]> gcc.gnu.org Git - gcc.git/blame - gcc/vec.h
Update copyright years in gcc/
[gcc.git] / gcc / vec.h
CommitLineData
ada55151 1/* Vector API for GNU compiler.
d1e082c2 2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
ada55151 3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
0823efed 4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
ada55151
NS
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
ada55151
NS
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
ada55151
NS
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
9771b263
DN
25/* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
29
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35#ifdef GENERATOR_FILE
36#define VEC_GC_ENABLED 0
37#else
38#define VEC_GC_ENABLED 1
39#endif // GENERATOR_FILE
40
41#include "statistics.h" // For CXX_MEM_STAT_INFO.
42
43#if VEC_GC_ENABLED
44#include "ggc.h"
45#else
46# ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51 extern void ggc_free (void *);
52 extern size_t ggc_round_alloc_size (size_t requested_size);
9771b263
DN
53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
54# endif // GCC_GGC_H
55#endif // VEC_GC_ENABLED
3e097227 56
bd0c3bfd
DN
57/* Templated vector type and associated interfaces.
58
59 The interface functions are typesafe and use inline functions,
60 sometimes backed by out-of-line generic functions. The vectors are
61 designed to interoperate with the GTY machinery.
62
bd0c3bfd
DN
63 There are both 'index' and 'iterate' accessors. The index accessor
64 is implemented by operator[]. The iterator returns a boolean
65 iteration condition and updates the iteration variable passed by
66 reference. Because the iterator will be inlined, the address-of
67 can be optimized away.
9ba5ff0f 68
ada55151
NS
69 Each operation that increases the number of active elements is
70 available in 'quick' and 'safe' variants. The former presumes that
71 there is sufficient allocated space for the operation to succeed
0e61db61 72 (it dies if there is not). The latter will reallocate the
ada55151
NS
73 vector, if needed. Reallocation causes an exponential increase in
74 vector size. If you know you will be adding N elements, it would
75 be more efficient to use the reserve operation before adding the
d4e6fecb
NS
76 elements with the 'quick' operation. This will ensure there are at
77 least as many elements as you ask for, it will exponentially
78 increase if there are too few spare slots. If you want reserve a
79 specific number of slots, but do not want the exponential increase
efb7e1e0
ILT
80 (for instance, you know this is the last allocation), use the
81 reserve_exact operation. You can also create a vector of a
d4e6fecb 82 specific size from the get go.
ada55151
NS
83
84 You should prefer the push and pop operations, as they append and
a064479c
NS
85 remove from the end of the vector. If you need to remove several
86 items in one go, use the truncate operation. The insert and remove
ada55151
NS
87 operations allow you to change elements in the middle of the
88 vector. There are two remove operations, one which preserves the
89 element ordering 'ordered_remove', and one which does not
90 'unordered_remove'. The latter function copies the end element
d4e6fecb
NS
91 into the removed slot, rather than invoke a memmove operation. The
92 'lower_bound' function will determine where to place an item in the
58152808 93 array using insert that will maintain sorted order.
9ba5ff0f 94
9771b263
DN
95 Vectors are template types with three arguments: the type of the
96 elements in the vector, the allocation strategy, and the physical
97 layout to use
98
99 Four allocation strategies are supported:
100
101 - Heap: allocation is done using malloc/free. This is the
102 default allocation strategy.
103
104 - Stack: allocation is done using alloca.
105
106 - GC: allocation is done using ggc_alloc/ggc_free.
107
108 - GC atomic: same as GC with the exception that the elements
109 themselves are assumed to be of an atomic type that does
110 not need to be garbage collected. This means that marking
111 routines do not need to traverse the array marking the
112 individual elements. This increases the performance of
113 GC activities.
114
115 Two physical layouts are supported:
116
117 - Embedded: The vector is structured using the trailing array
118 idiom. The last member of the structure is an array of size
119 1. When the vector is initially allocated, a single memory
120 block is created to hold the vector's control data and the
121 array of elements. These vectors cannot grow without
122 reallocation (see discussion on embeddable vectors below).
123
124 - Space efficient: The vector is structured as a pointer to an
125 embedded vector. This is the default layout. It means that
126 vectors occupy a single word of storage before initial
127 allocation. Vectors are allowed to grow (the internal
128 pointer is reallocated but the main vector instance does not
129 need to relocate).
130
131 The type, allocation and layout are specified when the vector is
132 declared.
b8698a0f 133
9ba5ff0f
NS
134 If you need to directly manipulate a vector, then the 'address'
135 accessor will return the address of the start of the vector. Also
136 the 'space' predicate will tell you whether there is spare capacity
137 in the vector. You will not normally need to use these two functions.
b8698a0f 138
9771b263
DN
139 Notes on the different layout strategies
140
141 * Embeddable vectors (vec<T, A, vl_embed>)
142
143 These vectors are suitable to be embedded in other data
144 structures so that they can be pre-allocated in a contiguous
145 memory block.
146
147 Embeddable vectors are implemented using the trailing array
148 idiom, thus they are not resizeable without changing the address
149 of the vector object itself. This means you cannot have
150 variables or fields of embeddable vector type -- always use a
151 pointer to a vector. The one exception is the final field of a
152 structure, which could be a vector type.
153
154 You will have to use the embedded_size & embedded_init calls to
155 create such objects, and they will not be resizeable (so the
156 'safe' allocation variants are not available).
157
158 Properties of embeddable vectors:
159
160 - The whole vector and control data are allocated in a single
161 contiguous block. It uses the trailing-vector idiom, so
162 allocation must reserve enough space for all the elements
163 in the vector plus its control data.
164 - The vector cannot be re-allocated.
165 - The vector cannot grow nor shrink.
166 - No indirections needed for access/manipulation.
167 - It requires 2 words of storage (prior to vector allocation).
168
169
170 * Space efficient vector (vec<T, A, vl_ptr>)
171
172 These vectors can grow dynamically and are allocated together
173 with their control data. They are suited to be included in data
174 structures. Prior to initial allocation, they only take a single
175 word of storage.
176
177 These vectors are implemented as a pointer to embeddable vectors.
178 The semantics allow for this pointer to be NULL to represent
179 empty vectors. This way, empty vectors occupy minimal space in
180 the structure containing them.
181
182 Properties:
183
184 - The whole vector and control data are allocated in a single
185 contiguous block.
186 - The whole vector may be re-allocated.
187 - Vector data may grow and shrink.
188 - Access and manipulation requires a pointer test and
189 indirection.
190 - It requires 1 word of storage (prior to vector allocation).
ada55151
NS
191
192 An example of their use would be,
193
ada55151 194 struct my_struct {
9771b263
DN
195 // A space-efficient vector of tree pointers in GC memory.
196 vec<tree, va_gc, vl_ptr> v;
ada55151
NS
197 };
198
199 struct my_struct *s;
200
9771b263
DN
201 if (s->v.length ()) { we have some contents }
202 s->v.safe_push (decl); // append some decl onto the end
203 for (ix = 0; s->v.iterate (ix, &elt); ix++)
2a68a7de 204 { do something with elt }
ada55151
NS
205*/
206
9771b263
DN
207/* Support function for statistics. */
208extern void dump_vec_loc_statistics (void);
0823efed 209
0823efed 210
9771b263
DN
211/* Control data for vectors. This contains the number of allocated
212 and used slots inside a vector. */
0823efed 213
26da79f5 214struct vec_prefix
0823efed 215{
38f2ca32
DN
216 /* FIXME - These fields should be private, but we need to cater to
217 compilers that have stricter notions of PODness for types. */
26da79f5 218
9771b263 219 /* Memory allocation support routines in vec.c. */
26da79f5
JJ
220 void register_overhead (size_t, const char *, int, const char *);
221 void release_overhead (void);
222 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
9771b263
DN
223
224 /* Note that vec_prefix should be a base class for vec, but we use
225 offsetof() on vector fields of tree structures (e.g.,
226 tree_binfo::base_binfos), and offsetof only supports base types.
227
228 To compensate, we make vec_prefix a field inside vec and make
229 vec a friend class of vec_prefix so it can access its fields. */
18e1fd75 230 template <typename, typename, typename> friend struct vec;
9771b263
DN
231
232 /* The allocator types also need access to our internals. */
233 friend struct va_gc;
234 friend struct va_gc_atomic;
235 friend struct va_heap;
236 friend struct va_stack;
237
26da79f5
JJ
238 unsigned alloc_;
239 unsigned num_;
0823efed
DN
240};
241
18e1fd75 242template<typename, typename, typename> struct vec;
bd0c3bfd 243
9771b263 244/* Valid vector layouts
bd0c3bfd 245
9771b263
DN
246 vl_embed - Embeddable vector that uses the trailing array idiom.
247 vl_ptr - Space efficient vector that uses a pointer to an
248 embeddable vector. */
249struct vl_embed { };
250struct vl_ptr { };
bd0c3bfd 251
bd0c3bfd 252
9771b263 253/* Types of supported allocations
bd0c3bfd 254
9771b263
DN
255 va_heap - Allocation uses malloc/free.
256 va_gc - Allocation uses ggc_alloc.
257 va_gc_atomic - Same as GC, but individual elements of the array
258 do not need to be marked during collection.
259 va_stack - Allocation uses alloca. */
bd0c3bfd 260
9771b263
DN
261/* Allocator type for heap vectors. */
262struct va_heap
263{
264 /* Heap vectors are frequently regular instances, so use the vl_ptr
265 layout for them. */
266 typedef vl_ptr default_layout;
bd0c3bfd 267
9771b263
DN
268 template<typename T>
269 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
270 CXX_MEM_STAT_INFO);
bd0c3bfd 271
9771b263
DN
272 template<typename T>
273 static void release (vec<T, va_heap, vl_embed> *&);
274};
bd0c3bfd 275
bd0c3bfd 276
9771b263
DN
277/* Allocator for heap memory. Ensure there are at least RESERVE free
278 slots in V. If EXACT is true, grow exactly, else grow
279 exponentially. As a special case, if the vector had not been
280 allocated and and RESERVE is 0, no vector will be created. */
bd0c3bfd 281
9771b263
DN
282template<typename T>
283inline void
284va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
285 MEM_STAT_DECL)
286{
26da79f5
JJ
287 unsigned alloc
288 = vec_prefix::calculate_allocation (v ? &v->vecpfx_ : 0, reserve, exact);
9771b263
DN
289 if (!alloc)
290 {
291 release (v);
292 return;
293 }
bd0c3bfd 294
9771b263 295 if (GATHER_STATISTICS && v)
26da79f5 296 v->vecpfx_.release_overhead ();
bd0c3bfd 297
9771b263
DN
298 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
299 unsigned nelem = v ? v->length () : 0;
300 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
301 v->embedded_init (alloc, nelem);
bd0c3bfd 302
9771b263 303 if (GATHER_STATISTICS)
26da79f5 304 v->vecpfx_.register_overhead (size FINAL_PASS_MEM_STAT);
9771b263 305}
0823efed 306
bd0c3bfd 307
9771b263 308/* Free the heap space allocated for vector V. */
0823efed
DN
309
310template<typename T>
311void
9771b263 312va_heap::release (vec<T, va_heap, vl_embed> *&v)
0823efed 313{
38f2ca32
DN
314 if (v == NULL)
315 return;
316
9771b263 317 if (GATHER_STATISTICS)
26da79f5 318 v->vecpfx_.release_overhead ();
9771b263
DN
319 ::free (v);
320 v = NULL;
0823efed
DN
321}
322
323
9771b263
DN
324/* Allocator type for GC vectors. Notice that we need the structure
325 declaration even if GC is not enabled. */
0823efed 326
9771b263 327struct va_gc
0823efed 328{
9771b263
DN
329 /* Use vl_embed as the default layout for GC vectors. Due to GTY
330 limitations, GC vectors must always be pointers, so it is more
331 efficient to use a pointer to the vl_embed layout, rather than
332 using a pointer to a pointer as would be the case with vl_ptr. */
333 typedef vl_embed default_layout;
334
335 template<typename T, typename A>
336 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
337 CXX_MEM_STAT_INFO);
338
339 template<typename T, typename A>
340 static void release (vec<T, A, vl_embed> *&v) { v = NULL; }
341};
0823efed 342
0823efed 343
9771b263
DN
344/* Allocator for GC memory. Ensure there are at least RESERVE free
345 slots in V. If EXACT is true, grow exactly, else grow
346 exponentially. As a special case, if the vector had not been
347 allocated and and RESERVE is 0, no vector will be created. */
348
349template<typename T, typename A>
0823efed 350void
9771b263
DN
351va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 MEM_STAT_DECL)
0823efed 353{
26da79f5
JJ
354 unsigned alloc
355 = vec_prefix::calculate_allocation (v ? &v->vecpfx_ : 0, reserve, exact);
9771b263
DN
356 if (!alloc)
357 {
358 ::ggc_free (v);
359 v = NULL;
360 return;
361 }
0823efed 362
9771b263
DN
363 /* Calculate the amount of space we want. */
364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
0823efed 365
9771b263 366 /* Ask the allocator how much space it will really give us. */
18e1fd75 367 size = ::ggc_round_alloc_size (size);
0823efed 368
9771b263
DN
369 /* Adjust the number of slots accordingly. */
370 size_t vec_offset = sizeof (vec_prefix);
371 size_t elt_size = sizeof (T);
372 alloc = (size - vec_offset) / elt_size;
0823efed 373
9771b263
DN
374 /* And finally, recalculate the amount of space we ask for. */
375 size = vec_offset + alloc * elt_size;
0823efed 376
9771b263 377 unsigned nelem = v ? v->length () : 0;
18e1fd75
DN
378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
379 PASS_MEM_STAT));
9771b263
DN
380 v->embedded_init (alloc, nelem);
381}
ada55151 382
ada55151 383
9771b263
DN
384/* Allocator type for GC vectors. This is for vectors of types
385 atomics w.r.t. collection, so allocation and deallocation is
386 completely inherited from va_gc. */
387struct va_gc_atomic : va_gc
388{
389};
9ba5ff0f 390
0823efed 391
9771b263
DN
392/* Allocator type for stack vectors. */
393struct va_stack
0823efed 394{
9771b263
DN
395 /* Use vl_ptr as the default layout for stack vectors. */
396 typedef vl_ptr default_layout;
ada55151 397
9771b263
DN
398 template<typename T>
399 static void alloc (vec<T, va_stack, vl_ptr>&, unsigned,
400 vec<T, va_stack, vl_embed> *);
4038c495 401
9771b263
DN
402 template <typename T>
403 static void reserve (vec<T, va_stack, vl_embed> *&, unsigned, bool
404 CXX_MEM_STAT_INFO);
4038c495 405
9771b263
DN
406 template <typename T>
407 static void release (vec<T, va_stack, vl_embed> *&);
408};
409
410/* Helper functions to keep track of vectors allocated on the stack. */
411void register_stack_vec (void *);
412int stack_vec_register_index (void *);
413void unregister_stack_vec (unsigned);
4038c495 414
9771b263
DN
415/* Allocate a vector V which uses alloca for the initial allocation.
416 SPACE is space allocated using alloca. NELEMS is the number of
417 entries allocated. */
418
419template<typename T>
420void
421va_stack::alloc (vec<T, va_stack, vl_ptr> &v, unsigned nelems,
422 vec<T, va_stack, vl_embed> *space)
423{
26da79f5
JJ
424 v.vec_ = space;
425 register_stack_vec (static_cast<void *> (v.vec_));
426 v.vec_->embedded_init (nelems, 0);
9771b263 427}
0823efed 428
bd0c3bfd 429
9771b263
DN
430/* Reserve NELEMS slots for a vector initially allocated on the stack.
431 When this happens, we switch back to heap allocation. We remove
432 the vector from stack_vecs, if it is there, since we no longer need
433 to avoid freeing it. If EXACT is true, grow exactly, otherwise
434 grow exponentially. */
bd0c3bfd 435
9771b263
DN
436template<typename T>
437void
438va_stack::reserve (vec<T, va_stack, vl_embed> *&v, unsigned nelems, bool exact
439 MEM_STAT_DECL)
440{
441 int ix = stack_vec_register_index (static_cast<void *> (v));
442 if (ix >= 0)
443 unregister_stack_vec (ix);
444 else
445 {
446 /* V is already on the heap. */
447 va_heap::reserve (reinterpret_cast<vec<T, va_heap, vl_embed> *&> (v),
18e1fd75 448 nelems, exact PASS_MEM_STAT);
9771b263
DN
449 return;
450 }
bd0c3bfd 451
9771b263 452 /* Move VEC_ to the heap. */
26da79f5 453 nelems += v->vecpfx_.num_;
9771b263
DN
454 vec<T, va_stack, vl_embed> *oldvec = v;
455 v = NULL;
456 va_heap::reserve (reinterpret_cast<vec<T, va_heap, vl_embed> *&>(v), nelems,
18e1fd75 457 exact PASS_MEM_STAT);
9771b263
DN
458 if (v && oldvec)
459 {
26da79f5
JJ
460 v->vecpfx_.num_ = oldvec->length ();
461 memcpy (v->vecdata_,
462 oldvec->vecdata_,
38f2ca32 463 oldvec->length () * sizeof (T));
9771b263
DN
464 }
465}
bd0c3bfd 466
bd0c3bfd 467
9771b263
DN
468/* Free a vector allocated on the stack. Don't actually free it if we
469 find it in the hash table. */
bd0c3bfd 470
9771b263
DN
471template<typename T>
472void
473va_stack::release (vec<T, va_stack, vl_embed> *&v)
474{
38f2ca32
DN
475 if (v == NULL)
476 return;
477
9771b263
DN
478 int ix = stack_vec_register_index (static_cast<void *> (v));
479 if (ix >= 0)
480 {
481 unregister_stack_vec (ix);
482 v = NULL;
483 }
484 else
485 {
486 /* The vector was not on the list of vectors allocated on the stack, so it
487 must be allocated on the heap. */
488 va_heap::release (reinterpret_cast<vec<T, va_heap, vl_embed> *&> (v));
489 }
490}
bd0c3bfd 491
bd0c3bfd 492
9771b263
DN
493/* Generic vector template. Default values for A and L indicate the
494 most commonly used strategies.
bd0c3bfd 495
9771b263
DN
496 FIXME - Ideally, they would all be vl_ptr to encourage using regular
497 instances for vectors, but the existing GTY machinery is limited
498 in that it can only deal with GC objects that are pointers
499 themselves.
bd0c3bfd 500
9771b263
DN
501 This means that vector operations that need to deal with
502 potentially NULL pointers, must be provided as free
503 functions (see the vec_safe_* functions above). */
504template<typename T,
505 typename A = va_heap,
506 typename L = typename A::default_layout>
18e1fd75 507struct GTY((user)) vec
9771b263
DN
508{
509};
bd0c3bfd 510
6e1aa848
DN
511/* Type to provide NULL values for vec<T, A, L>. This is used to
512 provide nil initializers for vec instances. Since vec must be
513 a POD, we cannot have proper ctor/dtor for it. To initialize
514 a vec instance, you can assign it the value vNULL. */
515struct vnull
516{
517 template <typename T, typename A, typename L>
518 operator vec<T, A, L> () { return vec<T, A, L>(); }
519};
520extern vnull vNULL;
521
bd0c3bfd 522
9771b263
DN
523/* Embeddable vector. These vectors are suitable to be embedded
524 in other data structures so that they can be pre-allocated in a
525 contiguous memory block.
bd0c3bfd 526
9771b263
DN
527 Embeddable vectors are implemented using the trailing array idiom,
528 thus they are not resizeable without changing the address of the
529 vector object itself. This means you cannot have variables or
530 fields of embeddable vector type -- always use a pointer to a
531 vector. The one exception is the final field of a structure, which
532 could be a vector type.
bd0c3bfd 533
9771b263
DN
534 You will have to use the embedded_size & embedded_init calls to
535 create such objects, and they will not be resizeable (so the 'safe'
536 allocation variants are not available).
537
538 Properties:
539
540 - The whole vector and control data are allocated in a single
541 contiguous block. It uses the trailing-vector idiom, so
542 allocation must reserve enough space for all the elements
543 in the vector plus its control data.
544 - The vector cannot be re-allocated.
545 - The vector cannot grow nor shrink.
546 - No indirections needed for access/manipulation.
547 - It requires 2 words of storage (prior to vector allocation). */
548
549template<typename T, typename A>
18e1fd75 550struct GTY((user)) vec<T, A, vl_embed>
9771b263
DN
551{
552public:
26da79f5
JJ
553 unsigned allocated (void) const { return vecpfx_.alloc_; }
554 unsigned length (void) const { return vecpfx_.num_; }
555 bool is_empty (void) const { return vecpfx_.num_ == 0; }
556 T *address (void) { return vecdata_; }
557 const T *address (void) const { return vecdata_; }
9771b263
DN
558 const T &operator[] (unsigned) const;
559 T &operator[] (unsigned);
560 T &last (void);
561 bool space (unsigned) const;
562 bool iterate (unsigned, T *) const;
563 bool iterate (unsigned, T **) const;
18e1fd75 564 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
9771b263
DN
565 void splice (vec &);
566 void splice (vec *src);
567 T *quick_push (const T &);
568 T &pop (void);
569 void truncate (unsigned);
570 void quick_insert (unsigned, const T &);
571 void ordered_remove (unsigned);
572 void unordered_remove (unsigned);
573 void block_remove (unsigned, unsigned);
574 void qsort (int (*) (const void *, const void *));
575 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
576 static size_t embedded_size (unsigned);
577 void embedded_init (unsigned, unsigned = 0);
578 void quick_grow (unsigned len);
579 void quick_grow_cleared (unsigned len);
580
581 /* vec class can access our internal data and functions. */
18e1fd75 582 template <typename, typename, typename> friend struct vec;
9771b263
DN
583
584 /* The allocator types also need access to our internals. */
585 friend struct va_gc;
586 friend struct va_gc_atomic;
587 friend struct va_heap;
588 friend struct va_stack;
589
38f2ca32
DN
590 /* FIXME - These fields should be private, but we need to cater to
591 compilers that have stricter notions of PODness for types. */
26da79f5
JJ
592 vec_prefix vecpfx_;
593 T vecdata_[1];
9771b263 594};
bd0c3bfd 595
bd0c3bfd 596
9771b263
DN
597/* Convenience wrapper functions to use when dealing with pointers to
598 embedded vectors. Some functionality for these vectors must be
599 provided via free functions for these reasons:
0823efed 600
9771b263 601 1- The pointer may be NULL (e.g., before initial allocation).
0823efed 602
9771b263
DN
603 2- When the vector needs to grow, it must be reallocated, so
604 the pointer will change its value.
0823efed 605
9771b263
DN
606 Because of limitations with the current GC machinery, all vectors
607 in GC memory *must* be pointers. */
0823efed 608
bd0c3bfd 609
9771b263
DN
610/* If V contains no room for NELEMS elements, return false. Otherwise,
611 return true. */
612template<typename T, typename A>
613inline bool
614vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
615{
616 return v ? v->space (nelems) : nelems == 0;
617}
bd0c3bfd 618
0823efed 619
9771b263
DN
620/* If V is NULL, return 0. Otherwise, return V->length(). */
621template<typename T, typename A>
bd0c3bfd 622inline unsigned
9771b263 623vec_safe_length (const vec<T, A, vl_embed> *v)
0823efed 624{
9771b263 625 return v ? v->length () : 0;
0823efed 626}
4038c495
GB
627
628
9771b263
DN
629/* If V is NULL, return NULL. Otherwise, return V->address(). */
630template<typename T, typename A>
631inline T *
632vec_safe_address (vec<T, A, vl_embed> *v)
633{
634 return v ? v->address () : NULL;
635}
636
bd0c3bfd 637
9771b263
DN
638/* If V is NULL, return true. Otherwise, return V->is_empty(). */
639template<typename T, typename A>
bd0c3bfd 640inline bool
9771b263 641vec_safe_is_empty (vec<T, A, vl_embed> *v)
bd0c3bfd 642{
9771b263 643 return v ? v->is_empty () : true;
bd0c3bfd 644}
ada55151 645
9ba5ff0f 646
9771b263
DN
647/* If V does not have space for NELEMS elements, call
648 V->reserve(NELEMS, EXACT). */
649template<typename T, typename A>
650inline bool
651vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
18e1fd75 652 CXX_MEM_STAT_INFO)
9771b263
DN
653{
654 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
655 if (extend)
656 A::reserve (v, nelems, exact PASS_MEM_STAT);
657 return extend;
658}
0823efed 659
9771b263
DN
660template<typename T, typename A>
661inline bool
18e1fd75
DN
662vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
663 CXX_MEM_STAT_INFO)
0823efed 664{
9771b263 665 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
0823efed
DN
666}
667
ada55151 668
9771b263
DN
669/* Allocate GC memory for V with space for NELEMS slots. If NELEMS
670 is 0, V is initialized to NULL. */
bd0c3bfd 671
9771b263
DN
672template<typename T, typename A>
673inline void
18e1fd75 674vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
bd0c3bfd 675{
9771b263 676 v = NULL;
18e1fd75 677 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
bd0c3bfd 678}
ada55151 679
0823efed 680
9771b263 681/* Free the GC memory allocated by vector V and set it to NULL. */
0823efed 682
9771b263
DN
683template<typename T, typename A>
684inline void
685vec_free (vec<T, A, vl_embed> *&v)
0823efed 686{
9771b263 687 A::release (v);
0823efed
DN
688}
689
9771b263
DN
690
691/* Grow V to length LEN. Allocate it, if necessary. */
692template<typename T, typename A>
693inline void
18e1fd75 694vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
0823efed 695{
9771b263
DN
696 unsigned oldlen = vec_safe_length (v);
697 gcc_checking_assert (len >= oldlen);
698 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
18e1fd75 699 v->quick_grow (len);
0823efed 700}
9ba5ff0f 701
ada55151 702
9771b263
DN
703/* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
704template<typename T, typename A>
705inline void
18e1fd75 706vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
9771b263
DN
707{
708 unsigned oldlen = vec_safe_length (v);
709 vec_safe_grow (v, len PASS_MEM_STAT);
710 memset (&(v->address()[oldlen]), 0, sizeof (T) * (len - oldlen));
711}
ada55151 712
0823efed 713
9771b263
DN
714/* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
715template<typename T, typename A>
716inline bool
717vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
0823efed 718{
9771b263
DN
719 if (v)
720 return v->iterate (ix, ptr);
0823efed
DN
721 else
722 {
723 *ptr = 0;
724 return false;
725 }
726}
727
9771b263
DN
728template<typename T, typename A>
729inline bool
730vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
0823efed 731{
9771b263
DN
732 if (v)
733 return v->iterate (ix, ptr);
0823efed
DN
734 else
735 {
736 *ptr = 0;
737 return false;
738 }
739}
ada55151 740
bd0c3bfd 741
9771b263
DN
742/* If V has no room for one more element, reallocate it. Then call
743 V->quick_push(OBJ). */
744template<typename T, typename A>
745inline T *
18e1fd75 746vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
9771b263
DN
747{
748 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
18e1fd75 749 return v->quick_push (obj);
9771b263 750}
ac47786e 751
ac47786e 752
9771b263
DN
753/* if V has no room for one more element, reallocate it. Then call
754 V->quick_insert(IX, OBJ). */
755template<typename T, typename A>
756inline void
757vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
18e1fd75 758 CXX_MEM_STAT_INFO)
9771b263
DN
759{
760 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
761 v->quick_insert (ix, obj);
762}
8ffa0351 763
8ffa0351 764
9771b263
DN
765/* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
766template<typename T, typename A>
767inline void
768vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
769{
770 if (v)
771 v->truncate (size);
772}
c021f10b 773
c021f10b 774
9771b263
DN
775/* If SRC is not NULL, return a pointer to a copy of it. */
776template<typename T, typename A>
777inline vec<T, A, vl_embed> *
778vec_safe_copy (vec<T, A, vl_embed> *src)
779{
780 return src ? src->copy () : NULL;
781}
0823efed 782
9771b263
DN
783/* Copy the elements from SRC to the end of DST as if by memcpy.
784 Reallocate DST, if necessary. */
785template<typename T, typename A>
786inline void
787vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
18e1fd75 788 CXX_MEM_STAT_INFO)
9771b263
DN
789{
790 unsigned src_len = vec_safe_length (src);
791 if (src_len)
792 {
18e1fd75
DN
793 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
794 PASS_MEM_STAT);
9771b263
DN
795 dst->splice (*src);
796 }
797}
0823efed 798
0823efed 799
9771b263
DN
800/* Index into vector. Return the IX'th element. IX must be in the
801 domain of the vector. */
0823efed 802
9771b263
DN
803template<typename T, typename A>
804inline const T &
805vec<T, A, vl_embed>::operator[] (unsigned ix) const
806{
26da79f5
JJ
807 gcc_checking_assert (ix < vecpfx_.num_);
808 return vecdata_[ix];
9771b263 809}
0823efed 810
9771b263
DN
811template<typename T, typename A>
812inline T &
813vec<T, A, vl_embed>::operator[] (unsigned ix)
0823efed 814{
26da79f5
JJ
815 gcc_checking_assert (ix < vecpfx_.num_);
816 return vecdata_[ix];
0823efed
DN
817}
818
bd0c3bfd 819
9771b263 820/* Get the final element of the vector, which must not be empty. */
0823efed 821
9771b263
DN
822template<typename T, typename A>
823inline T &
824vec<T, A, vl_embed>::last (void)
0823efed 825{
26da79f5
JJ
826 gcc_checking_assert (vecpfx_.num_ > 0);
827 return (*this)[vecpfx_.num_ - 1];
0823efed
DN
828}
829
830
9771b263
DN
831/* If this vector has space for NELEMS additional entries, return
832 true. You usually only need to use this if you are doing your
833 own vector reallocation, for instance on an embedded vector. This
834 returns true in exactly the same circumstances that vec::reserve
835 will. */
bd0c3bfd 836
9771b263
DN
837template<typename T, typename A>
838inline bool
839vec<T, A, vl_embed>::space (unsigned nelems) const
840{
26da79f5 841 return vecpfx_.alloc_ - vecpfx_.num_ >= nelems;
9771b263 842}
bd0c3bfd 843
bd0c3bfd 844
9771b263
DN
845/* Return iteration condition and update PTR to point to the IX'th
846 element of this vector. Use this to iterate over the elements of a
847 vector as follows,
bd0c3bfd 848
9771b263
DN
849 for (ix = 0; vec<T, A>::iterate(v, ix, &ptr); ix++)
850 continue; */
bd0c3bfd 851
9771b263
DN
852template<typename T, typename A>
853inline bool
854vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
0823efed 855{
26da79f5 856 if (ix < vecpfx_.num_)
9771b263 857 {
26da79f5 858 *ptr = vecdata_[ix];
9771b263
DN
859 return true;
860 }
861 else
862 {
863 *ptr = 0;
864 return false;
865 }
0823efed
DN
866}
867
9ba5ff0f 868
9771b263
DN
869/* Return iteration condition and update *PTR to point to the
870 IX'th element of this vector. Use this to iterate over the
871 elements of a vector as follows,
ada55151 872
9771b263
DN
873 for (ix = 0; v->iterate(ix, &ptr); ix++)
874 continue;
4c254e68 875
9771b263
DN
876 This variant is for vectors of objects. */
877
878template<typename T, typename A>
879inline bool
880vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
0823efed 881{
26da79f5 882 if (ix < vecpfx_.num_)
9771b263 883 {
26da79f5 884 *ptr = CONST_CAST (T *, &vecdata_[ix]);
9771b263
DN
885 return true;
886 }
887 else
0823efed 888 {
9771b263
DN
889 *ptr = 0;
890 return false;
0823efed 891 }
0823efed 892}
9ba5ff0f 893
9ba5ff0f 894
9771b263 895/* Return a pointer to a copy of this vector. */
4038c495 896
9771b263
DN
897template<typename T, typename A>
898inline vec<T, A, vl_embed> *
899vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
0823efed 900{
9771b263
DN
901 vec<T, A, vl_embed> *new_vec = NULL;
902 unsigned len = length ();
bd0c3bfd 903 if (len)
0823efed 904 {
9771b263 905 vec_alloc (new_vec, len PASS_MEM_STAT);
bd0c3bfd 906 new_vec->embedded_init (len, len);
26da79f5 907 memcpy (new_vec->address(), vecdata_, sizeof (T) * len);
0823efed 908 }
bd0c3bfd
DN
909 return new_vec;
910}
b8698a0f 911
9ba5ff0f 912
9771b263
DN
913/* Copy the elements from SRC to the end of this vector as if by memcpy.
914 The vector must have sufficient headroom available. */
9ba5ff0f 915
9771b263
DN
916template<typename T, typename A>
917inline void
918vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
919{
920 unsigned len = src.length();
921 if (len)
922 {
923 gcc_checking_assert (space (len));
924 memcpy (address() + length(), src.address(), len * sizeof (T));
26da79f5 925 vecpfx_.num_ += len;
9771b263
DN
926 }
927}
928
929template<typename T, typename A>
930inline void
931vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
0823efed 932{
9771b263
DN
933 if (src)
934 splice (*src);
0823efed
DN
935}
936
ada55151 937
9771b263
DN
938/* Push OBJ (a new element) onto the end of the vector. There must be
939 sufficient space in the vector. Return a pointer to the slot
940 where OBJ was inserted. */
9ba5ff0f 941
9771b263
DN
942template<typename T, typename A>
943inline T *
944vec<T, A, vl_embed>::quick_push (const T &obj)
0823efed 945{
9771b263 946 gcc_checking_assert (space (1));
26da79f5 947 T *slot = &vecdata_[vecpfx_.num_++];
9771b263
DN
948 *slot = obj;
949 return slot;
0823efed
DN
950}
951
ada55151 952
9771b263 953/* Pop and return the last element off the end of the vector. */
efb7e1e0 954
9771b263
DN
955template<typename T, typename A>
956inline T &
957vec<T, A, vl_embed>::pop (void)
0823efed 958{
9771b263 959 gcc_checking_assert (length () > 0);
26da79f5 960 return vecdata_[--vecpfx_.num_];
9771b263 961}
0823efed 962
0823efed 963
9771b263
DN
964/* Set the length of the vector to SIZE. The new length must be less
965 than or equal to the current length. This is an O(1) operation. */
966
967template<typename T, typename A>
968inline void
969vec<T, A, vl_embed>::truncate (unsigned size)
970{
971 gcc_checking_assert (length () >= size);
26da79f5 972 vecpfx_.num_ = size;
0823efed
DN
973}
974
efb7e1e0 975
9771b263
DN
976/* Insert an element, OBJ, at the IXth position of this vector. There
977 must be sufficient space. */
0823efed 978
9771b263
DN
979template<typename T, typename A>
980inline void
981vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
0823efed 982{
9771b263
DN
983 gcc_checking_assert (length () < allocated ());
984 gcc_checking_assert (ix <= length ());
26da79f5
JJ
985 T *slot = &vecdata_[ix];
986 memmove (slot + 1, slot, (vecpfx_.num_++ - ix) * sizeof (T));
9771b263 987 *slot = obj;
0823efed
DN
988}
989
989ea525 990
9771b263
DN
991/* Remove an element from the IXth position of this vector. Ordering of
992 remaining elements is preserved. This is an O(N) operation due to
993 memmove. */
989ea525 994
9771b263
DN
995template<typename T, typename A>
996inline void
997vec<T, A, vl_embed>::ordered_remove (unsigned ix)
0823efed 998{
9771b263 999 gcc_checking_assert (ix < length());
26da79f5
JJ
1000 T *slot = &vecdata_[ix];
1001 memmove (slot, slot + 1, (--vecpfx_.num_ - ix) * sizeof (T));
9771b263
DN
1002}
1003
1004
1005/* Remove an element from the IXth position of this vector. Ordering of
1006 remaining elements is destroyed. This is an O(1) operation. */
1007
1008template<typename T, typename A>
1009inline void
1010vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1011{
1012 gcc_checking_assert (ix < length());
26da79f5 1013 vecdata_[ix] = vecdata_[--vecpfx_.num_];
9771b263
DN
1014}
1015
1016
1017/* Remove LEN elements starting at the IXth. Ordering is retained.
1018 This is an O(N) operation due to memmove. */
1019
1020template<typename T, typename A>
1021inline void
1022vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1023{
1024 gcc_checking_assert (ix + len <= length());
26da79f5
JJ
1025 T *slot = &vecdata_[ix];
1026 vecpfx_.num_ -= len;
1027 memmove (slot, slot + len, (vecpfx_.num_ - ix) * sizeof (T));
9771b263
DN
1028}
1029
1030
1031/* Sort the contents of this vector with qsort. CMP is the comparison
1032 function to pass to qsort. */
1033
1034template<typename T, typename A>
1035inline void
1036vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1037{
1038 ::qsort (address(), length(), sizeof (T), cmp);
1039}
1040
1041
1042/* Find and return the first position in which OBJ could be inserted
1043 without changing the ordering of this vector. LESSTHAN is a
1044 function that returns true if the first argument is strictly less
1045 than the second. */
1046
1047template<typename T, typename A>
1048unsigned
1049vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1050 const
1051{
1052 unsigned int len = length ();
1053 unsigned int half, middle;
1054 unsigned int first = 0;
1055 while (len > 0)
0823efed 1056 {
9771b263
DN
1057 half = len / 2;
1058 middle = first;
1059 middle += half;
1060 T middle_elem = (*this)[middle];
1061 if (lessthan (middle_elem, obj))
1062 {
1063 first = middle;
1064 ++first;
1065 len = len - half - 1;
1066 }
1067 else
1068 len = half;
0823efed 1069 }
9771b263 1070 return first;
0823efed
DN
1071}
1072
0823efed 1073
9771b263
DN
1074/* Return the number of bytes needed to embed an instance of an
1075 embeddable vec inside another data structure.
bd0c3bfd 1076
9771b263
DN
1077 Use these methods to determine the required size and initialization
1078 of a vector V of type T embedded within another structure (as the
1079 final member):
1080
1081 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1082 void v->embedded_init(unsigned alloc, unsigned num);
1083
1084 These allow the caller to perform the memory allocation. */
1085
1086template<typename T, typename A>
1087inline size_t
1088vec<T, A, vl_embed>::embedded_size (unsigned alloc)
0823efed 1089{
9771b263 1090 typedef vec<T, A, vl_embed> vec_embedded;
26da79f5 1091 return offsetof (vec_embedded, vecdata_) + alloc * sizeof (T);
0823efed
DN
1092}
1093
ada55151 1094
9771b263
DN
1095/* Initialize the vector to contain room for ALLOC elements and
1096 NUM active elements. */
bd0c3bfd 1097
9771b263
DN
1098template<typename T, typename A>
1099inline void
1100vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num)
0823efed 1101{
26da79f5
JJ
1102 vecpfx_.alloc_ = alloc;
1103 vecpfx_.num_ = num;
0823efed
DN
1104}
1105
ada55151 1106
9771b263
DN
1107/* Grow the vector to a specific length. LEN must be as long or longer than
1108 the current length. The new elements are uninitialized. */
0823efed 1109
9771b263
DN
1110template<typename T, typename A>
1111inline void
1112vec<T, A, vl_embed>::quick_grow (unsigned len)
0823efed 1113{
26da79f5
JJ
1114 gcc_checking_assert (length () <= len && len <= vecpfx_.alloc_);
1115 vecpfx_.num_ = len;
0823efed
DN
1116}
1117
ada55151 1118
9771b263
DN
1119/* Grow the vector to a specific length. LEN must be as long or longer than
1120 the current length. The new elements are initialized to zero. */
0823efed 1121
9771b263
DN
1122template<typename T, typename A>
1123inline void
1124vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
0823efed 1125{
9771b263
DN
1126 unsigned oldlen = length ();
1127 quick_grow (len);
1128 memset (&(address()[oldlen]), 0, sizeof (T) * (len - oldlen));
0823efed
DN
1129}
1130
d4e6fecb 1131
9771b263 1132/* Garbage collection support for vec<T, A, vl_embed>. */
d4e6fecb 1133
bd0c3bfd 1134template<typename T>
bd0c3bfd 1135void
9771b263 1136gt_ggc_mx (vec<T, va_gc> *v)
0823efed 1137{
9771b263
DN
1138 extern void gt_ggc_mx (T &);
1139 for (unsigned i = 0; i < v->length (); i++)
1140 gt_ggc_mx ((*v)[i]);
0823efed
DN
1141}
1142
bd0c3bfd 1143template<typename T>
bd0c3bfd 1144void
9771b263 1145gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
0823efed 1146{
9771b263
DN
1147 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1148 be traversed. */
0823efed
DN
1149}
1150
a590ac65 1151
9771b263 1152/* PCH support for vec<T, A, vl_embed>. */
0823efed 1153
9771b263 1154template<typename T, typename A>
bd0c3bfd 1155void
9771b263 1156gt_pch_nx (vec<T, A, vl_embed> *v)
0823efed 1157{
9771b263
DN
1158 extern void gt_pch_nx (T &);
1159 for (unsigned i = 0; i < v->length (); i++)
1160 gt_pch_nx ((*v)[i]);
0823efed
DN
1161}
1162
9771b263
DN
1163template<typename T, typename A>
1164void
1165gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1166{
1167 for (unsigned i = 0; i < v->length (); i++)
1168 op (&((*v)[i]), cookie);
1169}
ada55151 1170
9771b263 1171template<typename T, typename A>
bd0c3bfd 1172void
9771b263 1173gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
bd0c3bfd 1174{
9771b263
DN
1175 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1176 for (unsigned i = 0; i < v->length (); i++)
1177 gt_pch_nx (&((*v)[i]), op, cookie);
bd0c3bfd 1178}
9ba5ff0f 1179
bd0c3bfd 1180
9771b263
DN
1181/* Space efficient vector. These vectors can grow dynamically and are
1182 allocated together with their control data. They are suited to be
1183 included in data structures. Prior to initial allocation, they
1184 only take a single word of storage.
1185
1186 These vectors are implemented as a pointer to an embeddable vector.
1187 The semantics allow for this pointer to be NULL to represent empty
1188 vectors. This way, empty vectors occupy minimal space in the
1189 structure containing them.
1190
1191 Properties:
1192
1193 - The whole vector and control data are allocated in a single
1194 contiguous block.
1195 - The whole vector may be re-allocated.
1196 - Vector data may grow and shrink.
1197 - Access and manipulation requires a pointer test and
1198 indirection.
1199 - It requires 1 word of storage (prior to vector allocation).
1200
1201
1202 Limitations:
1203
1204 These vectors must be PODs because they are stored in unions.
1205 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1206 As long as we use C++03, we cannot have constructors nor
1207 destructors in classes that are stored in unions. */
1208
1209template<typename T, typename A>
18e1fd75 1210struct vec<T, A, vl_ptr>
9771b263
DN
1211{
1212public:
1213 /* Memory allocation and deallocation for the embedded vector.
1214 Needed because we cannot have proper ctors/dtors defined. */
1215 void create (unsigned nelems CXX_MEM_STAT_INFO);
1216 void release (void);
1217
1218 /* Vector operations. */
1219 bool exists (void) const
26da79f5 1220 { return vec_ != NULL; }
9771b263
DN
1221
1222 bool is_empty (void) const
26da79f5 1223 { return vec_ ? vec_->is_empty() : true; }
9771b263
DN
1224
1225 unsigned length (void) const
26da79f5 1226 { return vec_ ? vec_->length() : 0; }
9771b263
DN
1227
1228 T *address (void)
26da79f5 1229 { return vec_ ? vec_->vecdata_ : NULL; }
9771b263
DN
1230
1231 const T *address (void) const
26da79f5 1232 { return vec_ ? vec_->vecdata_ : NULL; }
9771b263
DN
1233
1234 const T &operator[] (unsigned ix) const
26da79f5 1235 { return (*vec_)[ix]; }
9771b263
DN
1236
1237 bool operator!=(const vec &other) const
1238 { return !(*this == other); }
1239
1240 bool operator==(const vec &other) const
1241 { return address() == other.address(); }
1242
1243 T &operator[] (unsigned ix)
26da79f5 1244 { return (*vec_)[ix]; }
9771b263
DN
1245
1246 T &last (void)
26da79f5 1247 { return vec_->last(); }
9771b263
DN
1248
1249 bool space (int nelems) const
26da79f5 1250 { return vec_ ? vec_->space (nelems) : nelems == 0; }
9771b263
DN
1251
1252 bool iterate (unsigned ix, T *p) const;
1253 bool iterate (unsigned ix, T **p) const;
1254 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1255 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1256 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1257 void splice (vec &);
1258 void safe_splice (vec & CXX_MEM_STAT_INFO);
1259 T *quick_push (const T &);
1260 T *safe_push (const T &CXX_MEM_STAT_INFO);
1261 T &pop (void);
1262 void truncate (unsigned);
1263 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1264 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1265 void quick_grow (unsigned);
1266 void quick_grow_cleared (unsigned);
1267 void quick_insert (unsigned, const T &);
1268 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1269 void ordered_remove (unsigned);
1270 void unordered_remove (unsigned);
1271 void block_remove (unsigned, unsigned);
1272 void qsort (int (*) (const void *, const void *));
1273 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1274
1275 template<typename T1>
1276 friend void va_stack::alloc(vec<T1, va_stack, vl_ptr>&, unsigned,
1277 vec<T1, va_stack, vl_embed> *);
1278
38f2ca32
DN
1279 /* FIXME - This field should be private, but we need to cater to
1280 compilers that have stricter notions of PODness for types. */
26da79f5 1281 vec<T, A, vl_embed> *vec_;
9771b263
DN
1282};
1283
1284
1285/* Empty specialization for GC allocation. This will prevent GC
1286 vectors from using the vl_ptr layout. FIXME: This is needed to
1287 circumvent limitations in the GTY machinery. */
bd0c3bfd 1288
0823efed 1289template<typename T>
18e1fd75 1290struct vec<T, va_gc, vl_ptr>
0823efed 1291{
9771b263 1292};
0823efed 1293
ada55151 1294
9771b263
DN
1295/* Allocate heap memory for pointer V and create the internal vector
1296 with space for NELEMS elements. If NELEMS is 0, the internal
1297 vector is initialized to empty. */
9ba5ff0f 1298
0823efed 1299template<typename T>
9771b263 1300inline void
18e1fd75 1301vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
0823efed 1302{
9771b263
DN
1303 v = new vec<T>;
1304 v->create (nelems PASS_MEM_STAT);
0823efed
DN
1305}
1306
ada55151 1307
9771b263 1308/* Conditionally allocate heap memory for VEC and its internal vector. */
9ba5ff0f 1309
0823efed 1310template<typename T>
9771b263 1311inline void
18e1fd75 1312vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
0823efed 1313{
9771b263
DN
1314 if (!vec)
1315 vec_alloc (vec, nelems PASS_MEM_STAT);
0823efed
DN
1316}
1317
ada55151 1318
9771b263 1319/* Free the heap memory allocated by vector V and set it to NULL. */
9e28024a 1320
0823efed 1321template<typename T>
9771b263
DN
1322inline void
1323vec_free (vec<T> *&v)
0823efed 1324{
9771b263
DN
1325 if (v == NULL)
1326 return;
1327
1328 v->release ();
1329 delete v;
1330 v = NULL;
0823efed 1331}
9ba5ff0f 1332
aaaa46d2 1333
9771b263
DN
1334/* Allocate a new stack vector with space for exactly NELEMS objects.
1335 If NELEMS is zero, NO vector is created.
b8698a0f 1336
9771b263
DN
1337 For the stack allocator, no memory is really allocated. The vector
1338 is initialized to be at address SPACE and contain NELEMS slots.
1339 Memory allocation actually occurs in the expansion of VEC_alloc.
58152808 1340
9771b263
DN
1341 Usage notes:
1342
1343 * This does not allocate an instance of vec<T, A>. It allocates the
1344 actual vector of elements (i.e., vec<T, A, vl_embed>) inside a
1345 vec<T, A> instance.
1346
1347 * This allocator must always be a macro:
1348
1349 We support a vector which starts out with space on the stack and
1350 switches to heap space when forced to reallocate. This works a
1351 little differently. In the case of stack vectors, vec_alloc will
1352 expand to a call to vec_alloc_1 that calls XALLOCAVAR to request
1353 the initial allocation. This uses alloca to get the initial
1354 space. Since alloca can not be usefully called in an inline
1355 function, vec_alloc must always be a macro.
1356
1357 Important limitations of stack vectors:
1358
1359 - Only the initial allocation will be made using alloca, so pass
1360 a reasonable estimate that doesn't use too much stack space;
1361 don't pass zero.
1362
1363 - Don't return a stack-allocated vector from the function which
1364 allocated it. */
1365
1366#define vec_stack_alloc(T,V,N) \
1367 do { \
1368 typedef vec<T, va_stack, vl_embed> stackv; \
1369 va_stack::alloc (V, N, XALLOCAVAR (stackv, stackv::embedded_size (N)));\
1370 } while (0)
1371
1372
1373/* Return iteration condition and update PTR to point to the IX'th
1374 element of this vector. Use this to iterate over the elements of a
1375 vector as follows,
1376
1377 for (ix = 0; v.iterate(ix, &ptr); ix++)
1378 continue; */
1379
1380template<typename T, typename A>
1381inline bool
1382vec<T, A, vl_ptr>::iterate (unsigned ix, T *ptr) const
fc64b448 1383{
26da79f5
JJ
1384 if (vec_)
1385 return vec_->iterate (ix, ptr);
9771b263 1386 else
0823efed 1387 {
9771b263
DN
1388 *ptr = 0;
1389 return false;
0823efed 1390 }
a0ef884f
NS
1391}
1392
bd0c3bfd 1393
9771b263
DN
1394/* Return iteration condition and update *PTR to point to the
1395 IX'th element of this vector. Use this to iterate over the
1396 elements of a vector as follows,
1397
1398 for (ix = 0; v->iterate(ix, &ptr); ix++)
1399 continue;
c2569604 1400
9771b263 1401 This variant is for vectors of objects. */
c2569604 1402
9771b263
DN
1403template<typename T, typename A>
1404inline bool
1405vec<T, A, vl_ptr>::iterate (unsigned ix, T **ptr) const
0823efed 1406{
26da79f5
JJ
1407 if (vec_)
1408 return vec_->iterate (ix, ptr);
9771b263 1409 else
bd0c3bfd 1410 {
9771b263
DN
1411 *ptr = 0;
1412 return false;
bd0c3bfd 1413 }
9771b263
DN
1414}
1415
1416
1417/* Convenience macro for forward iteration. */
1418#define FOR_EACH_VEC_ELT(V, I, P) \
1419 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1420
1421#define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1422 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1423
1424/* Likewise, but start from FROM rather than 0. */
1425#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1426 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
bd0c3bfd 1427
9771b263
DN
1428/* Convenience macro for reverse iteration. */
1429#define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1430 for (I = (V).length () - 1; \
1431 (V).iterate ((I), &(P)); \
1432 (I)--)
1433
1434#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1435 for (I = vec_safe_length (V) - 1; \
1436 vec_safe_iterate ((V), (I), &(P)); \
1437 (I)--)
1438
1439
1440/* Return a copy of this vector. */
1441
1442template<typename T, typename A>
1443inline vec<T, A, vl_ptr>
1444vec<T, A, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1445{
6e1aa848 1446 vec<T, A, vl_ptr> new_vec = vNULL;
9771b263 1447 if (length ())
26da79f5 1448 new_vec.vec_ = vec_->copy ();
9771b263 1449 return new_vec;
c2569604
ILT
1450}
1451
c2569604 1452
9771b263
DN
1453/* Ensure that the vector has at least RESERVE slots available (if
1454 EXACT is false), or exactly RESERVE slots available (if EXACT is
1455 true).
c2569604 1456
9771b263
DN
1457 This may create additional headroom if EXACT is false.
1458
1459 Note that this can cause the embedded vector to be reallocated.
1460 Returns true iff reallocation actually occurred. */
1461
1462template<typename T, typename A>
1463inline bool
1464vec<T, A, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
0823efed 1465{
9771b263
DN
1466 bool extend = nelems ? !space (nelems) : false;
1467 if (extend)
26da79f5 1468 A::reserve (vec_, nelems, exact PASS_MEM_STAT);
9771b263
DN
1469 return extend;
1470}
1471
bd0c3bfd 1472
9771b263
DN
1473/* Ensure that this vector has exactly NELEMS slots available. This
1474 will not create additional headroom. Note this can cause the
1475 embedded vector to be reallocated. Returns true iff reallocation
1476 actually occurred. */
bd0c3bfd 1477
9771b263
DN
1478template<typename T, typename A>
1479inline bool
1480vec<T, A, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1481{
1482 return reserve (nelems, true PASS_MEM_STAT);
1483}
1484
1485
1486/* Create the internal vector and reserve NELEMS for it. This is
1487 exactly like vec::reserve, but the internal vector is
1488 unconditionally allocated from scratch. The old one, if it
1489 existed, is lost. */
1490
1491template<typename T, typename A>
1492inline void
1493vec<T, A, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1494{
26da79f5 1495 vec_ = NULL;
9771b263
DN
1496 if (nelems > 0)
1497 reserve_exact (nelems PASS_MEM_STAT);
1498}
1499
1500
1501/* Free the memory occupied by the embedded vector. */
1502
1503template<typename T, typename A>
1504inline void
1505vec<T, A, vl_ptr>::release (void)
1506{
26da79f5
JJ
1507 if (vec_)
1508 A::release (vec_);
9771b263
DN
1509}
1510
1511
1512/* Copy the elements from SRC to the end of this vector as if by memcpy.
1513 SRC and this vector must be allocated with the same memory
1514 allocation mechanism. This vector is assumed to have sufficient
1515 headroom available. */
1516
1517template<typename T, typename A>
1518inline void
1519vec<T, A, vl_ptr>::splice (vec<T, A, vl_ptr> &src)
1520{
26da79f5
JJ
1521 if (src.vec_)
1522 vec_->splice (*(src.vec_));
9771b263
DN
1523}
1524
1525
1526/* Copy the elements in SRC to the end of this vector as if by memcpy.
1527 SRC and this vector must be allocated with the same mechanism.
1528 If there is not enough headroom in this vector, it will be reallocated
1529 as needed. */
1530
1531template<typename T, typename A>
1532inline void
1533vec<T, A, vl_ptr>::safe_splice (vec<T, A, vl_ptr> &src MEM_STAT_DECL)
1534{
1535 if (src.length())
0823efed 1536 {
9771b263
DN
1537 reserve_exact (src.length());
1538 splice (src);
0823efed 1539 }
9771b263
DN
1540}
1541
1542
1543/* Push OBJ (a new element) onto the end of the vector. There must be
1544 sufficient space in the vector. Return a pointer to the slot
1545 where OBJ was inserted. */
1546
1547template<typename T, typename A>
1548inline T *
1549vec<T, A, vl_ptr>::quick_push (const T &obj)
1550{
26da79f5 1551 return vec_->quick_push (obj);
9771b263
DN
1552}
1553
1554
1555/* Push a new element OBJ onto the end of this vector. Reallocates
1556 the embedded vector, if needed. Return a pointer to the slot where
1557 OBJ was inserted. */
1558
1559template<typename T, typename A>
1560inline T *
1561vec<T, A, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1562{
1563 reserve (1, false PASS_MEM_STAT);
1564 return quick_push (obj);
1565}
1566
bd0c3bfd 1567
9771b263
DN
1568/* Pop and return the last element off the end of the vector. */
1569
1570template<typename T, typename A>
1571inline T &
1572vec<T, A, vl_ptr>::pop (void)
1573{
26da79f5 1574 return vec_->pop ();
9771b263
DN
1575}
1576
1577
1578/* Set the length of the vector to LEN. The new length must be less
1579 than or equal to the current length. This is an O(1) operation. */
1580
1581template<typename T, typename A>
1582inline void
1583vec<T, A, vl_ptr>::truncate (unsigned size)
1584{
26da79f5
JJ
1585 if (vec_)
1586 vec_->truncate (size);
9771b263
DN
1587 else
1588 gcc_checking_assert (size == 0);
1589}
1590
1591
1592/* Grow the vector to a specific length. LEN must be as long or
1593 longer than the current length. The new elements are
1594 uninitialized. Reallocate the internal vector, if needed. */
1595
1596template<typename T, typename A>
1597inline void
1598vec<T, A, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1599{
1600 unsigned oldlen = length ();
1601 gcc_checking_assert (oldlen <= len);
1602 reserve_exact (len - oldlen PASS_MEM_STAT);
26da79f5 1603 vec_->quick_grow (len);
9771b263
DN
1604}
1605
1606
1607/* Grow the embedded vector to a specific length. LEN must be as
1608 long or longer than the current length. The new elements are
1609 initialized to zero. Reallocate the internal vector, if needed. */
1610
1611template<typename T, typename A>
1612inline void
1613vec<T, A, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1614{
1615 unsigned oldlen = length ();
1616 safe_grow (len PASS_MEM_STAT);
1617 memset (&(address()[oldlen]), 0, sizeof (T) * (len - oldlen));
1618}
1619
1620
1621/* Same as vec::safe_grow but without reallocation of the internal vector.
1622 If the vector cannot be extended, a runtime assertion will be triggered. */
1623
1624template<typename T, typename A>
1625inline void
1626vec<T, A, vl_ptr>::quick_grow (unsigned len)
1627{
26da79f5
JJ
1628 gcc_checking_assert (vec_);
1629 vec_->quick_grow (len);
9771b263
DN
1630}
1631
1632
1633/* Same as vec::quick_grow_cleared but without reallocation of the
1634 internal vector. If the vector cannot be extended, a runtime
1635 assertion will be triggered. */
1636
1637template<typename T, typename A>
1638inline void
1639vec<T, A, vl_ptr>::quick_grow_cleared (unsigned len)
1640{
26da79f5
JJ
1641 gcc_checking_assert (vec_);
1642 vec_->quick_grow_cleared (len);
9771b263
DN
1643}
1644
1645
1646/* Insert an element, OBJ, at the IXth position of this vector. There
1647 must be sufficient space. */
1648
1649template<typename T, typename A>
1650inline void
1651vec<T, A, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1652{
26da79f5 1653 vec_->quick_insert (ix, obj);
9771b263
DN
1654}
1655
1656
1657/* Insert an element, OBJ, at the IXth position of the vector.
1658 Reallocate the embedded vector, if necessary. */
1659
1660template<typename T, typename A>
1661inline void
1662vec<T, A, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1663{
1664 reserve (1, false PASS_MEM_STAT);
1665 quick_insert (ix, obj);
1666}
1667
1668
1669/* Remove an element from the IXth position of this vector. Ordering of
1670 remaining elements is preserved. This is an O(N) operation due to
1671 a memmove. */
1672
1673template<typename T, typename A>
1674inline void
1675vec<T, A, vl_ptr>::ordered_remove (unsigned ix)
1676{
26da79f5 1677 vec_->ordered_remove (ix);
9771b263
DN
1678}
1679
1680
1681/* Remove an element from the IXth position of this vector. Ordering
1682 of remaining elements is destroyed. This is an O(1) operation. */
1683
1684template<typename T, typename A>
1685inline void
1686vec<T, A, vl_ptr>::unordered_remove (unsigned ix)
1687{
26da79f5 1688 vec_->unordered_remove (ix);
9771b263
DN
1689}
1690
1691
1692/* Remove LEN elements starting at the IXth. Ordering is retained.
1693 This is an O(N) operation due to memmove. */
1694
1695template<typename T, typename A>
1696inline void
1697vec<T, A, vl_ptr>::block_remove (unsigned ix, unsigned len)
1698{
26da79f5 1699 vec_->block_remove (ix, len);
9771b263
DN
1700}
1701
1702
1703/* Sort the contents of this vector with qsort. CMP is the comparison
1704 function to pass to qsort. */
1705
1706template<typename T, typename A>
1707inline void
1708vec<T, A, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1709{
26da79f5
JJ
1710 if (vec_)
1711 vec_->qsort (cmp);
9771b263
DN
1712}
1713
1714
1715/* Find and return the first position in which OBJ could be inserted
1716 without changing the ordering of this vector. LESSTHAN is a
1717 function that returns true if the first argument is strictly less
1718 than the second. */
1719
1720template<typename T, typename A>
1721inline unsigned
38f2ca32
DN
1722vec<T, A, vl_ptr>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1723 const
9771b263 1724{
26da79f5 1725 return vec_ ? vec_->lower_bound (obj, lessthan) : 0;
c2569604
ILT
1726}
1727
26da79f5
JJ
1728#if (GCC_VERSION >= 3000)
1729# pragma GCC poison vec_ vecpfx_ vecdata_
1730#endif
1731
9771b263 1732#endif // GCC_VEC_H
This page took 4.251242 seconds and 5 git commands to generate.