]> gcc.gnu.org Git - gcc.git/blame - gcc/tree.c
Find the links to directories by finding each link and testing it with test.
[gcc.git] / gcc / tree.c
CommitLineData
c6a1db6c
RS
1/* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21/* This file contains the low level primitives for operating on tree nodes,
22 including allocation, list operations, interning of identifiers,
23 construction of data type nodes and statement nodes,
24 and construction of type conversion nodes. It also contains
25 tables index by tree code that describe how to take apart
26 nodes of that code.
27
28 It is intended to be language-independent, but occasionally
29 calls language-dependent routines defined (for C) in typecheck.c.
30
31 The low-level allocation routines oballoc and permalloc
32 are used also for allocating many other kinds of objects
33 by all passes of the compiler. */
34
35#include "config.h"
36#include <stdio.h>
37#include "flags.h"
38#include "function.h"
39#include "tree.h"
40#include "obstack.h"
41#include "gvarargs.h"
42
43#define obstack_chunk_alloc xmalloc
44#define obstack_chunk_free free
45
c6a1db6c
RS
46/* Tree nodes of permanent duration are allocated in this obstack.
47 They are the identifier nodes, and everything outside of
48 the bodies and parameters of function definitions. */
49
50struct obstack permanent_obstack;
51
52/* The initial RTL, and all ..._TYPE nodes, in a function
53 are allocated in this obstack. Usually they are freed at the
54 end of the function, but if the function is inline they are saved.
55 For top-level functions, this is maybepermanent_obstack.
56 Separate obstacks are made for nested functions. */
57
58struct obstack *function_maybepermanent_obstack;
59
60/* This is the function_maybepermanent_obstack for top-level functions. */
61
62struct obstack maybepermanent_obstack;
63
64/* The contents of the current function definition are allocated
65 in this obstack, and all are freed at the end of the function.
66 For top-level functions, this is temporary_obstack.
67 Separate obstacks are made for nested functions. */
68
69struct obstack *function_obstack;
70
71/* This is used for reading initializers of global variables. */
72
73struct obstack temporary_obstack;
74
75/* The tree nodes of an expression are allocated
76 in this obstack, and all are freed at the end of the expression. */
77
78struct obstack momentary_obstack;
79
80/* The tree nodes of a declarator are allocated
81 in this obstack, and all are freed when the declarator
82 has been parsed. */
83
84static struct obstack temp_decl_obstack;
85
86/* This points at either permanent_obstack
87 or the current function_maybepermanent_obstack. */
88
89struct obstack *saveable_obstack;
90
91/* This is same as saveable_obstack during parse and expansion phase;
92 it points to the current function's obstack during optimization.
93 This is the obstack to be used for creating rtl objects. */
94
95struct obstack *rtl_obstack;
96
97/* This points at either permanent_obstack or the current function_obstack. */
98
99struct obstack *current_obstack;
100
101/* This points at either permanent_obstack or the current function_obstack
102 or momentary_obstack. */
103
104struct obstack *expression_obstack;
105
106/* Stack of obstack selections for push_obstacks and pop_obstacks. */
107
108struct obstack_stack
109{
110 struct obstack_stack *next;
111 struct obstack *current;
112 struct obstack *saveable;
113 struct obstack *expression;
114 struct obstack *rtl;
115};
116
117struct obstack_stack *obstack_stack;
118
119/* Obstack for allocating struct obstack_stack entries. */
120
121static struct obstack obstack_stack_obstack;
122
123/* Addresses of first objects in some obstacks.
124 This is for freeing their entire contents. */
125char *maybepermanent_firstobj;
126char *temporary_firstobj;
127char *momentary_firstobj;
128char *temp_decl_firstobj;
129
130/* Nonzero means all ..._TYPE nodes should be allocated permanently. */
131
132int all_types_permanent;
133
134/* Stack of places to restore the momentary obstack back to. */
135
136struct momentary_level
137{
138 /* Pointer back to previous such level. */
139 struct momentary_level *prev;
140 /* First object allocated within this level. */
141 char *base;
142 /* Value of expression_obstack saved at entry to this level. */
143 struct obstack *obstack;
144};
145
146struct momentary_level *momentary_stack;
147
148/* Table indexed by tree code giving a string containing a character
149 classifying the tree code. Possibilities are
150 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
151
152#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
153
154char *standard_tree_code_type[] = {
155#include "tree.def"
156};
157#undef DEFTREECODE
158
159/* Table indexed by tree code giving number of expression
160 operands beyond the fixed part of the node structure.
161 Not used for types or decls. */
162
163#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
164
165int standard_tree_code_length[] = {
166#include "tree.def"
167};
168#undef DEFTREECODE
169
170/* Names of tree components.
171 Used for printing out the tree and error messages. */
172#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
173
174char *standard_tree_code_name[] = {
175#include "tree.def"
176};
177#undef DEFTREECODE
178
179/* Table indexed by tree code giving a string containing a character
180 classifying the tree code. Possibilities are
181 t, d, s, c, r, e, <, 1 and 2. See tree.def for details. */
182
183char **tree_code_type;
184
185/* Table indexed by tree code giving number of expression
186 operands beyond the fixed part of the node structure.
187 Not used for types or decls. */
188
189int *tree_code_length;
190
191/* Table indexed by tree code giving name of tree code, as a string. */
192
193char **tree_code_name;
194
195/* Statistics-gathering stuff. */
196typedef enum
197{
03646189
RS
198 d_kind,
199 t_kind,
200 b_kind,
201 s_kind,
202 r_kind,
203 e_kind,
204 c_kind,
205 id_kind,
206 op_id_kind,
207 perm_list_kind,
208 temp_list_kind,
209 vec_kind,
210 x_kind,
211 lang_decl,
212 lang_type,
213 all_kinds
c6a1db6c 214} tree_node_kind;
03646189 215
c6a1db6c
RS
216int tree_node_counts[(int)all_kinds];
217int tree_node_sizes[(int)all_kinds];
218int id_string_size = 0;
03646189
RS
219
220char *tree_node_kind_names[] = {
221 "decls",
222 "types",
223 "blocks",
224 "stmts",
225 "refs",
226 "exprs",
227 "constants",
228 "identifiers",
229 "op_identifiers",
230 "perm_tree_lists",
231 "temp_tree_lists",
232 "vecs",
233 "random kinds",
234 "lang_decl kinds",
235 "lang_type kinds"
236};
c6a1db6c
RS
237
238/* Hash table for uniquizing IDENTIFIER_NODEs by name. */
239
240#define MAX_HASH_TABLE 1009
241static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
242
243/* 0 while creating built-in identifiers. */
244static int do_identifier_warnings;
245
0e77444b
RS
246/* Unique id for next decl created. */
247static int next_decl_uid;
248
c6a1db6c
RS
249extern char *mode_name[];
250
251void gcc_obstack_init ();
252static tree stabilize_reference_1 ();
253\f
254/* Init the principal obstacks. */
255
256void
257init_obstacks ()
258{
259 gcc_obstack_init (&obstack_stack_obstack);
260 gcc_obstack_init (&permanent_obstack);
261
262 gcc_obstack_init (&temporary_obstack);
263 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
264 gcc_obstack_init (&momentary_obstack);
265 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
266 gcc_obstack_init (&maybepermanent_obstack);
267 maybepermanent_firstobj
268 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
269 gcc_obstack_init (&temp_decl_obstack);
270 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
271
272 function_obstack = &temporary_obstack;
273 function_maybepermanent_obstack = &maybepermanent_obstack;
274 current_obstack = &permanent_obstack;
275 expression_obstack = &permanent_obstack;
276 rtl_obstack = saveable_obstack = &permanent_obstack;
277
278 /* Init the hash table of identifiers. */
279 bzero (hash_table, sizeof hash_table);
280}
281
282void
283gcc_obstack_init (obstack)
284 struct obstack *obstack;
285{
286 /* Let particular systems override the size of a chunk. */
287#ifndef OBSTACK_CHUNK_SIZE
288#define OBSTACK_CHUNK_SIZE 0
289#endif
290 /* Let them override the alloc and free routines too. */
291#ifndef OBSTACK_CHUNK_ALLOC
292#define OBSTACK_CHUNK_ALLOC xmalloc
293#endif
294#ifndef OBSTACK_CHUNK_FREE
295#define OBSTACK_CHUNK_FREE free
296#endif
297 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
298 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
299 (void (*) ()) OBSTACK_CHUNK_FREE);
300}
301
302/* Save all variables describing the current status into the structure *P.
303 This is used before starting a nested function. */
304
305void
306save_tree_status (p)
307 struct function *p;
308{
309 p->all_types_permanent = all_types_permanent;
310 p->momentary_stack = momentary_stack;
311 p->maybepermanent_firstobj = maybepermanent_firstobj;
312 p->momentary_firstobj = momentary_firstobj;
313 p->function_obstack = function_obstack;
314 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
315 p->current_obstack = current_obstack;
316 p->expression_obstack = expression_obstack;
317 p->saveable_obstack = saveable_obstack;
318 p->rtl_obstack = rtl_obstack;
319
320 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
321 gcc_obstack_init (function_obstack);
322
323 function_maybepermanent_obstack
324 = (struct obstack *) xmalloc (sizeof (struct obstack));
325 gcc_obstack_init (function_maybepermanent_obstack);
326
327 current_obstack = &permanent_obstack;
328 expression_obstack = &permanent_obstack;
329 rtl_obstack = saveable_obstack = &permanent_obstack;
330
331 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
332 maybepermanent_firstobj
333 = (char *) obstack_finish (function_maybepermanent_obstack);
334}
335
336/* Restore all variables describing the current status from the structure *P.
337 This is used after a nested function. */
338
339void
340restore_tree_status (p)
341 struct function *p;
342{
343 all_types_permanent = p->all_types_permanent;
344 momentary_stack = p->momentary_stack;
345
346 obstack_free (&momentary_obstack, momentary_firstobj);
347 obstack_free (function_obstack, 0);
348 obstack_free (function_maybepermanent_obstack, 0);
349 free (function_obstack);
350
351 momentary_firstobj = p->momentary_firstobj;
352 maybepermanent_firstobj = p->maybepermanent_firstobj;
353 function_obstack = p->function_obstack;
354 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
355 current_obstack = p->current_obstack;
356 expression_obstack = p->expression_obstack;
357 saveable_obstack = p->saveable_obstack;
358 rtl_obstack = p->rtl_obstack;
359}
360\f
361/* Start allocating on the temporary (per function) obstack.
362 This is done in start_function before parsing the function body,
363 and before each initialization at top level, and to go back
364 to temporary allocation after doing end_temporary_allocation. */
365
366void
367temporary_allocation ()
368{
369 /* Note that function_obstack at top level points to temporary_obstack.
370 But within a nested function context, it is a separate obstack. */
371 current_obstack = function_obstack;
372 expression_obstack = function_obstack;
373 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
374 momentary_stack = 0;
375}
376
377/* Start allocating on the permanent obstack but don't
378 free the temporary data. After calling this, call
379 `permanent_allocation' to fully resume permanent allocation status. */
380
381void
382end_temporary_allocation ()
383{
384 current_obstack = &permanent_obstack;
385 expression_obstack = &permanent_obstack;
386 rtl_obstack = saveable_obstack = &permanent_obstack;
387}
388
389/* Resume allocating on the temporary obstack, undoing
390 effects of `end_temporary_allocation'. */
391
392void
393resume_temporary_allocation ()
394{
395 current_obstack = function_obstack;
396 expression_obstack = function_obstack;
397 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
398}
399
400/* While doing temporary allocation, switch to allocating in such a
401 way as to save all nodes if the function is inlined. Call
402 resume_temporary_allocation to go back to ordinary temporary
403 allocation. */
404
405void
406saveable_allocation ()
407{
408 /* Note that function_obstack at top level points to temporary_obstack.
409 But within a nested function context, it is a separate obstack. */
410 expression_obstack = current_obstack = saveable_obstack;
411}
412
413/* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
414 recording the previously current obstacks on a stack.
415 This does not free any storage in any obstack. */
416
417void
418push_obstacks (current, saveable)
419 struct obstack *current, *saveable;
420{
421 struct obstack_stack *p
422 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
423 (sizeof (struct obstack_stack)));
424
425 p->current = current_obstack;
426 p->saveable = saveable_obstack;
427 p->expression = expression_obstack;
428 p->rtl = rtl_obstack;
429 p->next = obstack_stack;
430 obstack_stack = p;
431
432 current_obstack = current;
433 expression_obstack = current;
434 rtl_obstack = saveable_obstack = saveable;
435}
436
437/* Save the current set of obstacks, but don't change them. */
438
439void
440push_obstacks_nochange ()
441{
442 struct obstack_stack *p
443 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
444 (sizeof (struct obstack_stack)));
445
446 p->current = current_obstack;
447 p->saveable = saveable_obstack;
448 p->expression = expression_obstack;
449 p->rtl = rtl_obstack;
450 p->next = obstack_stack;
451 obstack_stack = p;
452}
453
454/* Pop the obstack selection stack. */
455
456void
457pop_obstacks ()
458{
459 struct obstack_stack *p = obstack_stack;
460 obstack_stack = p->next;
461
462 current_obstack = p->current;
463 saveable_obstack = p->saveable;
464 expression_obstack = p->expression;
465 rtl_obstack = p->rtl;
466
467 obstack_free (&obstack_stack_obstack, p);
468}
469
470/* Nonzero if temporary allocation is currently in effect.
471 Zero if currently doing permanent allocation. */
472
473int
474allocation_temporary_p ()
475{
476 return current_obstack != &permanent_obstack;
477}
478
479/* Go back to allocating on the permanent obstack
480 and free everything in the temporary obstack.
481 This is done in finish_function after fully compiling a function. */
482
483void
484permanent_allocation ()
485{
486 /* Free up previous temporary obstack data */
487 obstack_free (&temporary_obstack, temporary_firstobj);
488 obstack_free (&momentary_obstack, momentary_firstobj);
489 obstack_free (&maybepermanent_obstack, maybepermanent_firstobj);
490 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
491
492 current_obstack = &permanent_obstack;
493 expression_obstack = &permanent_obstack;
494 rtl_obstack = saveable_obstack = &permanent_obstack;
495}
496
497/* Save permanently everything on the maybepermanent_obstack. */
498
499void
500preserve_data ()
501{
502 maybepermanent_firstobj
503 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
504}
505
506void
507preserve_initializer ()
508{
509 temporary_firstobj
510 = (char *) obstack_alloc (&temporary_obstack, 0);
511 momentary_firstobj
512 = (char *) obstack_alloc (&momentary_obstack, 0);
513 maybepermanent_firstobj
514 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
515}
516
517/* Start allocating new rtl in current_obstack.
518 Use resume_temporary_allocation
519 to go back to allocating rtl in saveable_obstack. */
520
521void
522rtl_in_current_obstack ()
523{
524 rtl_obstack = current_obstack;
525}
526
527/* Temporarily allocate rtl from saveable_obstack. Return 1 if we were
528 previously allocating it from current_obstack. */
529
530int
531rtl_in_saveable_obstack ()
532{
533 if (rtl_obstack == current_obstack)
534 {
535 rtl_obstack = saveable_obstack;
536 return 1;
537 }
538 else
539 return 0;
540}
541\f
542/* Allocate SIZE bytes in the current obstack
543 and return a pointer to them.
544 In practice the current obstack is always the temporary one. */
545
546char *
547oballoc (size)
548 int size;
549{
550 return (char *) obstack_alloc (current_obstack, size);
551}
552
553/* Free the object PTR in the current obstack
554 as well as everything allocated since PTR.
555 In practice the current obstack is always the temporary one. */
556
557void
558obfree (ptr)
559 char *ptr;
560{
561 obstack_free (current_obstack, ptr);
562}
563
564/* Allocate SIZE bytes in the permanent obstack
565 and return a pointer to them. */
566
567char *
568permalloc (size)
37366632 569 int size;
c6a1db6c
RS
570{
571 return (char *) obstack_alloc (&permanent_obstack, size);
572}
573
574/* Allocate NELEM items of SIZE bytes in the permanent obstack
575 and return a pointer to them. The storage is cleared before
576 returning the value. */
577
578char *
579perm_calloc (nelem, size)
580 int nelem;
581 long size;
582{
583 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
584 bzero (rval, nelem * size);
585 return rval;
586}
587
588/* Allocate SIZE bytes in the saveable obstack
589 and return a pointer to them. */
590
591char *
592savealloc (size)
593 int size;
594{
595 return (char *) obstack_alloc (saveable_obstack, size);
596}
597\f
598/* Print out which obstack an object is in. */
599
600void
601debug_obstack (object)
602 char *object;
603{
604 struct obstack *obstack = NULL;
605 char *obstack_name = NULL;
606 struct function *p;
607
608 for (p = outer_function_chain; p; p = p->next)
609 {
610 if (_obstack_allocated_p (p->function_obstack, object))
611 {
612 obstack = p->function_obstack;
613 obstack_name = "containing function obstack";
614 }
615 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
616 {
617 obstack = p->function_maybepermanent_obstack;
618 obstack_name = "containing function maybepermanent obstack";
619 }
620 }
621
622 if (_obstack_allocated_p (&obstack_stack_obstack, object))
623 {
624 obstack = &obstack_stack_obstack;
625 obstack_name = "obstack_stack_obstack";
626 }
627 else if (_obstack_allocated_p (function_obstack, object))
628 {
629 obstack = function_obstack;
630 obstack_name = "function obstack";
631 }
632 else if (_obstack_allocated_p (&permanent_obstack, object))
633 {
634 obstack = &permanent_obstack;
635 obstack_name = "permanent_obstack";
636 }
637 else if (_obstack_allocated_p (&momentary_obstack, object))
638 {
639 obstack = &momentary_obstack;
640 obstack_name = "momentary_obstack";
641 }
642 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
643 {
644 obstack = function_maybepermanent_obstack;
645 obstack_name = "function maybepermanent obstack";
646 }
647 else if (_obstack_allocated_p (&temp_decl_obstack, object))
648 {
649 obstack = &temp_decl_obstack;
650 obstack_name = "temp_decl_obstack";
651 }
652
653 /* Check to see if the object is in the free area of the obstack. */
654 if (obstack != NULL)
655 {
656 if (object >= obstack->next_free
657 && object < obstack->chunk_limit)
658 fprintf (stderr, "object in free portion of obstack %s.\n",
659 obstack_name);
660 else
661 fprintf (stderr, "object allocated from %s.\n", obstack_name);
662 }
663 else
664 fprintf (stderr, "object not allocated from any obstack.\n");
665}
666
667/* Return 1 if OBJ is in the permanent obstack.
668 This is slow, and should be used only for debugging.
669 Use TREE_PERMANENT for other purposes. */
670
671int
672object_permanent_p (obj)
673 tree obj;
674{
675 return _obstack_allocated_p (&permanent_obstack, obj);
676}
677\f
678/* Start a level of momentary allocation.
679 In C, each compound statement has its own level
680 and that level is freed at the end of each statement.
681 All expression nodes are allocated in the momentary allocation level. */
682
683void
684push_momentary ()
685{
686 struct momentary_level *tem
687 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
688 sizeof (struct momentary_level));
689 tem->prev = momentary_stack;
690 tem->base = (char *) obstack_base (&momentary_obstack);
691 tem->obstack = expression_obstack;
692 momentary_stack = tem;
693 expression_obstack = &momentary_obstack;
694}
695
696/* Free all the storage in the current momentary-allocation level.
697 In C, this happens at the end of each statement. */
698
699void
700clear_momentary ()
701{
702 obstack_free (&momentary_obstack, momentary_stack->base);
703}
704
705/* Discard a level of momentary allocation.
706 In C, this happens at the end of each compound statement.
707 Restore the status of expression node allocation
708 that was in effect before this level was created. */
709
710void
711pop_momentary ()
712{
713 struct momentary_level *tem = momentary_stack;
714 momentary_stack = tem->prev;
715 expression_obstack = tem->obstack;
716 obstack_free (&momentary_obstack, tem);
717}
718
719/* Call when starting to parse a declaration:
720 make expressions in the declaration last the length of the function.
721 Returns an argument that should be passed to resume_momentary later. */
722
723int
724suspend_momentary ()
725{
726 register int tem = expression_obstack == &momentary_obstack;
727 expression_obstack = saveable_obstack;
728 return tem;
729}
730
731/* Call when finished parsing a declaration:
732 restore the treatment of node-allocation that was
733 in effect before the suspension.
734 YES should be the value previously returned by suspend_momentary. */
735
736void
737resume_momentary (yes)
738 int yes;
739{
740 if (yes)
741 expression_obstack = &momentary_obstack;
742}
743\f
744/* Init the tables indexed by tree code.
745 Note that languages can add to these tables to define their own codes. */
746
747void
748init_tree_codes ()
749{
750 tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
751 tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
752 tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
753 bcopy (standard_tree_code_type, tree_code_type,
754 sizeof (standard_tree_code_type));
755 bcopy (standard_tree_code_length, tree_code_length,
756 sizeof (standard_tree_code_length));
757 bcopy (standard_tree_code_name, tree_code_name,
758 sizeof (standard_tree_code_name));
759}
760
761/* Return a newly allocated node of code CODE.
762 Initialize the node's unique id and its TREE_PERMANENT flag.
763 For decl and type nodes, some other fields are initialized.
764 The rest of the node is initialized to zero.
765
766 Achoo! I got a code in the node. */
767
768tree
769make_node (code)
770 enum tree_code code;
771{
772 register tree t;
773 register int type = TREE_CODE_CLASS (code);
774 register int length;
775 register struct obstack *obstack = current_obstack;
776 register int i;
777 register tree_node_kind kind;
778
779 switch (type)
780 {
781 case 'd': /* A decl node */
782#ifdef GATHER_STATISTICS
783 kind = d_kind;
784#endif
785 length = sizeof (struct tree_decl);
786 /* All decls in an inline function need to be saved. */
787 if (obstack != &permanent_obstack)
788 obstack = saveable_obstack;
789 /* PARM_DECLs always go on saveable_obstack, not permanent,
790 even though we may make them before the function turns
791 on temporary allocation. */
792 else if (code == PARM_DECL)
793 obstack = function_maybepermanent_obstack;
794 break;
795
796 case 't': /* a type node */
797#ifdef GATHER_STATISTICS
798 kind = t_kind;
799#endif
800 length = sizeof (struct tree_type);
801 /* All data types are put where we can preserve them if nec. */
802 if (obstack != &permanent_obstack)
803 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
804 break;
805
03646189
RS
806 case 'b': /* a lexical block */
807#ifdef GATHER_STATISTICS
808 kind = b_kind;
809#endif
810 length = sizeof (struct tree_block);
811 /* All BLOCK nodes are put where we can preserve them if nec. */
812 if (obstack != &permanent_obstack)
813 obstack = saveable_obstack;
814 break;
815
c6a1db6c
RS
816 case 's': /* an expression with side effects */
817#ifdef GATHER_STATISTICS
818 kind = s_kind;
819 goto usual_kind;
820#endif
821 case 'r': /* a reference */
822#ifdef GATHER_STATISTICS
823 kind = r_kind;
824 goto usual_kind;
825#endif
826 case 'e': /* an expression */
827 case '<': /* a comparison expression */
828 case '1': /* a unary arithmetic expression */
829 case '2': /* a binary arithmetic expression */
830#ifdef GATHER_STATISTICS
831 kind = e_kind;
832 usual_kind:
833#endif
834 obstack = expression_obstack;
03646189
RS
835 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
836 if (code == BIND_EXPR && obstack != &permanent_obstack)
c6a1db6c
RS
837 obstack = saveable_obstack;
838 length = sizeof (struct tree_exp)
839 + (tree_code_length[(int) code] - 1) * sizeof (char *);
840 break;
841
842 case 'c': /* a constant */
843#ifdef GATHER_STATISTICS
844 kind = c_kind;
845#endif
846 obstack = expression_obstack;
847 /* We can't use tree_code_length for this, since the number of words
848 is machine-dependent due to varying alignment of `double'. */
849 if (code == REAL_CST)
850 {
851 length = sizeof (struct tree_real_cst);
852 break;
853 }
854
855 case 'x': /* something random, like an identifier. */
856#ifdef GATHER_STATISTICS
857 if (code == IDENTIFIER_NODE)
858 kind = id_kind;
859 else if (code == OP_IDENTIFIER)
860 kind = op_id_kind;
861 else if (code == TREE_VEC)
862 kind = vec_kind;
863 else
864 kind = x_kind;
865#endif
866 length = sizeof (struct tree_common)
867 + tree_code_length[(int) code] * sizeof (char *);
868 /* Identifier nodes are always permanent since they are
869 unique in a compiler run. */
870 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
871 }
872
873 t = (tree) obstack_alloc (obstack, length);
874
875#ifdef GATHER_STATISTICS
876 tree_node_counts[(int)kind]++;
877 tree_node_sizes[(int)kind] += length;
878#endif
879
508f8149
RK
880 /* We assume here that the length of a tree node is a multiple of the
881 size of an int. Rounding up won't work because it would clobber
882 the next object. */
d5ebacaf 883 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
c6a1db6c
RS
884 ((int *) t)[i] = 0;
885
886 TREE_SET_CODE (t, code);
887 if (obstack == &permanent_obstack)
888 TREE_PERMANENT (t) = 1;
889
890 switch (type)
891 {
892 case 's':
893 TREE_SIDE_EFFECTS (t) = 1;
894 TREE_TYPE (t) = void_type_node;
895 break;
896
897 case 'd':
c0920bf9 898 if (code != FUNCTION_DECL)
cfd6bb3d
RS
899 DECL_IN_SYSTEM_HEADER (t)
900 = in_system_header && (obstack == &permanent_obstack);
901 DECL_ALIGN (t) = 1;
c6a1db6c
RS
902 DECL_SOURCE_LINE (t) = lineno;
903 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
0e77444b 904 DECL_UID (t) = next_decl_uid++;
c6a1db6c
RS
905 break;
906
907 case 't':
908 {
909 static unsigned next_type_uid = 1;
910
911 TYPE_UID (t) = next_type_uid++;
912 }
913 TYPE_ALIGN (t) = 1;
914 TYPE_MAIN_VARIANT (t) = t;
915 break;
916
917 case 'c':
918 TREE_CONSTANT (t) = 1;
919 break;
920 }
921
922 return t;
923}
924\f
925/* Return a new node with the same contents as NODE
926 except that its TREE_CHAIN is zero and it has a fresh uid. */
927
928tree
929copy_node (node)
930 tree node;
931{
932 register tree t;
933 register enum tree_code code = TREE_CODE (node);
934 register int length;
935 register int i;
936
937 switch (TREE_CODE_CLASS (code))
938 {
939 case 'd': /* A decl node */
940 length = sizeof (struct tree_decl);
941 break;
942
943 case 't': /* a type node */
944 length = sizeof (struct tree_type);
945 break;
946
03646189
RS
947 case 'b': /* a lexical block node */
948 length = sizeof (struct tree_block);
949 break;
950
c6a1db6c
RS
951 case 'r': /* a reference */
952 case 'e': /* a expression */
953 case 's': /* an expression with side effects */
954 case '<': /* a comparison expression */
955 case '1': /* a unary arithmetic expression */
956 case '2': /* a binary arithmetic expression */
957 length = sizeof (struct tree_exp)
958 + (tree_code_length[(int) code] - 1) * sizeof (char *);
959 break;
960
961 case 'c': /* a constant */
962 /* We can't use tree_code_length for this, since the number of words
963 is machine-dependent due to varying alignment of `double'. */
964 if (code == REAL_CST)
965 {
966 length = sizeof (struct tree_real_cst);
967 break;
968 }
969
970 case 'x': /* something random, like an identifier. */
971 length = sizeof (struct tree_common)
972 + tree_code_length[(int) code] * sizeof (char *);
973 if (code == TREE_VEC)
974 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
975 }
976
977 t = (tree) obstack_alloc (current_obstack, length);
978
508f8149 979 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
c6a1db6c
RS
980 ((int *) t)[i] = ((int *) node)[i];
981
982 TREE_CHAIN (t) = 0;
983
984 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
985
986 return t;
987}
988
989/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
990 For example, this can copy a list made of TREE_LIST nodes. */
991
992tree
993copy_list (list)
994 tree list;
995{
996 tree head;
997 register tree prev, next;
998
999 if (list == 0)
1000 return 0;
1001
1002 head = prev = copy_node (list);
1003 next = TREE_CHAIN (list);
1004 while (next)
1005 {
1006 TREE_CHAIN (prev) = copy_node (next);
1007 prev = TREE_CHAIN (prev);
1008 next = TREE_CHAIN (next);
1009 }
1010 return head;
1011}
1012\f
1013#define HASHBITS 30
1014
1015/* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1016 If an identifier with that name has previously been referred to,
1017 the same node is returned this time. */
1018
1019tree
1020get_identifier (text)
1021 register char *text;
1022{
1023 register int hi;
1024 register int i;
1025 register tree idp;
1026 register int len, hash_len;
1027
1028 /* Compute length of text in len. */
1029 for (len = 0; text[len]; len++);
1030
1031 /* Decide how much of that length to hash on */
1032 hash_len = len;
1033 if (warn_id_clash && len > id_clash_len)
1034 hash_len = id_clash_len;
1035
1036 /* Compute hash code */
1037 hi = hash_len * 613 + (unsigned)text[0];
1038 for (i = 1; i < hash_len; i += 2)
1039 hi = ((hi * 613) + (unsigned)(text[i]));
1040
1041 hi &= (1 << HASHBITS) - 1;
1042 hi %= MAX_HASH_TABLE;
1043
1044 /* Search table for identifier */
1045 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1046 if (IDENTIFIER_LENGTH (idp) == len
1047 && IDENTIFIER_POINTER (idp)[0] == text[0]
1048 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1049 return idp; /* <-- return if found */
1050
1051 /* Not found; optionally warn about a similar identifier */
1052 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1053 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1054 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1055 {
1056 warning ("`%s' and `%s' identical in first %d characters",
1057 IDENTIFIER_POINTER (idp), text, id_clash_len);
1058 break;
1059 }
1060
1061 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1062 abort (); /* set_identifier_size hasn't been called. */
1063
1064 /* Not found, create one, add to chain */
1065 idp = make_node (IDENTIFIER_NODE);
1066 IDENTIFIER_LENGTH (idp) = len;
1067#ifdef GATHER_STATISTICS
1068 id_string_size += len;
1069#endif
1070
1071 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1072
1073 TREE_CHAIN (idp) = hash_table[hi];
1074 hash_table[hi] = idp;
1075 return idp; /* <-- return if created */
1076}
1077
1078/* Enable warnings on similar identifiers (if requested).
1079 Done after the built-in identifiers are created. */
1080
1081void
1082start_identifier_warnings ()
1083{
1084 do_identifier_warnings = 1;
1085}
1086
1087/* Record the size of an identifier node for the language in use.
1088 SIZE is the total size in bytes.
1089 This is called by the language-specific files. This must be
1090 called before allocating any identifiers. */
1091
1092void
1093set_identifier_size (size)
1094 int size;
1095{
1096 tree_code_length[(int) IDENTIFIER_NODE]
1097 = (size - sizeof (struct tree_common)) / sizeof (tree);
1098}
1099\f
1100/* Return a newly constructed INTEGER_CST node whose constant value
1101 is specified by the two ints LOW and HI.
37366632
RK
1102 The TREE_TYPE is set to `int'.
1103
1104 This function should be used via the `build_int_2' macro. */
c6a1db6c
RS
1105
1106tree
37366632
RK
1107build_int_2_wide (low, hi)
1108 HOST_WIDE_INT low, hi;
c6a1db6c
RS
1109{
1110 register tree t = make_node (INTEGER_CST);
1111 TREE_INT_CST_LOW (t) = low;
1112 TREE_INT_CST_HIGH (t) = hi;
1113 TREE_TYPE (t) = integer_type_node;
1114 return t;
1115}
1116
1117/* Return a new REAL_CST node whose type is TYPE and value is D. */
1118
1119tree
1120build_real (type, d)
1121 tree type;
1122 REAL_VALUE_TYPE d;
1123{
1124 tree v;
1125
1126 /* Check for valid float value for this type on this target machine;
1127 if not, can print error message and store a valid value in D. */
1128#ifdef CHECK_FLOAT_VALUE
1129 CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
1130#endif
1131
1132 v = make_node (REAL_CST);
1133 TREE_TYPE (v) = type;
1134 TREE_REAL_CST (v) = d;
1135 return v;
1136}
1137
1138/* Return a new REAL_CST node whose type is TYPE
1139 and whose value is the integer value of the INTEGER_CST node I. */
1140
1141#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1142
1143REAL_VALUE_TYPE
1144real_value_from_int_cst (i)
1145 tree i;
1146{
1147 REAL_VALUE_TYPE d;
1148#ifdef REAL_ARITHMETIC
1149 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i));
1150#else /* not REAL_ARITHMETIC */
db7e5239 1151 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
c6a1db6c
RS
1152 {
1153 d = (double) (~ TREE_INT_CST_HIGH (i));
37366632
RK
1154 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1155 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1156 d += (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
c6a1db6c
RS
1157 d = (- d - 1.0);
1158 }
1159 else
1160 {
db7e5239 1161 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
37366632
RK
1162 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1163 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1164 d += (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
c6a1db6c
RS
1165 }
1166#endif /* not REAL_ARITHMETIC */
1167 return d;
1168}
1169
1170/* This function can't be implemented if we can't do arithmetic
1171 on the float representation. */
1172
1173tree
1174build_real_from_int_cst (type, i)
1175 tree type;
1176 tree i;
1177{
1178 tree v;
1179 REAL_VALUE_TYPE d;
1180
1181 v = make_node (REAL_CST);
1182 TREE_TYPE (v) = type;
1183
db7e5239 1184 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type), real_value_from_int_cst (i));
c6a1db6c
RS
1185 /* Check for valid float value for this type on this target machine;
1186 if not, can print error message and store a valid value in D. */
1187#ifdef CHECK_FLOAT_VALUE
1188 CHECK_FLOAT_VALUE (TYPE_MODE (type), d);
1189#endif
1190
1191 TREE_REAL_CST (v) = d;
1192 return v;
1193}
1194
1195#endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1196
1197/* Return a newly constructed STRING_CST node whose value is
1198 the LEN characters at STR.
1199 The TREE_TYPE is not initialized. */
1200
1201tree
1202build_string (len, str)
1203 int len;
1204 char *str;
1205{
1206 register tree s = make_node (STRING_CST);
1207 TREE_STRING_LENGTH (s) = len;
1208 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1209 return s;
1210}
1211
1212/* Return a newly constructed COMPLEX_CST node whose value is
1213 specified by the real and imaginary parts REAL and IMAG.
1214 Both REAL and IMAG should be constant nodes.
1215 The TREE_TYPE is not initialized. */
1216
1217tree
1218build_complex (real, imag)
1219 tree real, imag;
1220{
1221 register tree t = make_node (COMPLEX_CST);
1222 TREE_REALPART (t) = real;
1223 TREE_IMAGPART (t) = imag;
1224 return t;
1225}
1226
1227/* Build a newly constructed TREE_VEC node of length LEN. */
1228tree
1229make_tree_vec (len)
1230 int len;
1231{
1232 register tree t;
1233 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1234 register struct obstack *obstack = current_obstack;
1235 register int i;
1236
1237#ifdef GATHER_STATISTICS
1238 tree_node_counts[(int)vec_kind]++;
1239 tree_node_sizes[(int)vec_kind] += length;
1240#endif
1241
1242 t = (tree) obstack_alloc (obstack, length);
1243
508f8149 1244 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
c6a1db6c 1245 ((int *) t)[i] = 0;
508f8149 1246
c6a1db6c
RS
1247 TREE_SET_CODE (t, TREE_VEC);
1248 TREE_VEC_LENGTH (t) = len;
1249 if (obstack == &permanent_obstack)
1250 TREE_PERMANENT (t) = 1;
1251
1252 return t;
1253}
1254\f
1255/* Return 1 if EXPR is the integer constant zero. */
1256
1257int
1258integer_zerop (expr)
1259 tree expr;
1260{
d964285c 1261 STRIP_NOPS (expr);
c6a1db6c
RS
1262
1263 return (TREE_CODE (expr) == INTEGER_CST
1264 && TREE_INT_CST_LOW (expr) == 0
1265 && TREE_INT_CST_HIGH (expr) == 0);
1266}
1267
1268/* Return 1 if EXPR is the integer constant one. */
1269
1270int
1271integer_onep (expr)
1272 tree expr;
1273{
d964285c 1274 STRIP_NOPS (expr);
c6a1db6c
RS
1275
1276 return (TREE_CODE (expr) == INTEGER_CST
1277 && TREE_INT_CST_LOW (expr) == 1
1278 && TREE_INT_CST_HIGH (expr) == 0);
1279}
1280
1281/* Return 1 if EXPR is an integer containing all 1's
1282 in as much precision as it contains. */
1283
1284int
1285integer_all_onesp (expr)
1286 tree expr;
1287{
1288 register int prec;
1289 register int uns;
1290
d964285c 1291 STRIP_NOPS (expr);
c6a1db6c
RS
1292
1293 if (TREE_CODE (expr) != INTEGER_CST)
1294 return 0;
1295
1296 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1297 if (!uns)
1298 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1299
1300 prec = TYPE_PRECISION (TREE_TYPE (expr));
37366632 1301 if (prec >= HOST_BITS_PER_WIDE_INT)
c6a1db6c
RS
1302 {
1303 int high_value, shift_amount;
1304
37366632 1305 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
c6a1db6c 1306
37366632 1307 if (shift_amount > HOST_BITS_PER_WIDE_INT)
c6a1db6c
RS
1308 /* Can not handle precisions greater than twice the host int size. */
1309 abort ();
37366632 1310 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
c6a1db6c
RS
1311 /* Shifting by the host word size is undefined according to the ANSI
1312 standard, so we must handle this as a special case. */
1313 high_value = -1;
1314 else
37366632 1315 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
c6a1db6c
RS
1316
1317 return TREE_INT_CST_LOW (expr) == -1
1318 && TREE_INT_CST_HIGH (expr) == high_value;
1319 }
1320 else
37366632 1321 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
c6a1db6c
RS
1322}
1323
1324/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1325 one bit on). */
1326
1327int
1328integer_pow2p (expr)
1329 tree expr;
1330{
37366632 1331 HOST_WIDE_INT high, low;
c6a1db6c 1332
d964285c 1333 STRIP_NOPS (expr);
c6a1db6c
RS
1334
1335 if (TREE_CODE (expr) != INTEGER_CST)
1336 return 0;
1337
1338 high = TREE_INT_CST_HIGH (expr);
1339 low = TREE_INT_CST_LOW (expr);
1340
1341 if (high == 0 && low == 0)
1342 return 0;
1343
1344 return ((high == 0 && (low & (low - 1)) == 0)
1345 || (low == 0 && (high & (high - 1)) == 0));
1346}
1347
1348/* Return 1 if EXPR is the real constant zero. */
1349
1350int
1351real_zerop (expr)
1352 tree expr;
1353{
d964285c 1354 STRIP_NOPS (expr);
c6a1db6c
RS
1355
1356 return (TREE_CODE (expr) == REAL_CST
1357 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0));
1358}
1359
1360/* Return 1 if EXPR is the real constant one. */
1361
1362int
1363real_onep (expr)
1364 tree expr;
1365{
d964285c 1366 STRIP_NOPS (expr);
c6a1db6c
RS
1367
1368 return (TREE_CODE (expr) == REAL_CST
1369 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1));
1370}
1371
1372/* Return 1 if EXPR is the real constant two. */
1373
1374int
1375real_twop (expr)
1376 tree expr;
1377{
d964285c 1378 STRIP_NOPS (expr);
c6a1db6c
RS
1379
1380 return (TREE_CODE (expr) == REAL_CST
1381 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2));
1382}
1383
1384/* Nonzero if EXP is a constant or a cast of a constant. */
1385
1386int
1387really_constant_p (exp)
1388 tree exp;
1389{
d964285c 1390 /* This is not quite the same as STRIP_NOPS. It does more. */
c6a1db6c
RS
1391 while (TREE_CODE (exp) == NOP_EXPR
1392 || TREE_CODE (exp) == CONVERT_EXPR
1393 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1394 exp = TREE_OPERAND (exp, 0);
1395 return TREE_CONSTANT (exp);
1396}
1397\f
1398/* Return first list element whose TREE_VALUE is ELEM.
1399 Return 0 if ELEM is not it LIST. */
1400
1401tree
1402value_member (elem, list)
1403 tree elem, list;
1404{
1405 while (list)
1406 {
1407 if (elem == TREE_VALUE (list))
1408 return list;
1409 list = TREE_CHAIN (list);
1410 }
1411 return NULL_TREE;
1412}
1413
1414/* Return first list element whose TREE_PURPOSE is ELEM.
1415 Return 0 if ELEM is not it LIST. */
1416
1417tree
1418purpose_member (elem, list)
1419 tree elem, list;
1420{
1421 while (list)
1422 {
1423 if (elem == TREE_PURPOSE (list))
1424 return list;
1425 list = TREE_CHAIN (list);
1426 }
1427 return NULL_TREE;
1428}
1429
1430/* Return first list element whose BINFO_TYPE is ELEM.
1431 Return 0 if ELEM is not it LIST. */
1432
1433tree
1434binfo_member (elem, list)
1435 tree elem, list;
1436{
1437 while (list)
1438 {
1439 if (elem == BINFO_TYPE (list))
1440 return list;
1441 list = TREE_CHAIN (list);
1442 }
1443 return NULL_TREE;
1444}
1445
1446/* Return nonzero if ELEM is part of the chain CHAIN. */
1447
1448int
1449chain_member (elem, chain)
1450 tree elem, chain;
1451{
1452 while (chain)
1453 {
1454 if (elem == chain)
1455 return 1;
1456 chain = TREE_CHAIN (chain);
1457 }
1458
1459 return 0;
1460}
1461
1462/* Return the length of a chain of nodes chained through TREE_CHAIN.
1463 We expect a null pointer to mark the end of the chain.
1464 This is the Lisp primitive `length'. */
1465
1466int
1467list_length (t)
1468 tree t;
1469{
1470 register tree tail;
1471 register int len = 0;
1472
1473 for (tail = t; tail; tail = TREE_CHAIN (tail))
1474 len++;
1475
1476 return len;
1477}
1478
1479/* Concatenate two chains of nodes (chained through TREE_CHAIN)
1480 by modifying the last node in chain 1 to point to chain 2.
1481 This is the Lisp primitive `nconc'. */
1482
1483tree
1484chainon (op1, op2)
1485 tree op1, op2;
1486{
1487 tree t;
1488
1489 if (op1)
1490 {
1491 for (t = op1; TREE_CHAIN (t); t = TREE_CHAIN (t))
1492 if (t == op2) abort (); /* Circularity being created */
1493 TREE_CHAIN (t) = op2;
1494 return op1;
1495 }
1496 else return op2;
1497}
1498
1499/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1500
1501tree
1502tree_last (chain)
1503 register tree chain;
1504{
1505 register tree next;
1506 if (chain)
1507 while (next = TREE_CHAIN (chain))
1508 chain = next;
1509 return chain;
1510}
1511
1512/* Reverse the order of elements in the chain T,
1513 and return the new head of the chain (old last element). */
1514
1515tree
1516nreverse (t)
1517 tree t;
1518{
1519 register tree prev = 0, decl, next;
1520 for (decl = t; decl; decl = next)
1521 {
1522 next = TREE_CHAIN (decl);
1523 TREE_CHAIN (decl) = prev;
1524 prev = decl;
1525 }
1526 return prev;
1527}
1528
1529/* Given a chain CHAIN of tree nodes,
1530 construct and return a list of those nodes. */
1531
1532tree
1533listify (chain)
1534 tree chain;
1535{
1536 tree result = NULL_TREE;
1537 tree in_tail = chain;
1538 tree out_tail = NULL_TREE;
1539
1540 while (in_tail)
1541 {
1542 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1543 if (out_tail)
1544 TREE_CHAIN (out_tail) = next;
1545 else
1546 result = next;
1547 out_tail = next;
1548 in_tail = TREE_CHAIN (in_tail);
1549 }
1550
1551 return result;
1552}
1553\f
1554/* Return a newly created TREE_LIST node whose
1555 purpose and value fields are PARM and VALUE. */
1556
1557tree
1558build_tree_list (parm, value)
1559 tree parm, value;
1560{
1561 register tree t = make_node (TREE_LIST);
1562 TREE_PURPOSE (t) = parm;
1563 TREE_VALUE (t) = value;
1564 return t;
1565}
1566
1567/* Similar, but build on the temp_decl_obstack. */
1568
1569tree
1570build_decl_list (parm, value)
1571 tree parm, value;
1572{
1573 register tree node;
1574 register struct obstack *ambient_obstack = current_obstack;
1575 current_obstack = &temp_decl_obstack;
1576 node = build_tree_list (parm, value);
1577 current_obstack = ambient_obstack;
1578 return node;
1579}
1580
1581/* Return a newly created TREE_LIST node whose
1582 purpose and value fields are PARM and VALUE
1583 and whose TREE_CHAIN is CHAIN. */
1584
1585tree
1586tree_cons (purpose, value, chain)
1587 tree purpose, value, chain;
1588{
1589#if 0
1590 register tree node = make_node (TREE_LIST);
1591#else
1592 register int i;
1593 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
1594#ifdef GATHER_STATISTICS
1595 tree_node_counts[(int)x_kind]++;
1596 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
1597#endif
1598
508f8149 1599 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
e0a9b507 1600 ((int *) node)[i] = 0;
508f8149 1601
c6a1db6c
RS
1602 TREE_SET_CODE (node, TREE_LIST);
1603 if (current_obstack == &permanent_obstack)
1604 TREE_PERMANENT (node) = 1;
c6a1db6c
RS
1605#endif
1606
1607 TREE_CHAIN (node) = chain;
1608 TREE_PURPOSE (node) = purpose;
1609 TREE_VALUE (node) = value;
1610 return node;
1611}
1612
1613/* Similar, but build on the temp_decl_obstack. */
1614
1615tree
1616decl_tree_cons (purpose, value, chain)
1617 tree purpose, value, chain;
1618{
1619 register tree node;
1620 register struct obstack *ambient_obstack = current_obstack;
1621 current_obstack = &temp_decl_obstack;
1622 node = tree_cons (purpose, value, chain);
1623 current_obstack = ambient_obstack;
1624 return node;
1625}
1626
1627/* Same as `tree_cons' but make a permanent object. */
1628
1629tree
1630perm_tree_cons (purpose, value, chain)
1631 tree purpose, value, chain;
1632{
1633 register tree node;
1634 register struct obstack *ambient_obstack = current_obstack;
1635 current_obstack = &permanent_obstack;
1636
1637 node = tree_cons (purpose, value, chain);
1638 current_obstack = ambient_obstack;
1639 return node;
1640}
1641
1642/* Same as `tree_cons', but make this node temporary, regardless. */
1643
1644tree
1645temp_tree_cons (purpose, value, chain)
1646 tree purpose, value, chain;
1647{
1648 register tree node;
1649 register struct obstack *ambient_obstack = current_obstack;
1650 current_obstack = &temporary_obstack;
1651
1652 node = tree_cons (purpose, value, chain);
1653 current_obstack = ambient_obstack;
1654 return node;
1655}
1656
1657/* Same as `tree_cons', but save this node if the function's RTL is saved. */
1658
1659tree
1660saveable_tree_cons (purpose, value, chain)
1661 tree purpose, value, chain;
1662{
1663 register tree node;
1664 register struct obstack *ambient_obstack = current_obstack;
1665 current_obstack = saveable_obstack;
1666
1667 node = tree_cons (purpose, value, chain);
1668 current_obstack = ambient_obstack;
1669 return node;
1670}
1671\f
1672/* Return the size nominally occupied by an object of type TYPE
1673 when it resides in memory. The value is measured in units of bytes,
1674 and its data type is that normally used for type sizes
1675 (which is the first type created by make_signed_type or
1676 make_unsigned_type). */
1677
1678tree
1679size_in_bytes (type)
1680 tree type;
1681{
1682 if (type == error_mark_node)
1683 return integer_zero_node;
1684 type = TYPE_MAIN_VARIANT (type);
1685 if (TYPE_SIZE (type) == 0)
1686 {
37366632 1687 incomplete_type_error (NULL_TREE, type);
c6a1db6c
RS
1688 return integer_zero_node;
1689 }
1690 return size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
1691 size_int (BITS_PER_UNIT));
1692}
1693
1694/* Return the size of TYPE (in bytes) as an integer,
1695 or return -1 if the size can vary. */
1696
1697int
1698int_size_in_bytes (type)
1699 tree type;
1700{
1701 int size;
1702 if (type == error_mark_node)
1703 return 0;
1704 type = TYPE_MAIN_VARIANT (type);
1705 if (TYPE_SIZE (type) == 0)
1706 return -1;
1707 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1708 return -1;
1709 size = TREE_INT_CST_LOW (TYPE_SIZE (type));
1710 return (size + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1711}
1712
1713/* Return, as an INTEGER_CST node, the number of elements for
81784237
MT
1714 TYPE (which is an ARRAY_TYPE) minus one.
1715 This counts only elements of the top array. */
c6a1db6c
RS
1716
1717tree
1718array_type_nelts (type)
1719 tree type;
1720{
1721 tree index_type = TYPE_DOMAIN (type);
1722 return (tree_int_cst_equal (TYPE_MIN_VALUE (index_type), integer_zero_node)
1723 ? TYPE_MAX_VALUE (index_type)
1724 : fold (build (MINUS_EXPR, integer_type_node,
1725 TYPE_MAX_VALUE (index_type),
1726 TYPE_MIN_VALUE (index_type))));
1727}
1728\f
1729/* Return nonzero if arg is static -- a reference to an object in
1730 static storage. This is not the same as the C meaning of `static'. */
1731
1732int
1733staticp (arg)
1734 tree arg;
1735{
1736 switch (TREE_CODE (arg))
1737 {
1738 case VAR_DECL:
1739 case FUNCTION_DECL:
1740 case CONSTRUCTOR:
0924ddef 1741 return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
c6a1db6c
RS
1742
1743 case STRING_CST:
1744 return 1;
1745
1746 case COMPONENT_REF:
1747 case BIT_FIELD_REF:
1748 return staticp (TREE_OPERAND (arg, 0));
1749
1750 case INDIRECT_REF:
1751 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1752
1753 case ARRAY_REF:
1754 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1755 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1756 return staticp (TREE_OPERAND (arg, 0));
1757 }
1758
1759 return 0;
1760}
1761\f
1762/* This should be applied to any node which may be used in more than one place,
1763 but must be evaluated only once. Normally, the code generator would
1764 reevaluate the node each time; this forces it to compute it once and save
1765 the result. This is done by encapsulating the node in a SAVE_EXPR. */
1766
1767tree
1768save_expr (expr)
1769 tree expr;
1770{
1771 register tree t = fold (expr);
1772
1773 /* We don't care about whether this can be used as an lvalue in this
1774 context. */
1775 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1776 t = TREE_OPERAND (t, 0);
1777
1778 /* If the tree evaluates to a constant, then we don't want to hide that
1779 fact (i.e. this allows further folding, and direct checks for constants).
af929c62 1780 However, a read-only object that has side effects cannot be bypassed.
c6a1db6c
RS
1781 Since it is no problem to reevaluate literals, we just return the
1782 literal node. */
1783
af929c62
RK
1784 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1785 || TREE_CODE (t) == SAVE_EXPR)
c6a1db6c
RS
1786 return t;
1787
37366632 1788 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
c6a1db6c
RS
1789
1790 /* This expression might be placed ahead of a jump to ensure that the
1791 value was computed on both sides of the jump. So make sure it isn't
1792 eliminated as dead. */
1793 TREE_SIDE_EFFECTS (t) = 1;
1794 return t;
1795}
1796
1797/* Stabilize a reference so that we can use it any number of times
1798 without causing its operands to be evaluated more than once.
1799 Returns the stabilized reference.
1800
1801 Also allows conversion expressions whose operands are references.
1802 Any other kind of expression is returned unchanged. */
1803
1804tree
1805stabilize_reference (ref)
1806 tree ref;
1807{
1808 register tree result;
1809 register enum tree_code code = TREE_CODE (ref);
1810
1811 switch (code)
1812 {
1813 case VAR_DECL:
1814 case PARM_DECL:
1815 case RESULT_DECL:
1816 /* No action is needed in this case. */
1817 return ref;
1818
1819 case NOP_EXPR:
1820 case CONVERT_EXPR:
1821 case FLOAT_EXPR:
1822 case FIX_TRUNC_EXPR:
1823 case FIX_FLOOR_EXPR:
1824 case FIX_ROUND_EXPR:
1825 case FIX_CEIL_EXPR:
1826 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
1827 break;
1828
1829 case INDIRECT_REF:
1830 result = build_nt (INDIRECT_REF,
1831 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
1832 break;
1833
1834 case COMPONENT_REF:
1835 result = build_nt (COMPONENT_REF,
1836 stabilize_reference (TREE_OPERAND (ref, 0)),
1837 TREE_OPERAND (ref, 1));
1838 break;
1839
1840 case BIT_FIELD_REF:
1841 result = build_nt (BIT_FIELD_REF,
1842 stabilize_reference (TREE_OPERAND (ref, 0)),
1843 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
1844 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
1845 break;
1846
1847 case ARRAY_REF:
1848 result = build_nt (ARRAY_REF,
1849 stabilize_reference (TREE_OPERAND (ref, 0)),
1850 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
1851 break;
1852
1853 /* If arg isn't a kind of lvalue we recognize, make no change.
1854 Caller should recognize the error for an invalid lvalue. */
1855 default:
1856 return ref;
1857
1858 case ERROR_MARK:
1859 return error_mark_node;
1860 }
1861
1862 TREE_TYPE (result) = TREE_TYPE (ref);
1863 TREE_READONLY (result) = TREE_READONLY (ref);
1864 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
1865 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
1866 TREE_RAISES (result) = TREE_RAISES (ref);
1867
1868 return result;
1869}
1870
1871/* Subroutine of stabilize_reference; this is called for subtrees of
1872 references. Any expression with side-effects must be put in a SAVE_EXPR
1873 to ensure that it is only evaluated once.
1874
1875 We don't put SAVE_EXPR nodes around everything, because assigning very
1876 simple expressions to temporaries causes us to miss good opportunities
1877 for optimizations. Among other things, the opportunity to fold in the
1878 addition of a constant into an addressing mode often gets lost, e.g.
1879 "y[i+1] += x;". In general, we take the approach that we should not make
1880 an assignment unless we are forced into it - i.e., that any non-side effect
1881 operator should be allowed, and that cse should take care of coalescing
1882 multiple utterances of the same expression should that prove fruitful. */
1883
1884static tree
1885stabilize_reference_1 (e)
1886 tree e;
1887{
1888 register tree result;
1889 register int length;
1890 register enum tree_code code = TREE_CODE (e);
1891
af929c62
RK
1892 /* We cannot ignore const expressions because it might be a reference
1893 to a const array but whose index contains side-effects. But we can
1894 ignore things that are actual constant or that already have been
1895 handled by this function. */
1896
1897 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
c6a1db6c
RS
1898 return e;
1899
1900 switch (TREE_CODE_CLASS (code))
1901 {
1902 case 'x':
1903 case 't':
1904 case 'd':
03646189 1905 case 'b':
c6a1db6c
RS
1906 case '<':
1907 case 's':
1908 case 'e':
1909 case 'r':
1910 /* If the expression has side-effects, then encase it in a SAVE_EXPR
1911 so that it will only be evaluated once. */
1912 /* The reference (r) and comparison (<) classes could be handled as
1913 below, but it is generally faster to only evaluate them once. */
1914 if (TREE_SIDE_EFFECTS (e))
1915 return save_expr (e);
1916 return e;
1917
1918 case 'c':
1919 /* Constants need no processing. In fact, we should never reach
1920 here. */
1921 return e;
1922
1923 case '2':
1924 /* Recursively stabilize each operand. */
1925 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
1926 stabilize_reference_1 (TREE_OPERAND (e, 1)));
1927 break;
1928
1929 case '1':
1930 /* Recursively stabilize each operand. */
1931 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
1932 break;
1933 }
1934
1935 TREE_TYPE (result) = TREE_TYPE (e);
1936 TREE_READONLY (result) = TREE_READONLY (e);
1937 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1938 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1939 TREE_RAISES (result) = TREE_RAISES (e);
1940
1941 return result;
1942}
1943\f
1944/* Low-level constructors for expressions. */
1945
1946/* Build an expression of code CODE, data type TYPE,
1947 and operands as specified by the arguments ARG1 and following arguments.
1948 Expressions and reference nodes can be created this way.
1949 Constants, decls, types and misc nodes cannot be. */
1950
1951tree
1952build (va_alist)
1953 va_dcl
1954{
1955 va_list p;
1956 enum tree_code code;
1957 register tree t;
1958 register int length;
1959 register int i;
1960
1961 va_start (p);
1962
1963 code = va_arg (p, enum tree_code);
1964 t = make_node (code);
1965 length = tree_code_length[(int) code];
1966 TREE_TYPE (t) = va_arg (p, tree);
1967
1968 if (length == 2)
1969 {
1970 /* This is equivalent to the loop below, but faster. */
1971 register tree arg0 = va_arg (p, tree);
1972 register tree arg1 = va_arg (p, tree);
1973 TREE_OPERAND (t, 0) = arg0;
1974 TREE_OPERAND (t, 1) = arg1;
1975 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
1976 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
1977 TREE_SIDE_EFFECTS (t) = 1;
1978 TREE_RAISES (t)
1979 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
1980 }
1981 else if (length == 1)
1982 {
1983 register tree arg0 = va_arg (p, tree);
1984
1985 /* Call build1 for this! */
1986 if (TREE_CODE_CLASS (code) != 's')
1987 abort ();
1988 TREE_OPERAND (t, 0) = arg0;
1989 if (arg0 && TREE_SIDE_EFFECTS (arg0))
1990 TREE_SIDE_EFFECTS (t) = 1;
1991 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
1992 }
1993 else
1994 {
1995 for (i = 0; i < length; i++)
1996 {
1997 register tree operand = va_arg (p, tree);
1998 TREE_OPERAND (t, i) = operand;
1999 if (operand)
2000 {
2001 if (TREE_SIDE_EFFECTS (operand))
2002 TREE_SIDE_EFFECTS (t) = 1;
2003 if (TREE_RAISES (operand))
2004 TREE_RAISES (t) = 1;
2005 }
2006 }
2007 }
2008 va_end (p);
2009 return t;
2010}
2011
2012/* Same as above, but only builds for unary operators.
2013 Saves lions share of calls to `build'; cuts down use
2014 of varargs, which is expensive for RISC machines. */
2015tree
2016build1 (code, type, node)
2017 enum tree_code code;
2018 tree type;
2019 tree node;
2020{
2021 register struct obstack *obstack = current_obstack;
2022 register int i, length;
2023 register tree_node_kind kind;
2024 register tree t;
2025
2026#ifdef GATHER_STATISTICS
2027 if (TREE_CODE_CLASS (code) == 'r')
2028 kind = r_kind;
2029 else
2030 kind = e_kind;
2031#endif
2032
2033 obstack = expression_obstack;
2034 length = sizeof (struct tree_exp);
2035
2036 t = (tree) obstack_alloc (obstack, length);
2037
2038#ifdef GATHER_STATISTICS
2039 tree_node_counts[(int)kind]++;
2040 tree_node_sizes[(int)kind] += length;
2041#endif
2042
508f8149 2043 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
c6a1db6c 2044 ((int *) t)[i] = 0;
508f8149
RK
2045
2046 TREE_TYPE (t) = type;
c6a1db6c
RS
2047 TREE_SET_CODE (t, code);
2048
2049 if (obstack == &permanent_obstack)
2050 TREE_PERMANENT (t) = 1;
2051
2052 TREE_OPERAND (t, 0) = node;
2053 if (node)
2054 {
2055 if (TREE_SIDE_EFFECTS (node))
2056 TREE_SIDE_EFFECTS (t) = 1;
2057 if (TREE_RAISES (node))
2058 TREE_RAISES (t) = 1;
2059 }
2060
2061 return t;
2062}
2063
2064/* Similar except don't specify the TREE_TYPE
2065 and leave the TREE_SIDE_EFFECTS as 0.
2066 It is permissible for arguments to be null,
2067 or even garbage if their values do not matter. */
2068
2069tree
2070build_nt (va_alist)
2071 va_dcl
2072{
2073 va_list p;
2074 register enum tree_code code;
2075 register tree t;
2076 register int length;
2077 register int i;
2078
2079 va_start (p);
2080
2081 code = va_arg (p, enum tree_code);
2082 t = make_node (code);
2083 length = tree_code_length[(int) code];
2084
2085 for (i = 0; i < length; i++)
2086 TREE_OPERAND (t, i) = va_arg (p, tree);
2087
2088 va_end (p);
2089 return t;
2090}
2091
2092/* Similar to `build_nt', except we build
2093 on the temp_decl_obstack, regardless. */
2094
2095tree
2096build_parse_node (va_alist)
2097 va_dcl
2098{
2099 register struct obstack *ambient_obstack = expression_obstack;
2100 va_list p;
2101 register enum tree_code code;
2102 register tree t;
2103 register int length;
2104 register int i;
2105
2106 expression_obstack = &temp_decl_obstack;
2107
2108 va_start (p);
2109
2110 code = va_arg (p, enum tree_code);
2111 t = make_node (code);
2112 length = tree_code_length[(int) code];
2113
2114 for (i = 0; i < length; i++)
2115 TREE_OPERAND (t, i) = va_arg (p, tree);
2116
2117 va_end (p);
2118 expression_obstack = ambient_obstack;
2119 return t;
2120}
2121
2122#if 0
2123/* Commented out because this wants to be done very
2124 differently. See cp-lex.c. */
2125tree
2126build_op_identifier (op1, op2)
2127 tree op1, op2;
2128{
2129 register tree t = make_node (OP_IDENTIFIER);
2130 TREE_PURPOSE (t) = op1;
2131 TREE_VALUE (t) = op2;
2132 return t;
2133}
2134#endif
2135\f
2136/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2137 We do NOT enter this node in any sort of symbol table.
2138
2139 layout_decl is used to set up the decl's storage layout.
2140 Other slots are initialized to 0 or null pointers. */
2141
2142tree
2143build_decl (code, name, type)
2144 enum tree_code code;
2145 tree name, type;
2146{
2147 register tree t;
2148
2149 t = make_node (code);
2150
2151/* if (type == error_mark_node)
2152 type = integer_type_node; */
2153/* That is not done, deliberately, so that having error_mark_node
2154 as the type can suppress useless errors in the use of this variable. */
2155
2156 DECL_NAME (t) = name;
2157 DECL_ASSEMBLER_NAME (t) = name;
2158 TREE_TYPE (t) = type;
2159
2160 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2161 layout_decl (t, 0);
2162 else if (code == FUNCTION_DECL)
2163 DECL_MODE (t) = FUNCTION_MODE;
2164
2165 return t;
2166}
2167\f
2168/* BLOCK nodes are used to represent the structure of binding contours
2169 and declarations, once those contours have been exited and their contents
2170 compiled. This information is used for outputting debugging info.
2171 A BLOCK may have a "controller" which is a BIND_EXPR node.
2172 Then the BLOCK is ignored unless the controller has the TREE_USED flag. */
2173
2174tree
2175build_block (vars, tags, subblocks, supercontext, chain)
2176 tree vars, tags, subblocks, supercontext, chain;
2177{
2178 register tree block = make_node (BLOCK);
2179 BLOCK_VARS (block) = vars;
2180 BLOCK_TYPE_TAGS (block) = tags;
2181 BLOCK_SUBBLOCKS (block) = subblocks;
2182 BLOCK_SUPERCONTEXT (block) = supercontext;
2183 BLOCK_CHAIN (block) = chain;
2184 return block;
2185}
2186\f
2187/* Return a type like TYPE except that its TYPE_READONLY is CONSTP
2188 and its TYPE_VOLATILE is VOLATILEP.
2189
2190 Such variant types already made are recorded so that duplicates
2191 are not made.
2192
2193 A variant types should never be used as the type of an expression.
2194 Always copy the variant information into the TREE_READONLY
2195 and TREE_THIS_VOLATILE of the expression, and then give the expression
2196 as its type the "main variant", the variant whose TYPE_READONLY
2197 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
2198 main variant. */
2199
2200tree
2201build_type_variant (type, constp, volatilep)
2202 tree type;
2203 int constp, volatilep;
2204{
2205 register tree t, m = TYPE_MAIN_VARIANT (type);
2206 register struct obstack *ambient_obstack = current_obstack;
2207
2208 /* Treat any nonzero argument as 1. */
2209 constp = !!constp;
2210 volatilep = !!volatilep;
2211
b4ac57ab 2212 /* If not generating auxiliary info, search the chain of variants to see
c6a1db6c
RS
2213 if there is already one there just like the one we need to have. If so,
2214 use that existing one.
2215
2216 We don't do this in the case where we are generating aux info because
2217 in that case we want each typedef names to get it's own distinct type
2218 node, even if the type of this new typedef is the same as some other
2219 (existing) type. */
2220
2221 if (!flag_gen_aux_info)
2222 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
2223 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t))
2224 return t;
2225
2226 /* We need a new one. */
2227 current_obstack
2228 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2229
2230 t = copy_node (type);
2231 TYPE_READONLY (t) = constp;
2232 TYPE_VOLATILE (t) = volatilep;
2233 TYPE_POINTER_TO (t) = 0;
2234 TYPE_REFERENCE_TO (t) = 0;
2235
2236 /* Add this type to the chain of variants of TYPE. */
2237 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2238 TYPE_NEXT_VARIANT (m) = t;
2239
2240 current_obstack = ambient_obstack;
2241 return t;
2242}
b4ac57ab
RS
2243
2244/* Create a new variant of TYPE, equivalent but distinct.
2245 This is so the caller can modify it. */
2246
2247tree
2248build_type_copy (type)
2249 tree type;
2250{
2251 register tree t, m = TYPE_MAIN_VARIANT (type);
2252 register struct obstack *ambient_obstack = current_obstack;
2253
2254 current_obstack
2255 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2256
2257 t = copy_node (type);
2258 TYPE_POINTER_TO (t) = 0;
2259 TYPE_REFERENCE_TO (t) = 0;
2260
2261 /* Add this type to the chain of variants of TYPE. */
2262 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2263 TYPE_NEXT_VARIANT (m) = t;
2264
2265 current_obstack = ambient_obstack;
2266 return t;
2267}
c6a1db6c
RS
2268\f
2269/* Hashing of types so that we don't make duplicates.
2270 The entry point is `type_hash_canon'. */
2271
2272/* Each hash table slot is a bucket containing a chain
2273 of these structures. */
2274
2275struct type_hash
2276{
2277 struct type_hash *next; /* Next structure in the bucket. */
2278 int hashcode; /* Hash code of this type. */
2279 tree type; /* The type recorded here. */
2280};
2281
2282/* Now here is the hash table. When recording a type, it is added
2283 to the slot whose index is the hash code mod the table size.
2284 Note that the hash table is used for several kinds of types
2285 (function types, array types and array index range types, for now).
2286 While all these live in the same table, they are completely independent,
2287 and the hash code is computed differently for each of these. */
2288
2289#define TYPE_HASH_SIZE 59
2290struct type_hash *type_hash_table[TYPE_HASH_SIZE];
2291
2292/* Here is how primitive or already-canonicalized types' hash
2293 codes are made. */
2294#define TYPE_HASH(TYPE) ((int) (TYPE) & 0777777)
2295
2296/* Compute a hash code for a list of types (chain of TREE_LIST nodes
2297 with types in the TREE_VALUE slots), by adding the hash codes
2298 of the individual types. */
2299
2300int
2301type_hash_list (list)
2302 tree list;
2303{
2304 register int hashcode;
2305 register tree tail;
2306 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2307 hashcode += TYPE_HASH (TREE_VALUE (tail));
2308 return hashcode;
2309}
2310
2311/* Look in the type hash table for a type isomorphic to TYPE.
2312 If one is found, return it. Otherwise return 0. */
2313
2314tree
2315type_hash_lookup (hashcode, type)
2316 int hashcode;
2317 tree type;
2318{
2319 register struct type_hash *h;
2320 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
2321 if (h->hashcode == hashcode
2322 && TREE_CODE (h->type) == TREE_CODE (type)
2323 && TREE_TYPE (h->type) == TREE_TYPE (type)
2324 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
2325 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
2326 TYPE_MAX_VALUE (type)))
2327 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
2328 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
2329 TYPE_MIN_VALUE (type)))
2330 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
2331 || (TYPE_DOMAIN (h->type)
2332 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
2333 && TYPE_DOMAIN (type)
2334 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
2335 && type_list_equal (TYPE_DOMAIN (h->type), TYPE_DOMAIN (type)))))
2336 return h->type;
2337 return 0;
2338}
2339
2340/* Add an entry to the type-hash-table
2341 for a type TYPE whose hash code is HASHCODE. */
2342
2343void
2344type_hash_add (hashcode, type)
2345 int hashcode;
2346 tree type;
2347{
2348 register struct type_hash *h;
2349
2350 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
2351 h->hashcode = hashcode;
2352 h->type = type;
2353 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
2354 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
2355}
2356
2357/* Given TYPE, and HASHCODE its hash code, return the canonical
2358 object for an identical type if one already exists.
2359 Otherwise, return TYPE, and record it as the canonical object
2360 if it is a permanent object.
2361
2362 To use this function, first create a type of the sort you want.
2363 Then compute its hash code from the fields of the type that
2364 make it different from other similar types.
2365 Then call this function and use the value.
2366 This function frees the type you pass in if it is a duplicate. */
2367
2368/* Set to 1 to debug without canonicalization. Never set by program. */
2369int debug_no_type_hash = 0;
2370
2371tree
2372type_hash_canon (hashcode, type)
2373 int hashcode;
2374 tree type;
2375{
2376 tree t1;
2377
2378 if (debug_no_type_hash)
2379 return type;
2380
2381 t1 = type_hash_lookup (hashcode, type);
2382 if (t1 != 0)
2383 {
2384 struct obstack *o
2385 = TREE_PERMANENT (type) ? &permanent_obstack : saveable_obstack;
2386 obstack_free (o, type);
2387#ifdef GATHER_STATISTICS
2388 tree_node_counts[(int)t_kind]--;
2389 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
2390#endif
2391 return t1;
2392 }
2393
2394 /* If this is a new type, record it for later reuse. */
2395 if (current_obstack == &permanent_obstack)
2396 type_hash_add (hashcode, type);
2397
2398 return type;
2399}
2400
2401/* Given two lists of types
2402 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
2403 return 1 if the lists contain the same types in the same order.
2404 Also, the TREE_PURPOSEs must match. */
2405
2406int
2407type_list_equal (l1, l2)
2408 tree l1, l2;
2409{
2410 register tree t1, t2;
2411 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
2412 {
2413 if (TREE_VALUE (t1) != TREE_VALUE (t2))
2414 return 0;
2415 if (TREE_PURPOSE (t1) != TREE_PURPOSE (t2))
2416 {
2417 int cmp = simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2));
2418 if (cmp < 0)
2419 abort ();
2420 if (cmp == 0)
2421 return 0;
2422 }
2423 }
2424
2425 return t1 == t2;
2426}
2427
2428/* Nonzero if integer constants T1 and T2
2429 represent the same constant value. */
2430
2431int
2432tree_int_cst_equal (t1, t2)
2433 tree t1, t2;
2434{
2435 if (t1 == t2)
2436 return 1;
2437 if (t1 == 0 || t2 == 0)
2438 return 0;
2439 if (TREE_CODE (t1) == INTEGER_CST
2440 && TREE_CODE (t2) == INTEGER_CST
2441 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2442 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
2443 return 1;
2444 return 0;
2445}
2446
2447/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
2448 The precise way of comparison depends on their data type. */
2449
2450int
2451tree_int_cst_lt (t1, t2)
2452 tree t1, t2;
2453{
2454 if (t1 == t2)
2455 return 0;
2456
2457 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
2458 return INT_CST_LT (t1, t2);
2459 return INT_CST_LT_UNSIGNED (t1, t2);
2460}
2461
2462/* Compare two constructor-element-type constants. */
2463int
2464simple_cst_list_equal (l1, l2)
2465 tree l1, l2;
2466{
2467 while (l1 != NULL_TREE && l2 != NULL_TREE)
2468 {
2469 int cmp = simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2));
2470 if (cmp < 0)
2471 abort ();
2472 if (cmp == 0)
2473 return 0;
2474 l1 = TREE_CHAIN (l1);
2475 l2 = TREE_CHAIN (l2);
2476 }
2477 return (l1 == l2);
2478}
2479
2480/* Return truthvalue of whether T1 is the same tree structure as T2.
2481 Return 1 if they are the same.
2482 Return 0 if they are understandably different.
2483 Return -1 if either contains tree structure not understood by
2484 this function. */
2485
2486int
2487simple_cst_equal (t1, t2)
2488 tree t1, t2;
2489{
2490 register enum tree_code code1, code2;
2491 int cmp;
2492
2493 if (t1 == t2)
2494 return 1;
2495 if (t1 == 0 || t2 == 0)
2496 return 0;
2497
2498 code1 = TREE_CODE (t1);
2499 code2 = TREE_CODE (t2);
2500
2501 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
2502 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
2503 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2504 else
2505 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
2506 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
2507 || code2 == NON_LVALUE_EXPR)
2508 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
2509
2510 if (code1 != code2)
2511 return 0;
2512
2513 switch (code1)
2514 {
2515 case INTEGER_CST:
2516 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2517 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
2518
2519 case REAL_CST:
2520 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
2521
2522 case STRING_CST:
2523 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2524 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2525 TREE_STRING_LENGTH (t1));
2526
2527 case CONSTRUCTOR:
2528 abort ();
2529
2530 case SAVE_EXPR:
2531 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2532
2533 case CALL_EXPR:
2534 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2535 if (cmp <= 0)
2536 return cmp;
2537 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2538
2539 case TARGET_EXPR:
2540 /* Special case: if either target is an unallocated VAR_DECL,
2541 it means that it's going to be unified with whatever the
2542 TARGET_EXPR is really supposed to initialize, so treat it
2543 as being equivalent to anything. */
2544 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
2545 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
2546 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
2547 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
2548 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
2549 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
2550 cmp = 1;
2551 else
2552 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2553 if (cmp <= 0)
2554 return cmp;
2555 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2556
2557 case WITH_CLEANUP_EXPR:
2558 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2559 if (cmp <= 0)
2560 return cmp;
2561 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
2562
2563 case COMPONENT_REF:
2564 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
2565 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2566 return 0;
2567
2568 case BIT_FIELD_REF:
2569 return (simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
2570 && simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1))
2571 && simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2)));
2572
2573 case VAR_DECL:
2574 case PARM_DECL:
2575 case CONST_DECL:
2576 case FUNCTION_DECL:
2577 return 0;
2578
2579 case PLUS_EXPR:
2580 case MINUS_EXPR:
2581 case MULT_EXPR:
2582 case TRUNC_DIV_EXPR:
2583 case TRUNC_MOD_EXPR:
2584 case LSHIFT_EXPR:
2585 case RSHIFT_EXPR:
2586 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2587 if (cmp <= 0)
2588 return cmp;
2589 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2590
2591 case NEGATE_EXPR:
2592 case ADDR_EXPR:
2593 case REFERENCE_EXPR:
2594 case INDIRECT_REF:
2595 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2596
2597 default:
2598#if 0
2599 return lang_simple_cst_equal (t1, t2);
2600#else
2601 return -1;
2602#endif
2603 }
2604}
2605\f
2606/* Constructors for pointer, array and function types.
2607 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
2608 constructed by language-dependent code, not here.) */
2609
2610/* Construct, lay out and return the type of pointers to TO_TYPE.
2611 If such a type has already been constructed, reuse it. */
2612
2613tree
2614build_pointer_type (to_type)
2615 tree to_type;
2616{
2617 register tree t = TYPE_POINTER_TO (to_type);
2618 register struct obstack *ambient_obstack = current_obstack;
2619 register struct obstack *ambient_saveable_obstack = saveable_obstack;
2620
2621 /* First, if we already have a type for pointers to TO_TYPE, use it. */
2622
2623 if (t)
2624 return t;
2625
2626 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
2627 if (TREE_PERMANENT (to_type))
2628 {
2629 current_obstack = &permanent_obstack;
2630 saveable_obstack = &permanent_obstack;
2631 }
2632
2633 t = make_node (POINTER_TYPE);
2634 TREE_TYPE (t) = to_type;
2635
2636 /* Record this type as the pointer to TO_TYPE. */
2637 TYPE_POINTER_TO (to_type) = t;
2638
2639 /* Lay out the type. This function has many callers that are concerned
2640 with expression-construction, and this simplifies them all.
2641 Also, it guarantees the TYPE_SIZE is permanent if the type is. */
2642 layout_type (t);
2643
2644 current_obstack = ambient_obstack;
2645 saveable_obstack = ambient_saveable_obstack;
2646 return t;
2647}
2648
2649/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
2650 MAXVAL should be the maximum value in the domain
2651 (one less than the length of the array). */
2652
2653tree
2654build_index_type (maxval)
2655 tree maxval;
2656{
2657 register tree itype = make_node (INTEGER_TYPE);
2658 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
2659 TYPE_MIN_VALUE (itype) = build_int_2 (0, 0);
2660 TREE_TYPE (TYPE_MIN_VALUE (itype)) = sizetype;
2661 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
2662 TYPE_MODE (itype) = TYPE_MODE (sizetype);
2663 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
2664 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
2665 if (TREE_CODE (maxval) == INTEGER_CST)
2666 {
37366632 2667 HOST_WIDE_INT maxint = TREE_INT_CST_LOW (maxval);
c6a1db6c
RS
2668 return type_hash_canon (maxint > 0 ? maxint : - maxint, itype);
2669 }
2670 else
2671 return itype;
2672}
2673
2674/* Just like build_index_type, but takes lowval and highval instead
2675 of just highval (maxval). */
2676
2677tree
2678build_index_2_type (lowval,highval)
2679 tree lowval, highval;
2680{
2681 register tree itype = make_node (INTEGER_TYPE);
2682 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
2683 TYPE_MIN_VALUE (itype) = convert (sizetype, lowval);
2684 TYPE_MAX_VALUE (itype) = convert (sizetype, highval);
2685 TYPE_MODE (itype) = TYPE_MODE (sizetype);
2686 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
2687 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
2688 if ((TREE_CODE (lowval) == INTEGER_CST)
2689 && (TREE_CODE (highval) == INTEGER_CST))
2690 {
37366632
RK
2691 HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
2692 HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
2693 HOST_WIDE_INT maxint = highint - lowint;
c6a1db6c
RS
2694 return type_hash_canon (maxint > 0 ? maxint : - maxint, itype);
2695 }
2696 else
2697 return itype;
2698}
2699
2700/* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
2701 Needed because when index types are not hashed, equal index types
2702 built at different times appear distinct, even though structurally,
2703 they are not. */
2704
2705int
2706index_type_equal (itype1, itype2)
2707 tree itype1, itype2;
2708{
2709 if (TREE_CODE (itype1) != TREE_CODE (itype2))
2710 return 0;
2711 if (TREE_CODE (itype1) == INTEGER_TYPE)
2712 {
2713 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
2714 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
2715 || ! simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2))
2716 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
2717 return 0;
2718 if (simple_cst_equal (TYPE_MIN_VALUE (itype1), TYPE_MIN_VALUE (itype2))
2719 && simple_cst_equal (TYPE_MAX_VALUE (itype1), TYPE_MAX_VALUE (itype2)))
2720 return 1;
2721 }
2722 return 0;
2723}
2724
2725/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
2726 and number of elements specified by the range of values of INDEX_TYPE.
2727 If such a type has already been constructed, reuse it. */
2728
2729tree
2730build_array_type (elt_type, index_type)
2731 tree elt_type, index_type;
2732{
2733 register tree t;
2734 int hashcode;
2735
2736 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
2737 {
2738 error ("arrays of functions are not meaningful");
2739 elt_type = integer_type_node;
2740 }
2741
2742 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
2743 build_pointer_type (elt_type);
2744
2745 /* Allocate the array after the pointer type,
2746 in case we free it in type_hash_canon. */
2747 t = make_node (ARRAY_TYPE);
2748 TREE_TYPE (t) = elt_type;
2749 TYPE_DOMAIN (t) = index_type;
2750
2751 if (index_type == 0)
2752 return t;
2753
2754 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
2755 t = type_hash_canon (hashcode, t);
2756
2757 if (TYPE_SIZE (t) == 0)
2758 layout_type (t);
2759 return t;
2760}
2761
2762/* Construct, lay out and return
2763 the type of functions returning type VALUE_TYPE
2764 given arguments of types ARG_TYPES.
2765 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
2766 are data type nodes for the arguments of the function.
2767 If such a type has already been constructed, reuse it. */
2768
2769tree
2770build_function_type (value_type, arg_types)
2771 tree value_type, arg_types;
2772{
2773 register tree t;
2774 int hashcode;
2775
2776 if (TREE_CODE (value_type) == FUNCTION_TYPE
2777 || TREE_CODE (value_type) == ARRAY_TYPE)
2778 {
2779 error ("function return type cannot be function or array");
2780 value_type = integer_type_node;
2781 }
2782
2783 /* Make a node of the sort we want. */
2784 t = make_node (FUNCTION_TYPE);
2785 TREE_TYPE (t) = value_type;
2786 TYPE_ARG_TYPES (t) = arg_types;
2787
2788 /* If we already have such a type, use the old one and free this one. */
2789 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
2790 t = type_hash_canon (hashcode, t);
2791
2792 if (TYPE_SIZE (t) == 0)
2793 layout_type (t);
2794 return t;
2795}
2796
2797/* Build the node for the type of references-to-TO_TYPE. */
2798
2799tree
2800build_reference_type (to_type)
2801 tree to_type;
2802{
2803 register tree t = TYPE_REFERENCE_TO (to_type);
2804 register struct obstack *ambient_obstack = current_obstack;
2805 register struct obstack *ambient_saveable_obstack = saveable_obstack;
2806
2807 /* First, if we already have a type for pointers to TO_TYPE, use it. */
2808
2809 if (t)
2810 return t;
2811
2812 /* We need a new one. If TO_TYPE is permanent, make this permanent too. */
2813 if (TREE_PERMANENT (to_type))
2814 {
2815 current_obstack = &permanent_obstack;
2816 saveable_obstack = &permanent_obstack;
2817 }
2818
2819 t = make_node (REFERENCE_TYPE);
2820 TREE_TYPE (t) = to_type;
2821
2822 /* Record this type as the pointer to TO_TYPE. */
2823 TYPE_REFERENCE_TO (to_type) = t;
2824
2825 layout_type (t);
2826
2827 current_obstack = ambient_obstack;
2828 saveable_obstack = ambient_saveable_obstack;
2829 return t;
2830}
2831
2832/* Construct, lay out and return the type of methods belonging to class
2833 BASETYPE and whose arguments and values are described by TYPE.
2834 If that type exists already, reuse it.
2835 TYPE must be a FUNCTION_TYPE node. */
2836
2837tree
2838build_method_type (basetype, type)
2839 tree basetype, type;
2840{
2841 register tree t;
2842 int hashcode;
2843
2844 /* Make a node of the sort we want. */
2845 t = make_node (METHOD_TYPE);
2846
2847 if (TREE_CODE (type) != FUNCTION_TYPE)
2848 abort ();
2849
2850 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
2851 TREE_TYPE (t) = TREE_TYPE (type);
2852
2853 /* The actual arglist for this function includes a "hidden" argument
2854 which is "this". Put it into the list of argument types. */
2855
2856 TYPE_ARG_TYPES (t)
37366632
RK
2857 = tree_cons (NULL_TREE,
2858 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
c6a1db6c
RS
2859
2860 /* If we already have such a type, use the old one and free this one. */
2861 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
2862 t = type_hash_canon (hashcode, t);
2863
2864 if (TYPE_SIZE (t) == 0)
2865 layout_type (t);
2866
2867 return t;
2868}
2869
2870/* Construct, lay out and return the type of methods belonging to class
2871 BASETYPE and whose arguments and values are described by TYPE.
2872 If that type exists already, reuse it.
2873 TYPE must be a FUNCTION_TYPE node. */
2874
2875tree
2876build_offset_type (basetype, type)
2877 tree basetype, type;
2878{
2879 register tree t;
2880 int hashcode;
2881
2882 /* Make a node of the sort we want. */
2883 t = make_node (OFFSET_TYPE);
2884
2885 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
2886 TREE_TYPE (t) = type;
2887
2888 /* If we already have such a type, use the old one and free this one. */
2889 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
2890 t = type_hash_canon (hashcode, t);
2891
2892 if (TYPE_SIZE (t) == 0)
2893 layout_type (t);
2894
2895 return t;
2896}
2897
2898/* Create a complex type whose components are COMPONENT_TYPE. */
2899
2900tree
2901build_complex_type (component_type)
2902 tree component_type;
2903{
2904 register tree t;
2905 int hashcode;
2906
2907 /* Make a node of the sort we want. */
2908 t = make_node (COMPLEX_TYPE);
2909
2910 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
2911 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
2912 TYPE_READONLY (t) = TYPE_READONLY (component_type);
2913
2914 /* If we already have such a type, use the old one and free this one. */
2915 hashcode = TYPE_HASH (component_type);
2916 t = type_hash_canon (hashcode, t);
2917
2918 if (TYPE_SIZE (t) == 0)
2919 layout_type (t);
2920
2921 return t;
2922}
2923\f
2924/* Return OP, stripped of any conversions to wider types as much as is safe.
2925 Converting the value back to OP's type makes a value equivalent to OP.
2926
2927 If FOR_TYPE is nonzero, we return a value which, if converted to
2928 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
2929
2930 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
2931 narrowest type that can hold the value, even if they don't exactly fit.
2932 Otherwise, bit-field references are changed to a narrower type
2933 only if they can be fetched directly from memory in that type.
2934
2935 OP must have integer, real or enumeral type. Pointers are not allowed!
2936
2937 There are some cases where the obvious value we could return
2938 would regenerate to OP if converted to OP's type,
2939 but would not extend like OP to wider types.
2940 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
2941 For example, if OP is (unsigned short)(signed char)-1,
2942 we avoid returning (signed char)-1 if FOR_TYPE is int,
2943 even though extending that to an unsigned short would regenerate OP,
2944 since the result of extending (signed char)-1 to (int)
2945 is different from (int) OP. */
2946
2947tree
2948get_unwidened (op, for_type)
2949 register tree op;
2950 tree for_type;
2951{
2952 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
2953 /* TYPE_PRECISION is safe in place of type_precision since
2954 pointer types are not allowed. */
2955 register tree type = TREE_TYPE (op);
2956 register unsigned final_prec
2957 = TYPE_PRECISION (for_type != 0 ? for_type : type);
2958 register int uns
2959 = (for_type != 0 && for_type != type
2960 && final_prec > TYPE_PRECISION (type)
2961 && TREE_UNSIGNED (type));
2962 register tree win = op;
2963
2964 while (TREE_CODE (op) == NOP_EXPR)
2965 {
2966 register int bitschange
2967 = TYPE_PRECISION (TREE_TYPE (op))
2968 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
2969
2970 /* Truncations are many-one so cannot be removed.
2971 Unless we are later going to truncate down even farther. */
2972 if (bitschange < 0
2973 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
2974 break;
2975
2976 /* See what's inside this conversion. If we decide to strip it,
2977 we will set WIN. */
2978 op = TREE_OPERAND (op, 0);
2979
2980 /* If we have not stripped any zero-extensions (uns is 0),
2981 we can strip any kind of extension.
2982 If we have previously stripped a zero-extension,
2983 only zero-extensions can safely be stripped.
2984 Any extension can be stripped if the bits it would produce
2985 are all going to be discarded later by truncating to FOR_TYPE. */
2986
2987 if (bitschange > 0)
2988 {
2989 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
2990 win = op;
2991 /* TREE_UNSIGNED says whether this is a zero-extension.
2992 Let's avoid computing it if it does not affect WIN
2993 and if UNS will not be needed again. */
2994 if ((uns || TREE_CODE (op) == NOP_EXPR)
2995 && TREE_UNSIGNED (TREE_TYPE (op)))
2996 {
2997 uns = 1;
2998 win = op;
2999 }
3000 }
3001 }
3002
3003 if (TREE_CODE (op) == COMPONENT_REF
3004 /* Since type_for_size always gives an integer type. */
3005 && TREE_CODE (type) != REAL_TYPE)
3006 {
3007 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
3008 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
3009
3010 /* We can get this structure field in the narrowest type it fits in.
3011 If FOR_TYPE is 0, do this only for a field that matches the
3012 narrower type exactly and is aligned for it
3013 The resulting extension to its nominal type (a fullword type)
3014 must fit the same conditions as for other extensions. */
3015
3016 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3017 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
3018 && (! uns || final_prec <= innerprec
3019 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
3020 && type != 0)
3021 {
3022 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3023 TREE_OPERAND (op, 1));
3024 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3025 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
3026 TREE_RAISES (win) = TREE_RAISES (op);
3027 }
3028 }
3029 return win;
3030}
3031\f
3032/* Return OP or a simpler expression for a narrower value
3033 which can be sign-extended or zero-extended to give back OP.
3034 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
3035 or 0 if the value should be sign-extended. */
3036
3037tree
3038get_narrower (op, unsignedp_ptr)
3039 register tree op;
3040 int *unsignedp_ptr;
3041{
3042 register int uns = 0;
3043 int first = 1;
3044 register tree win = op;
3045
3046 while (TREE_CODE (op) == NOP_EXPR)
3047 {
3048 register int bitschange
3049 = TYPE_PRECISION (TREE_TYPE (op))
3050 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3051
3052 /* Truncations are many-one so cannot be removed. */
3053 if (bitschange < 0)
3054 break;
3055
3056 /* See what's inside this conversion. If we decide to strip it,
3057 we will set WIN. */
3058 op = TREE_OPERAND (op, 0);
3059
3060 if (bitschange > 0)
3061 {
3062 /* An extension: the outermost one can be stripped,
3063 but remember whether it is zero or sign extension. */
3064 if (first)
3065 uns = TREE_UNSIGNED (TREE_TYPE (op));
3066 /* Otherwise, if a sign extension has been stripped,
3067 only sign extensions can now be stripped;
3068 if a zero extension has been stripped, only zero-extensions. */
3069 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
3070 break;
3071 first = 0;
3072 }
3073 /* A change in nominal type can always be stripped. */
3074
3075 win = op;
3076 }
3077
3078 if (TREE_CODE (op) == COMPONENT_REF
3079 /* Since type_for_size always gives an integer type. */
3080 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
3081 {
3082 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
3083 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
3084
3085 /* We can get this structure field in a narrower type that fits it,
3086 but the resulting extension to its nominal type (a fullword type)
3087 must satisfy the same conditions as for other extensions.
3088
3089 Do this only for fields that are aligned (not bit-fields),
3090 because when bit-field insns will be used there is no
3091 advantage in doing this. */
3092
3093 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
3094 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
3095 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
3096 && type != 0)
3097 {
3098 if (first)
3099 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
3100 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
3101 TREE_OPERAND (op, 1));
3102 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
3103 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
3104 TREE_RAISES (win) = TREE_RAISES (op);
3105 }
3106 }
3107 *unsignedp_ptr = uns;
3108 return win;
3109}
3110\f
3111/* Return the precision of a type, for arithmetic purposes.
3112 Supports all types on which arithmetic is possible
3113 (including pointer types).
3114 It's not clear yet what will be right for complex types. */
3115
3116int
3117type_precision (type)
3118 register tree type;
3119{
3120 return ((TREE_CODE (type) == INTEGER_TYPE
3121 || TREE_CODE (type) == ENUMERAL_TYPE
3122 || TREE_CODE (type) == REAL_TYPE)
3123 ? TYPE_PRECISION (type) : POINTER_SIZE);
3124}
3125
3126/* Nonzero if integer constant C has a value that is permissible
3127 for type TYPE (an INTEGER_TYPE). */
3128
3129int
3130int_fits_type_p (c, type)
3131 tree c, type;
3132{
3133 if (TREE_UNSIGNED (type))
3134 return (!INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
3135 && !INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)));
3136 else
3137 return (!INT_CST_LT (TYPE_MAX_VALUE (type), c)
3138 && !INT_CST_LT (c, TYPE_MIN_VALUE (type)));
3139}
3140
bfa30b22 3141/* Return the innermost context enclosing DECL that is
c6a1db6c
RS
3142 a FUNCTION_DECL, or zero if none. */
3143
3144tree
bfa30b22
RK
3145decl_function_context (decl)
3146 tree decl;
c6a1db6c
RS
3147{
3148 tree context;
3149
bfa30b22 3150 if (TREE_CODE (decl) == ERROR_MARK)
c6a1db6c
RS
3151 return 0;
3152
bfa30b22
RK
3153 if (TREE_CODE (decl) == SAVE_EXPR)
3154 context = SAVE_EXPR_CONTEXT (decl);
c6a1db6c 3155 else
bfa30b22 3156 context = DECL_CONTEXT (decl);
c6a1db6c
RS
3157
3158 while (context && TREE_CODE (context) != FUNCTION_DECL)
3159 {
3160 if (TREE_CODE (context) == RECORD_TYPE
3161 || TREE_CODE (context) == UNION_TYPE)
3162 context = TYPE_CONTEXT (context);
3163 else if (TREE_CODE (context) == TYPE_DECL)
3164 context = DECL_CONTEXT (context);
3165 else if (TREE_CODE (context) == BLOCK)
3166 context = BLOCK_SUPERCONTEXT (context);
3167 else
3168 /* Unhandled CONTEXT !? */
3169 abort ();
3170 }
3171
3172 return context;
3173}
3174
bfa30b22 3175/* Return the innermost context enclosing DECL that is
c6a1db6c
RS
3176 a RECORD_TYPE or UNION_TYPE, or zero if none.
3177 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
3178
3179tree
bfa30b22
RK
3180decl_type_context (decl)
3181 tree decl;
c6a1db6c 3182{
bfa30b22 3183 tree context = DECL_CONTEXT (decl);
c6a1db6c
RS
3184
3185 while (context)
3186 {
3187 if (TREE_CODE (context) == RECORD_TYPE
3188 || TREE_CODE (context) == UNION_TYPE)
3189 return context;
3190 if (TREE_CODE (context) == TYPE_DECL
3191 || TREE_CODE (context) == FUNCTION_DECL)
3192 context = DECL_CONTEXT (context);
3193 else if (TREE_CODE (context) == BLOCK)
3194 context = BLOCK_SUPERCONTEXT (context);
3195 else
3196 /* Unhandled CONTEXT!? */
3197 abort ();
3198 }
3199 return NULL_TREE;
3200}
3201
3202void
3203print_obstack_statistics (str, o)
3204 char *str;
3205 struct obstack *o;
3206{
3207 struct _obstack_chunk *chunk = o->chunk;
3208 int n_chunks = 0;
3209 int n_alloc = 0;
3210
3211 while (chunk)
3212 {
3213 n_chunks += 1;
3214 n_alloc += chunk->limit - &chunk->contents[0];
3215 chunk = chunk->prev;
3216 }
3217 fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
3218 str, n_alloc, n_chunks);
3219}
3220void
3221dump_tree_statistics ()
3222{
3223 int i;
3224 int total_nodes, total_bytes;
3225
3226 fprintf (stderr, "\n??? tree nodes created\n\n");
3227#ifdef GATHER_STATISTICS
3228 fprintf (stderr, "Kind Nodes Bytes\n");
3229 fprintf (stderr, "-------------------------------------\n");
3230 total_nodes = total_bytes = 0;
3231 for (i = 0; i < (int) all_kinds; i++)
3232 {
3233 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
3234 tree_node_counts[i], tree_node_sizes[i]);
3235 total_nodes += tree_node_counts[i];
3236 total_bytes += tree_node_sizes[i];
3237 }
3238 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
3239 fprintf (stderr, "-------------------------------------\n");
3240 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
3241 fprintf (stderr, "-------------------------------------\n");
3242#else
3243 fprintf (stderr, "(No per-node statistics)\n");
3244#endif
3245 print_lang_statistics ();
3246}
This page took 0.380298 seconds and 5 git commands to generate.