]> gcc.gnu.org Git - gcc.git/blame - gcc/tree-ssa-live.h
Daily bump.
[gcc.git] / gcc / tree-ssa-live.h
CommitLineData
6de9cd9a 1/* Routines for liveness in SSA trees.
e04369ac 2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
6de9cd9a
DN
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to
366ccddb
KC
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
6de9cd9a
DN
21
22
23#ifndef _TREE_SSA_LIVE_H
24#define _TREE_SSA_LIVE_H 1
25
59587b18 26#include "partition.h"
dacb336e 27#include "vecprim.h"
59587b18 28
6de9cd9a
DN
29/* Used to create the variable mapping when we go out of SSA form. */
30typedef struct _var_map
31{
32 /* The partition of all variables. */
33 partition var_partition;
34
35 /* Vector for compacting partitions. */
36 int *partition_to_compact;
37 int *compact_to_partition;
38
39 /* Mapping of partition numbers to vars. */
40 tree *partition_to_var;
41
42 /* Current number of partitions. */
43 unsigned int num_partitions;
44
45 /* Original partition size. */
46 unsigned int partition_size;
47
48 /* Reference count, if required. */
49 int *ref_count;
50} *var_map;
51
52#define VAR_ANN_PARTITION(ann) (ann->partition)
53#define VAR_ANN_ROOT_INDEX(ann) (ann->root_index)
54
55#define NO_PARTITION -1
56
57/* Flags to pass to compact_var_map */
58
59#define VARMAP_NORMAL 0
60#define VARMAP_NO_SINGLE_DEFS 1
61
6de9cd9a
DN
62extern var_map init_var_map (int);
63extern void delete_var_map (var_map);
64extern void dump_var_map (FILE *, var_map);
65extern int var_union (var_map, tree, tree);
66extern void change_partition_var (var_map, tree, int);
67extern void compact_var_map (var_map, int);
1e128c5f
GB
68#ifdef ENABLE_CHECKING
69extern void register_ssa_partition_check (tree ssa_var);
70#endif
6de9cd9a 71
3cd8c58a 72static inline unsigned num_var_partitions (var_map);
6de9cd9a
DN
73static inline tree var_to_partition_to_var (var_map, tree);
74static inline tree partition_to_var (var_map, int);
75static inline int var_to_partition (var_map, tree);
76static inline tree version_to_var (var_map, int);
77static inline int version_ref_count (var_map, tree);
78static inline void register_ssa_partition (var_map, tree, bool);
79
80#define SSA_VAR_MAP_REF_COUNT 0x01
81extern var_map create_ssa_var_map (int);
82
6de9cd9a
DN
83/* Number of partitions in MAP. */
84
3cd8c58a 85static inline unsigned
6de9cd9a
DN
86num_var_partitions (var_map map)
87{
88 return map->num_partitions;
89}
90
91
92/* Return the reference count for SSA_VAR's partition in MAP. */
93
94static inline int
95version_ref_count (var_map map, tree ssa_var)
96{
97 int version = SSA_NAME_VERSION (ssa_var);
1e128c5f 98 gcc_assert (map->ref_count);
6de9cd9a
DN
99 return map->ref_count[version];
100}
101
102
103/* Given partition index I from MAP, return the variable which represents that
104 partition. */
105
106static inline tree
107partition_to_var (var_map map, int i)
108{
109 if (map->compact_to_partition)
110 i = map->compact_to_partition[i];
111 i = partition_find (map->var_partition, i);
112 return map->partition_to_var[i];
113}
114
115
116/* Given ssa_name VERSION, if it has a partition in MAP, return the var it
117 is associated with. Otherwise return NULL. */
118
119static inline tree version_to_var (var_map map, int version)
120{
121 int part;
122 part = partition_find (map->var_partition, version);
123 if (map->partition_to_compact)
124 part = map->partition_to_compact[part];
125 if (part == NO_PARTITION)
126 return NULL_TREE;
127
128 return partition_to_var (map, part);
129}
130
131
132/* Given VAR, return the partition number in MAP which contains it.
89dbed81 133 NO_PARTITION is returned if it's not in any partition. */
6de9cd9a
DN
134
135static inline int
136var_to_partition (var_map map, tree var)
137{
138 var_ann_t ann;
139 int part;
140
141 if (TREE_CODE (var) == SSA_NAME)
142 {
143 part = partition_find (map->var_partition, SSA_NAME_VERSION (var));
144 if (map->partition_to_compact)
145 part = map->partition_to_compact[part];
146 }
147 else
148 {
149 ann = var_ann (var);
150 if (ann->out_of_ssa_tag)
151 part = VAR_ANN_PARTITION (ann);
152 else
153 part = NO_PARTITION;
154 }
155 return part;
156}
157
158
159/* Given VAR, return the variable which represents the entire partition
160 it is a member of in MAP. NULL is returned if it is not in a partition. */
161
162static inline tree
163var_to_partition_to_var (var_map map, tree var)
164{
165 int part;
166
167 part = var_to_partition (map, var);
168 if (part == NO_PARTITION)
169 return NULL_TREE;
170 return partition_to_var (map, part);
171}
172
173
174/* This routine registers a partition for SSA_VAR with MAP. IS_USE is used
175 to count references. Any unregistered partitions may be compacted out
176 later. */
177
178static inline void
179register_ssa_partition (var_map map, tree ssa_var, bool is_use)
180{
181 int version;
182
183#if defined ENABLE_CHECKING
1e128c5f 184 register_ssa_partition_check (ssa_var);
6de9cd9a
DN
185#endif
186
187 version = SSA_NAME_VERSION (ssa_var);
188 if (is_use && map->ref_count)
189 map->ref_count[version]++;
190
191 if (map->partition_to_var[version] == NULL_TREE)
192 map->partition_to_var[SSA_NAME_VERSION (ssa_var)] = ssa_var;
193}
194
195
196/* ---------------- live on entry/exit info ------------------------------
197
198 This structure is used to represent live range information on SSA based
199 trees. A partition map must be provided, and based on the active partitions,
200 live-on-entry information and live-on-exit information can be calculated.
201 As well, partitions are marked as to whether they are global (live
202 outside the basic block they are defined in).
203
204 The live-on-entry information is per variable. It provide a bitmap for
205 each variable which has a bit set for each basic block that the variable
206 is live on entry to that block.
207
208 The live-on-exit information is per block. It provides a bitmap for each
209 block indicating which partitions are live on exit from the block.
210
211 For the purposes of this implementation, we treat the elements of a PHI
212 as follows:
213
214 Uses in a PHI are considered LIVE-ON-EXIT to the block from which they
215 originate. They are *NOT* considered live on entry to the block
216 containing the PHI node.
217
218 The Def of a PHI node is *not* considered live on entry to the block.
219 It is considered to be "define early" in the block. Picture it as each
220 block having a stmt (or block-preheader) before the first real stmt in
221 the block which defines all the variables that are defined by PHIs.
222
223 ----------------------------------------------------------------------- */
224
225
226typedef struct tree_live_info_d
227{
228 /* Var map this relates to. */
229 var_map map;
230
231 /* Bitmap indicating which partitions are global. */
232 bitmap global;
233
234 /* Bitmap of live on entry blocks for partition elements. */
235 bitmap *livein;
236
237 /* Number of basic blocks when live on exit calculated. */
238 int num_blocks;
239
240 /* Bitmap of what variables are live on exit for a basic blocks. */
241 bitmap *liveout;
242} *tree_live_info_p;
243
244
245extern tree_live_info_p calculate_live_on_entry (var_map);
246extern void calculate_live_on_exit (tree_live_info_p);
247extern void delete_tree_live_info (tree_live_info_p);
248
249#define LIVEDUMP_ENTRY 0x01
250#define LIVEDUMP_EXIT 0x02
251#define LIVEDUMP_ALL (LIVEDUMP_ENTRY | LIVEDUMP_EXIT)
252extern void dump_live_info (FILE *, tree_live_info_p, int);
253
254static inline int partition_is_global (tree_live_info_p, int);
255static inline bitmap live_entry_blocks (tree_live_info_p, int);
256static inline bitmap live_on_exit (tree_live_info_p, basic_block);
257static inline var_map live_var_map (tree_live_info_p);
258static inline void live_merge_and_clear (tree_live_info_p, int, int);
259static inline void make_live_on_entry (tree_live_info_p, basic_block, int);
260
261
262/* Return TRUE if P is marked as a global in LIVE. */
263
264static inline int
265partition_is_global (tree_live_info_p live, int p)
266{
1e128c5f 267 gcc_assert (live->global);
6de9cd9a
DN
268 return bitmap_bit_p (live->global, p);
269}
270
271
272/* Return the bitmap from LIVE representing the live on entry blocks for
273 partition P. */
274
275static inline bitmap
276live_entry_blocks (tree_live_info_p live, int p)
277{
1e128c5f 278 gcc_assert (live->livein);
6de9cd9a
DN
279 return live->livein[p];
280}
281
282
283/* Return the bitmap from LIVE representing the live on exit partitions from
284 block BB. */
285
286static inline bitmap
287live_on_exit (tree_live_info_p live, basic_block bb)
288{
1e128c5f
GB
289 gcc_assert (live->liveout);
290 gcc_assert (bb != ENTRY_BLOCK_PTR);
291 gcc_assert (bb != EXIT_BLOCK_PTR);
6de9cd9a 292
6de9cd9a
DN
293 return live->liveout[bb->index];
294}
295
296
297/* Return the partition map which the information in LIVE utilizes. */
298
299static inline var_map
300live_var_map (tree_live_info_p live)
301{
302 return live->map;
303}
304
305
306/* Merge the live on entry information in LIVE for partitions P1 and P2. Place
9cf737f8 307 the result into P1. Clear P2. */
6de9cd9a
DN
308
309static inline void
310live_merge_and_clear (tree_live_info_p live, int p1, int p2)
311{
67299d91 312 bitmap_ior_into (live->livein[p1], live->livein[p2]);
6de9cd9a
DN
313 bitmap_zero (live->livein[p2]);
314}
315
316
317/* Mark partition P as live on entry to basic block BB in LIVE. */
318
319static inline void
320make_live_on_entry (tree_live_info_p live, basic_block bb , int p)
321{
322 bitmap_set_bit (live->livein[p], bb->index);
323 bitmap_set_bit (live->global, p);
324}
325
326
327/* A tree_partition_associator (TPA)object is a base structure which allows
328 partitions to be associated with a tree object.
329
330 A varray of tree elements represent each distinct tree item.
331 A parallel int array represents the first partition number associated with
332 the tree.
333 This partition number is then used as in index into the next_partition
334 array, which returns the index of the next partition which is associated
335 with the tree. TPA_NONE indicates the end of the list.
336 A varray paralleling the partition list 'partition_to_tree_map' is used
337 to indicate which tree index the partition is in. */
338
339typedef struct tree_partition_associator_d
340{
7af893cb 341 VEC(tree,heap) *trees;
dacb336e 342 VEC(int,heap) *first_partition;
6de9cd9a
DN
343 int *next_partition;
344 int *partition_to_tree_map;
345 int num_trees;
346 int uncompressed_num;
347 var_map map;
348} *tpa_p;
349
350/* Value returned when there are no more partitions associated with a tree. */
351#define TPA_NONE -1
352
353static inline tree tpa_tree (tpa_p, int);
354static inline int tpa_first_partition (tpa_p, int);
355static inline int tpa_next_partition (tpa_p, int);
356static inline int tpa_num_trees (tpa_p);
357static inline int tpa_find_tree (tpa_p, int);
358static inline void tpa_decompact (tpa_p);
6de9cd9a
DN
359extern void tpa_delete (tpa_p);
360extern void tpa_dump (FILE *, tpa_p);
361extern void tpa_remove_partition (tpa_p, int, int);
362extern int tpa_compact (tpa_p);
363
364
365/* Return the number of distinct tree nodes in TPA. */
366
367static inline int
368tpa_num_trees (tpa_p tpa)
369{
370 return tpa->num_trees;
371}
372
373
374/* Return the tree node for index I in TPA. */
375
376static inline tree
377tpa_tree (tpa_p tpa, int i)
378{
7af893cb 379 return VEC_index (tree, tpa->trees, i);
6de9cd9a
DN
380}
381
382
383/* Return the first partition associated with tree list I in TPA. */
384
385static inline int
386tpa_first_partition (tpa_p tpa, int i)
387{
dacb336e 388 return VEC_index (int, tpa->first_partition, i);
6de9cd9a
DN
389}
390
391
392/* Return the next partition after partition I in TPA's list. */
393
394static inline int
395tpa_next_partition (tpa_p tpa, int i)
396{
397 return tpa->next_partition[i];
398}
399
400
401/* Return the tree index from TPA whose list contains partition I.
402 TPA_NONE is returned if I is not associated with any list. */
403
404static inline int
405tpa_find_tree (tpa_p tpa, int i)
406{
407 int index;
408
409 index = tpa->partition_to_tree_map[i];
410 /* When compressed, any index higher than the number of tree elements is
411 a compressed element, so return TPA_NONE. */
412 if (index != TPA_NONE && index >= tpa_num_trees (tpa))
413 {
1e128c5f 414 gcc_assert (tpa->uncompressed_num != -1);
6de9cd9a
DN
415 index = TPA_NONE;
416 }
417
418 return index;
419}
420
421
422/* This function removes any compaction which was performed on TPA. */
423
424static inline void
425tpa_decompact(tpa_p tpa)
426{
1e128c5f 427 gcc_assert (tpa->uncompressed_num != -1);
6de9cd9a
DN
428 tpa->num_trees = tpa->uncompressed_num;
429}
430
431
647eea9d 432/* Once a var_map has been created and compressed, a complementary root_var
6de9cd9a
DN
433 object can be built. This creates a list of all the root variables from
434 which ssa version names are derived. Each root variable has a list of
435 which partitions are versions of that root.
436
437 This is implemented using the tree_partition_associator.
438
439 The tree vector is used to represent the root variable.
440 The list of partitions represent SSA versions of the root variable. */
441
442typedef tpa_p root_var_p;
443
444static inline tree root_var (root_var_p, int);
445static inline int root_var_first_partition (root_var_p, int);
446static inline int root_var_next_partition (root_var_p, int);
447static inline int root_var_num (root_var_p);
448static inline void root_var_dump (FILE *, root_var_p);
449static inline void root_var_remove_partition (root_var_p, int, int);
450static inline void root_var_delete (root_var_p);
451static inline int root_var_find (root_var_p, int);
452static inline int root_var_compact (root_var_p);
453static inline void root_var_decompact (tpa_p);
454
455extern root_var_p root_var_init (var_map);
456
457/* Value returned when there are no more partitions associated with a root
458 variable. */
459#define ROOT_VAR_NONE TPA_NONE
460
461
462/* Return the number of distinct root variables in RV. */
463
464static inline int
465root_var_num (root_var_p rv)
466{
467 return tpa_num_trees (rv);
468}
469
470
471/* Return root variable I from RV. */
472
473static inline tree
474root_var (root_var_p rv, int i)
475{
476 return tpa_tree (rv, i);
477}
478
479
480/* Return the first partition in RV belonging to root variable list I. */
481
482static inline int
483root_var_first_partition (root_var_p rv, int i)
484{
485 return tpa_first_partition (rv, i);
486}
487
488
489/* Return the next partition after partition I in a root list from RV. */
490
491static inline int
492root_var_next_partition (root_var_p rv, int i)
493{
494 return tpa_next_partition (rv, i);
495}
496
497
498/* Send debug info for root_var list RV to file F. */
499
500static inline void
501root_var_dump (FILE *f, root_var_p rv)
502{
503 fprintf (f, "\nRoot Var dump\n");
504 tpa_dump (f, rv);
505 fprintf (f, "\n");
506}
507
508
509/* Destroy root_var object RV. */
510
511static inline void
512root_var_delete (root_var_p rv)
513{
514 tpa_delete (rv);
515}
516
517
518/* Remove partition PARTITION_INDEX from root_var list ROOT_INDEX in RV. */
519
520static inline void
521root_var_remove_partition (root_var_p rv, int root_index, int partition_index)
522{
523 tpa_remove_partition (rv, root_index, partition_index);
524}
525
526
527/* Return the root_var list index for partition I in RV. */
528
529static inline int
530root_var_find (root_var_p rv, int i)
531{
532 return tpa_find_tree (rv, i);
533}
534
535
536/* Hide single element lists in RV. */
537
538static inline int
539root_var_compact (root_var_p rv)
540{
541 return tpa_compact (rv);
542}
543
544
545/* Expose the single element lists in RV. */
546
547static inline void
548root_var_decompact (root_var_p rv)
549{
550 tpa_decompact (rv);
551}
552
553
554/* A TYPE_VAR object is similar to a root_var object, except this associates
555 partitions with their type rather than their root variable. This is used to
556 coalesce memory locations based on type. */
557
558typedef tpa_p type_var_p;
559
560static inline tree type_var (type_var_p, int);
561static inline int type_var_first_partition (type_var_p, int);
562static inline int type_var_next_partition (type_var_p, int);
563static inline int type_var_num (type_var_p);
564static inline void type_var_dump (FILE *, type_var_p);
565static inline void type_var_remove_partition (type_var_p, int, int);
566static inline void type_var_delete (type_var_p);
567static inline int type_var_find (type_var_p, int);
568static inline int type_var_compact (type_var_p);
569static inline void type_var_decompact (type_var_p);
570
571extern type_var_p type_var_init (var_map);
572
573/* Value returned when there is no partitions associated with a list. */
574#define TYPE_VAR_NONE TPA_NONE
575
576
577/* Return the number of distinct type lists in TV. */
578
579static inline int
580type_var_num (type_var_p tv)
581{
582 return tpa_num_trees (tv);
583}
584
585
586/* Return the type of list I in TV. */
587
588static inline tree
589type_var (type_var_p tv, int i)
590{
591 return tpa_tree (tv, i);
592}
593
594
595/* Return the first partition belonging to type list I in TV. */
596
597static inline int
598type_var_first_partition (type_var_p tv, int i)
599{
600 return tpa_first_partition (tv, i);
601}
602
603
604/* Return the next partition after partition I in a type list within TV. */
605
606static inline int
607type_var_next_partition (type_var_p tv, int i)
608{
609 return tpa_next_partition (tv, i);
610}
611
612
613/* Send debug info for type_var object TV to file F. */
614
615static inline void
616type_var_dump (FILE *f, type_var_p tv)
617{
618 fprintf (f, "\nType Var dump\n");
619 tpa_dump (f, tv);
620 fprintf (f, "\n");
621}
622
623
624/* Delete type_var object TV. */
625
626static inline void
627type_var_delete (type_var_p tv)
628{
629 tpa_delete (tv);
630}
631
632
633/* Remove partition PARTITION_INDEX from type list TYPE_INDEX in TV. */
634
635static inline void
636type_var_remove_partition (type_var_p tv, int type_index, int partition_index)
637{
638 tpa_remove_partition (tv, type_index, partition_index);
639}
640
641
642/* Return the type index in TV for the list partition I is in. */
643
644static inline int
645type_var_find (type_var_p tv, int i)
646{
647 return tpa_find_tree (tv, i);
648}
649
650
651/* Hide single element lists in TV. */
652
653static inline int
654type_var_compact (type_var_p tv)
655{
656 return tpa_compact (tv);
657}
658
659
660/* Expose single element lists in TV. */
661
662static inline void
663type_var_decompact (type_var_p tv)
664{
665 tpa_decompact (tv);
666}
667
668/* This set of routines implements a coalesce_list. This is an object which
669 is used to track pairs of partitions which are desirable to coalesce
670 together at some point. Costs are associated with each pair, and when
671 all desired information has been collected, the object can be used to
672 order the pairs for processing. */
673
674/* This structure defines a pair for coalescing. */
675
676typedef struct partition_pair_d
677{
678 int first_partition;
679 int second_partition;
680 int cost;
681 struct partition_pair_d *next;
682} *partition_pair_p;
683
684/* This structure maintains the list of coalesce pairs.
685 When add_mode is true, list is a triangular shaped list of coalesce pairs.
686 The smaller partition number is used to index the list, and the larger is
687 index is located in a partition_pair_p object. These lists are sorted from
688 smallest to largest by 'second_partition'. New coalesce pairs are allowed
689 to be added in this mode.
690 When add_mode is false, the lists have all been merged into list[0]. The
691 rest of the lists are not used. list[0] is ordered from most desirable
692 coalesce to least desirable. pop_best_coalesce() retrieves the pairs
693 one at a time. */
694
695typedef struct coalesce_list_d
696{
697 var_map map;
698 partition_pair_p *list;
699 bool add_mode;
700} *coalesce_list_p;
701
702extern coalesce_list_p create_coalesce_list (var_map);
703extern void add_coalesce (coalesce_list_p, int, int, int);
0bde02b3 704extern int coalesce_cost (int, bool, bool);
6de9cd9a
DN
705extern void sort_coalesce_list (coalesce_list_p);
706extern void dump_coalesce_list (FILE *, coalesce_list_p);
707extern void delete_coalesce_list (coalesce_list_p);
708
709#define NO_BEST_COALESCE -1
6de9cd9a
DN
710
711extern conflict_graph build_tree_conflict_graph (tree_live_info_p, tpa_p,
712 coalesce_list_p);
713extern void coalesce_tpa_members (tpa_p tpa, conflict_graph graph, var_map map,
714 coalesce_list_p cl, FILE *);
715
716
717#endif /* _TREE_SSA_LIVE_H */
This page took 1.025139 seconds and 5 git commands to generate.