]> gcc.gnu.org Git - gcc.git/blame - libjava/java/lang/Math.java
Imported GNU Classpath 0.90
[gcc.git] / libjava / java / lang / Math.java
CommitLineData
8aa540d2
MW
1/* java.lang.Math -- common mathematical functions, native allowed
2 Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4This file is part of GNU Classpath.
5
6GNU Classpath is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU Classpath is distributed in the hope that it will be useful, but
12WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Classpath; see the file COPYING. If not, write to the
18Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
1902110-1301 USA.
20
21Linking this library statically or dynamically with other modules is
22making a combined work based on this library. Thus, the terms and
23conditions of the GNU General Public License cover the whole
24combination.
25
26As a special exception, the copyright holders of this library give you
27permission to link this library with independent modules to produce an
28executable, regardless of the license terms of these independent
29modules, and to copy and distribute the resulting executable under
30terms of your choice, provided that you also meet, for each linked
31independent module, the terms and conditions of the license of that
32module. An independent module is a module which is not derived from
33or based on this library. If you modify this library, you may extend
34this exception to your version of the library, but you are not
35obligated to do so. If you do not wish to do so, delete this
36exception statement from your version. */
37
38
39package java.lang;
40
41import gnu.classpath.Configuration;
42
43import java.util.Random;
44
45/**
46 * Helper class containing useful mathematical functions and constants.
47 * <P>
48 *
49 * Note that angles are specified in radians. Conversion functions are
50 * provided for your convenience.
51 *
52 * @author Paul Fisher
53 * @author John Keiser
54 * @author Eric Blake (ebb9@email.byu.edu)
55 * @since 1.0
56 */
57public final class Math
58{
59 /**
60 * Math is non-instantiable
61 */
62 private Math()
63 {
64 }
65
66 static
67 {
68 if (Configuration.INIT_LOAD_LIBRARY)
69 {
70 System.loadLibrary("javalang");
71 }
72 }
73
74 /**
75 * A random number generator, initialized on first use.
76 */
77 private static Random rand;
78
79 /**
80 * The most accurate approximation to the mathematical constant <em>e</em>:
81 * <code>2.718281828459045</code>. Used in natural log and exp.
82 *
83 * @see #log(double)
84 * @see #exp(double)
85 */
86 public static final double E = 2.718281828459045;
87
88 /**
89 * The most accurate approximation to the mathematical constant <em>pi</em>:
90 * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
91 * to its circumference.
92 */
93 public static final double PI = 3.141592653589793;
94
95 /**
96 * Take the absolute value of the argument.
97 * (Absolute value means make it positive.)
98 * <P>
99 *
100 * Note that the the largest negative value (Integer.MIN_VALUE) cannot
101 * be made positive. In this case, because of the rules of negation in
102 * a computer, MIN_VALUE is what will be returned.
103 * This is a <em>negative</em> value. You have been warned.
104 *
105 * @param i the number to take the absolute value of
106 * @return the absolute value
107 * @see Integer#MIN_VALUE
108 */
109 public static int abs(int i)
110 {
111 return (i < 0) ? -i : i;
112 }
113
114 /**
115 * Take the absolute value of the argument.
116 * (Absolute value means make it positive.)
117 * <P>
118 *
119 * Note that the the largest negative value (Long.MIN_VALUE) cannot
120 * be made positive. In this case, because of the rules of negation in
121 * a computer, MIN_VALUE is what will be returned.
122 * This is a <em>negative</em> value. You have been warned.
123 *
124 * @param l the number to take the absolute value of
125 * @return the absolute value
126 * @see Long#MIN_VALUE
127 */
128 public static long abs(long l)
129 {
130 return (l < 0) ? -l : l;
131 }
132
133 /**
134 * Take the absolute value of the argument.
135 * (Absolute value means make it positive.)
136 * <P>
137 *
138 * This is equivalent, but faster than, calling
139 * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
140 *
141 * @param f the number to take the absolute value of
142 * @return the absolute value
143 */
144 public static float abs(float f)
145 {
146 return (f <= 0) ? 0 - f : f;
147 }
148
149 /**
150 * Take the absolute value of the argument.
151 * (Absolute value means make it positive.)
152 *
153 * This is equivalent, but faster than, calling
154 * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
155 * &lt;&lt; 1) &gt;&gt;&gt; 1);</code>.
156 *
157 * @param d the number to take the absolute value of
158 * @return the absolute value
159 */
160 public static double abs(double d)
161 {
162 return (d <= 0) ? 0 - d : d;
163 }
164
165 /**
166 * Return whichever argument is smaller.
167 *
168 * @param a the first number
169 * @param b a second number
170 * @return the smaller of the two numbers
171 */
172 public static int min(int a, int b)
173 {
174 return (a < b) ? a : b;
175 }
176
177 /**
178 * Return whichever argument is smaller.
179 *
180 * @param a the first number
181 * @param b a second number
182 * @return the smaller of the two numbers
183 */
184 public static long min(long a, long b)
185 {
186 return (a < b) ? a : b;
187 }
188
189 /**
190 * Return whichever argument is smaller. If either argument is NaN, the
191 * result is NaN, and when comparing 0 and -0, -0 is always smaller.
192 *
193 * @param a the first number
194 * @param b a second number
195 * @return the smaller of the two numbers
196 */
197 public static float min(float a, float b)
198 {
199 // this check for NaN, from JLS 15.21.1, saves a method call
200 if (a != a)
201 return a;
202 // no need to check if b is NaN; < will work correctly
203 // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
204 if (a == 0 && b == 0)
205 return -(-a - b);
206 return (a < b) ? a : b;
207 }
208
209 /**
210 * Return whichever argument is smaller. If either argument is NaN, the
211 * result is NaN, and when comparing 0 and -0, -0 is always smaller.
212 *
213 * @param a the first number
214 * @param b a second number
215 * @return the smaller of the two numbers
216 */
217 public static double min(double a, double b)
218 {
219 // this check for NaN, from JLS 15.21.1, saves a method call
220 if (a != a)
221 return a;
222 // no need to check if b is NaN; < will work correctly
223 // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
224 if (a == 0 && b == 0)
225 return -(-a - b);
226 return (a < b) ? a : b;
227 }
228
229 /**
230 * Return whichever argument is larger.
231 *
232 * @param a the first number
233 * @param b a second number
234 * @return the larger of the two numbers
235 */
236 public static int max(int a, int b)
237 {
238 return (a > b) ? a : b;
239 }
240
241 /**
242 * Return whichever argument is larger.
243 *
244 * @param a the first number
245 * @param b a second number
246 * @return the larger of the two numbers
247 */
248 public static long max(long a, long b)
249 {
250 return (a > b) ? a : b;
251 }
252
253 /**
254 * Return whichever argument is larger. If either argument is NaN, the
255 * result is NaN, and when comparing 0 and -0, 0 is always larger.
256 *
257 * @param a the first number
258 * @param b a second number
259 * @return the larger of the two numbers
260 */
261 public static float max(float a, float b)
262 {
263 // this check for NaN, from JLS 15.21.1, saves a method call
264 if (a != a)
265 return a;
266 // no need to check if b is NaN; > will work correctly
267 // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
268 if (a == 0 && b == 0)
269 return a - -b;
270 return (a > b) ? a : b;
271 }
272
273 /**
274 * Return whichever argument is larger. If either argument is NaN, the
275 * result is NaN, and when comparing 0 and -0, 0 is always larger.
276 *
277 * @param a the first number
278 * @param b a second number
279 * @return the larger of the two numbers
280 */
281 public static double max(double a, double b)
282 {
283 // this check for NaN, from JLS 15.21.1, saves a method call
284 if (a != a)
285 return a;
286 // no need to check if b is NaN; > will work correctly
287 // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
288 if (a == 0 && b == 0)
289 return a - -b;
290 return (a > b) ? a : b;
291 }
292
293 /**
294 * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
295 * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
296 * and is semi-monotonic.
297 *
298 * @param a the angle (in radians)
299 * @return sin(a)
300 */
301 public static native double sin(double a);
302
303 /**
304 * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
305 * NaN. This is accurate within 1 ulp, and is semi-monotonic.
306 *
307 * @param a the angle (in radians)
308 * @return cos(a)
309 */
310 public static native double cos(double a);
311
312 /**
313 * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
314 * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
315 * ulp, and is semi-monotonic.
316 *
317 * @param a the angle (in radians)
318 * @return tan(a)
319 */
320 public static native double tan(double a);
321
322 /**
323 * The trigonometric function <em>arcsin</em>. The range of angles returned
324 * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
325 * its absolute value is beyond 1, the result is NaN; and the arcsine of
326 * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
327 *
328 * @param a the sin to turn back into an angle
329 * @return arcsin(a)
330 */
331 public static native double asin(double a);
332
333 /**
334 * The trigonometric function <em>arccos</em>. The range of angles returned
335 * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
336 * its absolute value is beyond 1, the result is NaN. This is accurate
337 * within 1 ulp, and is semi-monotonic.
338 *
339 * @param a the cos to turn back into an angle
340 * @return arccos(a)
341 */
342 public static native double acos(double a);
343
344 /**
345 * The trigonometric function <em>arcsin</em>. The range of angles returned
346 * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
347 * result is NaN; and the arctangent of 0 retains its sign. This is accurate
348 * within 1 ulp, and is semi-monotonic.
349 *
350 * @param a the tan to turn back into an angle
351 * @return arcsin(a)
352 * @see #atan2(double, double)
353 */
354 public static native double atan(double a);
355
356 /**
357 * A special version of the trigonometric function <em>arctan</em>, for
358 * converting rectangular coordinates <em>(x, y)</em> to polar
359 * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
360 * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
361 * <li>If either argument is NaN, the result is NaN.</li>
362 * <li>If the first argument is positive zero and the second argument is
363 * positive, or the first argument is positive and finite and the second
364 * argument is positive infinity, then the result is positive zero.</li>
365 * <li>If the first argument is negative zero and the second argument is
366 * positive, or the first argument is negative and finite and the second
367 * argument is positive infinity, then the result is negative zero.</li>
368 * <li>If the first argument is positive zero and the second argument is
369 * negative, or the first argument is positive and finite and the second
370 * argument is negative infinity, then the result is the double value
371 * closest to pi.</li>
372 * <li>If the first argument is negative zero and the second argument is
373 * negative, or the first argument is negative and finite and the second
374 * argument is negative infinity, then the result is the double value
375 * closest to -pi.</li>
376 * <li>If the first argument is positive and the second argument is
377 * positive zero or negative zero, or the first argument is positive
378 * infinity and the second argument is finite, then the result is the
379 * double value closest to pi/2.</li>
380 * <li>If the first argument is negative and the second argument is
381 * positive zero or negative zero, or the first argument is negative
382 * infinity and the second argument is finite, then the result is the
383 * double value closest to -pi/2.</li>
384 * <li>If both arguments are positive infinity, then the result is the
385 * double value closest to pi/4.</li>
386 * <li>If the first argument is positive infinity and the second argument
387 * is negative infinity, then the result is the double value closest to
388 * 3*pi/4.</li>
389 * <li>If the first argument is negative infinity and the second argument
390 * is positive infinity, then the result is the double value closest to
391 * -pi/4.</li>
392 * <li>If both arguments are negative infinity, then the result is the
393 * double value closest to -3*pi/4.</li>
394 *
395 * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
396 * use sqrt(x*x+y*y).
397 *
398 * @param y the y position
399 * @param x the x position
400 * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
401 * @see #atan(double)
402 */
403 public static native double atan2(double y, double x);
404
405 /**
406 * Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
407 * argument is NaN, the result is NaN; if the argument is positive infinity,
408 * the result is positive infinity; and if the argument is negative
409 * infinity, the result is positive zero. This is accurate within 1 ulp,
410 * and is semi-monotonic.
411 *
412 * @param a the number to raise to the power
413 * @return the number raised to the power of <em>e</em>
414 * @see #log(double)
415 * @see #pow(double, double)
416 */
417 public static native double exp(double a);
418
419 /**
420 * Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
421 * argument is NaN or negative, the result is NaN; if the argument is
422 * positive infinity, the result is positive infinity; and if the argument
423 * is either zero, the result is negative infinity. This is accurate within
424 * 1 ulp, and is semi-monotonic.
425 *
426 * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
427 * <code>ln(a) / ln(b)</code>.
428 *
429 * @param a the number to take the natural log of
430 * @return the natural log of <code>a</code>
431 * @see #exp(double)
432 */
433 public static native double log(double a);
434
435 /**
436 * Take a square root. If the argument is NaN or negative, the result is
437 * NaN; if the argument is positive infinity, the result is positive
438 * infinity; and if the result is either zero, the result is the same.
439 * This is accurate within the limits of doubles.
440 *
441 * <p>For other roots, use pow(a, 1 / rootNumber).
442 *
443 * @param a the numeric argument
444 * @return the square root of the argument
445 * @see #pow(double, double)
446 */
447 public static native double sqrt(double a);
448
449 /**
450 * Raise a number to a power. Special cases:<ul>
451 * <li>If the second argument is positive or negative zero, then the result
452 * is 1.0.</li>
453 * <li>If the second argument is 1.0, then the result is the same as the
454 * first argument.</li>
455 * <li>If the second argument is NaN, then the result is NaN.</li>
456 * <li>If the first argument is NaN and the second argument is nonzero,
457 * then the result is NaN.</li>
458 * <li>If the absolute value of the first argument is greater than 1 and
459 * the second argument is positive infinity, or the absolute value of the
460 * first argument is less than 1 and the second argument is negative
461 * infinity, then the result is positive infinity.</li>
462 * <li>If the absolute value of the first argument is greater than 1 and
463 * the second argument is negative infinity, or the absolute value of the
464 * first argument is less than 1 and the second argument is positive
465 * infinity, then the result is positive zero.</li>
466 * <li>If the absolute value of the first argument equals 1 and the second
467 * argument is infinite, then the result is NaN.</li>
468 * <li>If the first argument is positive zero and the second argument is
469 * greater than zero, or the first argument is positive infinity and the
470 * second argument is less than zero, then the result is positive zero.</li>
471 * <li>If the first argument is positive zero and the second argument is
472 * less than zero, or the first argument is positive infinity and the
473 * second argument is greater than zero, then the result is positive
474 * infinity.</li>
475 * <li>If the first argument is negative zero and the second argument is
476 * greater than zero but not a finite odd integer, or the first argument is
477 * negative infinity and the second argument is less than zero but not a
478 * finite odd integer, then the result is positive zero.</li>
479 * <li>If the first argument is negative zero and the second argument is a
480 * positive finite odd integer, or the first argument is negative infinity
481 * and the second argument is a negative finite odd integer, then the result
482 * is negative zero.</li>
483 * <li>If the first argument is negative zero and the second argument is
484 * less than zero but not a finite odd integer, or the first argument is
485 * negative infinity and the second argument is greater than zero but not a
486 * finite odd integer, then the result is positive infinity.</li>
487 * <li>If the first argument is negative zero and the second argument is a
488 * negative finite odd integer, or the first argument is negative infinity
489 * and the second argument is a positive finite odd integer, then the result
490 * is negative infinity.</li>
491 * <li>If the first argument is less than zero and the second argument is a
492 * finite even integer, then the result is equal to the result of raising
493 * the absolute value of the first argument to the power of the second
494 * argument.</li>
495 * <li>If the first argument is less than zero and the second argument is a
496 * finite odd integer, then the result is equal to the negative of the
497 * result of raising the absolute value of the first argument to the power
498 * of the second argument.</li>
499 * <li>If the first argument is finite and less than zero and the second
500 * argument is finite and not an integer, then the result is NaN.</li>
501 * <li>If both arguments are integers, then the result is exactly equal to
502 * the mathematical result of raising the first argument to the power of
503 * the second argument if that result can in fact be represented exactly as
504 * a double value.</li>
505 *
506 * </ul><p>(In the foregoing descriptions, a floating-point value is
507 * considered to be an integer if and only if it is a fixed point of the
508 * method {@link #ceil(double)} or, equivalently, a fixed point of the
509 * method {@link #floor(double)}. A value is a fixed point of a one-argument
510 * method if and only if the result of applying the method to the value is
511 * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
512 *
513 * @param a the number to raise
514 * @param b the power to raise it to
515 * @return a<sup>b</sup>
516 */
517 public static native double pow(double a, double b);
518
519 /**
520 * Get the IEEE 754 floating point remainder on two numbers. This is the
521 * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
522 * double to <code>x / y</code> (ties go to the even n); for a zero
523 * remainder, the sign is that of <code>x</code>. If either argument is NaN,
524 * the first argument is infinite, or the second argument is zero, the result
525 * is NaN; if x is finite but y is infinite, the result is x. This is
526 * accurate within the limits of doubles.
527 *
528 * @param x the dividend (the top half)
529 * @param y the divisor (the bottom half)
530 * @return the IEEE 754-defined floating point remainder of x/y
531 * @see #rint(double)
532 */
533 public static native double IEEEremainder(double x, double y);
534
535 /**
536 * Take the nearest integer that is that is greater than or equal to the
537 * argument. If the argument is NaN, infinite, or zero, the result is the
538 * same; if the argument is between -1 and 0, the result is negative zero.
539 * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
540 *
541 * @param a the value to act upon
542 * @return the nearest integer &gt;= <code>a</code>
543 */
544 public static native double ceil(double a);
545
546 /**
547 * Take the nearest integer that is that is less than or equal to the
548 * argument. If the argument is NaN, infinite, or zero, the result is the
549 * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
550 *
551 * @param a the value to act upon
552 * @return the nearest integer &lt;= <code>a</code>
553 */
554 public static native double floor(double a);
555
556 /**
557 * Take the nearest integer to the argument. If it is exactly between
558 * two integers, the even integer is taken. If the argument is NaN,
559 * infinite, or zero, the result is the same.
560 *
561 * @param a the value to act upon
562 * @return the nearest integer to <code>a</code>
563 */
564 public static native double rint(double a);
565
566 /**
567 * Take the nearest integer to the argument. This is equivalent to
568 * <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
569 * is 0; otherwise if the argument is outside the range of int, the result
570 * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
571 *
572 * @param a the argument to round
573 * @return the nearest integer to the argument
574 * @see Integer#MIN_VALUE
575 * @see Integer#MAX_VALUE
576 */
577 public static int round(float a)
578 {
579 // this check for NaN, from JLS 15.21.1, saves a method call
580 if (a != a)
581 return 0;
582 return (int) floor(a + 0.5f);
583 }
584
585 /**
586 * Take the nearest long to the argument. This is equivalent to
587 * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
588 * result is 0; otherwise if the argument is outside the range of long, the
589 * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
590 *
591 * @param a the argument to round
592 * @return the nearest long to the argument
593 * @see Long#MIN_VALUE
594 * @see Long#MAX_VALUE
595 */
596 public static long round(double a)
597 {
598 // this check for NaN, from JLS 15.21.1, saves a method call
599 if (a != a)
600 return 0;
601 return (long) floor(a + 0.5d);
602 }
603
604 /**
605 * Get a random number. This behaves like Random.nextDouble(), seeded by
606 * System.currentTimeMillis() when first called. In other words, the number
607 * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
608 * This random sequence is only used by this method, and is threadsafe,
609 * although you may want your own random number generator if it is shared
610 * among threads.
611 *
612 * @return a random number
613 * @see Random#nextDouble()
614 * @see System#currentTimeMillis()
615 */
616 public static synchronized double random()
617 {
618 if (rand == null)
619 rand = new Random();
620 return rand.nextDouble();
621 }
622
623 /**
624 * Convert from degrees to radians. The formula for this is
625 * radians = degrees * (pi/180); however it is not always exact given the
626 * limitations of floating point numbers.
627 *
628 * @param degrees an angle in degrees
629 * @return the angle in radians
630 * @since 1.2
631 */
632 public static double toRadians(double degrees)
633 {
634 return (degrees * PI) / 180;
635 }
636
637 /**
638 * Convert from radians to degrees. The formula for this is
639 * degrees = radians * (180/pi); however it is not always exact given the
640 * limitations of floating point numbers.
641 *
642 * @param rads an angle in radians
643 * @return the angle in degrees
644 * @since 1.2
645 */
646 public static double toDegrees(double rads)
647 {
648 return (rads * 180) / PI;
649 }
4f9533c7
MW
650
651 /**
652 * <p>
653 * Returns the base 10 logarithm of the supplied value. The returned
654 * result is within 1 ulp of the exact result, and the results are
655 * semi-monotonic.
656 * </p>
657 * <p>
658 * Arguments of either <code>NaN</code> or less than zero return
659 * <code>NaN</code>. An argument of positive infinity returns positive
660 * infinity. Negative infinity is returned if either positive or negative
661 * zero is supplied. Where the argument is the result of
662 * <code>10<sup>n</sup</code>, then <code>n</code> is returned.
663 * </p>
664 *
665 * @param a the numeric argument.
666 * @return the base 10 logarithm of <code>a</code>.
667 * @since 1.5
668 */
669 public static native double log10(double a);
670
671 /**
672 * <p>
673 * Returns the sign of the argument as follows:
674 * </p>
675 * <ul>
676 * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
677 * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
678 * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
679 * <li>If <code>a</code> is positive or negative zero, the result is the
680 * same.</li>
681 * </ul>
682 *
683 * @param a the numeric argument.
684 * @return the sign of the argument.
685 * @since 1.5.
686 */
687 public static double signum(double a)
688 {
689 if (Double.isNaN(a))
690 return Double.NaN;
691 if (a > 0)
692 return 1.0;
693 if (a < 0)
694 return -1.0;
695 return a;
696 }
697
698 /**
699 * <p>
700 * Returns the sign of the argument as follows:
701 * </p>
702 * <ul>
703 * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
704 * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
705 * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
706 * <li>If <code>a</code> is positive or negative zero, the result is the
707 * same.</li>
708 * </ul>
709 *
710 * @param a the numeric argument.
711 * @return the sign of the argument.
712 * @since 1.5.
713 */
714 public static float signum(float a)
715 {
716 if (Float.isNaN(a))
717 return Float.NaN;
718 if (a > 0)
719 return 1.0f;
720 if (a < 0)
721 return -1.0f;
722 return a;
723 }
724
725 /**
726 * Return the ulp for the given double argument. The ulp is the
727 * difference between the argument and the next larger double. Note
728 * that the sign of the double argument is ignored, that is,
729 * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
730 * If the argument is an infinity, then +Inf is returned. If the
731 * argument is zero (either positive or negative), then
732 * {@link Double#MIN_VALUE} is returned.
733 * @param d the double whose ulp should be returned
734 * @return the difference between the argument and the next larger double
735 * @since 1.5
736 */
737 public static double ulp(double d)
738 {
739 if (Double.isNaN(d))
740 return d;
741 if (Double.isInfinite(d))
742 return Double.POSITIVE_INFINITY;
743 // This handles both +0.0 and -0.0.
744 if (d == 0.0)
745 return Double.MIN_VALUE;
746 long bits = Double.doubleToLongBits(d);
747 final int mantissaBits = 52;
748 final int exponentBits = 11;
749 final long mantMask = (1L << mantissaBits) - 1;
750 long mantissa = bits & mantMask;
751 final long expMask = (1L << exponentBits) - 1;
752 long exponent = (bits >>> mantissaBits) & expMask;
753
754 // Denormal number, so the answer is easy.
755 if (exponent == 0)
756 {
757 long result = (exponent << mantissaBits) | 1L;
758 return Double.longBitsToDouble(result);
759 }
760
761 // Conceptually we want to have '1' as the mantissa. Then we would
762 // shift the mantissa over to make a normal number. If this underflows
763 // the exponent, we will make a denormal result.
764 long newExponent = exponent - mantissaBits;
765 long newMantissa;
766 if (newExponent > 0)
767 newMantissa = 0;
768 else
769 {
770 newMantissa = 1L << -(newExponent - 1);
771 newExponent = 0;
772 }
773 return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa);
774 }
775
776 /**
777 * Return the ulp for the given float argument. The ulp is the
778 * difference between the argument and the next larger float. Note
779 * that the sign of the float argument is ignored, that is,
780 * ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
781 * If the argument is an infinity, then +Inf is returned. If the
782 * argument is zero (either positive or negative), then
783 * {@link Float#MIN_VALUE} is returned.
784 * @param f the float whose ulp should be returned
785 * @return the difference between the argument and the next larger float
786 * @since 1.5
787 */
788 public static float ulp(float f)
789 {
790 if (Float.isNaN(f))
791 return f;
792 if (Float.isInfinite(f))
793 return Float.POSITIVE_INFINITY;
794 // This handles both +0.0 and -0.0.
795 if (f == 0.0)
796 return Float.MIN_VALUE;
797 int bits = Float.floatToIntBits(f);
798 final int mantissaBits = 23;
799 final int exponentBits = 8;
800 final int mantMask = (1 << mantissaBits) - 1;
801 int mantissa = bits & mantMask;
802 final int expMask = (1 << exponentBits) - 1;
803 int exponent = (bits >>> mantissaBits) & expMask;
804
805 // Denormal number, so the answer is easy.
806 if (exponent == 0)
807 {
808 int result = (exponent << mantissaBits) | 1;
809 return Float.intBitsToFloat(result);
810 }
811
812 // Conceptually we want to have '1' as the mantissa. Then we would
813 // shift the mantissa over to make a normal number. If this underflows
814 // the exponent, we will make a denormal result.
815 int newExponent = exponent - mantissaBits;
816 int newMantissa;
817 if (newExponent > 0)
818 newMantissa = 0;
819 else
820 {
821 newMantissa = 1 << -(newExponent - 1);
822 newExponent = 0;
823 }
824 return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa);
825 }
8aa540d2 826}
This page took 0.131678 seconds and 5 git commands to generate.