]> gcc.gnu.org Git - gcc.git/blame - gcc/unroll.c
Change the location of the Sun bundled C compiler (for backup defaults).
[gcc.git] / gcc / unroll.c
CommitLineData
67f2de41
RK
1/* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21/* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54/* Possible improvements follow: */
55
56/* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
6dc42e49 62 memory addresses can be split, and hence giv increments can be
67f2de41
RK
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68/* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73/* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90/* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117/* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132/* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139#define NUM_FACTORS 4
140
141struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144/* Describes the different types of loop unrolling performed. */
145
146enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148#include "config.h"
149#include "rtl.h"
150#include "insn-config.h"
151#include "integrate.h"
152#include "regs.h"
153#include "flags.h"
154#include "expr.h"
155#include <stdio.h>
156#include "loop.h"
157
158/* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161#ifndef MAX_UNROLLED_INSNS
162#define MAX_UNROLLED_INSNS 100
163#endif
164
165/* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171static struct induction **addr_combined_regs;
172
173/* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177static rtx *splittable_regs;
178
179/* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184static int *splittable_regs_updates;
185
186/* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189static rtx loop_iteration_var;
190static rtx loop_initial_value;
191static rtx loop_increment;
192static rtx loop_final_value;
193
194/* Forward declarations. */
195
196static void init_reg_map ();
197static int precondition_loop_p ();
198static void copy_loop_body ();
199static void iteration_info ();
200static rtx approx_final_value ();
201static int find_splittable_regs ();
202static int find_splittable_givs ();
203static rtx fold_rtx_mult_add ();
204
205/* Try to unroll one loop and split induction variables in the loop.
206
207 The loop is described by the arguments LOOP_END, INSN_COUNT, and
6dc42e49 208 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
67f2de41
RK
209 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
210 indicates whether information generated in the strength reduction pass
211 is available.
212
213 This function is intended to be called from within `strength_reduce'
214 in loop.c. */
215
216void
217unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
218 strength_reduce_p)
219 rtx loop_end;
220 int insn_count;
221 rtx loop_start;
222 rtx end_insert_before;
223 int strength_reduce_p;
224{
225 int i, j, temp;
226 int unroll_number = 1;
227 rtx copy_start, copy_end;
228 rtx insn, copy, sequence, pattern, tem;
229 int max_labelno, max_insnno;
230 rtx insert_before;
231 struct inline_remap *map;
232 char *local_label;
233 int maxregnum;
234 int new_maxregnum;
235 rtx exit_label = 0;
236 rtx start_label;
237 struct iv_class *bl;
238 struct induction *v;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326#ifdef HAVE_cc0
b4ac57ab 327 /* The immediately preceding insn is a compare which must be
67f2de41
RK
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331#else
b4ac57ab 332 /* The immediately preceding insn may not be the compare, so don't
67f2de41
RK
333 delete it. */
334 delete_insn (last_loop_insn);
335#endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447#ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451#else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455#endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488#ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493#else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498#endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603
604 if (unroll_type == UNROLL_NAIVE
605 && GET_CODE (last_loop_insn) == BARRIER
606 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
607 {
608 /* In this case, we must copy the jump and barrier, because they will
609 not be converted to jumps to an immediately following label. */
610
611 insert_before = NEXT_INSN (last_loop_insn);
612 copy_end = last_loop_insn;
613 }
614
615 /* Allocate a translation table for the labels and insn numbers.
616 They will be filled in as we copy the insns in the loop. */
617
618 max_labelno = max_label_num ();
619 max_insnno = get_max_uid ();
620
621 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
622
623 /* Allocate the label map. */
624
625 if (max_labelno > 0)
626 {
627 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
628
629 local_label = (char *) alloca (max_labelno);
630 bzero (local_label, max_labelno);
631 }
632 else
633 map->label_map = 0;
634
635 /* Search the loop and mark all local labels, i.e. the ones which have to
636 be distinct labels when copied. For all labels which might be
637 non-local, set their label_map entries to point to themselves.
638 If they happen to be local their label_map entries will be overwritten
639 before the loop body is copied. The label_map entries for local labels
640 will be set to a different value each time the loop body is copied. */
641
642 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
643 {
644 if (GET_CODE (insn) == CODE_LABEL)
645 local_label[CODE_LABEL_NUMBER (insn)] = 1;
646 else if (GET_CODE (insn) == JUMP_INSN)
647 {
648 if (JUMP_LABEL (insn))
649 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
650 = JUMP_LABEL (insn);
651 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
653 {
654 rtx pat = PATTERN (insn);
655 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
656 int len = XVECLEN (pat, diff_vec_p);
657 rtx label;
658
659 for (i = 0; i < len; i++)
660 {
661 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
662 map->label_map[CODE_LABEL_NUMBER (label)] = label;
663 }
664 }
665 }
666 }
667
668 /* Allocate space for the insn map. */
669
670 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
671
672 /* Set this to zero, to indicate that we are doing loop unrolling,
673 not function inlining. */
674 map->inline_target = 0;
675
676 /* The register and constant maps depend on the number of registers
677 present, so the final maps can't be created until after
678 find_splittable_regs is called. However, they are needed for
679 preconditioning, so we create temporary maps when preconditioning
680 is performed. */
681
682 /* The preconditioning code may allocate two new pseudo registers. */
683 maxregnum = max_reg_num ();
684
685 /* Allocate and zero out the splittable_regs and addr_combined_regs
686 arrays. These must be zeroed here because they will be used if
687 loop preconditioning is performed, and must be zero for that case.
688
689 It is safe to do this here, since the extra registers created by the
690 preconditioning code and find_splittable_regs will never be used
6dc42e49 691 to access the splittable_regs[] and addr_combined_regs[] arrays. */
67f2de41
RK
692
693 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
694 bzero (splittable_regs, maxregnum * sizeof (rtx));
695 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
696 bzero (splittable_regs_updates, maxregnum * sizeof (int));
697 addr_combined_regs
698 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
699 bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));
700
701 /* If this loop requires exit tests when unrolled, check to see if we
702 can precondition the loop so as to make the exit tests unnecessary.
703 Just like variable splitting, this is not safe if the loop is entered
704 via a jump to the bottom. Also, can not do this if no strength
705 reduce info, because precondition_loop_p uses this info. */
706
707 /* Must copy the loop body for preconditioning before the following
708 find_splittable_regs call since that will emit insns which need to
709 be after the preconditioned loop copies, but immediately before the
710 unrolled loop copies. */
711
712 /* Also, it is not safe to split induction variables for the preconditioned
713 copies of the loop body. If we split induction variables, then the code
714 assumes that each induction variable can be represented as a function
715 of its initial value and the loop iteration number. This is not true
716 in this case, because the last preconditioned copy of the loop body
717 could be any iteration from the first up to the `unroll_number-1'th,
718 depending on the initial value of the iteration variable. Therefore
719 we can not split induction variables here, because we can not calculate
720 their value. Hence, this code must occur before find_splittable_regs
721 is called. */
722
723 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
724 {
725 rtx initial_value, final_value, increment;
726
727 if (precondition_loop_p (&initial_value, &final_value, &increment,
728 loop_start, loop_end))
729 {
730 register rtx diff, temp;
731 enum machine_mode mode;
732 rtx *labels;
733 int abs_inc, neg_inc;
734
735 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
736
737 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
738 map->const_age_map = (unsigned *) alloca (maxregnum
739 * sizeof (unsigned));
740 map->const_equiv_map_size = maxregnum;
741 global_const_equiv_map = map->const_equiv_map;
742
743 init_reg_map (map, maxregnum);
744
745 /* Limit loop unrolling to 4, since this will make 7 copies of
746 the loop body. */
747 if (unroll_number > 4)
748 unroll_number = 4;
749
750 /* Save the absolute value of the increment, and also whether or
751 not it is negative. */
752 neg_inc = 0;
753 abs_inc = INTVAL (increment);
754 if (abs_inc < 0)
755 {
756 abs_inc = - abs_inc;
757 neg_inc = 1;
758 }
759
760 start_sequence ();
761
762 /* Decide what mode to do these calculations in. Choose the larger
763 of final_value's mode and initial_value's mode, or a full-word if
764 both are constants. */
765 mode = GET_MODE (final_value);
766 if (mode == VOIDmode)
767 {
768 mode = GET_MODE (initial_value);
769 if (mode == VOIDmode)
770 mode = word_mode;
771 }
772 else if (mode != GET_MODE (initial_value)
773 && (GET_MODE_SIZE (mode)
774 < GET_MODE_SIZE (GET_MODE (initial_value))))
775 mode = GET_MODE (initial_value);
776
777 /* Calculate the difference between the final and initial values.
778 Final value may be a (plus (reg x) (const_int 1)) rtx.
779 Let the following cse pass simplify this if initial value is
780 a constant.
781
782 We must copy the final and initial values here to avoid
783 improperly shared rtl. */
784
785 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
c166a311 786 copy_rtx (initial_value), NULL_RTX, 0,
67f2de41
RK
787 OPTAB_LIB_WIDEN);
788
789 /* Now calculate (diff % (unroll * abs (increment))) by using an
790 and instruction. */
791 diff = expand_binop (GET_MODE (diff), and_optab, diff,
c166a311
CH
792 GEN_INT (unroll_number * abs_inc - 1),
793 NULL_RTX, 0, OPTAB_LIB_WIDEN);
67f2de41
RK
794
795 /* Now emit a sequence of branches to jump to the proper precond
796 loop entry point. */
797
798 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
799 for (i = 0; i < unroll_number; i++)
800 labels[i] = gen_label_rtx ();
801
802 /* Assuming the unroll_number is 4, and the increment is 2, then
803 for a negative increment: for a positive increment:
804 diff = 0,1 precond 0 diff = 0,7 precond 0
805 diff = 2,3 precond 3 diff = 1,2 precond 1
806 diff = 4,5 precond 2 diff = 3,4 precond 2
807 diff = 6,7 precond 1 diff = 5,6 precond 3 */
808
809 /* We only need to emit (unroll_number - 1) branches here, the
810 last case just falls through to the following code. */
811
812 /* ??? This would give better code if we emitted a tree of branches
813 instead of the current linear list of branches. */
814
815 for (i = 0; i < unroll_number - 1; i++)
816 {
817 int cmp_const;
818
819 /* For negative increments, must invert the constant compared
820 against, except when comparing against zero. */
821 if (i == 0)
822 cmp_const = 0;
823 else if (neg_inc)
824 cmp_const = unroll_number - i;
825 else
826 cmp_const = i;
827
c166a311
CH
828 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
829 EQ, NULL_RTX, mode, 0, 0);
67f2de41
RK
830
831 if (i == 0)
832 emit_jump_insn (gen_beq (labels[i]));
833 else if (neg_inc)
834 emit_jump_insn (gen_bge (labels[i]));
835 else
836 emit_jump_insn (gen_ble (labels[i]));
837 JUMP_LABEL (get_last_insn ()) = labels[i];
838 LABEL_NUSES (labels[i])++;
839 }
840
841 /* If the increment is greater than one, then we need another branch,
842 to handle other cases equivalent to 0. */
843
844 /* ??? This should be merged into the code above somehow to help
845 simplify the code here, and reduce the number of branches emitted.
846 For the negative increment case, the branch here could easily
847 be merged with the `0' case branch above. For the positive
848 increment case, it is not clear how this can be simplified. */
849
850 if (abs_inc != 1)
851 {
852 int cmp_const;
853
854 if (neg_inc)
855 cmp_const = abs_inc - 1;
856 else
857 cmp_const = abs_inc * (unroll_number - 1) + 1;
858
c166a311
CH
859 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
860 mode, 0, 0);
67f2de41
RK
861
862 if (neg_inc)
863 emit_jump_insn (gen_ble (labels[0]));
864 else
865 emit_jump_insn (gen_bge (labels[0]));
866 JUMP_LABEL (get_last_insn ()) = labels[0];
867 LABEL_NUSES (labels[0])++;
868 }
869
870 sequence = gen_sequence ();
871 end_sequence ();
872 emit_insn_before (sequence, loop_start);
873
874 /* Only the last copy of the loop body here needs the exit
875 test, so set copy_end to exclude the compare/branch here,
876 and then reset it inside the loop when get to the last
877 copy. */
878
879 if (GET_CODE (last_loop_insn) == BARRIER)
880 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
881 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
882 {
883#ifdef HAVE_cc0
b4ac57ab 884 /* The immediately preceding insn is a compare which we do not
67f2de41
RK
885 want to copy. */
886 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
887#else
b4ac57ab 888 /* The immediately preceding insn may not be a compare, so we
67f2de41
RK
889 must copy it. */
890 copy_end = PREV_INSN (last_loop_insn);
891#endif
892 }
893 else
894 abort ();
895
896 for (i = 1; i < unroll_number; i++)
897 {
898 emit_label_after (labels[unroll_number - i],
899 PREV_INSN (loop_start));
900
901 bzero (map->insn_map, max_insnno * sizeof (rtx));
902 bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
903 bzero (map->const_age_map, maxregnum * sizeof (unsigned));
904 map->const_age = 0;
905
906 for (j = 0; j < max_labelno; j++)
907 if (local_label[j])
908 map->label_map[j] = gen_label_rtx ();
909
910 /* The last copy needs the compare/branch insns at the end,
911 so reset copy_end here if the loop ends with a conditional
912 branch. */
913
914 if (i == unroll_number - 1)
915 {
916 if (GET_CODE (last_loop_insn) == BARRIER)
917 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
918 else
919 copy_end = last_loop_insn;
920 }
921
922 /* None of the copies are the `last_iteration', so just
923 pass zero for that parameter. */
924 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
925 unroll_type, start_label, loop_end,
926 loop_start, copy_end);
927 }
928 emit_label_after (labels[0], PREV_INSN (loop_start));
929
930 if (GET_CODE (last_loop_insn) == BARRIER)
931 {
932 insert_before = PREV_INSN (last_loop_insn);
933 copy_end = PREV_INSN (insert_before);
934 }
935 else
936 {
937#ifdef HAVE_cc0
b4ac57ab 938 /* The immediately preceding insn is a compare which we do not
67f2de41
RK
939 want to copy. */
940 insert_before = PREV_INSN (last_loop_insn);
941 copy_end = PREV_INSN (insert_before);
942#else
b4ac57ab 943 /* The immediately preceding insn may not be a compare, so we
67f2de41
RK
944 must copy it. */
945 insert_before = last_loop_insn;
946 copy_end = PREV_INSN (last_loop_insn);
947#endif
948 }
949
950 /* Set unroll type to MODULO now. */
951 unroll_type = UNROLL_MODULO;
952 loop_preconditioned = 1;
953 }
954 }
955
956 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
957 the loop unless all loops are being unrolled. */
958 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
959 {
960 if (loop_dump_stream)
961 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
962 return;
963 }
964
965 /* At this point, we are guaranteed to unroll the loop. */
966
967 /* For each biv and giv, determine whether it can be safely split into
968 a different variable for each unrolled copy of the loop body.
969 We precalculate and save this info here, since computing it is
970 expensive.
971
972 Do this before deleting any instructions from the loop, so that
973 back_branch_in_range_p will work correctly. */
974
975 if (splitting_not_safe)
976 temp = 0;
977 else
978 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
979 end_insert_before, unroll_number);
980
981 /* find_splittable_regs may have created some new registers, so must
982 reallocate the reg_map with the new larger size, and must realloc
983 the constant maps also. */
984
985 maxregnum = max_reg_num ();
986 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
987
988 init_reg_map (map, maxregnum);
989
990 /* Space is needed in some of the map for new registers, so new_maxregnum
991 is an (over)estimate of how many registers will exist at the end. */
992 new_maxregnum = maxregnum + (temp * unroll_number * 2);
993
994 /* Must realloc space for the constant maps, because the number of registers
995 may have changed. */
996
997 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
998 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
999
1000 global_const_equiv_map = map->const_equiv_map;
1001
1002 /* Search the list of bivs and givs to find ones which need to be remapped
1003 when split, and set their reg_map entry appropriately. */
1004
1005 for (bl = loop_iv_list; bl; bl = bl->next)
1006 {
1007 if (REGNO (bl->biv->src_reg) != bl->regno)
1008 map->reg_map[bl->regno] = bl->biv->src_reg;
1009#if 0
1010 /* Currently, non-reduced/final-value givs are never split. */
1011 for (v = bl->giv; v; v = v->next_iv)
1012 if (REGNO (v->src_reg) != bl->regno)
1013 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1014#endif
1015 }
1016
1017 /* If the loop is being partially unrolled, and the iteration variables
1018 are being split, and are being renamed for the split, then must fix up
1019 the compare instruction at the end of the loop to refer to the new
1020 registers. This compare isn't copied, so the registers used in it
1021 will never be replaced if it isn't done here. */
1022
1023 if (unroll_type == UNROLL_MODULO)
1024 {
1025 insn = NEXT_INSN (copy_end);
1026 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET)
1027 {
1028#if 0
1029 /* If non-reduced/final-value givs were split, then this would also
1030 have to remap those givs. */
1031#endif
1032
1033 tem = SET_SRC (PATTERN (insn));
1034 /* The set source is a register. */
1035 if (GET_CODE (tem) == REG)
1036 {
1037 if (REGNO (tem) < max_reg_before_loop
1038 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1039 SET_SRC (PATTERN (insn))
1040 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1041 }
1042 else
1043 {
1044 /* The set source is a compare of some sort. */
1045 tem = XEXP (SET_SRC (PATTERN (insn)), 0);
1046 if (GET_CODE (tem) == REG
1047 && REGNO (tem) < max_reg_before_loop
1048 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1049 XEXP (SET_SRC (PATTERN (insn)), 0)
1050 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1051
1052 tem = XEXP (SET_SRC (PATTERN (insn)), 1);
1053 if (GET_CODE (tem) == REG
1054 && REGNO (tem) < max_reg_before_loop
1055 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1056 XEXP (SET_SRC (PATTERN (insn)), 1)
1057 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1058 }
1059 }
1060 }
1061
1062 /* For unroll_number - 1 times, make a copy of each instruction
1063 between copy_start and copy_end, and insert these new instructions
1064 before the end of the loop. */
1065
1066 for (i = 0; i < unroll_number; i++)
1067 {
1068 bzero (map->insn_map, max_insnno * sizeof (rtx));
1069 bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
1070 bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
1071 map->const_age = 0;
1072
1073 for (j = 0; j < max_labelno; j++)
1074 if (local_label[j])
1075 map->label_map[j] = gen_label_rtx ();
1076
1077 /* If loop starts with a branch to the test, then fix it so that
1078 it points to the test of the first unrolled copy of the loop. */
1079 if (i == 0 && loop_start != copy_start)
1080 {
1081 insn = PREV_INSN (copy_start);
1082 pattern = PATTERN (insn);
1083
1084 tem = map->label_map[CODE_LABEL_NUMBER
1085 (XEXP (SET_SRC (pattern), 0))];
1086 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1087
1088 /* Set the jump label so that it can be used by later loop unrolling
1089 passes. */
1090 JUMP_LABEL (insn) = tem;
1091 LABEL_NUSES (tem)++;
1092 }
1093
1094 copy_loop_body (copy_start, copy_end, map, exit_label,
1095 i == unroll_number - 1, unroll_type, start_label,
1096 loop_end, insert_before, insert_before);
1097 }
1098
1099 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1100 insn to be deleted. This prevents any runaway delete_insn call from
1101 more insns that it should, as it always stops at a CODE_LABEL. */
1102
1103 /* Delete the compare and branch at the end of the loop if completely
1104 unrolling the loop. Deleting the backward branch at the end also
1105 deletes the code label at the start of the loop. This is done at
1106 the very end to avoid problems with back_branch_in_range_p. */
1107
1108 if (unroll_type == UNROLL_COMPLETELY)
1109 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1110 else
1111 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1112
1113 /* Delete all of the original loop instructions. Don't delete the
1114 LOOP_BEG note, or the first code label in the loop. */
1115
1116 insn = NEXT_INSN (copy_start);
1117 while (insn != safety_label)
1118 {
1119 if (insn != start_label)
1120 insn = delete_insn (insn);
1121 else
1122 insn = NEXT_INSN (insn);
1123 }
1124
1125 /* Can now delete the 'safety' label emitted to protect us from runaway
1126 delete_insn calls. */
1127 if (INSN_DELETED_P (safety_label))
1128 abort ();
1129 delete_insn (safety_label);
1130
1131 /* If exit_label exists, emit it after the loop. Doing the emit here
1132 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1133 This is needed so that mostly_true_jump in reorg.c will treat jumps
1134 to this loop end label correctly, i.e. predict that they are usually
1135 not taken. */
1136 if (exit_label)
1137 emit_label_after (exit_label, loop_end);
67f2de41
RK
1138}
1139\f
1140/* Return true if the loop can be safely, and profitably, preconditioned
1141 so that the unrolled copies of the loop body don't need exit tests.
1142
1143 This only works if final_value, initial_value and increment can be
1144 determined, and if increment is a constant power of 2.
1145 If increment is not a power of 2, then the preconditioning modulo
1146 operation would require a real modulo instead of a boolean AND, and this
1147 is not considered `profitable'. */
1148
1149/* ??? If the loop is known to be executed very many times, or the machine
1150 has a very cheap divide instruction, then preconditioning is a win even
1151 when the increment is not a power of 2. Use RTX_COST to compute
1152 whether divide is cheap. */
1153
1154static int
1155precondition_loop_p (initial_value, final_value, increment, loop_start,
1156 loop_end)
1157 rtx *initial_value, *final_value, *increment;
1158 rtx loop_start, loop_end;
1159{
1160 int unsigned_compare, compare_dir;
1161
1162 if (loop_n_iterations > 0)
1163 {
1164 *initial_value = const0_rtx;
1165 *increment = const1_rtx;
c166a311 1166 *final_value = GEN_INT (loop_n_iterations);
67f2de41
RK
1167
1168 if (loop_dump_stream)
1169 fprintf (loop_dump_stream,
1170 "Preconditioning: Success, number of iterations known, %d.\n",
1171 loop_n_iterations);
1172 return 1;
1173 }
1174
1175 if (loop_initial_value == 0)
1176 {
1177 if (loop_dump_stream)
1178 fprintf (loop_dump_stream,
1179 "Preconditioning: Could not find initial value.\n");
1180 return 0;
1181 }
1182 else if (loop_increment == 0)
1183 {
1184 if (loop_dump_stream)
1185 fprintf (loop_dump_stream,
1186 "Preconditioning: Could not find increment value.\n");
1187 return 0;
1188 }
1189 else if (GET_CODE (loop_increment) != CONST_INT)
1190 {
1191 if (loop_dump_stream)
1192 fprintf (loop_dump_stream,
1193 "Preconditioning: Increment not a constant.\n");
1194 return 0;
1195 }
1196 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1197 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1198 {
1199 if (loop_dump_stream)
1200 fprintf (loop_dump_stream,
1201 "Preconditioning: Increment not a constant power of 2.\n");
1202 return 0;
1203 }
1204
1205 /* Unsigned_compare and compare_dir can be ignored here, since they do
1206 not matter for preconditioning. */
1207
1208 if (loop_final_value == 0)
1209 {
1210 if (loop_dump_stream)
1211 fprintf (loop_dump_stream,
1212 "Preconditioning: EQ comparison loop.\n");
1213 return 0;
1214 }
1215
1216 /* Must ensure that final_value is invariant, so call invariant_p to
1217 check. Before doing so, must check regno against max_reg_before_loop
6dc42e49 1218 to make sure that the register is in the range covered by invariant_p.
67f2de41
RK
1219 If it isn't, then it is most likely a biv/giv which by definition are
1220 not invariant. */
1221 if ((GET_CODE (loop_final_value) == REG
1222 && REGNO (loop_final_value) >= max_reg_before_loop)
1223 || (GET_CODE (loop_final_value) == PLUS
1224 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1225 || ! invariant_p (loop_final_value))
1226 {
1227 if (loop_dump_stream)
1228 fprintf (loop_dump_stream,
1229 "Preconditioning: Final value not invariant.\n");
1230 return 0;
1231 }
1232
1233 /* Fail for floating point values, since the caller of this function
1234 does not have code to deal with them. */
1235 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
412dc348 1236 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
67f2de41
RK
1237 {
1238 if (loop_dump_stream)
1239 fprintf (loop_dump_stream,
1240 "Preconditioning: Floating point final or initial value.\n");
1241 return 0;
1242 }
1243
1244 /* Now set initial_value to be the iteration_var, since that may be a
1245 simpler expression, and is guaranteed to be correct if all of the
1246 above tests succeed.
1247
1248 We can not use the initial_value as calculated, because it will be
1249 one too small for loops of the form "while (i-- > 0)". We can not
1250 emit code before the loop_skip_over insns to fix this problem as this
1251 will then give a number one too large for loops of the form
1252 "while (--i > 0)".
1253
1254 Note that all loops that reach here are entered at the top, because
1255 this function is not called if the loop starts with a jump. */
1256
1257 /* Fail if loop_iteration_var is not live before loop_start, since we need
1258 to test its value in the preconditioning code. */
1259
1260 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1261 > INSN_LUID (loop_start))
1262 {
1263 if (loop_dump_stream)
1264 fprintf (loop_dump_stream,
1265 "Preconditioning: Iteration var not live before loop start.\n");
1266 return 0;
1267 }
1268
1269 *initial_value = loop_iteration_var;
1270 *increment = loop_increment;
1271 *final_value = loop_final_value;
1272
1273 /* Success! */
1274 if (loop_dump_stream)
1275 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1276 return 1;
1277}
1278
1279
1280/* All pseudo-registers must be mapped to themselves. Two hard registers
1281 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1282 REGNUM, to avoid function-inlining specific conversions of these
1283 registers. All other hard regs can not be mapped because they may be
1284 used with different
1285 modes. */
1286
1287static void
1288init_reg_map (map, maxregnum)
1289 struct inline_remap *map;
1290 int maxregnum;
1291{
1292 int i;
1293
1294 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1295 map->reg_map[i] = regno_reg_rtx[i];
1296 /* Just clear the rest of the entries. */
1297 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1298 map->reg_map[i] = 0;
1299
1300 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1301 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1302 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1303 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1304}
1305\f
1306/* Strength-reduction will often emit code for optimized biv/givs which
1307 calculates their value in a temporary register, and then copies the result
1308 to the iv. This procedure reconstructs the pattern computing the iv;
1309 verifying that all operands are of the proper form.
1310
1311 The return value is the amount that the giv is incremented by. */
1312
1313static rtx
1314calculate_giv_inc (pattern, src_insn, regno)
1315 rtx pattern, src_insn;
1316 int regno;
1317{
1318 rtx increment;
1319
1320 /* Verify that we have an increment insn here. First check for a plus
1321 as the set source. */
1322 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1323 {
1324 /* SR sometimes computes the new giv value in a temp, then copies it
1325 to the new_reg. */
1326 src_insn = PREV_INSN (src_insn);
1327 pattern = PATTERN (src_insn);
1328 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1329 abort ();
1330
1331 /* The last insn emitted is not needed, so delete it to avoid confusing
1332 the second cse pass. This insn sets the giv unnecessarily. */
1333 delete_insn (get_last_insn ());
1334 }
1335
1336 /* Verify that we have a constant as the second operand of the plus. */
1337 increment = XEXP (SET_SRC (pattern), 1);
1338 if (GET_CODE (increment) != CONST_INT)
1339 {
1340 /* SR sometimes puts the constant in a register, especially if it is
1341 too big to be an add immed operand. */
1342 increment = SET_SRC (PATTERN (PREV_INSN (src_insn)));
1343
1344 /* SR may have used LO_SUM to compute the constant if it is too large
1345 for a load immed operand. In this case, the constant is in operand
1346 one of the LO_SUM rtx. */
1347 if (GET_CODE (increment) == LO_SUM)
1348 increment = XEXP (increment, 1);
1349
1350 if (GET_CODE (increment) != CONST_INT)
1351 abort ();
1352
1353 /* The insn loading the constant into a register is not longer needed,
1354 so delete it. */
1355 delete_insn (get_last_insn ());
1356 }
1357
1358 /* Check that the source register is the same as the dest register. */
1359 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1360 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1361 abort ();
1362
1363 return increment;
1364}
1365
1366
1367/* Copy each instruction in the loop, substituting from map as appropriate.
1368 This is very similar to a loop in expand_inline_function. */
1369
1370static void
1371copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1372 unroll_type, start_label, loop_end, insert_before,
1373 copy_notes_from)
1374 rtx copy_start, copy_end;
1375 struct inline_remap *map;
87f60669 1376 rtx exit_label;
67f2de41
RK
1377 int last_iteration;
1378 enum unroll_types unroll_type;
1379 rtx start_label, loop_end, insert_before, copy_notes_from;
1380{
1381 rtx insn, pattern;
1382 rtx tem, copy;
1383 int dest_reg_was_split, i;
1384 rtx cc0_insn = 0;
1385 rtx final_label = 0;
1386 rtx giv_inc, giv_dest_reg, giv_src_reg;
1387
1388 /* If this isn't the last iteration, then map any references to the
1389 start_label to final_label. Final label will then be emitted immediately
1390 after the end of this loop body if it was ever used.
1391
1392 If this is the last iteration, then map references to the start_label
1393 to itself. */
1394 if (! last_iteration)
1395 {
1396 final_label = gen_label_rtx ();
1397 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1398 }
1399 else
1400 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1401
1402 start_sequence ();
1403
1404 insn = copy_start;
1405 do
1406 {
1407 insn = NEXT_INSN (insn);
1408
1409 map->orig_asm_operands_vector = 0;
1410
1411 switch (GET_CODE (insn))
1412 {
1413 case INSN:
1414 pattern = PATTERN (insn);
1415 copy = 0;
1416 giv_inc = 0;
1417
1418 /* Check to see if this is a giv that has been combined with
1419 some split address givs. (Combined in the sense that
1420 `combine_givs' in loop.c has put two givs in the same register.)
1421 In this case, we must search all givs based on the same biv to
1422 find the address givs. Then split the address givs.
1423 Do this before splitting the giv, since that may map the
1424 SET_DEST to a new register. */
1425
1426 if (GET_CODE (pattern) == SET
1427 && GET_CODE (SET_DEST (pattern)) == REG
1428 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1429 {
1430 struct iv_class *bl;
1431 struct induction *v, *tv;
1432 int regno = REGNO (SET_DEST (pattern));
1433
1434 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1435 bl = reg_biv_class[REGNO (v->src_reg)];
1436
1437 /* Although the giv_inc amount is not needed here, we must call
1438 calculate_giv_inc here since it might try to delete the
1439 last insn emitted. If we wait until later to call it,
1440 we might accidentally delete insns generated immediately
1441 below by emit_unrolled_add. */
1442
1443 giv_inc = calculate_giv_inc (pattern, insn, regno);
1444
1445 /* Now find all address giv's that were combined with this
1446 giv 'v'. */
1447 for (tv = bl->giv; tv; tv = tv->next_iv)
1448 if (tv->giv_type == DEST_ADDR && tv->same == v)
1449 {
2b4bd1bc
JW
1450 int this_giv_inc = INTVAL (giv_inc);
1451
1452 /* Scale this_giv_inc if the multiplicative factors of
1453 the two givs are different. */
1454 if (tv->mult_val != v->mult_val)
1455 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1456 * INTVAL (tv->mult_val));
1457
1458 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
67f2de41
RK
1459 *tv->location = tv->dest_reg;
1460
1461 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1462 {
1463 /* Must emit an insn to increment the split address
1464 giv. Add in the const_adjust field in case there
1465 was a constant eliminated from the address. */
1466 rtx value, dest_reg;
1467
1468 /* tv->dest_reg will be either a bare register,
1469 or else a register plus a constant. */
1470 if (GET_CODE (tv->dest_reg) == REG)
1471 dest_reg = tv->dest_reg;
1472 else
1473 dest_reg = XEXP (tv->dest_reg, 0);
1474
1475 /* tv->dest_reg may actually be a (PLUS (REG) (CONST))
1476 here, so we must call plus_constant to add
1477 the const_adjust amount before calling
1478 emit_unrolled_add below. */
1479 value = plus_constant (tv->dest_reg, tv->const_adjust);
1480
1481 /* The constant could be too large for an add
1482 immediate, so can't directly emit an insn here. */
1483 emit_unrolled_add (dest_reg, XEXP (value, 0),
1484 XEXP (value, 1));
1485
1486 /* Reset the giv to be just the register again, in case
412dc348
RK
1487 it is used after the set we have just emitted.
1488 We must subtract the const_adjust factor added in
1489 above. */
1490 tv->dest_reg = plus_constant (dest_reg,
1491 - tv->const_adjust);
67f2de41
RK
1492 *tv->location = tv->dest_reg;
1493 }
1494 }
1495 }
1496
1497 /* If this is a setting of a splittable variable, then determine
1498 how to split the variable, create a new set based on this split,
1499 and set up the reg_map so that later uses of the variable will
1500 use the new split variable. */
1501
1502 dest_reg_was_split = 0;
1503
1504 if (GET_CODE (pattern) == SET
1505 && GET_CODE (SET_DEST (pattern)) == REG
1506 && splittable_regs[REGNO (SET_DEST (pattern))])
1507 {
1508 int regno = REGNO (SET_DEST (pattern));
1509
1510 dest_reg_was_split = 1;
1511
1512 /* Compute the increment value for the giv, if it wasn't
1513 already computed above. */
1514
1515 if (giv_inc == 0)
1516 giv_inc = calculate_giv_inc (pattern, insn, regno);
1517 giv_dest_reg = SET_DEST (pattern);
1518 giv_src_reg = SET_DEST (pattern);
1519
1520 if (unroll_type == UNROLL_COMPLETELY)
1521 {
1522 /* Completely unrolling the loop. Set the induction
1523 variable to a known constant value. */
1524
1525 /* The value in splittable_regs may be an invariant
1526 value, so we must use plus_constant here. */
1527 splittable_regs[regno]
1528 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1529
1530 if (GET_CODE (splittable_regs[regno]) == PLUS)
1531 {
1532 giv_src_reg = XEXP (splittable_regs[regno], 0);
1533 giv_inc = XEXP (splittable_regs[regno], 1);
1534 }
1535 else
1536 {
1537 /* The splittable_regs value must be a REG or a
1538 CONST_INT, so put the entire value in the giv_src_reg
1539 variable. */
1540 giv_src_reg = splittable_regs[regno];
1541 giv_inc = const0_rtx;
1542 }
1543 }
1544 else
1545 {
1546 /* Partially unrolling loop. Create a new pseudo
1547 register for the iteration variable, and set it to
1548 be a constant plus the original register. Except
1549 on the last iteration, when the result has to
1550 go back into the original iteration var register. */
1551
1552 /* Handle bivs which must be mapped to a new register
1553 when split. This happens for bivs which need their
1554 final value set before loop entry. The new register
1555 for the biv was stored in the biv's first struct
1556 induction entry by find_splittable_regs. */
1557
1558 if (regno < max_reg_before_loop
1559 && reg_iv_type[regno] == BASIC_INDUCT)
1560 {
1561 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1562 giv_dest_reg = giv_src_reg;
1563 }
1564
1565#if 0
1566 /* If non-reduced/final-value givs were split, then
1567 this would have to remap those givs also. See
1568 find_splittable_regs. */
1569#endif
1570
1571 splittable_regs[regno]
c166a311 1572 = GEN_INT (INTVAL (giv_inc)
67f2de41
RK
1573 + INTVAL (splittable_regs[regno]));
1574 giv_inc = splittable_regs[regno];
1575
1576 /* Now split the induction variable by changing the dest
1577 of this insn to a new register, and setting its
1578 reg_map entry to point to this new register.
1579
1580 If this is the last iteration, and this is the last insn
1581 that will update the iv, then reuse the original dest,
1582 to ensure that the iv will have the proper value when
1583 the loop exits or repeats.
1584
1585 Using splittable_regs_updates here like this is safe,
1586 because it can only be greater than one if all
1587 instructions modifying the iv are always executed in
1588 order. */
1589
1590 if (! last_iteration
1591 || (splittable_regs_updates[regno]-- != 1))
1592 {
1593 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1594 giv_dest_reg = tem;
1595 map->reg_map[regno] = tem;
1596 }
1597 else
1598 map->reg_map[regno] = giv_src_reg;
1599 }
1600
1601 /* The constant being added could be too large for an add
1602 immediate, so can't directly emit an insn here. */
1603 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1604 copy = get_last_insn ();
1605 pattern = PATTERN (copy);
1606 }
1607 else
1608 {
1609 pattern = copy_rtx_and_substitute (pattern, map);
1610 copy = emit_insn (pattern);
1611 }
1612 /* REG_NOTES will be copied later. */
1613
1614#ifdef HAVE_cc0
1615 /* If this insn is setting CC0, it may need to look at
1616 the insn that uses CC0 to see what type of insn it is.
1617 In that case, the call to recog via validate_change will
1618 fail. So don't substitute constants here. Instead,
1619 do it when we emit the following insn.
1620
1621 For example, see the pyr.md file. That machine has signed and
1622 unsigned compares. The compare patterns must check the
1623 following branch insn to see which what kind of compare to
1624 emit.
1625
1626 If the previous insn set CC0, substitute constants on it as
1627 well. */
1628 if (sets_cc0_p (copy) != 0)
1629 cc0_insn = copy;
1630 else
1631 {
1632 if (cc0_insn)
1633 try_constants (cc0_insn, map);
1634 cc0_insn = 0;
1635 try_constants (copy, map);
1636 }
1637#else
1638 try_constants (copy, map);
1639#endif
1640
1641 /* Make split induction variable constants `permanent' since we
1642 know there are no backward branches across iteration variable
1643 settings which would invalidate this. */
1644 if (dest_reg_was_split)
1645 {
1646 int regno = REGNO (SET_DEST (pattern));
1647
1648 if (map->const_age_map[regno] == map->const_age)
1649 map->const_age_map[regno] = -1;
1650 }
1651 break;
1652
1653 case JUMP_INSN:
1654 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1655 && ! last_iteration)
1656 {
1657 /* This is a branch to the beginning of the loop; this is the
1658 last insn being copied; and this is not the last iteration.
1659 In this case, we want to change the original fall through
1660 case to be a branch past the end of the loop, and the
1661 original jump label case to fall_through. */
1662
1663 int fall_through;
1664
1665 /* Never map the label in this case. */
a9d27cb2 1666 rtx tmp_pattern = copy_rtx (PATTERN (insn));
67f2de41 1667
a9d27cb2
RK
1668 /* Set the fall through case to the exit label. If we
1669 can't do this in place, abort for now. Maybe
1670 we can do something more sophisticated eventually. */
1671
1672 if (! invert_exp (tmp_pattern, insn)
1673 || ! redirect_exp (&tmp_pattern, JUMP_LABEL (insn),
1674 exit_label, insn))
67f2de41 1675 abort ();
a9d27cb2
RK
1676
1677 pattern = tmp_pattern;
67f2de41
RK
1678 }
1679 else
1680 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1681
1682 copy = emit_jump_insn (pattern);
1683
1684#ifdef HAVE_cc0
1685 if (cc0_insn)
1686 try_constants (cc0_insn, map);
1687 cc0_insn = 0;
1688#endif
1689 try_constants (copy, map);
1690
1691 /* Set the jump label of COPY correctly to avoid problems with
1692 later passes of unroll_loop, if INSN had jump label set. */
1693 if (JUMP_LABEL (insn))
1694 {
1695 /* Can't use the label_map for every insn, since this may be
1696 the backward branch, and hence the label was not mapped. */
1697 if (GET_CODE (pattern) == SET)
1698 {
1699 tem = SET_SRC (pattern);
1700 if (GET_CODE (tem) == LABEL_REF)
1701 JUMP_LABEL (copy) = XEXP (tem, 0);
1702 else if (GET_CODE (tem) == IF_THEN_ELSE)
1703 {
1704 if (XEXP (tem, 1) != pc_rtx)
1705 JUMP_LABEL (copy) = XEXP (XEXP (tem, 1), 0);
1706 else
1707 JUMP_LABEL (copy) = XEXP (XEXP (tem, 2), 0);
1708 }
1709 else
1710 abort ();
1711 }
1712 else
1713 {
1714 /* An unrecognizable jump insn, probably the entry jump
1715 for a switch statement. This label must have been mapped,
1716 so just use the label_map to get the new jump label. */
1717 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1718 (JUMP_LABEL (insn))];
1719 }
1720
1721 /* If this is a non-local jump, then must increase the label
1722 use count so that the label will not be deleted when the
1723 original jump is deleted. */
1724 LABEL_NUSES (JUMP_LABEL (copy))++;
1725 }
1726 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1727 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1728 {
1729 rtx pat = PATTERN (copy);
1730 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1731 int len = XVECLEN (pat, diff_vec_p);
1732 int i;
1733
1734 for (i = 0; i < len; i++)
1735 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1736 }
1737
1738 /* If this used to be a conditional jump insn but whose branch
1739 direction is now known, we must do something special. */
1740 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1741 {
1742#ifdef HAVE_cc0
1743 /* The previous insn set cc0 for us. So delete it. */
1744 delete_insn (PREV_INSN (copy));
1745#endif
1746
1747 /* If this is now a no-op, delete it. */
1748 if (map->last_pc_value == pc_rtx)
1749 {
1750 delete_insn (copy);
1751 copy = 0;
1752 }
1753 else
1754 /* Otherwise, this is unconditional jump so we must put a
1755 BARRIER after it. We could do some dead code elimination
1756 here, but jump.c will do it just as well. */
1757 emit_barrier ();
1758 }
1759 break;
1760
1761 case CALL_INSN:
1762 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1763 copy = emit_call_insn (pattern);
1764
1765#ifdef HAVE_cc0
1766 if (cc0_insn)
1767 try_constants (cc0_insn, map);
1768 cc0_insn = 0;
1769#endif
1770 try_constants (copy, map);
1771
1772 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1773 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1774 map->const_equiv_map[i] = 0;
1775 break;
1776
1777 case CODE_LABEL:
1778 /* If this is the loop start label, then we don't need to emit a
1779 copy of this label since no one will use it. */
1780
1781 if (insn != start_label)
1782 {
1783 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1784 map->const_age++;
1785 }
1786 break;
1787
1788 case BARRIER:
1789 copy = emit_barrier ();
1790 break;
1791
1792 case NOTE:
715e6efb
JW
1793 /* VTOP notes are valid only before the loop exit test. If placed
1794 anywhere else, loop may generate bad code. */
1795
1796 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1797 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1798 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
67f2de41
RK
1799 copy = emit_note (NOTE_SOURCE_FILE (insn),
1800 NOTE_LINE_NUMBER (insn));
1801 else
1802 copy = 0;
1803 break;
1804
1805 default:
1806 abort ();
1807 break;
1808 }
1809
1810 map->insn_map[INSN_UID (insn)] = copy;
1811 }
1812 while (insn != copy_end);
1813
1814 /* Now copy the REG_NOTES. */
1815 insn = copy_start;
1816 do
1817 {
1818 insn = NEXT_INSN (insn);
1819 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1820 || GET_CODE (insn) == CALL_INSN)
1821 && map->insn_map[INSN_UID (insn)])
1822 REG_NOTES (map->insn_map[INSN_UID (insn)])
1823 = copy_rtx_and_substitute (REG_NOTES (insn), map);
1824 }
1825 while (insn != copy_end);
1826
1827 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1828 each of these notes here, since there may be some important ones, such as
1829 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1830 iteration, because the original notes won't be deleted.
1831
1832 We can't use insert_before here, because when from preconditioning,
1833 insert_before points before the loop. We can't use copy_end, because
1834 there may be insns already inserted after it (which we don't want to
1835 copy) when not from preconditioning code. */
1836
1837 if (! last_iteration)
1838 {
1839 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1840 {
1841 if (GET_CODE (insn) == NOTE
1842 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1843 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1844 }
1845 }
1846
1847 if (final_label && LABEL_NUSES (final_label) > 0)
1848 emit_label (final_label);
1849
1850 tem = gen_sequence ();
1851 end_sequence ();
1852 emit_insn_before (tem, insert_before);
1853}
1854\f
1855/* Emit an insn, using the expand_binop to ensure that a valid insn is
1856 emitted. This will correctly handle the case where the increment value
1857 won't fit in the immediate field of a PLUS insns. */
1858
1859void
1860emit_unrolled_add (dest_reg, src_reg, increment)
1861 rtx dest_reg, src_reg, increment;
1862{
1863 rtx result;
1864
1865 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1866 dest_reg, 0, OPTAB_LIB_WIDEN);
1867
1868 if (dest_reg != result)
1869 emit_move_insn (dest_reg, result);
1870}
1871\f
1872/* Searches the insns between INSN and LOOP_END. Returns 1 if there
1873 is a backward branch in that range that branches to somewhere between
1874 LOOP_START and INSN. Returns 0 otherwise. */
1875
6dc42e49 1876/* ??? This is quadratic algorithm. Could be rewritten to be linear.
67f2de41
RK
1877 In practice, this is not a problem, because this function is seldom called,
1878 and uses a negligible amount of CPU time on average. */
1879
1880static int
1881back_branch_in_range_p (insn, loop_start, loop_end)
1882 rtx insn;
1883 rtx loop_start, loop_end;
1884{
1885 rtx p, q, target_insn;
1886
1887 /* Stop before we get to the backward branch at the end of the loop. */
1888 loop_end = prev_nonnote_insn (loop_end);
1889 if (GET_CODE (loop_end) == BARRIER)
1890 loop_end = PREV_INSN (loop_end);
1891
1892 /* Check in case insn has been deleted, search forward for first non
1893 deleted insn following it. */
1894 while (INSN_DELETED_P (insn))
1895 insn = NEXT_INSN (insn);
1896
1897 /* Check for the case where insn is the last insn in the loop. */
1898 if (insn == loop_end)
1899 return 0;
1900
1901 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1902 {
1903 if (GET_CODE (p) == JUMP_INSN)
1904 {
1905 target_insn = JUMP_LABEL (p);
1906
1907 /* Search from loop_start to insn, to see if one of them is
1908 the target_insn. We can't use INSN_LUID comparisons here,
1909 since insn may not have an LUID entry. */
1910 for (q = loop_start; q != insn; q = NEXT_INSN (q))
1911 if (q == target_insn)
1912 return 1;
1913 }
1914 }
1915
1916 return 0;
1917}
1918
1919/* Try to generate the simplest rtx for the expression
1920 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
1921 value of giv's. */
1922
1923static rtx
1924fold_rtx_mult_add (mult1, mult2, add1, mode)
1925 rtx mult1, mult2, add1;
1926 enum machine_mode mode;
1927{
1928 rtx temp, mult_res;
1929 rtx result;
1930
1931 /* The modes must all be the same. This should always be true. For now,
1932 check to make sure. */
1933 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
1934 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
1935 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
1936 abort ();
1937
1938 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
1939 will be a constant. */
1940 if (GET_CODE (mult1) == CONST_INT)
1941 {
1942 temp = mult2;
1943 mult2 = mult1;
1944 mult1 = temp;
1945 }
1946
1947 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
1948 if (! mult_res)
1949 mult_res = gen_rtx (MULT, mode, mult1, mult2);
1950
1951 /* Again, put the constant second. */
1952 if (GET_CODE (add1) == CONST_INT)
1953 {
1954 temp = add1;
1955 add1 = mult_res;
1956 mult_res = temp;
1957 }
1958
1959 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
1960 if (! result)
1961 result = gen_rtx (PLUS, mode, add1, mult_res);
1962
1963 return result;
1964}
1965
1966/* Searches the list of induction struct's for the biv BL, to try to calculate
1967 the total increment value for one iteration of the loop as a constant.
1968
1969 Returns the increment value as an rtx, simplified as much as possible,
1970 if it can be calculated. Otherwise, returns 0. */
1971
1972rtx
1973biv_total_increment (bl, loop_start, loop_end)
1974 struct iv_class *bl;
1975 rtx loop_start, loop_end;
1976{
1977 struct induction *v;
1978 rtx result;
1979
1980 /* For increment, must check every instruction that sets it. Each
1981 instruction must be executed only once each time through the loop.
1982 To verify this, we check that the the insn is always executed, and that
1983 there are no backward branches after the insn that branch to before it.
1984 Also, the insn must have a mult_val of one (to make sure it really is
1985 an increment). */
1986
1987 result = const0_rtx;
1988 for (v = bl->biv; v; v = v->next_iv)
1989 {
1990 if (v->always_computable && v->mult_val == const1_rtx
1991 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
1992 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
1993 else
1994 return 0;
1995 }
1996
1997 return result;
1998}
1999
2000/* Determine the initial value of the iteration variable, and the amount
2001 that it is incremented each loop. Use the tables constructed by
2002 the strength reduction pass to calculate these values.
2003
2004 Initial_value and/or increment are set to zero if their values could not
2005 be calculated. */
2006
2007static void
2008iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2009 rtx iteration_var, *initial_value, *increment;
2010 rtx loop_start, loop_end;
2011{
2012 struct iv_class *bl;
2013 struct induction *v, *b;
2014
2015 /* Clear the result values, in case no answer can be found. */
2016 *initial_value = 0;
2017 *increment = 0;
2018
2019 /* The iteration variable can be either a giv or a biv. Check to see
2020 which it is, and compute the variable's initial value, and increment
2021 value if possible. */
2022
2023 /* If this is a new register, can't handle it since we don't have any
2024 reg_iv_type entry for it. */
2025 if (REGNO (iteration_var) >= max_reg_before_loop)
2026 {
2027 if (loop_dump_stream)
2028 fprintf (loop_dump_stream,
2029 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2030 return;
2031 }
2032 /* Reject iteration variables larger than the host long size, since they
2033 could result in a number of iterations greater than the range of our
2034 `unsigned long' variable loop_n_iterations. */
2035 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2036 {
2037 if (loop_dump_stream)
2038 fprintf (loop_dump_stream,
2039 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2040 return;
2041 }
2042 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2043 {
2044 if (loop_dump_stream)
2045 fprintf (loop_dump_stream,
b4ac57ab 2046 "Loop unrolling: Iteration var not an integer.\n");
67f2de41
RK
2047 return;
2048 }
2049 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2050 {
2051 /* Grab initial value, only useful if it is a constant. */
2052 bl = reg_biv_class[REGNO (iteration_var)];
2053 *initial_value = bl->initial_value;
2054
2055 *increment = biv_total_increment (bl, loop_start, loop_end);
2056 }
2057 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2058 {
2059#if 1
2060 /* ??? The code below does not work because the incorrect number of
2061 iterations is calculated when the biv is incremented after the giv
2062 is set (which is the usual case). This can probably be accounted
2063 for by biasing the initial_value by subtracting the amount of the
2064 increment that occurs between the giv set and the giv test. However,
2065 a giv as an iterator is very rare, so it does not seem worthwhile
2066 to handle this. */
2067 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2068 if (loop_dump_stream)
2069 fprintf (loop_dump_stream,
2070 "Loop unrolling: Giv iterators are not handled.\n");
2071 return;
2072#else
2073 /* Initial value is mult_val times the biv's initial value plus
2074 add_val. Only useful if it is a constant. */
2075 v = reg_iv_info[REGNO (iteration_var)];
2076 bl = reg_biv_class[REGNO (v->src_reg)];
2077 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2078 v->add_val, v->mode);
2079
2080 /* Increment value is mult_val times the increment value of the biv. */
2081
2082 *increment = biv_total_increment (bl, loop_start, loop_end);
2083 if (*increment)
2084 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2085 v->mode);
2086#endif
2087 }
2088 else
2089 {
2090 if (loop_dump_stream)
2091 fprintf (loop_dump_stream,
2092 "Loop unrolling: Not basic or general induction var.\n");
2093 return;
2094 }
2095}
2096
2097/* Calculate the approximate final value of the iteration variable
2098 which has an loop exit test with code COMPARISON_CODE and comparison value
2099 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2100 was signed or unsigned, and the direction of the comparison. This info is
2101 needed to calculate the number of loop iterations. */
2102
2103static rtx
2104approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2105 enum rtx_code comparison_code;
2106 rtx comparison_value;
2107 int *unsigned_p;
2108 int *compare_dir;
2109{
2110 /* Calculate the final value of the induction variable.
2111 The exact final value depends on the branch operator, and increment sign.
2112 This is only an approximate value. It will be wrong if the iteration
2113 variable is not incremented by one each time through the loop, and
2114 approx final value - start value % increment != 0. */
2115
2116 *unsigned_p = 0;
2117 switch (comparison_code)
2118 {
2119 case LEU:
2120 *unsigned_p = 1;
2121 case LE:
2122 *compare_dir = 1;
2123 return plus_constant (comparison_value, 1);
2124 case GEU:
2125 *unsigned_p = 1;
2126 case GE:
2127 *compare_dir = -1;
2128 return plus_constant (comparison_value, -1);
2129 case EQ:
2130 /* Can not calculate a final value for this case. */
2131 *compare_dir = 0;
2132 return 0;
2133 case LTU:
2134 *unsigned_p = 1;
2135 case LT:
2136 *compare_dir = 1;
2137 return comparison_value;
2138 break;
2139 case GTU:
2140 *unsigned_p = 1;
2141 case GT:
2142 *compare_dir = -1;
2143 return comparison_value;
2144 case NE:
2145 *compare_dir = 0;
2146 return comparison_value;
2147 default:
2148 abort ();
2149 }
2150}
2151
2152/* For each biv and giv, determine whether it can be safely split into
2153 a different variable for each unrolled copy of the loop body. If it
2154 is safe to split, then indicate that by saving some useful info
2155 in the splittable_regs array.
2156
2157 If the loop is being completely unrolled, then splittable_regs will hold
2158 the current value of the induction variable while the loop is unrolled.
2159 It must be set to the initial value of the induction variable here.
2160 Otherwise, splittable_regs will hold the difference between the current
2161 value of the induction variable and the value the induction variable had
2162 at the top of the loop. It must be set to the value 0 here. */
2163
2164/* ?? If the loop is only unrolled twice, then most of the restrictions to
2165 constant values are unnecessary, since we can easily calculate increment
2166 values in this case even if nothing is constant. The increment value
2167 should not involve a multiply however. */
2168
2169/* ?? Even if the biv/giv increment values aren't constant, it may still
2170 be beneficial to split the variable if the loop is only unrolled a few
2171 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2172
2173static int
2174find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2175 unroll_number)
2176 enum unroll_types unroll_type;
2177 rtx loop_start, loop_end;
2178 rtx end_insert_before;
2179 int unroll_number;
2180{
2181 struct iv_class *bl;
2182 rtx increment, tem;
2183 rtx biv_final_value;
2184 int biv_splittable;
2185 int result = 0;
2186
2187 for (bl = loop_iv_list; bl; bl = bl->next)
2188 {
2189 /* Biv_total_increment must return a constant value,
2190 otherwise we can not calculate the split values. */
2191
2192 increment = biv_total_increment (bl, loop_start, loop_end);
2193 if (! increment || GET_CODE (increment) != CONST_INT)
2194 continue;
2195
2196 /* The loop must be unrolled completely, or else have a known number
2197 of iterations and only one exit, or else the biv must be dead
2198 outside the loop, or else the final value must be known. Otherwise,
2199 it is unsafe to split the biv since it may not have the proper
2200 value on loop exit. */
2201
2202 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2203 a fall through at the end. */
2204
2205 biv_splittable = 1;
2206 biv_final_value = 0;
2207 if (unroll_type != UNROLL_COMPLETELY
2208 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2209 || unroll_type == UNROLL_NAIVE)
2210 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2211 || ! bl->init_insn
2212 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2213 || (uid_luid[regno_first_uid[bl->regno]]
2214 < INSN_LUID (bl->init_insn))
2215 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2216 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2217 biv_splittable = 0;
2218
2219 /* If final value is non-zero, then must emit an instruction which sets
2220 the value of the biv to the proper value. This is done after
2221 handling all of the givs, since some of them may need to use the
2222 biv's value in their initialization code. */
2223
2224 /* This biv is splittable. If completely unrolling the loop, save
2225 the biv's initial value. Otherwise, save the constant zero. */
2226
2227 if (biv_splittable == 1)
2228 {
2229 if (unroll_type == UNROLL_COMPLETELY)
2230 {
2231 /* If the initial value of the biv is itself (i.e. it is too
2232 complicated for strength_reduce to compute), or is a hard
b4ac57ab 2233 register, then we must create a new pseudo reg to hold the
67f2de41
RK
2234 initial value of the biv. */
2235
2236 if (GET_CODE (bl->initial_value) == REG
2237 && (REGNO (bl->initial_value) == bl->regno
2238 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2239 {
2240 rtx tem = gen_reg_rtx (bl->biv->mode);
2241
2242 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2243 loop_start);
2244
2245 if (loop_dump_stream)
2246 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2247 bl->regno, REGNO (tem));
2248
2249 splittable_regs[bl->regno] = tem;
2250 }
2251 else
2252 splittable_regs[bl->regno] = bl->initial_value;
2253 }
2254 else
2255 splittable_regs[bl->regno] = const0_rtx;
2256
2257 /* Save the number of instructions that modify the biv, so that
2258 we can treat the last one specially. */
2259
2260 splittable_regs_updates[bl->regno] = bl->biv_count;
2261
2262 result++;
2263
2264 if (loop_dump_stream)
2265 fprintf (loop_dump_stream,
2266 "Biv %d safe to split.\n", bl->regno);
2267 }
2268
2269 /* Check every giv that depends on this biv to see whether it is
2270 splittable also. Even if the biv isn't splittable, givs which
2271 depend on it may be splittable if the biv is live outside the
2272 loop, and the givs aren't. */
2273
2274 result = find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2275 increment, unroll_number, result);
2276
2277 /* If final value is non-zero, then must emit an instruction which sets
2278 the value of the biv to the proper value. This is done after
2279 handling all of the givs, since some of them may need to use the
2280 biv's value in their initialization code. */
2281 if (biv_final_value)
2282 {
2283 /* If the loop has multiple exits, emit the insns before the
2284 loop to ensure that it will always be executed no matter
2285 how the loop exits. Otherwise emit the insn after the loop,
2286 since this is slightly more efficient. */
2287 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2288 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2289 biv_final_value),
2290 end_insert_before);
2291 else
2292 {
2293 /* Create a new register to hold the value of the biv, and then
2294 set the biv to its final value before the loop start. The biv
2295 is set to its final value before loop start to ensure that
2296 this insn will always be executed, no matter how the loop
2297 exits. */
2298 rtx tem = gen_reg_rtx (bl->biv->mode);
2299 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2300 loop_start);
2301 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2302 biv_final_value),
2303 loop_start);
2304
2305 if (loop_dump_stream)
2306 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2307 REGNO (bl->biv->src_reg), REGNO (tem));
2308
2309 /* Set up the mapping from the original biv register to the new
2310 register. */
2311 bl->biv->src_reg = tem;
2312 }
2313 }
2314 }
2315 return result;
2316}
2317
2318/* For every giv based on the biv BL, check to determine whether it is
2319 splittable. This is a subroutine to find_splittable_regs (). */
2320
2321static int
2322find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2323 unroll_number, result)
2324 struct iv_class *bl;
2325 enum unroll_types unroll_type;
2326 rtx loop_start, loop_end;
2327 rtx increment;
2328 int unroll_number, result;
2329{
2330 struct induction *v;
2331 rtx final_value;
2332 rtx tem;
2333
2334 for (v = bl->giv; v; v = v->next_iv)
2335 {
2336 rtx giv_inc, value;
2337
2338 /* Only split the giv if it has already been reduced, or if the loop is
2339 being completely unrolled. */
2340 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2341 continue;
2342
2343 /* The giv can be split if the insn that sets the giv is executed once
2344 and only once on every iteration of the loop. */
2345 /* An address giv can always be split. v->insn is just a use not a set,
2346 and hence it does not matter whether it is always executed. All that
2347 matters is that all the biv increments are always executed, and we
2348 won't reach here if they aren't. */
2349 if (v->giv_type != DEST_ADDR
2350 && (! v->always_computable
2351 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2352 continue;
2353
2354 /* The giv increment value must be a constant. */
2355 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2356 v->mode);
2357 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2358 continue;
2359
2360 /* The loop must be unrolled completely, or else have a known number of
2361 iterations and only one exit, or else the giv must be dead outside
2362 the loop, or else the final value of the giv must be known.
2363 Otherwise, it is not safe to split the giv since it may not have the
2364 proper value on loop exit. */
2365
2366 /* The used outside loop test will fail for DEST_ADDR givs. They are
2367 never used outside the loop anyways, so it is always safe to split a
2368 DEST_ADDR giv. */
2369
2370 final_value = 0;
2371 if (unroll_type != UNROLL_COMPLETELY
2372 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2373 || unroll_type == UNROLL_NAIVE)
2374 && v->giv_type != DEST_ADDR
2375 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2376 /* Check for the case where the pseudo is set by a shift/add
2377 sequence, in which case the first insn setting the pseudo
2378 is the first insn of the shift/add sequence. */
c166a311 2379 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
67f2de41
RK
2380 || (regno_first_uid[REGNO (v->dest_reg)]
2381 != INSN_UID (XEXP (tem, 0)))))
2382 /* Line above always fails if INSN was moved by loop opt. */
2383 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2384 >= INSN_LUID (loop_end)))
2385 && ! (final_value = v->final_value))
2386 continue;
2387
2388#if 0
2389 /* Currently, non-reduced/final-value givs are never split. */
2390 /* Should emit insns after the loop if possible, as the biv final value
2391 code below does. */
2392
2393 /* If the final value is non-zero, and the giv has not been reduced,
2394 then must emit an instruction to set the final value. */
2395 if (final_value && !v->new_reg)
2396 {
2397 /* Create a new register to hold the value of the giv, and then set
2398 the giv to its final value before the loop start. The giv is set
2399 to its final value before loop start to ensure that this insn
2400 will always be executed, no matter how we exit. */
2401 tem = gen_reg_rtx (v->mode);
2402 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2403 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2404 loop_start);
2405
2406 if (loop_dump_stream)
2407 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2408 REGNO (v->dest_reg), REGNO (tem));
2409
2410 v->src_reg = tem;
2411 }
2412#endif
2413
2414 /* This giv is splittable. If completely unrolling the loop, save the
2415 giv's initial value. Otherwise, save the constant zero for it. */
2416
2417 if (unroll_type == UNROLL_COMPLETELY)
2418 /* It is not safe to use bl->initial_value here, because it may not
2419 be invariant. It is safe to use the initial value stored in
2420 the splittable_regs array. */
2421 value = fold_rtx_mult_add (v->mult_val, splittable_regs[bl->regno],
2422 v->add_val, v->mode);
2423 else
2424 value = const0_rtx;
2425
2426 if (v->new_reg)
2427 {
bf1c6940
JW
2428 /* If a giv was combined with another giv, then we can only split
2429 this giv if the giv it was combined with was reduced. This
2430 is because the value of v->new_reg is meaningless in this
2431 case. */
2432 if (v->same && ! v->same->new_reg)
67f2de41
RK
2433 {
2434 if (loop_dump_stream)
2435 fprintf (loop_dump_stream,
bf1c6940
JW
2436 "giv combined with unreduced giv not split.\n");
2437 continue;
67f2de41 2438 }
bf1c6940
JW
2439 /* If the giv is an address destination, it could be something other
2440 than a simple register, these have to be treated differently. */
2441 else if (v->giv_type == DEST_REG)
2b9a9aea
JW
2442 {
2443 /* If value is not a constant, register, or register plus
2444 constant, then compute its value into a register before
2445 loop start. This prevents illegal rtx sharing, and should
2446 generate better code. We can use bl->initial_value here
2447 instead of splittable_regs[bl->regno] because this code
2448 is going before the loop start. */
2449 if (unroll_type == UNROLL_COMPLETELY
2450 && GET_CODE (value) != CONST_INT
2451 && GET_CODE (value) != REG
2452 && (GET_CODE (value) != PLUS
2453 || GET_CODE (XEXP (value, 0)) != REG
2454 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2455 {
2456 rtx tem = gen_reg_rtx (v->mode);
2457 emit_iv_add_mult (bl->initial_value, v->mult_val,
2458 v->add_val, tem, loop_start);
2459 value = tem;
2460 }
2461
2462 splittable_regs[REGNO (v->new_reg)] = value;
2463 }
67f2de41
RK
2464 else
2465 {
2466 /* Splitting address givs is useful since it will often allow us
2467 to eliminate some increment insns for the base giv as
2468 unnecessary. */
2469
2470 /* If the addr giv is combined with a dest_reg giv, then all
2471 references to that dest reg will be remapped, which is NOT
2472 what we want for split addr regs. We always create a new
2473 register for the split addr giv, just to be safe. */
2474
2475 /* ??? If there are multiple address givs which have been
2476 combined with the same dest_reg giv, then we may only need
2477 one new register for them. Pulling out constants below will
2478 catch some of the common cases of this. Currently, I leave
2479 the work of simplifying multiple address givs to the
2480 following cse pass. */
2481
2482 v->const_adjust = 0;
2483 if (unroll_type != UNROLL_COMPLETELY)
2484 {
2485 /* If not completely unrolling the loop, then create a new
2486 register to hold the split value of the DEST_ADDR giv.
2487 Emit insn to initialize its value before loop start. */
2488 tem = gen_reg_rtx (v->mode);
2489
2490 /* If the address giv has a constant in its new_reg value,
2491 then this constant can be pulled out and put in value,
2492 instead of being part of the initialization code. */
2493
2494 if (GET_CODE (v->new_reg) == PLUS
2495 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2496 {
2497 v->dest_reg
2498 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2499
2500 /* Only succeed if this will give valid addresses.
2501 Try to validate both the first and the last
2502 address resulting from loop unrolling, if
2503 one fails, then can't do const elim here. */
2504 if (memory_address_p (v->mode, v->dest_reg)
2505 && memory_address_p (v->mode,
2506 plus_constant (v->dest_reg,
2507 INTVAL (giv_inc)
2508 * (unroll_number - 1))))
2509 {
2510 /* Save the negative of the eliminated const, so
2511 that we can calculate the dest_reg's increment
2512 value later. */
2513 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2514
2515 v->new_reg = XEXP (v->new_reg, 0);
2516 if (loop_dump_stream)
2517 fprintf (loop_dump_stream,
2518 "Eliminating constant from giv %d\n",
2519 REGNO (tem));
2520 }
2521 else
2522 v->dest_reg = tem;
2523 }
2524 else
2525 v->dest_reg = tem;
2526
2527 /* If the address hasn't been checked for validity yet, do so
2528 now, and fail completely if either the first or the last
2529 unrolled copy of the address is not a valid address. */
2530 if (v->dest_reg == tem
2531 && (! memory_address_p (v->mode, v->dest_reg)
2532 || ! memory_address_p (v->mode,
2533 plus_constant (v->dest_reg,
2534 INTVAL (giv_inc)
2535 * (unroll_number -1)))))
2536 {
2537 if (loop_dump_stream)
2538 fprintf (loop_dump_stream,
2539 "Illegal address for giv at insn %d\n",
2540 INSN_UID (v->insn));
2541 continue;
2542 }
2543
2544 /* To initialize the new register, just move the value of
2545 new_reg into it. This is not guaranteed to give a valid
2546 instruction on machines with complex addressing modes.
2547 If we can't recognize it, then delete it and emit insns
2548 to calculate the value from scratch. */
2549 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2550 copy_rtx (v->new_reg)),
2551 loop_start);
2552 if (! recog_memoized (PREV_INSN (loop_start)))
2553 {
2554 delete_insn (PREV_INSN (loop_start));
2555 emit_iv_add_mult (bl->initial_value, v->mult_val,
2556 v->add_val, tem, loop_start);
2557 if (loop_dump_stream)
2558 fprintf (loop_dump_stream,
2559 "Illegal init insn, rewritten.\n");
2560 }
2561 }
2562 else
2563 {
2564 v->dest_reg = value;
2565
2566 /* Check the resulting address for validity, and fail
2567 if the resulting address would be illegal. */
2568 if (! memory_address_p (v->mode, v->dest_reg)
2569 || ! memory_address_p (v->mode,
2570 plus_constant (v->dest_reg,
2571 INTVAL (giv_inc) *
2572 (unroll_number -1))))
2573 {
2574 if (loop_dump_stream)
2575 fprintf (loop_dump_stream,
2576 "Illegal address for giv at insn %d\n",
2577 INSN_UID (v->insn));
2578 continue;
2579 }
2580 }
2581
2582 /* Store the value of dest_reg into the insn. This sharing
2583 will not be a problem as this insn will always be copied
2584 later. */
2585
2586 *v->location = v->dest_reg;
2587
2588 /* If this address giv is combined with a dest reg giv, then
2589 save the base giv's induction pointer so that we will be
2590 able to handle this address giv properly. The base giv
2591 itself does not have to be splittable. */
2592
2593 if (v->same && v->same->giv_type == DEST_REG)
2594 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2595
2596 if (GET_CODE (v->new_reg) == REG)
2597 {
2598 /* This giv maybe hasn't been combined with any others.
2599 Make sure that it's giv is marked as splittable here. */
2600
2601 splittable_regs[REGNO (v->new_reg)] = value;
2602
2603 /* Make it appear to depend upon itself, so that the
2604 giv will be properly split in the main loop above. */
2605 if (! v->same)
2606 {
2607 v->same = v;
2608 addr_combined_regs[REGNO (v->new_reg)] = v;
2609 }
2610 }
3f07e47a 2611
67f2de41
RK
2612 if (loop_dump_stream)
2613 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2614 }
2615 }
2616 else
2617 {
2618#if 0
2619 /* Currently, unreduced giv's can't be split. This is not too much
2620 of a problem since unreduced giv's are not live across loop
2621 iterations anyways. When unrolling a loop completely though,
2622 it makes sense to reduce&split givs when possible, as this will
2623 result in simpler instructions, and will not require that a reg
2624 be live across loop iterations. */
2625
2626 splittable_regs[REGNO (v->dest_reg)] = value;
2627 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2628 REGNO (v->dest_reg), INSN_UID (v->insn));
2629#else
2630 continue;
2631#endif
2632 }
2633
2634 /* Givs are only updated once by definition. Mark it so if this is
2635 a splittable register. Don't need to do anything for address givs
2636 where this may not be a register. */
2637
2638 if (GET_CODE (v->new_reg) == REG)
2639 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2640
2641 result++;
2642
2643 if (loop_dump_stream)
2644 {
2645 int regnum;
2646
2647 if (GET_CODE (v->dest_reg) == CONST_INT)
2648 regnum = -1;
2649 else if (GET_CODE (v->dest_reg) != REG)
2650 regnum = REGNO (XEXP (v->dest_reg, 0));
2651 else
2652 regnum = REGNO (v->dest_reg);
2653 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2654 regnum, INSN_UID (v->insn));
2655 }
2656 }
2657
2658 return result;
2659}
2660\f
2661/* Try to prove that the register is dead after the loop exits. Trace every
2662 loop exit looking for an insn that will always be executed, which sets
2663 the register to some value, and appears before the first use of the register
2664 is found. If successful, then return 1, otherwise return 0. */
2665
2666/* ?? Could be made more intelligent in the handling of jumps, so that
2667 it can search past if statements and other similar structures. */
2668
2669static int
2670reg_dead_after_loop (reg, loop_start, loop_end)
2671 rtx reg, loop_start, loop_end;
2672{
2673 rtx insn, label;
2674 enum rtx_code code;
412dc348 2675 int jump_count = 0;
67f2de41
RK
2676
2677 /* HACK: Must also search the loop fall through exit, create a label_ref
2678 here which points to the loop_end, and append the loop_number_exit_labels
2679 list to it. */
2680 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2681 LABEL_NEXTREF (label)
2682 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2683
2684 for ( ; label; label = LABEL_NEXTREF (label))
2685 {
2686 /* Succeed if find an insn which sets the biv or if reach end of
2687 function. Fail if find an insn that uses the biv, or if come to
2688 a conditional jump. */
2689
2690 insn = NEXT_INSN (XEXP (label, 0));
412dc348 2691 while (insn)
67f2de41 2692 {
412dc348
RK
2693 code = GET_CODE (insn);
2694 if (GET_RTX_CLASS (code) == 'i')
67f2de41 2695 {
412dc348
RK
2696 rtx set;
2697
2698 if (reg_referenced_p (reg, PATTERN (insn)))
67f2de41 2699 return 0;
412dc348
RK
2700
2701 set = single_set (insn);
2702 if (set && rtx_equal_p (SET_DEST (set), reg))
2703 break;
67f2de41 2704 }
412dc348 2705
67f2de41
RK
2706 if (code == JUMP_INSN)
2707 {
2708 if (GET_CODE (PATTERN (insn)) == RETURN)
2709 break;
412dc348
RK
2710 else if (! simplejump_p (insn)
2711 /* Prevent infinite loop following infinite loops. */
2712 || jump_count++ > 20)
67f2de41
RK
2713 return 0;
2714 else
412dc348 2715 insn = JUMP_LABEL (insn);
67f2de41 2716 }
412dc348 2717
67f2de41
RK
2718 insn = NEXT_INSN (insn);
2719 }
2720 }
2721
2722 /* Success, the register is dead on all loop exits. */
2723 return 1;
2724}
2725
2726/* Try to calculate the final value of the biv, the value it will have at
2727 the end of the loop. If we can do it, return that value. */
2728
2729rtx
2730final_biv_value (bl, loop_start, loop_end)
2731 struct iv_class *bl;
2732 rtx loop_start, loop_end;
2733{
2734 rtx increment, tem;
2735
b4ac57ab
RS
2736 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2737
2738 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2739 return 0;
2740
67f2de41
RK
2741 /* The final value for reversed bivs must be calculated differently than
2742 for ordinary bivs. In this case, there is already an insn after the
2743 loop which sets this biv's final value (if necessary), and there are
2744 no other loop exits, so we can return any value. */
2745 if (bl->reversed)
2746 {
2747 if (loop_dump_stream)
2748 fprintf (loop_dump_stream,
2749 "Final biv value for %d, reversed biv.\n", bl->regno);
2750
2751 return const0_rtx;
2752 }
2753
2754 /* Try to calculate the final value as initial value + (number of iterations
2755 * increment). For this to work, increment must be invariant, the only
2756 exit from the loop must be the fall through at the bottom (otherwise
2757 it may not have its final value when the loop exits), and the initial
2758 value of the biv must be invariant. */
2759
2760 if (loop_n_iterations != 0
2761 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2762 && invariant_p (bl->initial_value))
2763 {
2764 increment = biv_total_increment (bl, loop_start, loop_end);
2765
2766 if (increment && invariant_p (increment))
2767 {
2768 /* Can calculate the loop exit value, emit insns after loop
2769 end to calculate this value into a temporary register in
2770 case it is needed later. */
2771
2772 tem = gen_reg_rtx (bl->biv->mode);
c166a311 2773 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
67f2de41
RK
2774 bl->initial_value, tem, NEXT_INSN (loop_end));
2775
2776 if (loop_dump_stream)
2777 fprintf (loop_dump_stream,
2778 "Final biv value for %d, calculated.\n", bl->regno);
2779
2780 return tem;
2781 }
2782 }
2783
2784 /* Check to see if the biv is dead at all loop exits. */
2785 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2786 {
2787 if (loop_dump_stream)
2788 fprintf (loop_dump_stream,
2789 "Final biv value for %d, biv dead after loop exit.\n",
2790 bl->regno);
2791
2792 return const0_rtx;
2793 }
2794
2795 return 0;
2796}
2797
2798/* Try to calculate the final value of the giv, the value it will have at
2799 the end of the loop. If we can do it, return that value. */
2800
2801rtx
2802final_giv_value (v, loop_start, loop_end)
2803 struct induction *v;
2804 rtx loop_start, loop_end;
2805{
2806 struct iv_class *bl;
2807 rtx reg, insn, pattern;
2808 rtx increment, tem;
2809 enum rtx_code code;
b82fb263 2810 rtx insert_before, seq;
67f2de41
RK
2811
2812 bl = reg_biv_class[REGNO (v->src_reg)];
2813
2814 /* The final value for givs which depend on reversed bivs must be calculated
2815 differently than for ordinary givs. In this case, there is already an
2816 insn after the loop which sets this giv's final value (if necessary),
2817 and there are no other loop exits, so we can return any value. */
2818 if (bl->reversed)
2819 {
2820 if (loop_dump_stream)
2821 fprintf (loop_dump_stream,
2822 "Final giv value for %d, depends on reversed biv\n",
2823 REGNO (v->dest_reg));
2824 return const0_rtx;
2825 }
2826
2827 /* Try to calculate the final value as a function of the biv it depends
2828 upon. The only exit from the loop must be the fall through at the bottom
2829 (otherwise it may not have its final value when the loop exits). */
2830
2831 /* ??? Can calculate the final giv value by subtracting off the
2832 extra biv increments times the giv's mult_val. The loop must have
2833 only one exit for this to work, but the loop iterations does not need
2834 to be known. */
2835
2836 if (loop_n_iterations != 0
2837 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2838 {
2839 /* ?? It is tempting to use the biv's value here since these insns will
2840 be put after the loop, and hence the biv will have its final value
2841 then. However, this fails if the biv is subsequently eliminated.
2842 Perhaps determine whether biv's are eliminable before trying to
2843 determine whether giv's are replaceable so that we can use the
2844 biv value here if it is not eliminable. */
2845
2846 increment = biv_total_increment (bl, loop_start, loop_end);
2847
2848 if (increment && invariant_p (increment))
2849 {
2850 /* Can calculate the loop exit value of its biv as
2851 (loop_n_iterations * increment) + initial_value */
2852
2853 /* The loop exit value of the giv is then
2854 (final_biv_value - extra increments) * mult_val + add_val.
2855 The extra increments are any increments to the biv which
2856 occur in the loop after the giv's value is calculated.
2857 We must search from the insn that sets the giv to the end
2858 of the loop to calculate this value. */
2859
2860 insert_before = NEXT_INSN (loop_end);
2861
2862 /* Put the final biv value in tem. */
2863 tem = gen_reg_rtx (bl->biv->mode);
c166a311 2864 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
67f2de41
RK
2865 bl->initial_value, tem, insert_before);
2866
2867 /* Subtract off extra increments as we find them. */
2868 for (insn = NEXT_INSN (v->insn); insn != loop_end;
2869 insn = NEXT_INSN (insn))
2870 {
2871 if (GET_CODE (insn) == INSN
2872 && GET_CODE (PATTERN (insn)) == SET
2873 && SET_DEST (PATTERN (insn)) == v->src_reg)
2874 {
2875 pattern = PATTERN (insn);
2876 if (GET_CODE (SET_SRC (pattern)) != PLUS)
2877 {
2878 /* Sometimes a biv is computed in a temp reg,
2879 and then copied into the biv reg. */
2880 pattern = PATTERN (PREV_INSN (insn));
2881 if (GET_CODE (SET_SRC (pattern)) != PLUS)
2882 abort ();
2883 }
2884 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
2885 || REGNO (XEXP (SET_SRC (pattern), 0)) != bl->regno)
2886 abort ();
2887
b82fb263 2888 start_sequence ();
67f2de41 2889 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
c166a311 2890 XEXP (SET_SRC (pattern), 1), NULL_RTX, 0,
67f2de41 2891 OPTAB_LIB_WIDEN);
b82fb263
JW
2892 seq = gen_sequence ();
2893 end_sequence ();
2894 emit_insn_before (seq, insert_before);
67f2de41
RK
2895 }
2896 }
2897
2898 /* Now calculate the giv's final value. */
2899 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
2900 insert_before);
2901
2902 if (loop_dump_stream)
2903 fprintf (loop_dump_stream,
2904 "Final giv value for %d, calc from biv's value.\n",
2905 REGNO (v->dest_reg));
2906
2907 return tem;
2908 }
2909 }
2910
2911 /* Replaceable giv's should never reach here. */
2912 if (v->replaceable)
2913 abort ();
2914
2915 /* Check to see if the biv is dead at all loop exits. */
2916 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
2917 {
2918 if (loop_dump_stream)
2919 fprintf (loop_dump_stream,
2920 "Final giv value for %d, giv dead after loop exit.\n",
2921 REGNO (v->dest_reg));
2922
2923 return const0_rtx;
2924 }
2925
2926 return 0;
2927}
2928
2929
2930/* Calculate the number of loop iterations. Returns the exact number of loop
6dc42e49 2931 iterations if it can be calculated, otherwise returns zero. */
67f2de41 2932
c166a311 2933unsigned HOST_WIDE_INT
67f2de41
RK
2934loop_iterations (loop_start, loop_end)
2935 rtx loop_start, loop_end;
2936{
2937 rtx comparison, comparison_value;
2938 rtx iteration_var, initial_value, increment, final_value;
2939 enum rtx_code comparison_code;
c166a311
CH
2940 HOST_WIDE_INT i;
2941 int increment_dir;
67f2de41
RK
2942 int unsigned_compare, compare_dir, final_larger;
2943 unsigned long tempu;
2944 rtx last_loop_insn;
2945
2946 /* First find the iteration variable. If the last insn is a conditional
2947 branch, and the insn before tests a register value, make that the
2948 iteration variable. */
2949
2950 loop_initial_value = 0;
2951 loop_increment = 0;
2952 loop_final_value = 0;
2953 loop_iteration_var = 0;
2954
2955 last_loop_insn = prev_nonnote_insn (loop_end);
2956
2957 comparison = get_condition_for_loop (last_loop_insn);
2958 if (comparison == 0)
2959 {
2960 if (loop_dump_stream)
2961 fprintf (loop_dump_stream,
2962 "Loop unrolling: No final conditional branch found.\n");
2963 return 0;
2964 }
2965
2966 /* ??? Get_condition may switch position of induction variable and
2967 invariant register when it canonicalizes the comparison. */
2968
2969 comparison_code = GET_CODE (comparison);
2970 iteration_var = XEXP (comparison, 0);
2971 comparison_value = XEXP (comparison, 1);
2972
2973 if (GET_CODE (iteration_var) != REG)
2974 {
2975 if (loop_dump_stream)
2976 fprintf (loop_dump_stream,
2977 "Loop unrolling: Comparison not against register.\n");
2978 return 0;
2979 }
2980
2981 /* Loop iterations is always called before any new registers are created
2982 now, so this should never occur. */
2983
2984 if (REGNO (iteration_var) >= max_reg_before_loop)
2985 abort ();
2986
2987 iteration_info (iteration_var, &initial_value, &increment,
2988 loop_start, loop_end);
2989 if (initial_value == 0)
2990 /* iteration_info already printed a message. */
2991 return 0;
2992
2993 if (increment == 0)
2994 {
2995 if (loop_dump_stream)
2996 fprintf (loop_dump_stream,
2997 "Loop unrolling: Increment value can't be calculated.\n");
2998 return 0;
2999 }
3000 if (GET_CODE (increment) != CONST_INT)
3001 {
3002 if (loop_dump_stream)
3003 fprintf (loop_dump_stream,
3004 "Loop unrolling: Increment value not constant.\n");
3005 return 0;
3006 }
3007 if (GET_CODE (initial_value) != CONST_INT)
3008 {
3009 if (loop_dump_stream)
3010 fprintf (loop_dump_stream,
3011 "Loop unrolling: Initial value not constant.\n");
3012 return 0;
3013 }
3014
3015 /* If the comparison value is an invariant register, then try to find
3016 its value from the insns before the start of the loop. */
3017
3018 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3019 {
3020 rtx insn, set;
3021
3022 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3023 {
3024 if (GET_CODE (insn) == CODE_LABEL)
3025 break;
3026
3027 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3028 && (set = single_set (insn))
3029 && (SET_DEST (set) == comparison_value))
3030 {
c166a311 3031 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
67f2de41
RK
3032
3033 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
3034 comparison_value = XEXP (note, 0);
3035
3036 break;
3037 }
3038 }
3039 }
3040
3041 final_value = approx_final_value (comparison_code, comparison_value,
3042 &unsigned_compare, &compare_dir);
3043
3044 /* Save the calculated values describing this loop's bounds, in case
3045 precondition_loop_p will need them later. These values can not be
3046 recalculated inside precondition_loop_p because strength reduction
3047 optimizations may obscure the loop's structure. */
3048
3049 loop_iteration_var = iteration_var;
3050 loop_initial_value = initial_value;
3051 loop_increment = increment;
3052 loop_final_value = final_value;
3053
3054 if (final_value == 0)
3055 {
3056 if (loop_dump_stream)
3057 fprintf (loop_dump_stream,
3058 "Loop unrolling: EQ comparison loop.\n");
3059 return 0;
3060 }
3061 else if (GET_CODE (final_value) != CONST_INT)
3062 {
3063 if (loop_dump_stream)
3064 fprintf (loop_dump_stream,
3065 "Loop unrolling: Final value not constant.\n");
3066 return 0;
3067 }
3068
3069 /* ?? Final value and initial value do not have to be constants.
3070 Only their difference has to be constant. When the iteration variable
3071 is an array address, the final value and initial value might both
3072 be addresses with the same base but different constant offsets.
3073 Final value must be invariant for this to work.
3074
6dc42e49 3075 To do this, need some way to find the values of registers which are
67f2de41
RK
3076 invariant. */
3077
3078 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3079 if (unsigned_compare)
3080 final_larger
c166a311
CH
3081 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3082 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3083 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3084 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
67f2de41 3085 else
c166a311
CH
3086 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3087 - (INTVAL (final_value) < INTVAL (initial_value));
67f2de41
RK
3088
3089 if (INTVAL (increment) > 0)
3090 increment_dir = 1;
3091 else if (INTVAL (increment) == 0)
3092 increment_dir = 0;
3093 else
3094 increment_dir = -1;
3095
3096 /* There are 27 different cases: compare_dir = -1, 0, 1;
3097 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3098 There are 4 normal cases, 4 reverse cases (where the iteration variable
3099 will overflow before the loop exits), 4 infinite loop cases, and 15
3100 immediate exit (0 or 1 iteration depending on loop type) cases.
3101 Only try to optimize the normal cases. */
3102
3103 /* (compare_dir/final_larger/increment_dir)
3104 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3105 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3106 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3107 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3108
3109 /* ?? If the meaning of reverse loops (where the iteration variable
3110 will overflow before the loop exits) is undefined, then could
3111 eliminate all of these special checks, and just always assume
3112 the loops are normal/immediate/infinite. Note that this means
3113 the sign of increment_dir does not have to be known. Also,
3114 since it does not really hurt if immediate exit loops or infinite loops
3115 are optimized, then that case could be ignored also, and hence all
3116 loops can be optimized.
3117
3118 According to ANSI Spec, the reverse loop case result is undefined,
3119 because the action on overflow is undefined.
3120
3121 See also the special test for NE loops below. */
3122
3123 if (final_larger == increment_dir && final_larger != 0
3124 && (final_larger == compare_dir || compare_dir == 0))
3125 /* Normal case. */
3126 ;
3127 else
3128 {
3129 if (loop_dump_stream)
3130 fprintf (loop_dump_stream,
3131 "Loop unrolling: Not normal loop.\n");
3132 return 0;
3133 }
3134
3135 /* Calculate the number of iterations, final_value is only an approximation,
3136 so correct for that. Note that tempu and loop_n_iterations are
3137 unsigned, because they can be as large as 2^n - 1. */
3138
3139 i = INTVAL (increment);
3140 if (i > 0)
3141 tempu = INTVAL (final_value) - INTVAL (initial_value);
3142 else if (i < 0)
3143 {
3144 tempu = INTVAL (initial_value) - INTVAL (final_value);
3145 i = -i;
3146 }
3147 else
3148 abort ();
3149
3150 /* For NE tests, make sure that the iteration variable won't miss the
3151 final value. If tempu mod i is not zero, then the iteration variable
3152 will overflow before the loop exits, and we can not calculate the
3153 number of iterations. */
3154 if (compare_dir == 0 && (tempu % i) != 0)
3155 return 0;
3156
3157 return tempu / i + ((tempu % i) != 0);
3158}
This page took 0.379891 seconds and 5 git commands to generate.