]> gcc.gnu.org Git - gcc.git/blame - gcc/tree-ssa-dce.c
flags.h (enum debug_info_type): Remove DWARF_DEBUG.
[gcc.git] / gcc / tree-ssa-dce.c
CommitLineData
6de9cd9a
DN
1/* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it
10under the terms of the GNU General Public License as published by the
11Free Software Foundation; either version 2, or (at your option) any
12later version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT
15ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING. If not, write to the Free
21Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2202111-1307, USA. */
23
24/* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46#include "config.h"
47#include "system.h"
48#include "coretypes.h"
49#include "tm.h"
50#include "errors.h"
51#include "ggc.h"
52
53/* These RTL headers are needed for basic-block.h. */
54#include "rtl.h"
55#include "tm_p.h"
56#include "hard-reg-set.h"
57#include "basic-block.h"
58
59#include "tree.h"
60#include "diagnostic.h"
61#include "tree-flow.h"
eadf906f 62#include "tree-gimple.h"
6de9cd9a
DN
63#include "tree-dump.h"
64#include "tree-pass.h"
65#include "timevar.h"
66#include "flags.h"
67\f
68static struct stmt_stats
69{
70 int total;
71 int total_phis;
72 int removed;
73 int removed_phis;
74} stats;
75
76static varray_type worklist;
77
78/* Vector indicating an SSA name has already been processed and marked
79 as necessary. */
80static sbitmap processed;
81
82/* Vector indicating that last_stmt if a basic block has already been
83 marked as necessary. */
84static sbitmap last_stmt_necessary;
85
86/* Before we can determine whether a control branch is dead, we need to
87 compute which blocks are control dependent on which edges.
88
89 We expect each block to be control dependent on very few edges so we
90 use a bitmap for each block recording its edges. An array holds the
91 bitmap. The Ith bit in the bitmap is set if that block is dependent
92 on the Ith edge. */
93bitmap *control_dependence_map;
94
95/* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
96 for which the block with index N is control dependent. */
97#define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
98 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, CODE)
99
100/* Local function prototypes. */
101static inline void set_control_dependence_map_bit (basic_block, int);
102static inline void clear_control_dependence_bitmap (basic_block);
103static void find_all_control_dependences (struct edge_list *);
104static void find_control_dependence (struct edge_list *, int);
105static inline basic_block find_pdom (basic_block);
106
107static inline void mark_stmt_necessary (tree, bool);
108static inline void mark_operand_necessary (tree);
109
6de9cd9a
DN
110static void mark_stmt_if_obviously_necessary (tree, bool);
111static void find_obviously_necessary_stmts (struct edge_list *);
112
113static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
114static void propagate_necessity (struct edge_list *);
115
116static void eliminate_unnecessary_stmts (void);
117static void remove_dead_phis (basic_block);
118static void remove_dead_stmt (block_stmt_iterator *, basic_block);
119
120static void print_stats (void);
121static void tree_dce_init (bool);
122static void tree_dce_done (bool);
123\f
124/* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
125static inline void
126set_control_dependence_map_bit (basic_block bb, int edge_index)
127{
128 if (bb == ENTRY_BLOCK_PTR)
129 return;
130 if (bb == EXIT_BLOCK_PTR)
131 abort ();
132 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
133}
134
135/* Clear all control dependences for block BB. */
136static inline
137void clear_control_dependence_bitmap (basic_block bb)
138{
139 bitmap_clear (control_dependence_map[bb->index]);
140}
141
142/* Record all blocks' control dependences on all edges in the edge
143 list EL, ala Morgan, Section 3.6. */
144
145static void
146find_all_control_dependences (struct edge_list *el)
147{
148 int i;
149
150 for (i = 0; i < NUM_EDGES (el); ++i)
151 find_control_dependence (el, i);
152}
153
154/* Determine all blocks' control dependences on the given edge with edge_list
155 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
156
157static void
158find_control_dependence (struct edge_list *el, int edge_index)
159{
160 basic_block current_block;
161 basic_block ending_block;
162
163#ifdef ENABLE_CHECKING
164 if (INDEX_EDGE_PRED_BB (el, edge_index) == EXIT_BLOCK_PTR)
165 abort ();
166#endif
167
168 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
169 ending_block = ENTRY_BLOCK_PTR->next_bb;
170 else
171 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
172
173 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
174 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
175 current_block = find_pdom (current_block))
176 {
177 edge e = INDEX_EDGE (el, edge_index);
178
179 /* For abnormal edges, we don't make current_block control
180 dependent because instructions that throw are always necessary
181 anyway. */
182 if (e->flags & EDGE_ABNORMAL)
183 continue;
184
185 set_control_dependence_map_bit (current_block, edge_index);
186 }
187}
188
189/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
190 This function is necessary because some blocks have negative numbers. */
191
192static inline basic_block
193find_pdom (basic_block block)
194{
195 if (block == ENTRY_BLOCK_PTR)
196 abort ();
197 else if (block == EXIT_BLOCK_PTR)
198 return EXIT_BLOCK_PTR;
199 else
200 {
201 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
202 if (! bb)
203 return EXIT_BLOCK_PTR;
204 return bb;
205 }
206}
207\f
208#define NECESSARY(stmt) stmt->common.asm_written_flag
209
210/* If STMT is not already marked necessary, mark it, and add it to the
211 worklist if ADD_TO_WORKLIST is true. */
212static inline void
213mark_stmt_necessary (tree stmt, bool add_to_worklist)
214{
215#ifdef ENABLE_CHECKING
216 if (stmt == NULL
217 || stmt == error_mark_node
218 || (stmt && DECL_P (stmt)))
219 abort ();
220#endif
221
222 if (NECESSARY (stmt))
223 return;
224
225 if (dump_file && (dump_flags & TDF_DETAILS))
226 {
227 fprintf (dump_file, "Marking useful stmt: ");
228 print_generic_stmt (dump_file, stmt, TDF_SLIM);
229 fprintf (dump_file, "\n");
230 }
231
232 NECESSARY (stmt) = 1;
233 if (add_to_worklist)
234 VARRAY_PUSH_TREE (worklist, stmt);
235}
236
237/* Mark the statement defining operand OP as necessary. */
238
239static inline void
240mark_operand_necessary (tree op)
241{
242 tree stmt;
243 int ver;
244
245#ifdef ENABLE_CHECKING
246 if (op == NULL)
247 abort ();
248#endif
249
250 ver = SSA_NAME_VERSION (op);
251 if (TEST_BIT (processed, ver))
252 return;
253 SET_BIT (processed, ver);
254
255 stmt = SSA_NAME_DEF_STMT (op);
256#ifdef ENABLE_CHECKING
257 if (stmt == NULL)
258 abort ();
259#endif
260
261 if (NECESSARY (stmt)
262 || IS_EMPTY_STMT (stmt))
263 return;
264
265 NECESSARY (stmt) = 1;
266 VARRAY_PUSH_TREE (worklist, stmt);
267}
268\f
6de9cd9a
DN
269
270/* Mark STMT as necessary if it is obviously is. Add it to the worklist if
271 it can make other statements necessary.
272
273 If AGGRESSIVE is false, control statements are conservatively marked as
274 necessary. */
275
276static void
277mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
278{
279 def_optype defs;
a32b97a2
BB
280 v_may_def_optype v_may_defs;
281 v_must_def_optype v_must_defs;
6de9cd9a
DN
282 stmt_ann_t ann;
283 size_t i;
cd709752 284 tree op;
6de9cd9a
DN
285
286 /* Statements that are implicitly live. Most function calls, asm and return
287 statements are required. Labels and BIND_EXPR nodes are kept because
288 they are control flow, and we have no way of knowing whether they can be
289 removed. DCE can eliminate all the other statements in a block, and CFG
290 can then remove the block and labels. */
291 switch (TREE_CODE (stmt))
292 {
293 case BIND_EXPR:
294 case LABEL_EXPR:
295 case CASE_LABEL_EXPR:
296 mark_stmt_necessary (stmt, false);
297 return;
298
299 case ASM_EXPR:
300 case RESX_EXPR:
301 case RETURN_EXPR:
302 mark_stmt_necessary (stmt, true);
303 return;
304
305 case CALL_EXPR:
306 /* Most, but not all function calls are required. Function calls that
307 produce no result and have no side effects (i.e. const pure
308 functions) are unnecessary. */
309 if (TREE_SIDE_EFFECTS (stmt))
310 mark_stmt_necessary (stmt, true);
311 return;
312
313 case MODIFY_EXPR:
cd709752
RH
314 op = get_call_expr_in (stmt);
315 if (op && TREE_SIDE_EFFECTS (op))
6de9cd9a
DN
316 {
317 mark_stmt_necessary (stmt, true);
318 return;
319 }
320
321 /* These values are mildly magic bits of the EH runtime. We can't
322 see the entire lifetime of these values until landing pads are
323 generated. */
324 if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
325 || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
326 {
327 mark_stmt_necessary (stmt, true);
328 return;
329 }
330 break;
331
332 case GOTO_EXPR:
333 if (! simple_goto_p (stmt))
334 mark_stmt_necessary (stmt, true);
335 return;
336
337 case COND_EXPR:
338 if (GOTO_DESTINATION (COND_EXPR_THEN (stmt))
339 == GOTO_DESTINATION (COND_EXPR_ELSE (stmt)))
340 {
341 /* A COND_EXPR is obviously dead if the target labels are the same.
342 We cannot kill the statement at this point, so to prevent the
343 statement from being marked necessary, we replace the condition
344 with a constant. The stmt is killed later on in cfg_cleanup. */
345 COND_EXPR_COND (stmt) = integer_zero_node;
346 modify_stmt (stmt);
347 return;
348 }
349 /* Fall through. */
350
351 case SWITCH_EXPR:
352 if (! aggressive)
353 mark_stmt_necessary (stmt, true);
354 break;
355
356 default:
357 break;
358 }
359
360 ann = stmt_ann (stmt);
c597ef4e
DN
361
362 /* If the statement has volatile operands, it needs to be preserved.
363 Same for statements that can alter control flow in unpredictable
364 ways. */
365 if (ann->has_volatile_ops || is_ctrl_altering_stmt (stmt))
6de9cd9a
DN
366 {
367 mark_stmt_necessary (stmt, true);
368 return;
369 }
370
371 get_stmt_operands (stmt);
372
373 defs = DEF_OPS (ann);
374 for (i = 0; i < NUM_DEFS (defs); i++)
375 {
376 tree def = DEF_OP (defs, i);
c597ef4e 377 if (is_global_var (SSA_NAME_VAR (def)))
6de9cd9a
DN
378 {
379 mark_stmt_necessary (stmt, true);
380 return;
381 }
382 }
383
c597ef4e
DN
384 /* Check virtual definitions. If we get here, the only virtual
385 definitions we should see are those generated by assignment
386 statements. */
a32b97a2 387 v_may_defs = V_MAY_DEF_OPS (ann);
a32b97a2 388 v_must_defs = V_MUST_DEF_OPS (ann);
c597ef4e 389 if (NUM_V_MAY_DEFS (v_may_defs) > 0 || NUM_V_MUST_DEFS (v_must_defs) > 0)
a32b97a2 390 {
c597ef4e
DN
391 tree lhs;
392
393#if defined ENABLE_CHECKING
394 if (TREE_CODE (stmt) != MODIFY_EXPR)
395 abort ();
396#endif
397
398 /* Note that we must not check the individual virtual operands
399 here. In particular, if this is an aliased store, we could
400 end up with something like the following (SSA notation
401 redacted for brevity):
402
403 foo (int *p, int i)
404 {
405 int x;
406 p_1 = (i_2 > 3) ? &x : p_1;
407
408 # x_4 = V_MAY_DEF <x_3>
409 *p_1 = 5;
410
411 return 2;
412 }
413
414 Notice that the store to '*p_1' should be preserved, if we
415 were to check the virtual definitions in that store, we would
416 not mark it needed. This is because 'x' is not a global
417 variable.
418
419 Therefore, we check the base address of the LHS. If the
420 address is a pointer, we check if its name tag or type tag is
421 a global variable. Otherwise, we check if the base variable
422 is a global. */
423 lhs = TREE_OPERAND (stmt, 0);
424 if (TREE_CODE_CLASS (TREE_CODE (lhs)) == 'r')
425 lhs = get_base_address (lhs);
426
427 if (lhs == NULL_TREE)
6de9cd9a 428 {
c597ef4e
DN
429 /* If LHS is NULL, it means that we couldn't get the base
430 address of the reference. In which case, we should not
431 remove this store. */
6de9cd9a 432 mark_stmt_necessary (stmt, true);
c597ef4e
DN
433 }
434 else if (DECL_P (lhs))
435 {
436 /* If the store is to a global symbol, we need to keep it. */
437 if (is_global_var (lhs))
438 mark_stmt_necessary (stmt, true);
439 }
440 else if (TREE_CODE (lhs) == INDIRECT_REF)
441 {
442 tree ptr = TREE_OPERAND (lhs, 0);
443 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr);
444 tree nmt = (pi) ? pi->name_mem_tag : NULL_TREE;
445 tree tmt = var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
446
447 /* If either the name tag or the type tag for PTR is a
448 global variable, then the store is necessary. */
449 if ((nmt && is_global_var (nmt))
450 || (tmt && is_global_var (tmt)))
451 {
452 mark_stmt_necessary (stmt, true);
453 return;
454 }
455 }
456 else
457 abort ();
6de9cd9a
DN
458 }
459
460 return;
461}
462\f
463/* Find obviously necessary statements. These are things like most function
464 calls, and stores to file level variables.
465
466 If EL is NULL, control statements are conservatively marked as
467 necessary. Otherwise it contains the list of edges used by control
468 dependence analysis. */
469
470static void
471find_obviously_necessary_stmts (struct edge_list *el)
472{
473 basic_block bb;
474 block_stmt_iterator i;
475 edge e;
476
477 FOR_EACH_BB (bb)
478 {
479 tree phi;
480
481 /* Check any PHI nodes in the block. */
17192884 482 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
6de9cd9a
DN
483 {
484 NECESSARY (phi) = 0;
485
486 /* PHIs for virtual variables do not directly affect code
487 generation and need not be considered inherently necessary
488 regardless of the bits set in their decl.
489
490 Thus, we only need to mark PHIs for real variables which
491 need their result preserved as being inherently necessary. */
492 if (is_gimple_reg (PHI_RESULT (phi))
c597ef4e 493 && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi))))
6de9cd9a
DN
494 mark_stmt_necessary (phi, true);
495 }
496
497 /* Check all statements in the block. */
498 for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
499 {
500 tree stmt = bsi_stmt (i);
501 NECESSARY (stmt) = 0;
502 mark_stmt_if_obviously_necessary (stmt, el != NULL);
503 }
504
505 /* Mark this basic block as `not visited'. A block will be marked
506 visited when the edges that it is control dependent on have been
507 marked. */
508 bb->flags &= ~BB_VISITED;
509 }
510
511 if (el)
512 {
513 /* Prevent the loops from being removed. We must keep the infinite loops,
514 and we currently do not have a means to recognize the finite ones. */
515 FOR_EACH_BB (bb)
516 {
517 for (e = bb->succ; e; e = e->succ_next)
518 if (e->flags & EDGE_DFS_BACK)
519 mark_control_dependent_edges_necessary (e->dest, el);
520 }
521 }
522}
523\f
524/* Make corresponding control dependent edges necessary. We only
525 have to do this once for each basic block, so we clear the bitmap
526 after we're done. */
527static void
528mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
529{
530 int edge_number;
531
7e6eb623
DB
532#ifdef ENABLE_CHECKING
533 if (bb == EXIT_BLOCK_PTR)
534 abort ();
535#endif
536
537 if (bb == ENTRY_BLOCK_PTR)
538 return;
539
6de9cd9a
DN
540 EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
541 {
542 tree t;
543 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
544
545 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
546 continue;
547 SET_BIT (last_stmt_necessary, cd_bb->index);
548
549 t = last_stmt (cd_bb);
1eaba2f2 550 if (t && is_ctrl_stmt (t))
6de9cd9a
DN
551 mark_stmt_necessary (t, true);
552 });
553}
554\f
555/* Propagate necessity using the operands of necessary statements. Process
556 the uses on each statement in the worklist, and add all feeding statements
557 which contribute to the calculation of this value to the worklist.
558
559 In conservative mode, EL is NULL. */
560
561static void
562propagate_necessity (struct edge_list *el)
563{
564 tree i;
565 bool aggressive = (el ? true : false);
566
567 if (dump_file && (dump_flags & TDF_DETAILS))
568 fprintf (dump_file, "\nProcessing worklist:\n");
569
570 while (VARRAY_ACTIVE_SIZE (worklist) > 0)
571 {
572 /* Take `i' from worklist. */
573 i = VARRAY_TOP_TREE (worklist);
574 VARRAY_POP (worklist);
575
576 if (dump_file && (dump_flags & TDF_DETAILS))
577 {
578 fprintf (dump_file, "processing: ");
579 print_generic_stmt (dump_file, i, TDF_SLIM);
580 fprintf (dump_file, "\n");
581 }
582
583 if (aggressive)
584 {
585 /* Mark the last statements of the basic blocks that the block
586 containing `i' is control dependent on, but only if we haven't
587 already done so. */
588 basic_block bb = bb_for_stmt (i);
589 if (! (bb->flags & BB_VISITED))
590 {
591 bb->flags |= BB_VISITED;
592 mark_control_dependent_edges_necessary (bb, el);
593 }
594 }
595
596 if (TREE_CODE (i) == PHI_NODE)
597 {
598 /* PHI nodes are somewhat special in that each PHI alternative has
599 data and control dependencies. All the statements feeding the
600 PHI node's arguments are always necessary. In aggressive mode,
601 we also consider the control dependent edges leading to the
602 predecessor block associated with each PHI alternative as
603 necessary. */
604 int k;
605 for (k = 0; k < PHI_NUM_ARGS (i); k++)
606 {
607 tree arg = PHI_ARG_DEF (i, k);
608 if (TREE_CODE (arg) == SSA_NAME)
609 mark_operand_necessary (arg);
610 }
611
612 if (aggressive)
613 {
614 for (k = 0; k < PHI_NUM_ARGS (i); k++)
615 {
616 basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
617 if (! (arg_bb->flags & BB_VISITED))
618 {
619 arg_bb->flags |= BB_VISITED;
620 mark_control_dependent_edges_necessary (arg_bb, el);
621 }
622 }
623 }
624 }
625 else
626 {
627 /* Propagate through the operands. Examine all the USE, VUSE and
a32b97a2
BB
628 V_MAY_DEF operands in this statement. Mark all the statements
629 which feed this statement's uses as necessary. */
6de9cd9a 630 vuse_optype vuses;
a32b97a2 631 v_may_def_optype v_may_defs;
6de9cd9a
DN
632 use_optype uses;
633 stmt_ann_t ann;
634 size_t k;
635
636 get_stmt_operands (i);
637 ann = stmt_ann (i);
638
639 uses = USE_OPS (ann);
640 for (k = 0; k < NUM_USES (uses); k++)
641 mark_operand_necessary (USE_OP (uses, k));
642
643 vuses = VUSE_OPS (ann);
644 for (k = 0; k < NUM_VUSES (vuses); k++)
645 mark_operand_necessary (VUSE_OP (vuses, k));
646
a32b97a2 647 /* The operands of V_MAY_DEF expressions are also needed as they
6de9cd9a 648 represent potential definitions that may reach this
a32b97a2
BB
649 statement (V_MAY_DEF operands allow us to follow def-def
650 links). */
651 v_may_defs = V_MAY_DEF_OPS (ann);
652 for (k = 0; k < NUM_V_MAY_DEFS (v_may_defs); k++)
653 mark_operand_necessary (V_MAY_DEF_OP (v_may_defs, k));
6de9cd9a
DN
654 }
655 }
656}
657\f
658/* Eliminate unnecessary statements. Any instruction not marked as necessary
659 contributes nothing to the program, and can be deleted. */
660
661static void
662eliminate_unnecessary_stmts (void)
663{
664 basic_block bb;
665 block_stmt_iterator i;
666
667 if (dump_file && (dump_flags & TDF_DETAILS))
668 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
669
670 clear_special_calls ();
671 FOR_EACH_BB (bb)
672 {
673 /* Remove dead PHI nodes. */
674 remove_dead_phis (bb);
675
676 /* Remove dead statements. */
677 for (i = bsi_start (bb); ! bsi_end_p (i) ; )
678 {
679 tree t = bsi_stmt (i);
680
681 stats.total++;
682
683 /* If `i' is not necessary then remove it. */
684 if (! NECESSARY (t))
685 remove_dead_stmt (&i, bb);
686 else
687 {
cd709752
RH
688 tree call = get_call_expr_in (t);
689 if (call)
690 notice_special_calls (call);
6de9cd9a
DN
691 bsi_next (&i);
692 }
693 }
694 }
695}
696\f
697/* Remove dead PHI nodes from block BB. */
698
699static void
700remove_dead_phis (basic_block bb)
701{
702 tree prev, phi;
703
704 prev = NULL_TREE;
705 phi = phi_nodes (bb);
706 while (phi)
707 {
708 stats.total_phis++;
709
710 if (! NECESSARY (phi))
711 {
17192884 712 tree next = PHI_CHAIN (phi);
6de9cd9a
DN
713
714 if (dump_file && (dump_flags & TDF_DETAILS))
715 {
716 fprintf (dump_file, "Deleting : ");
717 print_generic_stmt (dump_file, phi, TDF_SLIM);
718 fprintf (dump_file, "\n");
719 }
720
721 remove_phi_node (phi, prev, bb);
722 stats.removed_phis++;
723 phi = next;
724 }
725 else
726 {
727 prev = phi;
17192884 728 phi = PHI_CHAIN (phi);
6de9cd9a
DN
729 }
730 }
731}
732\f
733/* Remove dead statement pointed by iterator I. Receives the basic block BB
734 containing I so that we don't have to look it up. */
735
736static void
737remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
738{
739 tree t = bsi_stmt (*i);
740
741 if (dump_file && (dump_flags & TDF_DETAILS))
742 {
743 fprintf (dump_file, "Deleting : ");
744 print_generic_stmt (dump_file, t, TDF_SLIM);
745 fprintf (dump_file, "\n");
746 }
747
748 stats.removed++;
749
750 /* If we have determined that a conditional branch statement contributes
751 nothing to the program, then we not only remove it, but we also change
752 the flow graph so that the current block will simply fall-thru to its
753 immediate post-dominator. The blocks we are circumventing will be
754 removed by cleaup_cfg if this change in the flow graph makes them
755 unreachable. */
756 if (is_ctrl_stmt (t))
757 {
758 basic_block post_dom_bb;
759 edge e;
760#ifdef ENABLE_CHECKING
761 /* The post dominance info has to be up-to-date. */
762 if (dom_computed[CDI_POST_DOMINATORS] != DOM_OK)
763 abort ();
764#endif
765 /* Get the immediate post dominator of bb. */
766 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
767 /* Some blocks don't have an immediate post dominator. This can happen
768 for example with infinite loops. Removing an infinite loop is an
769 inappropriate transformation anyway... */
770 if (! post_dom_bb)
771 {
772 bsi_next (i);
773 return;
774 }
775
776 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
777 redirect_edge_and_branch (bb->succ, post_dom_bb);
778 PENDING_STMT (bb->succ) = NULL;
779
780 /* The edge is no longer associated with a conditional, so it does
781 not have TRUE/FALSE flags. */
782 bb->succ->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
783
784 /* If the edge reaches any block other than the exit, then it is a
785 fallthru edge; if it reaches the exit, then it is not a fallthru
786 edge. */
787 if (post_dom_bb != EXIT_BLOCK_PTR)
788 bb->succ->flags |= EDGE_FALLTHRU;
789 else
790 bb->succ->flags &= ~EDGE_FALLTHRU;
791
792 /* Remove the remaining the outgoing edges. */
793 for (e = bb->succ->succ_next; e != NULL;)
794 {
795 edge tmp = e;
796 e = e->succ_next;
797 remove_edge (tmp);
798 }
799 }
800
801 bsi_remove (i);
53b4bf74 802 release_defs (t);
6de9cd9a
DN
803}
804\f
805/* Print out removed statement statistics. */
806
807static void
808print_stats (void)
809{
810 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
811 {
812 float percg;
813
814 percg = ((float) stats.removed / (float) stats.total) * 100;
815 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
816 stats.removed, stats.total, (int) percg);
817
818 if (stats.total_phis == 0)
819 percg = 0;
820 else
821 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
822
823 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
824 stats.removed_phis, stats.total_phis, (int) percg);
825 }
826}
827\f
828/* Initialization for this pass. Set up the used data structures. */
829
830static void
831tree_dce_init (bool aggressive)
832{
833 memset ((void *) &stats, 0, sizeof (stats));
834
835 if (aggressive)
836 {
837 int i;
838
839 control_dependence_map
840 = xmalloc (last_basic_block * sizeof (bitmap));
841 for (i = 0; i < last_basic_block; ++i)
842 control_dependence_map[i] = BITMAP_XMALLOC ();
843
844 last_stmt_necessary = sbitmap_alloc (last_basic_block);
845 sbitmap_zero (last_stmt_necessary);
846 }
847
95a3742c 848 processed = sbitmap_alloc (num_ssa_names + 1);
6de9cd9a
DN
849 sbitmap_zero (processed);
850
851 VARRAY_TREE_INIT (worklist, 64, "work list");
852}
853
854/* Cleanup after this pass. */
855
856static void
857tree_dce_done (bool aggressive)
858{
859 if (aggressive)
860 {
861 int i;
862
863 for (i = 0; i < last_basic_block; ++i)
864 BITMAP_XFREE (control_dependence_map[i]);
865 free (control_dependence_map);
866
867 sbitmap_free (last_stmt_necessary);
868 }
869
870 sbitmap_free (processed);
871}
872\f
873/* Main routine to eliminate dead code.
874
875 AGGRESSIVE controls the aggressiveness of the algorithm.
876 In conservative mode, we ignore control dependence and simply declare
877 all but the most trivially dead branches necessary. This mode is fast.
878 In aggressive mode, control dependences are taken into account, which
879 results in more dead code elimination, but at the cost of some time.
880
881 FIXME: Aggressive mode before PRE doesn't work currently because
882 the dominance info is not invalidated after DCE1. This is
883 not an issue right now because we only run aggressive DCE
884 as the last tree SSA pass, but keep this in mind when you
885 start experimenting with pass ordering. */
886
887static void
888perform_tree_ssa_dce (bool aggressive)
889{
890 struct edge_list *el = NULL;
891
892 tree_dce_init (aggressive);
893
894 if (aggressive)
895 {
896 /* Compute control dependence. */
897 timevar_push (TV_CONTROL_DEPENDENCES);
898 calculate_dominance_info (CDI_POST_DOMINATORS);
899 el = create_edge_list ();
900 find_all_control_dependences (el);
901 timevar_pop (TV_CONTROL_DEPENDENCES);
902
903 mark_dfs_back_edges ();
904 }
905
906 find_obviously_necessary_stmts (el);
907
908 propagate_necessity (el);
909
910 eliminate_unnecessary_stmts ();
911
912 if (aggressive)
913 free_dominance_info (CDI_POST_DOMINATORS);
914
915 cleanup_tree_cfg ();
916
917 /* Debugging dumps. */
918 if (dump_file)
919 {
920 dump_function_to_file (current_function_decl, dump_file, dump_flags);
921 print_stats ();
922 }
923
924 tree_dce_done (aggressive);
960076d9
AP
925
926 free_edge_list (el);
6de9cd9a
DN
927}
928
929/* Pass entry points. */
930static void
931tree_ssa_dce (void)
932{
933 perform_tree_ssa_dce (/*aggressive=*/false);
934}
935
936static void
937tree_ssa_cd_dce (void)
938{
939 perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
940}
941
942static bool
943gate_dce (void)
944{
945 return flag_tree_dce != 0;
946}
947
948struct tree_opt_pass pass_dce =
949{
950 "dce", /* name */
951 gate_dce, /* gate */
952 tree_ssa_dce, /* execute */
953 NULL, /* sub */
954 NULL, /* next */
955 0, /* static_pass_number */
956 TV_TREE_DCE, /* tv_id */
c1b763fa 957 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
6de9cd9a
DN
958 0, /* properties_provided */
959 0, /* properties_destroyed */
960 0, /* todo_flags_start */
961 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
962};
963
964struct tree_opt_pass pass_cd_dce =
965{
966 "cddce", /* name */
967 gate_dce, /* gate */
968 tree_ssa_cd_dce, /* execute */
969 NULL, /* sub */
970 NULL, /* next */
971 0, /* static_pass_number */
972 TV_TREE_CD_DCE, /* tv_id */
c1b763fa 973 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
6de9cd9a
DN
974 0, /* properties_provided */
975 0, /* properties_destroyed */
976 0, /* todo_flags_start */
977 TODO_ggc_collect | TODO_verify_ssa | TODO_verify_flow
978 /* todo_flags_finish */
979};
980
This page took 0.299584 seconds and 5 git commands to generate.