]> gcc.gnu.org Git - gcc.git/blame - gcc/unwind-dw2-fde.c
Update FSF address.
[gcc.git] / gcc / unwind-dw2-fde.c
CommitLineData
0021b564 1/* Subroutines needed for unwinding stack frames for exception handling. */
3a674ab9 2/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
f30278e8 3 Free Software Foundation, Inc.
0021b564
JM
4 Contributed by Jason Merrill <jason@cygnus.com>.
5
1322177d 6This file is part of GCC.
0021b564 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
0021b564 12
f7af368f
JL
13In addition to the permissions in the GNU General Public License, the
14Free Software Foundation gives you unlimited permission to link the
15compiled version of this file into combinations with other programs,
16and to distribute those combinations without any restriction coming
17from the use of this file. (The General Public License restrictions
18do apply in other respects; for example, they cover modification of
19the file, and distribution when not linked into a combine
20executable.)
21
1322177d
LB
22GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23WARRANTY; without even the implied warranty of MERCHANTABILITY or
24FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25for more details.
0021b564
JM
26
27You should have received a copy of the GNU General Public License
1322177d
LB
28along with GCC; see the file COPYING. If not, write to the Free
29Software Foundation, 59 Temple Place - Suite 330, Boston, MA
3002111-1307, USA. */
0021b564 31
275b60d6 32#ifndef _Unwind_Find_FDE
52a11cbf
RH
33#include "tconfig.h"
34#include "tsystem.h"
4977bab6
ZW
35#include "coretypes.h"
36#include "tm.h"
e1f9550a
RH
37#include "dwarf2.h"
38#include "unwind.h"
bda33a6e 39#define NO_BASE_OF_ENCODED_VALUE
e1f9550a 40#include "unwind-pe.h"
52a11cbf
RH
41#include "unwind-dw2-fde.h"
42#include "gthr.h"
275b60d6 43#endif
52a11cbf 44
e1f9550a
RH
45/* The unseen_objects list contains objects that have been registered
46 but not yet categorized in any way. The seen_objects list has had
47 it's pc_begin and count fields initialized at minimum, and is sorted
48 by decreasing value of pc_begin. */
49static struct object *unseen_objects;
50static struct object *seen_objects;
52a11cbf
RH
51
52#ifdef __GTHREAD_MUTEX_INIT
53static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
54#else
55static __gthread_mutex_t object_mutex;
56#endif
57
58#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
41077ce4 59static void
52a11cbf
RH
60init_object_mutex (void)
61{
62 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
63}
64
65static void
66init_object_mutex_once (void)
67{
68 static __gthread_once_t once = __GTHREAD_ONCE_INIT;
69 __gthread_once (&once, init_object_mutex);
70}
71#else
72#define init_object_mutex_once()
73#endif
74
75/* Called from crtbegin.o to register the unwind info for an object. */
76
77void
a30794da 78__register_frame_info_bases (const void *begin, struct object *ob,
e1f9550a 79 void *tbase, void *dbase)
52a11cbf 80{
55fae1a9 81 /* If .eh_frame is empty, don't register at all. */
7008a11b 82 if ((uword *) begin == 0 || *(uword *) begin == 0)
55fae1a9
JJ
83 return;
84
e1f9550a
RH
85 ob->pc_begin = (void *)-1;
86 ob->tbase = tbase;
87 ob->dbase = dbase;
88 ob->u.single = begin;
89 ob->s.i = 0;
90 ob->s.b.encoding = DW_EH_PE_omit;
3cfe49da
GK
91#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
92 ob->fde_end = NULL;
93#endif
52a11cbf
RH
94
95 init_object_mutex_once ();
96 __gthread_mutex_lock (&object_mutex);
97
e1f9550a
RH
98 ob->next = unseen_objects;
99 unseen_objects = ob;
52a11cbf
RH
100
101 __gthread_mutex_unlock (&object_mutex);
102}
103
e1f9550a 104void
a30794da 105__register_frame_info (const void *begin, struct object *ob)
e1f9550a
RH
106{
107 __register_frame_info_bases (begin, ob, 0, 0);
108}
109
52a11cbf
RH
110void
111__register_frame (void *begin)
112{
55fae1a9
JJ
113 struct object *ob;
114
115 /* If .eh_frame is empty, don't register at all. */
e9d1b155 116 if (*(uword *) begin == 0)
55fae1a9
JJ
117 return;
118
703ad42b 119 ob = malloc (sizeof (struct object));
41077ce4 120 __register_frame_info (begin, ob);
52a11cbf
RH
121}
122
123/* Similar, but BEGIN is actually a pointer to a table of unwind entries
124 for different translation units. Called from the file generated by
125 collect2. */
126
127void
e1f9550a
RH
128__register_frame_info_table_bases (void *begin, struct object *ob,
129 void *tbase, void *dbase)
52a11cbf 130{
e1f9550a
RH
131 ob->pc_begin = (void *)-1;
132 ob->tbase = tbase;
133 ob->dbase = dbase;
134 ob->u.array = begin;
135 ob->s.i = 0;
136 ob->s.b.from_array = 1;
137 ob->s.b.encoding = DW_EH_PE_omit;
52a11cbf
RH
138
139 init_object_mutex_once ();
140 __gthread_mutex_lock (&object_mutex);
141
e1f9550a
RH
142 ob->next = unseen_objects;
143 unseen_objects = ob;
52a11cbf
RH
144
145 __gthread_mutex_unlock (&object_mutex);
146}
147
e1f9550a
RH
148void
149__register_frame_info_table (void *begin, struct object *ob)
150{
151 __register_frame_info_table_bases (begin, ob, 0, 0);
152}
153
52a11cbf
RH
154void
155__register_frame_table (void *begin)
156{
703ad42b 157 struct object *ob = malloc (sizeof (struct object));
52a11cbf
RH
158 __register_frame_info_table (begin, ob);
159}
160
161/* Called from crtbegin.o to deregister the unwind info for an object. */
101fa48c
RH
162/* ??? Glibc has for a while now exported __register_frame_info and
163 __deregister_frame_info. If we call __register_frame_info_bases
164 from crtbegin (wherein it is declared weak), and this object does
165 not get pulled from libgcc.a for other reasons, then the
166 invocation of __deregister_frame_info will be resolved from glibc.
79d0dfa3 167 Since the registration did not happen there, we'll die.
101fa48c
RH
168
169 Therefore, declare a new deregistration entry point that does the
41077ce4 170 exact same thing, but will resolve to the same library as
101fa48c 171 implements __register_frame_info_bases. */
52a11cbf
RH
172
173void *
a30794da 174__deregister_frame_info_bases (const void *begin)
52a11cbf
RH
175{
176 struct object **p;
e1f9550a 177 struct object *ob = 0;
52a11cbf 178
55fae1a9 179 /* If .eh_frame is empty, we haven't registered. */
7008a11b 180 if ((uword *) begin == 0 || *(uword *) begin == 0)
5d393c8e 181 return ob;
55fae1a9 182
52a11cbf
RH
183 init_object_mutex_once ();
184 __gthread_mutex_lock (&object_mutex);
185
e1f9550a
RH
186 for (p = &unseen_objects; *p ; p = &(*p)->next)
187 if ((*p)->u.single == begin)
188 {
189 ob = *p;
190 *p = ob->next;
191 goto out;
192 }
193
194 for (p = &seen_objects; *p ; p = &(*p)->next)
195 if ((*p)->s.b.sorted)
196 {
197 if ((*p)->u.sort->orig_data == begin)
198 {
199 ob = *p;
200 *p = ob->next;
201 free (ob->u.sort);
202 goto out;
203 }
204 }
205 else
206 {
207 if ((*p)->u.single == begin)
208 {
209 ob = *p;
210 *p = ob->next;
211 goto out;
212 }
213 }
52a11cbf 214
e1f9550a
RH
215 out:
216 __gthread_mutex_unlock (&object_mutex);
79d0dfa3 217 gcc_assert (ob);
e1f9550a 218 return (void *) ob;
52a11cbf
RH
219}
220
101fa48c 221void *
a30794da 222__deregister_frame_info (const void *begin)
101fa48c
RH
223{
224 return __deregister_frame_info_bases (begin);
225}
101fa48c 226
52a11cbf
RH
227void
228__deregister_frame (void *begin)
229{
55fae1a9 230 /* If .eh_frame is empty, we haven't registered. */
e9d1b155 231 if (*(uword *) begin != 0)
55fae1a9 232 free (__deregister_frame_info (begin));
52a11cbf
RH
233}
234
e1f9550a
RH
235\f
236/* Like base_of_encoded_value, but take the base from a struct object
237 instead of an _Unwind_Context. */
238
239static _Unwind_Ptr
240base_from_object (unsigned char encoding, struct object *ob)
241{
242 if (encoding == DW_EH_PE_omit)
243 return 0;
244
245 switch (encoding & 0x70)
246 {
247 case DW_EH_PE_absptr:
248 case DW_EH_PE_pcrel:
099c8b17 249 case DW_EH_PE_aligned:
e1f9550a
RH
250 return 0;
251
252 case DW_EH_PE_textrel:
253 return (_Unwind_Ptr) ob->tbase;
254 case DW_EH_PE_datarel:
255 return (_Unwind_Ptr) ob->dbase;
79d0dfa3
NS
256 default:
257 gcc_unreachable ();
e1f9550a 258 }
e1f9550a
RH
259}
260
261/* Return the FDE pointer encoding from the CIE. */
262/* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
263
264static int
a30794da 265get_cie_encoding (const struct dwarf_cie *cie)
e1f9550a
RH
266{
267 const unsigned char *aug, *p;
268 _Unwind_Ptr dummy;
a9985a92
JM
269 _Unwind_Word utmp;
270 _Unwind_Sword stmp;
e1f9550a
RH
271
272 aug = cie->augmentation;
273 if (aug[0] != 'z')
274 return DW_EH_PE_absptr;
275
ca29916b 276 p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string. */
a9985a92
JM
277 p = read_uleb128 (p, &utmp); /* Skip code alignment. */
278 p = read_sleb128 (p, &stmp); /* Skip data alignment. */
0ef54a47
PB
279 if (cie->version == 1) /* Skip return address column. */
280 p++;
281 else
282 p = read_uleb128 (p, &utmp);
e1f9550a
RH
283
284 aug++; /* Skip 'z' */
a9985a92 285 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
e1f9550a
RH
286 while (1)
287 {
288 /* This is what we're looking for. */
289 if (*aug == 'R')
290 return *p;
291 /* Personality encoding and pointer. */
292 else if (*aug == 'P')
099c8b17
RH
293 {
294 /* ??? Avoid dereferencing indirect pointers, since we're
295 faking the base address. Gotta keep DW_EH_PE_aligned
296 intact, however. */
297 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
298 }
e1f9550a
RH
299 /* LSDA encoding. */
300 else if (*aug == 'L')
301 p++;
302 /* Otherwise end of string, or unknown augmentation. */
303 else
304 return DW_EH_PE_absptr;
305 aug++;
306 }
307}
308
309static inline int
a30794da 310get_fde_encoding (const struct dwarf_fde *f)
e1f9550a
RH
311{
312 return get_cie_encoding (get_cie (f));
313}
314
52a11cbf 315\f
72dd050a
BH
316/* Sorting an array of FDEs by address.
317 (Ideally we would have the linker sort the FDEs so we don't have to do
318 it at run time. But the linkers are not yet prepared for this.) */
319
e1f9550a
RH
320/* Comparison routines. Three variants of increasing complexity. */
321
bde257ff 322static int
e1f9550a 323fde_unencoded_compare (struct object *ob __attribute__((unused)),
a30794da 324 const fde *x, const fde *y)
e1f9550a 325{
2f9ec5e5
HPN
326 _Unwind_Ptr x_ptr = *(_Unwind_Ptr *) x->pc_begin;
327 _Unwind_Ptr y_ptr = *(_Unwind_Ptr *) y->pc_begin;
328
329 if (x_ptr > y_ptr)
bde257ff 330 return 1;
2f9ec5e5 331 if (x_ptr < y_ptr)
bde257ff
RH
332 return -1;
333 return 0;
e1f9550a
RH
334}
335
bde257ff 336static int
a30794da 337fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y)
e1f9550a
RH
338{
339 _Unwind_Ptr base, x_ptr, y_ptr;
340
341 base = base_from_object (ob->s.b.encoding, ob);
342 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
343 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
344
bde257ff
RH
345 if (x_ptr > y_ptr)
346 return 1;
347 if (x_ptr < y_ptr)
348 return -1;
349 return 0;
e1f9550a
RH
350}
351
bde257ff 352static int
a30794da 353fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y)
e1f9550a
RH
354{
355 int x_encoding, y_encoding;
356 _Unwind_Ptr x_ptr, y_ptr;
357
358 x_encoding = get_fde_encoding (x);
359 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
360 x->pc_begin, &x_ptr);
361
362 y_encoding = get_fde_encoding (y);
363 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
364 y->pc_begin, &y_ptr);
365
bde257ff
RH
366 if (x_ptr > y_ptr)
367 return 1;
368 if (x_ptr < y_ptr)
369 return -1;
370 return 0;
e1f9550a
RH
371}
372
a30794da 373typedef int (*fde_compare_t) (struct object *, const fde *, const fde *);
e1f9550a
RH
374
375
72dd050a
BH
376/* This is a special mix of insertion sort and heap sort, optimized for
377 the data sets that actually occur. They look like
378 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
379 I.e. a linearly increasing sequence (coming from functions in the text
380 section), with additionally a few unordered elements (coming from functions
381 in gnu_linkonce sections) whose values are higher than the values in the
382 surrounding linear sequence (but not necessarily higher than the values
383 at the end of the linear sequence!).
384 The worst-case total run time is O(N) + O(n log (n)), where N is the
385 total number of FDEs and n is the number of erratic ones. */
386
e1f9550a 387struct fde_accumulator
72dd050a 388{
e1f9550a
RH
389 struct fde_vector *linear;
390 struct fde_vector *erratic;
391};
52a11cbf 392
d593d1d2 393static inline int
e1f9550a 394start_fde_sort (struct fde_accumulator *accu, size_t count)
72dd050a 395{
e1f9550a
RH
396 size_t size;
397 if (! count)
398 return 0;
399
a30794da 400 size = sizeof (struct fde_vector) + sizeof (const fde *) * count;
703ad42b 401 if ((accu->linear = malloc (size)))
e1f9550a
RH
402 {
403 accu->linear->count = 0;
703ad42b 404 if ((accu->erratic = malloc (size)))
e1f9550a
RH
405 accu->erratic->count = 0;
406 return 1;
407 }
408 else
41077ce4 409 return 0;
72dd050a 410}
0021b564 411
72dd050a 412static inline void
a30794da 413fde_insert (struct fde_accumulator *accu, const fde *this_fde)
72dd050a 414{
e1f9550a
RH
415 if (accu->linear)
416 accu->linear->array[accu->linear->count++] = this_fde;
72dd050a
BH
417}
418
419/* Split LINEAR into a linear sequence with low values and an erratic
420 sequence with high values, put the linear one (of longest possible
ba540394 421 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
41077ce4 422
ba540394
NS
423 Because the longest linear sequence we are trying to locate within the
424 incoming LINEAR array can be interspersed with (high valued) erratic
425 entries. We construct a chain indicating the sequenced entries.
426 To avoid having to allocate this chain, we overlay it onto the space of
427 the ERRATIC array during construction. A final pass iterates over the
428 chain to determine what should be placed in the ERRATIC array, and
429 what is the linear sequence. This overlay is safe from aliasing. */
e1f9550a 430
72dd050a 431static inline void
e1f9550a
RH
432fde_split (struct object *ob, fde_compare_t fde_compare,
433 struct fde_vector *linear, struct fde_vector *erratic)
72dd050a 434{
a30794da 435 static const fde *marker;
72dd050a 436 size_t count = linear->count;
a30794da 437 const fde **chain_end = &marker;
ba540394
NS
438 size_t i, j, k;
439
440 /* This should optimize out, but it is wise to make sure this assumption
441 is correct. Should these have different sizes, we cannot cast between
442 them and the overlaying onto ERRATIC will not work. */
79d0dfa3 443 gcc_assert (sizeof (const fde *) == sizeof (const fde **));
41077ce4 444
72dd050a
BH
445 for (i = 0; i < count; i++)
446 {
a30794da 447 const fde **probe;
41077ce4 448
ba540394 449 for (probe = chain_end;
41077ce4
KH
450 probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
451 probe = chain_end)
452 {
a30794da 453 chain_end = (const fde **) erratic->array[probe - linear->array];
41077ce4
KH
454 erratic->array[probe - linear->array] = NULL;
455 }
a30794da 456 erratic->array[i] = (const fde *) chain_end;
ba540394 457 chain_end = &linear->array[i];
72dd050a
BH
458 }
459
ba540394
NS
460 /* Each entry in LINEAR which is part of the linear sequence we have
461 discovered will correspond to a non-NULL entry in the chain we built in
462 the ERRATIC array. */
463 for (i = j = k = 0; i < count; i++)
464 if (erratic->array[i])
72dd050a 465 linear->array[j++] = linear->array[i];
ba540394
NS
466 else
467 erratic->array[k++] = linear->array[i];
72dd050a 468 linear->count = j;
ba540394 469 erratic->count = k;
72dd050a
BH
470}
471
a30794da 472#define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
80d83b16
JM
473
474/* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
475 for the first (root) node; push it down to its rightful place. */
476
477static void
a30794da 478frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a,
80d83b16
JM
479 int lo, int hi)
480{
481 int i, j;
482
483 for (i = lo, j = 2*i+1;
484 j < hi;
485 j = 2*i+1)
486 {
487 if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
488 ++j;
489
490 if (fde_compare (ob, a[i], a[j]) < 0)
491 {
492 SWAP (a[i], a[j]);
493 i = j;
494 }
495 else
496 break;
497 }
498}
499
99b13ed3
JW
500/* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
501 use a name that does not conflict. */
e1f9550a
RH
502
503static void
504frame_heapsort (struct object *ob, fde_compare_t fde_compare,
505 struct fde_vector *erratic)
72dd050a
BH
506{
507 /* For a description of this algorithm, see:
508 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
2d76cb1a 509 p. 60-61. */
a30794da 510 const fde ** a = erratic->array;
72dd050a
BH
511 /* A portion of the array is called a "heap" if for all i>=0:
512 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
2d76cb1a 513 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
72dd050a 514 size_t n = erratic->count;
80d83b16
JM
515 int m;
516
517 /* Expand our heap incrementally from the end of the array, heapifying
518 each resulting semi-heap as we go. After each step, a[m] is the top
519 of a heap. */
520 for (m = n/2-1; m >= 0; --m)
521 frame_downheap (ob, fde_compare, a, m, n);
522
523 /* Shrink our heap incrementally from the end of the array, first
524 swapping out the largest element a[0] and then re-heapifying the
525 resulting semi-heap. After each step, a[0..m) is a heap. */
526 for (m = n-1; m >= 1; --m)
72dd050a 527 {
80d83b16
JM
528 SWAP (a[0], a[m]);
529 frame_downheap (ob, fde_compare, a, 0, m);
72dd050a
BH
530 }
531#undef SWAP
532}
533
2d76cb1a 534/* Merge V1 and V2, both sorted, and put the result into V1. */
e1f9550a
RH
535static inline void
536fde_merge (struct object *ob, fde_compare_t fde_compare,
537 struct fde_vector *v1, struct fde_vector *v2)
0021b564 538{
72dd050a 539 size_t i1, i2;
a30794da 540 const fde * fde2;
0021b564 541
72dd050a
BH
542 i2 = v2->count;
543 if (i2 > 0)
0021b564 544 {
72dd050a 545 i1 = v1->count;
a01da83b
KH
546 do
547 {
548 i2--;
549 fde2 = v2->array[i2];
550 while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
551 {
552 v1->array[i1+i2] = v1->array[i1-1];
553 i1--;
554 }
41077ce4 555 v1->array[i1+i2] = fde2;
a01da83b
KH
556 }
557 while (i2 > 0);
72dd050a 558 v1->count += v2->count;
0021b564
JM
559 }
560}
561
e1f9550a
RH
562static inline void
563end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
72dd050a 564{
e1f9550a
RH
565 fde_compare_t fde_compare;
566
79d0dfa3 567 gcc_assert (!accu->linear || accu->linear->count == count);
e1f9550a
RH
568
569 if (ob->s.b.mixed_encoding)
570 fde_compare = fde_mixed_encoding_compare;
571 else if (ob->s.b.encoding == DW_EH_PE_absptr)
572 fde_compare = fde_unencoded_compare;
573 else
574 fde_compare = fde_single_encoding_compare;
575
576 if (accu->erratic)
d593d1d2 577 {
e1f9550a 578 fde_split (ob, fde_compare, accu->linear, accu->erratic);
79d0dfa3 579 gcc_assert (accu->linear->count + accu->erratic->count == count);
e1f9550a
RH
580 frame_heapsort (ob, fde_compare, accu->erratic);
581 fde_merge (ob, fde_compare, accu->linear, accu->erratic);
582 free (accu->erratic);
d593d1d2
NS
583 }
584 else
585 {
e1f9550a
RH
586 /* We've not managed to malloc an erratic array,
587 so heap sort in the linear one. */
588 frame_heapsort (ob, fde_compare, accu->linear);
d593d1d2 589 }
72dd050a
BH
590}
591
52a11cbf 592\f
41077ce4 593/* Update encoding, mixed_encoding, and pc_begin for OB for the
e1f9550a
RH
594 fde array beginning at THIS_FDE. Return the number of fdes
595 encountered along the way. */
596
52a11cbf 597static size_t
a30794da 598classify_object_over_fdes (struct object *ob, const fde *this_fde)
52a11cbf 599{
a30794da 600 const struct dwarf_cie *last_cie = 0;
e1f9550a
RH
601 size_t count = 0;
602 int encoding = DW_EH_PE_absptr;
603 _Unwind_Ptr base = 0;
0021b564 604
3cfe49da 605 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
e1f9550a 606 {
a30794da 607 const struct dwarf_cie *this_cie;
e1f9550a 608 _Unwind_Ptr mask, pc_begin;
52a11cbf 609
e1f9550a
RH
610 /* Skip CIEs. */
611 if (this_fde->CIE_delta == 0)
612 continue;
52a11cbf 613
e1f9550a
RH
614 /* Determine the encoding for this FDE. Note mixed encoded
615 objects for later. */
616 this_cie = get_cie (this_fde);
617 if (this_cie != last_cie)
618 {
619 last_cie = this_cie;
620 encoding = get_cie_encoding (this_cie);
621 base = base_from_object (encoding, ob);
622 if (ob->s.b.encoding == DW_EH_PE_omit)
623 ob->s.b.encoding = encoding;
624 else if (ob->s.b.encoding != encoding)
625 ob->s.b.mixed_encoding = 1;
626 }
0021b564 627
e1f9550a
RH
628 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
629 &pc_begin);
0021b564 630
e1f9550a
RH
631 /* Take care to ignore link-once functions that were removed.
632 In these cases, the function address will be NULL, but if
633 the encoding is smaller than a pointer a true NULL may not
634 be representable. Assume 0 in the representable bits is NULL. */
635 mask = size_of_encoded_value (encoding);
636 if (mask < sizeof (void *))
637 mask = (1L << (mask << 3)) - 1;
638 else
639 mask = -1;
640
641 if ((pc_begin & mask) == 0)
642 continue;
154bba13 643
e1f9550a 644 count += 1;
e9d1b155
KH
645 if ((void *) pc_begin < ob->pc_begin)
646 ob->pc_begin = (void *) pc_begin;
52a11cbf 647 }
154bba13 648
e1f9550a 649 return count;
0021b564
JM
650}
651
e1f9550a 652static void
a30794da 653add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde)
a3fd4e75 654{
a30794da 655 const struct dwarf_cie *last_cie = 0;
e1f9550a
RH
656 int encoding = ob->s.b.encoding;
657 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
658
3cfe49da 659 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
52a11cbf 660 {
a30794da 661 const struct dwarf_cie *this_cie;
52a11cbf 662
e1f9550a
RH
663 /* Skip CIEs. */
664 if (this_fde->CIE_delta == 0)
665 continue;
666
667 if (ob->s.b.mixed_encoding)
668 {
669 /* Determine the encoding for this FDE. Note mixed encoded
670 objects for later. */
671 this_cie = get_cie (this_fde);
672 if (this_cie != last_cie)
673 {
674 last_cie = this_cie;
675 encoding = get_cie_encoding (this_cie);
676 base = base_from_object (encoding, ob);
677 }
678 }
679
680 if (encoding == DW_EH_PE_absptr)
681 {
e9d1b155 682 if (*(_Unwind_Ptr *) this_fde->pc_begin == 0)
e1f9550a
RH
683 continue;
684 }
685 else
686 {
687 _Unwind_Ptr pc_begin, mask;
688
689 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
690 &pc_begin);
691
692 /* Take care to ignore link-once functions that were removed.
693 In these cases, the function address will be NULL, but if
694 the encoding is smaller than a pointer a true NULL may not
695 be representable. Assume 0 in the representable bits is NULL. */
696 mask = size_of_encoded_value (encoding);
697 if (mask < sizeof (void *))
698 mask = (1L << (mask << 3)) - 1;
699 else
700 mask = -1;
701
702 if ((pc_begin & mask) == 0)
703 continue;
704 }
705
706 fde_insert (accu, this_fde);
52a11cbf 707 }
a3fd4e75
JL
708}
709
52a11cbf
RH
710/* Set up a sorted array of pointers to FDEs for a loaded object. We
711 count up the entries before allocating the array because it's likely to
712 be faster. We can be called multiple times, should we have failed to
713 allocate a sorted fde array on a previous occasion. */
0021b564 714
e1f9550a
RH
715static inline void
716init_object (struct object* ob)
0021b564 717{
e1f9550a 718 struct fde_accumulator accu;
52a11cbf 719 size_t count;
0021b564 720
e1f9550a
RH
721 count = ob->s.b.count;
722 if (count == 0)
52a11cbf 723 {
e1f9550a
RH
724 if (ob->s.b.from_array)
725 {
726 fde **p = ob->u.array;
727 for (count = 0; *p; ++p)
728 count += classify_object_over_fdes (ob, *p);
729 }
730 else
731 count = classify_object_over_fdes (ob, ob->u.single);
732
733 /* The count field we have in the main struct object is somewhat
734 limited, but should suffice for virtually all cases. If the
735 counted value doesn't fit, re-write a zero. The worst that
736 happens is that we re-count next time -- admittedly non-trivial
737 in that this implies some 2M fdes, but at least we function. */
738 ob->s.b.count = count;
739 if (ob->s.b.count != count)
740 ob->s.b.count = 0;
52a11cbf 741 }
154bba13 742
e1f9550a 743 if (!start_fde_sort (&accu, count))
52a11cbf 744 return;
154bba13 745
e1f9550a 746 if (ob->s.b.from_array)
52a11cbf 747 {
e1f9550a
RH
748 fde **p;
749 for (p = ob->u.array; *p; ++p)
41077ce4 750 add_fdes (ob, &accu, *p);
52a11cbf
RH
751 }
752 else
e1f9550a
RH
753 add_fdes (ob, &accu, ob->u.single);
754
755 end_fde_sort (ob, &accu, count);
756
757 /* Save the original fde pointer, since this is the key by which the
758 DSO will deregister the object. */
759 accu.linear->orig_data = ob->u.single;
760 ob->u.sort = accu.linear;
761
762 ob->s.b.sorted = 1;
a3fd4e75
JL
763}
764
e1f9550a
RH
765/* A linear search through a set of FDEs for the given PC. This is
766 used when there was insufficient memory to allocate and sort an
767 array. */
768
a30794da
AJ
769static const fde *
770linear_search_fdes (struct object *ob, const fde *this_fde, void *pc)
0021b564 771{
a30794da 772 const struct dwarf_cie *last_cie = 0;
e1f9550a
RH
773 int encoding = ob->s.b.encoding;
774 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
775
3cfe49da 776 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
e1f9550a 777 {
a30794da 778 const struct dwarf_cie *this_cie;
e1f9550a
RH
779 _Unwind_Ptr pc_begin, pc_range;
780
781 /* Skip CIEs. */
782 if (this_fde->CIE_delta == 0)
783 continue;
784
785 if (ob->s.b.mixed_encoding)
786 {
787 /* Determine the encoding for this FDE. Note mixed encoded
788 objects for later. */
789 this_cie = get_cie (this_fde);
790 if (this_cie != last_cie)
791 {
792 last_cie = this_cie;
793 encoding = get_cie_encoding (this_cie);
794 base = base_from_object (encoding, ob);
795 }
796 }
797
798 if (encoding == DW_EH_PE_absptr)
799 {
e9d1b155
KH
800 pc_begin = ((_Unwind_Ptr *) this_fde->pc_begin)[0];
801 pc_range = ((_Unwind_Ptr *) this_fde->pc_begin)[1];
e1f9550a
RH
802 if (pc_begin == 0)
803 continue;
804 }
805 else
806 {
807 _Unwind_Ptr mask;
ca29916b 808 const unsigned char *p;
e1f9550a
RH
809
810 p = read_encoded_value_with_base (encoding, base,
811 this_fde->pc_begin, &pc_begin);
812 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
813
814 /* Take care to ignore link-once functions that were removed.
815 In these cases, the function address will be NULL, but if
816 the encoding is smaller than a pointer a true NULL may not
817 be representable. Assume 0 in the representable bits is NULL. */
818 mask = size_of_encoded_value (encoding);
819 if (mask < sizeof (void *))
820 mask = (1L << (mask << 3)) - 1;
821 else
822 mask = -1;
823
824 if ((pc_begin & mask) == 0)
825 continue;
826 }
827
e9d1b155 828 if ((_Unwind_Ptr) pc - pc_begin < pc_range)
41077ce4 829 return this_fde;
e1f9550a
RH
830 }
831
832 return NULL;
833}
834
835/* Binary search for an FDE containing the given PC. Here are three
836 implementations of increasing complexity. */
837
a30794da 838static inline const fde *
e1f9550a
RH
839binary_search_unencoded_fdes (struct object *ob, void *pc)
840{
841 struct fde_vector *vec = ob->u.sort;
52a11cbf 842 size_t lo, hi;
41077ce4 843
e1f9550a
RH
844 for (lo = 0, hi = vec->count; lo < hi; )
845 {
846 size_t i = (lo + hi) / 2;
a30794da 847 const fde *f = vec->array[i];
e1f9550a
RH
848 void *pc_begin;
849 uaddr pc_range;
850
e9d1b155
KH
851 pc_begin = ((void **) f->pc_begin)[0];
852 pc_range = ((uaddr *) f->pc_begin)[1];
e1f9550a
RH
853
854 if (pc < pc_begin)
855 hi = i;
856 else if (pc >= pc_begin + pc_range)
857 lo = i + 1;
858 else
859 return f;
860 }
0021b564 861
e1f9550a
RH
862 return NULL;
863}
154bba13 864
a30794da 865static inline const fde *
e1f9550a
RH
866binary_search_single_encoding_fdes (struct object *ob, void *pc)
867{
868 struct fde_vector *vec = ob->u.sort;
869 int encoding = ob->s.b.encoding;
870 _Unwind_Ptr base = base_from_object (encoding, ob);
871 size_t lo, hi;
41077ce4 872
e1f9550a 873 for (lo = 0, hi = vec->count; lo < hi; )
0021b564 874 {
e1f9550a 875 size_t i = (lo + hi) / 2;
a30794da 876 const fde *f = vec->array[i];
e1f9550a 877 _Unwind_Ptr pc_begin, pc_range;
ca29916b 878 const unsigned char *p;
e1f9550a
RH
879
880 p = read_encoded_value_with_base (encoding, base, f->pc_begin,
881 &pc_begin);
882 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
883
e9d1b155 884 if ((_Unwind_Ptr) pc < pc_begin)
e1f9550a 885 hi = i;
e9d1b155 886 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
e1f9550a
RH
887 lo = i + 1;
888 else
889 return f;
52a11cbf 890 }
0021b564 891
e1f9550a
RH
892 return NULL;
893}
894
a30794da 895static inline const fde *
e1f9550a
RH
896binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
897{
898 struct fde_vector *vec = ob->u.sort;
899 size_t lo, hi;
41077ce4 900
e1f9550a 901 for (lo = 0, hi = vec->count; lo < hi; )
52a11cbf 902 {
e1f9550a 903 size_t i = (lo + hi) / 2;
a30794da 904 const fde *f = vec->array[i];
e1f9550a 905 _Unwind_Ptr pc_begin, pc_range;
ca29916b 906 const unsigned char *p;
e1f9550a
RH
907 int encoding;
908
909 encoding = get_fde_encoding (f);
910 p = read_encoded_value_with_base (encoding,
911 base_from_object (encoding, ob),
912 f->pc_begin, &pc_begin);
913 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
914
e9d1b155 915 if ((_Unwind_Ptr) pc < pc_begin)
e1f9550a 916 hi = i;
e9d1b155 917 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
e1f9550a
RH
918 lo = i + 1;
919 else
920 return f;
52a11cbf 921 }
0021b564 922
e1f9550a
RH
923 return NULL;
924}
52a11cbf 925
a30794da 926static const fde *
e1f9550a
RH
927search_object (struct object* ob, void *pc)
928{
929 /* If the data hasn't been sorted, try to do this now. We may have
930 more memory available than last time we tried. */
931 if (! ob->s.b.sorted)
52a11cbf 932 {
e1f9550a 933 init_object (ob);
52a11cbf 934
e1f9550a
RH
935 /* Despite the above comment, the normal reason to get here is
936 that we've not processed this object before. A quick range
937 check is in order. */
938 if (pc < ob->pc_begin)
939 return NULL;
940 }
941
942 if (ob->s.b.sorted)
943 {
944 if (ob->s.b.mixed_encoding)
945 return binary_search_mixed_encoding_fdes (ob, pc);
946 else if (ob->s.b.encoding == DW_EH_PE_absptr)
947 return binary_search_unencoded_fdes (ob, pc);
948 else
949 return binary_search_single_encoding_fdes (ob, pc);
0021b564 950 }
52a11cbf
RH
951 else
952 {
e1f9550a
RH
953 /* Long slow labourious linear search, cos we've no memory. */
954 if (ob->s.b.from_array)
41077ce4
KH
955 {
956 fde **p;
e1f9550a
RH
957 for (p = ob->u.array; *p ; p++)
958 {
a30794da 959 const fde *f = linear_search_fdes (ob, *p, pc);
41077ce4 960 if (f)
e1f9550a 961 return f;
41077ce4 962 }
e1f9550a
RH
963 return NULL;
964 }
52a11cbf 965 else
e1f9550a
RH
966 return linear_search_fdes (ob, ob->u.single, pc);
967 }
968}
969
a30794da 970const fde *
e1f9550a
RH
971_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
972{
973 struct object *ob;
a30794da 974 const fde *f = NULL;
e1f9550a
RH
975
976 init_object_mutex_once ();
977 __gthread_mutex_lock (&object_mutex);
978
979 /* Linear search through the classified objects, to find the one
e3aafbad 980 containing the pc. Note that pc_begin is sorted descending, and
e1f9550a
RH
981 we expect objects to be non-overlapping. */
982 for (ob = seen_objects; ob; ob = ob->next)
983 if (pc >= ob->pc_begin)
984 {
985 f = search_object (ob, pc);
986 if (f)
987 goto fini;
988 break;
989 }
990
991 /* Classify and search the objects we've not yet processed. */
992 while ((ob = unseen_objects))
993 {
994 struct object **p;
995
996 unseen_objects = ob->next;
997 f = search_object (ob, pc);
998
999 /* Insert the object into the classified list. */
1000 for (p = &seen_objects; *p ; p = &(*p)->next)
1001 if ((*p)->pc_begin < ob->pc_begin)
1002 break;
1003 ob->next = *p;
1004 *p = ob;
1005
1006 if (f)
1007 goto fini;
1008 }
1009
1010 fini:
1011 __gthread_mutex_unlock (&object_mutex);
1012
1013 if (f)
1014 {
1015 int encoding;
950ccbc4 1016 _Unwind_Ptr func;
e1f9550a
RH
1017
1018 bases->tbase = ob->tbase;
1019 bases->dbase = ob->dbase;
154bba13 1020
e1f9550a
RH
1021 encoding = ob->s.b.encoding;
1022 if (ob->s.b.mixed_encoding)
1023 encoding = get_fde_encoding (f);
1024 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
950ccbc4
NS
1025 f->pc_begin, &func);
1026 bases->func = (void *) func;
52a11cbf 1027 }
0021b564 1028
e1f9550a 1029 return f;
a3fd4e75 1030}
This page took 2.717994 seconds and 5 git commands to generate.