]> gcc.gnu.org Git - gcc.git/blame - gcc/unroll.c
*** empty log message ***
[gcc.git] / gcc / unroll.c
CommitLineData
67f2de41
RK
1/* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54/* Possible improvements follow: */
55
56/* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv incremenets can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68/* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73/* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90/* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117/* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132/* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139#define NUM_FACTORS 4
140
141struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144/* Describes the different types of loop unrolling performed. */
145
146enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148#include "config.h"
149#include "rtl.h"
150#include "insn-config.h"
151#include "integrate.h"
152#include "regs.h"
153#include "flags.h"
154#include "expr.h"
155#include <stdio.h>
156#include "loop.h"
157
158/* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161#ifndef MAX_UNROLLED_INSNS
162#define MAX_UNROLLED_INSNS 100
163#endif
164
165/* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171static struct induction **addr_combined_regs;
172
173/* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177static rtx *splittable_regs;
178
179/* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184static int *splittable_regs_updates;
185
186/* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189static rtx loop_iteration_var;
190static rtx loop_initial_value;
191static rtx loop_increment;
192static rtx loop_final_value;
193
194/* Forward declarations. */
195
196static void init_reg_map ();
197static int precondition_loop_p ();
198static void copy_loop_body ();
199static void iteration_info ();
200static rtx approx_final_value ();
201static int find_splittable_regs ();
202static int find_splittable_givs ();
203static rtx fold_rtx_mult_add ();
204
205/* Try to unroll one loop and split induction variables in the loop.
206
207 The loop is described by the arguments LOOP_END, INSN_COUNT, and
208 LOOP_START. END_INSERT_BEDFORE indicates where insns should be added
209 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
210 indicates whether information generated in the strength reduction pass
211 is available.
212
213 This function is intended to be called from within `strength_reduce'
214 in loop.c. */
215
216void
217unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
218 strength_reduce_p)
219 rtx loop_end;
220 int insn_count;
221 rtx loop_start;
222 rtx end_insert_before;
223 int strength_reduce_p;
224{
225 int i, j, temp;
226 int unroll_number = 1;
227 rtx copy_start, copy_end;
228 rtx insn, copy, sequence, pattern, tem;
229 int max_labelno, max_insnno;
230 rtx insert_before;
231 struct inline_remap *map;
232 char *local_label;
233 int maxregnum;
234 int new_maxregnum;
235 rtx exit_label = 0;
236 rtx start_label;
237 struct iv_class *bl;
238 struct induction *v;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326#ifdef HAVE_cc0
327 /* The immediately preceeding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331#else
332 /* The immediately preceeding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335#endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447#ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451#else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455#endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488#ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493#else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498#endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603
604 if (unroll_type == UNROLL_NAIVE
605 && GET_CODE (last_loop_insn) == BARRIER
606 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
607 {
608 /* In this case, we must copy the jump and barrier, because they will
609 not be converted to jumps to an immediately following label. */
610
611 insert_before = NEXT_INSN (last_loop_insn);
612 copy_end = last_loop_insn;
613 }
614
615 /* Allocate a translation table for the labels and insn numbers.
616 They will be filled in as we copy the insns in the loop. */
617
618 max_labelno = max_label_num ();
619 max_insnno = get_max_uid ();
620
621 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
622
623 /* Allocate the label map. */
624
625 if (max_labelno > 0)
626 {
627 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
628
629 local_label = (char *) alloca (max_labelno);
630 bzero (local_label, max_labelno);
631 }
632 else
633 map->label_map = 0;
634
635 /* Search the loop and mark all local labels, i.e. the ones which have to
636 be distinct labels when copied. For all labels which might be
637 non-local, set their label_map entries to point to themselves.
638 If they happen to be local their label_map entries will be overwritten
639 before the loop body is copied. The label_map entries for local labels
640 will be set to a different value each time the loop body is copied. */
641
642 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
643 {
644 if (GET_CODE (insn) == CODE_LABEL)
645 local_label[CODE_LABEL_NUMBER (insn)] = 1;
646 else if (GET_CODE (insn) == JUMP_INSN)
647 {
648 if (JUMP_LABEL (insn))
649 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
650 = JUMP_LABEL (insn);
651 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
653 {
654 rtx pat = PATTERN (insn);
655 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
656 int len = XVECLEN (pat, diff_vec_p);
657 rtx label;
658
659 for (i = 0; i < len; i++)
660 {
661 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
662 map->label_map[CODE_LABEL_NUMBER (label)] = label;
663 }
664 }
665 }
666 }
667
668 /* Allocate space for the insn map. */
669
670 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
671
672 /* Set this to zero, to indicate that we are doing loop unrolling,
673 not function inlining. */
674 map->inline_target = 0;
675
676 /* The register and constant maps depend on the number of registers
677 present, so the final maps can't be created until after
678 find_splittable_regs is called. However, they are needed for
679 preconditioning, so we create temporary maps when preconditioning
680 is performed. */
681
682 /* The preconditioning code may allocate two new pseudo registers. */
683 maxregnum = max_reg_num ();
684
685 /* Allocate and zero out the splittable_regs and addr_combined_regs
686 arrays. These must be zeroed here because they will be used if
687 loop preconditioning is performed, and must be zero for that case.
688
689 It is safe to do this here, since the extra registers created by the
690 preconditioning code and find_splittable_regs will never be used
691 to accees the splittable_regs[] and addr_combined_regs[] arrays. */
692
693 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
694 bzero (splittable_regs, maxregnum * sizeof (rtx));
695 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
696 bzero (splittable_regs_updates, maxregnum * sizeof (int));
697 addr_combined_regs
698 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
699 bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));
700
701 /* If this loop requires exit tests when unrolled, check to see if we
702 can precondition the loop so as to make the exit tests unnecessary.
703 Just like variable splitting, this is not safe if the loop is entered
704 via a jump to the bottom. Also, can not do this if no strength
705 reduce info, because precondition_loop_p uses this info. */
706
707 /* Must copy the loop body for preconditioning before the following
708 find_splittable_regs call since that will emit insns which need to
709 be after the preconditioned loop copies, but immediately before the
710 unrolled loop copies. */
711
712 /* Also, it is not safe to split induction variables for the preconditioned
713 copies of the loop body. If we split induction variables, then the code
714 assumes that each induction variable can be represented as a function
715 of its initial value and the loop iteration number. This is not true
716 in this case, because the last preconditioned copy of the loop body
717 could be any iteration from the first up to the `unroll_number-1'th,
718 depending on the initial value of the iteration variable. Therefore
719 we can not split induction variables here, because we can not calculate
720 their value. Hence, this code must occur before find_splittable_regs
721 is called. */
722
723 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
724 {
725 rtx initial_value, final_value, increment;
726
727 if (precondition_loop_p (&initial_value, &final_value, &increment,
728 loop_start, loop_end))
729 {
730 register rtx diff, temp;
731 enum machine_mode mode;
732 rtx *labels;
733 int abs_inc, neg_inc;
734
735 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
736
737 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
738 map->const_age_map = (unsigned *) alloca (maxregnum
739 * sizeof (unsigned));
740 map->const_equiv_map_size = maxregnum;
741 global_const_equiv_map = map->const_equiv_map;
742
743 init_reg_map (map, maxregnum);
744
745 /* Limit loop unrolling to 4, since this will make 7 copies of
746 the loop body. */
747 if (unroll_number > 4)
748 unroll_number = 4;
749
750 /* Save the absolute value of the increment, and also whether or
751 not it is negative. */
752 neg_inc = 0;
753 abs_inc = INTVAL (increment);
754 if (abs_inc < 0)
755 {
756 abs_inc = - abs_inc;
757 neg_inc = 1;
758 }
759
760 start_sequence ();
761
762 /* Decide what mode to do these calculations in. Choose the larger
763 of final_value's mode and initial_value's mode, or a full-word if
764 both are constants. */
765 mode = GET_MODE (final_value);
766 if (mode == VOIDmode)
767 {
768 mode = GET_MODE (initial_value);
769 if (mode == VOIDmode)
770 mode = word_mode;
771 }
772 else if (mode != GET_MODE (initial_value)
773 && (GET_MODE_SIZE (mode)
774 < GET_MODE_SIZE (GET_MODE (initial_value))))
775 mode = GET_MODE (initial_value);
776
777 /* Calculate the difference between the final and initial values.
778 Final value may be a (plus (reg x) (const_int 1)) rtx.
779 Let the following cse pass simplify this if initial value is
780 a constant.
781
782 We must copy the final and initial values here to avoid
783 improperly shared rtl. */
784
785 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
786 copy_rtx (initial_value), 0, 0,
787 OPTAB_LIB_WIDEN);
788
789 /* Now calculate (diff % (unroll * abs (increment))) by using an
790 and instruction. */
791 diff = expand_binop (GET_MODE (diff), and_optab, diff,
792 gen_rtx (CONST_INT, VOIDmode,
793 unroll_number * abs_inc - 1),
794 0, 0, OPTAB_LIB_WIDEN);
795
796 /* Now emit a sequence of branches to jump to the proper precond
797 loop entry point. */
798
799 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
800 for (i = 0; i < unroll_number; i++)
801 labels[i] = gen_label_rtx ();
802
803 /* Assuming the unroll_number is 4, and the increment is 2, then
804 for a negative increment: for a positive increment:
805 diff = 0,1 precond 0 diff = 0,7 precond 0
806 diff = 2,3 precond 3 diff = 1,2 precond 1
807 diff = 4,5 precond 2 diff = 3,4 precond 2
808 diff = 6,7 precond 1 diff = 5,6 precond 3 */
809
810 /* We only need to emit (unroll_number - 1) branches here, the
811 last case just falls through to the following code. */
812
813 /* ??? This would give better code if we emitted a tree of branches
814 instead of the current linear list of branches. */
815
816 for (i = 0; i < unroll_number - 1; i++)
817 {
818 int cmp_const;
819
820 /* For negative increments, must invert the constant compared
821 against, except when comparing against zero. */
822 if (i == 0)
823 cmp_const = 0;
824 else if (neg_inc)
825 cmp_const = unroll_number - i;
826 else
827 cmp_const = i;
828
829 emit_cmp_insn (diff, gen_rtx (CONST_INT, VOIDmode,
830 abs_inc * cmp_const),
831 EQ, 0, mode, 0, 0);
832
833 if (i == 0)
834 emit_jump_insn (gen_beq (labels[i]));
835 else if (neg_inc)
836 emit_jump_insn (gen_bge (labels[i]));
837 else
838 emit_jump_insn (gen_ble (labels[i]));
839 JUMP_LABEL (get_last_insn ()) = labels[i];
840 LABEL_NUSES (labels[i])++;
841 }
842
843 /* If the increment is greater than one, then we need another branch,
844 to handle other cases equivalent to 0. */
845
846 /* ??? This should be merged into the code above somehow to help
847 simplify the code here, and reduce the number of branches emitted.
848 For the negative increment case, the branch here could easily
849 be merged with the `0' case branch above. For the positive
850 increment case, it is not clear how this can be simplified. */
851
852 if (abs_inc != 1)
853 {
854 int cmp_const;
855
856 if (neg_inc)
857 cmp_const = abs_inc - 1;
858 else
859 cmp_const = abs_inc * (unroll_number - 1) + 1;
860
861 emit_cmp_insn (diff, gen_rtx (CONST_INT, VOIDmode, cmp_const),
862 EQ, 0, mode, 0, 0);
863
864 if (neg_inc)
865 emit_jump_insn (gen_ble (labels[0]));
866 else
867 emit_jump_insn (gen_bge (labels[0]));
868 JUMP_LABEL (get_last_insn ()) = labels[0];
869 LABEL_NUSES (labels[0])++;
870 }
871
872 sequence = gen_sequence ();
873 end_sequence ();
874 emit_insn_before (sequence, loop_start);
875
876 /* Only the last copy of the loop body here needs the exit
877 test, so set copy_end to exclude the compare/branch here,
878 and then reset it inside the loop when get to the last
879 copy. */
880
881 if (GET_CODE (last_loop_insn) == BARRIER)
882 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
883 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
884 {
885#ifdef HAVE_cc0
886 /* The immediately preceeding insn is a compare which we do not
887 want to copy. */
888 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
889#else
890 /* The immediately preceeding insn may not be a compare, so we
891 must copy it. */
892 copy_end = PREV_INSN (last_loop_insn);
893#endif
894 }
895 else
896 abort ();
897
898 for (i = 1; i < unroll_number; i++)
899 {
900 emit_label_after (labels[unroll_number - i],
901 PREV_INSN (loop_start));
902
903 bzero (map->insn_map, max_insnno * sizeof (rtx));
904 bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
905 bzero (map->const_age_map, maxregnum * sizeof (unsigned));
906 map->const_age = 0;
907
908 for (j = 0; j < max_labelno; j++)
909 if (local_label[j])
910 map->label_map[j] = gen_label_rtx ();
911
912 /* The last copy needs the compare/branch insns at the end,
913 so reset copy_end here if the loop ends with a conditional
914 branch. */
915
916 if (i == unroll_number - 1)
917 {
918 if (GET_CODE (last_loop_insn) == BARRIER)
919 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
920 else
921 copy_end = last_loop_insn;
922 }
923
924 /* None of the copies are the `last_iteration', so just
925 pass zero for that parameter. */
926 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
927 unroll_type, start_label, loop_end,
928 loop_start, copy_end);
929 }
930 emit_label_after (labels[0], PREV_INSN (loop_start));
931
932 if (GET_CODE (last_loop_insn) == BARRIER)
933 {
934 insert_before = PREV_INSN (last_loop_insn);
935 copy_end = PREV_INSN (insert_before);
936 }
937 else
938 {
939#ifdef HAVE_cc0
940 /* The immediately preceeding insn is a compare which we do not
941 want to copy. */
942 insert_before = PREV_INSN (last_loop_insn);
943 copy_end = PREV_INSN (insert_before);
944#else
945 /* The immediately preceeding insn may not be a compare, so we
946 must copy it. */
947 insert_before = last_loop_insn;
948 copy_end = PREV_INSN (last_loop_insn);
949#endif
950 }
951
952 /* Set unroll type to MODULO now. */
953 unroll_type = UNROLL_MODULO;
954 loop_preconditioned = 1;
955 }
956 }
957
958 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
959 the loop unless all loops are being unrolled. */
960 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
961 {
962 if (loop_dump_stream)
963 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
964 return;
965 }
966
967 /* At this point, we are guaranteed to unroll the loop. */
968
969 /* For each biv and giv, determine whether it can be safely split into
970 a different variable for each unrolled copy of the loop body.
971 We precalculate and save this info here, since computing it is
972 expensive.
973
974 Do this before deleting any instructions from the loop, so that
975 back_branch_in_range_p will work correctly. */
976
977 if (splitting_not_safe)
978 temp = 0;
979 else
980 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
981 end_insert_before, unroll_number);
982
983 /* find_splittable_regs may have created some new registers, so must
984 reallocate the reg_map with the new larger size, and must realloc
985 the constant maps also. */
986
987 maxregnum = max_reg_num ();
988 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
989
990 init_reg_map (map, maxregnum);
991
992 /* Space is needed in some of the map for new registers, so new_maxregnum
993 is an (over)estimate of how many registers will exist at the end. */
994 new_maxregnum = maxregnum + (temp * unroll_number * 2);
995
996 /* Must realloc space for the constant maps, because the number of registers
997 may have changed. */
998
999 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1000 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1001
1002 global_const_equiv_map = map->const_equiv_map;
1003
1004 /* Search the list of bivs and givs to find ones which need to be remapped
1005 when split, and set their reg_map entry appropriately. */
1006
1007 for (bl = loop_iv_list; bl; bl = bl->next)
1008 {
1009 if (REGNO (bl->biv->src_reg) != bl->regno)
1010 map->reg_map[bl->regno] = bl->biv->src_reg;
1011#if 0
1012 /* Currently, non-reduced/final-value givs are never split. */
1013 for (v = bl->giv; v; v = v->next_iv)
1014 if (REGNO (v->src_reg) != bl->regno)
1015 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1016#endif
1017 }
1018
1019 /* If the loop is being partially unrolled, and the iteration variables
1020 are being split, and are being renamed for the split, then must fix up
1021 the compare instruction at the end of the loop to refer to the new
1022 registers. This compare isn't copied, so the registers used in it
1023 will never be replaced if it isn't done here. */
1024
1025 if (unroll_type == UNROLL_MODULO)
1026 {
1027 insn = NEXT_INSN (copy_end);
1028 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET)
1029 {
1030#if 0
1031 /* If non-reduced/final-value givs were split, then this would also
1032 have to remap those givs. */
1033#endif
1034
1035 tem = SET_SRC (PATTERN (insn));
1036 /* The set source is a register. */
1037 if (GET_CODE (tem) == REG)
1038 {
1039 if (REGNO (tem) < max_reg_before_loop
1040 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1041 SET_SRC (PATTERN (insn))
1042 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1043 }
1044 else
1045 {
1046 /* The set source is a compare of some sort. */
1047 tem = XEXP (SET_SRC (PATTERN (insn)), 0);
1048 if (GET_CODE (tem) == REG
1049 && REGNO (tem) < max_reg_before_loop
1050 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1051 XEXP (SET_SRC (PATTERN (insn)), 0)
1052 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1053
1054 tem = XEXP (SET_SRC (PATTERN (insn)), 1);
1055 if (GET_CODE (tem) == REG
1056 && REGNO (tem) < max_reg_before_loop
1057 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1058 XEXP (SET_SRC (PATTERN (insn)), 1)
1059 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1060 }
1061 }
1062 }
1063
1064 /* For unroll_number - 1 times, make a copy of each instruction
1065 between copy_start and copy_end, and insert these new instructions
1066 before the end of the loop. */
1067
1068 for (i = 0; i < unroll_number; i++)
1069 {
1070 bzero (map->insn_map, max_insnno * sizeof (rtx));
1071 bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
1072 bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
1073 map->const_age = 0;
1074
1075 for (j = 0; j < max_labelno; j++)
1076 if (local_label[j])
1077 map->label_map[j] = gen_label_rtx ();
1078
1079 /* If loop starts with a branch to the test, then fix it so that
1080 it points to the test of the first unrolled copy of the loop. */
1081 if (i == 0 && loop_start != copy_start)
1082 {
1083 insn = PREV_INSN (copy_start);
1084 pattern = PATTERN (insn);
1085
1086 tem = map->label_map[CODE_LABEL_NUMBER
1087 (XEXP (SET_SRC (pattern), 0))];
1088 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1089
1090 /* Set the jump label so that it can be used by later loop unrolling
1091 passes. */
1092 JUMP_LABEL (insn) = tem;
1093 LABEL_NUSES (tem)++;
1094 }
1095
1096 copy_loop_body (copy_start, copy_end, map, exit_label,
1097 i == unroll_number - 1, unroll_type, start_label,
1098 loop_end, insert_before, insert_before);
1099 }
1100
1101 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1102 insn to be deleted. This prevents any runaway delete_insn call from
1103 more insns that it should, as it always stops at a CODE_LABEL. */
1104
1105 /* Delete the compare and branch at the end of the loop if completely
1106 unrolling the loop. Deleting the backward branch at the end also
1107 deletes the code label at the start of the loop. This is done at
1108 the very end to avoid problems with back_branch_in_range_p. */
1109
1110 if (unroll_type == UNROLL_COMPLETELY)
1111 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1112 else
1113 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1114
1115 /* Delete all of the original loop instructions. Don't delete the
1116 LOOP_BEG note, or the first code label in the loop. */
1117
1118 insn = NEXT_INSN (copy_start);
1119 while (insn != safety_label)
1120 {
1121 if (insn != start_label)
1122 insn = delete_insn (insn);
1123 else
1124 insn = NEXT_INSN (insn);
1125 }
1126
1127 /* Can now delete the 'safety' label emitted to protect us from runaway
1128 delete_insn calls. */
1129 if (INSN_DELETED_P (safety_label))
1130 abort ();
1131 delete_insn (safety_label);
1132
1133 /* If exit_label exists, emit it after the loop. Doing the emit here
1134 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1135 This is needed so that mostly_true_jump in reorg.c will treat jumps
1136 to this loop end label correctly, i.e. predict that they are usually
1137 not taken. */
1138 if (exit_label)
1139 emit_label_after (exit_label, loop_end);
1140
1141 /* If debugging, we must replicate the tree nodes corresponsing to the blocks
1142 inside the loop, so that the original one to one mapping will remain. */
1143
1144 if (write_symbols != NO_DEBUG)
1145 {
1146 int copies = unroll_number;
1147
1148 if (loop_preconditioned)
1149 copies += unroll_number - 1;
1150
1151 unroll_block_trees (uid_loop_num[INSN_UID (loop_start)], copies);
1152 }
1153}
1154\f
1155/* Return true if the loop can be safely, and profitably, preconditioned
1156 so that the unrolled copies of the loop body don't need exit tests.
1157
1158 This only works if final_value, initial_value and increment can be
1159 determined, and if increment is a constant power of 2.
1160 If increment is not a power of 2, then the preconditioning modulo
1161 operation would require a real modulo instead of a boolean AND, and this
1162 is not considered `profitable'. */
1163
1164/* ??? If the loop is known to be executed very many times, or the machine
1165 has a very cheap divide instruction, then preconditioning is a win even
1166 when the increment is not a power of 2. Use RTX_COST to compute
1167 whether divide is cheap. */
1168
1169static int
1170precondition_loop_p (initial_value, final_value, increment, loop_start,
1171 loop_end)
1172 rtx *initial_value, *final_value, *increment;
1173 rtx loop_start, loop_end;
1174{
1175 int unsigned_compare, compare_dir;
1176
1177 if (loop_n_iterations > 0)
1178 {
1179 *initial_value = const0_rtx;
1180 *increment = const1_rtx;
1181 *final_value = gen_rtx (CONST_INT, VOIDmode, loop_n_iterations);
1182
1183 if (loop_dump_stream)
1184 fprintf (loop_dump_stream,
1185 "Preconditioning: Success, number of iterations known, %d.\n",
1186 loop_n_iterations);
1187 return 1;
1188 }
1189
1190 if (loop_initial_value == 0)
1191 {
1192 if (loop_dump_stream)
1193 fprintf (loop_dump_stream,
1194 "Preconditioning: Could not find initial value.\n");
1195 return 0;
1196 }
1197 else if (loop_increment == 0)
1198 {
1199 if (loop_dump_stream)
1200 fprintf (loop_dump_stream,
1201 "Preconditioning: Could not find increment value.\n");
1202 return 0;
1203 }
1204 else if (GET_CODE (loop_increment) != CONST_INT)
1205 {
1206 if (loop_dump_stream)
1207 fprintf (loop_dump_stream,
1208 "Preconditioning: Increment not a constant.\n");
1209 return 0;
1210 }
1211 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1212 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1213 {
1214 if (loop_dump_stream)
1215 fprintf (loop_dump_stream,
1216 "Preconditioning: Increment not a constant power of 2.\n");
1217 return 0;
1218 }
1219
1220 /* Unsigned_compare and compare_dir can be ignored here, since they do
1221 not matter for preconditioning. */
1222
1223 if (loop_final_value == 0)
1224 {
1225 if (loop_dump_stream)
1226 fprintf (loop_dump_stream,
1227 "Preconditioning: EQ comparison loop.\n");
1228 return 0;
1229 }
1230
1231 /* Must ensure that final_value is invariant, so call invariant_p to
1232 check. Before doing so, must check regno against max_reg_before_loop
1233 to make sure that the register is in the range convered by invariant_p.
1234 If it isn't, then it is most likely a biv/giv which by definition are
1235 not invariant. */
1236 if ((GET_CODE (loop_final_value) == REG
1237 && REGNO (loop_final_value) >= max_reg_before_loop)
1238 || (GET_CODE (loop_final_value) == PLUS
1239 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1240 || ! invariant_p (loop_final_value))
1241 {
1242 if (loop_dump_stream)
1243 fprintf (loop_dump_stream,
1244 "Preconditioning: Final value not invariant.\n");
1245 return 0;
1246 }
1247
1248 /* Fail for floating point values, since the caller of this function
1249 does not have code to deal with them. */
1250 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1251 || GET_MODE_CLASS (GET_MODE (loop_initial_value) == MODE_FLOAT))
1252 {
1253 if (loop_dump_stream)
1254 fprintf (loop_dump_stream,
1255 "Preconditioning: Floating point final or initial value.\n");
1256 return 0;
1257 }
1258
1259 /* Now set initial_value to be the iteration_var, since that may be a
1260 simpler expression, and is guaranteed to be correct if all of the
1261 above tests succeed.
1262
1263 We can not use the initial_value as calculated, because it will be
1264 one too small for loops of the form "while (i-- > 0)". We can not
1265 emit code before the loop_skip_over insns to fix this problem as this
1266 will then give a number one too large for loops of the form
1267 "while (--i > 0)".
1268
1269 Note that all loops that reach here are entered at the top, because
1270 this function is not called if the loop starts with a jump. */
1271
1272 /* Fail if loop_iteration_var is not live before loop_start, since we need
1273 to test its value in the preconditioning code. */
1274
1275 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1276 > INSN_LUID (loop_start))
1277 {
1278 if (loop_dump_stream)
1279 fprintf (loop_dump_stream,
1280 "Preconditioning: Iteration var not live before loop start.\n");
1281 return 0;
1282 }
1283
1284 *initial_value = loop_iteration_var;
1285 *increment = loop_increment;
1286 *final_value = loop_final_value;
1287
1288 /* Success! */
1289 if (loop_dump_stream)
1290 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1291 return 1;
1292}
1293
1294
1295/* All pseudo-registers must be mapped to themselves. Two hard registers
1296 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1297 REGNUM, to avoid function-inlining specific conversions of these
1298 registers. All other hard regs can not be mapped because they may be
1299 used with different
1300 modes. */
1301
1302static void
1303init_reg_map (map, maxregnum)
1304 struct inline_remap *map;
1305 int maxregnum;
1306{
1307 int i;
1308
1309 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1310 map->reg_map[i] = regno_reg_rtx[i];
1311 /* Just clear the rest of the entries. */
1312 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1313 map->reg_map[i] = 0;
1314
1315 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1316 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1317 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1318 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1319}
1320\f
1321/* Strength-reduction will often emit code for optimized biv/givs which
1322 calculates their value in a temporary register, and then copies the result
1323 to the iv. This procedure reconstructs the pattern computing the iv;
1324 verifying that all operands are of the proper form.
1325
1326 The return value is the amount that the giv is incremented by. */
1327
1328static rtx
1329calculate_giv_inc (pattern, src_insn, regno)
1330 rtx pattern, src_insn;
1331 int regno;
1332{
1333 rtx increment;
1334
1335 /* Verify that we have an increment insn here. First check for a plus
1336 as the set source. */
1337 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1338 {
1339 /* SR sometimes computes the new giv value in a temp, then copies it
1340 to the new_reg. */
1341 src_insn = PREV_INSN (src_insn);
1342 pattern = PATTERN (src_insn);
1343 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1344 abort ();
1345
1346 /* The last insn emitted is not needed, so delete it to avoid confusing
1347 the second cse pass. This insn sets the giv unnecessarily. */
1348 delete_insn (get_last_insn ());
1349 }
1350
1351 /* Verify that we have a constant as the second operand of the plus. */
1352 increment = XEXP (SET_SRC (pattern), 1);
1353 if (GET_CODE (increment) != CONST_INT)
1354 {
1355 /* SR sometimes puts the constant in a register, especially if it is
1356 too big to be an add immed operand. */
1357 increment = SET_SRC (PATTERN (PREV_INSN (src_insn)));
1358
1359 /* SR may have used LO_SUM to compute the constant if it is too large
1360 for a load immed operand. In this case, the constant is in operand
1361 one of the LO_SUM rtx. */
1362 if (GET_CODE (increment) == LO_SUM)
1363 increment = XEXP (increment, 1);
1364
1365 if (GET_CODE (increment) != CONST_INT)
1366 abort ();
1367
1368 /* The insn loading the constant into a register is not longer needed,
1369 so delete it. */
1370 delete_insn (get_last_insn ());
1371 }
1372
1373 /* Check that the source register is the same as the dest register. */
1374 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1375 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1376 abort ();
1377
1378 return increment;
1379}
1380
1381
1382/* Copy each instruction in the loop, substituting from map as appropriate.
1383 This is very similar to a loop in expand_inline_function. */
1384
1385static void
1386copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1387 unroll_type, start_label, loop_end, insert_before,
1388 copy_notes_from)
1389 rtx copy_start, copy_end;
1390 struct inline_remap *map;
1391 int last_iteration;
1392 enum unroll_types unroll_type;
1393 rtx start_label, loop_end, insert_before, copy_notes_from;
1394{
1395 rtx insn, pattern;
1396 rtx tem, copy;
1397 int dest_reg_was_split, i;
1398 rtx cc0_insn = 0;
1399 rtx final_label = 0;
1400 rtx giv_inc, giv_dest_reg, giv_src_reg;
1401
1402 /* If this isn't the last iteration, then map any references to the
1403 start_label to final_label. Final label will then be emitted immediately
1404 after the end of this loop body if it was ever used.
1405
1406 If this is the last iteration, then map references to the start_label
1407 to itself. */
1408 if (! last_iteration)
1409 {
1410 final_label = gen_label_rtx ();
1411 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1412 }
1413 else
1414 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1415
1416 start_sequence ();
1417
1418 insn = copy_start;
1419 do
1420 {
1421 insn = NEXT_INSN (insn);
1422
1423 map->orig_asm_operands_vector = 0;
1424
1425 switch (GET_CODE (insn))
1426 {
1427 case INSN:
1428 pattern = PATTERN (insn);
1429 copy = 0;
1430 giv_inc = 0;
1431
1432 /* Check to see if this is a giv that has been combined with
1433 some split address givs. (Combined in the sense that
1434 `combine_givs' in loop.c has put two givs in the same register.)
1435 In this case, we must search all givs based on the same biv to
1436 find the address givs. Then split the address givs.
1437 Do this before splitting the giv, since that may map the
1438 SET_DEST to a new register. */
1439
1440 if (GET_CODE (pattern) == SET
1441 && GET_CODE (SET_DEST (pattern)) == REG
1442 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1443 {
1444 struct iv_class *bl;
1445 struct induction *v, *tv;
1446 int regno = REGNO (SET_DEST (pattern));
1447
1448 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1449 bl = reg_biv_class[REGNO (v->src_reg)];
1450
1451 /* Although the giv_inc amount is not needed here, we must call
1452 calculate_giv_inc here since it might try to delete the
1453 last insn emitted. If we wait until later to call it,
1454 we might accidentally delete insns generated immediately
1455 below by emit_unrolled_add. */
1456
1457 giv_inc = calculate_giv_inc (pattern, insn, regno);
1458
1459 /* Now find all address giv's that were combined with this
1460 giv 'v'. */
1461 for (tv = bl->giv; tv; tv = tv->next_iv)
1462 if (tv->giv_type == DEST_ADDR && tv->same == v)
1463 {
3f07e47a
JW
1464 /* Increment the giv by the amount that was calculated in
1465 find_splittable_givs, and saved in add_val. */
67f2de41 1466 tv->dest_reg = plus_constant (tv->dest_reg,
3f07e47a 1467 INTVAL (tv->add_val));
67f2de41
RK
1468 *tv->location = tv->dest_reg;
1469
1470 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1471 {
1472 /* Must emit an insn to increment the split address
1473 giv. Add in the const_adjust field in case there
1474 was a constant eliminated from the address. */
1475 rtx value, dest_reg;
1476
1477 /* tv->dest_reg will be either a bare register,
1478 or else a register plus a constant. */
1479 if (GET_CODE (tv->dest_reg) == REG)
1480 dest_reg = tv->dest_reg;
1481 else
1482 dest_reg = XEXP (tv->dest_reg, 0);
1483
1484 /* tv->dest_reg may actually be a (PLUS (REG) (CONST))
1485 here, so we must call plus_constant to add
1486 the const_adjust amount before calling
1487 emit_unrolled_add below. */
1488 value = plus_constant (tv->dest_reg, tv->const_adjust);
1489
1490 /* The constant could be too large for an add
1491 immediate, so can't directly emit an insn here. */
1492 emit_unrolled_add (dest_reg, XEXP (value, 0),
1493 XEXP (value, 1));
1494
1495 /* Reset the giv to be just the register again, in case
1496 it is used after the set we have just emitted. */
1497 tv->dest_reg = dest_reg;
1498 *tv->location = tv->dest_reg;
1499 }
1500 }
1501 }
1502
1503 /* If this is a setting of a splittable variable, then determine
1504 how to split the variable, create a new set based on this split,
1505 and set up the reg_map so that later uses of the variable will
1506 use the new split variable. */
1507
1508 dest_reg_was_split = 0;
1509
1510 if (GET_CODE (pattern) == SET
1511 && GET_CODE (SET_DEST (pattern)) == REG
1512 && splittable_regs[REGNO (SET_DEST (pattern))])
1513 {
1514 int regno = REGNO (SET_DEST (pattern));
1515
1516 dest_reg_was_split = 1;
1517
1518 /* Compute the increment value for the giv, if it wasn't
1519 already computed above. */
1520
1521 if (giv_inc == 0)
1522 giv_inc = calculate_giv_inc (pattern, insn, regno);
1523 giv_dest_reg = SET_DEST (pattern);
1524 giv_src_reg = SET_DEST (pattern);
1525
1526 if (unroll_type == UNROLL_COMPLETELY)
1527 {
1528 /* Completely unrolling the loop. Set the induction
1529 variable to a known constant value. */
1530
1531 /* The value in splittable_regs may be an invariant
1532 value, so we must use plus_constant here. */
1533 splittable_regs[regno]
1534 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1535
1536 if (GET_CODE (splittable_regs[regno]) == PLUS)
1537 {
1538 giv_src_reg = XEXP (splittable_regs[regno], 0);
1539 giv_inc = XEXP (splittable_regs[regno], 1);
1540 }
1541 else
1542 {
1543 /* The splittable_regs value must be a REG or a
1544 CONST_INT, so put the entire value in the giv_src_reg
1545 variable. */
1546 giv_src_reg = splittable_regs[regno];
1547 giv_inc = const0_rtx;
1548 }
1549 }
1550 else
1551 {
1552 /* Partially unrolling loop. Create a new pseudo
1553 register for the iteration variable, and set it to
1554 be a constant plus the original register. Except
1555 on the last iteration, when the result has to
1556 go back into the original iteration var register. */
1557
1558 /* Handle bivs which must be mapped to a new register
1559 when split. This happens for bivs which need their
1560 final value set before loop entry. The new register
1561 for the biv was stored in the biv's first struct
1562 induction entry by find_splittable_regs. */
1563
1564 if (regno < max_reg_before_loop
1565 && reg_iv_type[regno] == BASIC_INDUCT)
1566 {
1567 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1568 giv_dest_reg = giv_src_reg;
1569 }
1570
1571#if 0
1572 /* If non-reduced/final-value givs were split, then
1573 this would have to remap those givs also. See
1574 find_splittable_regs. */
1575#endif
1576
1577 splittable_regs[regno]
1578 = gen_rtx (CONST_INT, VOIDmode,
1579 INTVAL (giv_inc)
1580 + INTVAL (splittable_regs[regno]));
1581 giv_inc = splittable_regs[regno];
1582
1583 /* Now split the induction variable by changing the dest
1584 of this insn to a new register, and setting its
1585 reg_map entry to point to this new register.
1586
1587 If this is the last iteration, and this is the last insn
1588 that will update the iv, then reuse the original dest,
1589 to ensure that the iv will have the proper value when
1590 the loop exits or repeats.
1591
1592 Using splittable_regs_updates here like this is safe,
1593 because it can only be greater than one if all
1594 instructions modifying the iv are always executed in
1595 order. */
1596
1597 if (! last_iteration
1598 || (splittable_regs_updates[regno]-- != 1))
1599 {
1600 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1601 giv_dest_reg = tem;
1602 map->reg_map[regno] = tem;
1603 }
1604 else
1605 map->reg_map[regno] = giv_src_reg;
1606 }
1607
1608 /* The constant being added could be too large for an add
1609 immediate, so can't directly emit an insn here. */
1610 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1611 copy = get_last_insn ();
1612 pattern = PATTERN (copy);
1613 }
1614 else
1615 {
1616 pattern = copy_rtx_and_substitute (pattern, map);
1617 copy = emit_insn (pattern);
1618 }
1619 /* REG_NOTES will be copied later. */
1620
1621#ifdef HAVE_cc0
1622 /* If this insn is setting CC0, it may need to look at
1623 the insn that uses CC0 to see what type of insn it is.
1624 In that case, the call to recog via validate_change will
1625 fail. So don't substitute constants here. Instead,
1626 do it when we emit the following insn.
1627
1628 For example, see the pyr.md file. That machine has signed and
1629 unsigned compares. The compare patterns must check the
1630 following branch insn to see which what kind of compare to
1631 emit.
1632
1633 If the previous insn set CC0, substitute constants on it as
1634 well. */
1635 if (sets_cc0_p (copy) != 0)
1636 cc0_insn = copy;
1637 else
1638 {
1639 if (cc0_insn)
1640 try_constants (cc0_insn, map);
1641 cc0_insn = 0;
1642 try_constants (copy, map);
1643 }
1644#else
1645 try_constants (copy, map);
1646#endif
1647
1648 /* Make split induction variable constants `permanent' since we
1649 know there are no backward branches across iteration variable
1650 settings which would invalidate this. */
1651 if (dest_reg_was_split)
1652 {
1653 int regno = REGNO (SET_DEST (pattern));
1654
1655 if (map->const_age_map[regno] == map->const_age)
1656 map->const_age_map[regno] = -1;
1657 }
1658 break;
1659
1660 case JUMP_INSN:
1661 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1662 && ! last_iteration)
1663 {
1664 /* This is a branch to the beginning of the loop; this is the
1665 last insn being copied; and this is not the last iteration.
1666 In this case, we want to change the original fall through
1667 case to be a branch past the end of the loop, and the
1668 original jump label case to fall_through. */
1669
1670 int fall_through;
1671
1672 /* Never map the label in this case. */
1673 pattern = copy_rtx (PATTERN (insn));
1674
1675 /* Assume a conditional branch, since the code above
1676 does not let unconditional branches be copied. */
1677 if (! condjump_p (insn))
1678 abort ();
1679 fall_through
1680 = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx) + 1;
1681
1682 /* Set the fall through case to the exit label. Must
1683 create a new label_ref since they can't be shared. */
1684 XEXP (SET_SRC (pattern), fall_through)
1685 = gen_rtx (LABEL_REF, VOIDmode, exit_label);
1686
1687 /* Set the original branch case to fall through. */
1688 XEXP (SET_SRC (pattern), 3 - fall_through)
1689 = pc_rtx;
1690 }
1691 else
1692 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1693
1694 copy = emit_jump_insn (pattern);
1695
1696#ifdef HAVE_cc0
1697 if (cc0_insn)
1698 try_constants (cc0_insn, map);
1699 cc0_insn = 0;
1700#endif
1701 try_constants (copy, map);
1702
1703 /* Set the jump label of COPY correctly to avoid problems with
1704 later passes of unroll_loop, if INSN had jump label set. */
1705 if (JUMP_LABEL (insn))
1706 {
1707 /* Can't use the label_map for every insn, since this may be
1708 the backward branch, and hence the label was not mapped. */
1709 if (GET_CODE (pattern) == SET)
1710 {
1711 tem = SET_SRC (pattern);
1712 if (GET_CODE (tem) == LABEL_REF)
1713 JUMP_LABEL (copy) = XEXP (tem, 0);
1714 else if (GET_CODE (tem) == IF_THEN_ELSE)
1715 {
1716 if (XEXP (tem, 1) != pc_rtx)
1717 JUMP_LABEL (copy) = XEXP (XEXP (tem, 1), 0);
1718 else
1719 JUMP_LABEL (copy) = XEXP (XEXP (tem, 2), 0);
1720 }
1721 else
1722 abort ();
1723 }
1724 else
1725 {
1726 /* An unrecognizable jump insn, probably the entry jump
1727 for a switch statement. This label must have been mapped,
1728 so just use the label_map to get the new jump label. */
1729 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1730 (JUMP_LABEL (insn))];
1731 }
1732
1733 /* If this is a non-local jump, then must increase the label
1734 use count so that the label will not be deleted when the
1735 original jump is deleted. */
1736 LABEL_NUSES (JUMP_LABEL (copy))++;
1737 }
1738 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1739 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1740 {
1741 rtx pat = PATTERN (copy);
1742 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1743 int len = XVECLEN (pat, diff_vec_p);
1744 int i;
1745
1746 for (i = 0; i < len; i++)
1747 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1748 }
1749
1750 /* If this used to be a conditional jump insn but whose branch
1751 direction is now known, we must do something special. */
1752 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1753 {
1754#ifdef HAVE_cc0
1755 /* The previous insn set cc0 for us. So delete it. */
1756 delete_insn (PREV_INSN (copy));
1757#endif
1758
1759 /* If this is now a no-op, delete it. */
1760 if (map->last_pc_value == pc_rtx)
1761 {
1762 delete_insn (copy);
1763 copy = 0;
1764 }
1765 else
1766 /* Otherwise, this is unconditional jump so we must put a
1767 BARRIER after it. We could do some dead code elimination
1768 here, but jump.c will do it just as well. */
1769 emit_barrier ();
1770 }
1771 break;
1772
1773 case CALL_INSN:
1774 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1775 copy = emit_call_insn (pattern);
1776
1777#ifdef HAVE_cc0
1778 if (cc0_insn)
1779 try_constants (cc0_insn, map);
1780 cc0_insn = 0;
1781#endif
1782 try_constants (copy, map);
1783
1784 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1785 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1786 map->const_equiv_map[i] = 0;
1787 break;
1788
1789 case CODE_LABEL:
1790 /* If this is the loop start label, then we don't need to emit a
1791 copy of this label since no one will use it. */
1792
1793 if (insn != start_label)
1794 {
1795 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1796 map->const_age++;
1797 }
1798 break;
1799
1800 case BARRIER:
1801 copy = emit_barrier ();
1802 break;
1803
1804 case NOTE:
1805 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1806 copy = emit_note (NOTE_SOURCE_FILE (insn),
1807 NOTE_LINE_NUMBER (insn));
1808 else
1809 copy = 0;
1810 break;
1811
1812 default:
1813 abort ();
1814 break;
1815 }
1816
1817 map->insn_map[INSN_UID (insn)] = copy;
1818 }
1819 while (insn != copy_end);
1820
1821 /* Now copy the REG_NOTES. */
1822 insn = copy_start;
1823 do
1824 {
1825 insn = NEXT_INSN (insn);
1826 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1827 || GET_CODE (insn) == CALL_INSN)
1828 && map->insn_map[INSN_UID (insn)])
1829 REG_NOTES (map->insn_map[INSN_UID (insn)])
1830 = copy_rtx_and_substitute (REG_NOTES (insn), map);
1831 }
1832 while (insn != copy_end);
1833
1834 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1835 each of these notes here, since there may be some important ones, such as
1836 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1837 iteration, because the original notes won't be deleted.
1838
1839 We can't use insert_before here, because when from preconditioning,
1840 insert_before points before the loop. We can't use copy_end, because
1841 there may be insns already inserted after it (which we don't want to
1842 copy) when not from preconditioning code. */
1843
1844 if (! last_iteration)
1845 {
1846 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1847 {
1848 if (GET_CODE (insn) == NOTE
1849 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1850 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1851 }
1852 }
1853
1854 if (final_label && LABEL_NUSES (final_label) > 0)
1855 emit_label (final_label);
1856
1857 tem = gen_sequence ();
1858 end_sequence ();
1859 emit_insn_before (tem, insert_before);
1860}
1861\f
1862/* Emit an insn, using the expand_binop to ensure that a valid insn is
1863 emitted. This will correctly handle the case where the increment value
1864 won't fit in the immediate field of a PLUS insns. */
1865
1866void
1867emit_unrolled_add (dest_reg, src_reg, increment)
1868 rtx dest_reg, src_reg, increment;
1869{
1870 rtx result;
1871
1872 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1873 dest_reg, 0, OPTAB_LIB_WIDEN);
1874
1875 if (dest_reg != result)
1876 emit_move_insn (dest_reg, result);
1877}
1878\f
1879/* Searches the insns between INSN and LOOP_END. Returns 1 if there
1880 is a backward branch in that range that branches to somewhere between
1881 LOOP_START and INSN. Returns 0 otherwise. */
1882
1883/* ??? This is quadratic algorithm. Could be rewriten to be linear.
1884 In practice, this is not a problem, because this function is seldom called,
1885 and uses a negligible amount of CPU time on average. */
1886
1887static int
1888back_branch_in_range_p (insn, loop_start, loop_end)
1889 rtx insn;
1890 rtx loop_start, loop_end;
1891{
1892 rtx p, q, target_insn;
1893
1894 /* Stop before we get to the backward branch at the end of the loop. */
1895 loop_end = prev_nonnote_insn (loop_end);
1896 if (GET_CODE (loop_end) == BARRIER)
1897 loop_end = PREV_INSN (loop_end);
1898
1899 /* Check in case insn has been deleted, search forward for first non
1900 deleted insn following it. */
1901 while (INSN_DELETED_P (insn))
1902 insn = NEXT_INSN (insn);
1903
1904 /* Check for the case where insn is the last insn in the loop. */
1905 if (insn == loop_end)
1906 return 0;
1907
1908 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1909 {
1910 if (GET_CODE (p) == JUMP_INSN)
1911 {
1912 target_insn = JUMP_LABEL (p);
1913
1914 /* Search from loop_start to insn, to see if one of them is
1915 the target_insn. We can't use INSN_LUID comparisons here,
1916 since insn may not have an LUID entry. */
1917 for (q = loop_start; q != insn; q = NEXT_INSN (q))
1918 if (q == target_insn)
1919 return 1;
1920 }
1921 }
1922
1923 return 0;
1924}
1925
1926/* Try to generate the simplest rtx for the expression
1927 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
1928 value of giv's. */
1929
1930static rtx
1931fold_rtx_mult_add (mult1, mult2, add1, mode)
1932 rtx mult1, mult2, add1;
1933 enum machine_mode mode;
1934{
1935 rtx temp, mult_res;
1936 rtx result;
1937
1938 /* The modes must all be the same. This should always be true. For now,
1939 check to make sure. */
1940 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
1941 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
1942 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
1943 abort ();
1944
1945 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
1946 will be a constant. */
1947 if (GET_CODE (mult1) == CONST_INT)
1948 {
1949 temp = mult2;
1950 mult2 = mult1;
1951 mult1 = temp;
1952 }
1953
1954 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
1955 if (! mult_res)
1956 mult_res = gen_rtx (MULT, mode, mult1, mult2);
1957
1958 /* Again, put the constant second. */
1959 if (GET_CODE (add1) == CONST_INT)
1960 {
1961 temp = add1;
1962 add1 = mult_res;
1963 mult_res = temp;
1964 }
1965
1966 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
1967 if (! result)
1968 result = gen_rtx (PLUS, mode, add1, mult_res);
1969
1970 return result;
1971}
1972
1973/* Searches the list of induction struct's for the biv BL, to try to calculate
1974 the total increment value for one iteration of the loop as a constant.
1975
1976 Returns the increment value as an rtx, simplified as much as possible,
1977 if it can be calculated. Otherwise, returns 0. */
1978
1979rtx
1980biv_total_increment (bl, loop_start, loop_end)
1981 struct iv_class *bl;
1982 rtx loop_start, loop_end;
1983{
1984 struct induction *v;
1985 rtx result;
1986
1987 /* For increment, must check every instruction that sets it. Each
1988 instruction must be executed only once each time through the loop.
1989 To verify this, we check that the the insn is always executed, and that
1990 there are no backward branches after the insn that branch to before it.
1991 Also, the insn must have a mult_val of one (to make sure it really is
1992 an increment). */
1993
1994 result = const0_rtx;
1995 for (v = bl->biv; v; v = v->next_iv)
1996 {
1997 if (v->always_computable && v->mult_val == const1_rtx
1998 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
1999 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2000 else
2001 return 0;
2002 }
2003
2004 return result;
2005}
2006
2007/* Determine the initial value of the iteration variable, and the amount
2008 that it is incremented each loop. Use the tables constructed by
2009 the strength reduction pass to calculate these values.
2010
2011 Initial_value and/or increment are set to zero if their values could not
2012 be calculated. */
2013
2014static void
2015iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2016 rtx iteration_var, *initial_value, *increment;
2017 rtx loop_start, loop_end;
2018{
2019 struct iv_class *bl;
2020 struct induction *v, *b;
2021
2022 /* Clear the result values, in case no answer can be found. */
2023 *initial_value = 0;
2024 *increment = 0;
2025
2026 /* The iteration variable can be either a giv or a biv. Check to see
2027 which it is, and compute the variable's initial value, and increment
2028 value if possible. */
2029
2030 /* If this is a new register, can't handle it since we don't have any
2031 reg_iv_type entry for it. */
2032 if (REGNO (iteration_var) >= max_reg_before_loop)
2033 {
2034 if (loop_dump_stream)
2035 fprintf (loop_dump_stream,
2036 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2037 return;
2038 }
2039 /* Reject iteration variables larger than the host long size, since they
2040 could result in a number of iterations greater than the range of our
2041 `unsigned long' variable loop_n_iterations. */
2042 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2043 {
2044 if (loop_dump_stream)
2045 fprintf (loop_dump_stream,
2046 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2047 return;
2048 }
2049 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2050 {
2051 if (loop_dump_stream)
2052 fprintf (loop_dump_stream,
2053 "Loop unrolling: Iteration var not an interger.\n");
2054 return;
2055 }
2056 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2057 {
2058 /* Grab initial value, only useful if it is a constant. */
2059 bl = reg_biv_class[REGNO (iteration_var)];
2060 *initial_value = bl->initial_value;
2061
2062 *increment = biv_total_increment (bl, loop_start, loop_end);
2063 }
2064 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2065 {
2066#if 1
2067 /* ??? The code below does not work because the incorrect number of
2068 iterations is calculated when the biv is incremented after the giv
2069 is set (which is the usual case). This can probably be accounted
2070 for by biasing the initial_value by subtracting the amount of the
2071 increment that occurs between the giv set and the giv test. However,
2072 a giv as an iterator is very rare, so it does not seem worthwhile
2073 to handle this. */
2074 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2075 if (loop_dump_stream)
2076 fprintf (loop_dump_stream,
2077 "Loop unrolling: Giv iterators are not handled.\n");
2078 return;
2079#else
2080 /* Initial value is mult_val times the biv's initial value plus
2081 add_val. Only useful if it is a constant. */
2082 v = reg_iv_info[REGNO (iteration_var)];
2083 bl = reg_biv_class[REGNO (v->src_reg)];
2084 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2085 v->add_val, v->mode);
2086
2087 /* Increment value is mult_val times the increment value of the biv. */
2088
2089 *increment = biv_total_increment (bl, loop_start, loop_end);
2090 if (*increment)
2091 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2092 v->mode);
2093#endif
2094 }
2095 else
2096 {
2097 if (loop_dump_stream)
2098 fprintf (loop_dump_stream,
2099 "Loop unrolling: Not basic or general induction var.\n");
2100 return;
2101 }
2102}
2103
2104/* Calculate the approximate final value of the iteration variable
2105 which has an loop exit test with code COMPARISON_CODE and comparison value
2106 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2107 was signed or unsigned, and the direction of the comparison. This info is
2108 needed to calculate the number of loop iterations. */
2109
2110static rtx
2111approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2112 enum rtx_code comparison_code;
2113 rtx comparison_value;
2114 int *unsigned_p;
2115 int *compare_dir;
2116{
2117 /* Calculate the final value of the induction variable.
2118 The exact final value depends on the branch operator, and increment sign.
2119 This is only an approximate value. It will be wrong if the iteration
2120 variable is not incremented by one each time through the loop, and
2121 approx final value - start value % increment != 0. */
2122
2123 *unsigned_p = 0;
2124 switch (comparison_code)
2125 {
2126 case LEU:
2127 *unsigned_p = 1;
2128 case LE:
2129 *compare_dir = 1;
2130 return plus_constant (comparison_value, 1);
2131 case GEU:
2132 *unsigned_p = 1;
2133 case GE:
2134 *compare_dir = -1;
2135 return plus_constant (comparison_value, -1);
2136 case EQ:
2137 /* Can not calculate a final value for this case. */
2138 *compare_dir = 0;
2139 return 0;
2140 case LTU:
2141 *unsigned_p = 1;
2142 case LT:
2143 *compare_dir = 1;
2144 return comparison_value;
2145 break;
2146 case GTU:
2147 *unsigned_p = 1;
2148 case GT:
2149 *compare_dir = -1;
2150 return comparison_value;
2151 case NE:
2152 *compare_dir = 0;
2153 return comparison_value;
2154 default:
2155 abort ();
2156 }
2157}
2158
2159/* For each biv and giv, determine whether it can be safely split into
2160 a different variable for each unrolled copy of the loop body. If it
2161 is safe to split, then indicate that by saving some useful info
2162 in the splittable_regs array.
2163
2164 If the loop is being completely unrolled, then splittable_regs will hold
2165 the current value of the induction variable while the loop is unrolled.
2166 It must be set to the initial value of the induction variable here.
2167 Otherwise, splittable_regs will hold the difference between the current
2168 value of the induction variable and the value the induction variable had
2169 at the top of the loop. It must be set to the value 0 here. */
2170
2171/* ?? If the loop is only unrolled twice, then most of the restrictions to
2172 constant values are unnecessary, since we can easily calculate increment
2173 values in this case even if nothing is constant. The increment value
2174 should not involve a multiply however. */
2175
2176/* ?? Even if the biv/giv increment values aren't constant, it may still
2177 be beneficial to split the variable if the loop is only unrolled a few
2178 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2179
2180static int
2181find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2182 unroll_number)
2183 enum unroll_types unroll_type;
2184 rtx loop_start, loop_end;
2185 rtx end_insert_before;
2186 int unroll_number;
2187{
2188 struct iv_class *bl;
2189 rtx increment, tem;
2190 rtx biv_final_value;
2191 int biv_splittable;
2192 int result = 0;
2193
2194 for (bl = loop_iv_list; bl; bl = bl->next)
2195 {
2196 /* Biv_total_increment must return a constant value,
2197 otherwise we can not calculate the split values. */
2198
2199 increment = biv_total_increment (bl, loop_start, loop_end);
2200 if (! increment || GET_CODE (increment) != CONST_INT)
2201 continue;
2202
2203 /* The loop must be unrolled completely, or else have a known number
2204 of iterations and only one exit, or else the biv must be dead
2205 outside the loop, or else the final value must be known. Otherwise,
2206 it is unsafe to split the biv since it may not have the proper
2207 value on loop exit. */
2208
2209 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2210 a fall through at the end. */
2211
2212 biv_splittable = 1;
2213 biv_final_value = 0;
2214 if (unroll_type != UNROLL_COMPLETELY
2215 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2216 || unroll_type == UNROLL_NAIVE)
2217 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2218 || ! bl->init_insn
2219 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2220 || (uid_luid[regno_first_uid[bl->regno]]
2221 < INSN_LUID (bl->init_insn))
2222 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2223 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2224 biv_splittable = 0;
2225
2226 /* If final value is non-zero, then must emit an instruction which sets
2227 the value of the biv to the proper value. This is done after
2228 handling all of the givs, since some of them may need to use the
2229 biv's value in their initialization code. */
2230
2231 /* This biv is splittable. If completely unrolling the loop, save
2232 the biv's initial value. Otherwise, save the constant zero. */
2233
2234 if (biv_splittable == 1)
2235 {
2236 if (unroll_type == UNROLL_COMPLETELY)
2237 {
2238 /* If the initial value of the biv is itself (i.e. it is too
2239 complicated for strength_reduce to compute), or is a hard
2240 register, then we must create a new psuedo reg to hold the
2241 initial value of the biv. */
2242
2243 if (GET_CODE (bl->initial_value) == REG
2244 && (REGNO (bl->initial_value) == bl->regno
2245 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2246 {
2247 rtx tem = gen_reg_rtx (bl->biv->mode);
2248
2249 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2250 loop_start);
2251
2252 if (loop_dump_stream)
2253 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2254 bl->regno, REGNO (tem));
2255
2256 splittable_regs[bl->regno] = tem;
2257 }
2258 else
2259 splittable_regs[bl->regno] = bl->initial_value;
2260 }
2261 else
2262 splittable_regs[bl->regno] = const0_rtx;
2263
2264 /* Save the number of instructions that modify the biv, so that
2265 we can treat the last one specially. */
2266
2267 splittable_regs_updates[bl->regno] = bl->biv_count;
2268
2269 result++;
2270
2271 if (loop_dump_stream)
2272 fprintf (loop_dump_stream,
2273 "Biv %d safe to split.\n", bl->regno);
2274 }
2275
2276 /* Check every giv that depends on this biv to see whether it is
2277 splittable also. Even if the biv isn't splittable, givs which
2278 depend on it may be splittable if the biv is live outside the
2279 loop, and the givs aren't. */
2280
2281 result = find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2282 increment, unroll_number, result);
2283
2284 /* If final value is non-zero, then must emit an instruction which sets
2285 the value of the biv to the proper value. This is done after
2286 handling all of the givs, since some of them may need to use the
2287 biv's value in their initialization code. */
2288 if (biv_final_value)
2289 {
2290 /* If the loop has multiple exits, emit the insns before the
2291 loop to ensure that it will always be executed no matter
2292 how the loop exits. Otherwise emit the insn after the loop,
2293 since this is slightly more efficient. */
2294 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2295 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2296 biv_final_value),
2297 end_insert_before);
2298 else
2299 {
2300 /* Create a new register to hold the value of the biv, and then
2301 set the biv to its final value before the loop start. The biv
2302 is set to its final value before loop start to ensure that
2303 this insn will always be executed, no matter how the loop
2304 exits. */
2305 rtx tem = gen_reg_rtx (bl->biv->mode);
2306 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2307 loop_start);
2308 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2309 biv_final_value),
2310 loop_start);
2311
2312 if (loop_dump_stream)
2313 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2314 REGNO (bl->biv->src_reg), REGNO (tem));
2315
2316 /* Set up the mapping from the original biv register to the new
2317 register. */
2318 bl->biv->src_reg = tem;
2319 }
2320 }
2321 }
2322 return result;
2323}
2324
2325/* For every giv based on the biv BL, check to determine whether it is
2326 splittable. This is a subroutine to find_splittable_regs (). */
2327
2328static int
2329find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2330 unroll_number, result)
2331 struct iv_class *bl;
2332 enum unroll_types unroll_type;
2333 rtx loop_start, loop_end;
2334 rtx increment;
2335 int unroll_number, result;
2336{
2337 struct induction *v;
2338 rtx final_value;
2339 rtx tem;
2340
2341 for (v = bl->giv; v; v = v->next_iv)
2342 {
2343 rtx giv_inc, value;
2344
2345 /* Only split the giv if it has already been reduced, or if the loop is
2346 being completely unrolled. */
2347 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2348 continue;
2349
2350 /* The giv can be split if the insn that sets the giv is executed once
2351 and only once on every iteration of the loop. */
2352 /* An address giv can always be split. v->insn is just a use not a set,
2353 and hence it does not matter whether it is always executed. All that
2354 matters is that all the biv increments are always executed, and we
2355 won't reach here if they aren't. */
2356 if (v->giv_type != DEST_ADDR
2357 && (! v->always_computable
2358 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2359 continue;
2360
2361 /* The giv increment value must be a constant. */
2362 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2363 v->mode);
2364 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2365 continue;
2366
2367 /* The loop must be unrolled completely, or else have a known number of
2368 iterations and only one exit, or else the giv must be dead outside
2369 the loop, or else the final value of the giv must be known.
2370 Otherwise, it is not safe to split the giv since it may not have the
2371 proper value on loop exit. */
2372
2373 /* The used outside loop test will fail for DEST_ADDR givs. They are
2374 never used outside the loop anyways, so it is always safe to split a
2375 DEST_ADDR giv. */
2376
2377 final_value = 0;
2378 if (unroll_type != UNROLL_COMPLETELY
2379 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2380 || unroll_type == UNROLL_NAIVE)
2381 && v->giv_type != DEST_ADDR
2382 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2383 /* Check for the case where the pseudo is set by a shift/add
2384 sequence, in which case the first insn setting the pseudo
2385 is the first insn of the shift/add sequence. */
2386 && (! (tem = find_reg_note (v->insn, REG_RETVAL, 0))
2387 || (regno_first_uid[REGNO (v->dest_reg)]
2388 != INSN_UID (XEXP (tem, 0)))))
2389 /* Line above always fails if INSN was moved by loop opt. */
2390 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2391 >= INSN_LUID (loop_end)))
2392 && ! (final_value = v->final_value))
2393 continue;
2394
2395#if 0
2396 /* Currently, non-reduced/final-value givs are never split. */
2397 /* Should emit insns after the loop if possible, as the biv final value
2398 code below does. */
2399
2400 /* If the final value is non-zero, and the giv has not been reduced,
2401 then must emit an instruction to set the final value. */
2402 if (final_value && !v->new_reg)
2403 {
2404 /* Create a new register to hold the value of the giv, and then set
2405 the giv to its final value before the loop start. The giv is set
2406 to its final value before loop start to ensure that this insn
2407 will always be executed, no matter how we exit. */
2408 tem = gen_reg_rtx (v->mode);
2409 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2410 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2411 loop_start);
2412
2413 if (loop_dump_stream)
2414 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2415 REGNO (v->dest_reg), REGNO (tem));
2416
2417 v->src_reg = tem;
2418 }
2419#endif
2420
2421 /* This giv is splittable. If completely unrolling the loop, save the
2422 giv's initial value. Otherwise, save the constant zero for it. */
2423
2424 if (unroll_type == UNROLL_COMPLETELY)
2425 /* It is not safe to use bl->initial_value here, because it may not
2426 be invariant. It is safe to use the initial value stored in
2427 the splittable_regs array. */
2428 value = fold_rtx_mult_add (v->mult_val, splittable_regs[bl->regno],
2429 v->add_val, v->mode);
2430 else
2431 value = const0_rtx;
2432
2433 if (v->new_reg)
2434 {
2435 /* If the giv is an address destination, it could be something other
2436 than a simple register, these have to be treated differently. */
2437 if (v->giv_type == DEST_REG)
2438 splittable_regs[REGNO (v->new_reg)] = value;
2439
2440 /* If an addr giv was combined with another addr giv, then we
2441 can only split this giv if the addr giv it was combined with
2442 was reduced. This is because the value of v->new_reg is
2443 meaningless in this case. (There is no problem if it was
2444 combined with a dest_reg giv which wasn't reduced, v->new_reg
2445 is still meaningful in this case.) */
2446
2447 else if (v->same && v->same->giv_type == DEST_ADDR
2448 && ! v->same->new_reg)
2449 {
2450 if (loop_dump_stream)
2451 fprintf (loop_dump_stream,
2452 "DEST_ADDR giv not split, because combined with unreduced DEST_ADDR giv.\n");
2453 }
2454 else
2455 {
2456 /* Splitting address givs is useful since it will often allow us
2457 to eliminate some increment insns for the base giv as
2458 unnecessary. */
2459
2460 /* If the addr giv is combined with a dest_reg giv, then all
2461 references to that dest reg will be remapped, which is NOT
2462 what we want for split addr regs. We always create a new
2463 register for the split addr giv, just to be safe. */
2464
2465 /* ??? If there are multiple address givs which have been
2466 combined with the same dest_reg giv, then we may only need
2467 one new register for them. Pulling out constants below will
2468 catch some of the common cases of this. Currently, I leave
2469 the work of simplifying multiple address givs to the
2470 following cse pass. */
2471
2472 v->const_adjust = 0;
2473 if (unroll_type != UNROLL_COMPLETELY)
2474 {
2475 /* If not completely unrolling the loop, then create a new
2476 register to hold the split value of the DEST_ADDR giv.
2477 Emit insn to initialize its value before loop start. */
2478 tem = gen_reg_rtx (v->mode);
2479
2480 /* If the address giv has a constant in its new_reg value,
2481 then this constant can be pulled out and put in value,
2482 instead of being part of the initialization code. */
2483
2484 if (GET_CODE (v->new_reg) == PLUS
2485 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2486 {
2487 v->dest_reg
2488 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2489
2490 /* Only succeed if this will give valid addresses.
2491 Try to validate both the first and the last
2492 address resulting from loop unrolling, if
2493 one fails, then can't do const elim here. */
2494 if (memory_address_p (v->mode, v->dest_reg)
2495 && memory_address_p (v->mode,
2496 plus_constant (v->dest_reg,
2497 INTVAL (giv_inc)
2498 * (unroll_number - 1))))
2499 {
2500 /* Save the negative of the eliminated const, so
2501 that we can calculate the dest_reg's increment
2502 value later. */
2503 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2504
2505 v->new_reg = XEXP (v->new_reg, 0);
2506 if (loop_dump_stream)
2507 fprintf (loop_dump_stream,
2508 "Eliminating constant from giv %d\n",
2509 REGNO (tem));
2510 }
2511 else
2512 v->dest_reg = tem;
2513 }
2514 else
2515 v->dest_reg = tem;
2516
2517 /* If the address hasn't been checked for validity yet, do so
2518 now, and fail completely if either the first or the last
2519 unrolled copy of the address is not a valid address. */
2520 if (v->dest_reg == tem
2521 && (! memory_address_p (v->mode, v->dest_reg)
2522 || ! memory_address_p (v->mode,
2523 plus_constant (v->dest_reg,
2524 INTVAL (giv_inc)
2525 * (unroll_number -1)))))
2526 {
2527 if (loop_dump_stream)
2528 fprintf (loop_dump_stream,
2529 "Illegal address for giv at insn %d\n",
2530 INSN_UID (v->insn));
2531 continue;
2532 }
2533
2534 /* To initialize the new register, just move the value of
2535 new_reg into it. This is not guaranteed to give a valid
2536 instruction on machines with complex addressing modes.
2537 If we can't recognize it, then delete it and emit insns
2538 to calculate the value from scratch. */
2539 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2540 copy_rtx (v->new_reg)),
2541 loop_start);
2542 if (! recog_memoized (PREV_INSN (loop_start)))
2543 {
2544 delete_insn (PREV_INSN (loop_start));
2545 emit_iv_add_mult (bl->initial_value, v->mult_val,
2546 v->add_val, tem, loop_start);
2547 if (loop_dump_stream)
2548 fprintf (loop_dump_stream,
2549 "Illegal init insn, rewritten.\n");
2550 }
2551 }
2552 else
2553 {
2554 v->dest_reg = value;
2555
2556 /* Check the resulting address for validity, and fail
2557 if the resulting address would be illegal. */
2558 if (! memory_address_p (v->mode, v->dest_reg)
2559 || ! memory_address_p (v->mode,
2560 plus_constant (v->dest_reg,
2561 INTVAL (giv_inc) *
2562 (unroll_number -1))))
2563 {
2564 if (loop_dump_stream)
2565 fprintf (loop_dump_stream,
2566 "Illegal address for giv at insn %d\n",
2567 INSN_UID (v->insn));
2568 continue;
2569 }
2570 }
2571
2572 /* Store the value of dest_reg into the insn. This sharing
2573 will not be a problem as this insn will always be copied
2574 later. */
2575
2576 *v->location = v->dest_reg;
2577
2578 /* If this address giv is combined with a dest reg giv, then
2579 save the base giv's induction pointer so that we will be
2580 able to handle this address giv properly. The base giv
2581 itself does not have to be splittable. */
2582
2583 if (v->same && v->same->giv_type == DEST_REG)
2584 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2585
2586 if (GET_CODE (v->new_reg) == REG)
2587 {
2588 /* This giv maybe hasn't been combined with any others.
2589 Make sure that it's giv is marked as splittable here. */
2590
2591 splittable_regs[REGNO (v->new_reg)] = value;
2592
2593 /* Make it appear to depend upon itself, so that the
2594 giv will be properly split in the main loop above. */
2595 if (! v->same)
2596 {
2597 v->same = v;
2598 addr_combined_regs[REGNO (v->new_reg)] = v;
2599 }
2600 }
3f07e47a
JW
2601
2602 /* Overwrite the old add_val, which is no longer needed, and
2603 substitute the amount that the giv is incremented on each
2604 iteration. We need to save this somewhere, so we know how
2605 much to increment split DEST_ADDR giv's in copy_loop_body. */
2606
2607 v->add_val = giv_inc;
2608
67f2de41
RK
2609 if (loop_dump_stream)
2610 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2611 }
2612 }
2613 else
2614 {
2615#if 0
2616 /* Currently, unreduced giv's can't be split. This is not too much
2617 of a problem since unreduced giv's are not live across loop
2618 iterations anyways. When unrolling a loop completely though,
2619 it makes sense to reduce&split givs when possible, as this will
2620 result in simpler instructions, and will not require that a reg
2621 be live across loop iterations. */
2622
2623 splittable_regs[REGNO (v->dest_reg)] = value;
2624 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2625 REGNO (v->dest_reg), INSN_UID (v->insn));
2626#else
2627 continue;
2628#endif
2629 }
2630
2631 /* Givs are only updated once by definition. Mark it so if this is
2632 a splittable register. Don't need to do anything for address givs
2633 where this may not be a register. */
2634
2635 if (GET_CODE (v->new_reg) == REG)
2636 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2637
2638 result++;
2639
2640 if (loop_dump_stream)
2641 {
2642 int regnum;
2643
2644 if (GET_CODE (v->dest_reg) == CONST_INT)
2645 regnum = -1;
2646 else if (GET_CODE (v->dest_reg) != REG)
2647 regnum = REGNO (XEXP (v->dest_reg, 0));
2648 else
2649 regnum = REGNO (v->dest_reg);
2650 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2651 regnum, INSN_UID (v->insn));
2652 }
2653 }
2654
2655 return result;
2656}
2657\f
2658/* Try to prove that the register is dead after the loop exits. Trace every
2659 loop exit looking for an insn that will always be executed, which sets
2660 the register to some value, and appears before the first use of the register
2661 is found. If successful, then return 1, otherwise return 0. */
2662
2663/* ?? Could be made more intelligent in the handling of jumps, so that
2664 it can search past if statements and other similar structures. */
2665
2666static int
2667reg_dead_after_loop (reg, loop_start, loop_end)
2668 rtx reg, loop_start, loop_end;
2669{
2670 rtx insn, label;
2671 enum rtx_code code;
2672
2673 /* HACK: Must also search the loop fall through exit, create a label_ref
2674 here which points to the loop_end, and append the loop_number_exit_labels
2675 list to it. */
2676 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2677 LABEL_NEXTREF (label)
2678 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2679
2680 for ( ; label; label = LABEL_NEXTREF (label))
2681 {
2682 /* Succeed if find an insn which sets the biv or if reach end of
2683 function. Fail if find an insn that uses the biv, or if come to
2684 a conditional jump. */
2685
2686 insn = NEXT_INSN (XEXP (label, 0));
2687 while (1)
2688 {
2689 if (insn == 0)
2690 break;
2691
2692 if ((code = GET_CODE (insn)) == INSN || code == JUMP_INSN
2693 || code == CALL_INSN)
2694 {
2695 if (GET_CODE (PATTERN (insn)) == SET)
2696 {
2697 if (reg_mentioned_p (reg, SET_SRC (PATTERN (insn))))
2698 return 0;
2699 if (SET_DEST (PATTERN (insn)) == reg)
2700 break;
2701 if (reg_mentioned_p (reg, SET_DEST (PATTERN (insn))))
2702 return 0;
2703 }
2704 else if (reg_mentioned_p (reg, PATTERN (insn)))
2705 return 0;
2706 }
2707 if (code == JUMP_INSN)
2708 {
2709 if (GET_CODE (PATTERN (insn)) == RETURN)
2710 break;
2711 else if (! simplejump_p (insn))
2712 return 0;
2713 else
2714 {
2715 insn = JUMP_LABEL (insn);
2716 /* If this branches to a code label after a LOOP_BEG or
2717 a LOOP_CONT note, then assume it is a loop back edge.
2718 Must fail in that case to prevent going into an infinite
2719 loop trying to trace infinite loops.
2720
2721 In the presence of syntax errors, this may be a jump to
2722 a CODE_LABEL that was never emitted. Fail in this case
2723 also. */
2724
2725 if (! PREV_INSN (insn)
2726 || (GET_CODE (PREV_INSN (insn)) == NOTE
2727 && ((NOTE_LINE_NUMBER (PREV_INSN (insn))
2728 == NOTE_INSN_LOOP_BEG)
2729 || (NOTE_LINE_NUMBER (PREV_INSN (insn))
2730 == NOTE_INSN_LOOP_CONT))))
2731 return 0;
2732 }
2733 }
2734
2735 insn = NEXT_INSN (insn);
2736 }
2737 }
2738
2739 /* Success, the register is dead on all loop exits. */
2740 return 1;
2741}
2742
2743/* Try to calculate the final value of the biv, the value it will have at
2744 the end of the loop. If we can do it, return that value. */
2745
2746rtx
2747final_biv_value (bl, loop_start, loop_end)
2748 struct iv_class *bl;
2749 rtx loop_start, loop_end;
2750{
2751 rtx increment, tem;
2752
2753 /* The final value for reversed bivs must be calculated differently than
2754 for ordinary bivs. In this case, there is already an insn after the
2755 loop which sets this biv's final value (if necessary), and there are
2756 no other loop exits, so we can return any value. */
2757 if (bl->reversed)
2758 {
2759 if (loop_dump_stream)
2760 fprintf (loop_dump_stream,
2761 "Final biv value for %d, reversed biv.\n", bl->regno);
2762
2763 return const0_rtx;
2764 }
2765
2766 /* Try to calculate the final value as initial value + (number of iterations
2767 * increment). For this to work, increment must be invariant, the only
2768 exit from the loop must be the fall through at the bottom (otherwise
2769 it may not have its final value when the loop exits), and the initial
2770 value of the biv must be invariant. */
2771
2772 if (loop_n_iterations != 0
2773 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2774 && invariant_p (bl->initial_value))
2775 {
2776 increment = biv_total_increment (bl, loop_start, loop_end);
2777
2778 if (increment && invariant_p (increment))
2779 {
2780 /* Can calculate the loop exit value, emit insns after loop
2781 end to calculate this value into a temporary register in
2782 case it is needed later. */
2783
2784 tem = gen_reg_rtx (bl->biv->mode);
2785 emit_iv_add_mult (increment,
2786 gen_rtx (CONST_INT, VOIDmode, loop_n_iterations),
2787 bl->initial_value, tem, NEXT_INSN (loop_end));
2788
2789 if (loop_dump_stream)
2790 fprintf (loop_dump_stream,
2791 "Final biv value for %d, calculated.\n", bl->regno);
2792
2793 return tem;
2794 }
2795 }
2796
2797 /* Check to see if the biv is dead at all loop exits. */
2798 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2799 {
2800 if (loop_dump_stream)
2801 fprintf (loop_dump_stream,
2802 "Final biv value for %d, biv dead after loop exit.\n",
2803 bl->regno);
2804
2805 return const0_rtx;
2806 }
2807
2808 return 0;
2809}
2810
2811/* Try to calculate the final value of the giv, the value it will have at
2812 the end of the loop. If we can do it, return that value. */
2813
2814rtx
2815final_giv_value (v, loop_start, loop_end)
2816 struct induction *v;
2817 rtx loop_start, loop_end;
2818{
2819 struct iv_class *bl;
2820 rtx reg, insn, pattern;
2821 rtx increment, tem;
2822 enum rtx_code code;
2823 rtx insert_before;
2824
2825 bl = reg_biv_class[REGNO (v->src_reg)];
2826
2827 /* The final value for givs which depend on reversed bivs must be calculated
2828 differently than for ordinary givs. In this case, there is already an
2829 insn after the loop which sets this giv's final value (if necessary),
2830 and there are no other loop exits, so we can return any value. */
2831 if (bl->reversed)
2832 {
2833 if (loop_dump_stream)
2834 fprintf (loop_dump_stream,
2835 "Final giv value for %d, depends on reversed biv\n",
2836 REGNO (v->dest_reg));
2837 return const0_rtx;
2838 }
2839
2840 /* Try to calculate the final value as a function of the biv it depends
2841 upon. The only exit from the loop must be the fall through at the bottom
2842 (otherwise it may not have its final value when the loop exits). */
2843
2844 /* ??? Can calculate the final giv value by subtracting off the
2845 extra biv increments times the giv's mult_val. The loop must have
2846 only one exit for this to work, but the loop iterations does not need
2847 to be known. */
2848
2849 if (loop_n_iterations != 0
2850 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2851 {
2852 /* ?? It is tempting to use the biv's value here since these insns will
2853 be put after the loop, and hence the biv will have its final value
2854 then. However, this fails if the biv is subsequently eliminated.
2855 Perhaps determine whether biv's are eliminable before trying to
2856 determine whether giv's are replaceable so that we can use the
2857 biv value here if it is not eliminable. */
2858
2859 increment = biv_total_increment (bl, loop_start, loop_end);
2860
2861 if (increment && invariant_p (increment))
2862 {
2863 /* Can calculate the loop exit value of its biv as
2864 (loop_n_iterations * increment) + initial_value */
2865
2866 /* The loop exit value of the giv is then
2867 (final_biv_value - extra increments) * mult_val + add_val.
2868 The extra increments are any increments to the biv which
2869 occur in the loop after the giv's value is calculated.
2870 We must search from the insn that sets the giv to the end
2871 of the loop to calculate this value. */
2872
2873 insert_before = NEXT_INSN (loop_end);
2874
2875 /* Put the final biv value in tem. */
2876 tem = gen_reg_rtx (bl->biv->mode);
2877 emit_iv_add_mult (increment,
2878 gen_rtx (CONST_INT, VOIDmode, loop_n_iterations),
2879 bl->initial_value, tem, insert_before);
2880
2881 /* Subtract off extra increments as we find them. */
2882 for (insn = NEXT_INSN (v->insn); insn != loop_end;
2883 insn = NEXT_INSN (insn))
2884 {
2885 if (GET_CODE (insn) == INSN
2886 && GET_CODE (PATTERN (insn)) == SET
2887 && SET_DEST (PATTERN (insn)) == v->src_reg)
2888 {
2889 pattern = PATTERN (insn);
2890 if (GET_CODE (SET_SRC (pattern)) != PLUS)
2891 {
2892 /* Sometimes a biv is computed in a temp reg,
2893 and then copied into the biv reg. */
2894 pattern = PATTERN (PREV_INSN (insn));
2895 if (GET_CODE (SET_SRC (pattern)) != PLUS)
2896 abort ();
2897 }
2898 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
2899 || REGNO (XEXP (SET_SRC (pattern), 0)) != bl->regno)
2900 abort ();
2901
2902 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
2903 XEXP (SET_SRC (pattern), 1), 0, 0,
2904 OPTAB_LIB_WIDEN);
2905 }
2906 }
2907
2908 /* Now calculate the giv's final value. */
2909 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
2910 insert_before);
2911
2912 if (loop_dump_stream)
2913 fprintf (loop_dump_stream,
2914 "Final giv value for %d, calc from biv's value.\n",
2915 REGNO (v->dest_reg));
2916
2917 return tem;
2918 }
2919 }
2920
2921 /* Replaceable giv's should never reach here. */
2922 if (v->replaceable)
2923 abort ();
2924
2925 /* Check to see if the biv is dead at all loop exits. */
2926 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
2927 {
2928 if (loop_dump_stream)
2929 fprintf (loop_dump_stream,
2930 "Final giv value for %d, giv dead after loop exit.\n",
2931 REGNO (v->dest_reg));
2932
2933 return const0_rtx;
2934 }
2935
2936 return 0;
2937}
2938
2939
2940/* Calculate the number of loop iterations. Returns the exact number of loop
2941 iterations if it can be calculated, otherwise retusns zero. */
2942
2943unsigned long
2944loop_iterations (loop_start, loop_end)
2945 rtx loop_start, loop_end;
2946{
2947 rtx comparison, comparison_value;
2948 rtx iteration_var, initial_value, increment, final_value;
2949 enum rtx_code comparison_code;
2950 int i, increment_dir;
2951 int unsigned_compare, compare_dir, final_larger;
2952 unsigned long tempu;
2953 rtx last_loop_insn;
2954
2955 /* First find the iteration variable. If the last insn is a conditional
2956 branch, and the insn before tests a register value, make that the
2957 iteration variable. */
2958
2959 loop_initial_value = 0;
2960 loop_increment = 0;
2961 loop_final_value = 0;
2962 loop_iteration_var = 0;
2963
2964 last_loop_insn = prev_nonnote_insn (loop_end);
2965
2966 comparison = get_condition_for_loop (last_loop_insn);
2967 if (comparison == 0)
2968 {
2969 if (loop_dump_stream)
2970 fprintf (loop_dump_stream,
2971 "Loop unrolling: No final conditional branch found.\n");
2972 return 0;
2973 }
2974
2975 /* ??? Get_condition may switch position of induction variable and
2976 invariant register when it canonicalizes the comparison. */
2977
2978 comparison_code = GET_CODE (comparison);
2979 iteration_var = XEXP (comparison, 0);
2980 comparison_value = XEXP (comparison, 1);
2981
2982 if (GET_CODE (iteration_var) != REG)
2983 {
2984 if (loop_dump_stream)
2985 fprintf (loop_dump_stream,
2986 "Loop unrolling: Comparison not against register.\n");
2987 return 0;
2988 }
2989
2990 /* Loop iterations is always called before any new registers are created
2991 now, so this should never occur. */
2992
2993 if (REGNO (iteration_var) >= max_reg_before_loop)
2994 abort ();
2995
2996 iteration_info (iteration_var, &initial_value, &increment,
2997 loop_start, loop_end);
2998 if (initial_value == 0)
2999 /* iteration_info already printed a message. */
3000 return 0;
3001
3002 if (increment == 0)
3003 {
3004 if (loop_dump_stream)
3005 fprintf (loop_dump_stream,
3006 "Loop unrolling: Increment value can't be calculated.\n");
3007 return 0;
3008 }
3009 if (GET_CODE (increment) != CONST_INT)
3010 {
3011 if (loop_dump_stream)
3012 fprintf (loop_dump_stream,
3013 "Loop unrolling: Increment value not constant.\n");
3014 return 0;
3015 }
3016 if (GET_CODE (initial_value) != CONST_INT)
3017 {
3018 if (loop_dump_stream)
3019 fprintf (loop_dump_stream,
3020 "Loop unrolling: Initial value not constant.\n");
3021 return 0;
3022 }
3023
3024 /* If the comparison value is an invariant register, then try to find
3025 its value from the insns before the start of the loop. */
3026
3027 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3028 {
3029 rtx insn, set;
3030
3031 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3032 {
3033 if (GET_CODE (insn) == CODE_LABEL)
3034 break;
3035
3036 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3037 && (set = single_set (insn))
3038 && (SET_DEST (set) == comparison_value))
3039 {
3040 rtx note = find_reg_note (insn, REG_EQUAL, 0);
3041
3042 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
3043 comparison_value = XEXP (note, 0);
3044
3045 break;
3046 }
3047 }
3048 }
3049
3050 final_value = approx_final_value (comparison_code, comparison_value,
3051 &unsigned_compare, &compare_dir);
3052
3053 /* Save the calculated values describing this loop's bounds, in case
3054 precondition_loop_p will need them later. These values can not be
3055 recalculated inside precondition_loop_p because strength reduction
3056 optimizations may obscure the loop's structure. */
3057
3058 loop_iteration_var = iteration_var;
3059 loop_initial_value = initial_value;
3060 loop_increment = increment;
3061 loop_final_value = final_value;
3062
3063 if (final_value == 0)
3064 {
3065 if (loop_dump_stream)
3066 fprintf (loop_dump_stream,
3067 "Loop unrolling: EQ comparison loop.\n");
3068 return 0;
3069 }
3070 else if (GET_CODE (final_value) != CONST_INT)
3071 {
3072 if (loop_dump_stream)
3073 fprintf (loop_dump_stream,
3074 "Loop unrolling: Final value not constant.\n");
3075 return 0;
3076 }
3077
3078 /* ?? Final value and initial value do not have to be constants.
3079 Only their difference has to be constant. When the iteration variable
3080 is an array address, the final value and initial value might both
3081 be addresses with the same base but different constant offsets.
3082 Final value must be invariant for this to work.
3083
3084 To do this, need someway to find the values of registers which are
3085 invariant. */
3086
3087 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3088 if (unsigned_compare)
3089 final_larger
3090 = ((unsigned) INTVAL (final_value) > (unsigned) INTVAL (initial_value)) -
3091 ((unsigned) INTVAL (final_value) < (unsigned) INTVAL (initial_value));
3092 else
3093 final_larger = (INTVAL (final_value) > INTVAL (initial_value)) -
3094 (INTVAL (final_value) < INTVAL (initial_value));
3095
3096 if (INTVAL (increment) > 0)
3097 increment_dir = 1;
3098 else if (INTVAL (increment) == 0)
3099 increment_dir = 0;
3100 else
3101 increment_dir = -1;
3102
3103 /* There are 27 different cases: compare_dir = -1, 0, 1;
3104 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3105 There are 4 normal cases, 4 reverse cases (where the iteration variable
3106 will overflow before the loop exits), 4 infinite loop cases, and 15
3107 immediate exit (0 or 1 iteration depending on loop type) cases.
3108 Only try to optimize the normal cases. */
3109
3110 /* (compare_dir/final_larger/increment_dir)
3111 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3112 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3113 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3114 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3115
3116 /* ?? If the meaning of reverse loops (where the iteration variable
3117 will overflow before the loop exits) is undefined, then could
3118 eliminate all of these special checks, and just always assume
3119 the loops are normal/immediate/infinite. Note that this means
3120 the sign of increment_dir does not have to be known. Also,
3121 since it does not really hurt if immediate exit loops or infinite loops
3122 are optimized, then that case could be ignored also, and hence all
3123 loops can be optimized.
3124
3125 According to ANSI Spec, the reverse loop case result is undefined,
3126 because the action on overflow is undefined.
3127
3128 See also the special test for NE loops below. */
3129
3130 if (final_larger == increment_dir && final_larger != 0
3131 && (final_larger == compare_dir || compare_dir == 0))
3132 /* Normal case. */
3133 ;
3134 else
3135 {
3136 if (loop_dump_stream)
3137 fprintf (loop_dump_stream,
3138 "Loop unrolling: Not normal loop.\n");
3139 return 0;
3140 }
3141
3142 /* Calculate the number of iterations, final_value is only an approximation,
3143 so correct for that. Note that tempu and loop_n_iterations are
3144 unsigned, because they can be as large as 2^n - 1. */
3145
3146 i = INTVAL (increment);
3147 if (i > 0)
3148 tempu = INTVAL (final_value) - INTVAL (initial_value);
3149 else if (i < 0)
3150 {
3151 tempu = INTVAL (initial_value) - INTVAL (final_value);
3152 i = -i;
3153 }
3154 else
3155 abort ();
3156
3157 /* For NE tests, make sure that the iteration variable won't miss the
3158 final value. If tempu mod i is not zero, then the iteration variable
3159 will overflow before the loop exits, and we can not calculate the
3160 number of iterations. */
3161 if (compare_dir == 0 && (tempu % i) != 0)
3162 return 0;
3163
3164 return tempu / i + ((tempu % i) != 0);
3165}
This page took 0.353878 seconds and 5 git commands to generate.