]> gcc.gnu.org Git - gcc.git/blame_incremental - gcc/config/sparc/sparc.h
(strict_single_insn_op_p, relop): Deleted these useless functions.
[gcc.git] / gcc / config / sparc / sparc.h
... / ...
CommitLineData
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24#define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
26/* Provide required defaults for linker -e and -d switches. */
27
28#define LINK_SPEC \
29 "%{!nostdlib:%{!e*:-e start}} -dc -dp %{static:-Bstatic} %{assert*}"
30
31/* Special flags to the Sun-4 assembler when using pipe for input. */
32
33#define ASM_SPEC " %{pipe:-} %{fpic:-k} %{fPIC:-k}"
34
35/* Define macros to distinguish architectures. */
36#define CPP_SPEC "%{msparclite:-D__sparclite__} %{mv8:-D__sparcv8__}"
37
38/* Prevent error on `-sun4' and `-target sun4' options. */
39/* This used to translate -dalign to -malign, but that is no good
40 because it can't turn off the usual meaning of making debugging dumps. */
41
42#define CC1_SPEC "%{sun4:} %{target:}"
43
44#if 0
45/* Sparc ABI says that long double is 4 words.
46 ??? This doesn't work yet. */
47#define LONG_DOUBLE_TYPE_SIZE 128
48#endif
49
50#define PTRDIFF_TYPE "int"
51#define SIZE_TYPE "int"
52#define WCHAR_TYPE "short unsigned int"
53#define WCHAR_TYPE_SIZE 16
54
55/* Omit frame pointer at high optimization levels. */
56
57#define OPTIMIZATION_OPTIONS(OPTIMIZE) \
58{ \
59 if (OPTIMIZE >= 2) \
60 { \
61 flag_omit_frame_pointer = 1; \
62 } \
63}
64
65/* These compiler options take an argument. We ignore -target for now. */
66
67#define WORD_SWITCH_TAKES_ARG(STR) \
68 (!strcmp (STR, "Tdata") || !strcmp (STR, "include") \
69 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
70 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
71
72/* Names to predefine in the preprocessor for this target machine. */
73
74#define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
75
76/* Print subsidiary information on the compiler version in use. */
77
78#define TARGET_VERSION fprintf (stderr, " (sparc)");
79
80/* Generate DBX debugging information. */
81
82#define DBX_DEBUGGING_INFO
83
84/* Run-time compilation parameters selecting different hardware subsets. */
85
86extern int target_flags;
87
88/* Nonzero if we should generate code to use the fpu. */
89#define TARGET_FPU (target_flags & 1)
90
91/* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
92 use fast return insns, but lose some generality. */
93#define TARGET_EPILOGUE (target_flags & 2)
94
95/* Nonzero means that reference doublewords as if they were guaranteed
96 to be aligned...if they aren't, too bad for the user!
97 Like -dalign in Sun cc. */
98#define TARGET_HOPE_ALIGN (target_flags & 16)
99
100/* Nonzero means make sure all doubles are on 8-byte boundaries.
101 This option results in a calling convention that is incompatible with
102 every other sparc compiler in the world, and thus should only ever be
103 used for experimenting. Also, varargs won't work with it, but it doesn't
104 seem worth trying to fix. */
105#define TARGET_FORCE_ALIGN (target_flags & 32)
106
107/* Nonzero means that we should generate code for a v8 sparc. */
108#define TARGET_V8 (target_flags & 64)
109
110/* Nonzero means that we should generate code for a sparclite. */
111#define TARGET_SPARCLITE (target_flags & 128)
112
113/* Macro to define tables used to set the flags.
114 This is a list in braces of pairs in braces,
115 each pair being { "NAME", VALUE }
116 where VALUE is the bits to set or minus the bits to clear.
117 An empty string NAME is used to identify the default VALUE. */
118
119#define TARGET_SWITCHES \
120 { {"fpu", 1}, \
121 {"soft-float", -1}, \
122 {"epilogue", 2}, \
123 {"no-epilogue", -2}, \
124 {"hope-align", 16}, \
125 {"force-align", 48}, \
126 {"v8", 64}, \
127 {"no-v8", -64}, \
128 {"sparclite", 128}, \
129 {"no-sparclite", -128}, \
130 { "", TARGET_DEFAULT}}
131
132#define TARGET_DEFAULT 3
133\f
134/* target machine storage layout */
135
136/* Define this if most significant bit is lowest numbered
137 in instructions that operate on numbered bit-fields. */
138#define BITS_BIG_ENDIAN 1
139
140/* Define this if most significant byte of a word is the lowest numbered. */
141/* This is true on the SPARC. */
142#define BYTES_BIG_ENDIAN 1
143
144/* Define this if most significant word of a multiword number is the lowest
145 numbered. */
146/* Doubles are stored in memory with the high order word first. This
147 matters when cross-compiling. */
148#define WORDS_BIG_ENDIAN 1
149
150/* number of bits in an addressable storage unit */
151#define BITS_PER_UNIT 8
152
153/* Width in bits of a "word", which is the contents of a machine register.
154 Note that this is not necessarily the width of data type `int';
155 if using 16-bit ints on a 68000, this would still be 32.
156 But on a machine with 16-bit registers, this would be 16. */
157#define BITS_PER_WORD 32
158#define MAX_BITS_PER_WORD 32
159
160/* Width of a word, in units (bytes). */
161#define UNITS_PER_WORD 4
162
163/* Width in bits of a pointer.
164 See also the macro `Pmode' defined below. */
165#define POINTER_SIZE 32
166
167/* Allocation boundary (in *bits*) for storing arguments in argument list. */
168#define PARM_BOUNDARY 32
169
170/* Boundary (in *bits*) on which stack pointer should be aligned. */
171#define STACK_BOUNDARY 64
172
173/* ALIGN FRAMES on double word boundaries */
174
175#define SPARC_STACK_ALIGN(LOC) (((LOC)+7) & 0xfffffff8)
176
177/* Allocation boundary (in *bits*) for the code of a function. */
178#define FUNCTION_BOUNDARY 32
179
180/* Alignment of field after `int : 0' in a structure. */
181#define EMPTY_FIELD_BOUNDARY 32
182
183/* Every structure's size must be a multiple of this. */
184#define STRUCTURE_SIZE_BOUNDARY 8
185
186/* A bitfield declared as `int' forces `int' alignment for the struct. */
187#define PCC_BITFIELD_TYPE_MATTERS 1
188
189/* No data type wants to be aligned rounder than this. */
190#define BIGGEST_ALIGNMENT 64
191
192/* The best alignment to use in cases where we have a choice. */
193#define FASTEST_ALIGNMENT 64
194
195/* Make strings word-aligned so strcpy from constants will be faster. */
196#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
197 (TREE_CODE (EXP) == STRING_CST \
198 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
199
200/* Make arrays of chars word-aligned for the same reasons. */
201#define DATA_ALIGNMENT(TYPE, ALIGN) \
202 (TREE_CODE (TYPE) == ARRAY_TYPE \
203 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
204 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
205
206/* Set this nonzero if move instructions will actually fail to work
207 when given unaligned data. */
208#define STRICT_ALIGNMENT 1
209
210/* Things that must be doubleword aligned cannot go in the text section,
211 because the linker fails to align the text section enough!
212 Put them in the data section. */
213#define MAX_TEXT_ALIGN 32
214
215#define SELECT_SECTION(T,RELOC) \
216{ \
217 if (TREE_CODE (T) == VAR_DECL) \
218 { \
219 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
220 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
221 && ! (flag_pic && (RELOC))) \
222 text_section (); \
223 else \
224 data_section (); \
225 } \
226 else if (TREE_CODE (T) == CONSTRUCTOR) \
227 { \
228 if (flag_pic != 0 && (RELOC) != 0) \
229 data_section (); \
230 } \
231 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
232 { \
233 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
234 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
235 data_section (); \
236 else \
237 text_section (); \
238 } \
239}
240
241/* Use text section for a constant
242 unless we need more alignment than that offers. */
243#define SELECT_RTX_SECTION(MODE, X) \
244{ \
245 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
246 && ! (flag_pic && symbolic_operand (X))) \
247 text_section (); \
248 else \
249 data_section (); \
250}
251\f
252/* Standard register usage. */
253
254/* Number of actual hardware registers.
255 The hardware registers are assigned numbers for the compiler
256 from 0 to just below FIRST_PSEUDO_REGISTER.
257 All registers that the compiler knows about must be given numbers,
258 even those that are not normally considered general registers.
259
260 SPARC has 32 integer registers and 32 floating point registers. */
261
262#define FIRST_PSEUDO_REGISTER 64
263
264/* 1 for registers that have pervasive standard uses
265 and are not available for the register allocator.
266 0 is used for the condition code and not to represent %g0, which is
267 hardwired to 0, so reg 0 is *not* fixed.
268 g1 through g4 are free to use as temporaries.
269 g5 through g7 are reserved for the operating system. */
270#define FIXED_REGISTERS \
271 {0, 0, 0, 0, 0, 1, 1, 1, \
272 0, 0, 0, 0, 0, 0, 1, 0, \
273 0, 0, 0, 0, 0, 0, 0, 0, \
274 0, 0, 0, 0, 0, 0, 1, 1, \
275 \
276 0, 0, 0, 0, 0, 0, 0, 0, \
277 0, 0, 0, 0, 0, 0, 0, 0, \
278 0, 0, 0, 0, 0, 0, 0, 0, \
279 0, 0, 0, 0, 0, 0, 0, 0}
280
281/* 1 for registers not available across function calls.
282 These must include the FIXED_REGISTERS and also any
283 registers that can be used without being saved.
284 The latter must include the registers where values are returned
285 and the register where structure-value addresses are passed.
286 Aside from that, you can include as many other registers as you like. */
287#define CALL_USED_REGISTERS \
288 {1, 1, 1, 1, 1, 1, 1, 1, \
289 1, 1, 1, 1, 1, 1, 1, 1, \
290 0, 0, 0, 0, 0, 0, 0, 0, \
291 0, 0, 0, 0, 0, 0, 1, 1, \
292 \
293 1, 1, 1, 1, 1, 1, 1, 1, \
294 1, 1, 1, 1, 1, 1, 1, 1, \
295 1, 1, 1, 1, 1, 1, 1, 1, \
296 1, 1, 1, 1, 1, 1, 1, 1}
297
298/* Return number of consecutive hard regs needed starting at reg REGNO
299 to hold something of mode MODE.
300 This is ordinarily the length in words of a value of mode MODE
301 but can be less for certain modes in special long registers.
302
303 On SPARC, ordinary registers hold 32 bits worth;
304 this means both integer and floating point registers.
305
306 We use vectors to keep this information about registers. */
307
308/* How many hard registers it takes to make a register of this mode. */
309extern int hard_regno_nregs[];
310
311#define HARD_REGNO_NREGS(REGNO, MODE) \
312 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
313
314/* Value is 1 if register/mode pair is acceptable on sparc. */
315extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
316
317/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
318 On SPARC, the cpu registers can hold any mode but the float registers
319 can only hold SFmode or DFmode. See sparc.c for how we
320 initialize this. */
321#define HARD_REGNO_MODE_OK(REGNO, MODE) \
322 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
323
324/* Value is 1 if it is a good idea to tie two pseudo registers
325 when one has mode MODE1 and one has mode MODE2.
326 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
327 for any hard reg, then this must be 0 for correct output. */
328#define MODES_TIEABLE_P(MODE1, MODE2) \
329 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
330
331/* Specify the registers used for certain standard purposes.
332 The values of these macros are register numbers. */
333
334/* SPARC pc isn't overloaded on a register that the compiler knows about. */
335/* #define PC_REGNUM */
336
337/* Register to use for pushing function arguments. */
338#define STACK_POINTER_REGNUM 14
339
340/* Actual top-of-stack address is 92 greater than the contents
341 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
342 for the ins and local registers, 4 byte for structure return address, and
343 24 bytes for the 6 register parameters. */
344#define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
345
346/* Base register for access to local variables of the function. */
347#define FRAME_POINTER_REGNUM 30
348
349#if 0
350/* Register that is used for the return address. */
351#define RETURN_ADDR_REGNUM 15
352#endif
353
354/* Value should be nonzero if functions must have frame pointers.
355 Zero means the frame pointer need not be set up (and parms
356 may be accessed via the stack pointer) in functions that seem suitable.
357 This is computed in `reload', in reload1.c.
358
359 Used in flow.c, global-alloc.c, and reload1.c. */
360extern int leaf_function;
361
362#define FRAME_POINTER_REQUIRED \
363 (! (leaf_function_p () && only_leaf_regs_used ()))
364
365/* C statement to store the difference between the frame pointer
366 and the stack pointer values immediately after the function prologue.
367
368 Note, we always pretend that this is a leaf function because if
369 it's not, there's no point in trying to eliminate the
370 frame pointer. If it is a leaf function, we guessed right! */
371#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
372 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
373
374/* Base register for access to arguments of the function. */
375#define ARG_POINTER_REGNUM 30
376
377/* Register in which static-chain is passed to a function. */
378/* ??? */
379#define STATIC_CHAIN_REGNUM 1
380
381/* Register which holds offset table for position-independent
382 data references. */
383
384#define PIC_OFFSET_TABLE_REGNUM 23
385
386#define INITIALIZE_PIC initialize_pic ()
387#define FINALIZE_PIC finalize_pic ()
388
389/* Sparc ABI says that quad-precision floats and all structures are returned
390 in memory. We go along regarding floats, but for structures
391 we follow GCC's normal policy. Use -fpcc-struct-value
392 if you want to follow the ABI. */
393#define RETURN_IN_MEMORY(TYPE) \
394 (TYPE_MODE (TYPE) == TFmode)
395
396/* Functions which return large structures get the address
397 to place the wanted value at offset 64 from the frame.
398 Must reserve 64 bytes for the in and local registers. */
399/* Used only in other #defines in this file. */
400#define STRUCT_VALUE_OFFSET 64
401
402#define STRUCT_VALUE \
403 gen_rtx (MEM, Pmode, \
404 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
405 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
406#define STRUCT_VALUE_INCOMING \
407 gen_rtx (MEM, Pmode, \
408 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
409 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
410\f
411/* Define the classes of registers for register constraints in the
412 machine description. Also define ranges of constants.
413
414 One of the classes must always be named ALL_REGS and include all hard regs.
415 If there is more than one class, another class must be named NO_REGS
416 and contain no registers.
417
418 The name GENERAL_REGS must be the name of a class (or an alias for
419 another name such as ALL_REGS). This is the class of registers
420 that is allowed by "g" or "r" in a register constraint.
421 Also, registers outside this class are allocated only when
422 instructions express preferences for them.
423
424 The classes must be numbered in nondecreasing order; that is,
425 a larger-numbered class must never be contained completely
426 in a smaller-numbered class.
427
428 For any two classes, it is very desirable that there be another
429 class that represents their union. */
430
431/* The SPARC has two kinds of registers, general and floating point. */
432
433enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
434
435#define N_REG_CLASSES (int) LIM_REG_CLASSES
436
437/* Give names of register classes as strings for dump file. */
438
439#define REG_CLASS_NAMES \
440 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
441
442/* Define which registers fit in which classes.
443 This is an initializer for a vector of HARD_REG_SET
444 of length N_REG_CLASSES. */
445
446#if 0 && defined (__GNUC__)
447#define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
448#else
449#define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
450#endif
451
452/* The same information, inverted:
453 Return the class number of the smallest class containing
454 reg number REGNO. This could be a conditional expression
455 or could index an array. */
456
457#define REGNO_REG_CLASS(REGNO) \
458 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
459
460/* This is the order in which to allocate registers
461 normally. */
462#define REG_ALLOC_ORDER \
463{ 8, 9, 10, 11, 12, 13, 2, 3, \
464 15, 16, 17, 18, 19, 20, 21, 22, \
465 23, 24, 25, 26, 27, 28, 29, 31, \
466 32, 33, 34, 35, 36, 37, 38, 39, \
467 40, 41, 42, 43, 44, 45, 46, 47, \
468 48, 49, 50, 51, 52, 53, 54, 55, \
469 56, 57, 58, 59, 60, 61, 62, 63, \
470 1, 4, 5, 6, 7, 0, 14, 30}
471
472/* This is the order in which to allocate registers for
473 leaf functions. If all registers can fit in the "i" registers,
474 then we have the possibility of having a leaf function. */
475#define REG_LEAF_ALLOC_ORDER \
476{ 2, 3, 24, 25, 26, 27, 28, 29, \
477 15, 8, 9, 10, 11, 12, 13, \
478 16, 17, 18, 19, 20, 21, 22, 23, \
479 32, 33, 34, 35, 36, 37, 38, 39, \
480 40, 41, 42, 43, 44, 45, 46, 47, \
481 48, 49, 50, 51, 52, 53, 54, 55, \
482 56, 57, 58, 59, 60, 61, 62, 63, \
483 1, 4, 5, 6, 7, 0, 14, 30, 31}
484
485#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
486
487#define LEAF_REGISTERS \
488{ 1, 1, 1, 1, 1, 1, 1, 1, \
489 0, 0, 0, 0, 0, 0, 1, 0, \
490 0, 0, 0, 0, 0, 0, 0, 0, \
491 1, 1, 1, 1, 1, 1, 0, 1, \
492 1, 1, 1, 1, 1, 1, 1, 1, \
493 1, 1, 1, 1, 1, 1, 1, 1, \
494 1, 1, 1, 1, 1, 1, 1, 1, \
495 1, 1, 1, 1, 1, 1, 1, 1}
496
497extern char leaf_reg_remap[];
498#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
499extern char leaf_reg_backmap[];
500#define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
501
502#define REG_USED_SO_FAR(REGNO) \
503 ((REGNO) >= 24 && (REGNO) < 30 \
504 ? (regs_ever_live[24] \
505 || regs_ever_live[25] \
506 || regs_ever_live[26] \
507 || regs_ever_live[27] \
508 || regs_ever_live[28] \
509 || regs_ever_live[29]) : 0)
510
511/* The class value for index registers, and the one for base regs. */
512#define INDEX_REG_CLASS GENERAL_REGS
513#define BASE_REG_CLASS GENERAL_REGS
514
515/* Get reg_class from a letter such as appears in the machine description. */
516
517#define REG_CLASS_FROM_LETTER(C) \
518 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
519
520/* The letters I, J, K, L and M in a register constraint string
521 can be used to stand for particular ranges of immediate operands.
522 This macro defines what the ranges are.
523 C is the letter, and VALUE is a constant value.
524 Return 1 if VALUE is in the range specified by C.
525
526 For SPARC, `I' is used for the range of constants an insn
527 can actually contain.
528 `J' is used for the range which is just zero (since that is R0).
529 `K' is used for the 5-bit operand of a compare insns. */
530
531#define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
532
533#define CONST_OK_FOR_LETTER_P(VALUE, C) \
534 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
535 : (C) == 'J' ? (VALUE) == 0 \
536 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
537 : 0)
538
539/* Similar, but for floating constants, and defining letters G and H.
540 Here VALUE is the CONST_DOUBLE rtx itself. */
541
542#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
543 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
544 && CONST_DOUBLE_LOW (VALUE) == 0 \
545 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
546 : 0)
547
548/* Given an rtx X being reloaded into a reg required to be
549 in class CLASS, return the class of reg to actually use.
550 In general this is just CLASS; but on some machines
551 in some cases it is preferable to use a more restrictive class. */
552/* We can't load constants into FP registers. We can't load any FP constant
553 if an 'E' constraint fails to match it. */
554#define PREFERRED_RELOAD_CLASS(X,CLASS) \
555 (CONSTANT_P (X) \
556 && ((CLASS) == FP_REGS \
557 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
558 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
559 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
560 ? NO_REGS : (CLASS))
561
562/* Return the register class of a scratch register needed to load IN into
563 a register of class CLASS in MODE.
564
565 On the SPARC, when PIC, we need a temporary when loading some addresses
566 into a register. */
567
568#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
569 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS : NO_REGS)
570
571/* Return the maximum number of consecutive registers
572 needed to represent mode MODE in a register of class CLASS. */
573/* On SPARC, this is the size of MODE in words. */
574#define CLASS_MAX_NREGS(CLASS, MODE) \
575 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
576\f
577/* Stack layout; function entry, exit and calling. */
578
579/* Define the number of register that can hold parameters.
580 These two macros are used only in other macro definitions below. */
581#define NPARM_REGS 6
582
583/* Define this if pushing a word on the stack
584 makes the stack pointer a smaller address. */
585#define STACK_GROWS_DOWNWARD
586
587/* Define this if the nominal address of the stack frame
588 is at the high-address end of the local variables;
589 that is, each additional local variable allocated
590 goes at a more negative offset in the frame. */
591#define FRAME_GROWS_DOWNWARD
592
593/* Offset within stack frame to start allocating local variables at.
594 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
595 first local allocated. Otherwise, it is the offset to the BEGINNING
596 of the first local allocated. */
597#define STARTING_FRAME_OFFSET (-16)
598
599/* If we generate an insn to push BYTES bytes,
600 this says how many the stack pointer really advances by.
601 On SPARC, don't define this because there are no push insns. */
602/* #define PUSH_ROUNDING(BYTES) */
603
604/* Offset of first parameter from the argument pointer register value.
605 This is 64 for the ins and locals, plus 4 for the struct-return reg
606 even if this function isn't going to use it.
607 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
608 stack remains aligned. */
609#define FIRST_PARM_OFFSET(FNDECL) \
610 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
611
612/* When a parameter is passed in a register, stack space is still
613 allocated for it. */
614#define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
615
616/* Keep the stack pointer constant throughout the function.
617 This is both an optimization and a necessity: longjmp
618 doesn't behave itself when the stack pointer moves within
619 the function! */
620#define ACCUMULATE_OUTGOING_ARGS
621
622/* Value is the number of bytes of arguments automatically
623 popped when returning from a subroutine call.
624 FUNTYPE is the data type of the function (as a tree),
625 or for a library call it is an identifier node for the subroutine name.
626 SIZE is the number of bytes of arguments passed on the stack. */
627
628#define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
629
630/* Some subroutine macros specific to this machine. */
631#define BASE_RETURN_VALUE_REG(MODE) \
632 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
633#define BASE_OUTGOING_VALUE_REG(MODE) \
634 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
635#define BASE_PASSING_ARG_REG(MODE) (8)
636#define BASE_INCOMING_ARG_REG(MODE) (24)
637
638/* Define how to find the value returned by a function.
639 VALTYPE is the data type of the value (as a tree).
640 If the precise function being called is known, FUNC is its FUNCTION_DECL;
641 otherwise, FUNC is 0. */
642
643/* On SPARC the value is found in the first "output" register. */
644
645#define FUNCTION_VALUE(VALTYPE, FUNC) \
646 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
647
648/* But the called function leaves it in the first "input" register. */
649
650#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
651 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
652
653/* Define how to find the value returned by a library function
654 assuming the value has mode MODE. */
655
656#define LIBCALL_VALUE(MODE) \
657 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
658
659/* 1 if N is a possible register number for a function value
660 as seen by the caller.
661 On SPARC, the first "output" reg is used for integer values,
662 and the first floating point register is used for floating point values. */
663
664#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
665
666/* 1 if N is a possible register number for function argument passing.
667 On SPARC, these are the "output" registers. */
668
669#define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
670\f
671/* Define a data type for recording info about an argument list
672 during the scan of that argument list. This data type should
673 hold all necessary information about the function itself
674 and about the args processed so far, enough to enable macros
675 such as FUNCTION_ARG to determine where the next arg should go.
676
677 On SPARC, this is a single integer, which is a number of words
678 of arguments scanned so far (including the invisible argument,
679 if any, which holds the structure-value-address).
680 Thus 7 or more means all following args should go on the stack. */
681
682#define CUMULATIVE_ARGS int
683
684#define ROUND_ADVANCE(SIZE) \
685 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
686
687/* Round a register number up to a proper boundary for an arg of mode MODE.
688 Note that we need an odd/even pair for a two-word arg,
689 since that will become 8-byte aligned when stored in memory. */
690#define ROUND_REG(X, MODE) \
691 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
692 ? ((X) + ! ((X) & 1)) : (X))
693
694/* Initialize a variable CUM of type CUMULATIVE_ARGS
695 for a call to a function whose data type is FNTYPE.
696 For a library call, FNTYPE is 0.
697
698 On SPARC, the offset always starts at 0: the first parm reg is always
699 the same reg. */
700
701#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
702
703/* Update the data in CUM to advance over an argument
704 of mode MODE and data type TYPE.
705 (TYPE is null for libcalls where that information may not be available.) */
706
707#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
708 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
709 + ((MODE) != BLKmode \
710 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
711 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
712
713/* Determine where to put an argument to a function.
714 Value is zero to push the argument on the stack,
715 or a hard register in which to store the argument.
716
717 MODE is the argument's machine mode.
718 TYPE is the data type of the argument (as a tree).
719 This is null for libcalls where that information may
720 not be available.
721 CUM is a variable of type CUMULATIVE_ARGS which gives info about
722 the preceding args and about the function being called.
723 NAMED is nonzero if this argument is a named parameter
724 (otherwise it is an extra parameter matching an ellipsis). */
725
726/* On SPARC the first six args are normally in registers
727 and the rest are pushed. Any arg that starts within the first 6 words
728 is at least partially passed in a register unless its data type forbids. */
729
730#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
731(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
732 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
733 && ((TYPE)==0 || (MODE) != BLKmode \
734 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
735 ? gen_rtx (REG, (MODE), \
736 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
737 : 0)
738
739/* Define where a function finds its arguments.
740 This is different from FUNCTION_ARG because of register windows. */
741
742#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
743(ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
744 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
745 && ((TYPE)==0 || (MODE) != BLKmode \
746 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
747 ? gen_rtx (REG, (MODE), \
748 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
749 : 0)
750
751/* For an arg passed partly in registers and partly in memory,
752 this is the number of registers used.
753 For args passed entirely in registers or entirely in memory, zero.
754 Any arg that starts in the first 6 regs but won't entirely fit in them
755 needs partial registers on the Sparc. */
756
757#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
758 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
759 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
760 && ((TYPE)==0 || (MODE) != BLKmode \
761 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
762 && (ROUND_REG ((CUM), (MODE)) \
763 + ((MODE) == BLKmode \
764 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
765 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
766 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
767 : 0)
768
769/* The SPARC ABI stipulates passing struct arguments (of any size) and
770 quad-precision floats by invisible reference. */
771#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
772 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
773 || TREE_CODE (TYPE) == UNION_TYPE)) \
774 || (MODE == TFmode))
775
776/* If defined, a C expression that gives the alignment boundary, in
777 bits, of an argument with the specified mode and type. If it is
778 not defined, `PARM_BOUNDARY' is used for all arguments.
779
780 This definition does nothing special unless TARGET_FORCE_ALIGN;
781 in that case, it aligns each arg to the natural boundary. */
782
783#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
784 (! TARGET_FORCE_ALIGN \
785 ? PARM_BOUNDARY \
786 : (((TYPE) != 0) \
787 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
788 ? PARM_BOUNDARY \
789 : TYPE_ALIGN (TYPE)) \
790 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
791 ? PARM_BOUNDARY \
792 : GET_MODE_ALIGNMENT (MODE))))
793
794/* Define the information needed to generate branch and scc insns. This is
795 stored from the compare operation. Note that we can't use "rtx" here
796 since it hasn't been defined! */
797
798extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
799
800/* Define the function that build the compare insn for scc and bcc. */
801
802extern struct rtx_def *gen_compare_reg ();
803\f
804/* Generate the special assembly code needed to tell the assembler whatever
805 it might need to know about the return value of a function.
806
807 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
808 information to the assembler relating to peephole optimization (done in
809 the assembler). */
810
811#define ASM_DECLARE_RESULT(FILE, RESULT) \
812 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
813
814/* Output the label for a function definition. */
815
816#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
817do { \
818 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
819 ASM_OUTPUT_LABEL (FILE, NAME); \
820} while (0)
821
822/* Two views of the size of the current frame. */
823extern int actual_fsize;
824extern int apparent_fsize;
825
826/* This macro generates the assembly code for function entry.
827 FILE is a stdio stream to output the code to.
828 SIZE is an int: how many units of temporary storage to allocate.
829 Refer to the array `regs_ever_live' to determine which registers
830 to save; `regs_ever_live[I]' is nonzero if register number I
831 is ever used in the function. This macro is responsible for
832 knowing which registers should not be saved even if used. */
833
834/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
835 of memory. If any fpu reg is used in the function, we allocate
836 such a block here, at the bottom of the frame, just in case it's needed.
837
838 If this function is a leaf procedure, then we may choose not
839 to do a "save" insn. The decision about whether or not
840 to do this is made in regclass.c. */
841
842#define FUNCTION_PROLOGUE(FILE, SIZE) \
843 output_function_prologue (FILE, SIZE, leaf_function)
844
845/* Output assembler code to FILE to increment profiler label # LABELNO
846 for profiling a function entry. */
847
848#define FUNCTION_PROFILER(FILE, LABELNO) \
849 fprintf (FILE, "\tsethi %%hi(LP%d),%%o0\n\tcall mcount\n\tor %%lo(LP%d),%%o0,%%o0\n", \
850 (LABELNO), (LABELNO))
851
852/* Output assembler code to FILE to initialize this source file's
853 basic block profiling info, if that has not already been done. */
854
855#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
856 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
857 (LABELNO), (LABELNO))
858
859/* Output assembler code to FILE to increment the entry-count for
860 the BLOCKNO'th basic block in this source file. */
861
862#define BLOCK_PROFILER(FILE, BLOCKNO) \
863{ \
864 int blockn = (BLOCKNO); \
865 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
866\tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
867 4 * blockn, 4 * blockn, 4 * blockn); \
868}
869
870/* Output rtl to increment the entry-count for the LABELNO'th instrumented
871 arc in this source file. */
872
873#define ARC_PROFILER(ARCNO, INSERT_AFTER) \
874 output_arc_profiler (ARCNO, INSERT_AFTER)
875
876/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
877 the stack pointer does not matter. The value is tested only in
878 functions that have frame pointers.
879 No definition is equivalent to always zero. */
880
881extern int current_function_calls_alloca;
882extern int current_function_outgoing_args_size;
883
884#define EXIT_IGNORE_STACK \
885 (get_frame_size () != 0 \
886 || current_function_calls_alloca || current_function_outgoing_args_size)
887
888/* This macro generates the assembly code for function exit,
889 on machines that need it. If FUNCTION_EPILOGUE is not defined
890 then individual return instructions are generated for each
891 return statement. Args are same as for FUNCTION_PROLOGUE.
892
893 The function epilogue should not depend on the current stack pointer!
894 It should use the frame pointer only. This is mandatory because
895 of alloca; we also take advantage of it to omit stack adjustments
896 before returning. */
897
898/* This declaration is needed due to traditional/ANSI
899 incompatibilities which cannot be #ifdefed away
900 because they occur inside of macros. Sigh. */
901extern union tree_node *current_function_decl;
902
903#define FUNCTION_EPILOGUE(FILE, SIZE) \
904 output_function_epilogue (FILE, SIZE, leaf_function)
905
906#define DELAY_SLOTS_FOR_EPILOGUE 1
907#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
908 eligible_for_epilogue_delay (trial, slots_filled)
909
910/* Output assembler code for a block containing the constant parts
911 of a trampoline, leaving space for the variable parts. */
912
913/* On the sparc, the trampoline contains five instructions:
914 sethi #TOP_OF_FUNCTION,%g2
915 or #BOTTOM_OF_FUNCTION,%g2,%g2
916 sethi #TOP_OF_STATIC,%g1
917 jmp g2
918 or #BOTTOM_OF_STATIC,%g1,%g1 */
919#define TRAMPOLINE_TEMPLATE(FILE) \
920{ \
921 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
922 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
923 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
924 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
925 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
926}
927
928/* Length in units of the trampoline for entering a nested function. */
929
930#define TRAMPOLINE_SIZE 20
931
932/* Emit RTL insns to initialize the variable parts of a trampoline.
933 FNADDR is an RTX for the address of the function's pure code.
934 CXT is an RTX for the static chain value for the function.
935
936 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
937 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
938 (to store insns). This is a bit excessive. Perhaps a different
939 mechanism would be better here. */
940
941#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
942{ \
943 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
944 size_int (10), 0, 1); \
945 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
946 size_int (10), 0, 1); \
947 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
948 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
949 rtx g1_sethi = gen_rtx (HIGH, SImode, \
950 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
951 rtx g2_sethi = gen_rtx (HIGH, SImode, \
952 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
953 rtx g1_ori = gen_rtx (HIGH, SImode, \
954 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
955 rtx g2_ori = gen_rtx (HIGH, SImode, \
956 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
957 rtx tem = gen_reg_rtx (SImode); \
958 emit_move_insn (tem, g2_sethi); \
959 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
960 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
961 emit_move_insn (tem, g2_ori); \
962 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
963 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
964 emit_move_insn (tem, g1_sethi); \
965 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
966 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
967 emit_move_insn (tem, g1_ori); \
968 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
969 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
970}
971
972/* Emit code for a call to builtin_saveregs. We must emit USE insns which
973 reference the 6 input registers. Ordinarily they are not call used
974 registers, but they are for _builtin_saveregs, so we must make this
975 explicit. */
976
977#define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
978 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
979 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
980 expand_call (exp, target, ignore))
981\f
982/* Addressing modes, and classification of registers for them. */
983
984/* #define HAVE_POST_INCREMENT */
985/* #define HAVE_POST_DECREMENT */
986
987/* #define HAVE_PRE_DECREMENT */
988/* #define HAVE_PRE_INCREMENT */
989
990/* Macros to check register numbers against specific register classes. */
991
992/* These assume that REGNO is a hard or pseudo reg number.
993 They give nonzero only if REGNO is a hard reg of the suitable class
994 or a pseudo reg currently allocated to a suitable hard reg.
995 Since they use reg_renumber, they are safe only once reg_renumber
996 has been allocated, which happens in local-alloc.c. */
997
998#define REGNO_OK_FOR_INDEX_P(REGNO) \
999(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1000#define REGNO_OK_FOR_BASE_P(REGNO) \
1001(((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1002#define REGNO_OK_FOR_FP_P(REGNO) \
1003(((REGNO) ^ 0x20) < 32 \
1004 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
1005
1006/* Now macros that check whether X is a register and also,
1007 strictly, whether it is in a specified class.
1008
1009 These macros are specific to the SPARC, and may be used only
1010 in code for printing assembler insns and in conditions for
1011 define_optimization. */
1012
1013/* 1 if X is an fp register. */
1014
1015#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1016\f
1017/* Maximum number of registers that can appear in a valid memory address. */
1018
1019#define MAX_REGS_PER_ADDRESS 2
1020
1021/* Recognize any constant value that is a valid address. */
1022
1023#define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
1024
1025/* Nonzero if the constant value X is a legitimate general operand.
1026 Anything can be made to work except floating point constants. */
1027
1028#define LEGITIMATE_CONSTANT_P(X) \
1029 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1030
1031/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1032 and check its validity for a certain class.
1033 We have two alternate definitions for each of them.
1034 The usual definition accepts all pseudo regs; the other rejects
1035 them unless they have been allocated suitable hard regs.
1036 The symbol REG_OK_STRICT causes the latter definition to be used.
1037
1038 Most source files want to accept pseudo regs in the hope that
1039 they will get allocated to the class that the insn wants them to be in.
1040 Source files for reload pass need to be strict.
1041 After reload, it makes no difference, since pseudo regs have
1042 been eliminated by then. */
1043
1044/* Optional extra constraints for this machine. Borrowed from romp.h.
1045
1046 For the SPARC, `Q' means that this is a memory operand but not a
1047 symbolic memory operand. Note that an unassigned pseudo register
1048 is such a memory operand. Needed because reload will generate
1049 these things in insns and then not re-recognize the insns, causing
1050 constrain_operands to fail.
1051
1052 `R' handles the LO_SUM which can be an address for `Q'.
1053
1054 `S' handles constraints for calls. */
1055
1056#ifndef REG_OK_STRICT
1057
1058/* Nonzero if X is a hard reg that can be used as an index
1059 or if it is a pseudo reg. */
1060#define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1061/* Nonzero if X is a hard reg that can be used as a base reg
1062 or if it is a pseudo reg. */
1063#define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1064
1065#define EXTRA_CONSTRAINT(OP, C) \
1066 ((C) == 'Q' \
1067 ? ((GET_CODE (OP) == MEM \
1068 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1069 && ! symbolic_memory_operand (OP, VOIDmode)) \
1070 || (reload_in_progress && GET_CODE (OP) == REG \
1071 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
1072 : (C) == 'R' \
1073 ? (GET_CODE (OP) == LO_SUM \
1074 && GET_CODE (XEXP (OP, 0)) == REG \
1075 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1076 : (C) == 'S' \
1077 ? (CONSTANT_P (OP) || memory_address_p (Pmode, OP)) \
1078 : 0)
1079
1080#else
1081
1082/* Nonzero if X is a hard reg that can be used as an index. */
1083#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1084/* Nonzero if X is a hard reg that can be used as a base reg. */
1085#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1086
1087#define EXTRA_CONSTRAINT(OP, C) \
1088 ((C) == 'Q' ? \
1089 (GET_CODE (OP) == REG ? \
1090 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1091 && reg_renumber[REGNO (OP)] < 0) \
1092 : GET_CODE (OP) == MEM) \
1093 : ((C) == 'R' ? \
1094 (GET_CODE (OP) == LO_SUM \
1095 && GET_CODE (XEXP (OP, 0)) == REG \
1096 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1097 : ((C) == 'S' \
1098 ? (CONSTANT_P (OP) \
1099 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
1100 || strict_memory_address_p (Pmode, OP)) : 0)))
1101#endif
1102\f
1103/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1104 that is a valid memory address for an instruction.
1105 The MODE argument is the machine mode for the MEM expression
1106 that wants to use this address.
1107
1108 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1109 ordinarily. This changes a bit when generating PIC.
1110
1111 If you change this, execute "rm explow.o recog.o reload.o". */
1112
1113#define RTX_OK_FOR_BASE_P(X) \
1114 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1115 || (GET_CODE (X) == SUBREG \
1116 && GET_CODE (SUBREG_REG (X)) == REG \
1117 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1118
1119#define RTX_OK_FOR_INDEX_P(X) \
1120 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1121 || (GET_CODE (X) == SUBREG \
1122 && GET_CODE (SUBREG_REG (X)) == REG \
1123 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1124
1125#define RTX_OK_FOR_OFFSET_P(X) \
1126 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1127
1128#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1129{ if (RTX_OK_FOR_BASE_P (X)) \
1130 goto ADDR; \
1131 else if (GET_CODE (X) == PLUS) \
1132 { \
1133 register rtx op0 = XEXP (X, 0); \
1134 register rtx op1 = XEXP (X, 1); \
1135 if (flag_pic && op0 == pic_offset_table_rtx) \
1136 { \
1137 if (RTX_OK_FOR_BASE_P (op1)) \
1138 goto ADDR; \
1139 else if (flag_pic == 1 \
1140 && GET_CODE (op1) != REG \
1141 && GET_CODE (op1) != LO_SUM \
1142 && GET_CODE (op1) != MEM) \
1143 goto ADDR; \
1144 } \
1145 else if (RTX_OK_FOR_BASE_P (op0)) \
1146 { \
1147 if (RTX_OK_FOR_INDEX_P (op1) \
1148 || RTX_OK_FOR_OFFSET_P (op1)) \
1149 goto ADDR; \
1150 } \
1151 else if (RTX_OK_FOR_BASE_P (op1)) \
1152 { \
1153 if (RTX_OK_FOR_INDEX_P (op0) \
1154 || RTX_OK_FOR_OFFSET_P (op0)) \
1155 goto ADDR; \
1156 } \
1157 } \
1158 else if (GET_CODE (X) == LO_SUM) \
1159 { \
1160 register rtx op0 = XEXP (X, 0); \
1161 register rtx op1 = XEXP (X, 1); \
1162 if (RTX_OK_FOR_BASE_P (op0) \
1163 && CONSTANT_P (op1)) \
1164 goto ADDR; \
1165 } \
1166 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1167 goto ADDR; \
1168}
1169\f
1170/* Try machine-dependent ways of modifying an illegitimate address
1171 to be legitimate. If we find one, return the new, valid address.
1172 This macro is used in only one place: `memory_address' in explow.c.
1173
1174 OLDX is the address as it was before break_out_memory_refs was called.
1175 In some cases it is useful to look at this to decide what needs to be done.
1176
1177 MODE and WIN are passed so that this macro can use
1178 GO_IF_LEGITIMATE_ADDRESS.
1179
1180 It is always safe for this macro to do nothing. It exists to recognize
1181 opportunities to optimize the output. */
1182
1183/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1184extern struct rtx_def *legitimize_pic_address ();
1185#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1186{ rtx sparc_x = (X); \
1187 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1188 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1189 force_operand (XEXP (X, 0), 0)); \
1190 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1191 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1192 force_operand (XEXP (X, 1), 0)); \
1193 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1194 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1195 XEXP (X, 1)); \
1196 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1197 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1198 force_operand (XEXP (X, 1), 0)); \
1199 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1200 goto WIN; \
1201 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1202 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1203 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1204 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1205 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1206 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1207 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1208 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1209 || GET_CODE (X) == LABEL_REF) \
1210 (X) = gen_rtx (LO_SUM, Pmode, \
1211 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1212 if (memory_address_p (MODE, X)) \
1213 goto WIN; }
1214
1215/* Go to LABEL if ADDR (a legitimate address expression)
1216 has an effect that depends on the machine mode it is used for.
1217 On the SPARC this is never true. */
1218
1219#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1220\f
1221/* Specify the machine mode that this machine uses
1222 for the index in the tablejump instruction. */
1223#define CASE_VECTOR_MODE SImode
1224
1225/* Define this if the tablejump instruction expects the table
1226 to contain offsets from the address of the table.
1227 Do not define this if the table should contain absolute addresses. */
1228/* #define CASE_VECTOR_PC_RELATIVE */
1229
1230/* Specify the tree operation to be used to convert reals to integers. */
1231#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1232
1233/* This is the kind of divide that is easiest to do in the general case. */
1234#define EASY_DIV_EXPR TRUNC_DIV_EXPR
1235
1236/* Define this as 1 if `char' should by default be signed; else as 0. */
1237#define DEFAULT_SIGNED_CHAR 1
1238
1239/* Max number of bytes we can move from memory to memory
1240 in one reasonably fast instruction. */
1241#define MOVE_MAX 8
1242
1243/* Define if normal loads of shorter-than-word items from memory clears
1244 the rest of the bigs in the register. */
1245#define BYTE_LOADS_ZERO_EXTEND
1246
1247/* Nonzero if access to memory by bytes is slow and undesirable.
1248 For RISC chips, it means that access to memory by bytes is no
1249 better than access by words when possible, so grab a whole word
1250 and maybe make use of that. */
1251#define SLOW_BYTE_ACCESS 1
1252
1253/* We assume that the store-condition-codes instructions store 0 for false
1254 and some other value for true. This is the value stored for true. */
1255
1256#define STORE_FLAG_VALUE 1
1257
1258/* When a prototype says `char' or `short', really pass an `int'. */
1259#define PROMOTE_PROTOTYPES
1260
1261/* Define if shifts truncate the shift count
1262 which implies one can omit a sign-extension or zero-extension
1263 of a shift count. */
1264#define SHIFT_COUNT_TRUNCATED
1265
1266/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1267 is done just by pretending it is already truncated. */
1268#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1269
1270/* Specify the machine mode that pointers have.
1271 After generation of rtl, the compiler makes no further distinction
1272 between pointers and any other objects of this machine mode. */
1273#define Pmode SImode
1274
1275/* Generate calls to memcpy, memcmp and memset. */
1276#define TARGET_MEM_FUNCTIONS
1277
1278/* Add any extra modes needed to represent the condition code.
1279
1280 On the Sparc, we have a "no-overflow" mode which is used when an add or
1281 subtract insn is used to set the condition code. Different branches are
1282 used in this case for some operations.
1283
1284 We also have two modes to indicate that the relevant condition code is
1285 in the floating-point condition code register. One for comparisons which
1286 will generate an exception if the result is unordered (CCFPEmode) and
1287 one for comparisons which will never trap (CCFPmode). This really should
1288 be a separate register, but we don't want to go to 65 registers. */
1289#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1290
1291/* Define the names for the modes specified above. */
1292#define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1293
1294/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1295 return the mode to be used for the comparison. For floating-point,
1296 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1297 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1298 needed. */
1299#define SELECT_CC_MODE(OP,X,Y) \
1300 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1301 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1302 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1303 ? CC_NOOVmode : CCmode))
1304
1305/* A function address in a call instruction
1306 is a byte address (for indexing purposes)
1307 so give the MEM rtx a byte's mode. */
1308#define FUNCTION_MODE SImode
1309
1310/* Define this if addresses of constant functions
1311 shouldn't be put through pseudo regs where they can be cse'd.
1312 Desirable on machines where ordinary constants are expensive
1313 but a CALL with constant address is cheap. */
1314#define NO_FUNCTION_CSE
1315
1316/* alloca should avoid clobbering the old register save area. */
1317#define SETJMP_VIA_SAVE_AREA
1318
1319/* Define subroutines to call to handle multiply and divide.
1320 Use the subroutines that Sun's library provides.
1321 The `*' prevents an underscore from being prepended by the compiler. */
1322
1323#define DIVSI3_LIBCALL "*.div"
1324#define UDIVSI3_LIBCALL "*.udiv"
1325#define MODSI3_LIBCALL "*.rem"
1326#define UMODSI3_LIBCALL "*.urem"
1327/* .umul is a little faster than .mul. */
1328#define MULSI3_LIBCALL "*.umul"
1329
1330/* Compute the cost of computing a constant rtl expression RTX
1331 whose rtx-code is CODE. The body of this macro is a portion
1332 of a switch statement. If the code is computed here,
1333 return it with a return statement. Otherwise, break from the switch. */
1334
1335#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1336 case CONST_INT: \
1337 if (INTVAL (RTX) == 0) \
1338 return 0; \
1339 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1340 return 1; \
1341 case HIGH: \
1342 return 2; \
1343 case CONST: \
1344 case LABEL_REF: \
1345 case SYMBOL_REF: \
1346 return 4; \
1347 case CONST_DOUBLE: \
1348 if (GET_MODE (RTX) == DImode) \
1349 if ((XINT (RTX, 3) == 0 \
1350 && (unsigned) XINT (RTX, 2) < 0x1000) \
1351 || (XINT (RTX, 3) == -1 \
1352 && XINT (RTX, 2) < 0 \
1353 && XINT (RTX, 2) >= -0x1000)) \
1354 return 1; \
1355 return 8;
1356
1357/* SPARC offers addressing modes which are "as cheap as a register".
1358 See sparc.c (or gcc.texinfo) for details. */
1359
1360#define ADDRESS_COST(RTX) \
1361 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1362
1363/* Compute extra cost of moving data between one register class
1364 and another. */
1365#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1366 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1367 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1368
1369/* Provide the costs of a rtl expression. This is in the body of a
1370 switch on CODE. The purpose for the cost of MULT is to encourage
1371 `synth_mult' to find a synthetic multiply when reasonable.
1372
1373 If we need more than 12 insns to do a multiply, then go out-of-line,
1374 since the call overhead will be < 10% of the cost of the multiply. */
1375
1376#define RTX_COSTS(X,CODE,OUTER_CODE) \
1377 case MULT: \
1378 return COSTS_N_INSNS (25); \
1379 case DIV: \
1380 case UDIV: \
1381 case MOD: \
1382 case UMOD: \
1383 return COSTS_N_INSNS (20); \
1384 /* Make FLOAT more expensive than CONST_DOUBLE, \
1385 so that cse will favor the latter. */ \
1386 case FLOAT: \
1387 return 19;
1388
1389/* Conditional branches with empty delay slots have a length of two. */
1390#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1391 if (GET_CODE (INSN) == CALL_INSN \
1392 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1393 LENGTH += 1;
1394\f
1395/* Control the assembler format that we output. */
1396
1397/* Output at beginning of assembler file. */
1398
1399#define ASM_FILE_START(file)
1400
1401/* Output to assembler file text saying following lines
1402 may contain character constants, extra white space, comments, etc. */
1403
1404#define ASM_APP_ON ""
1405
1406/* Output to assembler file text saying following lines
1407 no longer contain unusual constructs. */
1408
1409#define ASM_APP_OFF ""
1410
1411/* Output before read-only data. */
1412
1413#define TEXT_SECTION_ASM_OP ".text"
1414
1415/* Output before writable data. */
1416
1417#define DATA_SECTION_ASM_OP ".data"
1418
1419/* How to refer to registers in assembler output.
1420 This sequence is indexed by compiler's hard-register-number (see above). */
1421
1422#define REGISTER_NAMES \
1423{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1424 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1425 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1426 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1427 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1428 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1429 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1430 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1431
1432/* Define additional names for use in asm clobbers and asm declarations.
1433
1434 We define the fake Condition Code register as an alias for reg 0 (which
1435 is our `condition code' register), so that condition codes can easily
1436 be clobbered by an asm. No such register actually exists. Condition
1437 codes are partly stored in the PSR and partly in the FSR. */
1438
1439#define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
1440
1441/* How to renumber registers for dbx and gdb. */
1442
1443#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1444
1445/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1446 since the length can run past this up to a continuation point. */
1447#define DBX_CONTIN_LENGTH 1500
1448
1449/* This is how to output a note to DBX telling it the line number
1450 to which the following sequence of instructions corresponds.
1451
1452 This is needed for SunOS 4.0, and should not hurt for 3.2
1453 versions either. */
1454#define ASM_OUTPUT_SOURCE_LINE(file, line) \
1455 { static int sym_lineno = 1; \
1456 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1457 line, sym_lineno, sym_lineno); \
1458 sym_lineno += 1; }
1459
1460/* This is how to output the definition of a user-level label named NAME,
1461 such as the label on a static function or variable NAME. */
1462
1463#define ASM_OUTPUT_LABEL(FILE,NAME) \
1464 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1465
1466/* This is how to output a command to make the user-level label named NAME
1467 defined for reference from other files. */
1468
1469#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1470 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1471
1472/* This is how to output a reference to a user-level label named NAME.
1473 `assemble_name' uses this. */
1474
1475#define ASM_OUTPUT_LABELREF(FILE,NAME) \
1476 fprintf (FILE, "_%s", NAME)
1477
1478/* This is how to output an internal numbered label where
1479 PREFIX is the class of label and NUM is the number within the class. */
1480
1481#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1482 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1483
1484/* This is how to store into the string LABEL
1485 the symbol_ref name of an internal numbered label where
1486 PREFIX is the class of label and NUM is the number within the class.
1487 This is suitable for output with `assemble_name'. */
1488
1489#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1490 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1491
1492/* This is how to output an assembler line defining a `double' constant. */
1493
1494/* Assemblers (both gas 1.35 and as in 4.0.3)
1495 seem to treat -0.0 as if it were 0.0.
1496 They reject 99e9999, but accept inf. */
1497#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1498 { \
1499 if (REAL_VALUE_ISINF (VALUE)) \
1500 fprintf (FILE, "\t.double 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1501 else if (REAL_VALUE_ISNAN (VALUE) \
1502 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1503 { \
1504 union { double d; long l[2];} t; \
1505 t.d = (VALUE); \
1506 fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", t.l[0], t.l[1]); \
1507 } \
1508 else \
1509 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1510 }
1511
1512/* This is how to output an assembler line defining a `float' constant. */
1513
1514#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1515 { \
1516 if (REAL_VALUE_ISINF (VALUE)) \
1517 fprintf (FILE, "\t.single 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1518 else if (REAL_VALUE_ISNAN (VALUE) \
1519 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1520 { \
1521 union { float f; long l;} t; \
1522 t.f = (VALUE); \
1523 fprintf (FILE, "\t.word 0x%lx\n", t.l); \
1524 } \
1525 else \
1526 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1527 }
1528
1529/* This is how to output an assembler line defining an `int' constant. */
1530
1531#define ASM_OUTPUT_INT(FILE,VALUE) \
1532( fprintf (FILE, "\t.word "), \
1533 output_addr_const (FILE, (VALUE)), \
1534 fprintf (FILE, "\n"))
1535
1536/* This is how to output an assembler line defining a DImode constant. */
1537#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1538 output_double_int (FILE, VALUE)
1539
1540/* Likewise for `char' and `short' constants. */
1541
1542#define ASM_OUTPUT_SHORT(FILE,VALUE) \
1543( fprintf (FILE, "\t.half "), \
1544 output_addr_const (FILE, (VALUE)), \
1545 fprintf (FILE, "\n"))
1546
1547#define ASM_OUTPUT_CHAR(FILE,VALUE) \
1548( fprintf (FILE, "\t.byte "), \
1549 output_addr_const (FILE, (VALUE)), \
1550 fprintf (FILE, "\n"))
1551
1552/* This is how to output an assembler line for a numeric constant byte. */
1553
1554#define ASM_OUTPUT_BYTE(FILE,VALUE) \
1555 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1556
1557/* This is how to output an element of a case-vector that is absolute. */
1558
1559#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1560do { \
1561 char label[30]; \
1562 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1563 fprintf (FILE, "\t.word\t"); \
1564 assemble_name (FILE, label); \
1565 fprintf (FILE, "\n"); \
1566} while (0)
1567
1568/* This is how to output an element of a case-vector that is relative.
1569 (SPARC uses such vectors only when generating PIC.) */
1570
1571#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1572do { \
1573 char label[30]; \
1574 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1575 fprintf (FILE, "\t.word\t"); \
1576 assemble_name (FILE, label); \
1577 fprintf (FILE, "-1b\n"); \
1578} while (0)
1579
1580/* This is how to output an assembler line
1581 that says to advance the location counter
1582 to a multiple of 2**LOG bytes. */
1583
1584#define ASM_OUTPUT_ALIGN(FILE,LOG) \
1585 if ((LOG) != 0) \
1586 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1587
1588#define ASM_OUTPUT_SKIP(FILE,SIZE) \
1589 fprintf (FILE, "\t.skip %u\n", (SIZE))
1590
1591/* This says how to output an assembler line
1592 to define a global common symbol. */
1593
1594#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1595( fputs ("\t.global ", (FILE)), \
1596 assemble_name ((FILE), (NAME)), \
1597 fputs ("\n\t.common ", (FILE)), \
1598 assemble_name ((FILE), (NAME)), \
1599 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1600
1601/* This says how to output an assembler line
1602 to define a local common symbol. */
1603
1604#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1605( fputs ("\n\t.reserve ", (FILE)), \
1606 assemble_name ((FILE), (NAME)), \
1607 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1608
1609/* Store in OUTPUT a string (made with alloca) containing
1610 an assembler-name for a local static variable named NAME.
1611 LABELNO is an integer which is different for each call. */
1612
1613#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1614( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1615 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1616
1617/* Define the parentheses used to group arithmetic operations
1618 in assembler code. */
1619
1620#define ASM_OPEN_PAREN "("
1621#define ASM_CLOSE_PAREN ")"
1622
1623/* Define results of standard character escape sequences. */
1624#define TARGET_BELL 007
1625#define TARGET_BS 010
1626#define TARGET_TAB 011
1627#define TARGET_NEWLINE 012
1628#define TARGET_VT 013
1629#define TARGET_FF 014
1630#define TARGET_CR 015
1631
1632#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1633 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' \
1634 || (CHAR) == '(')
1635
1636/* Print operand X (an rtx) in assembler syntax to file FILE.
1637 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1638 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1639
1640#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1641
1642/* Print a memory address as an operand to reference that memory location. */
1643
1644#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1645{ register rtx base, index = 0; \
1646 int offset = 0; \
1647 register rtx addr = ADDR; \
1648 if (GET_CODE (addr) == REG) \
1649 fputs (reg_names[REGNO (addr)], FILE); \
1650 else if (GET_CODE (addr) == PLUS) \
1651 { \
1652 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1653 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1654 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1655 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1656 else \
1657 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1658 fputs (reg_names[REGNO (base)], FILE); \
1659 if (index == 0) \
1660 fprintf (FILE, "%+d", offset); \
1661 else if (GET_CODE (index) == REG) \
1662 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1663 else if (GET_CODE (index) == SYMBOL_REF) \
1664 fputc ('+', FILE), output_addr_const (FILE, index); \
1665 else abort (); \
1666 } \
1667 else if (GET_CODE (addr) == MINUS \
1668 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1669 { \
1670 output_addr_const (FILE, XEXP (addr, 0)); \
1671 fputs ("-(", FILE); \
1672 output_addr_const (FILE, XEXP (addr, 1)); \
1673 fputs ("-.)", FILE); \
1674 } \
1675 else if (GET_CODE (addr) == LO_SUM) \
1676 { \
1677 output_operand (XEXP (addr, 0), 0); \
1678 fputs ("+%lo(", FILE); \
1679 output_address (XEXP (addr, 1)); \
1680 fputc (')', FILE); \
1681 } \
1682 else if (flag_pic && GET_CODE (addr) == CONST \
1683 && GET_CODE (XEXP (addr, 0)) == MINUS \
1684 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1685 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1686 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1687 { \
1688 addr = XEXP (addr, 0); \
1689 output_addr_const (FILE, XEXP (addr, 0)); \
1690 /* Group the args of the second CONST in parenthesis. */ \
1691 fputs ("-(", FILE); \
1692 /* Skip past the second CONST--it does nothing for us. */\
1693 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1694 /* Close the parenthesis. */ \
1695 fputc (')', FILE); \
1696 } \
1697 else \
1698 { \
1699 output_addr_const (FILE, addr); \
1700 } \
1701}
1702
1703/* Declare functions defined in sparc.c and used in templates. */
1704
1705extern char *singlemove_string ();
1706extern char *output_move_double ();
1707extern char *output_move_quad ();
1708extern char *output_fp_move_double ();
1709extern char *output_fp_move_quad ();
1710extern char *output_block_move ();
1711extern char *output_scc_insn ();
1712extern char *output_cbranch ();
1713extern char *output_return ();
1714extern char *output_floatsisf2 ();
1715extern char *output_floatsidf2 ();
1716extern char *output_floatsitf2 ();
1717
1718/* Defined in flags.h, but insn-emit.c does not include flags.h. */
1719
1720extern int flag_pic;
This page took 0.035144 seconds and 5 git commands to generate.