
1352
1353
1354/* Perform a deep copy of sequence SRC and return the result. */
1355
1356gimple_seq
1357gimple_seq_copy (gimple_seq src)
1358{
1359 gimple_stmt_iterator gsi;
1360 gimple_seq new_seq = NULL;
1361 gimple *stmt;
1362
1363 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1364 {
1365 stmt = gimple_copy (gsi_stmt (gsi));
1366 gimple_seq_add_stmt (&new_seq, stmt);
1367 }
1368
1369 return new_seq;
1370}
1371
1372
1373
1374/* Return true if calls C1 and C2 are known to go to the same function. */
1375
1376bool
1377gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1378{
1379 if (gimple_call_internal_p (c1))
1380 return (gimple_call_internal_p (c2)
1381 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1382 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1383 || c1 == c2));
1384 else
1385 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1386 || (gimple_call_fndecl (c1)
1387 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1388}
1389
1390/* Detect flags from a GIMPLE_CALL. This is just like
1391 call_expr_flags, but for gimple tuples. */
1392
1393int
1394gimple_call_flags (const gimple *stmt)
1395{
1396 int flags;
1397 tree decl = gimple_call_fndecl (stmt);
1398
1399 if (decl)
1400 flags = flags_from_decl_or_type (decl);
1401 else if (gimple_call_internal_p (stmt))
1402 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1403 else
1404 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1405
1406 if (stmt->subcode & GF_CALL_NOTHROW)
1407 flags |= ECF_NOTHROW;
1408
1409 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1410 flags |= ECF_BY_DESCRIPTOR;
1411
1412 return flags;
1413}
1414
1415/* Return the "fn spec" string for call STMT. */
1416
1417static const_tree
1418gimple_call_fnspec (const gcall *stmt)
1419{
1420 tree type, attr;
1421
1422 if (gimple_call_internal_p (stmt))
1423 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1424
1425 type = gimple_call_fntype (stmt);
1426 if (!type)
1427 return NULL_TREE;
1428
1429 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1430 if (!attr)
1431 return NULL_TREE;
1432
1433 return TREE_VALUE (TREE_VALUE (attr));
1434}
1435
1436/* Detects argument flags for argument number ARG on call STMT. */
1437
1438int
1439gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1440{
1441 const_tree attr = gimple_call_fnspec (stmt);
1442
1443 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1444 return 0;
1445
1446 switch (TREE_STRING_POINTER (attr)[1 + arg])
1447 {
1448 case 'x':
1449 case 'X':
1450 return EAF_UNUSED;
1451
1452 case 'R':
1453 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1454
1455 case 'r':
1456 return EAF_NOCLOBBER | EAF_NOESCAPE;
1457
1458 case 'W':
1459 return EAF_DIRECT | EAF_NOESCAPE;
1460
1461 case 'w':
1462 return EAF_NOESCAPE;
1463
1464 case '.':
1465 default:
1466 return 0;
1467 }
1468}
1469
1470/* Detects return flags for the call STMT. */
1471
1472int
1473gimple_call_return_flags (const gcall *stmt)
1474{
1475 const_tree attr;
1476
1477 if (gimple_call_flags (stmt) & ECF_MALLOC)
1478 return ERF_NOALIAS;
1479
1480 attr = gimple_call_fnspec (stmt);
1481 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1482 return 0;
1483
1484 switch (TREE_STRING_POINTER (attr)[0])
1485 {
1486 case '1':
1487 case '2':
1488 case '3':
1489 case '4':
1490 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1491
1492 case 'm':
1493 return ERF_NOALIAS;
1494
1495 case '.':
1496 default:
1497 return 0;
1498 }
1499}
1500
1501
1502/* Return true if GS is a copy assignment. */
1503
1504bool
1505gimple_assign_copy_p (gimple *gs)
1506{
1507 return (gimple_assign_single_p (gs)
1508 && is_gimple_val (gimple_op (gs, 1)));
1509}
1510
1511
1512/* Return true if GS is a SSA_NAME copy assignment. */
1513
1514bool
1515gimple_assign_ssa_name_copy_p (gimple *gs)
1516{
1517 return (gimple_assign_single_p (gs)
1518 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1519 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1520}
1521
1522
1523/* Return true if GS is an assignment with a unary RHS, but the
1524 operator has no effect on the assigned value. The logic is adapted
1525 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1526 instances in which STRIP_NOPS was previously applied to the RHS of
1527 an assignment.
1528
1529 NOTE: In the use cases that led to the creation of this function
1530 and of gimple_assign_single_p, it is typical to test for either
1531 condition and to proceed in the same manner. In each case, the
1532 assigned value is represented by the single RHS operand of the
1533 assignment. I suspect there may be cases where gimple_assign_copy_p,
1534 gimple_assign_single_p, or equivalent logic is used where a similar
1535 treatment of unary NOPs is appropriate. */
1536
1537bool
1538gimple_assign_unary_nop_p (gimple *gs)
1539{
1540 return (is_gimple_assign (gs)
1541 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1542 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1543 && gimple_assign_rhs1 (gs) != error_mark_node
1544 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1545 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1546}
1547
1548/* Set BB to be the basic block holding G. */
1549
1550void
1551gimple_set_bb (gimple *stmt, basic_block bb)
1552{
1553 stmt->bb = bb;
1554
1555 if (gimple_code (stmt) != GIMPLE_LABEL)
1556 return;
1557
1558 /* If the statement is a label, add the label to block-to-labels map
1559 so that we can speed up edge creation for GIMPLE_GOTOs. */
1560 if (cfun->cfg)
1561 {
1562 tree t;
1563 int uid;
1564
1565 t = gimple_label_label (as_a <glabel *> (stmt));
1566 uid = LABEL_DECL_UID (t);
1567 if (uid == -1)
1568 {
1569 unsigned old_len =
1570 vec_safe_length (label_to_block_map_for_fn (cfun));
1571 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1572 if (old_len <= (unsigned) uid)
1573 {
1574 unsigned new_len = 3 * uid / 2 + 1;
1575
1576 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1577 new_len);
1578 }
1579 }
1580
1581 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1582 }
1583}
1584
1585
1586/* Modify the RHS of the assignment pointed-to by GSI using the
1587 operands in the expression tree EXPR.
1588
1589 NOTE: The statement pointed-to by GSI may be reallocated if it
1590 did not have enough operand slots.
1591
1592 This function is useful to convert an existing tree expression into
1593 the flat representation used for the RHS of a GIMPLE assignment.
1594 It will reallocate memory as needed to expand or shrink the number
1595 of operand slots needed to represent EXPR.
1596
1597 NOTE: If you find yourself building a tree and then calling this
1598 function, you are most certainly doing it the slow way. It is much
1599 better to build a new assignment or to use the function
1600 gimple_assign_set_rhs_with_ops, which does not require an
1601 expression tree to be built. */
1602
1603void
1604gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1605{
1606 enum tree_code subcode;
1607 tree op1, op2, op3;
1608
1609 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1610 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1611}
1612
1613
1614/* Set the RHS of assignment statement pointed-to by GSI to CODE with
1615 operands OP1, OP2 and OP3.
1616
1617 NOTE: The statement pointed-to by GSI may be reallocated if it
1618 did not have enough operand slots. */
1619
1620void
1621gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1622 tree op1, tree op2, tree op3)
1623{
1624 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1625 gimple *stmt = gsi_stmt (*gsi);
1626
1627 /* If the new CODE needs more operands, allocate a new statement. */
1628 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1629 {
1630 tree lhs = gimple_assign_lhs (stmt);
1631 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1632 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1633 gimple_init_singleton (new_stmt);
1634 gsi_replace (gsi, new_stmt, false);
1635 stmt = new_stmt;
1636
1637 /* The LHS needs to be reset as this also changes the SSA name
1638 on the LHS. */
1639 gimple_assign_set_lhs (stmt, lhs);
1640 }
1641
1642 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1643 gimple_set_subcode (stmt, code);
1644 gimple_assign_set_rhs1 (stmt, op1);
1645 if (new_rhs_ops > 1)
1646 gimple_assign_set_rhs2 (stmt, op2);
1647 if (new_rhs_ops > 2)
1648 gimple_assign_set_rhs3 (stmt, op3);
1649}
1650
1651
1652/* Return the LHS of a statement that performs an assignment,
1653 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1654 for a call to a function that returns no value, or for a
1655 statement other than an assignment or a call. */
1656
1657tree
1658gimple_get_lhs (const gimple *stmt)
1659{
1660 enum gimple_code code = gimple_code (stmt);
1661
1662 if (code == GIMPLE_ASSIGN)
1663 return gimple_assign_lhs (stmt);
1664 else if (code == GIMPLE_CALL)
1665 return gimple_call_lhs (stmt);
1666 else
1667 return NULL_TREE;
1668}
1669
1670
1671/* Set the LHS of a statement that performs an assignment,
1672 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1673
1674void
1675gimple_set_lhs (gimple *stmt, tree lhs)
1676{
1677 enum gimple_code code = gimple_code (stmt);
1678
1679 if (code == GIMPLE_ASSIGN)
1680 gimple_assign_set_lhs (stmt, lhs);
1681 else if (code == GIMPLE_CALL)
1682 gimple_call_set_lhs (stmt, lhs);
1683 else
1684 gcc_unreachable ();
1685}
1686
1687
1688/* Return a deep copy of statement STMT. All the operands from STMT
1689 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1690 and VUSE operand arrays are set to empty in the new copy. The new
1691 copy isn't part of any sequence. */
1692
1693gimple *
1694gimple_copy (gimple *stmt)
1695{
1696 enum gimple_code code = gimple_code (stmt);
1697 unsigned num_ops = gimple_num_ops (stmt);
1698 gimple *copy = gimple_alloc (code, num_ops);
1699 unsigned i;
1700
1701 /* Shallow copy all the fields from STMT. */
1702 memcpy (copy, stmt, gimple_size (code));
1703 gimple_init_singleton (copy);
1704
1705 /* If STMT has sub-statements, deep-copy them as well. */
1706 if (gimple_has_substatements (stmt))
1707 {
1708 gimple_seq new_seq;
1709 tree t;
1710
1711 switch (gimple_code (stmt))
1712 {
1713 case GIMPLE_BIND:
1714 {
1715 gbind *bind_stmt = as_a <gbind *> (stmt);
1716 gbind *bind_copy = as_a <gbind *> (copy);
1717 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1718 gimple_bind_set_body (bind_copy, new_seq);
1719 gimple_bind_set_vars (bind_copy,
1720 unshare_expr (gimple_bind_vars (bind_stmt)));
1721 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1722 }
1723 break;
1724
1725 case GIMPLE_CATCH:
1726 {
1727 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1728 gcatch *catch_copy = as_a <gcatch *> (copy);
1729 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1730 gimple_catch_set_handler (catch_copy, new_seq);
1731 t = unshare_expr (gimple_catch_types (catch_stmt));
1732 gimple_catch_set_types (catch_copy, t);
1733 }
1734 break;
1735
1736 case GIMPLE_EH_FILTER:
1737 {
1738 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1739 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1740 new_seq
1741 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1742 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1743 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1744 gimple_eh_filter_set_types (eh_filter_copy, t);
1745 }
1746 break;
1747
1748 case GIMPLE_EH_ELSE:
1749 {
1750 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1751 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1752 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1753 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1754 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1755 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1756 }
1757 break;
1758
1759 case GIMPLE_TRY:
1760 {
1761 gtry *try_stmt = as_a <gtry *> (stmt);
1762 gtry *try_copy = as_a <gtry *> (copy);
1763 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1764 gimple_try_set_eval (try_copy, new_seq);
1765 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1766 gimple_try_set_cleanup (try_copy, new_seq);
1767 }
1768 break;
1769
1770 case GIMPLE_OMP_FOR:
1771 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1772 gimple_omp_for_set_pre_body (copy, new_seq);
1773 t = unshare_expr (gimple_omp_for_clauses (stmt));
1774 gimple_omp_for_set_clauses (copy, t);
1775 {
1776 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1777 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1778 ( gimple_omp_for_collapse (stmt));
1779 }
1780 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1781 {
1782 gimple_omp_for_set_cond (copy, i,
1783 gimple_omp_for_cond (stmt, i));
1784 gimple_omp_for_set_index (copy, i,
1785 gimple_omp_for_index (stmt, i));
1786 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1787 gimple_omp_for_set_initial (copy, i, t);
1788 t = unshare_expr (gimple_omp_for_final (stmt, i));
1789 gimple_omp_for_set_final (copy, i, t);
1790 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1791 gimple_omp_for_set_incr (copy, i, t);
1792 }
1793 goto copy_omp_body;
1794
1795 case GIMPLE_OMP_PARALLEL:
1796 {
1797 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1798 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1799 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1800 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1801 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1802 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1803 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1804 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1805 }
1806 goto copy_omp_body;
1807
1808 case GIMPLE_OMP_TASK:
1809 t = unshare_expr (gimple_omp_task_clauses (stmt));
1810 gimple_omp_task_set_clauses (copy, t);
1811 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1812 gimple_omp_task_set_child_fn (copy, t);
1813 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1814 gimple_omp_task_set_data_arg (copy, t);
1815 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1816 gimple_omp_task_set_copy_fn (copy, t);
1817 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1818 gimple_omp_task_set_arg_size (copy, t);
1819 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1820 gimple_omp_task_set_arg_align (copy, t);
1821 goto copy_omp_body;
1822
1823 case GIMPLE_OMP_CRITICAL:
1824 t = unshare_expr (gimple_omp_critical_name
1825 (as_a <gomp_critical *> (stmt)));
1826 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1827 t = unshare_expr (gimple_omp_critical_clauses
1828 (as_a <gomp_critical *> (stmt)));
1829 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1830 goto copy_omp_body;
1831
1832 case GIMPLE_OMP_ORDERED:
1833 t = unshare_expr (gimple_omp_ordered_clauses
1834 (as_a <gomp_ordered *> (stmt)));
1835 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1836 goto copy_omp_body;
1837
1838 case GIMPLE_OMP_SECTIONS:
1839 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1840 gimple_omp_sections_set_clauses (copy, t);
1841 t = unshare_expr (gimple_omp_sections_control (stmt));
1842 gimple_omp_sections_set_control (copy, t);
1843 goto copy_omp_body;
1844
1845 case GIMPLE_OMP_SINGLE:
1846 {
1847 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
1848 t = unshare_expr (gimple_omp_single_clauses (stmt));
1849 gimple_omp_single_set_clauses (omp_single_copy, t);
1850 }
1851 goto copy_omp_body;
1852
1853 case GIMPLE_OMP_TARGET:
1854 {
1855 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
1856 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
1857 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
1858 gimple_omp_target_set_clauses (omp_target_copy, t);
1859 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
1860 gimple_omp_target_set_data_arg (omp_target_copy, t);
1861 }
1862 goto copy_omp_body;
1863
1864 case GIMPLE_OMP_TEAMS:
1865 {
1866 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
1867 t = unshare_expr (gimple_omp_teams_clauses (stmt));
1868 gimple_omp_teams_set_clauses (omp_teams_copy, t);
1869 }
1870 /* FALLTHRU */
1871
1872 case GIMPLE_OMP_SECTION:
1873 case GIMPLE_OMP_MASTER:
1874 case GIMPLE_OMP_TASKGROUP:
1875 case GIMPLE_OMP_GRID_BODY:
1876 copy_omp_body:
1877 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1878 gimple_omp_set_body (copy, new_seq);
1879 break;
1880
1881 case GIMPLE_TRANSACTION:
1882 new_seq = gimple_seq_copy (gimple_transaction_body (
1883 as_a <gtransaction *> (stmt)));
1884 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1885 new_seq);
1886 break;
1887
1888 case GIMPLE_WITH_CLEANUP_EXPR:
1889 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1890 gimple_wce_set_cleanup (copy, new_seq);
1891 break;
1892
1893 default:
1894 gcc_unreachable ();
1895 }
1896 }
1897
1898 /* Make copy of operands. */
1899 for (i = 0; i < num_ops; i++)
1900 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1901
1902 if (gimple_has_mem_ops (stmt))
1903 {
1904 gimple_set_vdef (copy, gimple_vdef (stmt));
1905 gimple_set_vuse (copy, gimple_vuse (stmt));
1906 }
1907
1908 /* Clear out SSA operand vectors on COPY. */
1909 if (gimple_has_ops (stmt))
1910 {
1911 gimple_set_use_ops (copy, NULL);
1912
1913 /* SSA operands need to be updated. */
1914 gimple_set_modified (copy, true);
1915 }
1916
1917 return copy;
1918}
1919
1920
1921/* Return true if statement S has side-effects. We consider a
1922 statement to have side effects if:
1923
1924 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1925 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1926
1927bool
1928gimple_has_side_effects (const gimple *s)
1929{
1930 if (is_gimple_debug (s))
1931 return false;
1932
1933 /* We don't have to scan the arguments to check for
1934 volatile arguments, though, at present, we still
1935 do a scan to check for TREE_SIDE_EFFECTS. */
1936 if (gimple_has_volatile_ops (s))
1937 return true;
1938
1939 if (gimple_code (s) == GIMPLE_ASM
1940 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1941 return true;
1942
1943 if (is_gimple_call (s))
1944 {
1945 int flags = gimple_call_flags (s);
1946
1947 /* An infinite loop is considered a side effect. */
1948 if (!(flags & (ECF_CONST | ECF_PURE))
1949 || (flags & ECF_LOOPING_CONST_OR_PURE))
1950 return true;
1951
1952 return false;
1953 }
1954
1955 return false;
1956}
1957
1958/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1959 Return true if S can trap. When INCLUDE_MEM is true, check whether
1960 the memory operations could trap. When INCLUDE_STORES is true and
1961 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1962
1963bool
1964gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1965{
1966 tree t, div = NULL_TREE;
1967 enum tree_code op;
1968
1969 if (include_mem)
1970 {
1971 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1972
1973 for (i = start; i < gimple_num_ops (s); i++)
1974 if (tree_could_trap_p (gimple_op (s, i)))
1975 return true;
1976 }
1977
1978 switch (gimple_code (s))
1979 {
1980 case GIMPLE_ASM:
1981 return gimple_asm_volatile_p (as_a <gasm *> (s));
1982
1983 case GIMPLE_CALL:
1984 t = gimple_call_fndecl (s);
1985 /* Assume that calls to weak functions may trap. */
1986 if (!t || !DECL_P (t) || DECL_WEAK (t))
1987 return true;
1988 return false;
1989
1990 case GIMPLE_ASSIGN:
1991 t = gimple_expr_type (s);
1992 op = gimple_assign_rhs_code (s);
1993 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1994 div = gimple_assign_rhs2 (s);
1995 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1996 (INTEGRAL_TYPE_P (t)
1997 && TYPE_OVERFLOW_TRAPS (t)),
1998 div));
1999
2000 case GIMPLE_COND:
2001 t = TREE_TYPE (gimple_cond_lhs (s));
2002 return operation_could_trap_p (gimple_cond_code (s),
2003 FLOAT_TYPE_P (t), false, NULL_TREE);
2004
2005 default:
2006 break;
2007 }
2008
2009 return false;
2010}
2011
2012/* Return true if statement S can trap. */
2013
2014bool
2015gimple_could_trap_p (gimple *s)
2016{
2017 return gimple_could_trap_p_1 (s, true, true);
2018}
2019
2020/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2021
2022bool
2023gimple_assign_rhs_could_trap_p (gimple *s)
2024{
2025 gcc_assert (is_gimple_assign (s));
2026 return gimple_could_trap_p_1 (s, true, false);
2027}
2028
2029
2030/* Print debugging information for gimple stmts generated. */
2031
2032void
2033dump_gimple_statistics (void)
2034{
2035 int i, total_tuples = 0, total_bytes = 0;
2036
2037 if (! GATHER_STATISTICS)
2038 {
2039 fprintf (stderr, "No gimple statistics\n");
2040 return;
2041 }
2042
2043 fprintf (stderr, "\nGIMPLE statements\n");
2044 fprintf (stderr, "Kind Stmts Bytes\n");
2045 fprintf (stderr, "---------------------------------------\n");
2046 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2047 {
2048 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2049 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2050 total_tuples += gimple_alloc_counts[i];
2051 total_bytes += gimple_alloc_sizes[i];
2052 }
2053 fprintf (stderr, "---------------------------------------\n");
2054 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2055 fprintf (stderr, "---------------------------------------\n");
2056}
2057
2058
2059/* Return the number of operands needed on the RHS of a GIMPLE
2060 assignment for an expression with tree code CODE. */
2061
2062unsigned
2063get_gimple_rhs_num_ops (enum tree_code code)
2064{
2065 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2066
2067 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2068 return 1;
2069 else if (rhs_class == GIMPLE_BINARY_RHS)
2070 return 2;
2071 else if (rhs_class == GIMPLE_TERNARY_RHS)
2072 return 3;
2073 else
2074 gcc_unreachable ();
2075}
2076
2077#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2078 (unsigned char) \
2079 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2080 : ((TYPE) == tcc_binary \
2081 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2082 : ((TYPE) == tcc_constant \
2083 || (TYPE) == tcc_declaration \
2084 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2085 : ((SYM) == TRUTH_AND_EXPR \
2086 || (SYM) == TRUTH_OR_EXPR \
2087 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2088 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2089 : ((SYM) == COND_EXPR \
2090 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2091 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2092 || (SYM) == DOT_PROD_EXPR \
2093 || (SYM) == SAD_EXPR \
2094 || (SYM) == REALIGN_LOAD_EXPR \
2095 || (SYM) == VEC_COND_EXPR \
2096 || (SYM) == VEC_PERM_EXPR \
2097 || (SYM) == BIT_INSERT_EXPR \
2098 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2099 : ((SYM) == CONSTRUCTOR \
2100 || (SYM) == OBJ_TYPE_REF \
2101 || (SYM) == ASSERT_EXPR \
2102 || (SYM) == ADDR_EXPR \
2103 || (SYM) == WITH_SIZE_EXPR \
2104 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2105 : GIMPLE_INVALID_RHS),
2106#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2107
2108const unsigned char gimple_rhs_class_table[] = {
2109#include "all-tree.def"
2110};
2111
2112#undef DEFTREECODE
2113#undef END_OF_BASE_TREE_CODES
2114
2115/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2116 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2117 we failed to create one. */
2118
2119tree
2120canonicalize_cond_expr_cond (tree t)
2121{
2122 /* Strip conversions around boolean operations. */
2123 if (CONVERT_EXPR_P (t)
2124 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2125 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2126 == BOOLEAN_TYPE))
2127 t = TREE_OPERAND (t, 0);
2128
2129 /* For !x use x == 0. */
2130 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2131 {
2132 tree top0 = TREE_OPERAND (t, 0);
2133 t = build2 (EQ_EXPR, TREE_TYPE (t),
2134 top0, build_int_cst (TREE_TYPE (top0), 0));
2135 }
2136 /* For cmp ? 1 : 0 use cmp. */
2137 else if (TREE_CODE (t) == COND_EXPR
2138 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2139 && integer_onep (TREE_OPERAND (t, 1))
2140 && integer_zerop (TREE_OPERAND (t, 2)))
2141 {
2142 tree top0 = TREE_OPERAND (t, 0);
2143 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2144 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2145 }
2146 /* For x ^ y use x != y. */
2147 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2148 t = build2 (NE_EXPR, TREE_TYPE (t),
2149 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2150
2151 if (is_gimple_condexpr (t))
2152 return t;
2153
2154 return NULL_TREE;
2155}
2156
2157/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2158 the positions marked by the set ARGS_TO_SKIP. */
2159
2160gcall *
2161gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2162{
2163 int i;
2164 int nargs = gimple_call_num_args (stmt);
2165 auto_vec<tree> vargs (nargs);
2166 gcall *new_stmt;
2167
2168 for (i = 0; i < nargs; i++)
2169 if (!bitmap_bit_p (args_to_skip, i))
2170 vargs.quick_push (gimple_call_arg (stmt, i));
2171
2172 if (gimple_call_internal_p (stmt))
2173 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2174 vargs);
2175 else
2176 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2177
2178 if (gimple_call_lhs (stmt))
2179 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2180
2181 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2182 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2183
2184 if (gimple_has_location (stmt))
2185 gimple_set_location (new_stmt, gimple_location (stmt));
2186 gimple_call_copy_flags (new_stmt, stmt);
2187 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2188
2189 gimple_set_modified (new_stmt, true);
2190
2191 return new_stmt;
2192}
2193
2194
2195
2196/* Return true if the field decls F1 and F2 are at the same offset.
2197
2198 This is intended to be used on GIMPLE types only. */
2199
2200bool
2201gimple_compare_field_offset (tree f1, tree f2)
2202{
2203 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2204 {
2205 tree offset1 = DECL_FIELD_OFFSET (f1);
2206 tree offset2 = DECL_FIELD_OFFSET (f2);
2207 return ((offset1 == offset2
2208 /* Once gimplification is done, self-referential offsets are
2209 instantiated as operand #2 of the COMPONENT_REF built for
2210 each access and reset. Therefore, they are not relevant
2211 anymore and fields are interchangeable provided that they
2212 represent the same access. */
2213 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2214 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2215 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2216 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2217 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2218 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2219 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2220 || operand_equal_p (offset1, offset2, 0))
2221 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2222 DECL_FIELD_BIT_OFFSET (f2)));
2223 }
2224
2225 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2226 should be, so handle differing ones specially by decomposing
2227 the offset into a byte and bit offset manually. */
2228 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2229 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2230 {
2231 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2232 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2233 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2234 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2235 + bit_offset1 / BITS_PER_UNIT);
2236 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2237 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2238 + bit_offset2 / BITS_PER_UNIT);
2239 if (byte_offset1 != byte_offset2)
2240 return false;
2241 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2242 }
2243
2244 return false;
2245}
2246
2247
2248/* Return a type the same as TYPE except unsigned or
2249 signed according to UNSIGNEDP. */
2250
2251static tree
2252gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2253{
2254 tree type1;
2255 int i;
2256
2257 type1 = TYPE_MAIN_VARIANT (type);
2258 if (type1 == signed_char_type_node
2259 || type1 == char_type_node
2260 || type1 == unsigned_char_type_node)
2261 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2262 if (type1 == integer_type_node || type1 == unsigned_type_node)
2263 return unsignedp ? unsigned_type_node : integer_type_node;
2264 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2265 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2266 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2267 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2268 if (type1 == long_long_integer_type_node
2269 || type1 == long_long_unsigned_type_node)
2270 return unsignedp
2271 ? long_long_unsigned_type_node
2272 : long_long_integer_type_node;
2273
2274 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2275 if (int_n_enabled_p[i]
2276 && (type1 == int_n_trees[i].unsigned_type
2277 || type1 == int_n_trees[i].signed_type))
2278 return unsignedp
2279 ? int_n_trees[i].unsigned_type
2280 : int_n_trees[i].signed_type;
2281
2282#if HOST_BITS_PER_WIDE_INT >= 64
2283 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2284 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2285#endif
2286 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2287 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2288 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2289 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2290 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2291 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2292 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2293 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2294
2295#define GIMPLE_FIXED_TYPES(NAME) \
2296 if (type1 == short_ ## NAME ## _type_node \
2297 || type1 == unsigned_short_ ## NAME ## _type_node) \
2298 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2299 : short_ ## NAME ## _type_node; \
2300 if (type1 == NAME ## _type_node \
2301 || type1 == unsigned_ ## NAME ## _type_node) \
2302 return unsignedp ? unsigned_ ## NAME ## _type_node \
2303 : NAME ## _type_node; \
2304 if (type1 == long_ ## NAME ## _type_node \
2305 || type1 == unsigned_long_ ## NAME ## _type_node) \
2306 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2307 : long_ ## NAME ## _type_node; \
2308 if (type1 == long_long_ ## NAME ## _type_node \
2309 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2310 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2311 : long_long_ ## NAME ## _type_node;
2312
2313#define GIMPLE_FIXED_MODE_TYPES(NAME) \
2314 if (type1 == NAME ## _type_node \
2315 || type1 == u ## NAME ## _type_node) \
2316 return unsignedp ? u ## NAME ## _type_node \
2317 : NAME ## _type_node;
2318
2319#define GIMPLE_FIXED_TYPES_SAT(NAME) \
2320 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2321 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2322 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2323 : sat_ ## short_ ## NAME ## _type_node; \
2324 if (type1 == sat_ ## NAME ## _type_node \
2325 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2326 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2327 : sat_ ## NAME ## _type_node; \
2328 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2329 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2330 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2331 : sat_ ## long_ ## NAME ## _type_node; \
2332 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2333 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2334 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2335 : sat_ ## long_long_ ## NAME ## _type_node;
2336
2337#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2338 if (type1 == sat_ ## NAME ## _type_node \
2339 || type1 == sat_ ## u ## NAME ## _type_node) \
2340 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2341 : sat_ ## NAME ## _type_node;
2342
2343 GIMPLE_FIXED_TYPES (fract);
2344 GIMPLE_FIXED_TYPES_SAT (fract);
2345 GIMPLE_FIXED_TYPES (accum);
2346 GIMPLE_FIXED_TYPES_SAT (accum);
2347
2348 GIMPLE_FIXED_MODE_TYPES (qq);
2349 GIMPLE_FIXED_MODE_TYPES (hq);
2350 GIMPLE_FIXED_MODE_TYPES (sq);
2351 GIMPLE_FIXED_MODE_TYPES (dq);
2352 GIMPLE_FIXED_MODE_TYPES (tq);
2353 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2354 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2355 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2356 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2357 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2358 GIMPLE_FIXED_MODE_TYPES (ha);
2359 GIMPLE_FIXED_MODE_TYPES (sa);
2360 GIMPLE_FIXED_MODE_TYPES (da);
2361 GIMPLE_FIXED_MODE_TYPES (ta);
2362 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2363 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2364 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2365 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2366
2367 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2368 the precision; they have precision set to match their range, but
2369 may use a wider mode to match an ABI. If we change modes, we may
2370 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2371 the precision as well, so as to yield correct results for
2372 bit-field types. C++ does not have these separate bit-field
2373 types, and producing a signed or unsigned variant of an
2374 ENUMERAL_TYPE may cause other problems as well. */
2375 if (!INTEGRAL_TYPE_P (type)
2376 || TYPE_UNSIGNED (type) == unsignedp)
2377 return type;
2378
2379#define TYPE_OK(node) \
2380 (TYPE_MODE (type) == TYPE_MODE (node) \
2381 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2382 if (TYPE_OK (signed_char_type_node))
2383 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2384 if (TYPE_OK (integer_type_node))
2385 return unsignedp ? unsigned_type_node : integer_type_node;
2386 if (TYPE_OK (short_integer_type_node))
2387 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2388 if (TYPE_OK (long_integer_type_node))
2389 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2390 if (TYPE_OK (long_long_integer_type_node))
2391 return (unsignedp
2392 ? long_long_unsigned_type_node
2393 : long_long_integer_type_node);
2394
2395 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2396 if (int_n_enabled_p[i]
2397 && TYPE_MODE (type) == int_n_data[i].m
2398 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2399 return unsignedp
2400 ? int_n_trees[i].unsigned_type
2401 : int_n_trees[i].signed_type;
2402
2403#if HOST_BITS_PER_WIDE_INT >= 64
2404 if (TYPE_OK (intTI_type_node))
2405 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2406#endif
2407 if (TYPE_OK (intDI_type_node))
2408 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2409 if (TYPE_OK (intSI_type_node))
2410 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2411 if (TYPE_OK (intHI_type_node))
2412 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2413 if (TYPE_OK (intQI_type_node))
2414 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2415
2416#undef GIMPLE_FIXED_TYPES
2417#undef GIMPLE_FIXED_MODE_TYPES
2418#undef GIMPLE_FIXED_TYPES_SAT
2419#undef GIMPLE_FIXED_MODE_TYPES_SAT
2420#undef TYPE_OK
2421
2422 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2423}
2424
2425
2426/* Return an unsigned type the same as TYPE in other respects. */
2427
2428tree
2429gimple_unsigned_type (tree type)
2430{
2431 return gimple_signed_or_unsigned_type (true, type);
2432}
2433
2434
2435/* Return a signed type the same as TYPE in other respects. */
2436
2437tree
2438gimple_signed_type (tree type)
2439{
2440 return gimple_signed_or_unsigned_type (false, type);
2441}
2442
2443
2444/* Return the typed-based alias set for T, which may be an expression
2445 or a type. Return -1 if we don't do anything special. */
2446
2447alias_set_type
2448gimple_get_alias_set (tree t)
2449{
2450 /* That's all the expressions we handle specially. */
2451 if (!TYPE_P (t))
2452 return -1;
2453
2454 /* For convenience, follow the C standard when dealing with
2455 character types. Any object may be accessed via an lvalue that
2456 has character type. */
2457 if (t == char_type_node
2458 || t == signed_char_type_node
2459 || t == unsigned_char_type_node)
2460 return 0;
2461
2462 /* Allow aliasing between signed and unsigned variants of the same
2463 type. We treat the signed variant as canonical. */
2464 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2465 {
2466 tree t1 = gimple_signed_type (t);
2467
2468 /* t1 == t can happen for boolean nodes which are always unsigned. */
2469 if (t1 != t)
2470 return get_alias_set (t1);
2471 }
2472
2473 return -1;
2474}
2475
2476
2477/* Helper for gimple_ior_addresses_taken_1. */
2478
2479static bool
2480gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2481{
2482 bitmap addresses_taken = (bitmap)data;
2483 addr = get_base_address (addr);
2484 if (addr
2485 && DECL_P (addr))
2486 {
2487 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2488 return true;
2489 }
2490 return false;
2491}
2492
2493/* Set the bit for the uid of all decls that have their address taken
2494 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2495 were any in this stmt. */
2496
2497bool
2498gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2499{
2500 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2501 gimple_ior_addresses_taken_1);
2502}
2503
2504
2505/* Return true when STMTs arguments and return value match those of FNDECL,
2506 a decl of a builtin function. */
2507
2508bool
2509gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2510{
2511 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2512
2513 tree ret = gimple_call_lhs (stmt);
2514 if (ret
2515 && !useless_type_conversion_p (TREE_TYPE (ret),
2516 TREE_TYPE (TREE_TYPE (fndecl))))
2517 return false;
2518
2519 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2520 unsigned nargs = gimple_call_num_args (stmt);
2521 for (unsigned i = 0; i < nargs; ++i)
2522 {
2523 /* Variadic args follow. */
2524 if (!targs)
2525 return true;
2526 tree arg = gimple_call_arg (stmt, i);
2527 tree type = TREE_VALUE (targs);
2528 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2529 /* char/short integral arguments are promoted to int
2530 by several frontends if targetm.calls.promote_prototypes
2531 is true. Allow such promotion too. */
2532 && !(INTEGRAL_TYPE_P (type)
2533 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2534 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2535 && useless_type_conversion_p (integer_type_node,
2536 TREE_TYPE (arg))))
2537 return false;
2538 targs = TREE_CHAIN (targs);
2539 }
2540 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2541 return false;
2542 return true;
2543}
2544
2545/* Return true when STMT is builtins call. */
2546
2547bool
2548gimple_call_builtin_p (const gimple *stmt)
2549{
2550 tree fndecl;
2551 if (is_gimple_call (stmt)
2552 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2553 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2554 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2555 return false;
2556}
2557
2558/* Return true when STMT is builtins call to CLASS. */
2559
2560bool
2561gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2562{
2563 tree fndecl;
2564 if (is_gimple_call (stmt)
2565 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2566 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2567 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2568 return false;
2569}
2570
2571/* Return true when STMT is builtins call to CODE of CLASS. */
2572
2573bool
2574gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2575{
2576 tree fndecl;
2577 if (is_gimple_call (stmt)
2578 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2579 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2580 && DECL_FUNCTION_CODE (fndecl) == code)
2581 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2582 return false;
2583}
2584
2585/* If CALL is a call to a combined_fn (i.e. an internal function or
2586 a normal built-in function), return its code, otherwise return
2587 CFN_LAST. */
2588
2589combined_fn
2590gimple_call_combined_fn (const gimple *stmt)
2591{
2592 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2593 {
2594 if (gimple_call_internal_p (call))
2595 return as_combined_fn (gimple_call_internal_fn (call));
2596
2597 tree fndecl = gimple_call_fndecl (stmt);
2598 if (fndecl
2599 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2600 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2601 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2602 }
2603 return CFN_LAST;
2604}
2605
2606/* Return true if STMT clobbers memory. STMT is required to be a
2607 GIMPLE_ASM. */
2608
2609bool
2610gimple_asm_clobbers_memory_p (const gasm *stmt)
2611{
2612 unsigned i;
2613
2614 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2615 {
2616 tree op = gimple_asm_clobber_op (stmt, i);
2617 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2618 return true;
2619 }
2620
2621 /* Non-empty basic ASM implicitly clobbers memory. */
2622 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2623 return true;
2624
2625 return false;
2626}
2627
2628/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2629
2630void
2631dump_decl_set (FILE *file, bitmap set)
2632{
2633 if (set)
2634 {
2635 bitmap_iterator bi;
2636 unsigned i;
2637
2638 fprintf (file, "{ ");
2639
2640 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2641 {
2642 fprintf (file, "D.%u", i);
2643 fprintf (file, " ");
2644 }
2645
2646 fprintf (file, "}");
2647 }
2648 else
2649 fprintf (file, "NIL");
2650}
2651
2652/* Return true when CALL is a call stmt that definitely doesn't
2653 free any memory or makes it unavailable otherwise. */
2654bool
2655nonfreeing_call_p (gimple *call)
2656{
2657 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2658 && gimple_call_flags (call) & ECF_LEAF)
2659 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2660 {
2661 /* Just in case these become ECF_LEAF in the future. */
2662 case BUILT_IN_FREE:
2663 case BUILT_IN_TM_FREE:
2664 case BUILT_IN_REALLOC:
2665 case BUILT_IN_STACK_RESTORE:
2666 return false;
2667 default:
2668 return true;
2669 }
2670 else if (gimple_call_internal_p (call))
2671 switch (gimple_call_internal_fn (call))
2672 {
2673 case IFN_ABNORMAL_DISPATCHER:
2674 return true;
2675 case IFN_ASAN_MARK:
2676 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2677 default:
2678 if (gimple_call_flags (call) & ECF_LEAF)
2679 return true;
2680 return false;
2681 }
2682
2683 tree fndecl = gimple_call_fndecl (call);
2684 if (!fndecl)
2685 return false;
2686 struct cgraph_node *n = cgraph_node::get (fndecl);
2687 if (!n)
2688 return false;
2689 enum availability availability;
2690 n = n->function_symbol (&availability);
2691 if (!n || availability <= AVAIL_INTERPOSABLE)
2692 return false;
2693 return n->nonfreeing_fn;
2694}
2695
2696/* Return true when CALL is a call stmt that definitely need not
2697 be considered to be a memory barrier. */
2698bool
2699nonbarrier_call_p (gimple *call)
2700{
2701 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2702 return true;
2703 /* Should extend this to have a nonbarrier_fn flag, just as above in
2704 the nonfreeing case. */
2705 return false;
2706}
2707
2708/* Callback for walk_stmt_load_store_ops.
2709
2710 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2711 otherwise.
2712
2713 This routine only makes a superficial check for a dereference. Thus
2714 it must only be used if it is safe to return a false negative. */
2715static bool
2716check_loadstore (gimple *, tree op, tree, void *data)
2717{
2718 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2719 {
2720 /* Some address spaces may legitimately dereference zero. */
2721 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2722 if (targetm.addr_space.zero_address_valid (as))
2723 return false;
2724
2725 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2726 }
2727 return false;
2728}
2729
2730
2731/* Return true if OP can be inferred to be non-NULL after STMT executes,
2732 either by using a pointer dereference or attributes. */
2733bool
2734infer_nonnull_range (gimple *stmt, tree op)
2735{
2736 return infer_nonnull_range_by_dereference (stmt, op)
2737 || infer_nonnull_range_by_attribute (stmt, op);
2738}
2739
2740/* Return true if OP can be inferred to be non-NULL after STMT
2741 executes by using a pointer dereference. */
2742bool
2743infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2744{
2745 /* We can only assume that a pointer dereference will yield
2746 non-NULL if -fdelete-null-pointer-checks is enabled. */
2747 if (!flag_delete_null_pointer_checks
2748 || !POINTER_TYPE_P (TREE_TYPE (op))
2749 || gimple_code (stmt) == GIMPLE_ASM)
2750 return false;
2751
2752 if (walk_stmt_load_store_ops (stmt, (void *)op,
2753 check_loadstore, check_loadstore))
2754 return true;
2755
2756 return false;
2757}
2758
2759/* Return true if OP can be inferred to be a non-NULL after STMT
2760 executes by using attributes. */
2761bool
2762infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2763{
2764 /* We can only assume that a pointer dereference will yield
2765 non-NULL if -fdelete-null-pointer-checks is enabled. */
2766 if (!flag_delete_null_pointer_checks
2767 || !POINTER_TYPE_P (TREE_TYPE (op))
2768 || gimple_code (stmt) == GIMPLE_ASM)
2769 return false;
2770
2771 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2772 {
2773 tree fntype = gimple_call_fntype (stmt);
2774 tree attrs = TYPE_ATTRIBUTES (fntype);
2775 for (; attrs; attrs = TREE_CHAIN (attrs))
2776 {
2777 attrs = lookup_attribute ("nonnull", attrs);
2778
2779 /* If "nonnull" wasn't specified, we know nothing about
2780 the argument. */
2781 if (attrs == NULL_TREE)
2782 return false;
2783
2784 /* If "nonnull" applies to all the arguments, then ARG
2785 is non-null if it's in the argument list. */
2786 if (TREE_VALUE (attrs) == NULL_TREE)
2787 {
2788 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2789 {
2790 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2791 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2792 return true;
2793 }
2794 return false;
2795 }
2796
2797 /* Now see if op appears in the nonnull list. */
2798 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2799 {
2800 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2801 if (idx < gimple_call_num_args (stmt))
2802 {
2803 tree arg = gimple_call_arg (stmt, idx);
2804 if (operand_equal_p (op, arg, 0))
2805 return true;
2806 }
2807 }
2808 }
2809 }
2810
2811 /* If this function is marked as returning non-null, then we can
2812 infer OP is non-null if it is used in the return statement. */
2813 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2814 if (gimple_return_retval (return_stmt)
2815 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2816 && lookup_attribute ("returns_nonnull",
2817 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2818 return true;
2819
2820 return false;
2821}
2822
2823/* Compare two case labels. Because the front end should already have
2824 made sure that case ranges do not overlap, it is enough to only compare
2825 the CASE_LOW values of each case label. */
2826
2827static int
2828compare_case_labels (const void *p1, const void *p2)
2829{
2830 const_tree const case1 = *(const_tree const*)p1;
2831 const_tree const case2 = *(const_tree const*)p2;
2832
2833 /* The 'default' case label always goes first. */
2834 if (!CASE_LOW (case1))
2835 return -1;
2836 else if (!CASE_LOW (case2))
2837 return 1;
2838 else
2839 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2840}
2841
2842/* Sort the case labels in LABEL_VEC in place in ascending order. */
2843
2844void
2845sort_case_labels (vec<tree> label_vec)
2846{
2847 label_vec.qsort (compare_case_labels);
2848}
2849\f
2850/* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2851
2852 LABELS is a vector that contains all case labels to look at.
2853
2854 INDEX_TYPE is the type of the switch index expression. Case labels
2855 in LABELS are discarded if their values are not in the value range
2856 covered by INDEX_TYPE. The remaining case label values are folded
2857 to INDEX_TYPE.
2858
2859 If a default case exists in LABELS, it is removed from LABELS and
2860 returned in DEFAULT_CASEP. If no default case exists, but the
2861 case labels already cover the whole range of INDEX_TYPE, a default
2862 case is returned pointing to one of the existing case labels.
2863 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2864
2865 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2866 apply and no action is taken regardless of whether a default case is
2867 found or not. */
2868
2869void
2870preprocess_case_label_vec_for_gimple (vec<tree> labels,
2871 tree index_type,
2872 tree *default_casep)
2873{
2874 tree min_value, max_value;
2875 tree default_case = NULL_TREE;
2876 size_t i, len;
2877
2878 i = 0;
2879 min_value = TYPE_MIN_VALUE (index_type);
2880 max_value = TYPE_MAX_VALUE (index_type);
2881 while (i < labels.length ())
2882 {
2883 tree elt = labels[i];
2884 tree low = CASE_LOW (elt);
2885 tree high = CASE_HIGH (elt);
2886 bool remove_element = FALSE;
2887
2888 if (low)
2889 {
2890 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2891 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2892
2893 /* This is a non-default case label, i.e. it has a value.
2894
2895 See if the case label is reachable within the range of
2896 the index type. Remove out-of-range case values. Turn
2897 case ranges into a canonical form (high > low strictly)
2898 and convert the case label values to the index type.
2899
2900 NB: The type of gimple_switch_index() may be the promoted
2901 type, but the case labels retain the original type. */
2902
2903 if (high)
2904 {
2905 /* This is a case range. Discard empty ranges.
2906 If the bounds or the range are equal, turn this
2907 into a simple (one-value) case. */
2908 int cmp = tree_int_cst_compare (high, low);
2909 if (cmp < 0)
2910 remove_element = TRUE;
2911 else if (cmp == 0)
2912 high = NULL_TREE;
2913 }
2914
2915 if (! high)
2916 {
2917 /* If the simple case value is unreachable, ignore it. */
2918 if ((TREE_CODE (min_value) == INTEGER_CST
2919 && tree_int_cst_compare (low, min_value) < 0)
2920 || (TREE_CODE (max_value) == INTEGER_CST
2921 && tree_int_cst_compare (low, max_value) > 0))
2922 remove_element = TRUE;
2923 else
2924 low = fold_convert (index_type, low);
2925 }
2926 else
2927 {
2928 /* If the entire case range is unreachable, ignore it. */
2929 if ((TREE_CODE (min_value) == INTEGER_CST
2930 && tree_int_cst_compare (high, min_value) < 0)
2931 || (TREE_CODE (max_value) == INTEGER_CST
2932 && tree_int_cst_compare (low, max_value) > 0))
2933 remove_element = TRUE;
2934 else
2935 {
2936 /* If the lower bound is less than the index type's
2937 minimum value, truncate the range bounds. */
2938 if (TREE_CODE (min_value) == INTEGER_CST
2939 && tree_int_cst_compare (low, min_value) < 0)
2940 low = min_value;
2941 low = fold_convert (index_type, low);
2942
2943 /* If the upper bound is greater than the index type's
2944 maximum value, truncate the range bounds. */
2945 if (TREE_CODE (max_value) == INTEGER_CST
2946 && tree_int_cst_compare (high, max_value) > 0)
2947 high = max_value;
2948 high = fold_convert (index_type, high);
2949
2950 /* We may have folded a case range to a one-value case. */
2951 if (tree_int_cst_equal (low, high))
2952 high = NULL_TREE;
2953 }
2954 }
2955
2956 CASE_LOW (elt) = low;
2957 CASE_HIGH (elt) = high;
2958 }
2959 else
2960 {
2961 gcc_assert (!default_case);
2962 default_case = elt;
2963 /* The default case must be passed separately to the
2964 gimple_build_switch routine. But if DEFAULT_CASEP
2965 is NULL, we do not remove the default case (it would
2966 be completely lost). */
2967 if (default_casep)
2968 remove_element = TRUE;
2969 }
2970
2971 if (remove_element)
2972 labels.ordered_remove (i);
2973 else
2974 i++;
2975 }
2976 len = i;
2977
2978 if (!labels.is_empty ())
2979 sort_case_labels (labels);
2980
2981 if (default_casep && !default_case)
2982 {
2983 /* If the switch has no default label, add one, so that we jump
2984 around the switch body. If the labels already cover the whole
2985 range of the switch index_type, add the default label pointing
2986 to one of the existing labels. */
2987 if (len
2988 && TYPE_MIN_VALUE (index_type)
2989 && TYPE_MAX_VALUE (index_type)
2990 && tree_int_cst_equal (CASE_LOW (labels[0]),
2991 TYPE_MIN_VALUE (index_type)))
2992 {
2993 tree low, high = CASE_HIGH (labels[len - 1]);
2994 if (!high)
2995 high = CASE_LOW (labels[len - 1]);
2996 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2997 {
2998 tree widest_label = labels[0];
2999 for (i = 1; i < len; i++)
3000 {
3001 high = CASE_LOW (labels[i]);
3002 low = CASE_HIGH (labels[i - 1]);
3003 if (!low)
3004 low = CASE_LOW (labels[i - 1]);
3005
3006 if (CASE_HIGH (labels[i]) != NULL_TREE
3007 && (CASE_HIGH (widest_label) == NULL_TREE
3008 || (wi::gtu_p
3009 (wi::to_wide (CASE_HIGH (labels[i]))
3010 - wi::to_wide (CASE_LOW (labels[i])),
3011 wi::to_wide (CASE_HIGH (widest_label))
3012 - wi::to_wide (CASE_LOW (widest_label))))))
3013 widest_label = labels[i];
3014
3015 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3016 break;
3017 }
3018 if (i == len)
3019 {
3020 /* Designate the label with the widest range to be the
3021 default label. */
3022 tree label = CASE_LABEL (widest_label);
3023 default_case = build_case_label (NULL_TREE, NULL_TREE,
3024 label);
3025 }
3026 }
3027 }
3028 }
3029
3030 if (default_casep)
3031 *default_casep = default_case;
3032}
3033
3034/* Set the location of all statements in SEQ to LOC. */
3035
3036void
3037gimple_seq_set_location (gimple_seq seq, location_t loc)
3038{
3039 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3040 gimple_set_location (gsi_stmt (i), loc);
3041}
3042
3043/* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3044
3045void
3046gimple_seq_discard (gimple_seq seq)
3047{
3048 gimple_stmt_iterator gsi;
3049
3050 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3051 {
3052 gimple *stmt = gsi_stmt (gsi);
3053 gsi_remove (&gsi, true);
3054 release_defs (stmt);
3055 ggc_free (stmt);
3056 }
3057}
3058
3059/* See if STMT now calls function that takes no parameters and if so, drop
3060 call arguments. This is used when devirtualization machinery redirects
3061 to __builtin_unreachable or __cxa_pure_virtual. */
3062
3063void
3064maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3065{
3066 tree decl = gimple_call_fndecl (stmt);
3067 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3068 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3069 && gimple_call_num_args (stmt))
3070 {
3071 gimple_set_num_ops (stmt, 3);
3072 update_stmt_fn (fn, stmt);
3073 }
3074}
3075
3076/* Return false if STMT will likely expand to real function call. */
3077
3078bool
3079gimple_inexpensive_call_p (gcall *stmt)
3080{
3081 if (gimple_call_internal_p (stmt))
3082 return true;
3083 tree decl = gimple_call_fndecl (stmt);
3084 if (decl && is_inexpensive_builtin (decl))
3085 return true;
3086 return false;
3087}
3088
3089#if CHECKING_P
3090
3091namespace selftest {
3092
3093/* Selftests for core gimple structures. */
3094
3095/* Verify that STMT is pretty-printed as EXPECTED.
3096 Helper function for selftests. */
3097
3098static void
3099verify_gimple_pp (const char *expected, gimple *stmt)
3100{
3101 pretty_printer pp;
3102 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, 0 /* flags */);
3103 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3104}
3105
3106/* Build a GIMPLE_ASSIGN equivalent to
3107 tmp = 5;
3108 and verify various properties of it. */
3109
3110static void
3111test_assign_single ()
3112{
3113 tree type = integer_type_node;
3114 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3115 get_identifier ("tmp"),
3116 type);
3117 tree rhs = build_int_cst (type, 5);
3118 gassign *stmt = gimple_build_assign (lhs, rhs);
3119 verify_gimple_pp ("tmp = 5;", stmt);
3120
3121 ASSERT_TRUE (is_gimple_assign (stmt));
3122 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3123 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3124 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3125 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3126 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3127 ASSERT_TRUE (gimple_assign_single_p (stmt));
3128 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3129}
3130
3131/* Build a GIMPLE_ASSIGN equivalent to
3132 tmp = a * b;
3133 and verify various properties of it. */
3134
3135static void
3136test_assign_binop ()
3137{
3138 tree type = integer_type_node;
3139 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3140 get_identifier ("tmp"),
3141 type);
3142 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3143 get_identifier ("a"),
3144 type);
3145 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3146 get_identifier ("b"),
3147 type);
3148 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3149 verify_gimple_pp ("tmp = a * b;", stmt);
3150
3151 ASSERT_TRUE (is_gimple_assign (stmt));
3152 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3153 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3154 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3155 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3156 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3157 ASSERT_FALSE (gimple_assign_single_p (stmt));
3158 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3159}
3160
3161/* Build a GIMPLE_NOP and verify various properties of it. */
3162
3163static void
3164test_nop_stmt ()
3165{
3166 gimple *stmt = gimple_build_nop ();
3167 verify_gimple_pp ("GIMPLE_NOP", stmt);
3168 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3169 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3170 ASSERT_FALSE (gimple_assign_single_p (stmt));
3171}
3172
3173/* Build a GIMPLE_RETURN equivalent to
3174 return 7;
3175 and verify various properties of it. */
3176
3177static void
3178test_return_stmt ()
3179{
3180 tree type = integer_type_node;
3181 tree val = build_int_cst (type, 7);
3182 greturn *stmt = gimple_build_return (val);
3183 verify_gimple_pp ("return 7;", stmt);
3184
3185 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3186 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3187 ASSERT_EQ (val, gimple_return_retval (stmt));
3188 ASSERT_FALSE (gimple_assign_single_p (stmt));
3189}
3190
3191/* Build a GIMPLE_RETURN equivalent to
3192 return;
3193 and verify various properties of it. */
3194
3195static void
3196test_return_without_value ()
3197{
3198 greturn *stmt = gimple_build_return (NULL);
3199 verify_gimple_pp ("return;", stmt);
3200
3201 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3202 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3203 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3204 ASSERT_FALSE (gimple_assign_single_p (stmt));
3205}
3206
3207/* Run all of the selftests within this file. */
3208
3209void
3210gimple_c_tests ()
3211{
3212 test_assign_single ();
3213 test_assign_binop ();
3214 test_nop_stmt ();
3215 test_return_stmt ();
3216 test_return_without_value ();
3217}
3218
3219} // namespace selftest
3220
3221
3222#endif /* CHECKING_P */
This page took 0.049708 seconds and 5 git commands to generate.