]> gcc.gnu.org Git - gcc.git/blame_incremental - gcc/dwarfout.c
(assertdir): Use $(tooldir)/include for this.
[gcc.git] / gcc / dwarfout.c
... / ...
CommitLineData
1/* This file contains code written by Ron Guilmette (rfg@ncd.com) for
2 Network Computing Devices, August, September, October, November 1990.
3
4 Output Dwarf format symbol table information from the GNU C compiler.
5 Copyright (C) 1992 Free Software Foundation, Inc.
6
7This file is part of GNU CC.
8
9GNU CC is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2, or (at your option)
12any later version.
13
14GNU CC is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with GNU CC; see the file COPYING. If not, write to
21the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23#include "config.h"
24
25#ifdef DWARF_DEBUGGING_INFO
26#include <stdio.h>
27#include "dwarf.h"
28#include "tree.h"
29#include "flags.h"
30#include "rtl.h"
31#include "hard-reg-set.h"
32#include "insn-config.h"
33#include "reload.h"
34#include "output.h"
35#include "defaults.h"
36
37#ifndef DWARF_VERSION
38#define DWARF_VERSION 1
39#endif
40
41/* #define NDEBUG 1 */
42#include "assert.h"
43
44#if defined(DWARF_TIMESTAMPS)
45#if defined(POSIX)
46#include <time.h>
47#else /* !defined(POSIX) */
48#include <sys/types.h>
49#if defined(__STDC__)
50extern time_t time (time_t *);
51#else /* !defined(__STDC__) */
52extern time_t time ();
53#endif /* !defined(__STDC__) */
54#endif /* !defined(POSIX) */
55#endif /* defined(DWARF_TIMESTAMPS) */
56
57extern char *getpwd ();
58
59extern char *index ();
60extern char *rindex ();
61
62/* IMPORTANT NOTE: Please see the file README.DWARF for important details
63 regarding the GNU implementation of Dwarf. */
64
65/* NOTE: In the comments in this file, many references are made to
66 so called "Debugging Information Entries". For the sake of brevity,
67 this term is abbreviated to `DIE' throughout the remainder of this
68 file. */
69
70/* Note that the implementation of C++ support herein is (as yet) unfinished.
71 If you want to try to complete it, more power to you. */
72
73#if defined(__GNUC__) && (NDEBUG == 1)
74#define inline static inline
75#else
76#define inline static
77#endif
78
79/* How to start an assembler comment. */
80#ifndef ASM_COMMENT_START
81#define ASM_COMMENT_START ";#"
82#endif
83
84/* How to print out a register name. */
85#ifndef PRINT_REG
86#define PRINT_REG(RTX, CODE, FILE) \
87 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
88#endif
89
90/* Define a macro which returns non-zero for any tagged type which is
91 used (directly or indirectly) in the specification of either some
92 function's return type or some formal parameter of some function.
93 We use this macro when we are operating in "terse" mode to help us
94 know what tagged types have to be represented in Dwarf (even in
95 terse mode) and which ones don't.
96
97 A flag bit with this meaning really should be a part of the normal
98 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
99 for these nodes. For now, we have to just fake it. It it safe for
100 us to simply return zero for all complete tagged types (which will
101 get forced out anyway if they were used in the specification of some
102 formal or return type) and non-zero for all incomplete tagged types.
103*/
104
105#define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
106
107extern int flag_traditional;
108extern char *version_string;
109extern char *language_string;
110
111/* Maximum size (in bytes) of an artificially generated label. */
112
113#define MAX_ARTIFICIAL_LABEL_BYTES 30
114\f
115/* Make sure we know the sizes of the various types dwarf can describe.
116 These are only defaults. If the sizes are different for your target,
117 you should override these values by defining the appropriate symbols
118 in your tm.h file. */
119
120#ifndef CHAR_TYPE_SIZE
121#define CHAR_TYPE_SIZE BITS_PER_UNIT
122#endif
123
124#ifndef SHORT_TYPE_SIZE
125#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
126#endif
127
128#ifndef INT_TYPE_SIZE
129#define INT_TYPE_SIZE BITS_PER_WORD
130#endif
131
132#ifndef LONG_TYPE_SIZE
133#define LONG_TYPE_SIZE BITS_PER_WORD
134#endif
135
136#ifndef LONG_LONG_TYPE_SIZE
137#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
138#endif
139
140#ifndef WCHAR_TYPE_SIZE
141#define WCHAR_TYPE_SIZE INT_TYPE_SIZE
142#endif
143
144#ifndef WCHAR_UNSIGNED
145#define WCHAR_UNSIGNED 0
146#endif
147
148#ifndef FLOAT_TYPE_SIZE
149#define FLOAT_TYPE_SIZE BITS_PER_WORD
150#endif
151
152#ifndef DOUBLE_TYPE_SIZE
153#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
154#endif
155
156#ifndef LONG_DOUBLE_TYPE_SIZE
157#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
158#endif
159\f
160/* Structure to keep track of source filenames. */
161
162struct filename_entry {
163 unsigned number;
164 char * name;
165};
166
167typedef struct filename_entry filename_entry;
168
169/* Pointer to an array of elements, each one having the structure above. */
170
171static filename_entry *filename_table;
172
173/* Total number of entries in the table (i.e. array) pointed to by
174 `filename_table'. This is the *total* and includes both used and
175 unused slots. */
176
177static unsigned ft_entries_allocated;
178
179/* Number of entries in the filename_table which are actually in use. */
180
181static unsigned ft_entries;
182
183/* Size (in elements) of increments by which we may expand the filename
184 table. Actually, a single hunk of space of this size should be enough
185 for most typical programs. */
186
187#define FT_ENTRIES_INCREMENT 64
188
189/* Local pointer to the name of the main input file. Initialized in
190 dwarfout_init. */
191
192static char *primary_filename;
193
194/* Pointer to the most recent filename for which we produced some line info. */
195
196static char *last_filename;
197
198/* For Dwarf output, we must assign lexical-blocks id numbers
199 in the order in which their beginnings are encountered.
200 We output Dwarf debugging info that refers to the beginnings
201 and ends of the ranges of code for each lexical block with
202 assembler labels ..Bn and ..Bn.e, where n is the block number.
203 The labels themselves are generated in final.c, which assigns
204 numbers to the blocks in the same way. */
205
206static unsigned next_block_number = 2;
207
208/* Counter to generate unique names for DIEs. */
209
210static unsigned next_unused_dienum = 1;
211
212/* Number of the DIE which is currently being generated. */
213
214static unsigned current_dienum;
215
216/* Number to use for the special "pubname" label on the next DIE which
217 represents a function or data object defined in this compilation
218 unit which has "extern" linkage. */
219
220static next_pubname_number = 0;
221
222#define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
223
224/* Pointer to a dynamically allocated list of pre-reserved and still
225 pending sibling DIE numbers. Note that this list will grow as needed. */
226
227static unsigned *pending_sibling_stack;
228
229/* Counter to keep track of the number of pre-reserved and still pending
230 sibling DIE numbers. */
231
232static unsigned pending_siblings;
233
234/* The currently allocated size of the above list (expressed in number of
235 list elements). */
236
237static unsigned pending_siblings_allocated;
238
239/* Size (in elements) of increments by which we may expand the pending
240 sibling stack. Actually, a single hunk of space of this size should
241 be enough for most typical programs. */
242
243#define PENDING_SIBLINGS_INCREMENT 64
244
245/* Non-zero if we are performing our file-scope finalization pass and if
246 we should force out Dwarf descriptions of any and all file-scope
247 tagged types which are still incomplete types. */
248
249static int finalizing = 0;
250
251/* A pointer to the base of a list of pending types which we haven't
252 generated DIEs for yet, but which we will have to come back to
253 later on. */
254
255static tree *pending_types_list;
256
257/* Number of elements currently allocated for the pending_types_list. */
258
259static unsigned pending_types_allocated;
260
261/* Number of elements of pending_types_list currently in use. */
262
263static unsigned pending_types;
264
265/* Size (in elements) of increments by which we may expand the pending
266 types list. Actually, a single hunk of space of this size should
267 be enough for most typical programs. */
268
269#define PENDING_TYPES_INCREMENT 64
270
271/* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
272 This is used in a hack to help us get the DIEs describing types of
273 formal parameters to come *after* all of the DIEs describing the formal
274 parameters themselves. That's necessary in order to be compatible
275 with what the brain-damaged svr4 SDB debugger requires. */
276
277static tree fake_containing_scope;
278
279/* The number of the current function definition that we are generating
280 debugging information for. These numbers range from 1 up to the maximum
281 number of function definitions contained within the current compilation
282 unit. These numbers are used to create unique labels for various things
283 contained within various function definitions. */
284
285static unsigned current_funcdef_number = 1;
286
287/* A pointer to the ..._DECL node which we have most recently been working
288 on. We keep this around just in case something about it looks screwy
289 and we want to tell the user what the source coordinates for the actual
290 declaration are. */
291
292static tree dwarf_last_decl;
293
294/* Forward declarations for functions defined in this file. */
295
296static void output_type ();
297static void type_attribute ();
298static void output_decls_for_scope ();
299static void output_decl ();
300static unsigned lookup_filename ();
301\f
302/* Definitions of defaults for assembler-dependent names of various
303 pseudo-ops and section names.
304
305 Theses may be overridden in your tm.h file (if necessary) for your
306 particular assembler. The default values provided here correspond to
307 what is expected by "standard" AT&T System V.4 assemblers. */
308
309#ifndef FILE_ASM_OP
310#define FILE_ASM_OP ".file"
311#endif
312#ifndef VERSION_ASM_OP
313#define VERSION_ASM_OP ".version"
314#endif
315#ifndef UNALIGNED_SHORT_ASM_OP
316#define UNALIGNED_SHORT_ASM_OP ".2byte"
317#endif
318#ifndef UNALIGNED_INT_ASM_OP
319#define UNALIGNED_INT_ASM_OP ".4byte"
320#endif
321#ifndef ASM_BYTE_OP
322#define ASM_BYTE_OP ".byte"
323#endif
324#ifndef SET_ASM_OP
325#define SET_ASM_OP ".set"
326#endif
327
328/* Pseudo-ops for pushing the current section onto the section stack (and
329 simultaneously changing to a new section) and for poping back to the
330 section we were in immediately before this one. Note that most svr4
331 assemblers only maintain a one level stack... you can push all the
332 sections you want, but you can only pop out one level. (The sparc
333 svr4 assembler is an exception to this general rule.) That's
334 OK because we only use at most one level of the section stack herein. */
335
336#ifndef PUSHSECTION_ASM_OP
337#define PUSHSECTION_ASM_OP ".section"
338#endif
339#ifndef POPSECTION_ASM_OP
340#define POPSECTION_ASM_OP ".previous"
341#endif
342
343/* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
344 to print the PUSHSECTION_ASM_OP and the section name. The default here
345 works for almost all svr4 assemblers, except for the sparc, where the
346 section name must be enclosed in double quotes. (See sparcv4.h.) */
347
348#ifndef PUSHSECTION_FORMAT
349#define PUSHSECTION_FORMAT "%s\t%s\n"
350#endif
351
352#ifndef DEBUG_SECTION
353#define DEBUG_SECTION ".debug"
354#endif
355#ifndef LINE_SECTION
356#define LINE_SECTION ".line"
357#endif
358#ifndef SFNAMES_SECTION
359#define SFNAMES_SECTION ".debug_sfnames"
360#endif
361#ifndef SRCINFO_SECTION
362#define SRCINFO_SECTION ".debug_srcinfo"
363#endif
364#ifndef MACINFO_SECTION
365#define MACINFO_SECTION ".debug_macinfo"
366#endif
367#ifndef PUBNAMES_SECTION
368#define PUBNAMES_SECTION ".debug_pubnames"
369#endif
370#ifndef ARANGES_SECTION
371#define ARANGES_SECTION ".debug_aranges"
372#endif
373#ifndef TEXT_SECTION
374#define TEXT_SECTION ".text"
375#endif
376#ifndef DATA_SECTION
377#define DATA_SECTION ".data"
378#endif
379#ifndef DATA1_SECTION
380#define DATA1_SECTION ".data1"
381#endif
382#ifndef RODATA_SECTION
383#define RODATA_SECTION ".rodata"
384#endif
385#ifndef RODATA1_SECTION
386#define RODATA1_SECTION ".rodata1"
387#endif
388#ifndef BSS_SECTION
389#define BSS_SECTION ".bss"
390#endif
391\f
392/* Definitions of defaults for formats and names of various special
393 (artificial) labels which may be generated within this file (when
394 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
395
396 If necessary, these may be overridden from within your tm.h file,
397 but typically, you should never need to override these.
398
399 These labels have been hacked (temporarily) so that they all begin with
400 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
401 stock m88k/svr4 assembler, both of which need to see .L at the start of
402 a label in order to prevent that label from going into the linker symbol
403 table). When I get time, I'll have to fix this the right way so that we
404 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
405 but that will require a rather massive set of changes. For the moment,
406 the following definitions out to produce the right results for all svr4
407 and svr3 assemblers. -- rfg
408*/
409
410#ifndef TEXT_BEGIN_LABEL
411#define TEXT_BEGIN_LABEL ".L_text_b"
412#endif
413#ifndef TEXT_END_LABEL
414#define TEXT_END_LABEL ".L_text_e"
415#endif
416
417#ifndef DATA_BEGIN_LABEL
418#define DATA_BEGIN_LABEL ".L_data_b"
419#endif
420#ifndef DATA_END_LABEL
421#define DATA_END_LABEL ".L_data_e"
422#endif
423
424#ifndef DATA1_BEGIN_LABEL
425#define DATA1_BEGIN_LABEL ".L_data1_b"
426#endif
427#ifndef DATA1_END_LABEL
428#define DATA1_END_LABEL ".L_data1_e"
429#endif
430
431#ifndef RODATA_BEGIN_LABEL
432#define RODATA_BEGIN_LABEL ".L_rodata_b"
433#endif
434#ifndef RODATA_END_LABEL
435#define RODATA_END_LABEL ".L_rodata_e"
436#endif
437
438#ifndef RODATA1_BEGIN_LABEL
439#define RODATA1_BEGIN_LABEL ".L_rodata1_b"
440#endif
441#ifndef RODATA1_END_LABEL
442#define RODATA1_END_LABEL ".L_rodata1_e"
443#endif
444
445#ifndef BSS_BEGIN_LABEL
446#define BSS_BEGIN_LABEL ".L_bss_b"
447#endif
448#ifndef BSS_END_LABEL
449#define BSS_END_LABEL ".L_bss_e"
450#endif
451
452#ifndef LINE_BEGIN_LABEL
453#define LINE_BEGIN_LABEL ".L_line_b"
454#endif
455#ifndef LINE_LAST_ENTRY_LABEL
456#define LINE_LAST_ENTRY_LABEL ".L_line_last"
457#endif
458#ifndef LINE_END_LABEL
459#define LINE_END_LABEL ".L_line_e"
460#endif
461
462#ifndef DEBUG_BEGIN_LABEL
463#define DEBUG_BEGIN_LABEL ".L_debug_b"
464#endif
465#ifndef SFNAMES_BEGIN_LABEL
466#define SFNAMES_BEGIN_LABEL ".L_sfnames_b"
467#endif
468#ifndef SRCINFO_BEGIN_LABEL
469#define SRCINFO_BEGIN_LABEL ".L_srcinfo_b"
470#endif
471#ifndef MACINFO_BEGIN_LABEL
472#define MACINFO_BEGIN_LABEL ".L_macinfo_b"
473#endif
474
475#ifndef DIE_BEGIN_LABEL_FMT
476#define DIE_BEGIN_LABEL_FMT ".L_D%u"
477#endif
478#ifndef DIE_END_LABEL_FMT
479#define DIE_END_LABEL_FMT ".L_D%u_e"
480#endif
481#ifndef PUB_DIE_LABEL_FMT
482#define PUB_DIE_LABEL_FMT ".L_P%u"
483#endif
484#ifndef INSN_LABEL_FMT
485#define INSN_LABEL_FMT ".L_I%u_%u"
486#endif
487#ifndef BLOCK_BEGIN_LABEL_FMT
488#define BLOCK_BEGIN_LABEL_FMT ".L_B%u"
489#endif
490#ifndef BLOCK_END_LABEL_FMT
491#define BLOCK_END_LABEL_FMT ".L_B%u_e"
492#endif
493#ifndef SS_BEGIN_LABEL_FMT
494#define SS_BEGIN_LABEL_FMT ".L_s%u"
495#endif
496#ifndef SS_END_LABEL_FMT
497#define SS_END_LABEL_FMT ".L_s%u_e"
498#endif
499#ifndef EE_BEGIN_LABEL_FMT
500#define EE_BEGIN_LABEL_FMT ".L_e%u"
501#endif
502#ifndef EE_END_LABEL_FMT
503#define EE_END_LABEL_FMT ".L_e%u_e"
504#endif
505#ifndef MT_BEGIN_LABEL_FMT
506#define MT_BEGIN_LABEL_FMT ".L_t%u"
507#endif
508#ifndef MT_END_LABEL_FMT
509#define MT_END_LABEL_FMT ".L_t%u_e"
510#endif
511#ifndef LOC_BEGIN_LABEL_FMT
512#define LOC_BEGIN_LABEL_FMT ".L_l%u"
513#endif
514#ifndef LOC_END_LABEL_FMT
515#define LOC_END_LABEL_FMT ".L_l%u_e"
516#endif
517#ifndef BOUND_BEGIN_LABEL_FMT
518#define BOUND_BEGIN_LABEL_FMT ".L_b%u_%u_%c"
519#endif
520#ifndef BOUND_END_LABEL_FMT
521#define BOUND_END_LABEL_FMT ".L_b%u_%u_%c_e"
522#endif
523#ifndef DERIV_BEGIN_LABEL_FMT
524#define DERIV_BEGIN_LABEL_FMT ".L_d%u"
525#endif
526#ifndef DERIV_END_LABEL_FMT
527#define DERIV_END_LABEL_FMT ".L_d%u_e"
528#endif
529#ifndef SL_BEGIN_LABEL_FMT
530#define SL_BEGIN_LABEL_FMT ".L_sl%u"
531#endif
532#ifndef SL_END_LABEL_FMT
533#define SL_END_LABEL_FMT ".L_sl%u_e"
534#endif
535#ifndef BODY_BEGIN_LABEL_FMT
536#define BODY_BEGIN_LABEL_FMT ".L_b%u"
537#endif
538#ifndef BODY_END_LABEL_FMT
539#define BODY_END_LABEL_FMT ".L_b%u_e"
540#endif
541#ifndef FUNC_END_LABEL_FMT
542#define FUNC_END_LABEL_FMT ".L_f%u_e"
543#endif
544#ifndef TYPE_NAME_FMT
545#define TYPE_NAME_FMT ".L_T%u"
546#endif
547#ifndef DECL_NAME_FMT
548#define DECL_NAME_FMT ".L_E%u"
549#endif
550#ifndef LINE_CODE_LABEL_FMT
551#define LINE_CODE_LABEL_FMT ".L_LC%u"
552#endif
553#ifndef SFNAMES_ENTRY_LABEL_FMT
554#define SFNAMES_ENTRY_LABEL_FMT ".L_F%u"
555#endif
556#ifndef LINE_ENTRY_LABEL_FMT
557#define LINE_ENTRY_LABEL_FMT ".L_LE%u"
558#endif
559\f
560/* Definitions of defaults for various types of primitive assembly language
561 output operations.
562
563 If necessary, these may be overridden from within your tm.h file,
564 but typically, you shouldn't need to override these. One known
565 exception is ASM_OUTPUT_DEF which has to be different for stock
566 sparc/svr4 assemblers.
567*/
568
569#ifndef ASM_OUTPUT_PUSH_SECTION
570#define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
571 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
572#endif
573
574#ifndef ASM_OUTPUT_POP_SECTION
575#define ASM_OUTPUT_POP_SECTION(FILE) \
576 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
577#endif
578
579#ifndef ASM_OUTPUT_SOURCE_FILENAME
580#define ASM_OUTPUT_SOURCE_FILENAME(FILE,NAME) \
581 fprintf ((FILE), "\t%s\t\"%s\"\n", FILE_ASM_OP, NAME)
582#endif
583
584#ifndef ASM_OUTPUT_DEF
585#define ASM_OUTPUT_DEF(FILE,LABEL1,LABEL2) \
586 do { fprintf ((FILE), "\t%s\t", SET_ASM_OP); \
587 assemble_name (FILE, LABEL1); \
588 fprintf (FILE, ","); \
589 assemble_name (FILE, LABEL2); \
590 fprintf (FILE, "\n"); \
591 } while (0)
592#endif
593
594#ifndef ASM_OUTPUT_DWARF_DELTA2
595#define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
596 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
597 assemble_name (FILE, LABEL1); \
598 fprintf (FILE, "-"); \
599 assemble_name (FILE, LABEL2); \
600 fprintf (FILE, "\n"); \
601 } while (0)
602#endif
603
604#ifndef ASM_OUTPUT_DWARF_DELTA4
605#define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
606 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
607 assemble_name (FILE, LABEL1); \
608 fprintf (FILE, "-"); \
609 assemble_name (FILE, LABEL2); \
610 fprintf (FILE, "\n"); \
611 } while (0)
612#endif
613
614#ifndef ASM_OUTPUT_DWARF_TAG
615#define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
616 do { \
617 fprintf ((FILE), "\t%s\t0x%x", \
618 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
619 if (flag_verbose_asm) \
620 fprintf ((FILE), "\t%s %s", \
621 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
622 fputc ('\n', (FILE)); \
623 } while (0)
624#endif
625
626#ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
627#define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
628 do { \
629 fprintf ((FILE), "\t%s\t0x%x", \
630 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
631 if (flag_verbose_asm) \
632 fprintf ((FILE), "\t%s %s", \
633 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
634 fputc ('\n', (FILE)); \
635 } while (0)
636#endif
637
638#ifndef ASM_OUTPUT_DWARF_STACK_OP
639#define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
640 do { \
641 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
642 if (flag_verbose_asm) \
643 fprintf ((FILE), "\t%s %s", \
644 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
645 fputc ('\n', (FILE)); \
646 } while (0)
647#endif
648
649#ifndef ASM_OUTPUT_DWARF_FUND_TYPE
650#define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
651 do { \
652 fprintf ((FILE), "\t%s\t0x%x", \
653 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
654 if (flag_verbose_asm) \
655 fprintf ((FILE), "\t%s %s", \
656 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
657 fputc ('\n', (FILE)); \
658 } while (0)
659#endif
660
661#ifndef ASM_OUTPUT_DWARF_FMT_BYTE
662#define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
663 do { \
664 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
665 if (flag_verbose_asm) \
666 fprintf ((FILE), "\t%s %s", \
667 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
668 fputc ('\n', (FILE)); \
669 } while (0)
670#endif
671
672#ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
673#define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
674 do { \
675 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
676 if (flag_verbose_asm) \
677 fprintf ((FILE), "\t%s %s", \
678 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
679 fputc ('\n', (FILE)); \
680 } while (0)
681#endif
682\f
683#ifndef ASM_OUTPUT_DWARF_ADDR
684#define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
685 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
686 assemble_name (FILE, LABEL); \
687 fprintf (FILE, "\n"); \
688 } while (0)
689#endif
690
691#ifndef ASM_OUTPUT_DWARF_ADDR_CONST
692#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
693 do { \
694 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
695 output_addr_const ((FILE), (RTX)); \
696 fputc ('\n', (FILE)); \
697 } while (0)
698#endif
699
700#ifndef ASM_OUTPUT_DWARF_REF
701#define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
702 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
703 assemble_name (FILE, LABEL); \
704 fprintf (FILE, "\n"); \
705 } while (0)
706#endif
707
708#ifndef ASM_OUTPUT_DWARF_DATA1
709#define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
710 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
711#endif
712
713#ifndef ASM_OUTPUT_DWARF_DATA2
714#define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
715 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
716#endif
717
718#ifndef ASM_OUTPUT_DWARF_DATA4
719#define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
720 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
721#endif
722
723#ifndef ASM_OUTPUT_DWARF_DATA8
724#define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
725 do { \
726 if (WORDS_BIG_ENDIAN) \
727 { \
728 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
729 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
730 } \
731 else \
732 { \
733 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
734 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
735 } \
736 } while (0)
737#endif
738
739#ifndef ASM_OUTPUT_DWARF_STRING
740#define ASM_OUTPUT_DWARF_STRING(FILE,P) \
741 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
742#endif
743\f
744/************************ general utility functions **************************/
745
746inline char *
747xstrdup (s)
748 register char *s;
749{
750 register char *p = (char *) xmalloc (strlen (s) + 1);
751
752 strcpy (p, s);
753 return p;
754}
755
756inline int
757is_pseudo_reg (rtl)
758 register rtx rtl;
759{
760 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
761 || ((GET_CODE (rtl) == SUBREG)
762 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
763}
764
765/* Return non-zero if the given type node represents a tagged type. */
766
767inline int
768is_tagged_type (type)
769 register tree type;
770{
771 register enum tree_code code = TREE_CODE (type);
772
773 return (code == RECORD_TYPE || code == UNION_TYPE
774 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
775}
776
777static char *
778dwarf_tag_name (tag)
779 register unsigned tag;
780{
781 switch (tag)
782 {
783 case TAG_padding: return "TAG_padding";
784 case TAG_array_type: return "TAG_array_type";
785 case TAG_class_type: return "TAG_class_type";
786 case TAG_entry_point: return "TAG_entry_point";
787 case TAG_enumeration_type: return "TAG_enumeration_type";
788 case TAG_formal_parameter: return "TAG_formal_parameter";
789 case TAG_global_subroutine: return "TAG_global_subroutine";
790 case TAG_global_variable: return "TAG_global_variable";
791 case TAG_label: return "TAG_label";
792 case TAG_lexical_block: return "TAG_lexical_block";
793 case TAG_local_variable: return "TAG_local_variable";
794 case TAG_member: return "TAG_member";
795 case TAG_pointer_type: return "TAG_pointer_type";
796 case TAG_reference_type: return "TAG_reference_type";
797 case TAG_compile_unit: return "TAG_compile_unit";
798 case TAG_string_type: return "TAG_string_type";
799 case TAG_structure_type: return "TAG_structure_type";
800 case TAG_subroutine: return "TAG_subroutine";
801 case TAG_subroutine_type: return "TAG_subroutine_type";
802 case TAG_typedef: return "TAG_typedef";
803 case TAG_union_type: return "TAG_union_type";
804 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
805 case TAG_variant: return "TAG_variant";
806 case TAG_common_block: return "TAG_common_block";
807 case TAG_common_inclusion: return "TAG_common_inclusion";
808 case TAG_inheritance: return "TAG_inheritance";
809 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
810 case TAG_module: return "TAG_module";
811 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
812 case TAG_set_type: return "TAG_set_type";
813 case TAG_subrange_type: return "TAG_subrange_type";
814 case TAG_with_stmt: return "TAG_with_stmt";
815
816 /* GNU extensions. */
817
818 case TAG_format_label: return "TAG_format_label";
819 case TAG_namelist: return "TAG_namelist";
820 case TAG_function_template: return "TAG_function_template";
821 case TAG_class_template: return "TAG_class_template";
822
823 default: return "TAG_<unknown>";
824 }
825}
826
827static char *
828dwarf_attr_name (attr)
829 register unsigned attr;
830{
831 switch (attr)
832 {
833 case AT_sibling: return "AT_sibling";
834 case AT_location: return "AT_location";
835 case AT_name: return "AT_name";
836 case AT_fund_type: return "AT_fund_type";
837 case AT_mod_fund_type: return "AT_mod_fund_type";
838 case AT_user_def_type: return "AT_user_def_type";
839 case AT_mod_u_d_type: return "AT_mod_u_d_type";
840 case AT_ordering: return "AT_ordering";
841 case AT_subscr_data: return "AT_subscr_data";
842 case AT_byte_size: return "AT_byte_size";
843 case AT_bit_offset: return "AT_bit_offset";
844 case AT_bit_size: return "AT_bit_size";
845 case AT_element_list: return "AT_element_list";
846 case AT_stmt_list: return "AT_stmt_list";
847 case AT_low_pc: return "AT_low_pc";
848 case AT_high_pc: return "AT_high_pc";
849 case AT_language: return "AT_language";
850 case AT_member: return "AT_member";
851 case AT_discr: return "AT_discr";
852 case AT_discr_value: return "AT_discr_value";
853 case AT_string_length: return "AT_string_length";
854 case AT_common_reference: return "AT_common_reference";
855 case AT_comp_dir: return "AT_comp_dir";
856 case AT_const_value_string: return "AT_const_value_string";
857 case AT_const_value_data2: return "AT_const_value_data2";
858 case AT_const_value_data4: return "AT_const_value_data4";
859 case AT_const_value_data8: return "AT_const_value_data8";
860 case AT_const_value_block2: return "AT_const_value_block2";
861 case AT_const_value_block4: return "AT_const_value_block4";
862 case AT_containing_type: return "AT_containing_type";
863 case AT_default_value_addr: return "AT_default_value_addr";
864 case AT_default_value_data2: return "AT_default_value_data2";
865 case AT_default_value_data4: return "AT_default_value_data4";
866 case AT_default_value_data8: return "AT_default_value_data8";
867 case AT_default_value_string: return "AT_default_value_string";
868 case AT_friends: return "AT_friends";
869 case AT_inline: return "AT_inline";
870 case AT_is_optional: return "AT_is_optional";
871 case AT_lower_bound_ref: return "AT_lower_bound_ref";
872 case AT_lower_bound_data2: return "AT_lower_bound_data2";
873 case AT_lower_bound_data4: return "AT_lower_bound_data4";
874 case AT_lower_bound_data8: return "AT_lower_bound_data8";
875 case AT_private: return "AT_private";
876 case AT_producer: return "AT_producer";
877 case AT_program: return "AT_program";
878 case AT_protected: return "AT_protected";
879 case AT_prototyped: return "AT_prototyped";
880 case AT_public: return "AT_public";
881 case AT_pure_virtual: return "AT_pure_virtual";
882 case AT_return_addr: return "AT_return_addr";
883 case AT_abstract_origin: return "AT_abstract_origin";
884 case AT_start_scope: return "AT_start_scope";
885 case AT_stride_size: return "AT_stride_size";
886 case AT_upper_bound_ref: return "AT_upper_bound_ref";
887 case AT_upper_bound_data2: return "AT_upper_bound_data2";
888 case AT_upper_bound_data4: return "AT_upper_bound_data4";
889 case AT_upper_bound_data8: return "AT_upper_bound_data8";
890 case AT_virtual: return "AT_virtual";
891
892 /* GNU extensions */
893
894 case AT_sf_names: return "AT_sf_names";
895 case AT_src_info: return "AT_src_info";
896 case AT_mac_info: return "AT_mac_info";
897 case AT_src_coords: return "AT_src_coords";
898 case AT_body_begin: return "AT_body_begin";
899 case AT_body_end: return "AT_body_end";
900
901 default: return "AT_<unknown>";
902 }
903}
904
905static char *
906dwarf_stack_op_name (op)
907 register unsigned op;
908{
909 switch (op)
910 {
911 case OP_REG: return "OP_REG";
912 case OP_BASEREG: return "OP_BASEREG";
913 case OP_ADDR: return "OP_ADDR";
914 case OP_CONST: return "OP_CONST";
915 case OP_DEREF2: return "OP_DEREF2";
916 case OP_DEREF4: return "OP_DEREF4";
917 case OP_ADD: return "OP_ADD";
918 default: return "OP_<unknown>";
919 }
920}
921
922static char *
923dwarf_typemod_name (mod)
924 register unsigned mod;
925{
926 switch (mod)
927 {
928 case MOD_pointer_to: return "MOD_pointer_to";
929 case MOD_reference_to: return "MOD_reference_to";
930 case MOD_const: return "MOD_const";
931 case MOD_volatile: return "MOD_volatile";
932 default: return "MOD_<unknown>";
933 }
934}
935
936static char *
937dwarf_fmt_byte_name (fmt)
938 register unsigned fmt;
939{
940 switch (fmt)
941 {
942 case FMT_FT_C_C: return "FMT_FT_C_C";
943 case FMT_FT_C_X: return "FMT_FT_C_X";
944 case FMT_FT_X_C: return "FMT_FT_X_C";
945 case FMT_FT_X_X: return "FMT_FT_X_X";
946 case FMT_UT_C_C: return "FMT_UT_C_C";
947 case FMT_UT_C_X: return "FMT_UT_C_X";
948 case FMT_UT_X_C: return "FMT_UT_X_C";
949 case FMT_UT_X_X: return "FMT_UT_X_X";
950 case FMT_ET: return "FMT_ET";
951 default: return "FMT_<unknown>";
952 }
953}
954static char *
955dwarf_fund_type_name (ft)
956 register unsigned ft;
957{
958 switch (ft)
959 {
960 case FT_char: return "FT_char";
961 case FT_signed_char: return "FT_signed_char";
962 case FT_unsigned_char: return "FT_unsigned_char";
963 case FT_short: return "FT_short";
964 case FT_signed_short: return "FT_signed_short";
965 case FT_unsigned_short: return "FT_unsigned_short";
966 case FT_integer: return "FT_integer";
967 case FT_signed_integer: return "FT_signed_integer";
968 case FT_unsigned_integer: return "FT_unsigned_integer";
969 case FT_long: return "FT_long";
970 case FT_signed_long: return "FT_signed_long";
971 case FT_unsigned_long: return "FT_unsigned_long";
972 case FT_pointer: return "FT_pointer";
973 case FT_float: return "FT_float";
974 case FT_dbl_prec_float: return "FT_dbl_prec_float";
975 case FT_ext_prec_float: return "FT_ext_prec_float";
976 case FT_complex: return "FT_complex";
977 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
978 case FT_void: return "FT_void";
979 case FT_boolean: return "FT_boolean";
980 case FT_ext_prec_complex: return "FT_ext_prec_complex";
981 case FT_label: return "FT_label";
982
983 /* GNU extensions. */
984
985 case FT_long_long: return "FT_long_long";
986 case FT_signed_long_long: return "FT_signed_long_long";
987 case FT_unsigned_long_long: return "FT_unsigned_long_long";
988
989 case FT_int8: return "FT_int8";
990 case FT_signed_int8: return "FT_signed_int8";
991 case FT_unsigned_int8: return "FT_unsigned_int8";
992 case FT_int16: return "FT_int16";
993 case FT_signed_int16: return "FT_signed_int16";
994 case FT_unsigned_int16: return "FT_unsigned_int16";
995 case FT_int32: return "FT_int32";
996 case FT_signed_int32: return "FT_signed_int32";
997 case FT_unsigned_int32: return "FT_unsigned_int32";
998 case FT_int64: return "FT_int64";
999 case FT_signed_int64: return "FT_signed_int64";
1000 case FT_unsigned_int64: return "FT_signed_int64";
1001
1002 case FT_real32: return "FT_real32";
1003 case FT_real64: return "FT_real64";
1004 case FT_real96: return "FT_real96";
1005 case FT_real128: return "FT_real128";
1006
1007 default: return "FT_<unknown>";
1008 }
1009}
1010
1011/* Determine the "ultimate origin" of a decl. The decl may be an
1012 inlined instance of an inlined instance of a decl which is local
1013 to an inline function, so we have to trace all of the way back
1014 through the origin chain to find out what sort of node actually
1015 served as the original seed for the given block. */
1016
1017static tree
1018decl_ultimate_origin (decl)
1019 register tree decl;
1020{
1021 register tree immediate_origin = DECL_ABSTRACT_ORIGIN (decl);
1022
1023 if (immediate_origin == NULL)
1024 return NULL;
1025 else
1026 {
1027 register tree ret_val;
1028 register tree lookahead = immediate_origin;
1029
1030 do
1031 {
1032 ret_val = lookahead;
1033 lookahead = DECL_ABSTRACT_ORIGIN (ret_val);
1034 }
1035 while (lookahead != NULL && lookahead != ret_val);
1036 return ret_val;
1037 }
1038}
1039
1040/* Determine the "ultimate origin" of a block. The block may be an
1041 inlined instance of an inlined instance of a block which is local
1042 to an inline function, so we have to trace all of the way back
1043 through the origin chain to find out what sort of node actually
1044 served as the original seed for the given block. */
1045
1046static tree
1047block_ultimate_origin (block)
1048 register tree block;
1049{
1050 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1051
1052 if (immediate_origin == NULL)
1053 return NULL;
1054 else
1055 {
1056 register tree ret_val;
1057 register tree lookahead = immediate_origin;
1058
1059 do
1060 {
1061 ret_val = lookahead;
1062 lookahead = (TREE_CODE (ret_val) == BLOCK)
1063 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1064 : NULL;
1065 }
1066 while (lookahead != NULL && lookahead != ret_val);
1067 return ret_val;
1068 }
1069}
1070
1071static void
1072output_unsigned_leb128 (value)
1073 register unsigned long value;
1074{
1075 register unsigned long orig_value = value;
1076
1077 do
1078 {
1079 register unsigned byte = (value & 0x7f);
1080
1081 value >>= 7;
1082 if (value != 0) /* more bytes to follow */
1083 byte |= 0x80;
1084 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1085 if (flag_verbose_asm && value == 0)
1086 fprintf (asm_out_file, "\t%s ULEB128 number - value = %u",
1087 ASM_COMMENT_START, orig_value);
1088 fputc ('\n', asm_out_file);
1089 }
1090 while (value != 0);
1091}
1092
1093static void
1094output_signed_leb128 (value)
1095 register long value;
1096{
1097 register long orig_value = value;
1098 register int negative = (value < 0);
1099 register int more;
1100
1101 do
1102 {
1103 register unsigned byte = (value & 0x7f);
1104
1105 value >>= 7;
1106 if (negative)
1107 value |= 0xfe000000; /* manually sign extend */
1108 if (((value == 0) && ((byte & 0x40) == 0))
1109 || ((value == -1) && ((byte & 0x40) == 1)))
1110 more = 0;
1111 else
1112 {
1113 byte |= 0x80;
1114 more = 1;
1115 }
1116 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1117 if (flag_verbose_asm && more == 0)
1118 fprintf (asm_out_file, "\t%s SLEB128 number - value = %d",
1119 ASM_COMMENT_START, orig_value);
1120 fputc ('\n', asm_out_file);
1121 }
1122 while (more);
1123}
1124\f
1125/**************** utility functions for attribute functions ******************/
1126
1127/* Given a pointer to a BLOCK node return non-zero if (and only if) the
1128 node in question represents the outermost pair of curly braces (i.e.
1129 the "body block") of a function or method.
1130
1131 For any BLOCK node representing a "body block" of a function or method,
1132 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1133 which represents the outermost (function) scope for the function or
1134 method (i.e. the one which includes the formal parameters). The
1135 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1136 FUNCTION_DECL node.
1137*/
1138
1139inline int
1140is_body_block (stmt)
1141 register tree stmt;
1142{
1143 if (TREE_CODE (stmt) == BLOCK)
1144 {
1145 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1146
1147 if (TREE_CODE (parent) == BLOCK)
1148 {
1149 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1150
1151 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1152 return 1;
1153 }
1154 }
1155 return 0;
1156}
1157
1158/* Given a pointer to a tree node for some type, return a Dwarf fundamental
1159 type code for the given type.
1160
1161 This routine must only be called for GCC type nodes that correspond to
1162 Dwarf fundamental types.
1163
1164 The current Dwarf draft specification calls for Dwarf fundamental types
1165 to accurately reflect the fact that a given type was either a "plain"
1166 integral type or an explicitly "signed" integral type. Unfortunately,
1167 we can't always do this, because GCC may already have thrown away the
1168 information about the precise way in which the type was originally
1169 specified, as in:
1170
1171 typedef signed int my_type;
1172
1173 struct s { my_type f; };
1174
1175 Since we may be stuck here without enought information to do exactly
1176 what is called for in the Dwarf draft specification, we do the best
1177 that we can under the circumstances and always use the "plain" integral
1178 fundamental type codes for int, short, and long types. That's probably
1179 good enough. The additional accuracy called for in the current DWARF
1180 draft specification is probably never even useful in practice. */
1181
1182static int
1183fundamental_type_code (type)
1184 register tree type;
1185{
1186 if (TREE_CODE (type) == ERROR_MARK)
1187 return 0;
1188
1189 switch (TREE_CODE (type))
1190 {
1191 case ERROR_MARK:
1192 return FT_void;
1193
1194 case VOID_TYPE:
1195 return FT_void;
1196
1197 case INTEGER_TYPE:
1198 /* Carefully distinguish all the standard types of C,
1199 without messing up if the language is not C.
1200 Note that we check only for the names that contain spaces;
1201 other names might occur by coincidence in other languages. */
1202 if (TYPE_NAME (type) != 0
1203 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1204 && DECL_NAME (TYPE_NAME (type)) != 0
1205 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1206 {
1207 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1208
1209 if (!strcmp (name, "unsigned char"))
1210 return FT_unsigned_char;
1211 if (!strcmp (name, "signed char"))
1212 return FT_signed_char;
1213 if (!strcmp (name, "unsigned int"))
1214 return FT_unsigned_integer;
1215 if (!strcmp (name, "short int"))
1216 return FT_short;
1217 if (!strcmp (name, "short unsigned int"))
1218 return FT_unsigned_short;
1219 if (!strcmp (name, "long int"))
1220 return FT_long;
1221 if (!strcmp (name, "long unsigned int"))
1222 return FT_unsigned_long;
1223 if (!strcmp (name, "long long int"))
1224 return FT_long_long; /* Not grok'ed by svr4 SDB */
1225 if (!strcmp (name, "long long unsigned int"))
1226 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1227 }
1228
1229 /* Most integer types will be sorted out above, however, for the
1230 sake of special `array index' integer types, the following code
1231 is also provided. */
1232
1233 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1234 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1235
1236 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1237 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1238
1239 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1240 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1241
1242 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1243 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1244
1245 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1246 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1247
1248 abort ();
1249
1250 case REAL_TYPE:
1251 /* Carefully distinguish all the standard types of C,
1252 without messing up if the language is not C. */
1253 if (TYPE_NAME (type) != 0
1254 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1255 && DECL_NAME (TYPE_NAME (type)) != 0
1256 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1257 {
1258 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1259
1260 /* Note that here we can run afowl of a serious bug in "classic"
1261 svr4 SDB debuggers. They don't seem to understand the
1262 FT_ext_prec_float type (even though they should). */
1263
1264 if (!strcmp (name, "long double"))
1265 return FT_ext_prec_float;
1266 }
1267
1268 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1269 return FT_dbl_prec_float;
1270 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1271 return FT_float;
1272
1273 /* Note that here we can run afowl of a serious bug in "classic"
1274 svr4 SDB debuggers. They don't seem to understand the
1275 FT_ext_prec_float type (even though they should). */
1276
1277 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1278 return FT_ext_prec_float;
1279 abort ();
1280
1281 case COMPLEX_TYPE:
1282 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1283
1284 case CHAR_TYPE:
1285 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1286
1287 case BOOLEAN_TYPE:
1288 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1289
1290 default:
1291 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1292 }
1293 return 0;
1294}
1295\f
1296/* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1297 the Dwarf "root" type for the given input type. The Dwarf "root" type
1298 of a given type is generally the same as the given type, except that if
1299 the given type is a pointer or reference type, then the root type of
1300 the given type is the root type of the "basis" type for the pointer or
1301 reference type. (This definition of the "root" type is recursive.)
1302 Also, the root type of a `const' qualified type or a `volatile'
1303 qualified type is the root type of the given type without the
1304 qualifiers. */
1305
1306static tree
1307root_type (type)
1308 register tree type;
1309{
1310 if (TREE_CODE (type) == ERROR_MARK)
1311 return error_mark_node;
1312
1313 switch (TREE_CODE (type))
1314 {
1315 case ERROR_MARK:
1316 return error_mark_node;
1317
1318 case POINTER_TYPE:
1319 case REFERENCE_TYPE:
1320 return TYPE_MAIN_VARIANT (root_type (TREE_TYPE (type)));
1321
1322 default:
1323 return TYPE_MAIN_VARIANT (type);
1324 }
1325}
1326
1327/* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1328 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1329
1330static void
1331write_modifier_bytes (type, decl_const, decl_volatile)
1332 register tree type;
1333 register int decl_const;
1334 register int decl_volatile;
1335{
1336 if (TREE_CODE (type) == ERROR_MARK)
1337 return;
1338
1339 if (TYPE_READONLY (type) || decl_const)
1340 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1341 if (TYPE_VOLATILE (type) || decl_volatile)
1342 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1343 switch (TREE_CODE (type))
1344 {
1345 case POINTER_TYPE:
1346 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1347 write_modifier_bytes (TREE_TYPE (type), 0, 0);
1348 return;
1349
1350 case REFERENCE_TYPE:
1351 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1352 write_modifier_bytes (TREE_TYPE (type), 0, 0);
1353 return;
1354
1355 case ERROR_MARK:
1356 default:
1357 return;
1358 }
1359}
1360\f
1361/* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1362 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1363
1364inline int
1365type_is_fundamental (type)
1366 register tree type;
1367{
1368 switch (TREE_CODE (type))
1369 {
1370 case ERROR_MARK:
1371 case VOID_TYPE:
1372 case INTEGER_TYPE:
1373 case REAL_TYPE:
1374 case COMPLEX_TYPE:
1375 case BOOLEAN_TYPE:
1376 case CHAR_TYPE:
1377 return 1;
1378
1379 case SET_TYPE:
1380 case ARRAY_TYPE:
1381 case RECORD_TYPE:
1382 case UNION_TYPE:
1383 case QUAL_UNION_TYPE:
1384 case ENUMERAL_TYPE:
1385 case FUNCTION_TYPE:
1386 case METHOD_TYPE:
1387 case POINTER_TYPE:
1388 case REFERENCE_TYPE:
1389 case STRING_TYPE:
1390 case FILE_TYPE:
1391 case OFFSET_TYPE:
1392 case LANG_TYPE:
1393 return 0;
1394
1395 default:
1396 abort ();
1397 }
1398 return 0;
1399}
1400
1401/* Given a pointer to some ..._DECL tree node, generate an assembly language
1402 equate directive which will associate a symbolic name with the current DIE.
1403
1404 The name used is an artificial label generated from the DECL_UID number
1405 associated with the given decl node. The name it gets equated to is the
1406 symbolic label that we (previously) output at the start of the DIE that
1407 we are currently generating.
1408
1409 Calling this function while generating some "decl related" form of DIE
1410 makes it possible to later refer to the DIE which represents the given
1411 decl simply by re-generating the symbolic name from the ..._DECL node's
1412 UID number. */
1413
1414static void
1415equate_decl_number_to_die_number (decl)
1416 register tree decl;
1417{
1418 /* In the case where we are generating a DIE for some ..._DECL node
1419 which represents either some inline function declaration or some
1420 entity declared within an inline function declaration/definition,
1421 setup a symbolic name for the current DIE so that we have a name
1422 for this DIE that we can easily refer to later on within
1423 AT_abstract_origin attributes. */
1424
1425 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1426 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1427
1428 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1429 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1430 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1431}
1432
1433/* Given a pointer to some ..._TYPE tree node, generate an assembly language
1434 equate directive which will associate a symbolic name with the current DIE.
1435
1436 The name used is an artificial label generated from the TYPE_UID number
1437 associated with the given type node. The name it gets equated to is the
1438 symbolic label that we (previously) output at the start of the DIE that
1439 we are currently generating.
1440
1441 Calling this function while generating some "type related" form of DIE
1442 makes it easy to later refer to the DIE which represents the given type
1443 simply by re-generating the alternative name from the ..._TYPE node's
1444 UID number. */
1445
1446inline void
1447equate_type_number_to_die_number (type)
1448 register tree type;
1449{
1450 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1451 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1452
1453 /* We are generating a DIE to represent the main variant of this type
1454 (i.e the type without any const or volatile qualifiers) so in order
1455 to get the equate to come out right, we need to get the main variant
1456 itself here. */
1457
1458 type = TYPE_MAIN_VARIANT (type);
1459
1460 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1461 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1462 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1463}
1464
1465static void
1466output_reg_number (rtl)
1467 register rtx rtl;
1468{
1469 register unsigned regno = REGNO (rtl);
1470
1471 if (regno >= FIRST_PSEUDO_REGISTER)
1472 {
1473 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1474 regno);
1475 regno = 0;
1476 }
1477 fprintf (asm_out_file, "\t%s\t0x%x",
1478 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1479 if (flag_verbose_asm)
1480 {
1481 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1482 PRINT_REG (rtl, 0, asm_out_file);
1483 }
1484 fputc ('\n', asm_out_file);
1485}
1486
1487/* The following routine is a nice and simple transducer. It converts the
1488 RTL for a variable or parameter (resident in memory) into an equivalent
1489 Dwarf representation of a mechanism for getting the address of that same
1490 variable onto the top of a hypothetical "address evaluation" stack.
1491
1492 When creating memory location descriptors, we are effectively trans-
1493 forming the RTL for a memory-resident object into its Dwarf postfix
1494 expression equivalent. This routine just recursively descends an
1495 RTL tree, turning it into Dwarf postfix code as it goes. */
1496
1497static void
1498output_mem_loc_descriptor (rtl)
1499 register rtx rtl;
1500{
1501 /* Note that for a dynamically sized array, the location we will
1502 generate a description of here will be the lowest numbered location
1503 which is actually within the array. That's *not* necessarily the
1504 same as the zeroth element of the array. */
1505
1506 switch (GET_CODE (rtl))
1507 {
1508 case SUBREG:
1509
1510 /* The case of a subreg may arise when we have a local (register)
1511 variable or a formal (register) parameter which doesn't quite
1512 fill up an entire register. For now, just assume that it is
1513 legitimate to make the Dwarf info refer to the whole register
1514 which contains the given subreg. */
1515
1516 rtl = XEXP (rtl, 0);
1517 /* Drop thru. */
1518
1519 case REG:
1520
1521 /* Whenever a register number forms a part of the description of
1522 the method for calculating the (dynamic) address of a memory
1523 resident object, DWARF rules require the register number to
1524 be referred to as a "base register". This distinction is not
1525 based in any way upon what category of register the hardware
1526 believes the given register belongs to. This is strictly
1527 DWARF terminology we're dealing with here.
1528
1529 Note that in cases where the location of a memory-resident data
1530 object could be expressed as:
1531
1532 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1533
1534 the actual DWARF location descriptor that we generate may just
1535 be OP_BASEREG (basereg). This may look deceptively like the
1536 object in question was allocated to a register (rather than
1537 in memory) so DWARF consumers need to be aware of the subtle
1538 distinction between OP_REG and OP_BASEREG. */
1539
1540 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1541 output_reg_number (rtl);
1542 break;
1543
1544 case MEM:
1545 output_mem_loc_descriptor (XEXP (rtl, 0));
1546 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1547 break;
1548
1549 case CONST:
1550 case SYMBOL_REF:
1551 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1552 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1553 break;
1554
1555 case PLUS:
1556 output_mem_loc_descriptor (XEXP (rtl, 0));
1557 output_mem_loc_descriptor (XEXP (rtl, 1));
1558 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1559 break;
1560
1561 case CONST_INT:
1562 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1563 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1564 break;
1565
1566 default:
1567 abort ();
1568 }
1569}
1570
1571/* Output a proper Dwarf location descriptor for a variable or parameter
1572 which is either allocated in a register or in a memory location. For
1573 a register, we just generate an OP_REG and the register number. For a
1574 memory location we provide a Dwarf postfix expression describing how to
1575 generate the (dynamic) address of the object onto the address stack. */
1576
1577static void
1578output_loc_descriptor (rtl)
1579 register rtx rtl;
1580{
1581 switch (GET_CODE (rtl))
1582 {
1583 case SUBREG:
1584
1585 /* The case of a subreg may arise when we have a local (register)
1586 variable or a formal (register) parameter which doesn't quite
1587 fill up an entire register. For now, just assume that it is
1588 legitimate to make the Dwarf info refer to the whole register
1589 which contains the given subreg. */
1590
1591 rtl = XEXP (rtl, 0);
1592 /* Drop thru. */
1593
1594 case REG:
1595 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1596 output_reg_number (rtl);
1597 break;
1598
1599 case MEM:
1600 output_mem_loc_descriptor (XEXP (rtl, 0));
1601 break;
1602
1603 default:
1604 abort (); /* Should never happen */
1605 }
1606}
1607
1608/* Given a tree node describing an array bound (either lower or upper)
1609 output a representation for that bound. */
1610
1611static void
1612output_bound_representation (bound, dim_num, u_or_l)
1613 register tree bound;
1614 register unsigned dim_num; /* For multi-dimensional arrays. */
1615 register char u_or_l; /* Designates upper or lower bound. */
1616{
1617 switch (TREE_CODE (bound))
1618 {
1619
1620 case ERROR_MARK:
1621 return;
1622
1623 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1624
1625 case INTEGER_CST:
1626 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1627 (unsigned) TREE_INT_CST_LOW (bound));
1628 break;
1629
1630 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1631 SAVE_EXPR nodes. */
1632
1633 case NOP_EXPR:
1634 bound = TREE_OPERAND (bound, 0);
1635 /* ... fall thru... */
1636
1637 case SAVE_EXPR:
1638 {
1639 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1640 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1641
1642 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1643 current_dienum, dim_num, u_or_l);
1644
1645 sprintf (end_label, BOUND_END_LABEL_FMT,
1646 current_dienum, dim_num, u_or_l);
1647
1648 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1649 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1650
1651 /* If we are working on a bound for a dynamic dimension in C,
1652 the dynamic dimension in question had better have a static
1653 (zero) lower bound and a dynamic *upper* bound. */
1654
1655 if (u_or_l != 'u')
1656 abort ();
1657
1658 /* If optimization is turned on, the SAVE_EXPRs that describe
1659 how to access the upper bound values are essentially bogus.
1660 They only describe (at best) how to get at these values at
1661 the points in the generated code right after they have just
1662 been computed. Worse yet, in the typical case, the upper
1663 bound values will not even *be* computed in the optimized
1664 code, so these SAVE_EXPRs are entirely bogus.
1665
1666 In order to compensate for this fact, we check here to see
1667 if optimization is enabled, and if so, we effectively create
1668 an empty location description for the (unknown and unknowable)
1669 upper bound.
1670
1671 This should not cause too much trouble for existing (stupid?)
1672 debuggers because they have to deal with empty upper bounds
1673 location descriptions anyway in order to be able to deal with
1674 incomplete array types.
1675
1676 Of course an intelligent debugger (GDB?) should be able to
1677 comprehend that a missing upper bound specification in a
1678 array type used for a storage class `auto' local array variable
1679 indicates that the upper bound is both unknown (at compile-
1680 time) and unknowable (at run-time) due to optimization.
1681 */
1682
1683 if (! optimize)
1684 output_loc_descriptor
1685 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
1686
1687 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1688 }
1689 break;
1690
1691 default:
1692 abort ();
1693 }
1694}
1695
1696/* Recursive function to output a sequence of value/name pairs for
1697 enumeration constants in reversed order. This is called from
1698 enumeration_type_die. */
1699
1700static void
1701output_enumeral_list (link)
1702 register tree link;
1703{
1704 if (link)
1705 {
1706 output_enumeral_list (TREE_CHAIN (link));
1707 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1708 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1709 ASM_OUTPUT_DWARF_STRING (asm_out_file,
1710 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1711 }
1712}
1713
1714/* Given an unsigned value, round it up to the lowest multiple of `boundary'
1715 which is not less than the value itself. */
1716
1717inline unsigned
1718ceiling (value, boundary)
1719 register unsigned value;
1720 register unsigned boundary;
1721{
1722 return (((value + boundary - 1) / boundary) * boundary);
1723}
1724
1725/* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1726 pointer to the declared type for the relevant field variable, or return
1727 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1728
1729inline tree
1730field_type (decl)
1731 register tree decl;
1732{
1733 register tree type;
1734
1735 if (TREE_CODE (decl) == ERROR_MARK)
1736 return integer_type_node;
1737
1738 type = DECL_BIT_FIELD_TYPE (decl);
1739 if (type == NULL)
1740 type = TREE_TYPE (decl);
1741 return type;
1742}
1743
1744/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1745 node, return the alignment in bits for the type, or else return
1746 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1747
1748inline unsigned
1749simple_type_align_in_bits (type)
1750 register tree type;
1751{
1752 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1753}
1754
1755/* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1756 node, return the size in bits for the type if it is a constant, or
1757 else return the alignment for the type if the type's size is not
1758 constant, or else return BITS_PER_WORD if the type actually turns out
1759 to be an ERROR_MARK node. */
1760
1761inline unsigned
1762simple_type_size_in_bits (type)
1763 register tree type;
1764{
1765 if (TREE_CODE (type) == ERROR_MARK)
1766 return BITS_PER_WORD;
1767 else
1768 {
1769 register tree type_size_tree = TYPE_SIZE (type);
1770
1771 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1772 return TYPE_ALIGN (type);
1773
1774 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1775 }
1776}
1777
1778/* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1779 return the byte offset of the lowest addressed byte of the "containing
1780 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1781 mine what that offset is, either because the argument turns out to be a
1782 pointer to an ERROR_MARK node, or because the offset is actually variable.
1783 (We can't handle the latter case just yet.) */
1784
1785static unsigned
1786field_byte_offset (decl)
1787 register tree decl;
1788{
1789 register unsigned type_align_in_bytes;
1790 register unsigned type_align_in_bits;
1791 register unsigned type_size_in_bits;
1792 register unsigned object_offset_in_align_units;
1793 register unsigned object_offset_in_bits;
1794 register unsigned object_offset_in_bytes;
1795 register tree type;
1796 register tree bitpos_tree;
1797 register tree field_size_tree;
1798 register unsigned bitpos_int;
1799 register unsigned deepest_bitpos;
1800 register unsigned field_size_in_bits;
1801
1802 if (TREE_CODE (decl) == ERROR_MARK)
1803 return 0;
1804
1805 if (TREE_CODE (decl) != FIELD_DECL)
1806 abort ();
1807
1808 type = field_type (decl);
1809
1810 bitpos_tree = DECL_FIELD_BITPOS (decl);
1811 field_size_tree = DECL_SIZE (decl);
1812
1813 /* We cannot yet cope with fields whose positions or sizes are variable,
1814 so for now, when we see such things, we simply return 0. Someday,
1815 we may be able to handle such cases, but it will be damn difficult. */
1816
1817 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
1818 return 0;
1819 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
1820
1821 if (TREE_CODE (field_size_tree) != INTEGER_CST)
1822 return 0;
1823 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
1824
1825 type_size_in_bits = simple_type_size_in_bits (type);
1826
1827 type_align_in_bits = simple_type_align_in_bits (type);
1828 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
1829
1830 /* Note that the GCC front-end doesn't make any attempt to keep track
1831 of the starting bit offset (relative to the start of the containing
1832 structure type) of the hypothetical "containing object" for a bit-
1833 field. Thus, when computing the byte offset value for the start of
1834 the "containing object" of a bit-field, we must deduce this infor-
1835 mation on our own.
1836
1837 This can be rather tricky to do in some cases. For example, handling
1838 the following structure type definition when compiling for an i386/i486
1839 target (which only aligns long long's to 32-bit boundaries) can be very
1840 tricky:
1841
1842 struct S {
1843 int field1;
1844 long long field2:31;
1845 };
1846
1847 Fortunately, there is a simple rule-of-thumb which can be used in such
1848 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
1849 the structure shown above. It decides to do this based upon one simple
1850 rule for bit-field allocation. Quite simply, GCC allocates each "con-
1851 taining object" for each bit-field at the first (i.e. lowest addressed)
1852 legitimate alignment boundary (based upon the required minimum alignment
1853 for the declared type of the field) which it can possibly use, subject
1854 to the condition that there is still enough available space remaining
1855 in the containing object (when allocated at the selected point) to
1856 fully accommodate all of the bits of the bit-field itself.
1857
1858 This simple rule makes it obvious why GCC allocates 8 bytes for each
1859 object of the structure type shown above. When looking for a place to
1860 allocate the "containing object" for `field2', the compiler simply tries
1861 to allocate a 64-bit "containing object" at each successive 32-bit
1862 boundary (starting at zero) until it finds a place to allocate that 64-
1863 bit field such that at least 31 contiguous (and previously unallocated)
1864 bits remain within that selected 64 bit field. (As it turns out, for
1865 the example above, the compiler finds that it is OK to allocate the
1866 "containing object" 64-bit field at bit-offset zero within the
1867 structure type.)
1868
1869 Here we attempt to work backwards from the limited set of facts we're
1870 given, and we try to deduce from those facts, where GCC must have
1871 believed that the containing object started (within the structure type).
1872
1873 The value we deduce is then used (by the callers of this routine) to
1874 generate AT_location and AT_bit_offset attributes for fields (both
1875 bit-fields and, in the case of AT_location, regular fields as well).
1876 */
1877
1878 /* Figure out the bit-distance from the start of the structure to the
1879 "deepest" bit of the bit-field. */
1880 deepest_bitpos = bitpos_int + field_size_in_bits;
1881
1882 /* This is the tricky part. Use some fancy footwork to deduce where the
1883 lowest addressed bit of the containing object must be. */
1884 object_offset_in_bits
1885 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
1886
1887 /* Compute the offset of the containing object in "alignment units". */
1888 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
1889
1890 /* Compute the offset of the containing object in bytes. */
1891 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
1892
1893 return object_offset_in_bytes;
1894}
1895
1896/****************************** attributes *********************************/
1897
1898/* The following routines are responsible for writing out the various types
1899 of Dwarf attributes (and any following data bytes associated with them).
1900 These routines are listed in order based on the numerical codes of their
1901 associated attributes. */
1902
1903/* Generate an AT_sibling attribute. */
1904
1905inline void
1906sibling_attribute ()
1907{
1908 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1909
1910 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
1911 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
1912 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
1913}
1914
1915/* Output the form of location attributes suitable for whole variables and
1916 whole parameters. Note that the location attributes for struct fields
1917 are generated by the routine `data_member_location_attribute' below. */
1918
1919static void
1920location_attribute (rtl)
1921 register rtx rtl;
1922{
1923 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1924 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1925
1926 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
1927 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
1928 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
1929 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1930 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1931
1932 /* Handle a special case. If we are about to output a location descriptor
1933 for a variable or parameter which has been optimized out of existence,
1934 don't do that. Instead we output a zero-length location descriptor
1935 value as part of the location attribute.
1936
1937 A variable which has been optimized out of existence will have a
1938 DECL_RTL value which denotes a pseudo-reg.
1939
1940 Currently, in some rare cases, variables can have DECL_RTL values
1941 which look like (MEM (REG pseudo-reg#)). These cases are due to
1942 bugs elsewhere in the compiler. We treat such cases
1943 as if the variable(s) in question had been optimized out of existence.
1944
1945 Note that in all cases where we wish to express the fact that a
1946 variable has been optimized out of existence, we do not simply
1947 suppress the generation of the entire location attribute because
1948 the absence of a location attribute in certain kinds of DIEs is
1949 used to indicate something else entirely... i.e. that the DIE
1950 represents an object declaration, but not a definition. So sayeth
1951 the PLSIG.
1952 */
1953
1954 if (! is_pseudo_reg (rtl)
1955 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
1956 output_loc_descriptor (eliminate_regs (rtl, 0, NULL_RTX));
1957
1958 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1959}
1960
1961/* Output the specialized form of location attribute used for data members
1962 of struct and union types.
1963
1964 In the special case of a FIELD_DECL node which represents a bit-field,
1965 the "offset" part of this special location descriptor must indicate the
1966 distance in bytes from the lowest-addressed byte of the containing
1967 struct or union type to the lowest-addressed byte of the "containing
1968 object" for the bit-field. (See the `field_byte_offset' function above.)
1969
1970 For any given bit-field, the "containing object" is a hypothetical
1971 object (of some integral or enum type) within which the given bit-field
1972 lives. The type of this hypothetical "containing object" is always the
1973 same as the declared type of the individual bit-field itself (for GCC
1974 anyway... the DWARF spec doesn't actually mandate this).
1975
1976 Note that it is the size (in bytes) of the hypothetical "containing
1977 object" which will be given in the AT_byte_size attribute for this
1978 bit-field. (See the `byte_size_attribute' function below.) It is
1979 also used when calculating the value of the AT_bit_offset attribute.
1980 (See the `bit_offset_attribute' function below.)
1981*/
1982
1983static void
1984data_member_location_attribute (decl)
1985 register tree decl;
1986{
1987 register unsigned object_offset_in_bytes = field_byte_offset (decl);
1988 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1989 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1990
1991 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
1992 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
1993 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
1994 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1995 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1996 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1997 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
1998 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1999 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2000}
2001
2002/* Output an AT_const_value attribute for a variable or a parameter which
2003 does not have a "location" either in memory or in a register. These
2004 things can arise in GNU C when a constant is passed as an actual
2005 parameter to an inlined function. They can also arise in C++ where
2006 declared constants do not necessarily get memory "homes". */
2007
2008static void
2009const_value_attribute (rtl)
2010 register rtx rtl;
2011{
2012 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2013 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2014
2015 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2016 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2017 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2018 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2019 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2020
2021 switch (GET_CODE (rtl))
2022 {
2023 case CONST_INT:
2024 /* Note that a CONST_INT rtx could represent either an integer or
2025 a floating-point constant. A CONST_INT is used whenever the
2026 constant will fit into a single word. In all such cases, the
2027 original mode of the constant value is wiped out, and the
2028 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2029 precise mode information for these constants, we always just
2030 output them using 4 bytes. */
2031
2032 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2033 break;
2034
2035 case CONST_DOUBLE:
2036 /* Note that a CONST_DOUBLE rtx could represent either an integer
2037 or a floating-point constant. A CONST_DOUBLE is used whenever
2038 the constant requires more than one word in order to be adequately
2039 represented. In all such cases, the original mode of the constant
2040 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2041 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2042
2043 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2044 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2045 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2046 break;
2047
2048 case CONST_STRING:
2049 ASM_OUTPUT_DWARF_STRING (asm_out_file, XSTR (rtl, 0));
2050 break;
2051
2052 case SYMBOL_REF:
2053 case LABEL_REF:
2054 case CONST:
2055 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2056 break;
2057
2058 case PLUS:
2059 /* In cases where an inlined instance of an inline function is passed
2060 the address of an `auto' variable (which is local to the caller)
2061 we can get a situation where the DECL_RTL of the artificial
2062 local variable (for the inlining) which acts as a stand-in for
2063 the corresponding formal parameter (of the inline function)
2064 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2065 This is not exactly a compile-time constant expression, but it
2066 isn't the address of the (artificial) local variable either.
2067 Rather, it represents the *value* which the artificial local
2068 variable always has during its lifetime. We currently have no
2069 way to represent such quasi-constant values in Dwarf, so for now
2070 we just punt and generate an AT_const_value attribute with form
2071 FORM_BLOCK4 and a length of zero. */
2072 break;
2073
2074 default:
2075 abort (); /* No other kinds of rtx should be possible here. */
2076 }
2077
2078 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2079}
2080
2081/* Generate *either* an AT_location attribute or else an AT_const_value
2082 data attribute for a variable or a parameter. We generate the
2083 AT_const_value attribute only in those cases where the given
2084 variable or parameter does not have a true "location" either in
2085 memory or in a register. This can happen (for example) when a
2086 constant is passed as an actual argument in a call to an inline
2087 function. (It's possible that these things can crop up in other
2088 ways also.) Note that one type of constant value which can be
2089 passed into an inlined function is a constant pointer. This can
2090 happen for example if an actual argument in an inlined function
2091 call evaluates to a compile-time constant address. */
2092
2093static void
2094location_or_const_value_attribute (decl)
2095 register tree decl;
2096{
2097 register rtx rtl;
2098
2099 if (TREE_CODE (decl) == ERROR_MARK)
2100 return;
2101
2102 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2103 {
2104 /* Should never happen. */
2105 abort ();
2106 return;
2107 }
2108
2109 /* Here we have to decide where we are going to say the parameter "lives"
2110 (as far as the debugger is concerned). We only have a couple of choices.
2111 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2112 normally indicates where the parameter lives during most of the activa-
2113 tion of the function. If optimization is enabled however, this could
2114 be either NULL or else a pseudo-reg. Both of those cases indicate that
2115 the parameter doesn't really live anywhere (as far as the code generation
2116 parts of GCC are concerned) during most of the function's activation.
2117 That will happen (for example) if the parameter is never referenced
2118 within the function.
2119
2120 We could just generate a location descriptor here for all non-NULL
2121 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2122 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2123 cases where DECL_RTL is NULL or is a pseudo-reg.
2124
2125 Note however that we can only get away with using DECL_INCOMING_RTL as
2126 a backup substitute for DECL_RTL in certain limited cases. In cases
2127 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2128 we can be sure that the parameter was passed using the same type as it
2129 is declared to have within the function, and that its DECL_INCOMING_RTL
2130 points us to a place where a value of that type is passed. In cases
2131 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2132 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2133 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2134 points us to a value of some type which is *different* from the type
2135 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2136 to generate a location attribute in such cases, the debugger would
2137 end up (for example) trying to fetch a `float' from a place which
2138 actually contains the first part of a `double'. That would lead to
2139 really incorrect and confusing output at debug-time, and we don't
2140 want that now do we?
2141
2142 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2143 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2144 couple of cute exceptions however. On little-endian machines we can
2145 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2146 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2147 an integral type which is smaller than TREE_TYPE(decl). These cases
2148 arise when (on a little-endian machine) a non-prototyped function has
2149 a parameter declared to be of type `short' or `char'. In such cases,
2150 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2151 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2152 passed `int' value. If the debugger then uses that address to fetch a
2153 `short' or a `char' (on a little-endian machine) the result will be the
2154 correct data, so we allow for such exceptional cases below.
2155
2156 Note that our goal here is to describe the place where the given formal
2157 parameter lives during most of the function's activation (i.e. between
2158 the end of the prologue and the start of the epilogue). We'll do that
2159 as best as we can. Note however that if the given formal parameter is
2160 modified sometime during the execution of the function, then a stack
2161 backtrace (at debug-time) will show the function as having been called
2162 with the *new* value rather than the value which was originally passed
2163 in. This happens rarely enough that it is not a major problem, but it
2164 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2165 may generate two additional attributes for any given TAG_formal_parameter
2166 DIE which will describe the "passed type" and the "passed location" for
2167 the given formal parameter in addition to the attributes we now generate
2168 to indicate the "declared type" and the "active location" for each
2169 parameter. This additional set of attributes could be used by debuggers
2170 for stack backtraces.
2171
2172 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2173 can be NULL also. This happens (for example) for inlined-instances of
2174 inline function formal parameters which are never referenced. This really
2175 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2176 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2177 these values for inlined instances of inline function parameters, so
2178 when we see such cases, we are just SOL (shit-out-of-luck) for the time
2179 being (until integrate.c gets fixed).
2180 */
2181
2182 /* Use DECL_RTL as the "location" unless we find something better. */
2183 rtl = DECL_RTL (decl);
2184
2185 if (TREE_CODE (decl) == PARM_DECL)
2186 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2187 {
2188 /* This decl represents a formal parameter which was optimized out. */
2189 register tree declared_type = TYPE_MAIN_VARIANT (TREE_TYPE (decl));
2190 register tree passed_type = TYPE_MAIN_VARIANT (DECL_ARG_TYPE (decl));
2191
2192 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2193 *all* cases where (rtl == NULL_RTX) just below. */
2194
2195 if (declared_type == passed_type)
2196 rtl = DECL_INCOMING_RTL (decl);
2197#if (BYTES_BIG_ENDIAN == 0)
2198 else
2199 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2200 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2201 rtl = DECL_INCOMING_RTL (decl);
2202#endif /* (BYTES_BIG_ENDIAN == 0) */
2203 }
2204
2205 if (rtl == NULL_RTX)
2206 return;
2207
2208 switch (GET_CODE (rtl))
2209 {
2210 case CONST_INT:
2211 case CONST_DOUBLE:
2212 case CONST_STRING:
2213 case SYMBOL_REF:
2214 case LABEL_REF:
2215 case CONST:
2216 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2217 const_value_attribute (rtl);
2218 break;
2219
2220 case MEM:
2221 case REG:
2222 case SUBREG:
2223 location_attribute (rtl);
2224 break;
2225
2226 default:
2227 abort (); /* Should never happen. */
2228 }
2229}
2230
2231/* Generate an AT_name attribute given some string value to be included as
2232 the value of the attribute. */
2233
2234inline void
2235name_attribute (name_string)
2236 register char *name_string;
2237{
2238 if (name_string && *name_string)
2239 {
2240 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2241 ASM_OUTPUT_DWARF_STRING (asm_out_file, name_string);
2242 }
2243}
2244
2245inline void
2246fund_type_attribute (ft_code)
2247 register unsigned ft_code;
2248{
2249 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2250 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2251}
2252
2253static void
2254mod_fund_type_attribute (type, decl_const, decl_volatile)
2255 register tree type;
2256 register int decl_const;
2257 register int decl_volatile;
2258{
2259 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2260 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2261
2262 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2263 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2264 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2265 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2266 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2267 write_modifier_bytes (type, decl_const, decl_volatile);
2268 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2269 fundamental_type_code (root_type (type)));
2270 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2271}
2272
2273inline void
2274user_def_type_attribute (type)
2275 register tree type;
2276{
2277 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2278
2279 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2280 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2281 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2282}
2283
2284static void
2285mod_u_d_type_attribute (type, decl_const, decl_volatile)
2286 register tree type;
2287 register int decl_const;
2288 register int decl_volatile;
2289{
2290 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2291 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2292 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2293
2294 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2295 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2296 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2297 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2298 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2299 write_modifier_bytes (type, decl_const, decl_volatile);
2300 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2301 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2302 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2303}
2304
2305#ifdef USE_ORDERING_ATTRIBUTE
2306inline void
2307ordering_attribute (ordering)
2308 register unsigned ordering;
2309{
2310 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2311 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2312}
2313#endif /* defined(USE_ORDERING_ATTRIBUTE) */
2314
2315/* Note that the block of subscript information for an array type also
2316 includes information about the element type of type given array type. */
2317
2318static void
2319subscript_data_attribute (type)
2320 register tree type;
2321{
2322 register unsigned dimension_number;
2323 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2324 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2325
2326 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2327 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2328 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2329 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2330 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2331
2332 /* The GNU compilers represent multidimensional array types as sequences
2333 of one dimensional array types whose element types are themselves array
2334 types. Here we squish that down, so that each multidimensional array
2335 type gets only one array_type DIE in the Dwarf debugging info. The
2336 draft Dwarf specification say that we are allowed to do this kind
2337 of compression in C (because there is no difference between an
2338 array or arrays and a multidimensional array in C) but for other
2339 source languages (e.g. Ada) we probably shouldn't do this. */
2340
2341 for (dimension_number = 0;
2342 TREE_CODE (type) == ARRAY_TYPE;
2343 type = TREE_TYPE (type), dimension_number++)
2344 {
2345 register tree domain = TYPE_DOMAIN (type);
2346
2347 /* Arrays come in three flavors. Unspecified bounds, fixed
2348 bounds, and (in GNU C only) variable bounds. Handle all
2349 three forms here. */
2350
2351 if (domain)
2352 {
2353 /* We have an array type with specified bounds. */
2354
2355 register tree lower = TYPE_MIN_VALUE (domain);
2356 register tree upper = TYPE_MAX_VALUE (domain);
2357
2358 /* Handle only fundamental types as index types for now. */
2359
2360 if (! type_is_fundamental (domain))
2361 abort ();
2362
2363 /* Output the representation format byte for this dimension. */
2364
2365 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2366 FMT_CODE (1,
2367 TREE_CODE (lower) == INTEGER_CST,
2368 TREE_CODE (upper) == INTEGER_CST));
2369
2370 /* Output the index type for this dimension. */
2371
2372 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2373 fundamental_type_code (domain));
2374
2375 /* Output the representation for the lower bound. */
2376
2377 output_bound_representation (lower, dimension_number, 'l');
2378
2379 /* Output the representation for the upper bound. */
2380
2381 output_bound_representation (upper, dimension_number, 'u');
2382 }
2383 else
2384 {
2385 /* We have an array type with an unspecified length. For C and
2386 C++ we can assume that this really means that (a) the index
2387 type is an integral type, and (b) the lower bound is zero.
2388 Note that Dwarf defines the representation of an unspecified
2389 (upper) bound as being a zero-length location description. */
2390
2391 /* Output the array-bounds format byte. */
2392
2393 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2394
2395 /* Output the (assumed) index type. */
2396
2397 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2398
2399 /* Output the (assumed) lower bound (constant) value. */
2400
2401 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2402
2403 /* Output the (empty) location description for the upper bound. */
2404
2405 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2406 }
2407 }
2408
2409 /* Output the prefix byte that says that the element type is comming up. */
2410
2411 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2412
2413 /* Output a representation of the type of the elements of this array type. */
2414
2415 type_attribute (type, 0, 0);
2416
2417 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2418}
2419
2420static void
2421byte_size_attribute (tree_node)
2422 register tree tree_node;
2423{
2424 register unsigned size;
2425
2426 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2427 switch (TREE_CODE (tree_node))
2428 {
2429 case ERROR_MARK:
2430 size = 0;
2431 break;
2432
2433 case ENUMERAL_TYPE:
2434 case RECORD_TYPE:
2435 case UNION_TYPE:
2436 case QUAL_UNION_TYPE:
2437 size = int_size_in_bytes (tree_node);
2438 break;
2439
2440 case FIELD_DECL:
2441 /* For a data member of a struct or union, the AT_byte_size is
2442 generally given as the number of bytes normally allocated for
2443 an object of the *declared* type of the member itself. This
2444 is true even for bit-fields. */
2445 size = simple_type_size_in_bits (field_type (tree_node))
2446 / BITS_PER_UNIT;
2447 break;
2448
2449 default:
2450 abort ();
2451 }
2452
2453 /* Note that `size' might be -1 when we get to this point. If it
2454 is, that indicates that the byte size of the entity in question
2455 is variable. We have no good way of expressing this fact in Dwarf
2456 at the present time, so just let the -1 pass on through. */
2457
2458 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2459}
2460
2461/* For a FIELD_DECL node which represents a bit-field, output an attribute
2462 which specifies the distance in bits from the highest order bit of the
2463 "containing object" for the bit-field to the highest order bit of the
2464 bit-field itself.
2465
2466 For any given bit-field, the "containing object" is a hypothetical
2467 object (of some integral or enum type) within which the given bit-field
2468 lives. The type of this hypothetical "containing object" is always the
2469 same as the declared type of the individual bit-field itself.
2470
2471 The determination of the exact location of the "containing object" for
2472 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2473 function (above).
2474
2475 Note that it is the size (in bytes) of the hypothetical "containing
2476 object" which will be given in the AT_byte_size attribute for this
2477 bit-field. (See `byte_size_attribute' above.)
2478*/
2479
2480inline void
2481bit_offset_attribute (decl)
2482 register tree decl;
2483{
2484 register unsigned object_offset_in_bytes = field_byte_offset (decl);
2485 register tree type = DECL_BIT_FIELD_TYPE (decl);
2486 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2487 register unsigned bitpos_int;
2488 register unsigned highest_order_object_bit_offset;
2489 register unsigned highest_order_field_bit_offset;
2490 register unsigned bit_offset;
2491
2492 assert (TREE_CODE (decl) == FIELD_DECL); /* Must be a field. */
2493 assert (type); /* Must be a bit field. */
2494
2495 /* We can't yet handle bit-fields whose offsets are variable, so if we
2496 encounter such things, just return without generating any attribute
2497 whatsoever. */
2498
2499 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2500 return;
2501 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2502
2503 /* Note that the bit offset is always the distance (in bits) from the
2504 highest-order bit of the "containing object" to the highest-order
2505 bit of the bit-field itself. Since the "high-order end" of any
2506 object or field is different on big-endian and little-endian machines,
2507 the computation below must take account of these differences. */
2508
2509 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2510 highest_order_field_bit_offset = bitpos_int;
2511
2512#if (BYTES_BIG_ENDIAN == 0)
2513 highest_order_field_bit_offset
2514 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2515
2516 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2517#endif /* (BYTES_BIG_ENDIAN == 0) */
2518
2519 bit_offset =
2520#if (BYTES_BIG_ENDIAN == 0)
2521 highest_order_object_bit_offset - highest_order_field_bit_offset;
2522#else /* (BYTES_BIG_ENDIAN != 0) */
2523 highest_order_field_bit_offset - highest_order_object_bit_offset;
2524#endif /* (BYTES_BIG_ENDIAN != 0) */
2525
2526 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2527 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2528}
2529
2530/* For a FIELD_DECL node which represents a bit field, output an attribute
2531 which specifies the length in bits of the given field. */
2532
2533inline void
2534bit_size_attribute (decl)
2535 register tree decl;
2536{
2537 assert (TREE_CODE (decl) == FIELD_DECL); /* Must be a field. */
2538 assert (DECL_BIT_FIELD_TYPE (decl)); /* Must be a bit field. */
2539
2540 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2541 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2542 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2543}
2544
2545/* The following routine outputs the `element_list' attribute for enumeration
2546 type DIEs. The element_lits attribute includes the names and values of
2547 all of the enumeration constants associated with the given enumeration
2548 type. */
2549
2550inline void
2551element_list_attribute (element)
2552 register tree element;
2553{
2554 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2555 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2556
2557 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2558 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2559 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2560 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2561 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2562
2563 /* Here we output a list of value/name pairs for each enumeration constant
2564 defined for this enumeration type (as required), but we do it in REVERSE
2565 order. The order is the one required by the draft #5 Dwarf specification
2566 published by the UI/PLSIG. */
2567
2568 output_enumeral_list (element); /* Recursively output the whole list. */
2569
2570 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2571}
2572
2573/* Generate an AT_stmt_list attribute. These are normally present only in
2574 DIEs with a TAG_compile_unit tag. */
2575
2576inline void
2577stmt_list_attribute (label)
2578 register char *label;
2579{
2580 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2581 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2582 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2583}
2584
2585/* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2586 for a subroutine DIE. */
2587
2588inline void
2589low_pc_attribute (asm_low_label)
2590 register char *asm_low_label;
2591{
2592 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2593 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2594}
2595
2596/* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2597 subroutine DIE. */
2598
2599inline void
2600high_pc_attribute (asm_high_label)
2601 register char *asm_high_label;
2602{
2603 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2604 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2605}
2606
2607/* Generate an AT_body_begin attribute for a subroutine DIE. */
2608
2609inline void
2610body_begin_attribute (asm_begin_label)
2611 register char *asm_begin_label;
2612{
2613 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2614 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2615}
2616
2617/* Generate an AT_body_end attribute for a subroutine DIE. */
2618
2619inline void
2620body_end_attribute (asm_end_label)
2621 register char *asm_end_label;
2622{
2623 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2624 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2625}
2626
2627/* Generate an AT_language attribute given a LANG value. These attributes
2628 are used only within TAG_compile_unit DIEs. */
2629
2630inline void
2631language_attribute (language_code)
2632 register unsigned language_code;
2633{
2634 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2635 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2636}
2637
2638inline void
2639member_attribute (context)
2640 register tree context;
2641{
2642 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2643
2644 /* Generate this attribute only for members in C++. */
2645
2646 if (context != NULL && is_tagged_type (context))
2647 {
2648 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2649 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2650 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2651 }
2652}
2653
2654inline void
2655string_length_attribute (upper_bound)
2656 register tree upper_bound;
2657{
2658 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2659 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2660
2661 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2662 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2663 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2664 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2665 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2666 output_bound_representation (upper_bound, 0, 'u');
2667 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2668}
2669
2670inline void
2671comp_dir_attribute (dirname)
2672 register char *dirname;
2673{
2674 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2675 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
2676}
2677
2678inline void
2679sf_names_attribute (sf_names_start_label)
2680 register char *sf_names_start_label;
2681{
2682 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2683 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2684 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2685}
2686
2687inline void
2688src_info_attribute (src_info_start_label)
2689 register char *src_info_start_label;
2690{
2691 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2692 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2693 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2694}
2695
2696inline void
2697mac_info_attribute (mac_info_start_label)
2698 register char *mac_info_start_label;
2699{
2700 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2701 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2702 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2703}
2704
2705inline void
2706prototyped_attribute (func_type)
2707 register tree func_type;
2708{
2709 if ((strcmp (language_string, "GNU C") == 0)
2710 && (TYPE_ARG_TYPES (func_type) != NULL))
2711 {
2712 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2713 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2714 }
2715}
2716
2717inline void
2718producer_attribute (producer)
2719 register char *producer;
2720{
2721 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
2722 ASM_OUTPUT_DWARF_STRING (asm_out_file, producer);
2723}
2724
2725inline void
2726inline_attribute (decl)
2727 register tree decl;
2728{
2729 if (DECL_INLINE (decl))
2730 {
2731 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
2732 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2733 }
2734}
2735
2736inline void
2737containing_type_attribute (containing_type)
2738 register tree containing_type;
2739{
2740 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2741
2742 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
2743 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
2744 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2745}
2746
2747inline void
2748abstract_origin_attribute (origin)
2749 register tree origin;
2750{
2751 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2752
2753 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
2754 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
2755 {
2756 case 'd':
2757 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
2758 break;
2759
2760 case 't':
2761 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
2762 break;
2763
2764 default:
2765 abort (); /* Should never happen. */
2766
2767 }
2768 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2769}
2770
2771#ifdef DWARF_DECL_COORDINATES
2772inline void
2773src_coords_attribute (src_fileno, src_lineno)
2774 register unsigned src_fileno;
2775 register unsigned src_lineno;
2776{
2777 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
2778 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
2779 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
2780}
2781#endif /* defined(DWARF_DECL_COORDINATES) */
2782
2783inline void
2784pure_or_virtual_attribute (func_decl)
2785 register tree func_decl;
2786{
2787 if (DECL_VIRTUAL_P (func_decl))
2788 {
2789#if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
2790 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
2791 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
2792 else
2793#endif
2794 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
2795 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2796 }
2797}
2798
2799/************************* end of attributes *****************************/
2800
2801/********************* utility routines for DIEs *************************/
2802
2803/* Output an AT_name attribute and an AT_src_coords attribute for the
2804 given decl, but only if it actually has a name. */
2805
2806static void
2807name_and_src_coords_attributes (decl)
2808 register tree decl;
2809{
2810 register tree decl_name = DECL_NAME (decl);
2811
2812 if (decl_name && IDENTIFIER_POINTER (decl_name))
2813 {
2814 name_attribute (IDENTIFIER_POINTER (decl_name));
2815#ifdef DWARF_DECL_COORDINATES
2816 {
2817 register unsigned file_index;
2818
2819 /* This is annoying, but we have to pop out of the .debug section
2820 for a moment while we call `lookup_filename' because calling it
2821 may cause a temporary switch into the .debug_sfnames section and
2822 most svr4 assemblers are not smart enough be be able to nest
2823 section switches to any depth greater than one. Note that we
2824 also can't skirt this issue by delaying all output to the
2825 .debug_sfnames section unit the end of compilation because that
2826 would cause us to have inter-section forward references and
2827 Fred Fish sez that m68k/svr4 assemblers botch those. */
2828
2829 ASM_OUTPUT_POP_SECTION (asm_out_file);
2830 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
2831 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
2832
2833 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
2834 }
2835#endif /* defined(DWARF_DECL_COORDINATES) */
2836 }
2837}
2838
2839/* Many forms of DIEs contain a "type description" part. The following
2840 routine writes out these "type descriptor" parts. */
2841
2842static void
2843type_attribute (type, decl_const, decl_volatile)
2844 register tree type;
2845 register int decl_const;
2846 register int decl_volatile;
2847{
2848 register enum tree_code code = TREE_CODE (type);
2849 register int root_type_modified;
2850
2851 if (TREE_CODE (type) == ERROR_MARK)
2852 return;
2853
2854 /* Handle a special case. For functions whose return type is void,
2855 we generate *no* type attribute. (Note that no object may have
2856 type `void', so this only applies to function return types. */
2857
2858 if (TREE_CODE (type) == VOID_TYPE)
2859 return;
2860
2861 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
2862 || decl_const || decl_volatile
2863 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
2864
2865 if (type_is_fundamental (root_type (type)))
2866 if (root_type_modified)
2867 mod_fund_type_attribute (type, decl_const, decl_volatile);
2868 else
2869 fund_type_attribute (fundamental_type_code (type));
2870 else
2871 if (root_type_modified)
2872 mod_u_d_type_attribute (type, decl_const, decl_volatile);
2873 else
2874 /* We have to get the TYPE_MAIN_VARIANT here (and pass that to the
2875 `user_def_type_attribute' routine) because the ..._TYPE node we
2876 have might simply be a *copy* of some original type node (where
2877 the copy was created to help us keep track of typedef names)
2878 and that copy might have a different TYPE_UID from the original
2879 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
2880 is labeling a given type DIE for future reference, it always and
2881 only creates labels for DIEs representing *main variants*, and it
2882 never even knows about non-main-variants.) */
2883 user_def_type_attribute (TYPE_MAIN_VARIANT (type));
2884}
2885
2886/* Given a tree pointer to a struct, class, union, or enum type node, return
2887 a pointer to the (string) tag name for the given type, or zero if the
2888 type was declared without a tag. */
2889
2890static char *
2891type_tag (type)
2892 register tree type;
2893{
2894 register char *name = 0;
2895
2896 if (TYPE_NAME (type) != 0)
2897 {
2898 register tree t = 0;
2899
2900 /* Find the IDENTIFIER_NODE for the type name. */
2901 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
2902 t = TYPE_NAME (type);
2903#if 0
2904 /* The g++ front end makes the TYPE_NAME of *each* tagged type point
2905 to a TYPE_DECL node, regardless of whether or not a `typedef' was
2906 involved. This is distinctly different from what the gcc front-end
2907 does. It always makes the TYPE_NAME for each tagged type be either
2908 NULL (signifying an anonymous tagged type) or else a pointer to an
2909 IDENTIFIER_NODE. Obviously, we would like to generate correct Dwarf
2910 for both C and C++, but given this inconsistency in the TREE
2911 representation of tagged types for C and C++ in the GNU front-ends,
2912 we cannot support both languages correctly unless we introduce some
2913 front-end specific code here, and rms objects to that, so we can
2914 only generate correct Dwarf for one of these two languages. C is
2915 more important, so for now we'll do the right thing for C and let
2916 g++ go fish. */
2917
2918 else
2919 if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL)
2920 t = DECL_NAME (TYPE_NAME (type));
2921#endif
2922 /* Now get the name as a string, or invent one. */
2923 if (t != 0)
2924 name = IDENTIFIER_POINTER (t);
2925 }
2926
2927 return (name == 0 || *name == '\0') ? 0 : name;
2928}
2929
2930inline void
2931dienum_push ()
2932{
2933 /* Start by checking if the pending_sibling_stack needs to be expanded.
2934 If necessary, expand it. */
2935
2936 if (pending_siblings == pending_siblings_allocated)
2937 {
2938 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
2939 pending_sibling_stack
2940 = (unsigned *) xrealloc (pending_sibling_stack,
2941 pending_siblings_allocated * sizeof(unsigned));
2942 }
2943
2944 pending_siblings++;
2945 NEXT_DIE_NUM = next_unused_dienum++;
2946}
2947
2948/* Pop the sibling stack so that the most recently pushed DIEnum becomes the
2949 NEXT_DIE_NUM. */
2950
2951inline void
2952dienum_pop ()
2953{
2954 pending_siblings--;
2955}
2956
2957inline tree
2958member_declared_type (member)
2959 register tree member;
2960{
2961 return (DECL_BIT_FIELD_TYPE (member))
2962 ? DECL_BIT_FIELD_TYPE (member)
2963 : TREE_TYPE (member);
2964}
2965
2966/******************************* DIEs ************************************/
2967
2968/* Output routines for individual types of DIEs. */
2969
2970/* Note that every type of DIE (except a null DIE) gets a sibling. */
2971
2972static void
2973output_array_type_die (arg)
2974 register void *arg;
2975{
2976 register tree type = arg;
2977
2978 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
2979 sibling_attribute ();
2980 equate_type_number_to_die_number (type);
2981 member_attribute (TYPE_CONTEXT (type));
2982
2983 /* I believe that we can default the array ordering. SDB will probably
2984 do the right things even if AT_ordering is not present. It's not
2985 even an issue until we start to get into multidimensional arrays
2986 anyway. If SDB is ever caught doing the Wrong Thing for multi-
2987 dimensional arrays, then we'll have to put the AT_ordering attribute
2988 back in. (But if and when we find out that we need to put these in,
2989 we will only do so for multidimensional arrays. After all, we don't
2990 want to waste space in the .debug section now do we?) */
2991
2992#ifdef USE_ORDERING_ATTRIBUTE
2993 ordering_attribute (ORD_row_major);
2994#endif /* defined(USE_ORDERING_ATTRIBUTE) */
2995
2996 subscript_data_attribute (type);
2997}
2998
2999static void
3000output_set_type_die (arg)
3001 register void *arg;
3002{
3003 register tree type = arg;
3004
3005 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3006 sibling_attribute ();
3007 equate_type_number_to_die_number (type);
3008 member_attribute (TYPE_CONTEXT (type));
3009 type_attribute (TREE_TYPE (type), 0, 0);
3010}
3011
3012#if 0
3013/* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3014static void
3015output_entry_point_die (arg)
3016 register void *arg;
3017{
3018 register tree decl = arg;
3019 register tree origin = decl_ultimate_origin (decl);
3020
3021 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3022 sibling_attribute ();
3023 dienum_push ();
3024 if (origin != NULL)
3025 abstract_origin_attribute (origin);
3026 else
3027 {
3028 name_and_src_coords_attributes (decl);
3029 member_attribute (DECL_CONTEXT (decl));
3030 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3031 }
3032 if (DECL_ABSTRACT (decl))
3033 equate_decl_number_to_die_number (decl);
3034 else
3035 low_pc_attribute (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
3036}
3037#endif
3038
3039/* Output a DIE to represent an inlined instance of an enumeration type. */
3040
3041static void
3042output_inlined_enumeration_type_die (arg)
3043 register void *arg;
3044{
3045 register tree type = arg;
3046
3047 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3048 sibling_attribute ();
3049 assert (TREE_ASM_WRITTEN (type));
3050 abstract_origin_attribute (type);
3051}
3052
3053/* Output a DIE to represent an inlined instance of a structure type. */
3054
3055static void
3056output_inlined_structure_type_die (arg)
3057 register void *arg;
3058{
3059 register tree type = arg;
3060
3061 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3062 sibling_attribute ();
3063 assert (TREE_ASM_WRITTEN (type));
3064 abstract_origin_attribute (type);
3065}
3066
3067/* Output a DIE to represent an inlined instance of a union type. */
3068
3069static void
3070output_inlined_union_type_die (arg)
3071 register void *arg;
3072{
3073 register tree type = arg;
3074
3075 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3076 sibling_attribute ();
3077 assert (TREE_ASM_WRITTEN (type));
3078 abstract_origin_attribute (type);
3079}
3080
3081/* Output a DIE to represent an enumeration type. Note that these DIEs
3082 include all of the information about the enumeration values also.
3083 This information is encoded into the element_list attribute. */
3084
3085static void
3086output_enumeration_type_die (arg)
3087 register void *arg;
3088{
3089 register tree type = arg;
3090
3091 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3092 sibling_attribute ();
3093 equate_type_number_to_die_number (type);
3094 name_attribute (type_tag (type));
3095 member_attribute (TYPE_CONTEXT (type));
3096
3097 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3098 given enum type is incomplete, do not generate the AT_byte_size
3099 attribute or the AT_element_list attribute. */
3100
3101 if (TYPE_SIZE (type))
3102 {
3103 byte_size_attribute (type);
3104 element_list_attribute (TYPE_FIELDS (type));
3105 }
3106}
3107
3108/* Output a DIE to represent either a real live formal parameter decl or
3109 to represent just the type of some formal parameter position in some
3110 function type.
3111
3112 Note that this routine is a bit unusual because its argument may be
3113 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3114 represents an inlining of some PARM_DECL) or else some sort of a
3115 ..._TYPE node. If it's the former then this function is being called
3116 to output a DIE to represent a formal parameter object (or some inlining
3117 thereof). If it's the latter, then this function is only being called
3118 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3119 formal argument type of some subprogram type. */
3120
3121static void
3122output_formal_parameter_die (arg)
3123 register void *arg;
3124{
3125 register tree node = arg;
3126
3127 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3128 sibling_attribute ();
3129
3130 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3131 {
3132 case 'd': /* We were called with some kind of a ..._DECL node. */
3133 {
3134 register tree origin = decl_ultimate_origin (node);
3135
3136 if (origin != NULL)
3137 abstract_origin_attribute (origin);
3138 else
3139 {
3140 name_and_src_coords_attributes (node);
3141 type_attribute (TREE_TYPE (node),
3142 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3143 }
3144 if (DECL_ABSTRACT (node))
3145 equate_decl_number_to_die_number (node);
3146 else
3147 location_or_const_value_attribute (node);
3148 }
3149 break;
3150
3151 case 't': /* We were called with some kind of a ..._TYPE node. */
3152 type_attribute (node, 0, 0);
3153 break;
3154
3155 default:
3156 abort (); /* Should never happen. */
3157 }
3158}
3159
3160/* Output a DIE to represent a declared function (either file-scope
3161 or block-local) which has "external linkage" (according to ANSI-C). */
3162
3163static void
3164output_global_subroutine_die (arg)
3165 register void *arg;
3166{
3167 register tree decl = arg;
3168 register tree origin = decl_ultimate_origin (decl);
3169
3170 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3171 sibling_attribute ();
3172 dienum_push ();
3173 if (origin != NULL)
3174 abstract_origin_attribute (origin);
3175 else
3176 {
3177 register tree type = TREE_TYPE (decl);
3178
3179 name_and_src_coords_attributes (decl);
3180 inline_attribute (decl);
3181 prototyped_attribute (type);
3182 member_attribute (DECL_CONTEXT (decl));
3183 type_attribute (TREE_TYPE (type), 0, 0);
3184 pure_or_virtual_attribute (decl);
3185 }
3186 if (DECL_ABSTRACT (decl))
3187 equate_decl_number_to_die_number (decl);
3188 else
3189 {
3190 if (! DECL_EXTERNAL (decl))
3191 {
3192 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3193
3194 low_pc_attribute (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
3195 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3196 high_pc_attribute (label);
3197 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3198 body_begin_attribute (label);
3199 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3200 body_end_attribute (label);
3201 }
3202 }
3203}
3204
3205/* Output a DIE to represent a declared data object (either file-scope
3206 or block-local) which has "external linkage" (according to ANSI-C). */
3207
3208static void
3209output_global_variable_die (arg)
3210 register void *arg;
3211{
3212 register tree decl = arg;
3213 register tree origin = decl_ultimate_origin (decl);
3214
3215 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3216 sibling_attribute ();
3217 if (origin != NULL)
3218 abstract_origin_attribute (origin);
3219 else
3220 {
3221 name_and_src_coords_attributes (decl);
3222 member_attribute (DECL_CONTEXT (decl));
3223 type_attribute (TREE_TYPE (decl),
3224 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3225 }
3226 if (DECL_ABSTRACT (decl))
3227 equate_decl_number_to_die_number (decl);
3228 else
3229 {
3230 if (!DECL_EXTERNAL (decl))
3231 location_or_const_value_attribute (decl);
3232 }
3233}
3234
3235static void
3236output_label_die (arg)
3237 register void *arg;
3238{
3239 register tree decl = arg;
3240 register tree origin = decl_ultimate_origin (decl);
3241
3242 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3243 sibling_attribute ();
3244 if (origin != NULL)
3245 abstract_origin_attribute (origin);
3246 else
3247 name_and_src_coords_attributes (decl);
3248 if (DECL_ABSTRACT (decl))
3249 equate_decl_number_to_die_number (decl);
3250 else
3251 {
3252 register rtx insn = DECL_RTL (decl);
3253
3254 if (GET_CODE (insn) == CODE_LABEL)
3255 {
3256 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3257
3258 /* When optimization is enabled (via -O) some parts of the compiler
3259 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3260 represent source-level labels which were explicitly declared by
3261 the user. This really shouldn't be happening though, so catch
3262 it if it ever does happen. */
3263
3264 if (INSN_DELETED_P (insn))
3265 abort (); /* Should never happen. */
3266
3267 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3268 (unsigned) INSN_UID (insn));
3269 low_pc_attribute (label);
3270 }
3271 }
3272}
3273
3274static void
3275output_lexical_block_die (arg)
3276 register void *arg;
3277{
3278 register tree stmt = arg;
3279
3280 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3281 sibling_attribute ();
3282 dienum_push ();
3283 if (! BLOCK_ABSTRACT (stmt))
3284 {
3285 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3286 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3287
3288 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3289 low_pc_attribute (begin_label);
3290 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3291 high_pc_attribute (end_label);
3292 }
3293}
3294
3295static void
3296output_inlined_subroutine_die (arg)
3297 register void *arg;
3298{
3299 register tree stmt = arg;
3300
3301 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3302 sibling_attribute ();
3303 dienum_push ();
3304 abstract_origin_attribute (block_ultimate_origin (stmt));
3305 if (! BLOCK_ABSTRACT (stmt))
3306 {
3307 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3308 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3309
3310 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3311 low_pc_attribute (begin_label);
3312 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3313 high_pc_attribute (end_label);
3314 }
3315}
3316
3317/* Output a DIE to represent a declared data object (either file-scope
3318 or block-local) which has "internal linkage" (according to ANSI-C). */
3319
3320static void
3321output_local_variable_die (arg)
3322 register void *arg;
3323{
3324 register tree decl = arg;
3325 register tree origin = decl_ultimate_origin (decl);
3326
3327 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3328 sibling_attribute ();
3329 if (origin != NULL)
3330 abstract_origin_attribute (origin);
3331 else
3332 {
3333 name_and_src_coords_attributes (decl);
3334 member_attribute (DECL_CONTEXT (decl));
3335 type_attribute (TREE_TYPE (decl),
3336 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3337 }
3338 if (DECL_ABSTRACT (decl))
3339 equate_decl_number_to_die_number (decl);
3340 else
3341 location_or_const_value_attribute (decl);
3342}
3343
3344static void
3345output_member_die (arg)
3346 register void *arg;
3347{
3348 register tree decl = arg;
3349
3350 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3351 sibling_attribute ();
3352 name_and_src_coords_attributes (decl);
3353 member_attribute (DECL_CONTEXT (decl));
3354 type_attribute (member_declared_type (decl),
3355 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3356 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3357 {
3358 byte_size_attribute (decl);
3359 bit_size_attribute (decl);
3360 bit_offset_attribute (decl);
3361 }
3362 data_member_location_attribute (decl);
3363}
3364
3365#if 0
3366/* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3367 modified types instead.
3368
3369 We keep this code here just in case these types of DIEs may be needed
3370 to represent certain things in other languages (e.g. Pascal) someday.
3371*/
3372
3373static void
3374output_pointer_type_die (arg)
3375 register void *arg;
3376{
3377 register tree type = arg;
3378
3379 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3380 sibling_attribute ();
3381 equate_type_number_to_die_number (type);
3382 member_attribute (TYPE_CONTEXT (type));
3383 type_attribute (TREE_TYPE (type), 0, 0);
3384}
3385
3386static void
3387output_reference_type_die (arg)
3388 register void *arg;
3389{
3390 register tree type = arg;
3391
3392 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3393 sibling_attribute ();
3394 equate_type_number_to_die_number (type);
3395 member_attribute (TYPE_CONTEXT (type));
3396 type_attribute (TREE_TYPE (type), 0, 0);
3397}
3398#endif
3399
3400static void
3401output_ptr_to_mbr_type_die (arg)
3402 register void *arg;
3403{
3404 register tree type = arg;
3405
3406 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3407 sibling_attribute ();
3408 equate_type_number_to_die_number (type);
3409 member_attribute (TYPE_CONTEXT (type));
3410 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3411 type_attribute (TREE_TYPE (type), 0, 0);
3412}
3413
3414static void
3415output_compile_unit_die (arg)
3416 register void *arg;
3417{
3418 register char *main_input_filename = arg;
3419
3420 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3421 sibling_attribute ();
3422 dienum_push ();
3423 name_attribute (main_input_filename);
3424
3425 {
3426 char producer[250];
3427
3428 sprintf (producer, "%s %s", language_string, version_string);
3429 producer_attribute (producer);
3430 }
3431
3432 if (strcmp (language_string, "GNU C++") == 0)
3433 language_attribute (LANG_C_PLUS_PLUS);
3434 else if (flag_traditional)
3435 language_attribute (LANG_C);
3436 else
3437 language_attribute (LANG_C89);
3438 low_pc_attribute (TEXT_BEGIN_LABEL);
3439 high_pc_attribute (TEXT_END_LABEL);
3440 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3441 stmt_list_attribute (LINE_BEGIN_LABEL);
3442 last_filename = xstrdup (main_input_filename);
3443
3444 {
3445 char *wd = getpwd ();
3446 if (wd)
3447 comp_dir_attribute (wd);
3448 }
3449
3450 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3451 {
3452 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3453 src_info_attribute (SRCINFO_BEGIN_LABEL);
3454 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3455 mac_info_attribute (MACINFO_BEGIN_LABEL);
3456 }
3457}
3458
3459static void
3460output_string_type_die (arg)
3461 register void *arg;
3462{
3463 register tree type = arg;
3464
3465 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3466 sibling_attribute ();
3467 member_attribute (TYPE_CONTEXT (type));
3468
3469 /* Fudge the string length attribute for now. */
3470
3471 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
3472}
3473
3474static void
3475output_structure_type_die (arg)
3476 register void *arg;
3477{
3478 register tree type = arg;
3479
3480 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3481 sibling_attribute ();
3482 equate_type_number_to_die_number (type);
3483 name_attribute (type_tag (type));
3484 member_attribute (TYPE_CONTEXT (type));
3485
3486 /* If this type has been completed, then give it a byte_size attribute
3487 and prepare to give a list of members. Otherwise, don't do either of
3488 these things. In the latter case, we will not be generating a list
3489 of members (since we don't have any idea what they might be for an
3490 incomplete type). */
3491
3492 if (TYPE_SIZE (type))
3493 {
3494 dienum_push ();
3495 byte_size_attribute (type);
3496 }
3497}
3498
3499/* Output a DIE to represent a declared function (either file-scope
3500 or block-local) which has "internal linkage" (according to ANSI-C). */
3501
3502static void
3503output_local_subroutine_die (arg)
3504 register void *arg;
3505{
3506 register tree decl = arg;
3507 register tree origin = decl_ultimate_origin (decl);
3508
3509 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3510 sibling_attribute ();
3511 dienum_push ();
3512 if (origin != NULL)
3513 abstract_origin_attribute (origin);
3514 else
3515 {
3516 register tree type = TREE_TYPE (decl);
3517
3518 name_and_src_coords_attributes (decl);
3519 inline_attribute (decl);
3520 prototyped_attribute (type);
3521 member_attribute (DECL_CONTEXT (decl));
3522 type_attribute (TREE_TYPE (type), 0, 0);
3523 pure_or_virtual_attribute (decl);
3524 }
3525 if (DECL_ABSTRACT (decl))
3526 equate_decl_number_to_die_number (decl);
3527 else
3528 {
3529 /* Avoid getting screwed up in cases where a function was declared
3530 static but where no definition was ever given for it. */
3531
3532 if (TREE_ASM_WRITTEN (decl))
3533 {
3534 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3535
3536 low_pc_attribute (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
3537 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3538 high_pc_attribute (label);
3539 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3540 body_begin_attribute (label);
3541 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3542 body_end_attribute (label);
3543 }
3544 }
3545}
3546
3547static void
3548output_subroutine_type_die (arg)
3549 register void *arg;
3550{
3551 register tree type = arg;
3552 register tree return_type = TREE_TYPE (type);
3553
3554 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3555 sibling_attribute ();
3556 dienum_push ();
3557 equate_type_number_to_die_number (type);
3558 prototyped_attribute (type);
3559 member_attribute (TYPE_CONTEXT (type));
3560 type_attribute (return_type, 0, 0);
3561}
3562
3563static void
3564output_typedef_die (arg)
3565 register void *arg;
3566{
3567 register tree decl = arg;
3568 register tree origin = decl_ultimate_origin (decl);
3569
3570 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3571 sibling_attribute ();
3572 if (origin != NULL)
3573 abstract_origin_attribute (origin);
3574 else
3575 {
3576 name_and_src_coords_attributes (decl);
3577 member_attribute (DECL_CONTEXT (decl));
3578 type_attribute (TREE_TYPE (decl),
3579 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3580 }
3581 if (DECL_ABSTRACT (decl))
3582 equate_decl_number_to_die_number (decl);
3583}
3584
3585static void
3586output_union_type_die (arg)
3587 register void *arg;
3588{
3589 register tree type = arg;
3590
3591 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3592 sibling_attribute ();
3593 equate_type_number_to_die_number (type);
3594 name_attribute (type_tag (type));
3595 member_attribute (TYPE_CONTEXT (type));
3596
3597 /* If this type has been completed, then give it a byte_size attribute
3598 and prepare to give a list of members. Otherwise, don't do either of
3599 these things. In the latter case, we will not be generating a list
3600 of members (since we don't have any idea what they might be for an
3601 incomplete type). */
3602
3603 if (TYPE_SIZE (type))
3604 {
3605 dienum_push ();
3606 byte_size_attribute (type);
3607 }
3608}
3609
3610/* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3611 at the end of an (ANSI prototyped) formal parameters list. */
3612
3613static void
3614output_unspecified_parameters_die (arg)
3615 register void *arg;
3616{
3617 register tree decl_or_type = arg;
3618
3619 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3620 sibling_attribute ();
3621
3622 /* This kludge is here only for the sake of being compatible with what
3623 the USL CI5 C compiler does. The specification of Dwarf Version 1
3624 doesn't say that TAG_unspecified_parameters DIEs should contain any
3625 attributes other than the AT_sibling attribute, but they are certainly
3626 allowed to contain additional attributes, and the CI5 compiler
3627 generates AT_name, AT_fund_type, and AT_location attributes within
3628 TAG_unspecified_parameters DIEs which appear in the child lists for
3629 DIEs representing function definitions, so we do likewise here. */
3630
3631 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3632 {
3633 name_attribute ("...");
3634 fund_type_attribute (FT_pointer);
3635 /* location_attribute (?); */
3636 }
3637}
3638
3639static void
3640output_padded_null_die (arg)
3641 register void *arg;
3642{
3643 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3644}
3645
3646/*************************** end of DIEs *********************************/
3647
3648/* Generate some type of DIE. This routine generates the generic outer
3649 wrapper stuff which goes around all types of DIE's (regardless of their
3650 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3651 DIE-length word, followed by the guts of the DIE itself. After the guts
3652 of the DIE, there must always be a terminator label for the DIE. */
3653
3654static void
3655output_die (die_specific_output_function, param)
3656 register void (*die_specific_output_function)();
3657 register void *param;
3658{
3659 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3660 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3661
3662 current_dienum = NEXT_DIE_NUM;
3663 NEXT_DIE_NUM = next_unused_dienum;
3664
3665 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3666 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
3667
3668 /* Write a label which will act as the name for the start of this DIE. */
3669
3670 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3671
3672 /* Write the DIE-length word. */
3673
3674 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3675
3676 /* Fill in the guts of the DIE. */
3677
3678 next_unused_dienum++;
3679 die_specific_output_function (param);
3680
3681 /* Write a label which will act as the name for the end of this DIE. */
3682
3683 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3684}
3685
3686static void
3687end_sibling_chain ()
3688{
3689 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3690
3691 current_dienum = NEXT_DIE_NUM;
3692 NEXT_DIE_NUM = next_unused_dienum;
3693
3694 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3695
3696 /* Write a label which will act as the name for the start of this DIE. */
3697
3698 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3699
3700 /* Write the DIE-length word. */
3701
3702 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
3703
3704 dienum_pop ();
3705}
3706\f
3707/* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
3708 TAG_unspecified_parameters DIE) to represent the types of the formal
3709 parameters as specified in some function type specification (except
3710 for those which appear as part of a function *definition*).
3711
3712 Note that we must be careful here to output all of the parameter DIEs
3713 *before* we output any DIEs needed to represent the types of the formal
3714 parameters. This keeps svr4 SDB happy because it (incorrectly) thinks
3715 that the first non-parameter DIE it sees ends the formal parameter list.
3716*/
3717
3718static void
3719output_formal_types (function_or_method_type)
3720 register tree function_or_method_type;
3721{
3722 register tree link;
3723 register tree formal_type = NULL;
3724 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
3725
3726 /* In the case where we are generating a formal types list for a C++
3727 non-static member function type, skip over the first thing on the
3728 TYPE_ARG_TYPES list because it only represents the type of the
3729 hidden `this pointer'. The debugger should be able to figure
3730 out (without being explicitly told) that this non-static member
3731 function type takes a `this pointer' and should be able to figure
3732 what the type of that hidden parameter is from the AT_member
3733 attribute of the parent TAG_subroutine_type DIE. */
3734
3735 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
3736 first_parm_type = TREE_CHAIN (first_parm_type);
3737
3738 /* Make our first pass over the list of formal parameter types and output
3739 a TAG_formal_parameter DIE for each one. */
3740
3741 for (link = first_parm_type; link; link = TREE_CHAIN (link))
3742 {
3743 formal_type = TREE_VALUE (link);
3744 if (formal_type == void_type_node)
3745 break;
3746
3747 /* Output a (nameless) DIE to represent the formal parameter itself. */
3748
3749 output_die (output_formal_parameter_die, formal_type);
3750 }
3751
3752 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
3753 DIE to the end of the parameter list. */
3754
3755 if (formal_type != void_type_node)
3756 output_die (output_unspecified_parameters_die, function_or_method_type);
3757
3758 /* Make our second (and final) pass over the list of formal parameter types
3759 and output DIEs to represent those types (as necessary). */
3760
3761 for (link = TYPE_ARG_TYPES (function_or_method_type);
3762 link;
3763 link = TREE_CHAIN (link))
3764 {
3765 formal_type = TREE_VALUE (link);
3766 if (formal_type == void_type_node)
3767 break;
3768
3769 output_type (formal_type, function_or_method_type);
3770 }
3771}
3772\f
3773/* Remember a type in the pending_types_list. */
3774
3775static void
3776pend_type (type)
3777 register tree type;
3778{
3779 if (pending_types == pending_types_allocated)
3780 {
3781 pending_types_allocated += PENDING_TYPES_INCREMENT;
3782 pending_types_list
3783 = (tree *) xrealloc (pending_types_list,
3784 sizeof (tree) * pending_types_allocated);
3785 }
3786 pending_types_list[pending_types++] = type;
3787
3788 /* Mark the pending type as having been output already (even though
3789 it hasn't been). This prevents the type from being added to the
3790 pending_types_list more than once. */
3791
3792 TREE_ASM_WRITTEN (type) = 1;
3793}
3794
3795/* Return non-zero if it is legitimate to output DIEs to represent a
3796 given type while we are generating the list of child DIEs for some
3797 DIE (e.g. a function or lexical block DIE) associated with a given scope.
3798
3799 See the comments within the function for a description of when it is
3800 considered legitimate to output DIEs for various kinds of types.
3801
3802 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
3803 or it may point to a BLOCK node (for types local to a block), or to a
3804 FUNCTION_DECL node (for types local to the heading of some function
3805 definition), or to a FUNCTION_TYPE node (for types local to the
3806 prototyped parameter list of a function type specification), or to a
3807 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
3808 (in the case of C++ nested types).
3809
3810 The `scope' parameter should likewise be NULL or should point to a
3811 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
3812 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
3813
3814 This function is used only for deciding when to "pend" and when to
3815 "un-pend" types to/from the pending_types_list.
3816
3817 Note that we sometimes make use of this "type pending" feature in a
3818 rather twisted way to temporarily delay the production of DIEs for the
3819 types of formal parameters. (We do this just to make svr4 SDB happy.)
3820 It order to delay the production of DIEs representing types of formal
3821 parameters, callers of this function supply `fake_containing_scope' as
3822 the `scope' parameter to this function. Given that fake_containing_scope
3823 is a tagged type which is *not* the containing scope for *any* other type,
3824 the desired effect is achieved, i.e. output of DIEs representing types
3825 is temporarily suspended, and any type DIEs which would have otherwise
3826 been output are instead placed onto the pending_types_list. Later on,
3827 we force these (temporarily pended) types to be output simply by calling
3828 `output_pending_types_for_scope' with an actual argument equal to the
3829 true scope of the types we temporarily pended.
3830*/
3831
3832inline int
3833type_ok_for_scope (type, scope)
3834 register tree type;
3835 register tree scope;
3836{
3837 /* Tagged types (i.e. struct, union, and enum types) must always be
3838 output only in the scopes where they actually belong (or else the
3839 scoping of their own tag names and the scoping of their member
3840 names will be incorrect). Non-tagged-types on the other hand can
3841 generally be output anywhere, except that svr4 SDB really doesn't
3842 want to see them nested within struct or union types, so here we
3843 say it is always OK to immediately output any such a (non-tagged)
3844 type, so long as we are not within such a context. Note that the
3845 only kinds of non-tagged types which we will be dealing with here
3846 (for C and C++ anyway) will be array types and function types. */
3847
3848 return is_tagged_type (type)
3849 ? (TYPE_CONTEXT (type) == scope)
3850 : (scope == NULL_TREE || ! is_tagged_type (scope));
3851}
3852
3853/* Output any pending types (from the pending_types list) which we can output
3854 now (taking into account the scope that we are working on now).
3855
3856 For each type output, remove the given type from the pending_types_list
3857 *before* we try to output it.
3858
3859 Note that we have to process the list in beginning-to-end order,
3860 because the call made here to output_type may cause yet more types
3861 to be added to the end of the list, and we may have to output some
3862 of them too.
3863*/
3864
3865static void
3866output_pending_types_for_scope (containing_scope)
3867 register tree containing_scope;
3868{
3869 register unsigned i;
3870
3871 for (i = 0; i < pending_types; )
3872 {
3873 register tree type = pending_types_list[i];
3874
3875 if (type_ok_for_scope (type, containing_scope))
3876 {
3877 register tree *mover;
3878 register tree *limit;
3879
3880 pending_types--;
3881 limit = &pending_types_list[pending_types];
3882 for (mover = &pending_types_list[i]; mover < limit; mover++)
3883 *mover = *(mover+1);
3884
3885 /* Un-mark the type as having been output already (because it
3886 hasn't been, really). Then call output_type to generate a
3887 Dwarf representation of it. */
3888
3889 TREE_ASM_WRITTEN (type) = 0;
3890 output_type (type, containing_scope);
3891
3892 /* Don't increment the loop counter in this case because we
3893 have shifted all of the subsequent pending types down one
3894 element in the pending_types_list array. */
3895 }
3896 else
3897 i++;
3898 }
3899}
3900
3901static void
3902output_type (type, containing_scope)
3903 register tree type;
3904 register tree containing_scope;
3905{
3906 if (type == 0 || type == error_mark_node)
3907 return;
3908
3909 /* We are going to output a DIE to represent the unqualified version of
3910 of this type (i.e. without any const or volatile qualifiers) so get
3911 the main variant (i.e. the unqualified version) of this type now. */
3912
3913 type = TYPE_MAIN_VARIANT (type);
3914
3915 if (TREE_ASM_WRITTEN (type))
3916 return;
3917
3918 /* Don't generate any DIEs for this type now unless it is OK to do so
3919 (based upon what `type_ok_for_scope' tells us). */
3920
3921 if (! type_ok_for_scope (type, containing_scope))
3922 {
3923 pend_type (type);
3924 return;
3925 }
3926
3927 switch (TREE_CODE (type))
3928 {
3929 case ERROR_MARK:
3930 break;
3931
3932 case POINTER_TYPE:
3933 case REFERENCE_TYPE:
3934 /* For these types, all that is required is that we output a DIE
3935 (or a set of DIEs) to represent the "basis" type. */
3936 output_type (TREE_TYPE (type), containing_scope);
3937 break;
3938
3939 case OFFSET_TYPE:
3940 /* This code is used for C++ pointer-to-data-member types. */
3941 /* Output a description of the relevant class type. */
3942 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
3943 /* Output a description of the type of the object pointed to. */
3944 output_type (TREE_TYPE (type), containing_scope);
3945 /* Now output a DIE to represent this pointer-to-data-member type
3946 itself. */
3947 output_die (output_ptr_to_mbr_type_die, type);
3948 break;
3949
3950 case SET_TYPE:
3951 output_type (TREE_TYPE (type), containing_scope);
3952 output_die (output_set_type_die, type);
3953 break;
3954
3955 case FILE_TYPE:
3956 output_type (TREE_TYPE (type), containing_scope);
3957 abort (); /* No way to represent these in Dwarf yet! */
3958 break;
3959
3960 case STRING_TYPE:
3961 output_type (TREE_TYPE (type), containing_scope);
3962 output_die (output_string_type_die, type);
3963 break;
3964
3965 case FUNCTION_TYPE:
3966 /* Force out return type (in case it wasn't forced out already). */
3967 output_type (TREE_TYPE (type), containing_scope);
3968 output_die (output_subroutine_type_die, type);
3969 output_formal_types (type);
3970 end_sibling_chain ();
3971 break;
3972
3973 case METHOD_TYPE:
3974 /* Force out return type (in case it wasn't forced out already). */
3975 output_type (TREE_TYPE (type), containing_scope);
3976 output_die (output_subroutine_type_die, type);
3977 output_formal_types (type);
3978 end_sibling_chain ();
3979 break;
3980
3981 case ARRAY_TYPE:
3982 {
3983 register tree element_type;
3984
3985 element_type = TREE_TYPE (type);
3986 while (TREE_CODE (element_type) == ARRAY_TYPE)
3987 element_type = TREE_TYPE (element_type);
3988
3989 output_type (element_type, containing_scope);
3990 output_die (output_array_type_die, type);
3991 }
3992 break;
3993
3994 case ENUMERAL_TYPE:
3995 case RECORD_TYPE:
3996 case UNION_TYPE:
3997 case QUAL_UNION_TYPE:
3998
3999 /* For a non-file-scope tagged type, we can always go ahead and
4000 output a Dwarf description of this type right now, even if
4001 the type in question is still incomplete, because if this
4002 local type *was* ever completed anywhere within its scope,
4003 that complete definition would already have been attached to
4004 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4005 node by the time we reach this point. That's true because of the
4006 way the front-end does its processing of file-scope declarations (of
4007 functions and class types) within which other types might be
4008 nested. The C and C++ front-ends always gobble up such "local
4009 scope" things en-mass before they try to output *any* debugging
4010 information for any of the stuff contained inside them and thus,
4011 we get the benefit here of what is (in effect) a pre-resolution
4012 of forward references to tagged types in local scopes.
4013
4014 Note however that for file-scope tagged types we cannot assume
4015 that such pre-resolution of forward references has taken place.
4016 A given file-scope tagged type may appear to be incomplete when
4017 we reach this point, but it may yet be given a full definition
4018 (at file-scope) later on during compilation. In order to avoid
4019 generating a premature (and possibly incorrect) set of Dwarf
4020 DIEs for such (as yet incomplete) file-scope tagged types, we
4021 generate nothing at all for as-yet incomplete file-scope tagged
4022 types here unless we are making our special "finalization" pass
4023 for file-scope things at the very end of compilation. At that
4024 time, we will certainly know as much about each file-scope tagged
4025 type as we are ever going to know, so at that point in time, we
4026 can safely generate correct Dwarf descriptions for these file-
4027 scope tagged types.
4028 */
4029
4030 if (TYPE_SIZE (type) == 0 && TYPE_CONTEXT (type) == NULL && !finalizing)
4031 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4032
4033 /* Prevent infinite recursion in cases where the type of some
4034 member of this type is expressed in terms of this type itself. */
4035
4036 TREE_ASM_WRITTEN (type) = 1;
4037
4038 /* Output a DIE to represent the tagged type itself. */
4039
4040 switch (TREE_CODE (type))
4041 {
4042 case ENUMERAL_TYPE:
4043 output_die (output_enumeration_type_die, type);
4044 return; /* a special case -- nothing left to do so just return */
4045
4046 case RECORD_TYPE:
4047 output_die (output_structure_type_die, type);
4048 break;
4049
4050 case UNION_TYPE:
4051 case QUAL_UNION_TYPE:
4052 output_die (output_union_type_die, type);
4053 break;
4054
4055 default:
4056 abort (); /* Should never happen. */
4057 }
4058
4059 /* If this is not an incomplete type, output descriptions of
4060 each of its members.
4061
4062 Note that as we output the DIEs necessary to represent the
4063 members of this record or union type, we will also be trying
4064 to output DIEs to represent the *types* of those members.
4065 However the `output_type' function (above) will specifically
4066 avoid generating type DIEs for member types *within* the list
4067 of member DIEs for this (containing) type execpt for those
4068 types (of members) which are explicitly marked as also being
4069 members of this (containing) type themselves. The g++ front-
4070 end can force any given type to be treated as a member of some
4071 other (containing) type by setting the TYPE_CONTEXT of the
4072 given (member) type to point to the TREE node representing the
4073 appropriate (containing) type.
4074 */
4075
4076 if (TYPE_SIZE (type))
4077 {
4078 {
4079 register tree normal_member;
4080
4081 /* First output info about the data members and type members. */
4082
4083 for (normal_member = TYPE_FIELDS (type);
4084 normal_member;
4085 normal_member = TREE_CHAIN (normal_member))
4086 output_decl (normal_member, type);
4087 }
4088
4089 {
4090 register tree vec_base;
4091
4092 /* Now output info about the function members (if any). */
4093
4094 vec_base = TYPE_METHODS (type);
4095 if (vec_base)
4096 {
4097 register tree first_func_member = TREE_VEC_ELT (vec_base, 0);
4098 register tree func_member;
4099
4100 /* This isn't documented, but the first element of the
4101 vector of member functions can be NULL in cases where
4102 the class type in question didn't have either a
4103 constructor or a destructor declared for it. We have
4104 to make allowances for that here. */
4105
4106 if (first_func_member == NULL)
4107 first_func_member = TREE_VEC_ELT (vec_base, 1);
4108
4109 for (func_member = first_func_member;
4110 func_member;
4111 func_member = TREE_CHAIN (func_member))
4112 output_decl (func_member, type);
4113 }
4114 }
4115
4116 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4117 scopes (at least in C++) so we must now output any nested
4118 pending types which are local just to this type. */
4119
4120 output_pending_types_for_scope (type);
4121
4122 end_sibling_chain (); /* Terminate member chain. */
4123 }
4124
4125 break;
4126
4127 case VOID_TYPE:
4128 case INTEGER_TYPE:
4129 case REAL_TYPE:
4130 case COMPLEX_TYPE:
4131 case BOOLEAN_TYPE:
4132 case CHAR_TYPE:
4133 break; /* No DIEs needed for fundamental types. */
4134
4135 case LANG_TYPE: /* No Dwarf representation currently defined. */
4136 break;
4137
4138 default:
4139 abort ();
4140 }
4141
4142 TREE_ASM_WRITTEN (type) = 1;
4143}
4144
4145static void
4146output_tagged_type_instantiation (type)
4147 register tree type;
4148{
4149 if (type == 0 || type == error_mark_node)
4150 return;
4151
4152 /* We are going to output a DIE to represent the unqualified version of
4153 of this type (i.e. without any const or volatile qualifiers) so make
4154 sure that we have the main variant (i.e. the unqualified version) of
4155 this type now. */
4156
4157 assert (type == TYPE_MAIN_VARIANT (type));
4158
4159 assert (TREE_ASM_WRITTEN (type));
4160
4161 switch (TREE_CODE (type))
4162 {
4163 case ERROR_MARK:
4164 break;
4165
4166 case ENUMERAL_TYPE:
4167 output_die (output_inlined_enumeration_type_die, type);
4168 break;
4169
4170 case RECORD_TYPE:
4171 output_die (output_inlined_structure_type_die, type);
4172 break;
4173
4174 case UNION_TYPE:
4175 case QUAL_UNION_TYPE:
4176 output_die (output_inlined_union_type_die, type);
4177 break;
4178
4179 default:
4180 abort (); /* Should never happen. */
4181 }
4182}
4183\f
4184/* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4185 the things which are local to the given block. */
4186
4187static void
4188output_block (stmt)
4189 register tree stmt;
4190{
4191 register int must_output_die = 0;
4192 register tree origin;
4193 register enum tree_code origin_code;
4194
4195 /* Ignore blocks never really used to make RTL. */
4196
4197 if (! stmt || ! TREE_USED (stmt))
4198 return;
4199
4200 /* Determine the "ultimate origin" of this block. This block may be an
4201 inlined instance of an inlined instance of inline function, so we
4202 have to trace all of the way back through the origin chain to find
4203 out what sort of node actually served as the original seed for the
4204 creation of the current block. */
4205
4206 origin = block_ultimate_origin (stmt);
4207 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4208
4209 /* Determine if we need to output any Dwarf DIEs at all to represent this
4210 block. */
4211
4212 if (origin_code == FUNCTION_DECL)
4213 /* The outer scopes for inlinings *must* always be represented. We
4214 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4215 must_output_die = 1;
4216 else
4217 {
4218 /* In the case where the current block represents an inlining of the
4219 "body block" of an inline function, we must *NOT* output any DIE
4220 for this block because we have already output a DIE to represent
4221 the whole inlined function scope and the "body block" of any
4222 function doesn't really represent a different scope according to
4223 ANSI C rules. So we check here to make sure that this block does
4224 not represent a "body block inlining" before trying to set the
4225 `must_output_die' flag. */
4226
4227 if (origin == NULL || ! is_body_block (origin))
4228 {
4229 /* Determine if this block directly contains any "significant"
4230 local declarations which we will need to output DIEs for. */
4231
4232 if (debug_info_level > DINFO_LEVEL_TERSE)
4233 /* We are not in terse mode so *any* local declaration counts
4234 as being a "significant" one. */
4235 must_output_die = (BLOCK_VARS (stmt) != NULL);
4236 else
4237 {
4238 register tree decl;
4239
4240 /* We are in terse mode, so only local (nested) function
4241 definitions count as "significant" local declarations. */
4242
4243 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4244 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4245 {
4246 must_output_die = 1;
4247 break;
4248 }
4249 }
4250 }
4251 }
4252
4253 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4254 DIE for any block which contains no significant local declarations
4255 at all. Rather, in such cases we just call `output_decls_for_scope'
4256 so that any needed Dwarf info for any sub-blocks will get properly
4257 generated. Note that in terse mode, our definition of what constitutes
4258 a "significant" local declaration gets restricted to include only
4259 inlined function instances and local (nested) function definitions. */
4260
4261 if (must_output_die)
4262 {
4263 output_die ((origin_code == FUNCTION_DECL)
4264 ? output_inlined_subroutine_die
4265 : output_lexical_block_die,
4266 stmt);
4267 output_decls_for_scope (stmt);
4268 end_sibling_chain ();
4269 }
4270 else
4271 output_decls_for_scope (stmt);
4272}
4273
4274/* Output all of the decls declared within a given scope (also called
4275 a `binding contour') and (recursively) all of it's sub-blocks. */
4276
4277static void
4278output_decls_for_scope (stmt)
4279 register tree stmt;
4280{
4281 /* Ignore blocks never really used to make RTL. */
4282
4283 if (! stmt || ! TREE_USED (stmt))
4284 return;
4285
4286 if (! BLOCK_ABSTRACT (stmt))
4287 next_block_number++;
4288
4289 /* Output the DIEs to represent all of the data objects, functions,
4290 typedefs, and tagged types declared directly within this block
4291 but not within any nested sub-blocks. */
4292
4293 {
4294 register tree decl;
4295
4296 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4297 output_decl (decl, stmt);
4298 }
4299
4300 output_pending_types_for_scope (stmt);
4301
4302 /* Output the DIEs to represent all sub-blocks (and the items declared
4303 therein) of this block. */
4304
4305 {
4306 register tree subblocks;
4307
4308 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4309 subblocks;
4310 subblocks = BLOCK_CHAIN (subblocks))
4311 output_block (subblocks);
4312 }
4313}
4314
4315/* Output Dwarf .debug information for a decl described by DECL. */
4316
4317static void
4318output_decl (decl, containing_scope)
4319 register tree decl;
4320 register tree containing_scope;
4321{
4322 /* Make a note of the decl node we are going to be working on. We may
4323 need to give the user the source coordinates of where it appeared in
4324 case we notice (later on) that something about it looks screwy. */
4325
4326 dwarf_last_decl = decl;
4327
4328 if (TREE_CODE (decl) == ERROR_MARK)
4329 return;
4330
4331 /* If this ..._DECL node is marked to be ignored, then ignore it.
4332 But don't ignore a function definition, since that would screw
4333 up our count of blocks, and that it turn will completely screw up the
4334 the labels we will reference in subsequent AT_low_pc and AT_high_pc
4335 attributes (for subsequent blocks). */
4336
4337 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4338 return;
4339
4340 switch (TREE_CODE (decl))
4341 {
4342 case CONST_DECL:
4343 /* The individual enumerators of an enum type get output when we
4344 output the Dwarf representation of the relevant enum type itself. */
4345 break;
4346
4347 case FUNCTION_DECL:
4348 /* If we are in terse mode, don't output any DIEs to represent
4349 mere function declarations. Also, if we are conforming
4350 to the DWARF version 1 specification, don't output DIEs for
4351 mere function declarations. */
4352
4353 if (DECL_INITIAL (decl) == NULL_TREE)
4354#if (DWARF_VERSION > 1)
4355 if (debug_info_level <= DINFO_LEVEL_TERSE)
4356#endif
4357 break;
4358
4359 /* Before we describe the FUNCTION_DECL itself, make sure that we
4360 have described its return type. */
4361
4362 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4363
4364 /* If the following DIE will represent a function definition for a
4365 function with "extern" linkage, output a special "pubnames" DIE
4366 label just ahead of the actual DIE. A reference to this label
4367 was already generated in the .debug_pubnames section sub-entry
4368 for this function definition. */
4369
4370 if (TREE_PUBLIC (decl))
4371 {
4372 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4373
4374 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4375 ASM_OUTPUT_LABEL (asm_out_file, label);
4376 }
4377
4378 /* Now output a DIE to represent the function itself. */
4379
4380 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4381 ? output_global_subroutine_die
4382 : output_local_subroutine_die,
4383 decl);
4384
4385 /* Now output descriptions of the arguments for this function.
4386 This gets (unnecessarily?) complex because of the fact that
4387 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4388 cases where there was a trailing `...' at the end of the formal
4389 parameter list. In order to find out if there was a trailing
4390 ellipsis or not, we must instead look at the type associated
4391 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4392 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4393 ends with a void_type_node then there should *not* be an ellipsis
4394 at the end. */
4395
4396 /* In the case where we are describing a mere function declaration, all
4397 we need to do here (and all we *can* do here) is to describe
4398 the *types* of its formal parameters. */
4399
4400 if (DECL_INITIAL (decl) == NULL_TREE)
4401 output_formal_types (TREE_TYPE (decl));
4402 else
4403 {
4404 register tree arg_decls = DECL_ARGUMENTS (decl);
4405
4406 {
4407 register tree last_arg;
4408
4409 last_arg = (arg_decls && TREE_CODE (arg_decls) != ERROR_MARK)
4410 ? tree_last (arg_decls)
4411 : NULL;
4412
4413 /* Generate DIEs to represent all known formal parameters, but
4414 don't do it if this looks like a varargs function. A given
4415 function is considered to be a varargs function if (and only
4416 if) its last named argument is named `__builtin_va_alist'. */
4417
4418 if (! last_arg
4419 || ! DECL_NAME (last_arg)
4420 || strcmp (IDENTIFIER_POINTER (DECL_NAME (last_arg)),
4421 "__builtin_va_alist"))
4422 {
4423 register tree parm;
4424
4425 /* WARNING! Kludge zone ahead! Here we have a special
4426 hack for svr4 SDB compatibility. Instead of passing the
4427 current FUNCTION_DECL node as the second parameter (i.e.
4428 the `containing_scope' parameter) to `output_decl' (as
4429 we ought to) we instead pass a pointer to our own private
4430 fake_containing_scope node. That node is a RECORD_TYPE
4431 node which NO OTHER TYPE may ever actually be a member of.
4432
4433 This pointer will ultimately get passed into `output_type'
4434 as its `containing_scope' parameter. `Output_type' will
4435 then perform its part in the hack... i.e. it will pend
4436 the type of the formal parameter onto the pending_types
4437 list. Later on, when we are done generating the whole
4438 sequence of formal parameter DIEs for this function
4439 definition, we will un-pend all previously pended types
4440 of formal parameters for this function definition.
4441
4442 This whole kludge prevents any type DIEs from being
4443 mixed in with the formal parameter DIEs. That's good
4444 because svr4 SDB believes that the list of formal
4445 parameter DIEs for a function ends wherever the first
4446 non-formal-parameter DIE appears. Thus, we have to
4447 keep the formal parameter DIEs segregated. They must
4448 all appear (consecutively) at the start of the list of
4449 children for the DIE representing the function definition.
4450 Then (and only then) may we output any additional DIEs
4451 needed to represent the types of these formal parameters.
4452 */
4453
4454 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4455 if (TREE_CODE (parm) == PARM_DECL)
4456 output_decl (parm, fake_containing_scope);
4457
4458 /* Now that we have finished generating all of the DIEs to
4459 represent the formal parameters themselves, force out
4460 any DIEs needed to represent their types. We do this
4461 simply by un-pending all previously pended types which
4462 can legitimately go into the chain of children DIEs for
4463 the current FUNCTION_DECL. */
4464
4465 output_pending_types_for_scope (decl);
4466 }
4467 }
4468
4469 /* Now try to decide if we should put an ellipsis at the end. */
4470
4471 {
4472 register int has_ellipsis = TRUE; /* default assumption */
4473 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4474
4475 if (fn_arg_types)
4476 {
4477 /* This function declaration/definition was prototyped. */
4478
4479 /* If the list of formal argument types ends with a
4480 void_type_node, then the formals list did *not* end
4481 with an ellipsis. */
4482
4483 if (TREE_VALUE (tree_last (fn_arg_types)) == void_type_node)
4484 has_ellipsis = FALSE;
4485 }
4486 else
4487 {
4488 /* This function declaration/definition was not prototyped. */
4489
4490 /* Note that all non-prototyped function *declarations* are
4491 assumed to represent varargs functions (until proven
4492 otherwise). */
4493
4494 if (DECL_INITIAL (decl)) /* if this is a func definition */
4495 {
4496 if (!arg_decls)
4497 has_ellipsis = FALSE; /* no args == (void) */
4498 else
4499 {
4500 /* For a non-prototyped function definition which
4501 declares one or more formal parameters, if the name
4502 of the first formal parameter is *not*
4503 __builtin_va_alist then we must assume that this
4504 is *not* a varargs function. */
4505
4506 if (DECL_NAME (arg_decls)
4507 && strcmp (IDENTIFIER_POINTER (DECL_NAME (arg_decls)),
4508 "__builtin_va_alist"))
4509 has_ellipsis = FALSE;
4510 }
4511 }
4512 }
4513
4514 if (has_ellipsis)
4515 output_die (output_unspecified_parameters_die, decl);
4516 }
4517 }
4518
4519 /* Output Dwarf info for all of the stuff within the body of the
4520 function (if it has one - it may be just a declaration). */
4521
4522 {
4523 register tree outer_scope = DECL_INITIAL (decl);
4524
4525 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4526 {
4527 /* Note that here, `outer_scope' is a pointer to the outermost
4528 BLOCK node created to represent a function.
4529 This outermost BLOCK actually represents the outermost
4530 binding contour for the function, i.e. the contour in which
4531 the function's formal parameters and labels get declared.
4532
4533 Curiously, it appears that the front end doesn't actually
4534 put the PARM_DECL nodes for the current function onto the
4535 BLOCK_VARS list for this outer scope. (They are strung
4536 off of the DECL_ARGUMENTS list for the function instead.)
4537 The BLOCK_VARS list for the `outer_scope' does provide us
4538 with a list of the LABEL_DECL nodes for the function however,
4539 and we output DWARF info for those here.
4540
4541 Just within the `outer_scope' there will be another BLOCK
4542 node representing the function's outermost pair of curly
4543 braces. We musn't generate a lexical_block DIE for this
4544 outermost pair of curly braces because that is not really an
4545 independent scope according to ANSI C rules. Rather, it is
4546 the same scope in which the parameters were declared. */
4547
4548 {
4549 register tree label;
4550
4551 for (label = BLOCK_VARS (outer_scope);
4552 label;
4553 label = TREE_CHAIN (label))
4554 output_decl (label, outer_scope);
4555 }
4556
4557 /* Note here that `BLOCK_SUBBLOCKS (outer_scope)' points to a
4558 list of BLOCK nodes which is always only one element long.
4559 That one element represents the outermost pair of curley
4560 braces for the function body. */
4561
4562 output_decls_for_scope (BLOCK_SUBBLOCKS (outer_scope));
4563
4564 /* Finally, force out any pending types which are local to the
4565 outermost block of this function definition. These will
4566 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4567 node itself. */
4568
4569 output_pending_types_for_scope (decl);
4570 }
4571 }
4572
4573 /* Generate a terminator for the list of stuff `owned' by this
4574 function. */
4575
4576 end_sibling_chain ();
4577
4578 break;
4579
4580 case TYPE_DECL:
4581 /* If we are in terse mode, don't generate any DIEs to represent
4582 any actual typedefs. Note that even when we are in terse mode,
4583 we must still output DIEs to represent those tagged types which
4584 are used (directly or indirectly) in the specification of either
4585 a return type or a formal parameter type of some function. */
4586
4587 if (debug_info_level <= DINFO_LEVEL_TERSE)
4588 if (DECL_NAME (decl) != NULL
4589 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
4590 return;
4591
4592 /* In the special case of a null-named TYPE_DECL node (representing
4593 the declaration of some type tag), if the given TYPE_DECL is
4594 marked as having been instantiated from some other (original)
4595 TYPE_DECL node (e.g. one which was generated within the original
4596 definition of an inline function) we have to generate a special
4597 (abbreviated) TAG_structure_type, TAG_union_type, or
4598 TAG_enumeration-type DIE here. */
4599
4600 if (! DECL_NAME (decl) && DECL_ABSTRACT_ORIGIN (decl))
4601 {
4602 output_tagged_type_instantiation (TREE_TYPE (decl));
4603 return;
4604 }
4605
4606 output_type (TREE_TYPE (decl), containing_scope);
4607
4608 /* Note that unlike the gcc front end (which generates a NULL named
4609 TYPE_DECL node for each complete tagged type, each array type,
4610 and each function type node created) the g++ front end generates
4611 a *named* TYPE_DECL node for each tagged type node created.
4612 Unfortunately, these g++ TYPE_DECL nodes cause us to output many
4613 superfluous and unnecessary TAG_typedef DIEs here. When g++ is
4614 fixed to stop generating these superfluous named TYPE_DECL nodes,
4615 the superfluous TAG_typedef DIEs will likewise cease. */
4616
4617 if (DECL_NAME (decl))
4618 /* Output a DIE to represent the typedef itself. */
4619 output_die (output_typedef_die, decl);
4620 break;
4621
4622 case LABEL_DECL:
4623 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4624 output_die (output_label_die, decl);
4625 break;
4626
4627 case VAR_DECL:
4628 /* If we are conforming to the DWARF version 1 specification, don't
4629 generated any DIEs to represent mere external object declarations. */
4630
4631#if (DWARF_VERSION <= 1)
4632 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
4633 break;
4634#endif
4635
4636 /* If we are in terse mode, don't generate any DIEs to represent
4637 any variable declarations or definitions. */
4638
4639 if (debug_info_level <= DINFO_LEVEL_TERSE)
4640 break;
4641
4642 /* Output any DIEs that are needed to specify the type of this data
4643 object. */
4644
4645 output_type (TREE_TYPE (decl), containing_scope);
4646
4647 /* If the following DIE will represent a data object definition for a
4648 data object with "extern" linkage, output a special "pubnames" DIE
4649 label just ahead of the actual DIE. A reference to this label
4650 was already generated in the .debug_pubnames section sub-entry
4651 for this data object definition. */
4652
4653 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
4654 {
4655 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4656
4657 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4658 ASM_OUTPUT_LABEL (asm_out_file, label);
4659 }
4660
4661 /* Now output the DIE to represent the data object itself. This gets
4662 complicated because of the possibility that the VAR_DECL really
4663 represents an inlined instance of a formal parameter for an inline
4664 function. */
4665
4666 {
4667 register void (*func) ();
4668 register tree origin = decl_ultimate_origin (decl);
4669
4670 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
4671 func = output_formal_parameter_die;
4672 else
4673 {
4674 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
4675 func = output_global_variable_die;
4676 else
4677 func = output_local_variable_die;
4678 }
4679 output_die (func, decl);
4680 }
4681 break;
4682
4683 case FIELD_DECL:
4684 /* Ignore the nameless fields that are used to skip bits. */
4685 if (DECL_NAME (decl) != 0)
4686 {
4687 output_type (member_declared_type (decl), containing_scope);
4688 output_die (output_member_die, decl);
4689 }
4690 break;
4691
4692 case PARM_DECL:
4693 /* Force out the type of this formal, if it was not forced out yet.
4694 Note that here we can run afowl of a bug in "classic" svr4 SDB.
4695 It should be able to grok the presence of type DIEs within a list
4696 of TAG_formal_parameter DIEs, but it doesn't. */
4697
4698 output_type (TREE_TYPE (decl), containing_scope);
4699 output_die (output_formal_parameter_die, decl);
4700 break;
4701
4702 default:
4703 abort ();
4704 }
4705}
4706\f
4707void
4708dwarfout_file_scope_decl (decl, set_finalizing)
4709 register tree decl;
4710 register int set_finalizing;
4711{
4712 if (TREE_CODE (decl) == ERROR_MARK)
4713 return;
4714
4715 /* If this ..._DECL node is marked to be ignored, then ignore it. We
4716 gotta hope that the node in question doesn't represent a function
4717 definition. If it does, then totally ignoring it is bound to screw
4718 up our count of blocks, and that it turn will completely screw up the
4719 the labels we will reference in subsequent AT_low_pc and AT_high_pc
4720 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
4721 don't carry their own sequence numbers with them!) */
4722
4723 if (DECL_IGNORED_P (decl))
4724 {
4725 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
4726 abort ();
4727 return;
4728 }
4729
4730 switch (TREE_CODE (decl))
4731 {
4732 case FUNCTION_DECL:
4733
4734 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
4735 a builtin function. Explicit programmer-supplied declarations of
4736 these same functions should NOT be ignored however. */
4737
4738 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
4739 return;
4740
4741 /* What we would really like to do here is to filter out all mere
4742 file-scope declarations of file-scope functions which are never
4743 referenced later within this translation unit (and keep all of
4744 ones that *are* referenced later on) but we aren't clarvoiant,
4745 so we have no idea which functions will be referenced in the
4746 future (i.e. later on within the current translation unit).
4747 So here we just ignore all file-scope function declarations
4748 which are not also definitions. If and when the debugger needs
4749 to know something about these funcstion, it wil have to hunt
4750 around and find the DWARF information associated with the
4751 *definition* of the function.
4752
4753 Note that we can't just check `DECL_EXTERNAL' to find out which
4754 FUNCTION_DECL nodes represent definitions and which ones represent
4755 mere declarations. We have to check `DECL_INITIAL' instead. That's
4756 because the C front-end supports some weird semantics for "extern
4757 inline" function definitions. These can get inlined within the
4758 current translation unit (an thus, we need to generate DWARF info
4759 for their abstract instances so that the DWARF info for the
4760 concrete inlined instances can have something to refer to) but
4761 the compiler never generates any out-of-lines instances of such
4762 things (despite the fact that they *are* definitions). The
4763 important point is that the C front-end marks these "extern inline"
4764 functions as DECL_EXTERNAL, but we need to generate DWARf for them
4765 anyway.
4766
4767 Note that the C++ front-end also plays some similar games for inline
4768 function definitions appearing within include files which also
4769 contain `#pragma interface' pragmas. */
4770
4771 if (DECL_INITIAL (decl) == NULL_TREE)
4772 return;
4773
4774 if (TREE_PUBLIC (decl)
4775 && ! DECL_EXTERNAL (decl)
4776 && ! DECL_ABSTRACT (decl))
4777 {
4778 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4779
4780 /* Output a .debug_pubnames entry for a public function
4781 defined in this compilation unit. */
4782
4783 fputc ('\n', asm_out_file);
4784 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
4785 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
4786 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
4787 ASM_OUTPUT_DWARF_STRING (asm_out_file,
4788 IDENTIFIER_POINTER (DECL_NAME (decl)));
4789 ASM_OUTPUT_POP_SECTION (asm_out_file);
4790 }
4791
4792 break;
4793
4794 case VAR_DECL:
4795
4796 /* Ignore this VAR_DECL if it refers to a file-scope extern data
4797 object declaration and if the declaration was never even
4798 referenced from within this entire compilation unit. We
4799 suppress these DIEs in order to save space in the .debug section
4800 (by eliminating entries which are probably useless). Note that
4801 we must not suppress block-local extern declarations (whether
4802 used or not) because that would screw-up the debugger's name
4803 lookup mechanism and cause it to miss things which really ought
4804 to be in scope at a given point. */
4805
4806 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
4807 return;
4808
4809 if (TREE_PUBLIC (decl)
4810 && ! DECL_EXTERNAL (decl)
4811 && GET_CODE (DECL_RTL (decl)) == MEM
4812 && ! DECL_ABSTRACT (decl))
4813 {
4814 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4815
4816 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4817 {
4818 /* Output a .debug_pubnames entry for a public variable
4819 defined in this compilation unit. */
4820
4821 fputc ('\n', asm_out_file);
4822 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
4823 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
4824 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
4825 ASM_OUTPUT_DWARF_STRING (asm_out_file,
4826 IDENTIFIER_POINTER (DECL_NAME (decl)));
4827 ASM_OUTPUT_POP_SECTION (asm_out_file);
4828 }
4829
4830 if (DECL_INITIAL (decl) == NULL)
4831 {
4832 /* Output a .debug_aranges entry for a public variable
4833 which is tentatively defined in this compilation unit. */
4834
4835 fputc ('\n', asm_out_file);
4836 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
4837 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
4838 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
4839 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
4840 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
4841 ASM_OUTPUT_POP_SECTION (asm_out_file);
4842 }
4843 }
4844
4845 /* If we are in terse mode, don't generate any DIEs to represent
4846 any variable declarations or definitions. */
4847
4848 if (debug_info_level <= DINFO_LEVEL_TERSE)
4849 return;
4850
4851 break;
4852
4853 case TYPE_DECL:
4854 /* Don't bother trying to generate any DIEs to represent any of the
4855 normal built-in types for the language we are compiling, except
4856 in cases where the types in question are *not* DWARF fundamental
4857 types. We make an exception in the case of non-fundamental types
4858 for the sake of objective C (and perhaps C++) because the GNU
4859 front-ends for these languages may in fact create certain "built-in"
4860 types which are (for example) RECORD_TYPEs. In such cases, we
4861 really need to output these (non-fundamental) types because other
4862 DIEs may contain references to them. */
4863
4864 if (DECL_SOURCE_LINE (decl) == 0
4865 && type_is_fundamental (TREE_TYPE (decl)))
4866 return;
4867
4868 /* If we are in terse mode, don't generate any DIEs to represent
4869 any actual typedefs. Note that even when we are in terse mode,
4870 we must still output DIEs to represent those tagged types which
4871 are used (directly or indirectly) in the specification of either
4872 a return type or a formal parameter type of some function. */
4873
4874 if (debug_info_level <= DINFO_LEVEL_TERSE)
4875 if (DECL_NAME (decl) != NULL
4876 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
4877 return;
4878
4879 break;
4880
4881 default:
4882 return;
4883 }
4884
4885 fputc ('\n', asm_out_file);
4886 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
4887 finalizing = set_finalizing;
4888 output_decl (decl, NULL_TREE);
4889
4890 /* NOTE: The call above to `output_decl' may have caused one or more
4891 file-scope named types (i.e. tagged types) to be placed onto the
4892 pending_types_list. We have to get those types off of that list
4893 at some point, and this is the perfect time to do it. If we didn't
4894 take them off now, they might still be on the list when cc1 finally
4895 exits. That might be OK if it weren't for the fact that when we put
4896 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
4897 for these types, and that causes them never to be output unless
4898 `output_pending_types_for_scope' takes them off of the list and un-sets
4899 their TREE_ASM_WRITTEN flags. */
4900
4901 output_pending_types_for_scope (NULL_TREE);
4902
4903 /* The above call should have totally emptied the pending_types_list. */
4904
4905 assert (pending_types == 0);
4906
4907 ASM_OUTPUT_POP_SECTION (asm_out_file);
4908
4909 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
4910 current_funcdef_number++;
4911}
4912\f
4913/* Output a marker (i.e. a label) for the beginning of the generated code
4914 for a lexical block. */
4915
4916void
4917dwarfout_begin_block (blocknum)
4918 register unsigned blocknum;
4919{
4920 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4921
4922 text_section ();
4923 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
4924 ASM_OUTPUT_LABEL (asm_out_file, label);
4925}
4926
4927/* Output a marker (i.e. a label) for the end of the generated code
4928 for a lexical block. */
4929
4930void
4931dwarfout_end_block (blocknum)
4932 register unsigned blocknum;
4933{
4934 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4935
4936 text_section ();
4937 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
4938 ASM_OUTPUT_LABEL (asm_out_file, label);
4939}
4940
4941/* Output a marker (i.e. a label) at a point in the assembly code which
4942 corresponds to a given source level label. */
4943
4944void
4945dwarfout_label (insn)
4946 register rtx insn;
4947{
4948 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4949 {
4950 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4951
4952 text_section ();
4953 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
4954 (unsigned) INSN_UID (insn));
4955 ASM_OUTPUT_LABEL (asm_out_file, label);
4956 }
4957}
4958
4959/* Output a marker (i.e. a label) for the point in the generated code where
4960 the real body of the function begins (after parameters have been moved
4961 to their home locations). */
4962
4963void
4964dwarfout_begin_function ()
4965{
4966 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4967
4968 text_section ();
4969 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
4970 ASM_OUTPUT_LABEL (asm_out_file, label);
4971}
4972
4973/* Output a marker (i.e. a label) for the point in the generated code where
4974 the real body of the function ends (just before the epilogue code). */
4975
4976void
4977dwarfout_end_function ()
4978{
4979 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4980
4981 text_section ();
4982 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
4983 ASM_OUTPUT_LABEL (asm_out_file, label);
4984}
4985
4986/* Output a marker (i.e. a label) for the absolute end of the generated code
4987 for a function definition. This gets called *after* the epilogue code
4988 has been generated. */
4989
4990void
4991dwarfout_end_epilogue ()
4992{
4993 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4994
4995 /* Output a label to mark the endpoint of the code generated for this
4996 function. */
4997
4998 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
4999 ASM_OUTPUT_LABEL (asm_out_file, label);
5000}
5001
5002static void
5003shuffle_filename_entry (new_zeroth)
5004 register filename_entry *new_zeroth;
5005{
5006 filename_entry temp_entry;
5007 register filename_entry *limit_p;
5008 register filename_entry *move_p;
5009
5010 if (new_zeroth == &filename_table[0])
5011 return;
5012
5013 temp_entry = *new_zeroth;
5014
5015 /* Shift entries up in the table to make room at [0]. */
5016
5017 limit_p = &filename_table[0];
5018 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5019 *move_p = *(move_p-1);
5020
5021 /* Install the found entry at [0]. */
5022
5023 filename_table[0] = temp_entry;
5024}
5025
5026/* Create a new (string) entry for the .debug_sfnames section. */
5027
5028static void
5029generate_new_sfname_entry ()
5030{
5031 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5032
5033 fputc ('\n', asm_out_file);
5034 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5035 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5036 ASM_OUTPUT_LABEL (asm_out_file, label);
5037 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5038 filename_table[0].name
5039 ? filename_table[0].name
5040 : "");
5041 ASM_OUTPUT_POP_SECTION (asm_out_file);
5042}
5043
5044/* Lookup a filename (in the list of filenames that we know about here in
5045 dwarfout.c) and return its "index". The index of each (known) filename
5046 is just a unique number which is associated with only that one filename.
5047 We need such numbers for the sake of generating labels (in the
5048 .debug_sfnames section) and references to those unique labels (in the
5049 .debug_srcinfo and .debug_macinfo sections).
5050
5051 If the filename given as an argument is not found in our current list,
5052 add it to the list and assign it the next available unique index number.
5053
5054 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5055 one), we shuffle the filename found (or added) up to the zeroth entry of
5056 our list of filenames (which is always searched linearly). We do this so
5057 as to optimize the most common case for these filename lookups within
5058 dwarfout.c. The most common case by far is the case where we call
5059 lookup_filename to lookup the very same filename that we did a lookup
5060 on the last time we called lookup_filename. We make sure that this
5061 common case is fast because such cases will constitute 99.9% of the
5062 lookups we ever do (in practice).
5063
5064 If we add a new filename entry to our table, we go ahead and generate
5065 the corresponding entry in the .debug_sfnames section right away.
5066 Doing so allows us to avoid tickling an assembler bug (present in some
5067 m68k assemblers) which yields assembly-time errors in cases where the
5068 difference of two label addresses is taken and where the two labels
5069 are in a section *other* than the one where the difference is being
5070 calculated, and where at least one of the two symbol references is a
5071 forward reference. (This bug could be tickled by our .debug_srcinfo
5072 entries if we don't output their corresponding .debug_sfnames entries
5073 before them.)
5074*/
5075
5076static unsigned
5077lookup_filename (file_name)
5078 char *file_name;
5079{
5080 register filename_entry *search_p;
5081 register filename_entry *limit_p = &filename_table[ft_entries];
5082
5083 for (search_p = filename_table; search_p < limit_p; search_p++)
5084 if (!strcmp (file_name, search_p->name))
5085 {
5086 /* When we get here, we have found the filename that we were
5087 looking for in the filename_table. Now we want to make sure
5088 that it gets moved to the zero'th entry in the table (if it
5089 is not already there) so that subsequent attempts to find the
5090 same filename will find it as quickly as possible. */
5091
5092 shuffle_filename_entry (search_p);
5093 return filename_table[0].number;
5094 }
5095
5096 /* We come here whenever we have a new filename which is not registered
5097 in the current table. Here we add it to the table. */
5098
5099 /* Prepare to add a new table entry by making sure there is enough space
5100 in the table to do so. If not, expand the current table. */
5101
5102 if (ft_entries == ft_entries_allocated)
5103 {
5104 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5105 filename_table
5106 = (filename_entry *)
5107 xrealloc (filename_table,
5108 ft_entries_allocated * sizeof (filename_entry));
5109 }
5110
5111 /* Initially, add the new entry at the end of the filename table. */
5112
5113 filename_table[ft_entries].number = ft_entries;
5114 filename_table[ft_entries].name = xstrdup (file_name);
5115
5116 /* Shuffle the new entry into filename_table[0]. */
5117
5118 shuffle_filename_entry (&filename_table[ft_entries]);
5119
5120 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5121 generate_new_sfname_entry ();
5122
5123 ft_entries++;
5124 return filename_table[0].number;
5125}
5126
5127static void
5128generate_srcinfo_entry (line_entry_num, files_entry_num)
5129 unsigned line_entry_num;
5130 unsigned files_entry_num;
5131{
5132 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5133
5134 fputc ('\n', asm_out_file);
5135 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5136 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5137 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5138 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5139 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5140 ASM_OUTPUT_POP_SECTION (asm_out_file);
5141}
5142
5143void
5144dwarfout_line (filename, line)
5145 register char *filename;
5146 register unsigned line;
5147{
5148 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5149 {
5150 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5151 static unsigned last_line_entry_num = 0;
5152 static unsigned prev_file_entry_num = (unsigned) -1;
5153 register unsigned this_file_entry_num = lookup_filename (filename);
5154
5155 text_section ();
5156 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5157 ASM_OUTPUT_LABEL (asm_out_file, label);
5158
5159 fputc ('\n', asm_out_file);
5160 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5161
5162 if (this_file_entry_num != prev_file_entry_num)
5163 {
5164 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5165
5166 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5167 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5168 }
5169
5170 {
5171 register char *tail = rindex (filename, '/');
5172
5173 if (tail != NULL)
5174 filename = tail;
5175 }
5176
5177 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5178 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5179 filename, line);
5180 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5181 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5182 ASM_OUTPUT_POP_SECTION (asm_out_file);
5183
5184 if (this_file_entry_num != prev_file_entry_num)
5185 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5186 prev_file_entry_num = this_file_entry_num;
5187 }
5188}
5189
5190/* Generate an entry in the .debug_macinfo section. */
5191
5192static void
5193generate_macinfo_entry (type_and_offset, string)
5194 register char *type_and_offset;
5195 register char *string;
5196{
5197 fputc ('\n', asm_out_file);
5198 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5199 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5200 ASM_OUTPUT_DWARF_STRING (asm_out_file, string);
5201 ASM_OUTPUT_POP_SECTION (asm_out_file);
5202}
5203
5204void
5205dwarfout_start_new_source_file (filename)
5206 register char *filename;
5207{
5208 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5209 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5210
5211 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5212 sprintf (type_and_offset, "0x%08x+%s-%s",
5213 ((unsigned) MACINFO_start << 24), label, SFNAMES_BEGIN_LABEL);
5214 generate_macinfo_entry (type_and_offset, "");
5215}
5216
5217void
5218dwarfout_resume_previous_source_file (lineno)
5219 register unsigned lineno;
5220{
5221 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5222
5223 sprintf (type_and_offset, "0x%08x+%u",
5224 ((unsigned) MACINFO_resume << 24), lineno);
5225 generate_macinfo_entry (type_and_offset, "");
5226}
5227
5228/* Called from check_newline in c-parse.y. The `buffer' parameter
5229 contains the tail part of the directive line, i.e. the part which
5230 is past the initial whitespace, #, whitespace, directive-name,
5231 whitespace part. */
5232
5233void
5234dwarfout_define (lineno, buffer)
5235 register unsigned lineno;
5236 register char *buffer;
5237{
5238 static int initialized = 0;
5239 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5240
5241 if (!initialized)
5242 {
5243 dwarfout_start_new_source_file (primary_filename);
5244 initialized = 1;
5245 }
5246 sprintf (type_and_offset, "0x%08x+%u",
5247 ((unsigned) MACINFO_define << 24), lineno);
5248 generate_macinfo_entry (type_and_offset, buffer);
5249}
5250
5251/* Called from check_newline in c-parse.y. The `buffer' parameter
5252 contains the tail part of the directive line, i.e. the part which
5253 is past the initial whitespace, #, whitespace, directive-name,
5254 whitespace part. */
5255
5256void
5257dwarfout_undef (lineno, buffer)
5258 register unsigned lineno;
5259 register char *buffer;
5260{
5261 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5262
5263 sprintf (type_and_offset, "0x%08x+%u",
5264 ((unsigned) MACINFO_undef << 24), lineno);
5265 generate_macinfo_entry (type_and_offset, buffer);
5266}
5267
5268/* Set up for Dwarf output at the start of compilation. */
5269
5270void
5271dwarfout_init (asm_out_file, main_input_filename)
5272 register FILE *asm_out_file;
5273 register char *main_input_filename;
5274{
5275 /* Remember the name of the primary input file. */
5276
5277 primary_filename = main_input_filename;
5278
5279 /* Allocate the initial hunk of the pending_sibling_stack. */
5280
5281 pending_sibling_stack
5282 = (unsigned *)
5283 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5284 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5285 pending_siblings = 1;
5286
5287 /* Allocate the initial hunk of the filename_table. */
5288
5289 filename_table
5290 = (filename_entry *)
5291 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5292 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5293 ft_entries = 0;
5294
5295 /* Allocate the initial hunk of the pending_types_list. */
5296
5297 pending_types_list
5298 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5299 pending_types_allocated = PENDING_TYPES_INCREMENT;
5300 pending_types = 0;
5301
5302 /* Create an artificial RECORD_TYPE node which we can use in our hack
5303 to get the DIEs representing types of formal parameters to come out
5304 only *after* the DIEs for the formal parameters themselves. */
5305
5306 fake_containing_scope = make_node (RECORD_TYPE);
5307
5308 /* Output a starting label for the .text section. */
5309
5310 fputc ('\n', asm_out_file);
5311 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5312 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5313 ASM_OUTPUT_POP_SECTION (asm_out_file);
5314
5315 /* Output a starting label for the .data section. */
5316
5317 fputc ('\n', asm_out_file);
5318 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5319 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5320 ASM_OUTPUT_POP_SECTION (asm_out_file);
5321
5322#if 0 /* GNU C doesn't currently use .data1. */
5323 /* Output a starting label for the .data1 section. */
5324
5325 fputc ('\n', asm_out_file);
5326 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5327 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5328 ASM_OUTPUT_POP_SECTION (asm_out_file);
5329#endif
5330
5331 /* Output a starting label for the .rodata section. */
5332
5333 fputc ('\n', asm_out_file);
5334 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5335 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5336 ASM_OUTPUT_POP_SECTION (asm_out_file);
5337
5338#if 0 /* GNU C doesn't currently use .rodata1. */
5339 /* Output a starting label for the .rodata1 section. */
5340
5341 fputc ('\n', asm_out_file);
5342 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5343 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5344 ASM_OUTPUT_POP_SECTION (asm_out_file);
5345#endif
5346
5347 /* Output a starting label for the .bss section. */
5348
5349 fputc ('\n', asm_out_file);
5350 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5351 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5352 ASM_OUTPUT_POP_SECTION (asm_out_file);
5353
5354 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5355 {
5356 /* Output a starting label and an initial (compilation directory)
5357 entry for the .debug_sfnames section. The starting label will be
5358 referenced by the initial entry in the .debug_srcinfo section. */
5359
5360 fputc ('\n', asm_out_file);
5361 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5362 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5363 {
5364 register char *pwd = getpwd ();
5365 register unsigned len = strlen (pwd);
5366 register char *dirname = (char *) xmalloc (len + 2);
5367
5368 strcpy (dirname, pwd);
5369 strcpy (dirname + len, "/");
5370 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
5371 free (dirname);
5372 }
5373 ASM_OUTPUT_POP_SECTION (asm_out_file);
5374
5375 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5376 {
5377 /* Output a starting label for the .debug_macinfo section. This
5378 label will be referenced by the AT_mac_info attribute in the
5379 TAG_compile_unit DIE. */
5380
5381 fputc ('\n', asm_out_file);
5382 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5383 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5384 ASM_OUTPUT_POP_SECTION (asm_out_file);
5385 }
5386
5387 /* Generate the initial entry for the .line section. */
5388
5389 fputc ('\n', asm_out_file);
5390 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5391 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5392 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5393 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5394 ASM_OUTPUT_POP_SECTION (asm_out_file);
5395
5396 /* Generate the initial entry for the .debug_srcinfo section. */
5397
5398 fputc ('\n', asm_out_file);
5399 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5400 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5401 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5402 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5403 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5404 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5405#ifdef DWARF_TIMESTAMPS
5406 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5407#else
5408 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5409#endif
5410 ASM_OUTPUT_POP_SECTION (asm_out_file);
5411
5412 /* Generate the initial entry for the .debug_pubnames section. */
5413
5414 fputc ('\n', asm_out_file);
5415 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5416 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5417 ASM_OUTPUT_POP_SECTION (asm_out_file);
5418
5419 /* Generate the initial entry for the .debug_aranges section. */
5420
5421 fputc ('\n', asm_out_file);
5422 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5423 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5424 ASM_OUTPUT_POP_SECTION (asm_out_file);
5425 }
5426
5427 /* Setup first DIE number == 1. */
5428 NEXT_DIE_NUM = next_unused_dienum++;
5429
5430 /* Generate the initial DIE for the .debug section. Note that the
5431 (string) value given in the AT_name attribute of the TAG_compile_unit
5432 DIE will (typically) be a relative pathname and that this pathname
5433 should be taken as being relative to the directory from which the
5434 compiler was invoked when the given (base) source file was compiled. */
5435
5436 fputc ('\n', asm_out_file);
5437 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5438 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5439 output_die (output_compile_unit_die, main_input_filename);
5440 ASM_OUTPUT_POP_SECTION (asm_out_file);
5441
5442 fputc ('\n', asm_out_file);
5443}
5444
5445/* Output stuff that dwarf requires at the end of every file. */
5446
5447void
5448dwarfout_finish ()
5449{
5450 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5451
5452 fputc ('\n', asm_out_file);
5453 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5454
5455 /* Mark the end of the chain of siblings which represent all file-scope
5456 declarations in this compilation unit. */
5457
5458 /* The (null) DIE which represents the terminator for the (sibling linked)
5459 list of file-scope items is *special*. Normally, we would just call
5460 end_sibling_chain at this point in order to output a word with the
5461 value `4' and that word would act as the terminator for the list of
5462 DIEs describing file-scope items. Unfortunately, if we were to simply
5463 do that, the label that would follow this DIE in the .debug section
5464 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5465 machines) to a 4 byte boundary.
5466
5467 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5468 the trick used is to insert extra (otherwise useless) padding bytes
5469 into the (null) DIE that we know must precede the ..D2 label in the
5470 .debug section. The amount of padding required can be anywhere between
5471 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5472 with the padding) would normally contain the value 4, but now it will
5473 also have to include the padding bytes, so it will instead have some
5474 value in the range 4..7.
5475
5476 Fortunately, the rules of Dwarf say that any DIE whose length word
5477 contains *any* value less than 8 should be treated as a null DIE, so
5478 this trick works out nicely. Clever, eh? Don't give me any credit
5479 (or blame). I didn't think of this scheme. I just conformed to it.
5480 */
5481
5482 output_die (output_padded_null_die, (void *)0);
5483 dienum_pop ();
5484
5485 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5486 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
5487 ASM_OUTPUT_POP_SECTION (asm_out_file);
5488
5489 /* Output a terminator label for the .text section. */
5490
5491 fputc ('\n', asm_out_file);
5492 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5493 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5494 ASM_OUTPUT_POP_SECTION (asm_out_file);
5495
5496 /* Output a terminator label for the .data section. */
5497
5498 fputc ('\n', asm_out_file);
5499 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5500 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5501 ASM_OUTPUT_POP_SECTION (asm_out_file);
5502
5503#if 0 /* GNU C doesn't currently use .data1. */
5504 /* Output a terminator label for the .data1 section. */
5505
5506 fputc ('\n', asm_out_file);
5507 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5508 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5509 ASM_OUTPUT_POP_SECTION (asm_out_file);
5510#endif
5511
5512 /* Output a terminator label for the .rodata section. */
5513
5514 fputc ('\n', asm_out_file);
5515 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5516 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5517 ASM_OUTPUT_POP_SECTION (asm_out_file);
5518
5519#if 0 /* GNU C doesn't currently use .rodata1. */
5520 /* Output a terminator label for the .rodata1 section. */
5521
5522 fputc ('\n', asm_out_file);
5523 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5524 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
5525 ASM_OUTPUT_POP_SECTION (asm_out_file);
5526#endif
5527
5528 /* Output a terminator label for the .bss section. */
5529
5530 fputc ('\n', asm_out_file);
5531 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5532 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
5533 ASM_OUTPUT_POP_SECTION (asm_out_file);
5534
5535 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5536 {
5537 /* Output a terminating entry for the .line section. */
5538
5539 fputc ('\n', asm_out_file);
5540 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5541 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
5542 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5543 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5544 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5545 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
5546 ASM_OUTPUT_POP_SECTION (asm_out_file);
5547
5548 /* Output a terminating entry for the .debug_srcinfo section. */
5549
5550 fputc ('\n', asm_out_file);
5551 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5552 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
5553 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
5554 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5555 ASM_OUTPUT_POP_SECTION (asm_out_file);
5556
5557 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5558 {
5559 /* Output terminating entries for the .debug_macinfo section. */
5560
5561 dwarfout_resume_previous_source_file (0);
5562
5563 fputc ('\n', asm_out_file);
5564 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5565 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5566 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5567 ASM_OUTPUT_POP_SECTION (asm_out_file);
5568 }
5569
5570 /* Generate the terminating entry for the .debug_pubnames section. */
5571
5572 fputc ('\n', asm_out_file);
5573 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5574 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5575 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5576 ASM_OUTPUT_POP_SECTION (asm_out_file);
5577
5578 /* Generate the terminating entries for the .debug_aranges section.
5579
5580 Note that we want to do this only *after* we have output the end
5581 labels (for the various program sections) which we are going to
5582 refer to here. This allows us to work around a bug in the m68k
5583 svr4 assembler. That assembler gives bogus assembly-time errors
5584 if (within any given section) you try to take the difference of
5585 two relocatable symbols, both of which are located within some
5586 other section, and if one (or both?) of the symbols involved is
5587 being forward-referenced. By generating the .debug_aranges
5588 entries at this late point in the assembly output, we skirt the
5589 issue simply by avoiding forward-references.
5590 */
5591
5592 fputc ('\n', asm_out_file);
5593 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5594
5595 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5596 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5597
5598 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
5599 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
5600
5601#if 0 /* GNU C doesn't currently use .data1. */
5602 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
5603 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
5604 DATA1_BEGIN_LABEL);
5605#endif
5606
5607 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
5608 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
5609 RODATA_BEGIN_LABEL);
5610
5611#if 0 /* GNU C doesn't currently use .rodata1. */
5612 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
5613 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
5614 RODATA1_BEGIN_LABEL);
5615#endif
5616
5617 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
5618 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
5619
5620 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5621 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5622
5623 ASM_OUTPUT_POP_SECTION (asm_out_file);
5624 }
5625}
5626
5627#endif /* DWARF_DEBUGGING_INFO */
This page took 0.069691 seconds and 5 git commands to generate.