]> gcc.gnu.org Git - gcc.git/blame - gcc/tree-ssa-loop-niter.c
genopinit.c (main): Use vec<>::qsort method.
[gcc.git] / gcc / tree-ssa-loop-niter.c
CommitLineData
e9eb809d 1/* Functions to determine/estimate number of iterations of a loop.
23a5b65a 2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
b8698a0f 3
e9eb809d 4This file is part of GCC.
b8698a0f 5
e9eb809d
ZD
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
e9eb809d 9later version.
b8698a0f 10
e9eb809d
ZD
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
e9eb809d 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
e9eb809d
ZD
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "tree.h"
d8a2d370
DN
25#include "calls.h"
26#include "expr.h"
e9eb809d 27#include "tm_p.h"
e9eb809d 28#include "basic-block.h"
cf835838 29#include "gimple-pretty-print.h"
f9cc1a70 30#include "intl.h"
2fb9a547
AM
31#include "pointer-set.h"
32#include "tree-ssa-alias.h"
33#include "internal-fn.h"
34#include "gimple-expr.h"
35#include "is-a.h"
18f429e2 36#include "gimple.h"
45b0be94 37#include "gimplify.h"
5be5c238 38#include "gimple-iterator.h"
442b4905
AM
39#include "gimple-ssa.h"
40#include "tree-cfg.h"
41#include "tree-phinodes.h"
42#include "ssa-iterators.h"
e28030cf
AM
43#include "tree-ssa-loop-ivopts.h"
44#include "tree-ssa-loop-niter.h"
442b4905 45#include "tree-ssa-loop.h"
7ee2468b 46#include "dumpfile.h"
e9eb809d 47#include "cfgloop.h"
e9eb809d
ZD
48#include "tree-chrec.h"
49#include "tree-scalar-evolution.h"
86df10e3 50#include "tree-data-ref.h"
e9eb809d
ZD
51#include "params.h"
52#include "flags.h"
718f9c0f 53#include "diagnostic-core.h"
e9eb809d 54#include "tree-inline.h"
fbd28bc3 55#include "tree-pass.h"
d8a2d370 56#include "stringpool.h"
7190fdc1 57#include "tree-ssanames.h"
807e902e 58#include "wide-int-print.h"
e9eb809d 59
71343877 60
c22940cd 61#define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
e9eb809d 62
b3ce5b6e
ZD
63/* The maximum number of dominator BBs we search for conditions
64 of loop header copies we use for simplifying a conditional
65 expression. */
66#define MAX_DOMINATORS_TO_WALK 8
e9eb809d
ZD
67
68/*
69
70 Analysis of number of iterations of an affine exit test.
71
72*/
73
b3ce5b6e
ZD
74/* Bounds on some value, BELOW <= X <= UP. */
75
76typedef struct
77{
78 mpz_t below, up;
79} bounds;
80
b3ce5b6e
ZD
81
82/* Splits expression EXPR to a variable part VAR and constant OFFSET. */
83
84static void
85split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
86{
87 tree type = TREE_TYPE (expr);
88 tree op0, op1;
b3ce5b6e
ZD
89 bool negate = false;
90
91 *var = expr;
92 mpz_set_ui (offset, 0);
93
94 switch (TREE_CODE (expr))
95 {
96 case MINUS_EXPR:
97 negate = true;
98 /* Fallthru. */
99
100 case PLUS_EXPR:
5be014d5 101 case POINTER_PLUS_EXPR:
b3ce5b6e
ZD
102 op0 = TREE_OPERAND (expr, 0);
103 op1 = TREE_OPERAND (expr, 1);
104
105 if (TREE_CODE (op1) != INTEGER_CST)
106 break;
107
108 *var = op0;
109 /* Always sign extend the offset. */
807e902e 110 wi::to_mpz (op1, offset, SIGNED);
eab1da69
UB
111 if (negate)
112 mpz_neg (offset, offset);
b3ce5b6e
ZD
113 break;
114
115 case INTEGER_CST:
116 *var = build_int_cst_type (type, 0);
807e902e 117 wi::to_mpz (expr, offset, TYPE_SIGN (type));
b3ce5b6e
ZD
118 break;
119
120 default:
121 break;
122 }
123}
124
125/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
126 in TYPE to MIN and MAX. */
127
128static void
7190fdc1 129determine_value_range (struct loop *loop, tree type, tree var, mpz_t off,
b3ce5b6e
ZD
130 mpz_t min, mpz_t max)
131{
807e902e 132 wide_int minv, maxv;
7190fdc1
JJ
133 enum value_range_type rtype = VR_VARYING;
134
b3ce5b6e
ZD
135 /* If the expression is a constant, we know its value exactly. */
136 if (integer_zerop (var))
137 {
138 mpz_set (min, off);
139 mpz_set (max, off);
140 return;
141 }
142
7190fdc1
JJ
143 get_type_static_bounds (type, min, max);
144
145 /* See if we have some range info from VRP. */
146 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
147 {
148 edge e = loop_preheader_edge (loop);
807e902e 149 signop sgn = TYPE_SIGN (type);
7190fdc1
JJ
150 gimple_stmt_iterator gsi;
151
152 /* Either for VAR itself... */
153 rtype = get_range_info (var, &minv, &maxv);
154 /* Or for PHI results in loop->header where VAR is used as
155 PHI argument from the loop preheader edge. */
156 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
157 {
158 gimple phi = gsi_stmt (gsi);
807e902e 159 wide_int minc, maxc;
7190fdc1
JJ
160 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
161 && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
162 == VR_RANGE))
163 {
164 if (rtype != VR_RANGE)
165 {
166 rtype = VR_RANGE;
167 minv = minc;
168 maxv = maxc;
169 }
170 else
171 {
807e902e
KZ
172 minv = wi::max (minv, minc, sgn);
173 maxv = wi::min (maxv, maxc, sgn);
20adc5b1
JJ
174 /* If the PHI result range are inconsistent with
175 the VAR range, give up on looking at the PHI
176 results. This can happen if VR_UNDEFINED is
177 involved. */
807e902e 178 if (wi::gt_p (minv, maxv, sgn))
20adc5b1
JJ
179 {
180 rtype = get_range_info (var, &minv, &maxv);
181 break;
182 }
7190fdc1
JJ
183 }
184 }
185 }
186 if (rtype == VR_RANGE)
187 {
188 mpz_t minm, maxm;
807e902e 189 gcc_assert (wi::le_p (minv, maxv, sgn));
7190fdc1
JJ
190 mpz_init (minm);
191 mpz_init (maxm);
807e902e
KZ
192 wi::to_mpz (minv, minm, sgn);
193 wi::to_mpz (maxv, maxm, sgn);
7190fdc1
JJ
194 mpz_add (minm, minm, off);
195 mpz_add (maxm, maxm, off);
196 /* If the computation may not wrap or off is zero, then this
197 is always fine. If off is negative and minv + off isn't
198 smaller than type's minimum, or off is positive and
199 maxv + off isn't bigger than type's maximum, use the more
200 precise range too. */
201 if (nowrap_type_p (type)
202 || mpz_sgn (off) == 0
203 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
204 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
205 {
206 mpz_set (min, minm);
207 mpz_set (max, maxm);
208 mpz_clear (minm);
209 mpz_clear (maxm);
210 return;
211 }
212 mpz_clear (minm);
213 mpz_clear (maxm);
214 }
215 }
216
b3ce5b6e
ZD
217 /* If the computation may wrap, we know nothing about the value, except for
218 the range of the type. */
b3ce5b6e
ZD
219 if (!nowrap_type_p (type))
220 return;
221
222 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
223 add it to MIN, otherwise to MAX. */
224 if (mpz_sgn (off) < 0)
225 mpz_add (max, max, off);
226 else
227 mpz_add (min, min, off);
228}
229
230/* Stores the bounds on the difference of the values of the expressions
231 (var + X) and (var + Y), computed in TYPE, to BNDS. */
232
233static void
234bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
235 bounds *bnds)
236{
237 int rel = mpz_cmp (x, y);
238 bool may_wrap = !nowrap_type_p (type);
239 mpz_t m;
240
241 /* If X == Y, then the expressions are always equal.
242 If X > Y, there are the following possibilities:
243 a) neither of var + X and var + Y overflow or underflow, or both of
244 them do. Then their difference is X - Y.
245 b) var + X overflows, and var + Y does not. Then the values of the
246 expressions are var + X - M and var + Y, where M is the range of
247 the type, and their difference is X - Y - M.
248 c) var + Y underflows and var + X does not. Their difference again
249 is M - X + Y.
250 Therefore, if the arithmetics in type does not overflow, then the
251 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
252 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
253 (X - Y, X - Y + M). */
254
255 if (rel == 0)
256 {
257 mpz_set_ui (bnds->below, 0);
258 mpz_set_ui (bnds->up, 0);
259 return;
260 }
261
262 mpz_init (m);
807e902e 263 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
b3ce5b6e
ZD
264 mpz_add_ui (m, m, 1);
265 mpz_sub (bnds->up, x, y);
266 mpz_set (bnds->below, bnds->up);
267
268 if (may_wrap)
269 {
270 if (rel > 0)
271 mpz_sub (bnds->below, bnds->below, m);
272 else
273 mpz_add (bnds->up, bnds->up, m);
274 }
275
276 mpz_clear (m);
277}
278
279/* From condition C0 CMP C1 derives information regarding the
280 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
281 and stores it to BNDS. */
282
283static void
284refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
285 tree vary, mpz_t offy,
286 tree c0, enum tree_code cmp, tree c1,
287 bounds *bnds)
288{
17b236ed 289 tree varc0, varc1, tmp, ctype;
b3ce5b6e
ZD
290 mpz_t offc0, offc1, loffx, loffy, bnd;
291 bool lbound = false;
292 bool no_wrap = nowrap_type_p (type);
293 bool x_ok, y_ok;
294
295 switch (cmp)
296 {
297 case LT_EXPR:
298 case LE_EXPR:
299 case GT_EXPR:
300 case GE_EXPR:
17b236ed
ZD
301 STRIP_SIGN_NOPS (c0);
302 STRIP_SIGN_NOPS (c1);
303 ctype = TREE_TYPE (c0);
36618b93 304 if (!useless_type_conversion_p (ctype, type))
17b236ed
ZD
305 return;
306
b3ce5b6e
ZD
307 break;
308
309 case EQ_EXPR:
310 /* We could derive quite precise information from EQ_EXPR, however, such
17b236ed
ZD
311 a guard is unlikely to appear, so we do not bother with handling
312 it. */
b3ce5b6e
ZD
313 return;
314
315 case NE_EXPR:
17b236ed
ZD
316 /* NE_EXPR comparisons do not contain much of useful information, except for
317 special case of comparing with the bounds of the type. */
318 if (TREE_CODE (c1) != INTEGER_CST
319 || !INTEGRAL_TYPE_P (type))
320 return;
321
322 /* Ensure that the condition speaks about an expression in the same type
323 as X and Y. */
324 ctype = TREE_TYPE (c0);
325 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
326 return;
327 c0 = fold_convert (type, c0);
328 c1 = fold_convert (type, c1);
329
330 if (TYPE_MIN_VALUE (type)
331 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
332 {
333 cmp = GT_EXPR;
334 break;
335 }
336 if (TYPE_MAX_VALUE (type)
337 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
338 {
339 cmp = LT_EXPR;
340 break;
341 }
342
b3ce5b6e
ZD
343 return;
344 default:
345 return;
b8698a0f 346 }
b3ce5b6e
ZD
347
348 mpz_init (offc0);
349 mpz_init (offc1);
350 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
351 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
352
353 /* We are only interested in comparisons of expressions based on VARX and
354 VARY. TODO -- we might also be able to derive some bounds from
355 expressions containing just one of the variables. */
356
357 if (operand_equal_p (varx, varc1, 0))
358 {
359 tmp = varc0; varc0 = varc1; varc1 = tmp;
360 mpz_swap (offc0, offc1);
361 cmp = swap_tree_comparison (cmp);
362 }
363
364 if (!operand_equal_p (varx, varc0, 0)
365 || !operand_equal_p (vary, varc1, 0))
366 goto end;
367
368 mpz_init_set (loffx, offx);
369 mpz_init_set (loffy, offy);
370
371 if (cmp == GT_EXPR || cmp == GE_EXPR)
372 {
373 tmp = varx; varx = vary; vary = tmp;
374 mpz_swap (offc0, offc1);
375 mpz_swap (loffx, loffy);
376 cmp = swap_tree_comparison (cmp);
377 lbound = true;
378 }
379
380 /* If there is no overflow, the condition implies that
381
382 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
383
384 The overflows and underflows may complicate things a bit; each
385 overflow decreases the appropriate offset by M, and underflow
386 increases it by M. The above inequality would not necessarily be
387 true if
b8698a0f 388
b3ce5b6e
ZD
389 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
390 VARX + OFFC0 overflows, but VARX + OFFX does not.
391 This may only happen if OFFX < OFFC0.
392 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
393 VARY + OFFC1 underflows and VARY + OFFY does not.
394 This may only happen if OFFY > OFFC1. */
395
396 if (no_wrap)
397 {
398 x_ok = true;
399 y_ok = true;
400 }
401 else
402 {
403 x_ok = (integer_zerop (varx)
404 || mpz_cmp (loffx, offc0) >= 0);
405 y_ok = (integer_zerop (vary)
406 || mpz_cmp (loffy, offc1) <= 0);
407 }
408
409 if (x_ok && y_ok)
410 {
411 mpz_init (bnd);
412 mpz_sub (bnd, loffx, loffy);
413 mpz_add (bnd, bnd, offc1);
414 mpz_sub (bnd, bnd, offc0);
415
416 if (cmp == LT_EXPR)
417 mpz_sub_ui (bnd, bnd, 1);
418
419 if (lbound)
420 {
421 mpz_neg (bnd, bnd);
422 if (mpz_cmp (bnds->below, bnd) < 0)
423 mpz_set (bnds->below, bnd);
424 }
425 else
426 {
427 if (mpz_cmp (bnd, bnds->up) < 0)
428 mpz_set (bnds->up, bnd);
429 }
430 mpz_clear (bnd);
431 }
432
433 mpz_clear (loffx);
434 mpz_clear (loffy);
435end:
436 mpz_clear (offc0);
437 mpz_clear (offc1);
438}
439
440/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
441 The subtraction is considered to be performed in arbitrary precision,
442 without overflows.
b8698a0f 443
b3ce5b6e
ZD
444 We do not attempt to be too clever regarding the value ranges of X and
445 Y; most of the time, they are just integers or ssa names offsetted by
446 integer. However, we try to use the information contained in the
447 comparisons before the loop (usually created by loop header copying). */
448
449static void
450bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
451{
452 tree type = TREE_TYPE (x);
453 tree varx, vary;
454 mpz_t offx, offy;
455 mpz_t minx, maxx, miny, maxy;
456 int cnt = 0;
457 edge e;
458 basic_block bb;
726a989a
RB
459 tree c0, c1;
460 gimple cond;
b3ce5b6e
ZD
461 enum tree_code cmp;
462
17b236ed
ZD
463 /* Get rid of unnecessary casts, but preserve the value of
464 the expressions. */
465 STRIP_SIGN_NOPS (x);
466 STRIP_SIGN_NOPS (y);
467
b3ce5b6e
ZD
468 mpz_init (bnds->below);
469 mpz_init (bnds->up);
470 mpz_init (offx);
471 mpz_init (offy);
472 split_to_var_and_offset (x, &varx, offx);
473 split_to_var_and_offset (y, &vary, offy);
474
475 if (!integer_zerop (varx)
476 && operand_equal_p (varx, vary, 0))
477 {
478 /* Special case VARX == VARY -- we just need to compare the
479 offsets. The matters are a bit more complicated in the
480 case addition of offsets may wrap. */
481 bound_difference_of_offsetted_base (type, offx, offy, bnds);
482 }
483 else
484 {
485 /* Otherwise, use the value ranges to determine the initial
486 estimates on below and up. */
487 mpz_init (minx);
488 mpz_init (maxx);
489 mpz_init (miny);
490 mpz_init (maxy);
7190fdc1
JJ
491 determine_value_range (loop, type, varx, offx, minx, maxx);
492 determine_value_range (loop, type, vary, offy, miny, maxy);
b3ce5b6e
ZD
493
494 mpz_sub (bnds->below, minx, maxy);
495 mpz_sub (bnds->up, maxx, miny);
496 mpz_clear (minx);
497 mpz_clear (maxx);
498 mpz_clear (miny);
499 mpz_clear (maxy);
500 }
501
502 /* If both X and Y are constants, we cannot get any more precise. */
503 if (integer_zerop (varx) && integer_zerop (vary))
504 goto end;
505
506 /* Now walk the dominators of the loop header and use the entry
507 guards to refine the estimates. */
508 for (bb = loop->header;
fefa31b5 509 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
b3ce5b6e
ZD
510 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
511 {
512 if (!single_pred_p (bb))
513 continue;
514 e = single_pred_edge (bb);
515
516 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
517 continue;
518
726a989a
RB
519 cond = last_stmt (e->src);
520 c0 = gimple_cond_lhs (cond);
521 cmp = gimple_cond_code (cond);
522 c1 = gimple_cond_rhs (cond);
b3ce5b6e
ZD
523
524 if (e->flags & EDGE_FALSE_VALUE)
525 cmp = invert_tree_comparison (cmp, false);
526
527 refine_bounds_using_guard (type, varx, offx, vary, offy,
528 c0, cmp, c1, bnds);
529 ++cnt;
530 }
531
532end:
533 mpz_clear (offx);
534 mpz_clear (offy);
535}
536
537/* Update the bounds in BNDS that restrict the value of X to the bounds
538 that restrict the value of X + DELTA. X can be obtained as a
539 difference of two values in TYPE. */
540
541static void
807e902e 542bounds_add (bounds *bnds, const widest_int &delta, tree type)
b3ce5b6e
ZD
543{
544 mpz_t mdelta, max;
545
546 mpz_init (mdelta);
807e902e 547 wi::to_mpz (delta, mdelta, SIGNED);
b3ce5b6e
ZD
548
549 mpz_init (max);
807e902e 550 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
b3ce5b6e
ZD
551
552 mpz_add (bnds->up, bnds->up, mdelta);
553 mpz_add (bnds->below, bnds->below, mdelta);
554
555 if (mpz_cmp (bnds->up, max) > 0)
556 mpz_set (bnds->up, max);
557
558 mpz_neg (max, max);
559 if (mpz_cmp (bnds->below, max) < 0)
560 mpz_set (bnds->below, max);
561
562 mpz_clear (mdelta);
563 mpz_clear (max);
564}
565
566/* Update the bounds in BNDS that restrict the value of X to the bounds
567 that restrict the value of -X. */
568
569static void
570bounds_negate (bounds *bnds)
571{
572 mpz_t tmp;
573
574 mpz_init_set (tmp, bnds->up);
575 mpz_neg (bnds->up, bnds->below);
576 mpz_neg (bnds->below, tmp);
577 mpz_clear (tmp);
578}
579
e9eb809d
ZD
580/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
581
582static tree
583inverse (tree x, tree mask)
584{
585 tree type = TREE_TYPE (x);
26630a99
ZD
586 tree rslt;
587 unsigned ctr = tree_floor_log2 (mask);
588
589 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
590 {
591 unsigned HOST_WIDE_INT ix;
592 unsigned HOST_WIDE_INT imask;
593 unsigned HOST_WIDE_INT irslt = 1;
594
595 gcc_assert (cst_and_fits_in_hwi (x));
596 gcc_assert (cst_and_fits_in_hwi (mask));
597
598 ix = int_cst_value (x);
599 imask = int_cst_value (mask);
600
601 for (; ctr; ctr--)
602 {
603 irslt *= ix;
604 ix *= ix;
605 }
606 irslt &= imask;
e9eb809d 607
26630a99
ZD
608 rslt = build_int_cst_type (type, irslt);
609 }
610 else
e9eb809d 611 {
ff5e9a94 612 rslt = build_int_cst (type, 1);
26630a99
ZD
613 for (; ctr; ctr--)
614 {
d35936ab
RG
615 rslt = int_const_binop (MULT_EXPR, rslt, x);
616 x = int_const_binop (MULT_EXPR, x, x);
26630a99 617 }
d35936ab 618 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
e9eb809d
ZD
619 }
620
621 return rslt;
622}
623
b3ce5b6e 624/* Derives the upper bound BND on the number of executions of loop with exit
1987baa3
ZD
625 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
626 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
627 that the loop ends through this exit, i.e., the induction variable ever
628 reaches the value of C.
629
630 The value C is equal to final - base, where final and base are the final and
631 initial value of the actual induction variable in the analysed loop. BNDS
632 bounds the value of this difference when computed in signed type with
633 unbounded range, while the computation of C is performed in an unsigned
634 type with the range matching the range of the type of the induction variable.
635 In particular, BNDS.up contains an upper bound on C in the following cases:
636 -- if the iv must reach its final value without overflow, i.e., if
637 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
638 -- if final >= base, which we know to hold when BNDS.below >= 0. */
b3ce5b6e
ZD
639
640static void
641number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
1987baa3 642 bounds *bnds, bool exit_must_be_taken)
b3ce5b6e 643{
807e902e 644 widest_int max;
b3ce5b6e 645 mpz_t d;
5a892248 646 tree type = TREE_TYPE (c);
1987baa3
ZD
647 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
648 || mpz_sgn (bnds->below) >= 0);
b3ce5b6e 649
5a892248
RB
650 if (integer_onep (s)
651 || (TREE_CODE (c) == INTEGER_CST
652 && TREE_CODE (s) == INTEGER_CST
807e902e
KZ
653 && wi::mod_trunc (c, s, TYPE_SIGN (type)) == 0)
654 || (TYPE_OVERFLOW_UNDEFINED (type)
5a892248 655 && multiple_of_p (type, c, s)))
1987baa3
ZD
656 {
657 /* If C is an exact multiple of S, then its value will be reached before
658 the induction variable overflows (unless the loop is exited in some
659 other way before). Note that the actual induction variable in the
660 loop (which ranges from base to final instead of from 0 to C) may
661 overflow, in which case BNDS.up will not be giving a correct upper
662 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
663 no_overflow = true;
664 exit_must_be_taken = true;
665 }
666
667 /* If the induction variable can overflow, the number of iterations is at
668 most the period of the control variable (or infinite, but in that case
669 the whole # of iterations analysis will fail). */
670 if (!no_overflow)
b3ce5b6e 671 {
807e902e
KZ
672 max = wi::mask <widest_int> (TYPE_PRECISION (type) - wi::ctz (s), false);
673 wi::to_mpz (max, bnd, UNSIGNED);
b3ce5b6e
ZD
674 return;
675 }
676
1987baa3
ZD
677 /* Now we know that the induction variable does not overflow, so the loop
678 iterates at most (range of type / S) times. */
807e902e 679 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
1987baa3
ZD
680
681 /* If the induction variable is guaranteed to reach the value of C before
682 overflow, ... */
683 if (exit_must_be_taken)
684 {
073a8998 685 /* ... then we can strengthen this to C / S, and possibly we can use
1987baa3
ZD
686 the upper bound on C given by BNDS. */
687 if (TREE_CODE (c) == INTEGER_CST)
807e902e 688 wi::to_mpz (c, bnd, UNSIGNED);
1987baa3
ZD
689 else if (bnds_u_valid)
690 mpz_set (bnd, bnds->up);
691 }
b3ce5b6e
ZD
692
693 mpz_init (d);
807e902e 694 wi::to_mpz (s, d, UNSIGNED);
b3ce5b6e
ZD
695 mpz_fdiv_q (bnd, bnd, d);
696 mpz_clear (d);
697}
698
7f17528a
ZD
699/* Determines number of iterations of loop whose ending condition
700 is IV <> FINAL. TYPE is the type of the iv. The number of
e36dc339 701 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
f08ac361
ZD
702 we know that the exit must be taken eventually, i.e., that the IV
703 ever reaches the value FINAL (we derived this earlier, and possibly set
b3ce5b6e
ZD
704 NITER->assumptions to make sure this is the case). BNDS contains the
705 bounds on the difference FINAL - IV->base. */
e9eb809d 706
7f17528a
ZD
707static bool
708number_of_iterations_ne (tree type, affine_iv *iv, tree final,
e36dc339 709 struct tree_niter_desc *niter, bool exit_must_be_taken,
b3ce5b6e 710 bounds *bnds)
e9eb809d 711{
7f17528a
ZD
712 tree niter_type = unsigned_type_for (type);
713 tree s, c, d, bits, assumption, tmp, bound;
b3ce5b6e 714 mpz_t max;
e9eb809d 715
17684618
ZD
716 niter->control = *iv;
717 niter->bound = final;
718 niter->cmp = NE_EXPR;
719
b3ce5b6e
ZD
720 /* Rearrange the terms so that we get inequality S * i <> C, with S
721 positive. Also cast everything to the unsigned type. If IV does
722 not overflow, BNDS bounds the value of C. Also, this is the
723 case if the computation |FINAL - IV->base| does not overflow, i.e.,
724 if BNDS->below in the result is nonnegative. */
7f17528a 725 if (tree_int_cst_sign_bit (iv->step))
e9eb809d 726 {
7f17528a
ZD
727 s = fold_convert (niter_type,
728 fold_build1 (NEGATE_EXPR, type, iv->step));
729 c = fold_build2 (MINUS_EXPR, niter_type,
730 fold_convert (niter_type, iv->base),
731 fold_convert (niter_type, final));
b3ce5b6e 732 bounds_negate (bnds);
e9eb809d 733 }
a6f778b2 734 else
e9eb809d 735 {
7f17528a
ZD
736 s = fold_convert (niter_type, iv->step);
737 c = fold_build2 (MINUS_EXPR, niter_type,
738 fold_convert (niter_type, final),
739 fold_convert (niter_type, iv->base));
740 }
e9eb809d 741
b3ce5b6e 742 mpz_init (max);
1987baa3
ZD
743 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
744 exit_must_be_taken);
807e902e
KZ
745 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
746 TYPE_SIGN (niter_type));
b3ce5b6e
ZD
747 mpz_clear (max);
748
7f17528a
ZD
749 /* First the trivial cases -- when the step is 1. */
750 if (integer_onep (s))
751 {
752 niter->niter = c;
753 return true;
e9eb809d
ZD
754 }
755
7f17528a
ZD
756 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
757 is infinite. Otherwise, the number of iterations is
758 (inverse(s/d) * (c/d)) mod (size of mode/d). */
759 bits = num_ending_zeros (s);
760 bound = build_low_bits_mask (niter_type,
761 (TYPE_PRECISION (niter_type)
ae7e9ddd 762 - tree_to_uhwi (bits)));
e9eb809d 763
7f17528a 764 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
ff5e9a94 765 build_int_cst (niter_type, 1), bits);
7f17528a 766 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
e9eb809d 767
e36dc339 768 if (!exit_must_be_taken)
7f17528a 769 {
e36dc339 770 /* If we cannot assume that the exit is taken eventually, record the
7f17528a
ZD
771 assumptions for divisibility of c. */
772 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
773 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
774 assumption, build_int_cst (niter_type, 0));
6e682d7e 775 if (!integer_nonzerop (assumption))
7f17528a
ZD
776 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
777 niter->assumptions, assumption);
e9eb809d 778 }
b8698a0f 779
7f17528a
ZD
780 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
781 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
782 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
783 return true;
784}
e9eb809d 785
7f17528a
ZD
786/* Checks whether we can determine the final value of the control variable
787 of the loop with ending condition IV0 < IV1 (computed in TYPE).
788 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
789 of the step. The assumptions necessary to ensure that the computation
790 of the final value does not overflow are recorded in NITER. If we
791 find the final value, we adjust DELTA and return TRUE. Otherwise
b3ce5b6e 792 we return false. BNDS bounds the value of IV1->base - IV0->base,
e36dc339
ZD
793 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
794 true if we know that the exit must be taken eventually. */
7f17528a
ZD
795
796static bool
797number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
798 struct tree_niter_desc *niter,
b3ce5b6e 799 tree *delta, tree step,
e36dc339 800 bool exit_must_be_taken, bounds *bnds)
7f17528a
ZD
801{
802 tree niter_type = TREE_TYPE (step);
803 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
804 tree tmod;
b3ce5b6e 805 mpz_t mmod;
7f17528a 806 tree assumption = boolean_true_node, bound, noloop;
e36dc339 807 bool ret = false, fv_comp_no_overflow;
5be014d5
AP
808 tree type1 = type;
809 if (POINTER_TYPE_P (type))
810 type1 = sizetype;
7f17528a
ZD
811
812 if (TREE_CODE (mod) != INTEGER_CST)
813 return false;
6e682d7e 814 if (integer_nonzerop (mod))
7f17528a 815 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
5be014d5 816 tmod = fold_convert (type1, mod);
7f17528a 817
b3ce5b6e 818 mpz_init (mmod);
807e902e 819 wi::to_mpz (mod, mmod, UNSIGNED);
b3ce5b6e
ZD
820 mpz_neg (mmod, mmod);
821
e36dc339
ZD
822 /* If the induction variable does not overflow and the exit is taken,
823 then the computation of the final value does not overflow. This is
824 also obviously the case if the new final value is equal to the
825 current one. Finally, we postulate this for pointer type variables,
826 as the code cannot rely on the object to that the pointer points being
827 placed at the end of the address space (and more pragmatically,
828 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
829 if (integer_zerop (mod) || POINTER_TYPE_P (type))
830 fv_comp_no_overflow = true;
831 else if (!exit_must_be_taken)
832 fv_comp_no_overflow = false;
833 else
834 fv_comp_no_overflow =
835 (iv0->no_overflow && integer_nonzerop (iv0->step))
836 || (iv1->no_overflow && integer_nonzerop (iv1->step));
837
6e42ce54 838 if (integer_nonzerop (iv0->step))
e9eb809d 839 {
7f17528a
ZD
840 /* The final value of the iv is iv1->base + MOD, assuming that this
841 computation does not overflow, and that
842 iv0->base <= iv1->base + MOD. */
e36dc339 843 if (!fv_comp_no_overflow)
7f17528a 844 {
97b4ba9f 845 bound = fold_build2 (MINUS_EXPR, type1,
5be014d5 846 TYPE_MAX_VALUE (type1), tmod);
7f17528a
ZD
847 assumption = fold_build2 (LE_EXPR, boolean_type_node,
848 iv1->base, bound);
6e682d7e 849 if (integer_zerop (assumption))
b3ce5b6e 850 goto end;
7f17528a 851 }
b3ce5b6e
ZD
852 if (mpz_cmp (mmod, bnds->below) < 0)
853 noloop = boolean_false_node;
97b4ba9f
JJ
854 else if (POINTER_TYPE_P (type))
855 noloop = fold_build2 (GT_EXPR, boolean_type_node,
856 iv0->base,
5d49b6a7 857 fold_build_pointer_plus (iv1->base, tmod));
b3ce5b6e
ZD
858 else
859 noloop = fold_build2 (GT_EXPR, boolean_type_node,
860 iv0->base,
5be014d5 861 fold_build2 (PLUS_EXPR, type1,
b3ce5b6e 862 iv1->base, tmod));
e9eb809d
ZD
863 }
864 else
865 {
7f17528a
ZD
866 /* The final value of the iv is iv0->base - MOD, assuming that this
867 computation does not overflow, and that
868 iv0->base - MOD <= iv1->base. */
e36dc339 869 if (!fv_comp_no_overflow)
7f17528a 870 {
5be014d5
AP
871 bound = fold_build2 (PLUS_EXPR, type1,
872 TYPE_MIN_VALUE (type1), tmod);
7f17528a
ZD
873 assumption = fold_build2 (GE_EXPR, boolean_type_node,
874 iv0->base, bound);
6e682d7e 875 if (integer_zerop (assumption))
b3ce5b6e 876 goto end;
7f17528a 877 }
b3ce5b6e
ZD
878 if (mpz_cmp (mmod, bnds->below) < 0)
879 noloop = boolean_false_node;
97b4ba9f
JJ
880 else if (POINTER_TYPE_P (type))
881 noloop = fold_build2 (GT_EXPR, boolean_type_node,
5d49b6a7
RG
882 fold_build_pointer_plus (iv0->base,
883 fold_build1 (NEGATE_EXPR,
884 type1, tmod)),
97b4ba9f 885 iv1->base);
b3ce5b6e
ZD
886 else
887 noloop = fold_build2 (GT_EXPR, boolean_type_node,
5be014d5 888 fold_build2 (MINUS_EXPR, type1,
b3ce5b6e
ZD
889 iv0->base, tmod),
890 iv1->base);
e9eb809d
ZD
891 }
892
6e682d7e 893 if (!integer_nonzerop (assumption))
7f17528a
ZD
894 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
895 niter->assumptions,
896 assumption);
6e682d7e 897 if (!integer_zerop (noloop))
7f17528a
ZD
898 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
899 niter->may_be_zero,
900 noloop);
807e902e 901 bounds_add (bnds, wi::to_widest (mod), type);
7f17528a 902 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
b3ce5b6e
ZD
903
904 ret = true;
905end:
906 mpz_clear (mmod);
907 return ret;
7f17528a
ZD
908}
909
910/* Add assertions to NITER that ensure that the control variable of the loop
911 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
912 are TYPE. Returns false if we can prove that there is an overflow, true
913 otherwise. STEP is the absolute value of the step. */
e9eb809d 914
7f17528a
ZD
915static bool
916assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
917 struct tree_niter_desc *niter, tree step)
918{
919 tree bound, d, assumption, diff;
920 tree niter_type = TREE_TYPE (step);
921
6e42ce54 922 if (integer_nonzerop (iv0->step))
e9eb809d 923 {
7f17528a
ZD
924 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
925 if (iv0->no_overflow)
926 return true;
927
928 /* If iv0->base is a constant, we can determine the last value before
929 overflow precisely; otherwise we conservatively assume
930 MAX - STEP + 1. */
931
932 if (TREE_CODE (iv0->base) == INTEGER_CST)
e9eb809d 933 {
7f17528a
ZD
934 d = fold_build2 (MINUS_EXPR, niter_type,
935 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
936 fold_convert (niter_type, iv0->base));
937 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
e9eb809d
ZD
938 }
939 else
7f17528a 940 diff = fold_build2 (MINUS_EXPR, niter_type, step,
ff5e9a94 941 build_int_cst (niter_type, 1));
7f17528a
ZD
942 bound = fold_build2 (MINUS_EXPR, type,
943 TYPE_MAX_VALUE (type), fold_convert (type, diff));
944 assumption = fold_build2 (LE_EXPR, boolean_type_node,
945 iv1->base, bound);
946 }
947 else
948 {
949 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
950 if (iv1->no_overflow)
951 return true;
952
953 if (TREE_CODE (iv1->base) == INTEGER_CST)
e9eb809d 954 {
7f17528a
ZD
955 d = fold_build2 (MINUS_EXPR, niter_type,
956 fold_convert (niter_type, iv1->base),
957 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
958 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
e9eb809d 959 }
7f17528a
ZD
960 else
961 diff = fold_build2 (MINUS_EXPR, niter_type, step,
ff5e9a94 962 build_int_cst (niter_type, 1));
7f17528a
ZD
963 bound = fold_build2 (PLUS_EXPR, type,
964 TYPE_MIN_VALUE (type), fold_convert (type, diff));
965 assumption = fold_build2 (GE_EXPR, boolean_type_node,
966 iv0->base, bound);
e9eb809d
ZD
967 }
968
6e682d7e 969 if (integer_zerop (assumption))
7f17528a 970 return false;
6e682d7e 971 if (!integer_nonzerop (assumption))
7f17528a
ZD
972 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
973 niter->assumptions, assumption);
b8698a0f 974
7f17528a
ZD
975 iv0->no_overflow = true;
976 iv1->no_overflow = true;
977 return true;
978}
e9eb809d 979
7f17528a 980/* Add an assumption to NITER that a loop whose ending condition
b3ce5b6e
ZD
981 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
982 bounds the value of IV1->base - IV0->base. */
7f17528a
ZD
983
984static void
985assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
b3ce5b6e 986 struct tree_niter_desc *niter, bounds *bnds)
7f17528a
ZD
987{
988 tree assumption = boolean_true_node, bound, diff;
5be014d5 989 tree mbz, mbzl, mbzr, type1;
b3ce5b6e 990 bool rolls_p, no_overflow_p;
807e902e 991 widest_int dstep;
b3ce5b6e
ZD
992 mpz_t mstep, max;
993
994 /* We are going to compute the number of iterations as
995 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
b8698a0f
L
996 variant of TYPE. This formula only works if
997
b3ce5b6e 998 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
b8698a0f 999
b3ce5b6e 1000 (where MAX is the maximum value of the unsigned variant of TYPE, and
072edf07
SP
1001 the computations in this formula are performed in full precision,
1002 i.e., without overflows).
b3ce5b6e
ZD
1003
1004 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
072edf07 1005 we have a condition of the form iv0->base - step < iv1->base before the loop,
b3ce5b6e
ZD
1006 and for loops iv0->base < iv1->base - step * i the condition
1007 iv0->base < iv1->base + step, due to loop header copying, which enable us
1008 to prove the lower bound.
b8698a0f 1009
b3ce5b6e
ZD
1010 The upper bound is more complicated. Unless the expressions for initial
1011 and final value themselves contain enough information, we usually cannot
1012 derive it from the context. */
1013
1014 /* First check whether the answer does not follow from the bounds we gathered
1015 before. */
1016 if (integer_nonzerop (iv0->step))
807e902e 1017 dstep = wi::to_widest (iv0->step);
b3ce5b6e
ZD
1018 else
1019 {
807e902e 1020 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
27bcd47c 1021 dstep = -dstep;
b3ce5b6e
ZD
1022 }
1023
1024 mpz_init (mstep);
807e902e 1025 wi::to_mpz (dstep, mstep, UNSIGNED);
b3ce5b6e
ZD
1026 mpz_neg (mstep, mstep);
1027 mpz_add_ui (mstep, mstep, 1);
1028
1029 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1030
1031 mpz_init (max);
807e902e 1032 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
b3ce5b6e
ZD
1033 mpz_add (max, max, mstep);
1034 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1035 /* For pointers, only values lying inside a single object
1036 can be compared or manipulated by pointer arithmetics.
1037 Gcc in general does not allow or handle objects larger
1038 than half of the address space, hence the upper bound
1039 is satisfied for pointers. */
1040 || POINTER_TYPE_P (type));
1041 mpz_clear (mstep);
1042 mpz_clear (max);
1043
1044 if (rolls_p && no_overflow_p)
1045 return;
b8698a0f 1046
5be014d5
AP
1047 type1 = type;
1048 if (POINTER_TYPE_P (type))
1049 type1 = sizetype;
b3ce5b6e
ZD
1050
1051 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1052 we must be careful not to introduce overflow. */
7f17528a 1053
6e42ce54 1054 if (integer_nonzerop (iv0->step))
e9eb809d 1055 {
5be014d5
AP
1056 diff = fold_build2 (MINUS_EXPR, type1,
1057 iv0->step, build_int_cst (type1, 1));
e9eb809d 1058
7f17528a
ZD
1059 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1060 0 address never belongs to any object, we can assume this for
1061 pointers. */
1062 if (!POINTER_TYPE_P (type))
e9eb809d 1063 {
5be014d5 1064 bound = fold_build2 (PLUS_EXPR, type1,
7f17528a
ZD
1065 TYPE_MIN_VALUE (type), diff);
1066 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1067 iv0->base, bound);
e9eb809d
ZD
1068 }
1069
7f17528a 1070 /* And then we can compute iv0->base - diff, and compare it with
b8698a0f
L
1071 iv1->base. */
1072 mbzl = fold_build2 (MINUS_EXPR, type1,
d24a32a1
ZD
1073 fold_convert (type1, iv0->base), diff);
1074 mbzr = fold_convert (type1, iv1->base);
e9eb809d 1075 }
7f17528a 1076 else
e9eb809d 1077 {
5be014d5
AP
1078 diff = fold_build2 (PLUS_EXPR, type1,
1079 iv1->step, build_int_cst (type1, 1));
7f17528a
ZD
1080
1081 if (!POINTER_TYPE_P (type))
e9eb809d 1082 {
5be014d5 1083 bound = fold_build2 (PLUS_EXPR, type1,
7f17528a
ZD
1084 TYPE_MAX_VALUE (type), diff);
1085 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1086 iv1->base, bound);
e9eb809d
ZD
1087 }
1088
d24a32a1
ZD
1089 mbzl = fold_convert (type1, iv0->base);
1090 mbzr = fold_build2 (MINUS_EXPR, type1,
1091 fold_convert (type1, iv1->base), diff);
7f17528a 1092 }
e9eb809d 1093
6e682d7e 1094 if (!integer_nonzerop (assumption))
7f17528a
ZD
1095 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1096 niter->assumptions, assumption);
b3ce5b6e
ZD
1097 if (!rolls_p)
1098 {
1099 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1100 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1101 niter->may_be_zero, mbz);
1102 }
7f17528a 1103}
e9eb809d 1104
7f17528a
ZD
1105/* Determines number of iterations of loop whose ending condition
1106 is IV0 < IV1. TYPE is the type of the iv. The number of
b3ce5b6e 1107 iterations is stored to NITER. BNDS bounds the difference
e36dc339
ZD
1108 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1109 that the exit must be taken eventually. */
7f17528a
ZD
1110
1111static bool
1112number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1113 struct tree_niter_desc *niter,
e36dc339 1114 bool exit_must_be_taken, bounds *bnds)
7f17528a
ZD
1115{
1116 tree niter_type = unsigned_type_for (type);
1117 tree delta, step, s;
b3ce5b6e 1118 mpz_t mstep, tmp;
7f17528a 1119
6e42ce54 1120 if (integer_nonzerop (iv0->step))
17684618
ZD
1121 {
1122 niter->control = *iv0;
1123 niter->cmp = LT_EXPR;
1124 niter->bound = iv1->base;
1125 }
1126 else
1127 {
1128 niter->control = *iv1;
1129 niter->cmp = GT_EXPR;
1130 niter->bound = iv0->base;
1131 }
1132
7f17528a
ZD
1133 delta = fold_build2 (MINUS_EXPR, niter_type,
1134 fold_convert (niter_type, iv1->base),
1135 fold_convert (niter_type, iv0->base));
1136
1137 /* First handle the special case that the step is +-1. */
6e42ce54
ZD
1138 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1139 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
7f17528a
ZD
1140 {
1141 /* for (i = iv0->base; i < iv1->base; i++)
1142
1143 or
82b85a85 1144
7f17528a 1145 for (i = iv1->base; i > iv0->base; i--).
b8698a0f 1146
7f17528a 1147 In both cases # of iterations is iv1->base - iv0->base, assuming that
b3ce5b6e
ZD
1148 iv1->base >= iv0->base.
1149
1150 First try to derive a lower bound on the value of
1151 iv1->base - iv0->base, computed in full precision. If the difference
1152 is nonnegative, we are done, otherwise we must record the
1153 condition. */
1154
1155 if (mpz_sgn (bnds->below) < 0)
1156 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1157 iv1->base, iv0->base);
7f17528a 1158 niter->niter = delta;
807e902e
KZ
1159 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1160 TYPE_SIGN (niter_type));
7f17528a 1161 return true;
e9eb809d 1162 }
7f17528a 1163
6e42ce54 1164 if (integer_nonzerop (iv0->step))
7f17528a 1165 step = fold_convert (niter_type, iv0->step);
e9eb809d 1166 else
7f17528a
ZD
1167 step = fold_convert (niter_type,
1168 fold_build1 (NEGATE_EXPR, type, iv1->step));
1169
1170 /* If we can determine the final value of the control iv exactly, we can
1171 transform the condition to != comparison. In particular, this will be
1172 the case if DELTA is constant. */
b3ce5b6e 1173 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
e36dc339 1174 exit_must_be_taken, bnds))
e9eb809d 1175 {
7f17528a
ZD
1176 affine_iv zps;
1177
ff5e9a94 1178 zps.base = build_int_cst (niter_type, 0);
7f17528a
ZD
1179 zps.step = step;
1180 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1181 zps does not overflow. */
1182 zps.no_overflow = true;
1183
b3ce5b6e 1184 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
e9eb809d
ZD
1185 }
1186
7f17528a
ZD
1187 /* Make sure that the control iv does not overflow. */
1188 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1189 return false;
e9eb809d 1190
7f17528a
ZD
1191 /* We determine the number of iterations as (delta + step - 1) / step. For
1192 this to work, we must know that iv1->base >= iv0->base - step + 1,
1193 otherwise the loop does not roll. */
b3ce5b6e 1194 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
7f17528a
ZD
1195
1196 s = fold_build2 (MINUS_EXPR, niter_type,
ff5e9a94 1197 step, build_int_cst (niter_type, 1));
7f17528a
ZD
1198 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1199 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
b3ce5b6e
ZD
1200
1201 mpz_init (mstep);
1202 mpz_init (tmp);
807e902e 1203 wi::to_mpz (step, mstep, UNSIGNED);
b3ce5b6e
ZD
1204 mpz_add (tmp, bnds->up, mstep);
1205 mpz_sub_ui (tmp, tmp, 1);
1206 mpz_fdiv_q (tmp, tmp, mstep);
807e902e
KZ
1207 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1208 TYPE_SIGN (niter_type));
b3ce5b6e
ZD
1209 mpz_clear (mstep);
1210 mpz_clear (tmp);
1211
7f17528a 1212 return true;
e9eb809d
ZD
1213}
1214
7f17528a
ZD
1215/* Determines number of iterations of loop whose ending condition
1216 is IV0 <= IV1. TYPE is the type of the iv. The number of
e36dc339 1217 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
f08ac361 1218 we know that this condition must eventually become false (we derived this
7f17528a 1219 earlier, and possibly set NITER->assumptions to make sure this
b3ce5b6e 1220 is the case). BNDS bounds the difference IV1->base - IV0->base. */
7f17528a
ZD
1221
1222static bool
1223number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
e36dc339 1224 struct tree_niter_desc *niter, bool exit_must_be_taken,
b3ce5b6e 1225 bounds *bnds)
7f17528a
ZD
1226{
1227 tree assumption;
5be014d5
AP
1228 tree type1 = type;
1229 if (POINTER_TYPE_P (type))
1230 type1 = sizetype;
7f17528a
ZD
1231
1232 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1233 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1234 value of the type. This we must know anyway, since if it is
e36dc339 1235 equal to this value, the loop rolls forever. We do not check
b8698a0f 1236 this condition for pointer type ivs, as the code cannot rely on
e36dc339
ZD
1237 the object to that the pointer points being placed at the end of
1238 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1239 not defined for pointers). */
7f17528a 1240
e36dc339 1241 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
7f17528a 1242 {
6e42ce54 1243 if (integer_nonzerop (iv0->step))
7f17528a 1244 assumption = fold_build2 (NE_EXPR, boolean_type_node,
97b4ba9f 1245 iv1->base, TYPE_MAX_VALUE (type));
7f17528a
ZD
1246 else
1247 assumption = fold_build2 (NE_EXPR, boolean_type_node,
97b4ba9f 1248 iv0->base, TYPE_MIN_VALUE (type));
7f17528a 1249
6e682d7e 1250 if (integer_zerop (assumption))
7f17528a 1251 return false;
6e682d7e 1252 if (!integer_nonzerop (assumption))
7f17528a
ZD
1253 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1254 niter->assumptions, assumption);
1255 }
1256
6e42ce54 1257 if (integer_nonzerop (iv0->step))
97b4ba9f
JJ
1258 {
1259 if (POINTER_TYPE_P (type))
5d49b6a7 1260 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
97b4ba9f
JJ
1261 else
1262 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1263 build_int_cst (type1, 1));
1264 }
1265 else if (POINTER_TYPE_P (type))
5d49b6a7 1266 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
7f17528a 1267 else
5be014d5
AP
1268 iv0->base = fold_build2 (MINUS_EXPR, type1,
1269 iv0->base, build_int_cst (type1, 1));
b3ce5b6e 1270
807e902e 1271 bounds_add (bnds, 1, type1);
b3ce5b6e 1272
e36dc339
ZD
1273 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1274 bnds);
b3ce5b6e
ZD
1275}
1276
1277/* Dumps description of affine induction variable IV to FILE. */
1278
1279static void
1280dump_affine_iv (FILE *file, affine_iv *iv)
1281{
1282 if (!integer_zerop (iv->step))
1283 fprintf (file, "[");
1284
1285 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1286
1287 if (!integer_zerop (iv->step))
1288 {
1289 fprintf (file, ", + , ");
1290 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1291 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1292 }
7f17528a 1293}
e9eb809d 1294
7f17528a
ZD
1295/* Determine the number of iterations according to condition (for staying
1296 inside loop) which compares two induction variables using comparison
1297 operator CODE. The induction variable on left side of the comparison
1298 is IV0, the right-hand side is IV1. Both induction variables must have
1299 type TYPE, which must be an integer or pointer type. The steps of the
1300 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
f08ac361 1301
b3ce5b6e
ZD
1302 LOOP is the loop whose number of iterations we are determining.
1303
f08ac361
ZD
1304 ONLY_EXIT is true if we are sure this is the only way the loop could be
1305 exited (including possibly non-returning function calls, exceptions, etc.)
1306 -- in this case we can use the information whether the control induction
1307 variables can overflow or not in a more efficient way.
b8698a0f 1308
870ca331
JH
1309 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1310
7f17528a 1311 The results (number of iterations and assumptions as described in
3fadf78a 1312 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
7f17528a
ZD
1313 Returns false if it fails to determine number of iterations, true if it
1314 was determined (possibly with some assumptions). */
c33e657d
ZD
1315
1316static bool
b3ce5b6e
ZD
1317number_of_iterations_cond (struct loop *loop,
1318 tree type, affine_iv *iv0, enum tree_code code,
f08ac361 1319 affine_iv *iv1, struct tree_niter_desc *niter,
870ca331 1320 bool only_exit, bool every_iteration)
e9eb809d 1321{
e36dc339 1322 bool exit_must_be_taken = false, ret;
b3ce5b6e 1323 bounds bnds;
7f17528a 1324
870ca331
JH
1325 /* If the test is not executed every iteration, wrapping may make the test
1326 to pass again.
1327 TODO: the overflow case can be still used as unreliable estimate of upper
1328 bound. But we have no API to pass it down to number of iterations code
1329 and, at present, it will not use it anyway. */
1330 if (!every_iteration
1331 && (!iv0->no_overflow || !iv1->no_overflow
1332 || code == NE_EXPR || code == EQ_EXPR))
1333 return false;
1334
7f17528a
ZD
1335 /* The meaning of these assumptions is this:
1336 if !assumptions
1337 then the rest of information does not have to be valid
1338 if may_be_zero then the loop does not roll, even if
1339 niter != 0. */
1340 niter->assumptions = boolean_true_node;
1341 niter->may_be_zero = boolean_false_node;
1342 niter->niter = NULL_TREE;
807e902e 1343 niter->max = 0;
17684618
ZD
1344 niter->bound = NULL_TREE;
1345 niter->cmp = ERROR_MARK;
1346
7f17528a
ZD
1347 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1348 the control variable is on lhs. */
1349 if (code == GE_EXPR || code == GT_EXPR
6e42ce54 1350 || (code == NE_EXPR && integer_zerop (iv0->step)))
c33e657d 1351 {
a6f778b2 1352 SWAP (iv0, iv1);
c33e657d
ZD
1353 code = swap_tree_comparison (code);
1354 }
e9eb809d 1355
7f17528a 1356 if (POINTER_TYPE_P (type))
e9eb809d 1357 {
7f17528a
ZD
1358 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1359 to the same object. If they do, the control variable cannot wrap
1360 (as wrap around the bounds of memory will never return a pointer
1361 that would be guaranteed to point to the same object, even if we
e36dc339 1362 avoid undefined behavior by casting to size_t and back). */
7f17528a
ZD
1363 iv0->no_overflow = true;
1364 iv1->no_overflow = true;
1365 }
e9eb809d 1366
e36dc339
ZD
1367 /* If the control induction variable does not overflow and the only exit
1368 from the loop is the one that we analyze, we know it must be taken
1369 eventually. */
1370 if (only_exit)
1371 {
1372 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1373 exit_must_be_taken = true;
1374 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1375 exit_must_be_taken = true;
1376 }
e9eb809d 1377
7f17528a
ZD
1378 /* We can handle the case when neither of the sides of the comparison is
1379 invariant, provided that the test is NE_EXPR. This rarely occurs in
1380 practice, but it is simple enough to manage. */
6e42ce54 1381 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
7f17528a 1382 {
5ece9847 1383 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
7f17528a
ZD
1384 if (code != NE_EXPR)
1385 return false;
e9eb809d 1386
5ece9847 1387 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
7f17528a
ZD
1388 iv0->step, iv1->step);
1389 iv0->no_overflow = false;
5ece9847 1390 iv1->step = build_int_cst (step_type, 0);
7f17528a
ZD
1391 iv1->no_overflow = true;
1392 }
c33e657d 1393
7f17528a
ZD
1394 /* If the result of the comparison is a constant, the loop is weird. More
1395 precise handling would be possible, but the situation is not common enough
1396 to waste time on it. */
6e42ce54 1397 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
7f17528a 1398 return false;
c33e657d 1399
7f17528a
ZD
1400 /* Ignore loops of while (i-- < 10) type. */
1401 if (code != NE_EXPR)
1402 {
1403 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
c33e657d 1404 return false;
c33e657d 1405
6e42ce54 1406 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
c33e657d 1407 return false;
7f17528a 1408 }
e9eb809d 1409
c0220ea4 1410 /* If the loop exits immediately, there is nothing to do. */
5a892248
RB
1411 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1412 if (tem && integer_zerop (tem))
7f17528a 1413 {
ff5e9a94 1414 niter->niter = build_int_cst (unsigned_type_for (type), 0);
807e902e 1415 niter->max = 0;
7f17528a
ZD
1416 return true;
1417 }
b8698a0f 1418
7f17528a
ZD
1419 /* OK, now we know we have a senseful loop. Handle several cases, depending
1420 on what comparison operator is used. */
b3ce5b6e
ZD
1421 bound_difference (loop, iv1->base, iv0->base, &bnds);
1422
1423 if (dump_file && (dump_flags & TDF_DETAILS))
1424 {
1425 fprintf (dump_file,
4dad0aca 1426 "Analyzing # of iterations of loop %d\n", loop->num);
b3ce5b6e
ZD
1427
1428 fprintf (dump_file, " exit condition ");
1429 dump_affine_iv (dump_file, iv0);
1430 fprintf (dump_file, " %s ",
1431 code == NE_EXPR ? "!="
1432 : code == LT_EXPR ? "<"
1433 : "<=");
1434 dump_affine_iv (dump_file, iv1);
1435 fprintf (dump_file, "\n");
1436
1437 fprintf (dump_file, " bounds on difference of bases: ");
1438 mpz_out_str (dump_file, 10, bnds.below);
1439 fprintf (dump_file, " ... ");
1440 mpz_out_str (dump_file, 10, bnds.up);
1441 fprintf (dump_file, "\n");
1442 }
1443
7f17528a
ZD
1444 switch (code)
1445 {
1446 case NE_EXPR:
6e42ce54 1447 gcc_assert (integer_zerop (iv1->step));
b3ce5b6e 1448 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
e36dc339 1449 exit_must_be_taken, &bnds);
b3ce5b6e
ZD
1450 break;
1451
7f17528a 1452 case LT_EXPR:
e36dc339 1453 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
b3ce5b6e
ZD
1454 &bnds);
1455 break;
1456
7f17528a 1457 case LE_EXPR:
e36dc339 1458 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
b3ce5b6e
ZD
1459 &bnds);
1460 break;
1461
c33e657d
ZD
1462 default:
1463 gcc_unreachable ();
1464 }
b3ce5b6e
ZD
1465
1466 mpz_clear (bnds.up);
1467 mpz_clear (bnds.below);
1468
1469 if (dump_file && (dump_flags & TDF_DETAILS))
1470 {
1471 if (ret)
1472 {
1473 fprintf (dump_file, " result:\n");
1474 if (!integer_nonzerop (niter->assumptions))
1475 {
1476 fprintf (dump_file, " under assumptions ");
1477 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1478 fprintf (dump_file, "\n");
1479 }
1480
1481 if (!integer_zerop (niter->may_be_zero))
1482 {
1483 fprintf (dump_file, " zero if ");
1484 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1485 fprintf (dump_file, "\n");
1486 }
1487
1488 fprintf (dump_file, " # of iterations ");
1489 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1490 fprintf (dump_file, ", bounded by ");
807e902e 1491 print_decu (niter->max, dump_file);
b3ce5b6e
ZD
1492 fprintf (dump_file, "\n");
1493 }
1494 else
1495 fprintf (dump_file, " failed\n\n");
1496 }
1497 return ret;
e9eb809d
ZD
1498}
1499
1d481ba8
ZD
1500/* Substitute NEW for OLD in EXPR and fold the result. */
1501
1502static tree
c22940cd 1503simplify_replace_tree (tree expr, tree old, tree new_tree)
1d481ba8
ZD
1504{
1505 unsigned i, n;
1506 tree ret = NULL_TREE, e, se;
1507
1508 if (!expr)
1509 return NULL_TREE;
1510
76c85743
RG
1511 /* Do not bother to replace constants. */
1512 if (CONSTANT_CLASS_P (old))
1513 return expr;
1514
1d481ba8
ZD
1515 if (expr == old
1516 || operand_equal_p (expr, old, 0))
c22940cd 1517 return unshare_expr (new_tree);
1d481ba8 1518
726a989a 1519 if (!EXPR_P (expr))
1d481ba8
ZD
1520 return expr;
1521
5039610b 1522 n = TREE_OPERAND_LENGTH (expr);
1d481ba8
ZD
1523 for (i = 0; i < n; i++)
1524 {
1525 e = TREE_OPERAND (expr, i);
c22940cd 1526 se = simplify_replace_tree (e, old, new_tree);
1d481ba8
ZD
1527 if (e == se)
1528 continue;
1529
1530 if (!ret)
1531 ret = copy_node (expr);
1532
1533 TREE_OPERAND (ret, i) = se;
1534 }
1535
1536 return (ret ? fold (ret) : expr);
1537}
1538
be1b5cba
ZD
1539/* Expand definitions of ssa names in EXPR as long as they are simple
1540 enough, and return the new expression. */
1541
d7bf3bcf 1542tree
be1b5cba
ZD
1543expand_simple_operations (tree expr)
1544{
1545 unsigned i, n;
726a989a 1546 tree ret = NULL_TREE, e, ee, e1;
6fff2603 1547 enum tree_code code;
726a989a 1548 gimple stmt;
6fff2603
JJ
1549
1550 if (expr == NULL_TREE)
1551 return expr;
be1b5cba
ZD
1552
1553 if (is_gimple_min_invariant (expr))
1554 return expr;
1555
6fff2603 1556 code = TREE_CODE (expr);
be1b5cba
ZD
1557 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1558 {
5039610b 1559 n = TREE_OPERAND_LENGTH (expr);
be1b5cba
ZD
1560 for (i = 0; i < n; i++)
1561 {
1562 e = TREE_OPERAND (expr, i);
1563 ee = expand_simple_operations (e);
1564 if (e == ee)
1565 continue;
1566
1567 if (!ret)
1568 ret = copy_node (expr);
1569
1570 TREE_OPERAND (ret, i) = ee;
1571 }
1572
6ac01510
ILT
1573 if (!ret)
1574 return expr;
1575
1576 fold_defer_overflow_warnings ();
1577 ret = fold (ret);
1578 fold_undefer_and_ignore_overflow_warnings ();
1579 return ret;
be1b5cba
ZD
1580 }
1581
1582 if (TREE_CODE (expr) != SSA_NAME)
1583 return expr;
1584
1585 stmt = SSA_NAME_DEF_STMT (expr);
726a989a 1586 if (gimple_code (stmt) == GIMPLE_PHI)
b3ce5b6e
ZD
1587 {
1588 basic_block src, dest;
1589
726a989a 1590 if (gimple_phi_num_args (stmt) != 1)
b3ce5b6e
ZD
1591 return expr;
1592 e = PHI_ARG_DEF (stmt, 0);
1593
1594 /* Avoid propagating through loop exit phi nodes, which
1595 could break loop-closed SSA form restrictions. */
726a989a 1596 dest = gimple_bb (stmt);
b3ce5b6e
ZD
1597 src = single_pred (dest);
1598 if (TREE_CODE (e) == SSA_NAME
1599 && src->loop_father != dest->loop_father)
1600 return expr;
1601
1602 return expand_simple_operations (e);
1603 }
726a989a 1604 if (gimple_code (stmt) != GIMPLE_ASSIGN)
be1b5cba
ZD
1605 return expr;
1606
c3a9b91b
RB
1607 /* Avoid expanding to expressions that contain SSA names that need
1608 to take part in abnormal coalescing. */
1609 ssa_op_iter iter;
1610 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
1611 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
1612 return expr;
1613
726a989a
RB
1614 e = gimple_assign_rhs1 (stmt);
1615 code = gimple_assign_rhs_code (stmt);
1616 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1617 {
1618 if (is_gimple_min_invariant (e))
1619 return e;
1620
1621 if (code == SSA_NAME)
1622 return expand_simple_operations (e);
1623
1624 return expr;
1625 }
1626
1627 switch (code)
1628 {
1a87cf0c 1629 CASE_CONVERT:
726a989a
RB
1630 /* Casts are simple. */
1631 ee = expand_simple_operations (e);
1632 return fold_build1 (code, TREE_TYPE (expr), ee);
1633
1634 case PLUS_EXPR:
1635 case MINUS_EXPR:
1636 case POINTER_PLUS_EXPR:
be1b5cba 1637 /* And increments and decrements by a constant are simple. */
726a989a
RB
1638 e1 = gimple_assign_rhs2 (stmt);
1639 if (!is_gimple_min_invariant (e1))
1640 return expr;
1641
1642 ee = expand_simple_operations (e);
1643 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
be1b5cba 1644
726a989a
RB
1645 default:
1646 return expr;
1647 }
be1b5cba
ZD
1648}
1649
e9eb809d 1650/* Tries to simplify EXPR using the condition COND. Returns the simplified
be1b5cba 1651 expression (or EXPR unchanged, if no simplification was possible). */
e9eb809d
ZD
1652
1653static tree
be1b5cba 1654tree_simplify_using_condition_1 (tree cond, tree expr)
e9eb809d
ZD
1655{
1656 bool changed;
be1b5cba 1657 tree e, te, e0, e1, e2, notcond;
e9eb809d
ZD
1658 enum tree_code code = TREE_CODE (expr);
1659
1660 if (code == INTEGER_CST)
1661 return expr;
1662
1663 if (code == TRUTH_OR_EXPR
1664 || code == TRUTH_AND_EXPR
1665 || code == COND_EXPR)
1666 {
1667 changed = false;
1668
be1b5cba 1669 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
e9eb809d
ZD
1670 if (TREE_OPERAND (expr, 0) != e0)
1671 changed = true;
1672
be1b5cba 1673 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
e9eb809d
ZD
1674 if (TREE_OPERAND (expr, 1) != e1)
1675 changed = true;
1676
1677 if (code == COND_EXPR)
1678 {
be1b5cba 1679 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
e9eb809d
ZD
1680 if (TREE_OPERAND (expr, 2) != e2)
1681 changed = true;
1682 }
1683 else
1684 e2 = NULL_TREE;
1685
1686 if (changed)
1687 {
1688 if (code == COND_EXPR)
c33e657d 1689 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
e9eb809d 1690 else
c33e657d 1691 expr = fold_build2 (code, boolean_type_node, e0, e1);
e9eb809d
ZD
1692 }
1693
1694 return expr;
1695 }
1696
1d481ba8
ZD
1697 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1698 propagation, and vice versa. Fold does not handle this, since it is
1699 considered too expensive. */
1700 if (TREE_CODE (cond) == EQ_EXPR)
1701 {
1702 e0 = TREE_OPERAND (cond, 0);
1703 e1 = TREE_OPERAND (cond, 1);
1704
1705 /* We know that e0 == e1. Check whether we cannot simplify expr
1706 using this fact. */
1707 e = simplify_replace_tree (expr, e0, e1);
6e682d7e 1708 if (integer_zerop (e) || integer_nonzerop (e))
1d481ba8
ZD
1709 return e;
1710
1711 e = simplify_replace_tree (expr, e1, e0);
6e682d7e 1712 if (integer_zerop (e) || integer_nonzerop (e))
1d481ba8
ZD
1713 return e;
1714 }
1715 if (TREE_CODE (expr) == EQ_EXPR)
1716 {
1717 e0 = TREE_OPERAND (expr, 0);
1718 e1 = TREE_OPERAND (expr, 1);
1719
1720 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1721 e = simplify_replace_tree (cond, e0, e1);
6e682d7e 1722 if (integer_zerop (e))
1d481ba8
ZD
1723 return e;
1724 e = simplify_replace_tree (cond, e1, e0);
6e682d7e 1725 if (integer_zerop (e))
1d481ba8
ZD
1726 return e;
1727 }
1728 if (TREE_CODE (expr) == NE_EXPR)
1729 {
1730 e0 = TREE_OPERAND (expr, 0);
1731 e1 = TREE_OPERAND (expr, 1);
1732
1733 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1734 e = simplify_replace_tree (cond, e0, e1);
6e682d7e 1735 if (integer_zerop (e))
1d481ba8
ZD
1736 return boolean_true_node;
1737 e = simplify_replace_tree (cond, e1, e0);
6e682d7e 1738 if (integer_zerop (e))
1d481ba8
ZD
1739 return boolean_true_node;
1740 }
1741
be1b5cba
ZD
1742 te = expand_simple_operations (expr);
1743
e9eb809d
ZD
1744 /* Check whether COND ==> EXPR. */
1745 notcond = invert_truthvalue (cond);
2f133f46 1746 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
6e682d7e 1747 if (e && integer_nonzerop (e))
e9eb809d
ZD
1748 return e;
1749
1750 /* Check whether COND ==> not EXPR. */
2f133f46 1751 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
6e682d7e 1752 if (e && integer_zerop (e))
e9eb809d
ZD
1753 return e;
1754
1755 return expr;
1756}
1757
be1b5cba
ZD
1758/* Tries to simplify EXPR using the condition COND. Returns the simplified
1759 expression (or EXPR unchanged, if no simplification was possible).
1760 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1761 of simple operations in definitions of ssa names in COND are expanded,
1762 so that things like casts or incrementing the value of the bound before
1763 the loop do not cause us to fail. */
1764
1765static tree
1766tree_simplify_using_condition (tree cond, tree expr)
1767{
1768 cond = expand_simple_operations (cond);
1769
1770 return tree_simplify_using_condition_1 (cond, expr);
1771}
b16fb82d 1772
e9eb809d 1773/* Tries to simplify EXPR using the conditions on entry to LOOP.
e9eb809d
ZD
1774 Returns the simplified expression (or EXPR unchanged, if no
1775 simplification was possible).*/
1776
1777static tree
b3ce5b6e 1778simplify_using_initial_conditions (struct loop *loop, tree expr)
e9eb809d
ZD
1779{
1780 edge e;
1781 basic_block bb;
726a989a 1782 gimple stmt;
b3ce5b6e 1783 tree cond;
b16fb82d 1784 int cnt = 0;
e9eb809d
ZD
1785
1786 if (TREE_CODE (expr) == INTEGER_CST)
1787 return expr;
1788
b16fb82d
RG
1789 /* Limit walking the dominators to avoid quadraticness in
1790 the number of BBs times the number of loops in degenerate
1791 cases. */
e9eb809d 1792 for (bb = loop->header;
fefa31b5 1793 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
e9eb809d
ZD
1794 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1795 {
c5cbcccf 1796 if (!single_pred_p (bb))
e9eb809d 1797 continue;
c5cbcccf 1798 e = single_pred_edge (bb);
e9eb809d
ZD
1799
1800 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1801 continue;
1802
726a989a
RB
1803 stmt = last_stmt (e->src);
1804 cond = fold_build2 (gimple_cond_code (stmt),
1805 boolean_type_node,
1806 gimple_cond_lhs (stmt),
1807 gimple_cond_rhs (stmt));
e9eb809d
ZD
1808 if (e->flags & EDGE_FALSE_VALUE)
1809 cond = invert_truthvalue (cond);
b3ce5b6e 1810 expr = tree_simplify_using_condition (cond, expr);
b16fb82d 1811 ++cnt;
e9eb809d
ZD
1812 }
1813
1814 return expr;
1815}
1816
c33e657d
ZD
1817/* Tries to simplify EXPR using the evolutions of the loop invariants
1818 in the superloops of LOOP. Returns the simplified expression
1819 (or EXPR unchanged, if no simplification was possible). */
1820
1821static tree
1822simplify_using_outer_evolutions (struct loop *loop, tree expr)
1823{
1824 enum tree_code code = TREE_CODE (expr);
1825 bool changed;
1826 tree e, e0, e1, e2;
1827
1828 if (is_gimple_min_invariant (expr))
1829 return expr;
1830
1831 if (code == TRUTH_OR_EXPR
1832 || code == TRUTH_AND_EXPR
1833 || code == COND_EXPR)
1834 {
1835 changed = false;
1836
1837 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1838 if (TREE_OPERAND (expr, 0) != e0)
1839 changed = true;
1840
1841 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1842 if (TREE_OPERAND (expr, 1) != e1)
1843 changed = true;
1844
1845 if (code == COND_EXPR)
1846 {
1847 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1848 if (TREE_OPERAND (expr, 2) != e2)
1849 changed = true;
1850 }
1851 else
1852 e2 = NULL_TREE;
1853
1854 if (changed)
1855 {
1856 if (code == COND_EXPR)
1857 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1858 else
1859 expr = fold_build2 (code, boolean_type_node, e0, e1);
1860 }
1861
1862 return expr;
1863 }
1864
1865 e = instantiate_parameters (loop, expr);
1866 if (is_gimple_min_invariant (e))
1867 return e;
1868
1869 return expr;
1870}
1871
f08ac361
ZD
1872/* Returns true if EXIT is the only possible exit from LOOP. */
1873
52778e2a 1874bool
22ea9ec0 1875loop_only_exit_p (const struct loop *loop, const_edge exit)
f08ac361
ZD
1876{
1877 basic_block *body;
726a989a 1878 gimple_stmt_iterator bsi;
f08ac361 1879 unsigned i;
726a989a 1880 gimple call;
f08ac361 1881
ac8f6c69 1882 if (exit != single_exit (loop))
f08ac361
ZD
1883 return false;
1884
1885 body = get_loop_body (loop);
1886 for (i = 0; i < loop->num_nodes; i++)
1887 {
726a989a 1888 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
f08ac361 1889 {
726a989a
RB
1890 call = gsi_stmt (bsi);
1891 if (gimple_code (call) != GIMPLE_CALL)
1892 continue;
1893
1894 if (gimple_has_side_effects (call))
f08ac361
ZD
1895 {
1896 free (body);
1897 return false;
1898 }
1899 }
1900 }
1901
1902 free (body);
1903 return true;
1904}
1905
e9eb809d
ZD
1906/* Stores description of number of iterations of LOOP derived from
1907 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1908 useful information could be derived (and fields of NITER has
1909 meaning described in comments at struct tree_niter_desc
f9cc1a70
PB
1910 declaration), false otherwise. If WARN is true and
1911 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
cd0f6278
JH
1912 potentially unsafe assumptions.
1913 When EVERY_ITERATION is true, only tests that are known to be executed
1914 every iteration are considered (i.e. only test that alone bounds the loop).
1915 */
e9eb809d
ZD
1916
1917bool
1918number_of_iterations_exit (struct loop *loop, edge exit,
f9cc1a70 1919 struct tree_niter_desc *niter,
cd0f6278 1920 bool warn, bool every_iteration)
e9eb809d 1921{
726a989a
RB
1922 gimple stmt;
1923 tree type;
a6f778b2 1924 tree op0, op1;
e9eb809d 1925 enum tree_code code;
a6f778b2 1926 affine_iv iv0, iv1;
870ca331 1927 bool safe;
e9eb809d 1928
870ca331
JH
1929 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
1930
1931 if (every_iteration && !safe)
e9eb809d
ZD
1932 return false;
1933
1934 niter->assumptions = boolean_false_node;
1935 stmt = last_stmt (exit->src);
726a989a 1936 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
e9eb809d
ZD
1937 return false;
1938
1939 /* We want the condition for staying inside loop. */
726a989a 1940 code = gimple_cond_code (stmt);
e9eb809d 1941 if (exit->flags & EDGE_TRUE_VALUE)
726a989a 1942 code = invert_tree_comparison (code, false);
e9eb809d 1943
e9eb809d
ZD
1944 switch (code)
1945 {
1946 case GT_EXPR:
1947 case GE_EXPR:
e9eb809d
ZD
1948 case LT_EXPR:
1949 case LE_EXPR:
870ca331 1950 case NE_EXPR:
e9eb809d
ZD
1951 break;
1952
1953 default:
1954 return false;
1955 }
b8698a0f 1956
726a989a
RB
1957 op0 = gimple_cond_lhs (stmt);
1958 op1 = gimple_cond_rhs (stmt);
e9eb809d
ZD
1959 type = TREE_TYPE (op0);
1960
1961 if (TREE_CODE (type) != INTEGER_TYPE
b3393f1f 1962 && !POINTER_TYPE_P (type))
e9eb809d 1963 return false;
b8698a0f 1964
f017bf5e 1965 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
e9eb809d 1966 return false;
f017bf5e 1967 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
e9eb809d
ZD
1968 return false;
1969
6ac01510 1970 /* We don't want to see undefined signed overflow warnings while
ea2c620c 1971 computing the number of iterations. */
6ac01510
ILT
1972 fold_defer_overflow_warnings ();
1973
7f17528a
ZD
1974 iv0.base = expand_simple_operations (iv0.base);
1975 iv1.base = expand_simple_operations (iv1.base);
b3ce5b6e 1976 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
870ca331 1977 loop_only_exit_p (loop, exit), safe))
6ac01510
ILT
1978 {
1979 fold_undefer_and_ignore_overflow_warnings ();
1980 return false;
1981 }
c33e657d
ZD
1982
1983 if (optimize >= 3)
1984 {
1985 niter->assumptions = simplify_using_outer_evolutions (loop,
1986 niter->assumptions);
1987 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1988 niter->may_be_zero);
1989 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1990 }
e9eb809d 1991
e9eb809d
ZD
1992 niter->assumptions
1993 = simplify_using_initial_conditions (loop,
b3ce5b6e 1994 niter->assumptions);
e9eb809d
ZD
1995 niter->may_be_zero
1996 = simplify_using_initial_conditions (loop,
b3ce5b6e 1997 niter->may_be_zero);
f9cc1a70 1998
6ac01510
ILT
1999 fold_undefer_and_ignore_overflow_warnings ();
2000
f2a1b469
JH
2001 /* If NITER has simplified into a constant, update MAX. */
2002 if (TREE_CODE (niter->niter) == INTEGER_CST)
807e902e 2003 niter->max = wi::to_widest (niter->niter);
f2a1b469 2004
f9cc1a70
PB
2005 if (integer_onep (niter->assumptions))
2006 return true;
2007
2008 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
2009 But if we can prove that there is overflow or some other source of weird
2010 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1551d44a 2011 if (integer_zerop (niter->assumptions) || !single_exit (loop))
f9cc1a70
PB
2012 return false;
2013
2014 if (flag_unsafe_loop_optimizations)
2015 niter->assumptions = boolean_true_node;
2016
2017 if (warn)
2018 {
2019 const char *wording;
726a989a 2020 location_t loc = gimple_location (stmt);
b8698a0f 2021
f9cc1a70
PB
2022 /* We can provide a more specific warning if one of the operator is
2023 constant and the other advances by +1 or -1. */
6e42ce54
ZD
2024 if (!integer_zerop (iv1.step)
2025 ? (integer_zerop (iv0.step)
a6f778b2 2026 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
6e42ce54 2027 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
f9cc1a70
PB
2028 wording =
2029 flag_unsafe_loop_optimizations
2030 ? N_("assuming that the loop is not infinite")
2031 : N_("cannot optimize possibly infinite loops");
2032 else
b8698a0f 2033 wording =
f9cc1a70
PB
2034 flag_unsafe_loop_optimizations
2035 ? N_("assuming that the loop counter does not overflow")
2036 : N_("cannot optimize loop, the loop counter may overflow");
2037
fab922b1
MLI
2038 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
2039 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
f9cc1a70
PB
2040 }
2041
2042 return flag_unsafe_loop_optimizations;
e9eb809d
ZD
2043}
2044
ca4c3169
ZD
2045/* Try to determine the number of iterations of LOOP. If we succeed,
2046 expression giving number of iterations is returned and *EXIT is
2047 set to the edge from that the information is obtained. Otherwise
2048 chrec_dont_know is returned. */
2049
2050tree
2051find_loop_niter (struct loop *loop, edge *exit)
2052{
ca83d385 2053 unsigned i;
9771b263 2054 vec<edge> exits = get_loop_exit_edges (loop);
ca4c3169
ZD
2055 edge ex;
2056 tree niter = NULL_TREE, aniter;
2057 struct tree_niter_desc desc;
2058
2059 *exit = NULL;
9771b263 2060 FOR_EACH_VEC_ELT (exits, i, ex)
ca4c3169 2061 {
f9cc1a70 2062 if (!number_of_iterations_exit (loop, ex, &desc, false))
ca4c3169
ZD
2063 continue;
2064
6e682d7e 2065 if (integer_nonzerop (desc.may_be_zero))
ca4c3169
ZD
2066 {
2067 /* We exit in the first iteration through this exit.
2068 We won't find anything better. */
ff5e9a94 2069 niter = build_int_cst (unsigned_type_node, 0);
ca4c3169
ZD
2070 *exit = ex;
2071 break;
2072 }
2073
6e682d7e 2074 if (!integer_zerop (desc.may_be_zero))
ca4c3169
ZD
2075 continue;
2076
2077 aniter = desc.niter;
2078
2079 if (!niter)
2080 {
2081 /* Nothing recorded yet. */
2082 niter = aniter;
2083 *exit = ex;
2084 continue;
2085 }
2086
2087 /* Prefer constants, the lower the better. */
2088 if (TREE_CODE (aniter) != INTEGER_CST)
2089 continue;
2090
2091 if (TREE_CODE (niter) != INTEGER_CST)
2092 {
2093 niter = aniter;
2094 *exit = ex;
2095 continue;
2096 }
2097
2098 if (tree_int_cst_lt (aniter, niter))
2099 {
2100 niter = aniter;
2101 *exit = ex;
2102 continue;
2103 }
2104 }
9771b263 2105 exits.release ();
ca4c3169
ZD
2106
2107 return niter ? niter : chrec_dont_know;
2108}
2109
f87c9042
JH
2110/* Return true if loop is known to have bounded number of iterations. */
2111
2112bool
2113finite_loop_p (struct loop *loop)
2114{
807e902e 2115 widest_int nit;
9e3920e9 2116 int flags;
f87c9042
JH
2117
2118 if (flag_unsafe_loop_optimizations)
2119 return true;
9e3920e9
JJ
2120 flags = flags_from_decl_or_type (current_function_decl);
2121 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
f87c9042
JH
2122 {
2123 if (dump_file && (dump_flags & TDF_DETAILS))
2124 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2125 loop->num);
2126 return true;
2127 }
b8698a0f 2128
1bc60b18
JH
2129 if (loop->any_upper_bound
2130 || max_loop_iterations (loop, &nit))
f87c9042 2131 {
1bc60b18
JH
2132 if (dump_file && (dump_flags & TDF_DETAILS))
2133 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2134 loop->num);
2135 return true;
f87c9042 2136 }
1bc60b18 2137 return false;
f87c9042
JH
2138}
2139
e9eb809d
ZD
2140/*
2141
2142 Analysis of a number of iterations of a loop by a brute-force evaluation.
2143
2144*/
2145
2146/* Bound on the number of iterations we try to evaluate. */
2147
2148#define MAX_ITERATIONS_TO_TRACK \
2149 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2150
2151/* Returns the loop phi node of LOOP such that ssa name X is derived from its
2152 result by a chain of operations such that all but exactly one of their
2153 operands are constants. */
2154
726a989a 2155static gimple
e9eb809d
ZD
2156chain_of_csts_start (struct loop *loop, tree x)
2157{
726a989a 2158 gimple stmt = SSA_NAME_DEF_STMT (x);
f47c96aa 2159 tree use;
726a989a
RB
2160 basic_block bb = gimple_bb (stmt);
2161 enum tree_code code;
e9eb809d
ZD
2162
2163 if (!bb
2164 || !flow_bb_inside_loop_p (loop, bb))
726a989a 2165 return NULL;
b8698a0f 2166
726a989a 2167 if (gimple_code (stmt) == GIMPLE_PHI)
e9eb809d
ZD
2168 {
2169 if (bb == loop->header)
2170 return stmt;
2171
726a989a 2172 return NULL;
e9eb809d
ZD
2173 }
2174
100f09a5
RB
2175 if (gimple_code (stmt) != GIMPLE_ASSIGN
2176 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
726a989a 2177 return NULL;
e9eb809d 2178
726a989a
RB
2179 code = gimple_assign_rhs_code (stmt);
2180 if (gimple_references_memory_p (stmt)
726a989a 2181 || TREE_CODE_CLASS (code) == tcc_reference
5006671f
RG
2182 || (code == ADDR_EXPR
2183 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
726a989a 2184 return NULL;
f47c96aa
AM
2185
2186 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
5006671f 2187 if (use == NULL_TREE)
726a989a 2188 return NULL;
e9eb809d 2189
f47c96aa 2190 return chain_of_csts_start (loop, use);
e9eb809d
ZD
2191}
2192
2193/* Determines whether the expression X is derived from a result of a phi node
2194 in header of LOOP such that
2195
2196 * the derivation of X consists only from operations with constants
2197 * the initial value of the phi node is constant
2198 * the value of the phi node in the next iteration can be derived from the
2199 value in the current iteration by a chain of operations with constants.
b8698a0f 2200
726a989a 2201 If such phi node exists, it is returned, otherwise NULL is returned. */
e9eb809d 2202
726a989a 2203static gimple
e9eb809d
ZD
2204get_base_for (struct loop *loop, tree x)
2205{
726a989a
RB
2206 gimple phi;
2207 tree init, next;
e9eb809d
ZD
2208
2209 if (is_gimple_min_invariant (x))
726a989a 2210 return NULL;
e9eb809d
ZD
2211
2212 phi = chain_of_csts_start (loop, x);
2213 if (!phi)
726a989a 2214 return NULL;
e9eb809d
ZD
2215
2216 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2217 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2218
2219 if (TREE_CODE (next) != SSA_NAME)
726a989a 2220 return NULL;
e9eb809d
ZD
2221
2222 if (!is_gimple_min_invariant (init))
726a989a 2223 return NULL;
e9eb809d
ZD
2224
2225 if (chain_of_csts_start (loop, next) != phi)
726a989a 2226 return NULL;
e9eb809d
ZD
2227
2228 return phi;
2229}
2230
b8698a0f
L
2231/* Given an expression X, then
2232
ed52affe 2233 * if X is NULL_TREE, we return the constant BASE.
e9eb809d
ZD
2234 * otherwise X is a SSA name, whose value in the considered loop is derived
2235 by a chain of operations with constant from a result of a phi node in
2236 the header of the loop. Then we return value of X when the value of the
2237 result of this phi node is given by the constant BASE. */
2238
2239static tree
2240get_val_for (tree x, tree base)
2241{
726a989a 2242 gimple stmt;
e9eb809d 2243
100f09a5 2244 gcc_checking_assert (is_gimple_min_invariant (base));
ed52affe 2245
e9eb809d
ZD
2246 if (!x)
2247 return base;
2248
2249 stmt = SSA_NAME_DEF_STMT (x);
726a989a 2250 if (gimple_code (stmt) == GIMPLE_PHI)
e9eb809d
ZD
2251 return base;
2252
100f09a5 2253 gcc_checking_assert (is_gimple_assign (stmt));
726a989a
RB
2254
2255 /* STMT must be either an assignment of a single SSA name or an
2256 expression involving an SSA name and a constant. Try to fold that
2257 expression using the value for the SSA name. */
0f336c35
RG
2258 if (gimple_assign_ssa_name_copy_p (stmt))
2259 return get_val_for (gimple_assign_rhs1 (stmt), base);
2260 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2261 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2262 {
2263 return fold_build1 (gimple_assign_rhs_code (stmt),
2264 gimple_expr_type (stmt),
2265 get_val_for (gimple_assign_rhs1 (stmt), base));
2266 }
2267 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
726a989a 2268 {
0f336c35
RG
2269 tree rhs1 = gimple_assign_rhs1 (stmt);
2270 tree rhs2 = gimple_assign_rhs2 (stmt);
2271 if (TREE_CODE (rhs1) == SSA_NAME)
2272 rhs1 = get_val_for (rhs1, base);
2273 else if (TREE_CODE (rhs2) == SSA_NAME)
2274 rhs2 = get_val_for (rhs2, base);
2275 else
2276 gcc_unreachable ();
2277 return fold_build2 (gimple_assign_rhs_code (stmt),
2278 gimple_expr_type (stmt), rhs1, rhs2);
f47c96aa 2279 }
726a989a 2280 else
0f336c35 2281 gcc_unreachable ();
e9eb809d
ZD
2282}
2283
726a989a 2284
e9eb809d
ZD
2285/* Tries to count the number of iterations of LOOP till it exits by EXIT
2286 by brute force -- i.e. by determining the value of the operands of the
2287 condition at EXIT in first few iterations of the loop (assuming that
2288 these values are constant) and determining the first one in that the
2289 condition is not satisfied. Returns the constant giving the number
2290 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2291
2292tree
2293loop_niter_by_eval (struct loop *loop, edge exit)
2294{
726a989a
RB
2295 tree acnd;
2296 tree op[2], val[2], next[2], aval[2];
2297 gimple phi, cond;
e9eb809d
ZD
2298 unsigned i, j;
2299 enum tree_code cmp;
2300
2301 cond = last_stmt (exit->src);
726a989a 2302 if (!cond || gimple_code (cond) != GIMPLE_COND)
e9eb809d
ZD
2303 return chrec_dont_know;
2304
726a989a 2305 cmp = gimple_cond_code (cond);
e9eb809d 2306 if (exit->flags & EDGE_TRUE_VALUE)
726a989a 2307 cmp = invert_tree_comparison (cmp, false);
e9eb809d 2308
e9eb809d
ZD
2309 switch (cmp)
2310 {
2311 case EQ_EXPR:
2312 case NE_EXPR:
2313 case GT_EXPR:
2314 case GE_EXPR:
2315 case LT_EXPR:
2316 case LE_EXPR:
726a989a
RB
2317 op[0] = gimple_cond_lhs (cond);
2318 op[1] = gimple_cond_rhs (cond);
e9eb809d
ZD
2319 break;
2320
2321 default:
2322 return chrec_dont_know;
2323 }
2324
2325 for (j = 0; j < 2; j++)
2326 {
726a989a 2327 if (is_gimple_min_invariant (op[j]))
e9eb809d 2328 {
726a989a
RB
2329 val[j] = op[j];
2330 next[j] = NULL_TREE;
2331 op[j] = NULL_TREE;
e9eb809d
ZD
2332 }
2333 else
2334 {
726a989a
RB
2335 phi = get_base_for (loop, op[j]);
2336 if (!phi)
2337 return chrec_dont_know;
2338 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2339 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
e9eb809d
ZD
2340 }
2341 }
2342
6ac01510
ILT
2343 /* Don't issue signed overflow warnings. */
2344 fold_defer_overflow_warnings ();
2345
e9eb809d
ZD
2346 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2347 {
2348 for (j = 0; j < 2; j++)
2349 aval[j] = get_val_for (op[j], val[j]);
2350
2f133f46 2351 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
6e682d7e 2352 if (acnd && integer_zerop (acnd))
e9eb809d 2353 {
6ac01510 2354 fold_undefer_and_ignore_overflow_warnings ();
e9eb809d
ZD
2355 if (dump_file && (dump_flags & TDF_DETAILS))
2356 fprintf (dump_file,
2357 "Proved that loop %d iterates %d times using brute force.\n",
2358 loop->num, i);
7d60be94 2359 return build_int_cst (unsigned_type_node, i);
e9eb809d
ZD
2360 }
2361
2362 for (j = 0; j < 2; j++)
ed52affe
RG
2363 {
2364 val[j] = get_val_for (next[j], val[j]);
2365 if (!is_gimple_min_invariant (val[j]))
6ac01510
ILT
2366 {
2367 fold_undefer_and_ignore_overflow_warnings ();
2368 return chrec_dont_know;
2369 }
ed52affe 2370 }
e9eb809d
ZD
2371 }
2372
6ac01510
ILT
2373 fold_undefer_and_ignore_overflow_warnings ();
2374
e9eb809d
ZD
2375 return chrec_dont_know;
2376}
2377
2378/* Finds the exit of the LOOP by that the loop exits after a constant
2379 number of iterations and stores the exit edge to *EXIT. The constant
2380 giving the number of iterations of LOOP is returned. The number of
2381 iterations is determined using loop_niter_by_eval (i.e. by brute force
2382 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2383 determines the number of iterations, chrec_dont_know is returned. */
2384
2385tree
2386find_loop_niter_by_eval (struct loop *loop, edge *exit)
2387{
ca83d385 2388 unsigned i;
9771b263 2389 vec<edge> exits = get_loop_exit_edges (loop);
e9eb809d
ZD
2390 edge ex;
2391 tree niter = NULL_TREE, aniter;
2392
2393 *exit = NULL;
2cee1509
RG
2394
2395 /* Loops with multiple exits are expensive to handle and less important. */
2396 if (!flag_expensive_optimizations
9771b263 2397 && exits.length () > 1)
f5843d08 2398 {
9771b263 2399 exits.release ();
f5843d08
RG
2400 return chrec_dont_know;
2401 }
2cee1509 2402
9771b263 2403 FOR_EACH_VEC_ELT (exits, i, ex)
e9eb809d 2404 {
e9eb809d
ZD
2405 if (!just_once_each_iteration_p (loop, ex->src))
2406 continue;
2407
2408 aniter = loop_niter_by_eval (loop, ex);
ca4c3169 2409 if (chrec_contains_undetermined (aniter))
e9eb809d
ZD
2410 continue;
2411
2412 if (niter
ca4c3169 2413 && !tree_int_cst_lt (aniter, niter))
e9eb809d
ZD
2414 continue;
2415
2416 niter = aniter;
2417 *exit = ex;
2418 }
9771b263 2419 exits.release ();
e9eb809d
ZD
2420
2421 return niter ? niter : chrec_dont_know;
2422}
2423
2424/*
2425
2426 Analysis of upper bounds on number of iterations of a loop.
2427
2428*/
2429
807e902e 2430static widest_int derive_constant_upper_bound_ops (tree, tree,
726a989a
RB
2431 enum tree_code, tree);
2432
2433/* Returns a constant upper bound on the value of the right-hand side of
2434 an assignment statement STMT. */
2435
807e902e 2436static widest_int
726a989a
RB
2437derive_constant_upper_bound_assign (gimple stmt)
2438{
2439 enum tree_code code = gimple_assign_rhs_code (stmt);
2440 tree op0 = gimple_assign_rhs1 (stmt);
2441 tree op1 = gimple_assign_rhs2 (stmt);
2442
2443 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2444 op0, code, op1);
2445}
2446
0ad1d5a1
ZD
2447/* Returns a constant upper bound on the value of expression VAL. VAL
2448 is considered to be unsigned. If its type is signed, its value must
b3ce5b6e 2449 be nonnegative. */
b8698a0f 2450
807e902e 2451static widest_int
726a989a
RB
2452derive_constant_upper_bound (tree val)
2453{
2454 enum tree_code code;
2455 tree op0, op1;
2456
2457 extract_ops_from_tree (val, &code, &op0, &op1);
2458 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2459}
2460
2461/* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2462 whose type is TYPE. The expression is considered to be unsigned. If
2463 its type is signed, its value must be nonnegative. */
b8698a0f 2464
807e902e 2465static widest_int
726a989a
RB
2466derive_constant_upper_bound_ops (tree type, tree op0,
2467 enum tree_code code, tree op1)
763f4527 2468{
726a989a 2469 tree subtype, maxt;
807e902e 2470 widest_int bnd, max, mmax, cst;
726a989a 2471 gimple stmt;
0ad1d5a1
ZD
2472
2473 if (INTEGRAL_TYPE_P (type))
2474 maxt = TYPE_MAX_VALUE (type);
2475 else
2476 maxt = upper_bound_in_type (type, type);
2477
807e902e 2478 max = wi::to_widest (maxt);
0ad1d5a1 2479
726a989a 2480 switch (code)
0ad1d5a1
ZD
2481 {
2482 case INTEGER_CST:
807e902e 2483 return wi::to_widest (op0);
0ad1d5a1 2484
1043771b 2485 CASE_CONVERT:
0ad1d5a1
ZD
2486 subtype = TREE_TYPE (op0);
2487 if (!TYPE_UNSIGNED (subtype)
2488 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2489 that OP0 is nonnegative. */
2490 && TYPE_UNSIGNED (type)
b3ce5b6e 2491 && !tree_expr_nonnegative_p (op0))
0ad1d5a1
ZD
2492 {
2493 /* If we cannot prove that the casted expression is nonnegative,
2494 we cannot establish more useful upper bound than the precision
2495 of the type gives us. */
2496 return max;
2497 }
763f4527 2498
0ad1d5a1
ZD
2499 /* We now know that op0 is an nonnegative value. Try deriving an upper
2500 bound for it. */
b3ce5b6e 2501 bnd = derive_constant_upper_bound (op0);
0ad1d5a1
ZD
2502
2503 /* If the bound does not fit in TYPE, max. value of TYPE could be
2504 attained. */
807e902e 2505 if (wi::ltu_p (max, bnd))
0ad1d5a1
ZD
2506 return max;
2507
2508 return bnd;
2509
2510 case PLUS_EXPR:
5be014d5 2511 case POINTER_PLUS_EXPR:
0ad1d5a1 2512 case MINUS_EXPR:
0ad1d5a1 2513 if (TREE_CODE (op1) != INTEGER_CST
b3ce5b6e 2514 || !tree_expr_nonnegative_p (op0))
0ad1d5a1
ZD
2515 return max;
2516
20fb52af
ZD
2517 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2518 choose the most logical way how to treat this constant regardless
2519 of the signedness of the type. */
807e902e 2520 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
726a989a 2521 if (code != MINUS_EXPR)
27bcd47c 2522 cst = -cst;
0ad1d5a1 2523
b3ce5b6e 2524 bnd = derive_constant_upper_bound (op0);
0ad1d5a1 2525
807e902e 2526 if (wi::neg_p (cst))
0ad1d5a1 2527 {
27bcd47c 2528 cst = -cst;
0ad1d5a1 2529 /* Avoid CST == 0x80000... */
807e902e 2530 if (wi::neg_p (cst))
0ad1d5a1
ZD
2531 return max;;
2532
20fb52af 2533 /* OP0 + CST. We need to check that
0ad1d5a1
ZD
2534 BND <= MAX (type) - CST. */
2535
27bcd47c 2536 mmax -= cst;
807e902e 2537 if (wi::ltu_p (bnd, max))
0ad1d5a1
ZD
2538 return max;
2539
27bcd47c 2540 return bnd + cst;
0ad1d5a1
ZD
2541 }
2542 else
2543 {
20fb52af
ZD
2544 /* OP0 - CST, where CST >= 0.
2545
2546 If TYPE is signed, we have already verified that OP0 >= 0, and we
2547 know that the result is nonnegative. This implies that
2548 VAL <= BND - CST.
2549
2550 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2551 otherwise the operation underflows.
2552 */
2553
2554 /* This should only happen if the type is unsigned; however, for
b3ce5b6e 2555 buggy programs that use overflowing signed arithmetics even with
20fb52af 2556 -fno-wrapv, this condition may also be true for signed values. */
807e902e 2557 if (wi::ltu_p (bnd, cst))
0ad1d5a1
ZD
2558 return max;
2559
b3ce5b6e
ZD
2560 if (TYPE_UNSIGNED (type))
2561 {
2562 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
807e902e 2563 wide_int_to_tree (type, cst));
b3ce5b6e
ZD
2564 if (!tem || integer_nonzerop (tem))
2565 return max;
2566 }
20fb52af 2567
27bcd47c 2568 bnd -= cst;
0ad1d5a1
ZD
2569 }
2570
2571 return bnd;
2572
2573 case FLOOR_DIV_EXPR:
2574 case EXACT_DIV_EXPR:
0ad1d5a1
ZD
2575 if (TREE_CODE (op1) != INTEGER_CST
2576 || tree_int_cst_sign_bit (op1))
2577 return max;
2578
b3ce5b6e 2579 bnd = derive_constant_upper_bound (op0);
807e902e 2580 return wi::udiv_floor (bnd, wi::to_widest (op1));
0ad1d5a1 2581
946e1bc7 2582 case BIT_AND_EXPR:
946e1bc7
ZD
2583 if (TREE_CODE (op1) != INTEGER_CST
2584 || tree_int_cst_sign_bit (op1))
2585 return max;
807e902e 2586 return wi::to_widest (op1);
946e1bc7
ZD
2587
2588 case SSA_NAME:
726a989a
RB
2589 stmt = SSA_NAME_DEF_STMT (op0);
2590 if (gimple_code (stmt) != GIMPLE_ASSIGN
2591 || gimple_assign_lhs (stmt) != op0)
946e1bc7 2592 return max;
726a989a 2593 return derive_constant_upper_bound_assign (stmt);
946e1bc7 2594
b8698a0f 2595 default:
0ad1d5a1
ZD
2596 return max;
2597 }
763f4527
ZD
2598}
2599
fbd28bc3
JJ
2600/* Emit a -Waggressive-loop-optimizations warning if needed. */
2601
2602static void
2603do_warn_aggressive_loop_optimizations (struct loop *loop,
807e902e 2604 widest_int i_bound, gimple stmt)
fbd28bc3
JJ
2605{
2606 /* Don't warn if the loop doesn't have known constant bound. */
2607 if (!loop->nb_iterations
2608 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
2609 || !warn_aggressive_loop_optimizations
2610 /* To avoid warning multiple times for the same loop,
2611 only start warning when we preserve loops. */
2612 || (cfun->curr_properties & PROP_loops) == 0
2613 /* Only warn once per loop. */
2614 || loop->warned_aggressive_loop_optimizations
2615 /* Only warn if undefined behavior gives us lower estimate than the
2616 known constant bound. */
807e902e 2617 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
fbd28bc3
JJ
2618 /* And undefined behavior happens unconditionally. */
2619 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
2620 return;
2621
2622 edge e = single_exit (loop);
2623 if (e == NULL)
2624 return;
2625
2626 gimple estmt = last_stmt (e->src);
44398cbe
PC
2627 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
2628 "iteration %E invokes undefined behavior",
807e902e
KZ
2629 wide_int_to_tree (TREE_TYPE (loop->nb_iterations),
2630 i_bound)))
44398cbe 2631 inform (gimple_location (estmt), "containing loop");
fbd28bc3
JJ
2632 loop->warned_aggressive_loop_optimizations = true;
2633}
2634
b3ce5b6e 2635/* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
946e1bc7
ZD
2636 is true if the loop is exited immediately after STMT, and this exit
2637 is taken at last when the STMT is executed BOUND + 1 times.
fa10beec 2638 REALISTIC is true if BOUND is expected to be close to the real number
9bdb685e 2639 of iterations. UPPER is true if we are sure the loop iterates at most
807e902e 2640 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
e9eb809d 2641
946e1bc7 2642static void
807e902e 2643record_estimate (struct loop *loop, tree bound, const widest_int &i_bound,
726a989a 2644 gimple at_stmt, bool is_exit, bool realistic, bool upper)
e9eb809d 2645{
807e902e 2646 widest_int delta;
e9eb809d
ZD
2647
2648 if (dump_file && (dump_flags & TDF_DETAILS))
2649 {
946e1bc7 2650 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
726a989a 2651 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
9bdb685e
ZD
2652 fprintf (dump_file, " is %sexecuted at most ",
2653 upper ? "" : "probably ");
e9eb809d 2654 print_generic_expr (dump_file, bound, TDF_SLIM);
763f4527 2655 fprintf (dump_file, " (bounded by ");
807e902e 2656 print_decu (i_bound, dump_file);
946e1bc7 2657 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
e9eb809d
ZD
2658 }
2659
9bdb685e
ZD
2660 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2661 real number of iterations. */
2662 if (TREE_CODE (bound) != INTEGER_CST)
2663 realistic = false;
f2a1b469 2664 else
807e902e 2665 gcc_checking_assert (i_bound == wi::to_widest (bound));
9bdb685e
ZD
2666 if (!upper && !realistic)
2667 return;
2668
2669 /* If we have a guaranteed upper bound, record it in the appropriate
fbd28bc3
JJ
2670 list, unless this is an !is_exit bound (i.e. undefined behavior in
2671 at_stmt) in a loop with known constant number of iterations. */
2672 if (upper
2673 && (is_exit
2674 || loop->nb_iterations == NULL_TREE
2675 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
9bdb685e 2676 {
766090c2 2677 struct nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
9bdb685e
ZD
2678
2679 elt->bound = i_bound;
2680 elt->stmt = at_stmt;
2681 elt->is_exit = is_exit;
2682 elt->next = loop->bounds;
2683 loop->bounds = elt;
2684 }
2685
cd0f6278
JH
2686 /* If statement is executed on every path to the loop latch, we can directly
2687 infer the upper bound on the # of iterations of the loop. */
2688 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2689 return;
2690
9bdb685e 2691 /* Update the number of iteration estimates according to the bound.
05322355
JH
2692 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2693 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2694 later if such statement must be executed on last iteration */
2695 if (is_exit)
807e902e 2696 delta = 0;
9bdb685e 2697 else
807e902e
KZ
2698 delta = 1;
2699 widest_int new_i_bound = i_bound + delta;
9bdb685e 2700
7fa7289d 2701 /* If an overflow occurred, ignore the result. */
807e902e 2702 if (wi::ltu_p (new_i_bound, delta))
9bdb685e
ZD
2703 return;
2704
fbd28bc3 2705 if (upper && !is_exit)
807e902e
KZ
2706 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
2707 record_niter_bound (loop, new_i_bound, realistic, upper);
e9eb809d
ZD
2708}
2709
946e1bc7
ZD
2710/* Record the estimate on number of iterations of LOOP based on the fact that
2711 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
9bdb685e
ZD
2712 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2713 estimated number of iterations is expected to be close to the real one.
2714 UPPER is true if we are sure the induction variable does not wrap. */
946e1bc7
ZD
2715
2716static void
726a989a 2717record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
9bdb685e 2718 tree low, tree high, bool realistic, bool upper)
946e1bc7
ZD
2719{
2720 tree niter_bound, extreme, delta;
2721 tree type = TREE_TYPE (base), unsigned_type;
2722
6e682d7e 2723 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
946e1bc7
ZD
2724 return;
2725
2726 if (dump_file && (dump_flags & TDF_DETAILS))
2727 {
2728 fprintf (dump_file, "Induction variable (");
2729 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2730 fprintf (dump_file, ") ");
2731 print_generic_expr (dump_file, base, TDF_SLIM);
2732 fprintf (dump_file, " + ");
2733 print_generic_expr (dump_file, step, TDF_SLIM);
2734 fprintf (dump_file, " * iteration does not wrap in statement ");
726a989a 2735 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
946e1bc7
ZD
2736 fprintf (dump_file, " in loop %d.\n", loop->num);
2737 }
2738
2739 unsigned_type = unsigned_type_for (type);
2740 base = fold_convert (unsigned_type, base);
2741 step = fold_convert (unsigned_type, step);
2742
2743 if (tree_int_cst_sign_bit (step))
2744 {
2745 extreme = fold_convert (unsigned_type, low);
2746 if (TREE_CODE (base) != INTEGER_CST)
2747 base = fold_convert (unsigned_type, high);
2748 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2749 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2750 }
2751 else
2752 {
2753 extreme = fold_convert (unsigned_type, high);
2754 if (TREE_CODE (base) != INTEGER_CST)
2755 base = fold_convert (unsigned_type, low);
2756 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2757 }
2758
2759 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2760 would get out of the range. */
2761 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
807e902e 2762 widest_int max = derive_constant_upper_bound (niter_bound);
9bdb685e 2763 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
4839cb59
ZD
2764}
2765
946e1bc7 2766/* Determine information about number of iterations a LOOP from the index
ac84e05e
ZD
2767 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2768 guaranteed to be executed in every iteration of LOOP. Callback for
2769 for_each_index. */
946e1bc7
ZD
2770
2771struct ilb_data
2772{
2773 struct loop *loop;
726a989a 2774 gimple stmt;
946e1bc7
ZD
2775};
2776
2777static bool
2778idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2779{
c22940cd 2780 struct ilb_data *data = (struct ilb_data *) dta;
946e1bc7
ZD
2781 tree ev, init, step;
2782 tree low, high, type, next;
cd0f6278 2783 bool sign, upper = true, at_end = false;
946e1bc7 2784 struct loop *loop = data->loop;
870ca331 2785 bool reliable = true;
946e1bc7 2786
9bdb685e 2787 if (TREE_CODE (base) != ARRAY_REF)
946e1bc7
ZD
2788 return true;
2789
9bdb685e
ZD
2790 /* For arrays at the end of the structure, we are not guaranteed that they
2791 do not really extend over their declared size. However, for arrays of
2792 size greater than one, this is unlikely to be intended. */
2793 if (array_at_struct_end_p (base))
ac84e05e
ZD
2794 {
2795 at_end = true;
2796 upper = false;
2797 }
9bdb685e 2798
8b679c9b
RB
2799 struct loop *dloop = loop_containing_stmt (data->stmt);
2800 if (!dloop)
2801 return true;
2802
2803 ev = analyze_scalar_evolution (dloop, *idx);
2804 ev = instantiate_parameters (loop, ev);
946e1bc7
ZD
2805 init = initial_condition (ev);
2806 step = evolution_part_in_loop_num (ev, loop->num);
2807
2808 if (!init
2809 || !step
2810 || TREE_CODE (step) != INTEGER_CST
6e682d7e 2811 || integer_zerop (step)
946e1bc7
ZD
2812 || tree_contains_chrecs (init, NULL)
2813 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2814 return true;
2815
2816 low = array_ref_low_bound (base);
2817 high = array_ref_up_bound (base);
b8698a0f 2818
946e1bc7
ZD
2819 /* The case of nonconstant bounds could be handled, but it would be
2820 complicated. */
2821 if (TREE_CODE (low) != INTEGER_CST
2822 || !high
2823 || TREE_CODE (high) != INTEGER_CST)
2824 return true;
2825 sign = tree_int_cst_sign_bit (step);
2826 type = TREE_TYPE (step);
9bdb685e
ZD
2827
2828 /* The array of length 1 at the end of a structure most likely extends
2829 beyond its bounds. */
ac84e05e 2830 if (at_end
9bdb685e
ZD
2831 && operand_equal_p (low, high, 0))
2832 return true;
2833
946e1bc7
ZD
2834 /* In case the relevant bound of the array does not fit in type, or
2835 it does, but bound + step (in type) still belongs into the range of the
2836 array, the index may wrap and still stay within the range of the array
2837 (consider e.g. if the array is indexed by the full range of
2838 unsigned char).
2839
2840 To make things simpler, we require both bounds to fit into type, although
2f8e468b 2841 there are cases where this would not be strictly necessary. */
946e1bc7
ZD
2842 if (!int_fits_type_p (high, type)
2843 || !int_fits_type_p (low, type))
2844 return true;
2845 low = fold_convert (type, low);
2846 high = fold_convert (type, high);
2847
2848 if (sign)
2849 next = fold_binary (PLUS_EXPR, type, low, step);
2850 else
2851 next = fold_binary (PLUS_EXPR, type, high, step);
b8698a0f 2852
946e1bc7
ZD
2853 if (tree_int_cst_compare (low, next) <= 0
2854 && tree_int_cst_compare (next, high) <= 0)
2855 return true;
2856
870ca331
JH
2857 /* If access is not executed on every iteration, we must ensure that overlow may
2858 not make the access valid later. */
2859 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
2860 && scev_probably_wraps_p (initial_condition_in_loop_num (ev, loop->num),
2861 step, data->stmt, loop, true))
2862 reliable = false;
2863
2864 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, reliable, upper);
946e1bc7
ZD
2865 return true;
2866}
2867
2868/* Determine information about number of iterations a LOOP from the bounds
ac84e05e
ZD
2869 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2870 STMT is guaranteed to be executed in every iteration of LOOP.*/
946e1bc7
ZD
2871
2872static void
cd0f6278 2873infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref)
946e1bc7
ZD
2874{
2875 struct ilb_data data;
2876
2877 data.loop = loop;
2878 data.stmt = stmt;
2879 for_each_index (&ref, idx_infer_loop_bounds, &data);
2880}
2881
2882/* Determine information about number of iterations of a LOOP from the way
ac84e05e
ZD
2883 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2884 executed in every iteration of LOOP. */
946e1bc7
ZD
2885
2886static void
cd0f6278 2887infer_loop_bounds_from_array (struct loop *loop, gimple stmt)
946e1bc7 2888{
726a989a 2889 if (is_gimple_assign (stmt))
946e1bc7 2890 {
726a989a
RB
2891 tree op0 = gimple_assign_lhs (stmt);
2892 tree op1 = gimple_assign_rhs1 (stmt);
946e1bc7
ZD
2893
2894 /* For each memory access, analyze its access function
2895 and record a bound on the loop iteration domain. */
2896 if (REFERENCE_CLASS_P (op0))
cd0f6278 2897 infer_loop_bounds_from_ref (loop, stmt, op0);
946e1bc7
ZD
2898
2899 if (REFERENCE_CLASS_P (op1))
cd0f6278 2900 infer_loop_bounds_from_ref (loop, stmt, op1);
946e1bc7 2901 }
726a989a 2902 else if (is_gimple_call (stmt))
946e1bc7 2903 {
726a989a
RB
2904 tree arg, lhs;
2905 unsigned i, n = gimple_call_num_args (stmt);
946e1bc7 2906
726a989a
RB
2907 lhs = gimple_call_lhs (stmt);
2908 if (lhs && REFERENCE_CLASS_P (lhs))
cd0f6278 2909 infer_loop_bounds_from_ref (loop, stmt, lhs);
726a989a
RB
2910
2911 for (i = 0; i < n; i++)
2912 {
2913 arg = gimple_call_arg (stmt, i);
2914 if (REFERENCE_CLASS_P (arg))
cd0f6278 2915 infer_loop_bounds_from_ref (loop, stmt, arg);
726a989a 2916 }
946e1bc7
ZD
2917 }
2918}
2919
bc69f7ff
TV
2920/* Determine information about number of iterations of a LOOP from the fact
2921 that pointer arithmetics in STMT does not overflow. */
2922
2923static void
2924infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2925{
2926 tree def, base, step, scev, type, low, high;
2927 tree var, ptr;
2928
2929 if (!is_gimple_assign (stmt)
2930 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2931 return;
2932
2933 def = gimple_assign_lhs (stmt);
2934 if (TREE_CODE (def) != SSA_NAME)
2935 return;
2936
2937 type = TREE_TYPE (def);
2938 if (!nowrap_type_p (type))
2939 return;
2940
2941 ptr = gimple_assign_rhs1 (stmt);
2942 if (!expr_invariant_in_loop_p (loop, ptr))
2943 return;
2944
2945 var = gimple_assign_rhs2 (stmt);
2946 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2947 return;
2948
2949 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2950 if (chrec_contains_undetermined (scev))
2951 return;
2952
2953 base = initial_condition_in_loop_num (scev, loop->num);
2954 step = evolution_part_in_loop_num (scev, loop->num);
2955
2956 if (!base || !step
2957 || TREE_CODE (step) != INTEGER_CST
2958 || tree_contains_chrecs (base, NULL)
2959 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2960 return;
2961
2962 low = lower_bound_in_type (type, type);
2963 high = upper_bound_in_type (type, type);
2964
0703f020
TV
2965 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2966 produce a NULL pointer. The contrary would mean NULL points to an object,
2967 while NULL is supposed to compare unequal with the address of all objects.
2968 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2969 NULL pointer since that would mean wrapping, which we assume here not to
2970 happen. So, we can exclude NULL from the valid range of pointer
2971 arithmetic. */
2972 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2973 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2974
bc69f7ff
TV
2975 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2976}
2977
946e1bc7
ZD
2978/* Determine information about number of iterations of a LOOP from the fact
2979 that signed arithmetics in STMT does not overflow. */
2980
2981static void
726a989a 2982infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
946e1bc7
ZD
2983{
2984 tree def, base, step, scev, type, low, high;
2985
726a989a 2986 if (gimple_code (stmt) != GIMPLE_ASSIGN)
946e1bc7
ZD
2987 return;
2988
726a989a 2989 def = gimple_assign_lhs (stmt);
946e1bc7
ZD
2990
2991 if (TREE_CODE (def) != SSA_NAME)
2992 return;
2993
2994 type = TREE_TYPE (def);
2995 if (!INTEGRAL_TYPE_P (type)
eeef0e45 2996 || !TYPE_OVERFLOW_UNDEFINED (type))
946e1bc7
ZD
2997 return;
2998
2999 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3000 if (chrec_contains_undetermined (scev))
3001 return;
3002
3003 base = initial_condition_in_loop_num (scev, loop->num);
3004 step = evolution_part_in_loop_num (scev, loop->num);
3005
3006 if (!base || !step
3007 || TREE_CODE (step) != INTEGER_CST
3008 || tree_contains_chrecs (base, NULL)
3009 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3010 return;
3011
3012 low = lower_bound_in_type (type, type);
3013 high = upper_bound_in_type (type, type);
3014
9bdb685e 3015 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
946e1bc7
ZD
3016}
3017
d7770457
SP
3018/* The following analyzers are extracting informations on the bounds
3019 of LOOP from the following undefined behaviors:
3020
3021 - data references should not access elements over the statically
3022 allocated size,
3023
3024 - signed variables should not overflow when flag_wrapv is not set.
3025*/
3026
3027static void
3028infer_loop_bounds_from_undefined (struct loop *loop)
3029{
3030 unsigned i;
946e1bc7 3031 basic_block *bbs;
726a989a 3032 gimple_stmt_iterator bsi;
946e1bc7 3033 basic_block bb;
ac84e05e 3034 bool reliable;
b8698a0f 3035
d7770457
SP
3036 bbs = get_loop_body (loop);
3037
3038 for (i = 0; i < loop->num_nodes; i++)
3039 {
3040 bb = bbs[i];
3041
946e1bc7 3042 /* If BB is not executed in each iteration of the loop, we cannot
ac84e05e 3043 use the operations in it to infer reliable upper bound on the
cd0f6278
JH
3044 # of iterations of the loop. However, we can use it as a guess.
3045 Reliable guesses come only from array bounds. */
ac84e05e 3046 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
946e1bc7 3047
726a989a 3048 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
946e1bc7 3049 {
726a989a 3050 gimple stmt = gsi_stmt (bsi);
d7770457 3051
cd0f6278 3052 infer_loop_bounds_from_array (loop, stmt);
ac84e05e
ZD
3053
3054 if (reliable)
bc69f7ff
TV
3055 {
3056 infer_loop_bounds_from_signedness (loop, stmt);
3057 infer_loop_bounds_from_pointer_arith (loop, stmt);
3058 }
946e1bc7
ZD
3059 }
3060
d7770457
SP
3061 }
3062
3063 free (bbs);
3064}
3065
807e902e 3066/* Compare wide ints, callback for qsort. */
73ddf95b 3067
71343877 3068static int
807e902e 3069wide_int_cmp (const void *p1, const void *p2)
73ddf95b 3070{
807e902e
KZ
3071 const widest_int *d1 = (const widest_int *) p1;
3072 const widest_int *d2 = (const widest_int *) p2;
3073 return wi::cmpu (*d1, *d2);
73ddf95b
JH
3074}
3075
3076/* Return index of BOUND in BOUNDS array sorted in increasing order.
3077 Lookup by binary search. */
3078
71343877 3079static int
807e902e 3080bound_index (vec<widest_int> bounds, const widest_int &bound)
73ddf95b 3081{
9771b263 3082 unsigned int end = bounds.length ();
73ddf95b
JH
3083 unsigned int begin = 0;
3084
3085 /* Find a matching index by means of a binary search. */
3086 while (begin != end)
3087 {
3088 unsigned int middle = (begin + end) / 2;
807e902e 3089 widest_int index = bounds[middle];
73ddf95b
JH
3090
3091 if (index == bound)
3092 return middle;
807e902e 3093 else if (wi::ltu_p (index, bound))
73ddf95b
JH
3094 begin = middle + 1;
3095 else
3096 end = middle;
3097 }
3098 gcc_unreachable ();
3099}
3100
73ddf95b
JH
3101/* We recorded loop bounds only for statements dominating loop latch (and thus
3102 executed each loop iteration). If there are any bounds on statements not
3103 dominating the loop latch we can improve the estimate by walking the loop
3104 body and seeing if every path from loop header to loop latch contains
3105 some bounded statement. */
3106
3107static void
3108discover_iteration_bound_by_body_walk (struct loop *loop)
3109{
3110 pointer_map_t *bb_bounds;
3111 struct nb_iter_bound *elt;
807e902e 3112 vec<widest_int> bounds = vNULL;
b4f9786b
JJ
3113 vec<vec<basic_block> > queues = vNULL;
3114 vec<basic_block> queue = vNULL;
73ddf95b
JH
3115 ptrdiff_t queue_index;
3116 ptrdiff_t latch_index = 0;
3117 pointer_map_t *block_priority;
3118
3119 /* Discover what bounds may interest us. */
3120 for (elt = loop->bounds; elt; elt = elt->next)
3121 {
807e902e 3122 widest_int bound = elt->bound;
73ddf95b
JH
3123
3124 /* Exit terminates loop at given iteration, while non-exits produce undefined
3125 effect on the next iteration. */
3126 if (!elt->is_exit)
4c052539 3127 {
807e902e 3128 bound += 1;
4c052539 3129 /* If an overflow occurred, ignore the result. */
807e902e 3130 if (bound == 0)
4c052539
JJ
3131 continue;
3132 }
73ddf95b
JH
3133
3134 if (!loop->any_upper_bound
807e902e 3135 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
9771b263 3136 bounds.safe_push (bound);
73ddf95b
JH
3137 }
3138
3139 /* Exit early if there is nothing to do. */
9771b263 3140 if (!bounds.exists ())
73ddf95b
JH
3141 return;
3142
3143 if (dump_file && (dump_flags & TDF_DETAILS))
3144 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3145
3146 /* Sort the bounds in decreasing order. */
75509ba2 3147 bounds.qsort (wide_int_cmp);
73ddf95b
JH
3148
3149 /* For every basic block record the lowest bound that is guaranteed to
3150 terminate the loop. */
3151
3152 bb_bounds = pointer_map_create ();
3153 for (elt = loop->bounds; elt; elt = elt->next)
3154 {
807e902e 3155 widest_int bound = elt->bound;
73ddf95b 3156 if (!elt->is_exit)
4c052539 3157 {
807e902e 3158 bound += 1;
4c052539 3159 /* If an overflow occurred, ignore the result. */
807e902e 3160 if (bound == 0)
4c052539
JJ
3161 continue;
3162 }
73ddf95b
JH
3163
3164 if (!loop->any_upper_bound
807e902e 3165 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
73ddf95b
JH
3166 {
3167 ptrdiff_t index = bound_index (bounds, bound);
3168 void **entry = pointer_map_contains (bb_bounds,
3169 gimple_bb (elt->stmt));
3170 if (!entry)
3171 *pointer_map_insert (bb_bounds,
3172 gimple_bb (elt->stmt)) = (void *)index;
3173 else if ((ptrdiff_t)*entry > index)
3174 *entry = (void *)index;
3175 }
3176 }
3177
3178 block_priority = pointer_map_create ();
3179
3180 /* Perform shortest path discovery loop->header ... loop->latch.
3181
3182 The "distance" is given by the smallest loop bound of basic block
3183 present in the path and we look for path with largest smallest bound
3184 on it.
3185
b4f9786b 3186 To avoid the need for fibonacci heap on double ints we simply compress
73ddf95b
JH
3187 double ints into indexes to BOUNDS array and then represent the queue
3188 as arrays of queues for every index.
9771b263 3189 Index of BOUNDS.length() means that the execution of given BB has
73ddf95b
JH
3190 no bounds determined.
3191
3192 VISITED is a pointer map translating basic block into smallest index
3193 it was inserted into the priority queue with. */
3194 latch_index = -1;
3195
3196 /* Start walk in loop header with index set to infinite bound. */
9771b263
DN
3197 queue_index = bounds.length ();
3198 queues.safe_grow_cleared (queue_index + 1);
3199 queue.safe_push (loop->header);
3200 queues[queue_index] = queue;
73ddf95b
JH
3201 *pointer_map_insert (block_priority, loop->header) = (void *)queue_index;
3202
3203 for (; queue_index >= 0; queue_index--)
3204 {
3205 if (latch_index < queue_index)
3206 {
9771b263 3207 while (queues[queue_index].length ())
73ddf95b
JH
3208 {
3209 basic_block bb;
3210 ptrdiff_t bound_index = queue_index;
3211 void **entry;
3212 edge e;
3213 edge_iterator ei;
3214
9771b263
DN
3215 queue = queues[queue_index];
3216 bb = queue.pop ();
73ddf95b
JH
3217
3218 /* OK, we later inserted the BB with lower priority, skip it. */
3219 if ((ptrdiff_t)*pointer_map_contains (block_priority, bb) > queue_index)
3220 continue;
3221
3222 /* See if we can improve the bound. */
3223 entry = pointer_map_contains (bb_bounds, bb);
3224 if (entry && (ptrdiff_t)*entry < bound_index)
3225 bound_index = (ptrdiff_t)*entry;
3226
3227 /* Insert succesors into the queue, watch for latch edge
3228 and record greatest index we saw. */
3229 FOR_EACH_EDGE (e, ei, bb->succs)
3230 {
3231 bool insert = false;
3232 void **entry;
3233
3234 if (loop_exit_edge_p (loop, e))
3235 continue;
3236
3237 if (e == loop_latch_edge (loop)
3238 && latch_index < bound_index)
3239 latch_index = bound_index;
3240 else if (!(entry = pointer_map_contains (block_priority, e->dest)))
3241 {
3242 insert = true;
3243 *pointer_map_insert (block_priority, e->dest) = (void *)bound_index;
3244 }
3245 else if ((ptrdiff_t)*entry < bound_index)
3246 {
3247 insert = true;
3248 *entry = (void *)bound_index;
3249 }
3250
3251 if (insert)
b4f9786b 3252 queues[bound_index].safe_push (e->dest);
73ddf95b
JH
3253 }
3254 }
3255 }
b4f9786b 3256 queues[queue_index].release ();
73ddf95b
JH
3257 }
3258
3259 gcc_assert (latch_index >= 0);
9771b263 3260 if ((unsigned)latch_index < bounds.length ())
73ddf95b
JH
3261 {
3262 if (dump_file && (dump_flags & TDF_DETAILS))
3263 {
3264 fprintf (dump_file, "Found better loop bound ");
807e902e 3265 print_decu (bounds[latch_index], dump_file);
73ddf95b
JH
3266 fprintf (dump_file, "\n");
3267 }
9771b263 3268 record_niter_bound (loop, bounds[latch_index], false, true);
73ddf95b
JH
3269 }
3270
9771b263 3271 queues.release ();
b4f9786b 3272 bounds.release ();
73ddf95b
JH
3273 pointer_map_destroy (bb_bounds);
3274 pointer_map_destroy (block_priority);
3275}
3276
05322355
JH
3277/* See if every path cross the loop goes through a statement that is known
3278 to not execute at the last iteration. In that case we can decrese iteration
3279 count by 1. */
3280
3281static void
3282maybe_lower_iteration_bound (struct loop *loop)
3283{
0450d718 3284 pointer_set_t *not_executed_last_iteration = NULL;
05322355
JH
3285 struct nb_iter_bound *elt;
3286 bool found_exit = false;
6e1aa848 3287 vec<basic_block> queue = vNULL;
05322355
JH
3288 bitmap visited;
3289
3290 /* Collect all statements with interesting (i.e. lower than
3291 nb_iterations_upper_bound) bound on them.
3292
3293 TODO: Due to the way record_estimate choose estimates to store, the bounds
3294 will be always nb_iterations_upper_bound-1. We can change this to record
3295 also statements not dominating the loop latch and update the walk bellow
3296 to the shortest path algorthm. */
3297 for (elt = loop->bounds; elt; elt = elt->next)
3298 {
3299 if (!elt->is_exit
807e902e 3300 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
05322355
JH
3301 {
3302 if (!not_executed_last_iteration)
3303 not_executed_last_iteration = pointer_set_create ();
3304 pointer_set_insert (not_executed_last_iteration, elt->stmt);
3305 }
3306 }
3307 if (!not_executed_last_iteration)
3308 return;
3309
3310 /* Start DFS walk in the loop header and see if we can reach the
3311 loop latch or any of the exits (including statements with side
3312 effects that may terminate the loop otherwise) without visiting
3313 any of the statements known to have undefined effect on the last
3314 iteration. */
9771b263 3315 queue.safe_push (loop->header);
05322355
JH
3316 visited = BITMAP_ALLOC (NULL);
3317 bitmap_set_bit (visited, loop->header->index);
3318 found_exit = false;
3319
3320 do
3321 {
9771b263 3322 basic_block bb = queue.pop ();
05322355
JH
3323 gimple_stmt_iterator gsi;
3324 bool stmt_found = false;
3325
3326 /* Loop for possible exits and statements bounding the execution. */
3327 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3328 {
3329 gimple stmt = gsi_stmt (gsi);
3330 if (pointer_set_contains (not_executed_last_iteration, stmt))
3331 {
3332 stmt_found = true;
3333 break;
3334 }
3335 if (gimple_has_side_effects (stmt))
3336 {
3337 found_exit = true;
3338 break;
3339 }
3340 }
3341 if (found_exit)
3342 break;
3343
3344 /* If no bounding statement is found, continue the walk. */
3345 if (!stmt_found)
3346 {
3347 edge e;
3348 edge_iterator ei;
3349
3350 FOR_EACH_EDGE (e, ei, bb->succs)
3351 {
3352 if (loop_exit_edge_p (loop, e)
3353 || e == loop_latch_edge (loop))
3354 {
3355 found_exit = true;
3356 break;
3357 }
3358 if (bitmap_set_bit (visited, e->dest->index))
9771b263 3359 queue.safe_push (e->dest);
05322355
JH
3360 }
3361 }
3362 }
9771b263 3363 while (queue.length () && !found_exit);
05322355
JH
3364
3365 /* If every path through the loop reach bounding statement before exit,
3366 then we know the last iteration of the loop will have undefined effect
3367 and we can decrease number of iterations. */
3368
3369 if (!found_exit)
3370 {
3371 if (dump_file && (dump_flags & TDF_DETAILS))
3372 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3373 "undefined statement must be executed at the last iteration.\n");
807e902e 3374 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
05322355
JH
3375 false, true);
3376 }
3377 BITMAP_FREE (visited);
9771b263 3378 queue.release ();
a344216b 3379 pointer_set_destroy (not_executed_last_iteration);
05322355
JH
3380}
3381
e3488283
RG
3382/* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3383 is true also use estimates derived from undefined behavior. */
e9eb809d 3384
71343877 3385static void
421e6082 3386estimate_numbers_of_iterations_loop (struct loop *loop)
e9eb809d 3387{
9771b263 3388 vec<edge> exits;
e9eb809d 3389 tree niter, type;
ca83d385 3390 unsigned i;
e9eb809d 3391 struct tree_niter_desc niter_desc;
ca83d385 3392 edge ex;
807e902e 3393 widest_int bound;
f9bf4777 3394 edge likely_exit;
e9eb809d 3395
79ebd55c 3396 /* Give up if we already have tried to compute an estimation. */
946e1bc7 3397 if (loop->estimate_state != EST_NOT_COMPUTED)
79ebd55c 3398 return;
03fd03d5 3399
9bdb685e 3400 loop->estimate_state = EST_AVAILABLE;
03fd03d5 3401 /* Force estimate compuation but leave any existing upper bound in place. */
9bdb685e 3402 loop->any_estimate = false;
79ebd55c 3403
fbd28bc3
JJ
3404 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3405 to be constant, we avoid undefined behavior implied bounds and instead
3406 diagnose those loops with -Waggressive-loop-optimizations. */
3407 number_of_latch_executions (loop);
3408
ca83d385 3409 exits = get_loop_exit_edges (loop);
f9bf4777 3410 likely_exit = single_likely_exit (loop);
9771b263 3411 FOR_EACH_VEC_ELT (exits, i, ex)
e9eb809d 3412 {
cd0f6278 3413 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
e9eb809d
ZD
3414 continue;
3415
3416 niter = niter_desc.niter;
3417 type = TREE_TYPE (niter);
946e1bc7 3418 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
e6845c23 3419 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
ff5e9a94 3420 build_int_cst (type, 0),
e6845c23 3421 niter);
b3ce5b6e 3422 record_estimate (loop, niter, niter_desc.max,
ca83d385 3423 last_stmt (ex->src),
f9bf4777 3424 true, ex == likely_exit, true);
e9eb809d 3425 }
9771b263 3426 exits.release ();
b8698a0f 3427
6e616110
RB
3428 if (flag_aggressive_loop_optimizations)
3429 infer_loop_bounds_from_undefined (loop);
9bdb685e 3430
73ddf95b
JH
3431 discover_iteration_bound_by_body_walk (loop);
3432
05322355
JH
3433 maybe_lower_iteration_bound (loop);
3434
9bdb685e
ZD
3435 /* If we have a measured profile, use it to estimate the number of
3436 iterations. */
3437 if (loop->header->count != 0)
3438 {
ac84e05e 3439 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
807e902e 3440 bound = gcov_type_to_wide_int (nit);
9bdb685e
ZD
3441 record_niter_bound (loop, bound, true, false);
3442 }
fbd28bc3
JJ
3443
3444 /* If we know the exact number of iterations of this loop, try to
3445 not break code with undefined behavior by not recording smaller
3446 maximum number of iterations. */
3447 if (loop->nb_iterations
3448 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
3449 {
3450 loop->any_upper_bound = true;
807e902e 3451 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
fbd28bc3 3452 }
e9eb809d
ZD
3453}
3454
b4a9343c
ZD
3455/* Sets NIT to the estimated number of executions of the latch of the
3456 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3457 large as the number of iterations. If we have no reliable estimate,
3458 the function returns false, otherwise returns true. */
3459
3460bool
807e902e 3461estimated_loop_iterations (struct loop *loop, widest_int *nit)
b4a9343c 3462{
e3a8f1fa
JH
3463 /* When SCEV information is available, try to update loop iterations
3464 estimate. Otherwise just return whatever we recorded earlier. */
3465 if (scev_initialized_p ())
3466 estimate_numbers_of_iterations_loop (loop);
3467
71343877 3468 return (get_estimated_loop_iterations (loop, nit));
652c4c71 3469}
b4a9343c 3470
1ef88893
AM
3471/* Similar to estimated_loop_iterations, but returns the estimate only
3472 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3473 on the number of iterations of LOOP could not be derived, returns -1. */
3474
3475HOST_WIDE_INT
3476estimated_loop_iterations_int (struct loop *loop)
3477{
807e902e 3478 widest_int nit;
1ef88893
AM
3479 HOST_WIDE_INT hwi_nit;
3480
3481 if (!estimated_loop_iterations (loop, &nit))
3482 return -1;
3483
807e902e 3484 if (!wi::fits_shwi_p (nit))
1ef88893
AM
3485 return -1;
3486 hwi_nit = nit.to_shwi ();
3487
3488 return hwi_nit < 0 ? -1 : hwi_nit;
3489}
3490
3491
652c4c71
RG
3492/* Sets NIT to an upper bound for the maximum number of executions of the
3493 latch of the LOOP. If we have no reliable estimate, the function returns
3494 false, otherwise returns true. */
3495
3496bool
807e902e 3497max_loop_iterations (struct loop *loop, widest_int *nit)
652c4c71 3498{
e3a8f1fa
JH
3499 /* When SCEV information is available, try to update loop iterations
3500 estimate. Otherwise just return whatever we recorded earlier. */
3501 if (scev_initialized_p ())
3502 estimate_numbers_of_iterations_loop (loop);
b4a9343c 3503
71343877 3504 return get_max_loop_iterations (loop, nit);
652c4c71
RG
3505}
3506
3507/* Similar to max_loop_iterations, but returns the estimate only
3508 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3509 on the number of iterations of LOOP could not be derived, returns -1. */
3510
3511HOST_WIDE_INT
3512max_loop_iterations_int (struct loop *loop)
b4a9343c 3513{
807e902e 3514 widest_int nit;
b4a9343c
ZD
3515 HOST_WIDE_INT hwi_nit;
3516
652c4c71 3517 if (!max_loop_iterations (loop, &nit))
b4a9343c
ZD
3518 return -1;
3519
807e902e 3520 if (!wi::fits_shwi_p (nit))
b4a9343c 3521 return -1;
27bcd47c 3522 hwi_nit = nit.to_shwi ();
b4a9343c
ZD
3523
3524 return hwi_nit < 0 ? -1 : hwi_nit;
3525}
3526
652c4c71
RG
3527/* Returns an estimate for the number of executions of statements
3528 in the LOOP. For statements before the loop exit, this exceeds
3529 the number of execution of the latch by one. */
3530
3531HOST_WIDE_INT
3532estimated_stmt_executions_int (struct loop *loop)
3533{
3534 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3535 HOST_WIDE_INT snit;
3536
3537 if (nit == -1)
3538 return -1;
3539
3540 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3541
3542 /* If the computation overflows, return -1. */
3543 return snit < 0 ? -1 : snit;
3544}
3545
3546/* Sets NIT to the estimated maximum number of executions of the latch of the
3547 LOOP, plus one. If we have no reliable estimate, the function returns
3548 false, otherwise returns true. */
3549
3550bool
807e902e 3551max_stmt_executions (struct loop *loop, widest_int *nit)
652c4c71 3552{
807e902e 3553 widest_int nit_minus_one;
652c4c71
RG
3554
3555 if (!max_loop_iterations (loop, nit))
3556 return false;
3557
3558 nit_minus_one = *nit;
3559
807e902e 3560 *nit += 1;
652c4c71 3561
807e902e 3562 return wi::gtu_p (*nit, nit_minus_one);
652c4c71
RG
3563}
3564
b4a9343c 3565/* Sets NIT to the estimated number of executions of the latch of the
652c4c71
RG
3566 LOOP, plus one. If we have no reliable estimate, the function returns
3567 false, otherwise returns true. */
b4a9343c
ZD
3568
3569bool
807e902e 3570estimated_stmt_executions (struct loop *loop, widest_int *nit)
b4a9343c 3571{
807e902e 3572 widest_int nit_minus_one;
b4a9343c 3573
652c4c71 3574 if (!estimated_loop_iterations (loop, nit))
b4a9343c
ZD
3575 return false;
3576
3577 nit_minus_one = *nit;
3578
807e902e 3579 *nit += 1;
b4a9343c 3580
807e902e 3581 return wi::gtu_p (*nit, nit_minus_one);
b4a9343c
ZD
3582}
3583
d73be268 3584/* Records estimates on numbers of iterations of loops. */
e9eb809d
ZD
3585
3586void
421e6082 3587estimate_numbers_of_iterations (void)
e9eb809d 3588{
e9eb809d
ZD
3589 struct loop *loop;
3590
6ac01510
ILT
3591 /* We don't want to issue signed overflow warnings while getting
3592 loop iteration estimates. */
3593 fold_defer_overflow_warnings ();
3594
f0bd40b1 3595 FOR_EACH_LOOP (loop, 0)
e9eb809d 3596 {
421e6082 3597 estimate_numbers_of_iterations_loop (loop);
e9eb809d 3598 }
6ac01510
ILT
3599
3600 fold_undefer_and_ignore_overflow_warnings ();
e9eb809d
ZD
3601}
3602
e9eb809d
ZD
3603/* Returns true if statement S1 dominates statement S2. */
3604
bbc8a8dc 3605bool
726a989a 3606stmt_dominates_stmt_p (gimple s1, gimple s2)
e9eb809d 3607{
726a989a 3608 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
e9eb809d
ZD
3609
3610 if (!bb1
3611 || s1 == s2)
3612 return true;
3613
3614 if (bb1 == bb2)
3615 {
726a989a 3616 gimple_stmt_iterator bsi;
e9eb809d 3617
25c6036a
RG
3618 if (gimple_code (s2) == GIMPLE_PHI)
3619 return false;
3620
3621 if (gimple_code (s1) == GIMPLE_PHI)
3622 return true;
3623
726a989a
RB
3624 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3625 if (gsi_stmt (bsi) == s1)
e9eb809d
ZD
3626 return true;
3627
3628 return false;
3629 }
3630
3631 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3632}
3633
763f4527 3634/* Returns true when we can prove that the number of executions of
946e1bc7
ZD
3635 STMT in the loop is at most NITER, according to the bound on
3636 the number of executions of the statement NITER_BOUND->stmt recorded in
870ca331
JH
3637 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3638
3639 ??? This code can become quite a CPU hog - we can have many bounds,
3640 and large basic block forcing stmt_dominates_stmt_p to be queried
3641 many times on a large basic blocks, so the whole thing is O(n^2)
3642 for scev_probably_wraps_p invocation (that can be done n times).
3643
3644 It would make more sense (and give better answers) to remember BB
3645 bounds computed by discover_iteration_bound_by_body_walk. */
e9eb809d 3646
1e8552eb 3647static bool
726a989a 3648n_of_executions_at_most (gimple stmt,
b8698a0f 3649 struct nb_iter_bound *niter_bound,
7aa20a86 3650 tree niter)
e9eb809d 3651{
807e902e 3652 widest_int bound = niter_bound->bound;
6e682d7e 3653 tree nit_type = TREE_TYPE (niter), e;
2f133f46 3654 enum tree_code cmp;
1e8552eb 3655
946e1bc7
ZD
3656 gcc_assert (TYPE_UNSIGNED (nit_type));
3657
3658 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3659 the number of iterations is small. */
807e902e 3660 if (!wi::fits_to_tree_p (bound, nit_type))
946e1bc7
ZD
3661 return false;
3662
3663 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3664 times. This means that:
b8698a0f 3665
870ca331
JH
3666 -- if NITER_BOUND->is_exit is true, then everything after
3667 it at most NITER_BOUND->bound times.
946e1bc7
ZD
3668
3669 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3670 is executed, then NITER_BOUND->stmt is executed as well in the same
870ca331
JH
3671 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
3672
3673 If we can determine that NITER_BOUND->stmt is always executed
3674 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
3675 We conclude that if both statements belong to the same
3676 basic block and STMT is before NITER_BOUND->stmt and there are no
3677 statements with side effects in between. */
946e1bc7
ZD
3678
3679 if (niter_bound->is_exit)
3680 {
870ca331
JH
3681 if (stmt == niter_bound->stmt
3682 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3683 return false;
3684 cmp = GE_EXPR;
946e1bc7 3685 }
1e8552eb 3686 else
946e1bc7 3687 {
870ca331 3688 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
946e1bc7 3689 {
870ca331
JH
3690 gimple_stmt_iterator bsi;
3691 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3692 || gimple_code (stmt) == GIMPLE_PHI
3693 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
3694 return false;
3695
3696 /* By stmt_dominates_stmt_p we already know that STMT appears
3697 before NITER_BOUND->STMT. Still need to test that the loop
3698 can not be terinated by a side effect in between. */
3699 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
3700 gsi_next (&bsi))
3701 if (gimple_has_side_effects (gsi_stmt (bsi)))
3702 return false;
807e902e
KZ
3703 bound += 1;
3704 if (bound == 0
3705 || !wi::fits_to_tree_p (bound, nit_type))
946e1bc7
ZD
3706 return false;
3707 }
3708 cmp = GT_EXPR;
3709 }
1e8552eb 3710
6e682d7e 3711 e = fold_binary (cmp, boolean_type_node,
807e902e 3712 niter, wide_int_to_tree (nit_type, bound));
6e682d7e 3713 return e && integer_nonzerop (e);
1e8552eb
SP
3714}
3715
d7f5de76 3716/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
e9eb809d 3717
d7f5de76
ZD
3718bool
3719nowrap_type_p (tree type)
d7770457 3720{
eeef0e45
ILT
3721 if (INTEGRAL_TYPE_P (type)
3722 && TYPE_OVERFLOW_UNDEFINED (type))
d7f5de76 3723 return true;
d7770457 3724
d7f5de76
ZD
3725 if (POINTER_TYPE_P (type))
3726 return true;
d7770457 3727
d7770457
SP
3728 return false;
3729}
3730
1e8552eb
SP
3731/* Return false only when the induction variable BASE + STEP * I is
3732 known to not overflow: i.e. when the number of iterations is small
3733 enough with respect to the step and initial condition in order to
3734 keep the evolution confined in TYPEs bounds. Return true when the
3735 iv is known to overflow or when the property is not computable.
b8698a0f 3736
d7f5de76
ZD
3737 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3738 the rules for overflow of the given language apply (e.g., that signed
3739 arithmetics in C does not overflow). */
1e8552eb
SP
3740
3741bool
b8698a0f 3742scev_probably_wraps_p (tree base, tree step,
726a989a 3743 gimple at_stmt, struct loop *loop,
525dc87d 3744 bool use_overflow_semantics)
1e8552eb 3745{
1e8552eb
SP
3746 tree delta, step_abs;
3747 tree unsigned_type, valid_niter;
d7f5de76 3748 tree type = TREE_TYPE (step);
870ca331 3749 tree e;
807e902e 3750 widest_int niter;
870ca331 3751 struct nb_iter_bound *bound;
d7f5de76
ZD
3752
3753 /* FIXME: We really need something like
3754 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3755
3756 We used to test for the following situation that frequently appears
3757 during address arithmetics:
b8698a0f 3758
d7770457
SP
3759 D.1621_13 = (long unsigned intD.4) D.1620_12;
3760 D.1622_14 = D.1621_13 * 8;
3761 D.1623_15 = (doubleD.29 *) D.1622_14;
d7770457 3762
d7f5de76
ZD
3763 And derived that the sequence corresponding to D_14
3764 can be proved to not wrap because it is used for computing a
3765 memory access; however, this is not really the case -- for example,
3766 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3767 2032, 2040, 0, 8, ..., but the code is still legal. */
1e8552eb 3768
18aed06a 3769 if (chrec_contains_undetermined (base)
24938ce9 3770 || chrec_contains_undetermined (step))
d7f5de76 3771 return true;
d7770457 3772
6e682d7e 3773 if (integer_zerop (step))
d7f5de76 3774 return false;
ab02cc4e 3775
d7f5de76
ZD
3776 /* If we can use the fact that signed and pointer arithmetics does not
3777 wrap, we are done. */
dc5b3407 3778 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
d7f5de76 3779 return false;
ab02cc4e 3780
24938ce9
ZD
3781 /* To be able to use estimates on number of iterations of the loop,
3782 we must have an upper bound on the absolute value of the step. */
3783 if (TREE_CODE (step) != INTEGER_CST)
3784 return true;
3785
6ac01510
ILT
3786 /* Don't issue signed overflow warnings. */
3787 fold_defer_overflow_warnings ();
3788
d7f5de76
ZD
3789 /* Otherwise, compute the number of iterations before we reach the
3790 bound of the type, and verify that the loop is exited before this
3791 occurs. */
3792 unsigned_type = unsigned_type_for (type);
3793 base = fold_convert (unsigned_type, base);
1e8552eb 3794
d7f5de76
ZD
3795 if (tree_int_cst_sign_bit (step))
3796 {
3797 tree extreme = fold_convert (unsigned_type,
3798 lower_bound_in_type (type, type));
3799 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3800 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3801 fold_convert (unsigned_type, step));
e9eb809d 3802 }
d7f5de76 3803 else
3eca1bd7 3804 {
d7f5de76
ZD
3805 tree extreme = fold_convert (unsigned_type,
3806 upper_bound_in_type (type, type));
3807 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3808 step_abs = fold_convert (unsigned_type, step);
3eca1bd7
DN
3809 }
3810
1e8552eb 3811 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
e9eb809d 3812
421e6082 3813 estimate_numbers_of_iterations_loop (loop);
870ca331
JH
3814
3815 if (max_loop_iterations (loop, &niter)
807e902e 3816 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
870ca331 3817 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
807e902e
KZ
3818 wide_int_to_tree (TREE_TYPE (valid_niter),
3819 niter))) != NULL
870ca331 3820 && integer_nonzerop (e))
6ac01510 3821 {
870ca331
JH
3822 fold_undefer_and_ignore_overflow_warnings ();
3823 return false;
6ac01510 3824 }
870ca331
JH
3825 if (at_stmt)
3826 for (bound = loop->bounds; bound; bound = bound->next)
3827 {
3828 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3829 {
3830 fold_undefer_and_ignore_overflow_warnings ();
3831 return false;
3832 }
3833 }
6ac01510
ILT
3834
3835 fold_undefer_and_ignore_overflow_warnings ();
1e8552eb
SP
3836
3837 /* At this point we still don't have a proof that the iv does not
3838 overflow: give up. */
3839 return true;
e9eb809d
ZD
3840}
3841
e9eb809d
ZD
3842/* Frees the information on upper bounds on numbers of iterations of LOOP. */
3843
c9639aae 3844void
e9eb809d
ZD
3845free_numbers_of_iterations_estimates_loop (struct loop *loop)
3846{
3847 struct nb_iter_bound *bound, *next;
c9639aae
ZD
3848
3849 loop->nb_iterations = NULL;
946e1bc7 3850 loop->estimate_state = EST_NOT_COMPUTED;
e9eb809d
ZD
3851 for (bound = loop->bounds; bound; bound = next)
3852 {
3853 next = bound->next;
9e2f83a5 3854 ggc_free (bound);
e9eb809d
ZD
3855 }
3856
3857 loop->bounds = NULL;
3858}
3859
d73be268 3860/* Frees the information on upper bounds on numbers of iterations of loops. */
e9eb809d
ZD
3861
3862void
d73be268 3863free_numbers_of_iterations_estimates (void)
e9eb809d 3864{
e9eb809d
ZD
3865 struct loop *loop;
3866
f0bd40b1 3867 FOR_EACH_LOOP (loop, 0)
e9eb809d 3868 {
42fd6772 3869 free_numbers_of_iterations_estimates_loop (loop);
e9eb809d
ZD
3870 }
3871}
d5ab5675
ZD
3872
3873/* Substitute value VAL for ssa name NAME inside expressions held
3874 at LOOP. */
3875
3876void
3877substitute_in_loop_info (struct loop *loop, tree name, tree val)
3878{
d5ab5675 3879 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
d5ab5675 3880}
This page took 5.853365 seconds and 5 git commands to generate.