]>
Commit | Line | Data |
---|---|---|
ada55151 | 1 | /* Vector API for GNU compiler. |
66647d44 | 2 | Copyright (C) 2004, 2005, 2007, 2008 Free Software Foundation, Inc. |
ada55151 NS |
3 | Contributed by Nathan Sidwell <nathan@codesourcery.com> |
4 | ||
5 | This file is part of GCC. | |
6 | ||
7 | GCC is free software; you can redistribute it and/or modify it under | |
8 | the terms of the GNU General Public License as published by the Free | |
9dcd6f09 | 9 | Software Foundation; either version 3, or (at your option) any later |
ada55151 NS |
10 | version. |
11 | ||
12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 | for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
9dcd6f09 NC |
18 | along with GCC; see the file COPYING3. If not see |
19 | <http://www.gnu.org/licenses/>. */ | |
ada55151 NS |
20 | |
21 | #ifndef GCC_VEC_H | |
22 | #define GCC_VEC_H | |
23 | ||
24 | /* The macros here implement a set of templated vector types and | |
25 | associated interfaces. These templates are implemented with | |
26 | macros, as we're not in C++ land. The interface functions are | |
27 | typesafe and use static inline functions, sometimes backed by | |
28 | out-of-line generic functions. The vectors are designed to | |
29 | interoperate with the GTY machinery. | |
30 | ||
a0ef884f NS |
31 | Because of the different behavior of structure objects, scalar |
32 | objects and of pointers, there are three flavors, one for each of | |
33 | these variants. Both the structure object and pointer variants | |
34 | pass pointers to objects around -- in the former case the pointers | |
35 | are stored into the vector and in the latter case the pointers are | |
36 | dereferenced and the objects copied into the vector. The scalar | |
37 | object variant is suitable for int-like objects, and the vector | |
38 | elements are returned by value. | |
ada55151 | 39 | |
9ba5ff0f NS |
40 | There are both 'index' and 'iterate' accessors. The iterator |
41 | returns a boolean iteration condition and updates the iteration | |
42 | variable passed by reference. Because the iterator will be | |
43 | inlined, the address-of can be optimized away. | |
44 | ||
ada55151 NS |
45 | The vectors are implemented using the trailing array idiom, thus |
46 | they are not resizeable without changing the address of the vector | |
47 | object itself. This means you cannot have variables or fields of | |
48 | vector type -- always use a pointer to a vector. The one exception | |
49 | is the final field of a structure, which could be a vector type. | |
a064479c NS |
50 | You will have to use the embedded_size & embedded_init calls to |
51 | create such objects, and they will probably not be resizeable (so | |
52 | don't use the 'safe' allocation variants). The trailing array | |
53 | idiom is used (rather than a pointer to an array of data), because, | |
54 | if we allow NULL to also represent an empty vector, empty vectors | |
55 | occupy minimal space in the structure containing them. | |
ada55151 NS |
56 | |
57 | Each operation that increases the number of active elements is | |
58 | available in 'quick' and 'safe' variants. The former presumes that | |
59 | there is sufficient allocated space for the operation to succeed | |
0e61db61 | 60 | (it dies if there is not). The latter will reallocate the |
ada55151 NS |
61 | vector, if needed. Reallocation causes an exponential increase in |
62 | vector size. If you know you will be adding N elements, it would | |
63 | be more efficient to use the reserve operation before adding the | |
d4e6fecb NS |
64 | elements with the 'quick' operation. This will ensure there are at |
65 | least as many elements as you ask for, it will exponentially | |
66 | increase if there are too few spare slots. If you want reserve a | |
67 | specific number of slots, but do not want the exponential increase | |
efb7e1e0 ILT |
68 | (for instance, you know this is the last allocation), use the |
69 | reserve_exact operation. You can also create a vector of a | |
d4e6fecb | 70 | specific size from the get go. |
ada55151 NS |
71 | |
72 | You should prefer the push and pop operations, as they append and | |
a064479c NS |
73 | remove from the end of the vector. If you need to remove several |
74 | items in one go, use the truncate operation. The insert and remove | |
ada55151 NS |
75 | operations allow you to change elements in the middle of the |
76 | vector. There are two remove operations, one which preserves the | |
77 | element ordering 'ordered_remove', and one which does not | |
78 | 'unordered_remove'. The latter function copies the end element | |
d4e6fecb NS |
79 | into the removed slot, rather than invoke a memmove operation. The |
80 | 'lower_bound' function will determine where to place an item in the | |
58152808 | 81 | array using insert that will maintain sorted order. |
9ba5ff0f | 82 | |
d4e6fecb NS |
83 | When a vector type is defined, first a non-memory managed version |
84 | is created. You can then define either or both garbage collected | |
85 | and heap allocated versions. The allocation mechanism is specified | |
86 | when the type is defined, and is therefore part of the type. If | |
87 | you need both gc'd and heap allocated versions, you still must have | |
88 | *exactly* one definition of the common non-memory managed base vector. | |
4c254e68 | 89 | |
9ba5ff0f NS |
90 | If you need to directly manipulate a vector, then the 'address' |
91 | accessor will return the address of the start of the vector. Also | |
92 | the 'space' predicate will tell you whether there is spare capacity | |
93 | in the vector. You will not normally need to use these two functions. | |
ada55151 | 94 | |
a0ef884f | 95 | Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to |
d4e6fecb | 96 | get the non-memory allocation version, and then a |
a0ef884f | 97 | DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed |
d4e6fecb NS |
98 | vectors. Variables of vector type are declared using a |
99 | VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the | |
100 | allocation strategy, and can be either 'gc' or 'heap' for garbage | |
101 | collected and heap allocated respectively. It can be 'none' to get | |
102 | a vector that must be explicitly allocated (for instance as a | |
a0ef884f NS |
103 | trailing array of another structure). The characters O, P and I |
104 | indicate whether TYPEDEF is a pointer (P), object (O) or integral | |
105 | (I) type. Be careful to pick the correct one, as you'll get an | |
106 | awkward and inefficient API if you use the wrong one. There is a | |
107 | check, which results in a compile-time warning, for the P and I | |
108 | versions, but there is no check for the O versions, as that is not | |
109 | possible in plain C. Due to the way GTY works, you must annotate | |
110 | any structures you wish to insert or reference from a vector with a | |
111 | GTY(()) tag. You need to do this even if you never declare the GC | |
112 | allocated variants. | |
ada55151 NS |
113 | |
114 | An example of their use would be, | |
115 | ||
d4e6fecb NS |
116 | DEF_VEC_P(tree); // non-managed tree vector. |
117 | DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must | |
118 | // appear at file scope. | |
ada55151 NS |
119 | |
120 | struct my_struct { | |
d4e6fecb | 121 | VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers. |
ada55151 NS |
122 | }; |
123 | ||
124 | struct my_struct *s; | |
125 | ||
2272d9cf | 126 | if (VEC_length(tree,s->v)) { we have some contents } |
d4e6fecb | 127 | VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end |
2a68a7de BE |
128 | for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++) |
129 | { do something with elt } | |
ada55151 NS |
130 | |
131 | */ | |
132 | ||
133 | /* Macros to invoke API calls. A single macro works for both pointer | |
134 | and object vectors, but the argument and return types might well be | |
d4e6fecb NS |
135 | different. In each macro, T is the typedef of the vector elements, |
136 | and A is the allocation strategy. The allocation strategy is only | |
137 | present when it is required. Some of these macros pass the vector, | |
138 | V, by reference (by taking its address), this is noted in the | |
139 | descriptions. */ | |
ada55151 NS |
140 | |
141 | /* Length of vector | |
3cbf09de | 142 | unsigned VEC_T_length(const VEC(T) *v); |
ada55151 NS |
143 | |
144 | Return the number of active elements in V. V can be NULL, in which | |
145 | case zero is returned. */ | |
9ba5ff0f | 146 | |
d4e6fecb | 147 | #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V))) |
ada55151 | 148 | |
4038c495 GB |
149 | |
150 | /* Check if vector is empty | |
151 | int VEC_T_empty(const VEC(T) *v); | |
152 | ||
a4d05547 | 153 | Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ |
4038c495 GB |
154 | |
155 | #define VEC_empty(T,V) (VEC_length (T,V) == 0) | |
156 | ||
157 | ||
ada55151 | 158 | /* Get the final element of the vector. |
a0ef884f | 159 | T VEC_T_last(VEC(T) *v); // Integer |
ada55151 NS |
160 | T VEC_T_last(VEC(T) *v); // Pointer |
161 | T *VEC_T_last(VEC(T) *v); // Object | |
162 | ||
0e61db61 | 163 | Return the final element. V must not be empty. */ |
9ba5ff0f | 164 | |
d4e6fecb | 165 | #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO)) |
ada55151 NS |
166 | |
167 | /* Index into vector | |
a0ef884f | 168 | T VEC_T_index(VEC(T) *v, unsigned ix); // Integer |
3cbf09de NS |
169 | T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer |
170 | T *VEC_T_index(VEC(T) *v, unsigned ix); // Object | |
ada55151 | 171 | |
0e61db61 | 172 | Return the IX'th element. If IX must be in the domain of V. */ |
9ba5ff0f | 173 | |
d4e6fecb | 174 | #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO)) |
ada55151 NS |
175 | |
176 | /* Iterate over vector | |
a0ef884f | 177 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer |
3cbf09de NS |
178 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer |
179 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object | |
ada55151 | 180 | |
9ba5ff0f NS |
181 | Return iteration condition and update PTR to point to the IX'th |
182 | element. At the end of iteration, sets PTR to NULL. Use this to | |
183 | iterate over the elements of a vector as follows, | |
ada55151 | 184 | |
9ba5ff0f | 185 | for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) |
ada55151 | 186 | continue; */ |
9ba5ff0f | 187 | |
d4e6fecb | 188 | #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P))) |
ada55151 NS |
189 | |
190 | /* Allocate new vector. | |
d4e6fecb | 191 | VEC(T,A) *VEC_T_A_alloc(int reserve); |
ada55151 | 192 | |
7de5bccc | 193 | Allocate a new vector with space for RESERVE objects. If RESERVE |
d4e6fecb | 194 | is zero, NO vector is created. */ |
9ba5ff0f | 195 | |
d4e6fecb | 196 | #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO)) |
ada55151 | 197 | |
4c254e68 | 198 | /* Free a vector. |
d4e6fecb | 199 | void VEC_T_A_free(VEC(T,A) *&); |
4c254e68 NS |
200 | |
201 | Free a vector and set it to NULL. */ | |
202 | ||
d4e6fecb | 203 | #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V)) |
4c254e68 | 204 | |
a064479c NS |
205 | /* Use these to determine the required size and initialization of a |
206 | vector embedded within another structure (as the final member). | |
207 | ||
7de5bccc NS |
208 | size_t VEC_T_embedded_size(int reserve); |
209 | void VEC_T_embedded_init(VEC(T) *v, int reserve); | |
a064479c NS |
210 | |
211 | These allow the caller to perform the memory allocation. */ | |
9ba5ff0f | 212 | |
d4e6fecb NS |
213 | #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N)) |
214 | #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N)) | |
9ba5ff0f | 215 | |
4038c495 GB |
216 | /* Copy a vector. |
217 | VEC(T,A) *VEC_T_A_copy(VEC(T) *); | |
218 | ||
219 | Copy the live elements of a vector into a new vector. The new and | |
a4174ebf | 220 | old vectors need not be allocated by the same mechanism. */ |
4038c495 GB |
221 | |
222 | #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO)) | |
223 | ||
9ba5ff0f NS |
224 | /* Determine if a vector has additional capacity. |
225 | ||
226 | int VEC_T_space (VEC(T) *v,int reserve) | |
227 | ||
d4e6fecb | 228 | If V has space for RESERVE additional entries, return nonzero. You |
9ba5ff0f NS |
229 | usually only need to use this if you are doing your own vector |
230 | reallocation, for instance on an embedded vector. This returns | |
8e3c61c5 | 231 | nonzero in exactly the same circumstances that VEC_T_reserve |
9ba5ff0f NS |
232 | will. */ |
233 | ||
d4e6fecb NS |
234 | #define VEC_space(T,V,R) \ |
235 | (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO)) | |
ada55151 NS |
236 | |
237 | /* Reserve space. | |
d4e6fecb | 238 | int VEC_T_A_reserve(VEC(T,A) *&v, int reserve); |
ada55151 | 239 | |
efb7e1e0 ILT |
240 | Ensure that V has at least RESERVE slots available. This will |
241 | create additional headroom. Note this can cause V to be | |
242 | reallocated. Returns nonzero iff reallocation actually | |
243 | occurred. */ | |
9ba5ff0f | 244 | |
d4e6fecb NS |
245 | #define VEC_reserve(T,A,V,R) \ |
246 | (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) | |
ada55151 | 247 | |
efb7e1e0 ILT |
248 | /* Reserve space exactly. |
249 | int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve); | |
250 | ||
251 | Ensure that V has at least RESERVE slots available. This will not | |
252 | create additional headroom. Note this can cause V to be | |
253 | reallocated. Returns nonzero iff reallocation actually | |
254 | occurred. */ | |
255 | ||
256 | #define VEC_reserve_exact(T,A,V,R) \ | |
257 | (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO)) | |
258 | ||
ada55151 | 259 | /* Push object with no reallocation |
a0ef884f | 260 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer |
ada55151 NS |
261 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer |
262 | T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object | |
263 | ||
264 | Push a new element onto the end, returns a pointer to the slot | |
265 | filled in. For object vectors, the new value can be NULL, in which | |
0e61db61 NS |
266 | case NO initialization is performed. There must |
267 | be sufficient space in the vector. */ | |
9ba5ff0f | 268 | |
d4e6fecb NS |
269 | #define VEC_quick_push(T,V,O) \ |
270 | (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO)) | |
ada55151 NS |
271 | |
272 | /* Push object with reallocation | |
a0ef884f | 273 | T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer |
d4e6fecb NS |
274 | T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer |
275 | T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object | |
ada55151 NS |
276 | |
277 | Push a new element onto the end, returns a pointer to the slot | |
278 | filled in. For object vectors, the new value can be NULL, in which | |
279 | case NO initialization is performed. Reallocates V, if needed. */ | |
9ba5ff0f | 280 | |
d4e6fecb NS |
281 | #define VEC_safe_push(T,A,V,O) \ |
282 | (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO)) | |
ada55151 NS |
283 | |
284 | /* Pop element off end | |
a0ef884f | 285 | T VEC_T_pop (VEC(T) *v); // Integer |
ada55151 NS |
286 | T VEC_T_pop (VEC(T) *v); // Pointer |
287 | void VEC_T_pop (VEC(T) *v); // Object | |
288 | ||
289 | Pop the last element off the end. Returns the element popped, for | |
290 | pointer vectors. */ | |
9ba5ff0f | 291 | |
d4e6fecb | 292 | #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO)) |
ada55151 | 293 | |
a064479c | 294 | /* Truncate to specific length |
3cbf09de | 295 | void VEC_T_truncate (VEC(T) *v, unsigned len); |
a064479c | 296 | |
d4e6fecb NS |
297 | Set the length as specified. The new length must be less than or |
298 | equal to the current length. This is an O(1) operation. */ | |
9ba5ff0f | 299 | |
d4e6fecb NS |
300 | #define VEC_truncate(T,V,I) \ |
301 | (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO)) | |
302 | ||
303 | /* Grow to a specific length. | |
304 | void VEC_T_A_safe_grow (VEC(T,A) *&v, int len); | |
305 | ||
306 | Grow the vector to a specific length. The LEN must be as | |
307 | long or longer than the current length. The new elements are | |
308 | uninitialized. */ | |
309 | ||
310 | #define VEC_safe_grow(T,A,V,I) \ | |
cdd5a1be | 311 | (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) |
a064479c | 312 | |
a590ac65 KH |
313 | /* Grow to a specific length. |
314 | void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len); | |
315 | ||
316 | Grow the vector to a specific length. The LEN must be as | |
317 | long or longer than the current length. The new elements are | |
318 | initialized to zero. */ | |
319 | ||
320 | #define VEC_safe_grow_cleared(T,A,V,I) \ | |
321 | (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO)) | |
322 | ||
ada55151 | 323 | /* Replace element |
a0ef884f | 324 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer |
3cbf09de NS |
325 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer |
326 | T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object | |
ada55151 NS |
327 | |
328 | Replace the IXth element of V with a new value, VAL. For pointer | |
329 | vectors returns the original value. For object vectors returns a | |
330 | pointer to the new value. For object vectors the new value can be | |
331 | NULL, in which case no overwriting of the slot is actually | |
332 | performed. */ | |
9ba5ff0f | 333 | |
d4e6fecb NS |
334 | #define VEC_replace(T,V,I,O) \ |
335 | (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO)) | |
ada55151 NS |
336 | |
337 | /* Insert object with no reallocation | |
a0ef884f | 338 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer |
3cbf09de NS |
339 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer |
340 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object | |
ada55151 NS |
341 | |
342 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
343 | to the slot created. For vectors of object, the new value can be | |
344 | NULL, in which case no initialization of the inserted slot takes | |
0e61db61 | 345 | place. There must be sufficient space. */ |
9ba5ff0f | 346 | |
d4e6fecb NS |
347 | #define VEC_quick_insert(T,V,I,O) \ |
348 | (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO)) | |
ada55151 NS |
349 | |
350 | /* Insert object with reallocation | |
a0ef884f | 351 | T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer |
d4e6fecb NS |
352 | T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer |
353 | T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object | |
ada55151 NS |
354 | |
355 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
356 | to the slot created. For vectors of object, the new value can be | |
357 | NULL, in which case no initialization of the inserted slot takes | |
358 | place. Reallocate V, if necessary. */ | |
9ba5ff0f | 359 | |
d4e6fecb NS |
360 | #define VEC_safe_insert(T,A,V,I,O) \ |
361 | (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO)) | |
ada55151 NS |
362 | |
363 | /* Remove element retaining order | |
a0ef884f | 364 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer |
3cbf09de NS |
365 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer |
366 | void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object | |
ada55151 NS |
367 | |
368 | Remove an element from the IXth position of V. Ordering of | |
2a7e31df | 369 | remaining elements is preserved. For pointer vectors returns the |
ada55151 | 370 | removed object. This is an O(N) operation due to a memmove. */ |
9ba5ff0f | 371 | |
d4e6fecb NS |
372 | #define VEC_ordered_remove(T,V,I) \ |
373 | (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) | |
ada55151 NS |
374 | |
375 | /* Remove element destroying order | |
a0ef884f | 376 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer |
3cbf09de NS |
377 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer |
378 | void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object | |
ada55151 NS |
379 | |
380 | Remove an element from the IXth position of V. Ordering of | |
381 | remaining elements is destroyed. For pointer vectors returns the | |
382 | removed object. This is an O(1) operation. */ | |
9ba5ff0f | 383 | |
d4e6fecb NS |
384 | #define VEC_unordered_remove(T,V,I) \ |
385 | (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO)) | |
ada55151 | 386 | |
9e28024a NS |
387 | /* Remove a block of elements |
388 | void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); | |
389 | ||
390 | Remove LEN elements starting at the IXth. Ordering is retained. | |
391 | This is an O(1) operation. */ | |
392 | ||
393 | #define VEC_block_remove(T,V,I,L) \ | |
394 | (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO)) | |
395 | ||
aaaa46d2 MM |
396 | /* Get the address of the array of elements |
397 | T *VEC_T_address (VEC(T) v) | |
398 | ||
399 | If you need to directly manipulate the array (for instance, you | |
400 | want to feed it to qsort), use this accessor. */ | |
9ba5ff0f | 401 | |
d4e6fecb | 402 | #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V))) |
aaaa46d2 | 403 | |
58152808 | 404 | /* Find the first index in the vector not less than the object. |
a0ef884f NS |
405 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
406 | bool (*lessthan) (const T, const T)); // Integer | |
58152808 DB |
407 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, |
408 | bool (*lessthan) (const T, const T)); // Pointer | |
409 | unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, | |
410 | bool (*lessthan) (const T*, const T*)); // Object | |
411 | ||
412 | Find the first position in which VAL could be inserted without | |
413 | changing the ordering of V. LESSTHAN is a function that returns | |
471854f8 | 414 | true if the first argument is strictly less than the second. */ |
58152808 | 415 | |
d4e6fecb NS |
416 | #define VEC_lower_bound(T,V,O,LT) \ |
417 | (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO)) | |
58152808 | 418 | |
ada55151 | 419 | /* Reallocate an array of elements with prefix. */ |
4c254e68 | 420 | extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL); |
efb7e1e0 | 421 | extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL); |
4c254e68 | 422 | extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
efb7e1e0 ILT |
423 | extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t |
424 | MEM_STAT_DECL); | |
d4e6fecb NS |
425 | extern void ggc_free (void *); |
426 | #define vec_gc_free(V) ggc_free (V) | |
4c254e68 | 427 | extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL); |
efb7e1e0 | 428 | extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL); |
4c254e68 | 429 | extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL); |
efb7e1e0 ILT |
430 | extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t |
431 | MEM_STAT_DECL); | |
d3492572 JH |
432 | extern void dump_vec_loc_statistics (void); |
433 | #ifdef GATHER_STATISTICS | |
434 | void vec_heap_free (void *); | |
435 | #else | |
d4e6fecb | 436 | #define vec_heap_free(V) free (V) |
d3492572 | 437 | #endif |
ada55151 NS |
438 | |
439 | #if ENABLE_CHECKING | |
9ba5ff0f NS |
440 | #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__ |
441 | #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_ | |
442 | #define VEC_CHECK_PASS ,file_,line_,function_ | |
ada55151 | 443 | |
d4e6fecb NS |
444 | #define VEC_ASSERT(EXPR,OP,T,A) \ |
445 | (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0)) | |
9ba5ff0f NS |
446 | |
447 | extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL) | |
448 | ATTRIBUTE_NORETURN; | |
449 | #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS) | |
ada55151 | 450 | #else |
9ba5ff0f NS |
451 | #define VEC_CHECK_INFO |
452 | #define VEC_CHECK_DECL | |
453 | #define VEC_CHECK_PASS | |
d4e6fecb | 454 | #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR) |
ada55151 NS |
455 | #endif |
456 | ||
4a399aef ZW |
457 | /* Note: gengtype has hardwired knowledge of the expansions of the |
458 | VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the | |
459 | expansions of these macros you may need to change gengtype too. */ | |
460 | ||
d4e6fecb NS |
461 | #define VEC(T,A) VEC_##T##_##A |
462 | #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP | |
ada55151 | 463 | |
d4e6fecb NS |
464 | /* Base of vector type, not user visible. */ |
465 | #define VEC_T(T,B) \ | |
a0ef884f NS |
466 | typedef struct VEC(T,B) \ |
467 | { \ | |
468 | unsigned num; \ | |
469 | unsigned alloc; \ | |
470 | T vec[1]; \ | |
471 | } VEC(T,B) | |
472 | ||
473 | #define VEC_T_GTY(T,B) \ | |
d1b38208 | 474 | typedef struct GTY(()) VEC(T,B) \ |
ada55151 | 475 | { \ |
3cbf09de NS |
476 | unsigned num; \ |
477 | unsigned alloc; \ | |
d4e6fecb NS |
478 | T GTY ((length ("%h.num"))) vec[1]; \ |
479 | } VEC(T,B) | |
480 | ||
481 | /* Derived vector type, user visible. */ | |
a0ef884f | 482 | #define VEC_TA_GTY(T,B,A,GTY) \ |
d1b38208 | 483 | typedef struct GTY VEC(T,A) \ |
d4e6fecb NS |
484 | { \ |
485 | VEC(T,B) base; \ | |
486 | } VEC(T,A) | |
487 | ||
70d3fcab AH |
488 | #define VEC_TA(T,B,A) \ |
489 | typedef struct VEC(T,A) \ | |
490 | { \ | |
491 | VEC(T,B) base; \ | |
492 | } VEC(T,A) | |
493 | ||
d4e6fecb NS |
494 | /* Convert to base type. */ |
495 | #define VEC_BASE(P) ((P) ? &(P)->base : 0) | |
ada55151 | 496 | |
a0ef884f | 497 | /* Vector of integer-like object. */ |
a0ef884f NS |
498 | #define DEF_VEC_I(T) \ |
499 | static inline void VEC_OP (T,must_be,integral_type) (void) \ | |
500 | { \ | |
501 | (void)~(T)0; \ | |
502 | } \ | |
503 | \ | |
504 | VEC_T(T,base); \ | |
70d3fcab | 505 | VEC_TA(T,base,none); \ |
a0ef884f NS |
506 | DEF_VEC_FUNC_P(T) \ |
507 | struct vec_swallow_trailing_semi | |
508 | #define DEF_VEC_ALLOC_I(T,A) \ | |
70d3fcab | 509 | VEC_TA(T,base,A); \ |
68486bb3 | 510 | DEF_VEC_ALLOC_FUNC_I(T,A) \ |
a0ef884f | 511 | struct vec_swallow_trailing_semi |
a0ef884f | 512 | |
ada55151 | 513 | /* Vector of pointer to object. */ |
d4e6fecb | 514 | #define DEF_VEC_P(T) \ |
a0ef884f | 515 | static inline void VEC_OP (T,must_be,pointer_type) (void) \ |
d4e6fecb | 516 | { \ |
a0ef884f | 517 | (void)((T)1 == (void *)1); \ |
d4e6fecb NS |
518 | } \ |
519 | \ | |
a0ef884f | 520 | VEC_T_GTY(T,base); \ |
70d3fcab | 521 | VEC_TA(T,base,none); \ |
a0ef884f NS |
522 | DEF_VEC_FUNC_P(T) \ |
523 | struct vec_swallow_trailing_semi | |
524 | #define DEF_VEC_ALLOC_P(T,A) \ | |
70d3fcab | 525 | VEC_TA(T,base,A); \ |
a0ef884f NS |
526 | DEF_VEC_ALLOC_FUNC_P(T,A) \ |
527 | struct vec_swallow_trailing_semi | |
a0ef884f NS |
528 | |
529 | #define DEF_VEC_FUNC_P(T) \ | |
d4e6fecb | 530 | static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ |
ada55151 NS |
531 | { \ |
532 | return vec_ ? vec_->num : 0; \ | |
533 | } \ | |
534 | \ | |
d4e6fecb NS |
535 | static inline T VEC_OP (T,base,last) \ |
536 | (const VEC(T,base) *vec_ VEC_CHECK_DECL) \ | |
ada55151 | 537 | { \ |
d4e6fecb | 538 | VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ |
ada55151 | 539 | \ |
a301e965 | 540 | return vec_->vec[vec_->num - 1]; \ |
ada55151 NS |
541 | } \ |
542 | \ | |
d4e6fecb NS |
543 | static inline T VEC_OP (T,base,index) \ |
544 | (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ | |
ada55151 | 545 | { \ |
d4e6fecb | 546 | VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ |
ada55151 NS |
547 | \ |
548 | return vec_->vec[ix_]; \ | |
549 | } \ | |
550 | \ | |
d4e6fecb NS |
551 | static inline int VEC_OP (T,base,iterate) \ |
552 | (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \ | |
ada55151 | 553 | { \ |
9ba5ff0f NS |
554 | if (vec_ && ix_ < vec_->num) \ |
555 | { \ | |
556 | *ptr = vec_->vec[ix_]; \ | |
557 | return 1; \ | |
558 | } \ | |
559 | else \ | |
560 | { \ | |
561 | *ptr = 0; \ | |
562 | return 0; \ | |
563 | } \ | |
ada55151 NS |
564 | } \ |
565 | \ | |
d4e6fecb | 566 | static inline size_t VEC_OP (T,base,embedded_size) \ |
7de5bccc | 567 | (int alloc_) \ |
ada55151 | 568 | { \ |
d4e6fecb | 569 | return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ |
a064479c NS |
570 | } \ |
571 | \ | |
d4e6fecb NS |
572 | static inline void VEC_OP (T,base,embedded_init) \ |
573 | (VEC(T,base) *vec_, int alloc_) \ | |
a064479c NS |
574 | { \ |
575 | vec_->num = 0; \ | |
576 | vec_->alloc = alloc_; \ | |
ada55151 NS |
577 | } \ |
578 | \ | |
d4e6fecb NS |
579 | static inline int VEC_OP (T,base,space) \ |
580 | (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ | |
9ba5ff0f | 581 | { \ |
d4e6fecb NS |
582 | VEC_ASSERT (alloc_ >= 0, "space", T, base); \ |
583 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
ada55151 NS |
584 | } \ |
585 | \ | |
d4e6fecb NS |
586 | static inline T *VEC_OP (T,base,quick_push) \ |
587 | (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \ | |
ada55151 | 588 | { \ |
d4e6fecb | 589 | T *slot_; \ |
ada55151 | 590 | \ |
d4e6fecb | 591 | VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ |
ada55151 NS |
592 | slot_ = &vec_->vec[vec_->num++]; \ |
593 | *slot_ = obj_; \ | |
594 | \ | |
595 | return slot_; \ | |
596 | } \ | |
597 | \ | |
d4e6fecb | 598 | static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
ada55151 | 599 | { \ |
d4e6fecb | 600 | T obj_; \ |
ada55151 | 601 | \ |
d4e6fecb | 602 | VEC_ASSERT (vec_->num, "pop", T, base); \ |
ada55151 NS |
603 | obj_ = vec_->vec[--vec_->num]; \ |
604 | \ | |
605 | return obj_; \ | |
606 | } \ | |
607 | \ | |
d4e6fecb NS |
608 | static inline void VEC_OP (T,base,truncate) \ |
609 | (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ | |
a064479c | 610 | { \ |
d4e6fecb | 611 | VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ |
40005366 NS |
612 | if (vec_) \ |
613 | vec_->num = size_; \ | |
a064479c NS |
614 | } \ |
615 | \ | |
d4e6fecb NS |
616 | static inline T VEC_OP (T,base,replace) \ |
617 | (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ | |
ada55151 | 618 | { \ |
d4e6fecb | 619 | T old_obj_; \ |
ada55151 | 620 | \ |
d4e6fecb | 621 | VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ |
ada55151 NS |
622 | old_obj_ = vec_->vec[ix_]; \ |
623 | vec_->vec[ix_] = obj_; \ | |
624 | \ | |
625 | return old_obj_; \ | |
626 | } \ | |
627 | \ | |
d4e6fecb NS |
628 | static inline T *VEC_OP (T,base,quick_insert) \ |
629 | (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \ | |
630 | { \ | |
631 | T *slot_; \ | |
632 | \ | |
633 | VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ | |
634 | VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ | |
ada55151 | 635 | slot_ = &vec_->vec[ix_]; \ |
d4e6fecb | 636 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
ada55151 NS |
637 | *slot_ = obj_; \ |
638 | \ | |
639 | return slot_; \ | |
640 | } \ | |
641 | \ | |
d4e6fecb NS |
642 | static inline T VEC_OP (T,base,ordered_remove) \ |
643 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ | |
ada55151 | 644 | { \ |
d4e6fecb NS |
645 | T *slot_; \ |
646 | T obj_; \ | |
ada55151 | 647 | \ |
d4e6fecb | 648 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
ada55151 NS |
649 | slot_ = &vec_->vec[ix_]; \ |
650 | obj_ = *slot_; \ | |
d4e6fecb | 651 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ |
ada55151 NS |
652 | \ |
653 | return obj_; \ | |
654 | } \ | |
655 | \ | |
d4e6fecb NS |
656 | static inline T VEC_OP (T,base,unordered_remove) \ |
657 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ | |
ada55151 | 658 | { \ |
d4e6fecb NS |
659 | T *slot_; \ |
660 | T obj_; \ | |
ada55151 | 661 | \ |
d4e6fecb | 662 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
ada55151 NS |
663 | slot_ = &vec_->vec[ix_]; \ |
664 | obj_ = *slot_; \ | |
665 | *slot_ = vec_->vec[--vec_->num]; \ | |
666 | \ | |
667 | return obj_; \ | |
668 | } \ | |
669 | \ | |
9e28024a NS |
670 | static inline void VEC_OP (T,base,block_remove) \ |
671 | (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ | |
672 | { \ | |
673 | T *slot_; \ | |
674 | \ | |
675 | VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ | |
676 | slot_ = &vec_->vec[ix_]; \ | |
677 | vec_->num -= len_; \ | |
678 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
679 | } \ | |
680 | \ | |
d4e6fecb NS |
681 | static inline T *VEC_OP (T,base,address) \ |
682 | (VEC(T,base) *vec_) \ | |
aaaa46d2 MM |
683 | { \ |
684 | return vec_ ? vec_->vec : 0; \ | |
685 | } \ | |
686 | \ | |
d4e6fecb NS |
687 | static inline unsigned VEC_OP (T,base,lower_bound) \ |
688 | (VEC(T,base) *vec_, const T obj_, \ | |
689 | bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \ | |
690 | { \ | |
691 | unsigned int len_ = VEC_OP (T,base, length) (vec_); \ | |
692 | unsigned int half_, middle_; \ | |
693 | unsigned int first_ = 0; \ | |
694 | while (len_ > 0) \ | |
695 | { \ | |
696 | T middle_elem_; \ | |
697 | half_ = len_ >> 1; \ | |
698 | middle_ = first_; \ | |
699 | middle_ += half_; \ | |
700 | middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ | |
701 | if (lessthan_ (middle_elem_, obj_)) \ | |
702 | { \ | |
703 | first_ = middle_; \ | |
704 | ++first_; \ | |
705 | len_ = len_ - half_ - 1; \ | |
706 | } \ | |
707 | else \ | |
708 | len_ = half_; \ | |
709 | } \ | |
710 | return first_; \ | |
a0ef884f NS |
711 | } |
712 | ||
713 | #define DEF_VEC_ALLOC_FUNC_P(T,A) \ | |
d4e6fecb NS |
714 | static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
715 | (int alloc_ MEM_STAT_DECL) \ | |
716 | { \ | |
efb7e1e0 ILT |
717 | return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \ |
718 | PASS_MEM_STAT); \ | |
d4e6fecb NS |
719 | } \ |
720 | \ | |
721 | static inline void VEC_OP (T,A,free) \ | |
722 | (VEC(T,A) **vec_) \ | |
723 | { \ | |
724 | if (*vec_) \ | |
725 | vec_##A##_free (*vec_); \ | |
726 | *vec_ = NULL; \ | |
727 | } \ | |
728 | \ | |
4038c495 GB |
729 | static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
730 | { \ | |
731 | size_t len_ = vec_ ? vec_->num : 0; \ | |
732 | VEC (T,A) *new_vec_ = NULL; \ | |
733 | \ | |
734 | if (len_) \ | |
735 | { \ | |
efb7e1e0 ILT |
736 | new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \ |
737 | (NULL, len_ PASS_MEM_STAT)); \ | |
4038c495 GB |
738 | \ |
739 | new_vec_->base.num = len_; \ | |
740 | memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ | |
741 | } \ | |
742 | return new_vec_; \ | |
743 | } \ | |
744 | \ | |
d4e6fecb NS |
745 | static inline int VEC_OP (T,A,reserve) \ |
746 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
747 | { \ | |
efb7e1e0 | 748 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
d4e6fecb NS |
749 | VEC_CHECK_PASS); \ |
750 | \ | |
751 | if (extend) \ | |
752 | *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \ | |
753 | \ | |
754 | return extend; \ | |
755 | } \ | |
756 | \ | |
efb7e1e0 ILT |
757 | static inline int VEC_OP (T,A,reserve_exact) \ |
758 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
759 | { \ | |
760 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ | |
761 | VEC_CHECK_PASS); \ | |
762 | \ | |
763 | if (extend) \ | |
764 | *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \ | |
765 | PASS_MEM_STAT); \ | |
766 | \ | |
767 | return extend; \ | |
768 | } \ | |
769 | \ | |
d4e6fecb NS |
770 | static inline void VEC_OP (T,A,safe_grow) \ |
771 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
772 | { \ | |
773 | VEC_ASSERT (size_ >= 0 \ | |
774 | && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ | |
775 | "grow", T, A); \ | |
efb7e1e0 ILT |
776 | VEC_OP (T,A,reserve_exact) (vec_, \ |
777 | size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ | |
778 | VEC_CHECK_PASS PASS_MEM_STAT); \ | |
d4e6fecb NS |
779 | VEC_BASE (*vec_)->num = size_; \ |
780 | } \ | |
781 | \ | |
a590ac65 KH |
782 | static inline void VEC_OP (T,A,safe_grow_cleared) \ |
783 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
784 | { \ | |
785 | int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ | |
786 | VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ | |
787 | memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ | |
788 | sizeof (T) * (size_ - oldsize)); \ | |
789 | } \ | |
790 | \ | |
d4e6fecb NS |
791 | static inline T *VEC_OP (T,A,safe_push) \ |
792 | (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
793 | { \ | |
794 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ | |
795 | \ | |
796 | return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ | |
797 | } \ | |
798 | \ | |
799 | static inline T *VEC_OP (T,A,safe_insert) \ | |
800 | (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
801 | { \ | |
802 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ | |
803 | \ | |
804 | return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ | |
805 | VEC_CHECK_PASS); \ | |
a0ef884f | 806 | } |
ada55151 NS |
807 | |
808 | /* Vector of object. */ | |
d4e6fecb | 809 | #define DEF_VEC_O(T) \ |
a0ef884f | 810 | VEC_T_GTY(T,base); \ |
70d3fcab | 811 | VEC_TA(T,base,none); \ |
a0ef884f NS |
812 | DEF_VEC_FUNC_O(T) \ |
813 | struct vec_swallow_trailing_semi | |
814 | #define DEF_VEC_ALLOC_O(T,A) \ | |
70d3fcab | 815 | VEC_TA(T,base,A); \ |
a0ef884f NS |
816 | DEF_VEC_ALLOC_FUNC_O(T,A) \ |
817 | struct vec_swallow_trailing_semi | |
a0ef884f NS |
818 | |
819 | #define DEF_VEC_FUNC_O(T) \ | |
d4e6fecb | 820 | static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \ |
ada55151 NS |
821 | { \ |
822 | return vec_ ? vec_->num : 0; \ | |
823 | } \ | |
824 | \ | |
d4e6fecb | 825 | static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
ada55151 | 826 | { \ |
d4e6fecb | 827 | VEC_ASSERT (vec_ && vec_->num, "last", T, base); \ |
ada55151 NS |
828 | \ |
829 | return &vec_->vec[vec_->num - 1]; \ | |
830 | } \ | |
831 | \ | |
d4e6fecb NS |
832 | static inline T *VEC_OP (T,base,index) \ |
833 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ | |
ada55151 | 834 | { \ |
d4e6fecb | 835 | VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \ |
ada55151 NS |
836 | \ |
837 | return &vec_->vec[ix_]; \ | |
838 | } \ | |
839 | \ | |
d4e6fecb NS |
840 | static inline int VEC_OP (T,base,iterate) \ |
841 | (VEC(T,base) *vec_, unsigned ix_, T **ptr) \ | |
ada55151 | 842 | { \ |
9ba5ff0f NS |
843 | if (vec_ && ix_ < vec_->num) \ |
844 | { \ | |
845 | *ptr = &vec_->vec[ix_]; \ | |
846 | return 1; \ | |
847 | } \ | |
848 | else \ | |
849 | { \ | |
850 | *ptr = 0; \ | |
851 | return 0; \ | |
852 | } \ | |
ada55151 NS |
853 | } \ |
854 | \ | |
d4e6fecb | 855 | static inline size_t VEC_OP (T,base,embedded_size) \ |
7de5bccc | 856 | (int alloc_) \ |
a064479c | 857 | { \ |
d4e6fecb | 858 | return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \ |
ada55151 NS |
859 | } \ |
860 | \ | |
d4e6fecb NS |
861 | static inline void VEC_OP (T,base,embedded_init) \ |
862 | (VEC(T,base) *vec_, int alloc_) \ | |
ada55151 | 863 | { \ |
a064479c NS |
864 | vec_->num = 0; \ |
865 | vec_->alloc = alloc_; \ | |
ada55151 NS |
866 | } \ |
867 | \ | |
d4e6fecb NS |
868 | static inline int VEC_OP (T,base,space) \ |
869 | (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \ | |
9ba5ff0f | 870 | { \ |
d4e6fecb NS |
871 | VEC_ASSERT (alloc_ >= 0, "space", T, base); \ |
872 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
9ba5ff0f NS |
873 | } \ |
874 | \ | |
d4e6fecb NS |
875 | static inline T *VEC_OP (T,base,quick_push) \ |
876 | (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \ | |
ada55151 | 877 | { \ |
d4e6fecb | 878 | T *slot_; \ |
ada55151 | 879 | \ |
d4e6fecb | 880 | VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \ |
ada55151 NS |
881 | slot_ = &vec_->vec[vec_->num++]; \ |
882 | if (obj_) \ | |
883 | *slot_ = *obj_; \ | |
884 | \ | |
885 | return slot_; \ | |
886 | } \ | |
887 | \ | |
d4e6fecb | 888 | static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \ |
ada55151 | 889 | { \ |
d4e6fecb | 890 | VEC_ASSERT (vec_->num, "pop", T, base); \ |
a064479c NS |
891 | --vec_->num; \ |
892 | } \ | |
893 | \ | |
d4e6fecb NS |
894 | static inline void VEC_OP (T,base,truncate) \ |
895 | (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \ | |
a064479c | 896 | { \ |
d4e6fecb | 897 | VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \ |
40005366 NS |
898 | if (vec_) \ |
899 | vec_->num = size_; \ | |
ada55151 NS |
900 | } \ |
901 | \ | |
d4e6fecb NS |
902 | static inline T *VEC_OP (T,base,replace) \ |
903 | (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ | |
ada55151 | 904 | { \ |
d4e6fecb | 905 | T *slot_; \ |
ada55151 | 906 | \ |
d4e6fecb | 907 | VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \ |
ada55151 NS |
908 | slot_ = &vec_->vec[ix_]; \ |
909 | if (obj_) \ | |
910 | *slot_ = *obj_; \ | |
911 | \ | |
912 | return slot_; \ | |
913 | } \ | |
914 | \ | |
d4e6fecb NS |
915 | static inline T *VEC_OP (T,base,quick_insert) \ |
916 | (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \ | |
917 | { \ | |
918 | T *slot_; \ | |
919 | \ | |
920 | VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \ | |
921 | VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \ | |
ada55151 | 922 | slot_ = &vec_->vec[ix_]; \ |
d4e6fecb | 923 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ |
ada55151 NS |
924 | if (obj_) \ |
925 | *slot_ = *obj_; \ | |
926 | \ | |
927 | return slot_; \ | |
928 | } \ | |
929 | \ | |
d4e6fecb NS |
930 | static inline void VEC_OP (T,base,ordered_remove) \ |
931 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ | |
ada55151 | 932 | { \ |
d4e6fecb | 933 | T *slot_; \ |
ada55151 | 934 | \ |
d4e6fecb NS |
935 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
936 | slot_ = &vec_->vec[ix_]; \ | |
937 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ | |
ada55151 NS |
938 | } \ |
939 | \ | |
d4e6fecb NS |
940 | static inline void VEC_OP (T,base,unordered_remove) \ |
941 | (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \ | |
ada55151 | 942 | { \ |
d4e6fecb NS |
943 | VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \ |
944 | vec_->vec[ix_] = vec_->vec[--vec_->num]; \ | |
945 | } \ | |
ada55151 | 946 | \ |
9e28024a NS |
947 | static inline void VEC_OP (T,base,block_remove) \ |
948 | (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \ | |
949 | { \ | |
950 | T *slot_; \ | |
951 | \ | |
952 | VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \ | |
953 | slot_ = &vec_->vec[ix_]; \ | |
954 | vec_->num -= len_; \ | |
955 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
956 | } \ | |
957 | \ | |
d4e6fecb NS |
958 | static inline T *VEC_OP (T,base,address) \ |
959 | (VEC(T,base) *vec_) \ | |
960 | { \ | |
961 | return vec_ ? vec_->vec : 0; \ | |
ada55151 NS |
962 | } \ |
963 | \ | |
d4e6fecb NS |
964 | static inline unsigned VEC_OP (T,base,lower_bound) \ |
965 | (VEC(T,base) *vec_, const T *obj_, \ | |
966 | bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \ | |
967 | { \ | |
968 | unsigned int len_ = VEC_OP (T, base, length) (vec_); \ | |
969 | unsigned int half_, middle_; \ | |
970 | unsigned int first_ = 0; \ | |
971 | while (len_ > 0) \ | |
972 | { \ | |
973 | T *middle_elem_; \ | |
974 | half_ = len_ >> 1; \ | |
975 | middle_ = first_; \ | |
976 | middle_ += half_; \ | |
977 | middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \ | |
978 | if (lessthan_ (middle_elem_, obj_)) \ | |
979 | { \ | |
980 | first_ = middle_; \ | |
981 | ++first_; \ | |
982 | len_ = len_ - half_ - 1; \ | |
983 | } \ | |
984 | else \ | |
985 | len_ = half_; \ | |
986 | } \ | |
987 | return first_; \ | |
a0ef884f | 988 | } |
d4e6fecb | 989 | |
a0ef884f | 990 | #define DEF_VEC_ALLOC_FUNC_O(T,A) \ |
d4e6fecb NS |
991 | static inline VEC(T,A) *VEC_OP (T,A,alloc) \ |
992 | (int alloc_ MEM_STAT_DECL) \ | |
ada55151 | 993 | { \ |
efb7e1e0 ILT |
994 | return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \ |
995 | offsetof (VEC(T,A),base.vec), \ | |
996 | sizeof (T) \ | |
997 | PASS_MEM_STAT); \ | |
ada55151 NS |
998 | } \ |
999 | \ | |
4038c495 GB |
1000 | static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ |
1001 | { \ | |
1002 | size_t len_ = vec_ ? vec_->num : 0; \ | |
1003 | VEC (T,A) *new_vec_ = NULL; \ | |
1004 | \ | |
1005 | if (len_) \ | |
1006 | { \ | |
efb7e1e0 ILT |
1007 | new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ |
1008 | (NULL, len_, \ | |
4038c495 GB |
1009 | offsetof (VEC(T,A),base.vec), sizeof (T) \ |
1010 | PASS_MEM_STAT)); \ | |
1011 | \ | |
1012 | new_vec_->base.num = len_; \ | |
1013 | memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ | |
1014 | } \ | |
1015 | return new_vec_; \ | |
1016 | } \ | |
1017 | \ | |
d4e6fecb NS |
1018 | static inline void VEC_OP (T,A,free) \ |
1019 | (VEC(T,A) **vec_) \ | |
aaaa46d2 | 1020 | { \ |
d4e6fecb NS |
1021 | if (*vec_) \ |
1022 | vec_##A##_free (*vec_); \ | |
1023 | *vec_ = NULL; \ | |
1024 | } \ | |
1025 | \ | |
1026 | static inline int VEC_OP (T,A,reserve) \ | |
1027 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1028 | { \ | |
efb7e1e0 | 1029 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
d4e6fecb NS |
1030 | VEC_CHECK_PASS); \ |
1031 | \ | |
1032 | if (extend) \ | |
1033 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ | |
1034 | offsetof (VEC(T,A),base.vec),\ | |
1035 | sizeof (T) \ | |
1036 | PASS_MEM_STAT); \ | |
1037 | \ | |
1038 | return extend; \ | |
1039 | } \ | |
1040 | \ | |
efb7e1e0 ILT |
1041 | static inline int VEC_OP (T,A,reserve_exact) \ |
1042 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1043 | { \ | |
1044 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ | |
1045 | VEC_CHECK_PASS); \ | |
1046 | \ | |
1047 | if (extend) \ | |
1048 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ | |
1049 | (*vec_, alloc_, \ | |
1050 | offsetof (VEC(T,A),base.vec), \ | |
1051 | sizeof (T) PASS_MEM_STAT); \ | |
1052 | \ | |
1053 | return extend; \ | |
1054 | } \ | |
1055 | \ | |
d4e6fecb NS |
1056 | static inline void VEC_OP (T,A,safe_grow) \ |
1057 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1058 | { \ | |
1059 | VEC_ASSERT (size_ >= 0 \ | |
1060 | && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ | |
1061 | "grow", T, A); \ | |
efb7e1e0 ILT |
1062 | VEC_OP (T,A,reserve_exact) (vec_, \ |
1063 | size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ | |
1064 | VEC_CHECK_PASS PASS_MEM_STAT); \ | |
d4e6fecb | 1065 | VEC_BASE (*vec_)->num = size_; \ |
d4e6fecb NS |
1066 | } \ |
1067 | \ | |
a590ac65 KH |
1068 | static inline void VEC_OP (T,A,safe_grow_cleared) \ |
1069 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1070 | { \ | |
1071 | int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ | |
1072 | VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ | |
1073 | memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ | |
1074 | sizeof (T) * (size_ - oldsize)); \ | |
1075 | } \ | |
1076 | \ | |
d4e6fecb NS |
1077 | static inline T *VEC_OP (T,A,safe_push) \ |
1078 | (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1079 | { \ | |
1080 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ | |
1081 | \ | |
1082 | return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ | |
1083 | } \ | |
1084 | \ | |
1085 | static inline T *VEC_OP (T,A,safe_insert) \ | |
1086 | (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \ | |
1087 | VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1088 | { \ | |
1089 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ | |
1090 | \ | |
1091 | return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ | |
1092 | VEC_CHECK_PASS); \ | |
a0ef884f | 1093 | } |
68486bb3 ZW |
1094 | |
1095 | #define DEF_VEC_ALLOC_FUNC_I(T,A) \ | |
1096 | static inline VEC(T,A) *VEC_OP (T,A,alloc) \ | |
1097 | (int alloc_ MEM_STAT_DECL) \ | |
1098 | { \ | |
efb7e1e0 ILT |
1099 | return (VEC(T,A) *) vec_##A##_o_reserve_exact \ |
1100 | (NULL, alloc_, offsetof (VEC(T,A),base.vec), \ | |
1101 | sizeof (T) PASS_MEM_STAT); \ | |
68486bb3 ZW |
1102 | } \ |
1103 | \ | |
1104 | static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \ | |
1105 | { \ | |
1106 | size_t len_ = vec_ ? vec_->num : 0; \ | |
1107 | VEC (T,A) *new_vec_ = NULL; \ | |
1108 | \ | |
1109 | if (len_) \ | |
1110 | { \ | |
efb7e1e0 ILT |
1111 | new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \ |
1112 | (NULL, len_, \ | |
68486bb3 ZW |
1113 | offsetof (VEC(T,A),base.vec), sizeof (T) \ |
1114 | PASS_MEM_STAT)); \ | |
1115 | \ | |
1116 | new_vec_->base.num = len_; \ | |
1117 | memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \ | |
1118 | } \ | |
1119 | return new_vec_; \ | |
1120 | } \ | |
1121 | \ | |
1122 | static inline void VEC_OP (T,A,free) \ | |
1123 | (VEC(T,A) **vec_) \ | |
1124 | { \ | |
1125 | if (*vec_) \ | |
1126 | vec_##A##_free (*vec_); \ | |
1127 | *vec_ = NULL; \ | |
1128 | } \ | |
1129 | \ | |
1130 | static inline int VEC_OP (T,A,reserve) \ | |
1131 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1132 | { \ | |
efb7e1e0 | 1133 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ |
68486bb3 ZW |
1134 | VEC_CHECK_PASS); \ |
1135 | \ | |
1136 | if (extend) \ | |
1137 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \ | |
1138 | offsetof (VEC(T,A),base.vec),\ | |
1139 | sizeof (T) \ | |
1140 | PASS_MEM_STAT); \ | |
1141 | \ | |
1142 | return extend; \ | |
1143 | } \ | |
1144 | \ | |
efb7e1e0 ILT |
1145 | static inline int VEC_OP (T,A,reserve_exact) \ |
1146 | (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1147 | { \ | |
1148 | int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \ | |
1149 | VEC_CHECK_PASS); \ | |
1150 | \ | |
1151 | if (extend) \ | |
1152 | *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \ | |
1153 | (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \ | |
1154 | sizeof (T) PASS_MEM_STAT); \ | |
1155 | \ | |
1156 | return extend; \ | |
1157 | } \ | |
1158 | \ | |
68486bb3 ZW |
1159 | static inline void VEC_OP (T,A,safe_grow) \ |
1160 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1161 | { \ | |
1162 | VEC_ASSERT (size_ >= 0 \ | |
1163 | && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \ | |
1164 | "grow", T, A); \ | |
efb7e1e0 ILT |
1165 | VEC_OP (T,A,reserve_exact) (vec_, \ |
1166 | size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \ | |
1167 | VEC_CHECK_PASS PASS_MEM_STAT); \ | |
68486bb3 | 1168 | VEC_BASE (*vec_)->num = size_; \ |
68486bb3 ZW |
1169 | } \ |
1170 | \ | |
a590ac65 KH |
1171 | static inline void VEC_OP (T,A,safe_grow_cleared) \ |
1172 | (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1173 | { \ | |
1174 | int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \ | |
1175 | VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \ | |
1176 | memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \ | |
1177 | sizeof (T) * (size_ - oldsize)); \ | |
1178 | } \ | |
1179 | \ | |
68486bb3 ZW |
1180 | static inline T *VEC_OP (T,A,safe_push) \ |
1181 | (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1182 | { \ | |
1183 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ | |
1184 | \ | |
1185 | return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \ | |
1186 | } \ | |
1187 | \ | |
1188 | static inline T *VEC_OP (T,A,safe_insert) \ | |
1189 | (VEC(T,A) **vec_, unsigned ix_, const T obj_ \ | |
1190 | VEC_CHECK_DECL MEM_STAT_DECL) \ | |
1191 | { \ | |
1192 | VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \ | |
1193 | \ | |
1194 | return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \ | |
1195 | VEC_CHECK_PASS); \ | |
1196 | } | |
1197 | ||
ada55151 | 1198 | #endif /* GCC_VEC_H */ |