]> gcc.gnu.org Git - gcc.git/blame - gcc/tree-scalar-evolution.c
cfgloopmanip.c (create_preheader): Do not use loop_preheader_edge.
[gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
eeef0e45 2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
e9eb809d
ZD
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA. */
e9eb809d 21
9baba81b
SP
22/*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
07beea0d 51 - When the definition is a GIMPLE_MODIFY_STMT: if the right hand side
9baba81b
SP
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232*/
233
e9eb809d
ZD
234#include "config.h"
235#include "system.h"
236#include "coretypes.h"
237#include "tm.h"
e9eb809d
ZD
238#include "ggc.h"
239#include "tree.h"
9d2b0e12 240#include "real.h"
9baba81b
SP
241
242/* These RTL headers are needed for basic-block.h. */
e9eb809d
ZD
243#include "rtl.h"
244#include "basic-block.h"
245#include "diagnostic.h"
246#include "tree-flow.h"
247#include "tree-dump.h"
248#include "timevar.h"
249#include "cfgloop.h"
250#include "tree-chrec.h"
251#include "tree-scalar-evolution.h"
9baba81b
SP
252#include "tree-pass.h"
253#include "flags.h"
c59dabbe 254#include "params.h"
9baba81b
SP
255
256static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257static tree resolve_mixers (struct loop *, tree);
258
259/* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
261
262struct scev_info_str
263{
264 tree var;
265 tree chrec;
266};
267
268/* Counters for the scev database. */
269static unsigned nb_set_scev = 0;
270static unsigned nb_get_scev = 0;
271
272/* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
275
276/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277tree chrec_not_analyzed_yet;
278
279/* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281tree chrec_dont_know;
282
283/* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
285tree chrec_known;
286
287static bitmap already_instantiated;
288
289static htab_t scalar_evolution_info;
290
291\f
292/* Constructs a new SCEV_INFO_STR structure. */
293
294static inline struct scev_info_str *
295new_scev_info_str (tree var)
296{
297 struct scev_info_str *res;
298
cceb1885 299 res = XNEW (struct scev_info_str);
9baba81b
SP
300 res->var = var;
301 res->chrec = chrec_not_analyzed_yet;
302
303 return res;
304}
305
306/* Computes a hash function for database element ELT. */
307
308static hashval_t
309hash_scev_info (const void *elt)
310{
311 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
312}
313
314/* Compares database elements E1 and E2. */
315
316static int
317eq_scev_info (const void *e1, const void *e2)
318{
cceb1885
GDR
319 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
9baba81b
SP
321
322 return elt1->var == elt2->var;
323}
324
325/* Deletes database element E. */
326
327static void
328del_scev_info (void *e)
329{
330 free (e);
331}
332
333/* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
b01d837f 335 chrec_not_analyzed_yet for this VAR and return its index. */
9baba81b
SP
336
337static tree *
338find_var_scev_info (tree var)
339{
340 struct scev_info_str *res;
341 struct scev_info_str tmp;
342 PTR *slot;
343
344 tmp.var = var;
345 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
346
347 if (!*slot)
348 *slot = new_scev_info_str (var);
cceb1885 349 res = (struct scev_info_str *) *slot;
9baba81b
SP
350
351 return &res->chrec;
352}
353
9baba81b
SP
354/* Return true when CHREC contains symbolic names defined in
355 LOOP_NB. */
356
357bool
358chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
359{
5039610b
SL
360 int i, n;
361
9baba81b
SP
362 if (chrec == NULL_TREE)
363 return false;
364
365 if (TREE_INVARIANT (chrec))
366 return false;
367
368 if (TREE_CODE (chrec) == VAR_DECL
369 || TREE_CODE (chrec) == PARM_DECL
370 || TREE_CODE (chrec) == FUNCTION_DECL
371 || TREE_CODE (chrec) == LABEL_DECL
372 || TREE_CODE (chrec) == RESULT_DECL
373 || TREE_CODE (chrec) == FIELD_DECL)
374 return true;
375
376 if (TREE_CODE (chrec) == SSA_NAME)
377 {
378 tree def = SSA_NAME_DEF_STMT (chrec);
379 struct loop *def_loop = loop_containing_stmt (def);
42fd6772 380 struct loop *loop = get_loop (loop_nb);
9baba81b
SP
381
382 if (def_loop == NULL)
383 return false;
384
385 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
386 return true;
387
388 return false;
389 }
390
5039610b
SL
391 n = TREE_OPERAND_LENGTH (chrec);
392 for (i = 0; i < n; i++)
393 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
394 loop_nb))
395 return true;
396 return false;
9baba81b
SP
397}
398
399/* Return true when PHI is a loop-phi-node. */
400
401static bool
402loop_phi_node_p (tree phi)
403{
404 /* The implementation of this function is based on the following
405 property: "all the loop-phi-nodes of a loop are contained in the
406 loop's header basic block". */
407
408 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
409}
410
411/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
412 In general, in the case of multivariate evolutions we want to get
413 the evolution in different loops. LOOP specifies the level for
414 which to get the evolution.
415
416 Example:
417
418 | for (j = 0; j < 100; j++)
419 | {
420 | for (k = 0; k < 100; k++)
421 | {
422 | i = k + j; - Here the value of i is a function of j, k.
423 | }
424 | ... = i - Here the value of i is a function of j.
425 | }
426 | ... = i - Here the value of i is a scalar.
427
428 Example:
429
430 | i_0 = ...
431 | loop_1 10 times
432 | i_1 = phi (i_0, i_2)
433 | i_2 = i_1 + 2
434 | endloop
435
436 This loop has the same effect as:
437 LOOP_1 has the same effect as:
438
439 | i_1 = i_0 + 20
440
441 The overall effect of the loop, "i_0 + 20" in the previous example,
442 is obtained by passing in the parameters: LOOP = 1,
443 EVOLUTION_FN = {i_0, +, 2}_1.
444*/
445
446static tree
447compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
448{
449 bool val = false;
450
451 if (evolution_fn == chrec_dont_know)
452 return chrec_dont_know;
453
454 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
455 {
677cc14d
ZD
456 struct loop *inner_loop = get_chrec_loop (evolution_fn);
457
458 if (inner_loop == loop
459 || flow_loop_nested_p (loop, inner_loop))
9baba81b 460 {
a14865db 461 tree nb_iter = number_of_latch_executions (inner_loop);
9baba81b
SP
462
463 if (nb_iter == chrec_dont_know)
464 return chrec_dont_know;
465 else
466 {
467 tree res;
468
9baba81b
SP
469 /* evolution_fn is the evolution function in LOOP. Get
470 its value in the nb_iter-th iteration. */
471 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
472
8c27b7d4 473 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
474 return compute_overall_effect_of_inner_loop (loop, res);
475 }
476 }
477 else
478 return evolution_fn;
479 }
480
481 /* If the evolution function is an invariant, there is nothing to do. */
482 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
483 return evolution_fn;
484
485 else
486 return chrec_dont_know;
487}
488
489/* Determine whether the CHREC is always positive/negative. If the expression
490 cannot be statically analyzed, return false, otherwise set the answer into
491 VALUE. */
492
493bool
494chrec_is_positive (tree chrec, bool *value)
495{
16a2acea 496 bool value0, value1, value2;
a14865db 497 tree end_value, nb_iter;
9baba81b
SP
498
499 switch (TREE_CODE (chrec))
500 {
501 case POLYNOMIAL_CHREC:
502 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
503 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
504 return false;
505
506 /* FIXME -- overflows. */
507 if (value0 == value1)
508 {
509 *value = value0;
510 return true;
511 }
512
513 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
514 and the proof consists in showing that the sign never
515 changes during the execution of the loop, from 0 to
516 loop->nb_iterations. */
517 if (!evolution_function_is_affine_p (chrec))
518 return false;
519
a14865db 520 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
9baba81b
SP
521 if (chrec_contains_undetermined (nb_iter))
522 return false;
523
9baba81b
SP
524#if 0
525 /* TODO -- If the test is after the exit, we may decrease the number of
526 iterations by one. */
527 if (after_exit)
16a2acea 528 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
9baba81b
SP
529#endif
530
531 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
532
533 if (!chrec_is_positive (end_value, &value2))
534 return false;
535
536 *value = value0;
537 return value0 == value1;
538
539 case INTEGER_CST:
540 *value = (tree_int_cst_sgn (chrec) == 1);
541 return true;
542
543 default:
544 return false;
545 }
546}
547
548/* Associate CHREC to SCALAR. */
549
550static void
551set_scalar_evolution (tree scalar, tree chrec)
552{
553 tree *scalar_info;
554
555 if (TREE_CODE (scalar) != SSA_NAME)
556 return;
557
558 scalar_info = find_var_scev_info (scalar);
559
560 if (dump_file)
561 {
562 if (dump_flags & TDF_DETAILS)
563 {
564 fprintf (dump_file, "(set_scalar_evolution \n");
565 fprintf (dump_file, " (scalar = ");
566 print_generic_expr (dump_file, scalar, 0);
567 fprintf (dump_file, ")\n (scalar_evolution = ");
568 print_generic_expr (dump_file, chrec, 0);
569 fprintf (dump_file, "))\n");
570 }
571 if (dump_flags & TDF_STATS)
572 nb_set_scev++;
573 }
574
575 *scalar_info = chrec;
576}
577
578/* Retrieve the chrec associated to SCALAR in the LOOP. */
579
580static tree
581get_scalar_evolution (tree scalar)
582{
583 tree res;
584
585 if (dump_file)
586 {
587 if (dump_flags & TDF_DETAILS)
588 {
589 fprintf (dump_file, "(get_scalar_evolution \n");
590 fprintf (dump_file, " (scalar = ");
591 print_generic_expr (dump_file, scalar, 0);
592 fprintf (dump_file, ")\n");
593 }
594 if (dump_flags & TDF_STATS)
595 nb_get_scev++;
596 }
597
598 switch (TREE_CODE (scalar))
599 {
600 case SSA_NAME:
601 res = *find_var_scev_info (scalar);
602 break;
603
604 case REAL_CST:
605 case INTEGER_CST:
606 res = scalar;
607 break;
608
609 default:
610 res = chrec_not_analyzed_yet;
611 break;
612 }
613
614 if (dump_file && (dump_flags & TDF_DETAILS))
615 {
616 fprintf (dump_file, " (scalar_evolution = ");
617 print_generic_expr (dump_file, res, 0);
618 fprintf (dump_file, "))\n");
619 }
620
621 return res;
622}
623
624/* Helper function for add_to_evolution. Returns the evolution
625 function for an assignment of the form "a = b + c", where "a" and
626 "b" are on the strongly connected component. CHREC_BEFORE is the
627 information that we already have collected up to this point.
628 TO_ADD is the evolution of "c".
629
630 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
631 evolution the expression TO_ADD, otherwise construct an evolution
632 part for this loop. */
633
634static tree
e2157b49
SP
635add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
636 tree at_stmt)
9baba81b 637{
e2157b49 638 tree type, left, right;
677cc14d 639 struct loop *loop = get_loop (loop_nb), *chloop;
e2157b49 640
9baba81b
SP
641 switch (TREE_CODE (chrec_before))
642 {
643 case POLYNOMIAL_CHREC:
677cc14d
ZD
644 chloop = get_chrec_loop (chrec_before);
645 if (chloop == loop
646 || flow_loop_nested_p (chloop, loop))
9baba81b
SP
647 {
648 unsigned var;
e2157b49
SP
649
650 type = chrec_type (chrec_before);
9baba81b
SP
651
652 /* When there is no evolution part in this loop, build it. */
677cc14d 653 if (chloop != loop)
9baba81b
SP
654 {
655 var = loop_nb;
656 left = chrec_before;
7e0923cd
SP
657 right = SCALAR_FLOAT_TYPE_P (type)
658 ? build_real (type, dconst0)
659 : build_int_cst (type, 0);
9baba81b
SP
660 }
661 else
662 {
663 var = CHREC_VARIABLE (chrec_before);
664 left = CHREC_LEFT (chrec_before);
665 right = CHREC_RIGHT (chrec_before);
666 }
667
e2157b49
SP
668 to_add = chrec_convert (type, to_add, at_stmt);
669 right = chrec_convert (type, right, at_stmt);
670 right = chrec_fold_plus (type, right, to_add);
671 return build_polynomial_chrec (var, left, right);
9baba81b
SP
672 }
673 else
e2157b49 674 {
677cc14d
ZD
675 gcc_assert (flow_loop_nested_p (loop, chloop));
676
e2157b49
SP
677 /* Search the evolution in LOOP_NB. */
678 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
679 to_add, at_stmt);
680 right = CHREC_RIGHT (chrec_before);
681 right = chrec_convert (chrec_type (left), right, at_stmt);
682 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
683 left, right);
684 }
9baba81b
SP
685
686 default:
687 /* These nodes do not depend on a loop. */
688 if (chrec_before == chrec_dont_know)
689 return chrec_dont_know;
e2157b49
SP
690
691 left = chrec_before;
692 right = chrec_convert (chrec_type (left), to_add, at_stmt);
693 return build_polynomial_chrec (loop_nb, left, right);
9baba81b
SP
694 }
695}
696
697/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
698 of LOOP_NB.
699
700 Description (provided for completeness, for those who read code in
701 a plane, and for my poor 62 bytes brain that would have forgotten
702 all this in the next two or three months):
703
704 The algorithm of translation of programs from the SSA representation
705 into the chrecs syntax is based on a pattern matching. After having
706 reconstructed the overall tree expression for a loop, there are only
707 two cases that can arise:
708
709 1. a = loop-phi (init, a + expr)
710 2. a = loop-phi (init, expr)
711
712 where EXPR is either a scalar constant with respect to the analyzed
713 loop (this is a degree 0 polynomial), or an expression containing
714 other loop-phi definitions (these are higher degree polynomials).
715
716 Examples:
717
718 1.
719 | init = ...
720 | loop_1
721 | a = phi (init, a + 5)
722 | endloop
723
724 2.
725 | inita = ...
726 | initb = ...
727 | loop_1
728 | a = phi (inita, 2 * b + 3)
729 | b = phi (initb, b + 1)
730 | endloop
731
732 For the first case, the semantics of the SSA representation is:
733
734 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
735
736 that is, there is a loop index "x" that determines the scalar value
737 of the variable during the loop execution. During the first
738 iteration, the value is that of the initial condition INIT, while
739 during the subsequent iterations, it is the sum of the initial
740 condition with the sum of all the values of EXPR from the initial
741 iteration to the before last considered iteration.
742
743 For the second case, the semantics of the SSA program is:
744
745 | a (x) = init, if x = 0;
746 | expr (x - 1), otherwise.
747
748 The second case corresponds to the PEELED_CHREC, whose syntax is
749 close to the syntax of a loop-phi-node:
750
751 | phi (init, expr) vs. (init, expr)_x
752
753 The proof of the translation algorithm for the first case is a
754 proof by structural induction based on the degree of EXPR.
755
756 Degree 0:
757 When EXPR is a constant with respect to the analyzed loop, or in
758 other words when EXPR is a polynomial of degree 0, the evolution of
759 the variable A in the loop is an affine function with an initial
760 condition INIT, and a step EXPR. In order to show this, we start
761 from the semantics of the SSA representation:
762
763 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
764
765 and since "expr (j)" is a constant with respect to "j",
766
767 f (x) = init + x * expr
768
769 Finally, based on the semantics of the pure sum chrecs, by
770 identification we get the corresponding chrecs syntax:
771
772 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
773 f (x) -> {init, +, expr}_x
774
775 Higher degree:
776 Suppose that EXPR is a polynomial of degree N with respect to the
777 analyzed loop_x for which we have already determined that it is
778 written under the chrecs syntax:
779
780 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
781
782 We start from the semantics of the SSA program:
783
784 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
785 |
786 | f (x) = init + \sum_{j = 0}^{x - 1}
787 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
788 |
789 | f (x) = init + \sum_{j = 0}^{x - 1}
790 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
791 |
792 | f (x) = init + \sum_{k = 0}^{n - 1}
793 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
794 |
795 | f (x) = init + \sum_{k = 0}^{n - 1}
796 | (b_k * \binom{x}{k + 1})
797 |
798 | f (x) = init + b_0 * \binom{x}{1} + ...
799 | + b_{n-1} * \binom{x}{n}
800 |
801 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
802 | + b_{n-1} * \binom{x}{n}
803 |
804
805 And finally from the definition of the chrecs syntax, we identify:
806 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
807
808 This shows the mechanism that stands behind the add_to_evolution
809 function. An important point is that the use of symbolic
810 parameters avoids the need of an analysis schedule.
811
812 Example:
813
814 | inita = ...
815 | initb = ...
816 | loop_1
817 | a = phi (inita, a + 2 + b)
818 | b = phi (initb, b + 1)
819 | endloop
820
821 When analyzing "a", the algorithm keeps "b" symbolically:
822
823 | a -> {inita, +, 2 + b}_1
824
825 Then, after instantiation, the analyzer ends on the evolution:
826
827 | a -> {inita, +, 2 + initb, +, 1}_1
828
829*/
830
831static tree
e2157b49
SP
832add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
833 tree to_add, tree at_stmt)
9baba81b
SP
834{
835 tree type = chrec_type (to_add);
836 tree res = NULL_TREE;
837
838 if (to_add == NULL_TREE)
839 return chrec_before;
840
841 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
842 instantiated at this point. */
843 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
844 /* This should not happen. */
845 return chrec_dont_know;
846
847 if (dump_file && (dump_flags & TDF_DETAILS))
848 {
849 fprintf (dump_file, "(add_to_evolution \n");
850 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
851 fprintf (dump_file, " (chrec_before = ");
852 print_generic_expr (dump_file, chrec_before, 0);
853 fprintf (dump_file, ")\n (to_add = ");
854 print_generic_expr (dump_file, to_add, 0);
855 fprintf (dump_file, ")\n");
856 }
857
858 if (code == MINUS_EXPR)
9d2b0e12
VR
859 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
860 ? build_real (type, dconstm1)
861 : build_int_cst_type (type, -1));
9baba81b 862
e2157b49 863 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
9baba81b
SP
864
865 if (dump_file && (dump_flags & TDF_DETAILS))
866 {
867 fprintf (dump_file, " (res = ");
868 print_generic_expr (dump_file, res, 0);
869 fprintf (dump_file, "))\n");
870 }
871
872 return res;
873}
874
875/* Helper function. */
876
877static inline tree
878set_nb_iterations_in_loop (struct loop *loop,
879 tree res)
880{
9baba81b
SP
881 if (dump_file && (dump_flags & TDF_DETAILS))
882 {
883 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
884 print_generic_expr (dump_file, res, 0);
885 fprintf (dump_file, "))\n");
886 }
887
888 loop->nb_iterations = res;
889 return res;
890}
891
892\f
893
894/* This section selects the loops that will be good candidates for the
895 scalar evolution analysis. For the moment, greedily select all the
896 loop nests we could analyze. */
897
898/* Return true when it is possible to analyze the condition expression
899 EXPR. */
900
901static bool
902analyzable_condition (tree expr)
903{
904 tree condition;
905
906 if (TREE_CODE (expr) != COND_EXPR)
907 return false;
908
909 condition = TREE_OPERAND (expr, 0);
910
911 switch (TREE_CODE (condition))
912 {
913 case SSA_NAME:
9baba81b
SP
914 return true;
915
916 case LT_EXPR:
917 case LE_EXPR:
918 case GT_EXPR:
919 case GE_EXPR:
920 case EQ_EXPR:
921 case NE_EXPR:
85022b3f 922 return true;
9baba81b
SP
923
924 default:
925 return false;
926 }
927
928 return false;
929}
930
931/* For a loop with a single exit edge, return the COND_EXPR that
932 guards the exit edge. If the expression is too difficult to
933 analyze, then give up. */
934
935tree
936get_loop_exit_condition (struct loop *loop)
937{
938 tree res = NULL_TREE;
ac8f6c69 939 edge exit_edge = single_exit (loop);
9baba81b
SP
940
941 if (dump_file && (dump_flags & TDF_DETAILS))
942 fprintf (dump_file, "(get_loop_exit_condition \n ");
943
82b85a85 944 if (exit_edge)
9baba81b 945 {
9baba81b
SP
946 tree expr;
947
9baba81b 948 expr = last_stmt (exit_edge->src);
9baba81b
SP
949 if (analyzable_condition (expr))
950 res = expr;
951 }
952
953 if (dump_file && (dump_flags & TDF_DETAILS))
954 {
955 print_generic_expr (dump_file, res, 0);
956 fprintf (dump_file, ")\n");
957 }
958
959 return res;
960}
961
962/* Recursively determine and enqueue the exit conditions for a loop. */
963
964static void
965get_exit_conditions_rec (struct loop *loop,
5310bac6 966 VEC(tree,heap) **exit_conditions)
9baba81b
SP
967{
968 if (!loop)
969 return;
970
971 /* Recurse on the inner loops, then on the next (sibling) loops. */
972 get_exit_conditions_rec (loop->inner, exit_conditions);
973 get_exit_conditions_rec (loop->next, exit_conditions);
974
ac8f6c69 975 if (single_exit (loop))
9baba81b
SP
976 {
977 tree loop_condition = get_loop_exit_condition (loop);
978
979 if (loop_condition)
5310bac6 980 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
9baba81b
SP
981 }
982}
983
984/* Select the candidate loop nests for the analysis. This function
471854f8 985 initializes the EXIT_CONDITIONS array. */
9baba81b
SP
986
987static void
d73be268 988select_loops_exit_conditions (VEC(tree,heap) **exit_conditions)
9baba81b 989{
d73be268 990 struct loop *function_body = current_loops->tree_root;
9baba81b
SP
991
992 get_exit_conditions_rec (function_body->inner, exit_conditions);
993}
994
995\f
996/* Depth first search algorithm. */
997
c59dabbe
SP
998typedef enum t_bool {
999 t_false,
1000 t_true,
1001 t_dont_know
1002} t_bool;
1003
1004
1005static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
9baba81b
SP
1006
1007/* Follow the ssa edge into the right hand side RHS of an assignment.
1008 Return true if the strongly connected component has been found. */
1009
c59dabbe
SP
1010static t_bool
1011follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1012 tree halting_phi, tree *evolution_of_loop, int limit)
9baba81b 1013{
c59dabbe 1014 t_bool res = t_false;
9baba81b
SP
1015 tree rhs0, rhs1;
1016 tree type_rhs = TREE_TYPE (rhs);
b2a93c0a 1017 tree evol;
9baba81b
SP
1018
1019 /* The RHS is one of the following cases:
1020 - an SSA_NAME,
1021 - an INTEGER_CST,
1022 - a PLUS_EXPR,
1023 - a MINUS_EXPR,
0bca51f0
DN
1024 - an ASSERT_EXPR,
1025 - other cases are not yet handled. */
9baba81b
SP
1026 switch (TREE_CODE (rhs))
1027 {
1028 case NOP_EXPR:
1029 /* This assignment is under the form "a_1 = (cast) rhs. */
1e8552eb 1030 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
c59dabbe 1031 halting_phi, evolution_of_loop, limit);
1e8552eb
SP
1032 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1033 *evolution_of_loop, at_stmt);
9baba81b
SP
1034 break;
1035
1036 case INTEGER_CST:
1037 /* This assignment is under the form "a_1 = 7". */
c59dabbe 1038 res = t_false;
9baba81b
SP
1039 break;
1040
1041 case SSA_NAME:
1042 /* This assignment is under the form: "a_1 = b_2". */
1043 res = follow_ssa_edge
c59dabbe 1044 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
9baba81b
SP
1045 break;
1046
1047 case PLUS_EXPR:
1048 /* This case is under the form "rhs0 + rhs1". */
1049 rhs0 = TREE_OPERAND (rhs, 0);
1050 rhs1 = TREE_OPERAND (rhs, 1);
1051 STRIP_TYPE_NOPS (rhs0);
1052 STRIP_TYPE_NOPS (rhs1);
1053
1054 if (TREE_CODE (rhs0) == SSA_NAME)
1055 {
1056 if (TREE_CODE (rhs1) == SSA_NAME)
1057 {
1058 /* Match an assignment under the form:
1059 "a = b + c". */
b2a93c0a 1060 evol = *evolution_of_loop;
9baba81b
SP
1061 res = follow_ssa_edge
1062 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
b2a93c0a 1063 &evol, limit);
9baba81b 1064
c59dabbe 1065 if (res == t_true)
9baba81b
SP
1066 *evolution_of_loop = add_to_evolution
1067 (loop->num,
b2a93c0a 1068 chrec_convert (type_rhs, evol, at_stmt),
e2157b49 1069 PLUS_EXPR, rhs1, at_stmt);
9baba81b 1070
c59dabbe 1071 else if (res == t_false)
9baba81b
SP
1072 {
1073 res = follow_ssa_edge
1074 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe 1075 evolution_of_loop, limit);
9baba81b 1076
c59dabbe 1077 if (res == t_true)
9baba81b
SP
1078 *evolution_of_loop = add_to_evolution
1079 (loop->num,
1e8552eb 1080 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
e2157b49 1081 PLUS_EXPR, rhs0, at_stmt);
c59dabbe
SP
1082
1083 else if (res == t_dont_know)
1084 *evolution_of_loop = chrec_dont_know;
9baba81b 1085 }
c59dabbe
SP
1086
1087 else if (res == t_dont_know)
1088 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1089 }
1090
1091 else
1092 {
1093 /* Match an assignment under the form:
1094 "a = b + ...". */
1095 res = follow_ssa_edge
1096 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1097 evolution_of_loop, limit);
1098 if (res == t_true)
9baba81b 1099 *evolution_of_loop = add_to_evolution
1e8552eb
SP
1100 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1101 at_stmt),
e2157b49 1102 PLUS_EXPR, rhs1, at_stmt);
c59dabbe
SP
1103
1104 else if (res == t_dont_know)
1105 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1106 }
1107 }
1108
1109 else if (TREE_CODE (rhs1) == SSA_NAME)
1110 {
1111 /* Match an assignment under the form:
1112 "a = ... + c". */
1113 res = follow_ssa_edge
1114 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe
SP
1115 evolution_of_loop, limit);
1116 if (res == t_true)
9baba81b 1117 *evolution_of_loop = add_to_evolution
1e8552eb
SP
1118 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1119 at_stmt),
e2157b49 1120 PLUS_EXPR, rhs0, at_stmt);
c59dabbe
SP
1121
1122 else if (res == t_dont_know)
1123 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1124 }
1125
1126 else
1127 /* Otherwise, match an assignment under the form:
1128 "a = ... + ...". */
1129 /* And there is nothing to do. */
c59dabbe 1130 res = t_false;
9baba81b
SP
1131
1132 break;
1133
1134 case MINUS_EXPR:
1135 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1136 rhs0 = TREE_OPERAND (rhs, 0);
1137 rhs1 = TREE_OPERAND (rhs, 1);
1138 STRIP_TYPE_NOPS (rhs0);
1139 STRIP_TYPE_NOPS (rhs1);
1140
1141 if (TREE_CODE (rhs0) == SSA_NAME)
9baba81b
SP
1142 {
1143 /* Match an assignment under the form:
f8e9d512
ZD
1144 "a = b - ...". */
1145 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1146 evolution_of_loop, limit);
1147 if (res == t_true)
9baba81b 1148 *evolution_of_loop = add_to_evolution
c59dabbe 1149 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
e2157b49 1150 MINUS_EXPR, rhs1, at_stmt);
c59dabbe
SP
1151
1152 else if (res == t_dont_know)
1153 *evolution_of_loop = chrec_dont_know;
9baba81b 1154 }
9baba81b
SP
1155 else
1156 /* Otherwise, match an assignment under the form:
1157 "a = ... - ...". */
1158 /* And there is nothing to do. */
c59dabbe 1159 res = t_false;
9baba81b
SP
1160
1161 break;
1162
0bca51f0
DN
1163 case ASSERT_EXPR:
1164 {
1165 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1166 It must be handled as a copy assignment of the form a_1 = a_2. */
1167 tree op0 = ASSERT_EXPR_VAR (rhs);
1168 if (TREE_CODE (op0) == SSA_NAME)
1169 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
c59dabbe 1170 halting_phi, evolution_of_loop, limit);
0bca51f0 1171 else
c59dabbe 1172 res = t_false;
0bca51f0
DN
1173 break;
1174 }
1175
1176
9baba81b 1177 default:
c59dabbe 1178 res = t_false;
9baba81b
SP
1179 break;
1180 }
1181
1182 return res;
1183}
1184
1185/* Checks whether the I-th argument of a PHI comes from a backedge. */
1186
1187static bool
1188backedge_phi_arg_p (tree phi, int i)
1189{
1190 edge e = PHI_ARG_EDGE (phi, i);
1191
1192 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1193 about updating it anywhere, and this should work as well most of the
1194 time. */
1195 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1196 return true;
1197
1198 return false;
1199}
1200
1201/* Helper function for one branch of the condition-phi-node. Return
1202 true if the strongly connected component has been found following
1203 this path. */
1204
c59dabbe 1205static inline t_bool
9baba81b
SP
1206follow_ssa_edge_in_condition_phi_branch (int i,
1207 struct loop *loop,
1208 tree condition_phi,
1209 tree halting_phi,
1210 tree *evolution_of_branch,
c59dabbe 1211 tree init_cond, int limit)
9baba81b
SP
1212{
1213 tree branch = PHI_ARG_DEF (condition_phi, i);
1214 *evolution_of_branch = chrec_dont_know;
1215
1216 /* Do not follow back edges (they must belong to an irreducible loop, which
1217 we really do not want to worry about). */
1218 if (backedge_phi_arg_p (condition_phi, i))
c59dabbe 1219 return t_false;
9baba81b
SP
1220
1221 if (TREE_CODE (branch) == SSA_NAME)
1222 {
1223 *evolution_of_branch = init_cond;
1224 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
c59dabbe 1225 evolution_of_branch, limit);
9baba81b
SP
1226 }
1227
1228 /* This case occurs when one of the condition branches sets
89dbed81 1229 the variable to a constant: i.e. a phi-node like
9baba81b
SP
1230 "a_2 = PHI <a_7(5), 2(6)>;".
1231
1232 FIXME: This case have to be refined correctly:
1233 in some cases it is possible to say something better than
1234 chrec_dont_know, for example using a wrap-around notation. */
c59dabbe 1235 return t_false;
9baba81b
SP
1236}
1237
1238/* This function merges the branches of a condition-phi-node in a
1239 loop. */
1240
c59dabbe 1241static t_bool
9baba81b
SP
1242follow_ssa_edge_in_condition_phi (struct loop *loop,
1243 tree condition_phi,
1244 tree halting_phi,
c59dabbe 1245 tree *evolution_of_loop, int limit)
9baba81b
SP
1246{
1247 int i;
1248 tree init = *evolution_of_loop;
1249 tree evolution_of_branch;
c59dabbe
SP
1250 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1251 halting_phi,
1252 &evolution_of_branch,
1253 init, limit);
1254 if (res == t_false || res == t_dont_know)
1255 return res;
9baba81b 1256
9baba81b
SP
1257 *evolution_of_loop = evolution_of_branch;
1258
1259 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1260 {
e0afb98a
SP
1261 /* Quickly give up when the evolution of one of the branches is
1262 not known. */
1263 if (*evolution_of_loop == chrec_dont_know)
c59dabbe 1264 return t_true;
e0afb98a 1265
c59dabbe
SP
1266 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1267 halting_phi,
1268 &evolution_of_branch,
1269 init, limit);
1270 if (res == t_false || res == t_dont_know)
1271 return res;
9baba81b
SP
1272
1273 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1274 evolution_of_branch);
1275 }
1276
c59dabbe 1277 return t_true;
9baba81b
SP
1278}
1279
1280/* Follow an SSA edge in an inner loop. It computes the overall
1281 effect of the loop, and following the symbolic initial conditions,
1282 it follows the edges in the parent loop. The inner loop is
1283 considered as a single statement. */
1284
c59dabbe 1285static t_bool
9baba81b
SP
1286follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1287 tree loop_phi_node,
1288 tree halting_phi,
c59dabbe 1289 tree *evolution_of_loop, int limit)
9baba81b
SP
1290{
1291 struct loop *loop = loop_containing_stmt (loop_phi_node);
1292 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1293
1294 /* Sometimes, the inner loop is too difficult to analyze, and the
1295 result of the analysis is a symbolic parameter. */
1296 if (ev == PHI_RESULT (loop_phi_node))
1297 {
c59dabbe 1298 t_bool res = t_false;
9baba81b
SP
1299 int i;
1300
1301 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1302 {
1303 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1304 basic_block bb;
1305
1306 /* Follow the edges that exit the inner loop. */
1307 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1308 if (!flow_bb_inside_loop_p (loop, bb))
c59dabbe
SP
1309 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1310 arg, halting_phi,
1311 evolution_of_loop, limit);
1312 if (res == t_true)
1313 break;
9baba81b
SP
1314 }
1315
1316 /* If the path crosses this loop-phi, give up. */
c59dabbe 1317 if (res == t_true)
9baba81b
SP
1318 *evolution_of_loop = chrec_dont_know;
1319
1320 return res;
1321 }
1322
1323 /* Otherwise, compute the overall effect of the inner loop. */
1324 ev = compute_overall_effect_of_inner_loop (loop, ev);
1e8552eb 1325 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
c59dabbe 1326 evolution_of_loop, limit);
9baba81b
SP
1327}
1328
1329/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1330 path that is analyzed on the return walk. */
1331
c59dabbe
SP
1332static t_bool
1333follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1334 tree *evolution_of_loop, int limit)
9baba81b
SP
1335{
1336 struct loop *def_loop;
1337
1338 if (TREE_CODE (def) == NOP_EXPR)
c59dabbe
SP
1339 return t_false;
1340
1341 /* Give up if the path is longer than the MAX that we allow. */
1342 if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1343 return t_dont_know;
9baba81b
SP
1344
1345 def_loop = loop_containing_stmt (def);
1346
1347 switch (TREE_CODE (def))
1348 {
1349 case PHI_NODE:
1350 if (!loop_phi_node_p (def))
1351 /* DEF is a condition-phi-node. Follow the branches, and
1352 record their evolutions. Finally, merge the collected
1353 information and set the approximation to the main
1354 variable. */
1355 return follow_ssa_edge_in_condition_phi
c59dabbe 1356 (loop, def, halting_phi, evolution_of_loop, limit);
9baba81b
SP
1357
1358 /* When the analyzed phi is the halting_phi, the
1359 depth-first search is over: we have found a path from
1360 the halting_phi to itself in the loop. */
1361 if (def == halting_phi)
c59dabbe 1362 return t_true;
9baba81b
SP
1363
1364 /* Otherwise, the evolution of the HALTING_PHI depends
89dbed81 1365 on the evolution of another loop-phi-node, i.e. the
9baba81b
SP
1366 evolution function is a higher degree polynomial. */
1367 if (def_loop == loop)
c59dabbe 1368 return t_false;
9baba81b
SP
1369
1370 /* Inner loop. */
1371 if (flow_loop_nested_p (loop, def_loop))
1372 return follow_ssa_edge_inner_loop_phi
c59dabbe 1373 (loop, def, halting_phi, evolution_of_loop, limit);
9baba81b
SP
1374
1375 /* Outer loop. */
c59dabbe 1376 return t_false;
9baba81b 1377
07beea0d 1378 case GIMPLE_MODIFY_STMT:
1e8552eb 1379 return follow_ssa_edge_in_rhs (loop, def,
07beea0d 1380 GIMPLE_STMT_OPERAND (def, 1),
9baba81b 1381 halting_phi,
c59dabbe 1382 evolution_of_loop, limit);
9baba81b
SP
1383
1384 default:
1385 /* At this level of abstraction, the program is just a set
07beea0d 1386 of GIMPLE_MODIFY_STMTs and PHI_NODEs. In principle there is no
9baba81b 1387 other node to be handled. */
c59dabbe 1388 return t_false;
9baba81b
SP
1389 }
1390}
1391
1392\f
1393
1394/* Given a LOOP_PHI_NODE, this function determines the evolution
1395 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1396
1397static tree
1398analyze_evolution_in_loop (tree loop_phi_node,
1399 tree init_cond)
1400{
1401 int i;
1402 tree evolution_function = chrec_not_analyzed_yet;
1403 struct loop *loop = loop_containing_stmt (loop_phi_node);
1404 basic_block bb;
1405
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1407 {
1408 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1409 fprintf (dump_file, " (loop_phi_node = ");
1410 print_generic_expr (dump_file, loop_phi_node, 0);
1411 fprintf (dump_file, ")\n");
1412 }
1413
1414 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1415 {
1416 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1417 tree ssa_chain, ev_fn;
874caa00 1418 t_bool res;
9baba81b
SP
1419
1420 /* Select the edges that enter the loop body. */
1421 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1422 if (!flow_bb_inside_loop_p (loop, bb))
1423 continue;
1424
1425 if (TREE_CODE (arg) == SSA_NAME)
1426 {
1427 ssa_chain = SSA_NAME_DEF_STMT (arg);
1428
1429 /* Pass in the initial condition to the follow edge function. */
1430 ev_fn = init_cond;
c59dabbe 1431 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
9baba81b
SP
1432 }
1433 else
874caa00 1434 res = t_false;
9baba81b
SP
1435
1436 /* When it is impossible to go back on the same
1437 loop_phi_node by following the ssa edges, the
89dbed81 1438 evolution is represented by a peeled chrec, i.e. the
9baba81b
SP
1439 first iteration, EV_FN has the value INIT_COND, then
1440 all the other iterations it has the value of ARG.
1441 For the moment, PEELED_CHREC nodes are not built. */
874caa00 1442 if (res != t_true)
9baba81b
SP
1443 ev_fn = chrec_dont_know;
1444
1445 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1446 happens currently, but nevertheless), merge their evolutions. */
9baba81b
SP
1447 evolution_function = chrec_merge (evolution_function, ev_fn);
1448 }
1449
1450 if (dump_file && (dump_flags & TDF_DETAILS))
1451 {
1452 fprintf (dump_file, " (evolution_function = ");
1453 print_generic_expr (dump_file, evolution_function, 0);
1454 fprintf (dump_file, "))\n");
1455 }
1456
1457 return evolution_function;
1458}
1459
1460/* Given a loop-phi-node, return the initial conditions of the
1461 variable on entry of the loop. When the CCP has propagated
1462 constants into the loop-phi-node, the initial condition is
1463 instantiated, otherwise the initial condition is kept symbolic.
1464 This analyzer does not analyze the evolution outside the current
1465 loop, and leaves this task to the on-demand tree reconstructor. */
1466
1467static tree
1468analyze_initial_condition (tree loop_phi_node)
1469{
1470 int i;
1471 tree init_cond = chrec_not_analyzed_yet;
1472 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1473
1474 if (dump_file && (dump_flags & TDF_DETAILS))
1475 {
1476 fprintf (dump_file, "(analyze_initial_condition \n");
1477 fprintf (dump_file, " (loop_phi_node = \n");
1478 print_generic_expr (dump_file, loop_phi_node, 0);
1479 fprintf (dump_file, ")\n");
1480 }
1481
1482 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1483 {
1484 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1485 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1486
1487 /* When the branch is oriented to the loop's body, it does
1488 not contribute to the initial condition. */
1489 if (flow_bb_inside_loop_p (loop, bb))
1490 continue;
1491
1492 if (init_cond == chrec_not_analyzed_yet)
1493 {
1494 init_cond = branch;
1495 continue;
1496 }
1497
1498 if (TREE_CODE (branch) == SSA_NAME)
1499 {
1500 init_cond = chrec_dont_know;
1501 break;
1502 }
1503
1504 init_cond = chrec_merge (init_cond, branch);
1505 }
1506
1507 /* Ooops -- a loop without an entry??? */
1508 if (init_cond == chrec_not_analyzed_yet)
1509 init_cond = chrec_dont_know;
1510
1511 if (dump_file && (dump_flags & TDF_DETAILS))
1512 {
1513 fprintf (dump_file, " (init_cond = ");
1514 print_generic_expr (dump_file, init_cond, 0);
1515 fprintf (dump_file, "))\n");
1516 }
1517
1518 return init_cond;
1519}
1520
1521/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1522
1523static tree
1524interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1525{
1526 tree res;
1527 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1528 tree init_cond;
1529
1530 if (phi_loop != loop)
1531 {
1532 struct loop *subloop;
1533 tree evolution_fn = analyze_scalar_evolution
1534 (phi_loop, PHI_RESULT (loop_phi_node));
1535
1536 /* Dive one level deeper. */
1537 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1538
1539 /* Interpret the subloop. */
1540 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1541 return res;
1542 }
1543
1544 /* Otherwise really interpret the loop phi. */
1545 init_cond = analyze_initial_condition (loop_phi_node);
1546 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1547
1548 return res;
1549}
1550
1551/* This function merges the branches of a condition-phi-node,
1552 contained in the outermost loop, and whose arguments are already
1553 analyzed. */
1554
1555static tree
1556interpret_condition_phi (struct loop *loop, tree condition_phi)
1557{
1558 int i;
1559 tree res = chrec_not_analyzed_yet;
1560
1561 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1562 {
1563 tree branch_chrec;
1564
1565 if (backedge_phi_arg_p (condition_phi, i))
1566 {
1567 res = chrec_dont_know;
1568 break;
1569 }
1570
1571 branch_chrec = analyze_scalar_evolution
1572 (loop, PHI_ARG_DEF (condition_phi, i));
1573
1574 res = chrec_merge (res, branch_chrec);
1575 }
1576
1577 return res;
1578}
1579
07beea0d 1580/* Interpret the right hand side of a GIMPLE_MODIFY_STMT OPND1. If we didn't
29836d07 1581 analyze this node before, follow the definitions until ending
07beea0d 1582 either on an analyzed GIMPLE_MODIFY_STMT, or on a loop-phi-node. On the
9baba81b
SP
1583 return path, this function propagates evolutions (ala constant copy
1584 propagation). OPND1 is not a GIMPLE expression because we could
1585 analyze the effect of an inner loop: see interpret_loop_phi. */
1586
1587static tree
07beea0d
AH
1588interpret_rhs_modify_stmt (struct loop *loop, tree at_stmt,
1589 tree opnd1, tree type)
9baba81b
SP
1590{
1591 tree res, opnd10, opnd11, chrec10, chrec11;
1e8552eb 1592
9baba81b 1593 if (is_gimple_min_invariant (opnd1))
1e8552eb
SP
1594 return chrec_convert (type, opnd1, at_stmt);
1595
9baba81b
SP
1596 switch (TREE_CODE (opnd1))
1597 {
1598 case PLUS_EXPR:
1599 opnd10 = TREE_OPERAND (opnd1, 0);
1600 opnd11 = TREE_OPERAND (opnd1, 1);
1601 chrec10 = analyze_scalar_evolution (loop, opnd10);
1602 chrec11 = analyze_scalar_evolution (loop, opnd11);
1e8552eb
SP
1603 chrec10 = chrec_convert (type, chrec10, at_stmt);
1604 chrec11 = chrec_convert (type, chrec11, at_stmt);
9baba81b
SP
1605 res = chrec_fold_plus (type, chrec10, chrec11);
1606 break;
1607
1608 case MINUS_EXPR:
1609 opnd10 = TREE_OPERAND (opnd1, 0);
1610 opnd11 = TREE_OPERAND (opnd1, 1);
1611 chrec10 = analyze_scalar_evolution (loop, opnd10);
1612 chrec11 = analyze_scalar_evolution (loop, opnd11);
1e8552eb
SP
1613 chrec10 = chrec_convert (type, chrec10, at_stmt);
1614 chrec11 = chrec_convert (type, chrec11, at_stmt);
9baba81b
SP
1615 res = chrec_fold_minus (type, chrec10, chrec11);
1616 break;
1617
1618 case NEGATE_EXPR:
1619 opnd10 = TREE_OPERAND (opnd1, 0);
1620 chrec10 = analyze_scalar_evolution (loop, opnd10);
1e8552eb 1621 chrec10 = chrec_convert (type, chrec10, at_stmt);
9a75ede0
RS
1622 /* TYPE may be integer, real or complex, so use fold_convert. */
1623 res = chrec_fold_multiply (type, chrec10,
1624 fold_convert (type, integer_minus_one_node));
9baba81b
SP
1625 break;
1626
1627 case MULT_EXPR:
1628 opnd10 = TREE_OPERAND (opnd1, 0);
1629 opnd11 = TREE_OPERAND (opnd1, 1);
1630 chrec10 = analyze_scalar_evolution (loop, opnd10);
1631 chrec11 = analyze_scalar_evolution (loop, opnd11);
1e8552eb
SP
1632 chrec10 = chrec_convert (type, chrec10, at_stmt);
1633 chrec11 = chrec_convert (type, chrec11, at_stmt);
9baba81b
SP
1634 res = chrec_fold_multiply (type, chrec10, chrec11);
1635 break;
1636
1637 case SSA_NAME:
1e8552eb
SP
1638 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1639 at_stmt);
9baba81b 1640 break;
0bca51f0
DN
1641
1642 case ASSERT_EXPR:
1643 opnd10 = ASSERT_EXPR_VAR (opnd1);
1e8552eb
SP
1644 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1645 at_stmt);
0bca51f0 1646 break;
9baba81b
SP
1647
1648 case NOP_EXPR:
1649 case CONVERT_EXPR:
1650 opnd10 = TREE_OPERAND (opnd1, 0);
1651 chrec10 = analyze_scalar_evolution (loop, opnd10);
1e8552eb 1652 res = chrec_convert (type, chrec10, at_stmt);
9baba81b
SP
1653 break;
1654
1655 default:
1656 res = chrec_dont_know;
1657 break;
1658 }
1659
1660 return res;
1661}
1662
1663\f
1664
1665/* This section contains all the entry points:
1666 - number_of_iterations_in_loop,
1667 - analyze_scalar_evolution,
1668 - instantiate_parameters.
1669*/
1670
1671/* Compute and return the evolution function in WRTO_LOOP, the nearest
1672 common ancestor of DEF_LOOP and USE_LOOP. */
1673
1674static tree
1675compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1676 struct loop *def_loop,
1677 tree ev)
1678{
1679 tree res;
1680 if (def_loop == wrto_loop)
1681 return ev;
1682
1683 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1684 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1685
1686 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1687}
1688
20527215
ZD
1689/* Folds EXPR, if it is a cast to pointer, assuming that the created
1690 polynomial_chrec does not wrap. */
1691
1692static tree
1693fold_used_pointer_cast (tree expr)
1694{
1695 tree op;
1696 tree type, inner_type;
1697
1698 if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1699 return expr;
1700
1701 op = TREE_OPERAND (expr, 0);
1702 if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1703 return expr;
1704
1705 type = TREE_TYPE (expr);
1706 inner_type = TREE_TYPE (op);
1707
1708 if (!INTEGRAL_TYPE_P (inner_type)
1709 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1710 return expr;
1711
1712 return build_polynomial_chrec (CHREC_VARIABLE (op),
1713 chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1714 chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1715}
1716
1717/* Returns true if EXPR is an expression corresponding to offset of pointer
1718 in p + offset. */
1719
1720static bool
1721pointer_offset_p (tree expr)
1722{
1723 if (TREE_CODE (expr) == INTEGER_CST)
1724 return true;
1725
1726 if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1727 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1728 return true;
1729
1730 return false;
1731}
1732
1733/* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1734 comparison. This means that it must point to a part of some object in
1735 memory, which enables us to argue about overflows and possibly simplify
8a613cae
RG
1736 the EXPR. AT_STMT is the statement in which this conversion has to be
1737 performed. Returns the simplified value.
20527215
ZD
1738
1739 Currently, for
1740
1741 int i, n;
1742 int *p;
1743
1744 for (i = -n; i < n; i++)
1745 *(p + i) = ...;
1746
1747 We generate the following code (assuming that size of int and size_t is
1748 4 bytes):
1749
1750 for (i = -n; i < n; i++)
1751 {
1752 size_t tmp1, tmp2;
1753 int *tmp3, *tmp4;
1754
1755 tmp1 = (size_t) i; (1)
1756 tmp2 = 4 * tmp1; (2)
1757 tmp3 = (int *) tmp2; (3)
1758 tmp4 = p + tmp3; (4)
1759
1760 *tmp4 = ...;
1761 }
1762
1763 We in general assume that pointer arithmetics does not overflow (since its
1764 behavior is undefined in that case). One of the problems is that our
1765 translation does not capture this property very well -- (int *) is
1766 considered unsigned, hence the computation in (4) does overflow if i is
1767 negative.
1768
1769 This impreciseness creates complications in scev analysis. The scalar
1770 evolution of i is [-n, +, 1]. Since int and size_t have the same precision
1771 (in this example), and size_t is unsigned (so we do not care about
1772 overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1773 and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
1774 problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1775 places assume that this is not the case for scevs with pointer type, we
1776 cannot use this scev for tmp3; hence, its scev is
1777 (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1778 p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
1779 work with scevs of this shape.
1780
1781 However, since tmp4 is dereferenced, all its values must belong to a single
1782 object, and taking into account that the precision of int * and size_t is
1783 the same, it is impossible for its scev to wrap. Hence, we can derive that
1784 its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1785 can work with.
1786
1787 ??? Maybe we should use different representation for pointer arithmetics,
1788 however that is a long-term project with a lot of potential for creating
1789 bugs. */
1790
1791static tree
8a613cae 1792fold_used_pointer (tree expr, tree at_stmt)
20527215
ZD
1793{
1794 tree op0, op1, new0, new1;
1795 enum tree_code code = TREE_CODE (expr);
1796
1797 if (code == PLUS_EXPR
1798 || code == MINUS_EXPR)
1799 {
1800 op0 = TREE_OPERAND (expr, 0);
1801 op1 = TREE_OPERAND (expr, 1);
1802
1803 if (pointer_offset_p (op1))
1804 {
8a613cae 1805 new0 = fold_used_pointer (op0, at_stmt);
20527215
ZD
1806 new1 = fold_used_pointer_cast (op1);
1807 }
1808 else if (code == PLUS_EXPR && pointer_offset_p (op0))
1809 {
1810 new0 = fold_used_pointer_cast (op0);
8a613cae 1811 new1 = fold_used_pointer (op1, at_stmt);
20527215
ZD
1812 }
1813 else
1814 return expr;
1815
1816 if (new0 == op0 && new1 == op1)
1817 return expr;
1818
8a613cae
RG
1819 new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1820 new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1821
20527215
ZD
1822 if (code == PLUS_EXPR)
1823 expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1824 else
1825 expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1826
1827 return expr;
1828 }
1829 else
1830 return fold_used_pointer_cast (expr);
1831}
1832
1833/* Returns true if PTR is dereferenced, or used in comparison. */
1834
1835static bool
1836pointer_used_p (tree ptr)
1837{
1838 use_operand_p use_p;
1839 imm_use_iterator imm_iter;
1840 tree stmt, rhs;
1841 struct ptr_info_def *pi = get_ptr_info (ptr);
20527215
ZD
1842
1843 /* Check whether the pointer has a memory tag; if it does, it is
1844 (or at least used to be) dereferenced. */
1845 if ((pi != NULL && pi->name_mem_tag != NULL)
cfaab3a9 1846 || symbol_mem_tag (SSA_NAME_VAR (ptr)))
20527215
ZD
1847 return true;
1848
1849 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1850 {
1851 stmt = USE_STMT (use_p);
1852 if (TREE_CODE (stmt) == COND_EXPR)
1853 return true;
1854
07beea0d 1855 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
20527215
ZD
1856 continue;
1857
07beea0d 1858 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
20527215
ZD
1859 if (!COMPARISON_CLASS_P (rhs))
1860 continue;
1861
07beea0d
AH
1862 if (GIMPLE_STMT_OPERAND (stmt, 0) == ptr
1863 || GIMPLE_STMT_OPERAND (stmt, 1) == ptr)
20527215
ZD
1864 return true;
1865 }
1866
1867 return false;
1868}
1869
9baba81b
SP
1870/* Helper recursive function. */
1871
1872static tree
1873analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1874{
1875 tree def, type = TREE_TYPE (var);
1876 basic_block bb;
1877 struct loop *def_loop;
1878
42d375ed 1879 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
9baba81b
SP
1880 return chrec_dont_know;
1881
1882 if (TREE_CODE (var) != SSA_NAME)
07beea0d 1883 return interpret_rhs_modify_stmt (loop, NULL_TREE, var, type);
9baba81b
SP
1884
1885 def = SSA_NAME_DEF_STMT (var);
1886 bb = bb_for_stmt (def);
1887 def_loop = bb ? bb->loop_father : NULL;
1888
1889 if (bb == NULL
1890 || !flow_bb_inside_loop_p (loop, bb))
1891 {
1892 /* Keep the symbolic form. */
1893 res = var;
1894 goto set_and_end;
1895 }
1896
1897 if (res != chrec_not_analyzed_yet)
1898 {
1899 if (loop != bb->loop_father)
1900 res = compute_scalar_evolution_in_loop
1901 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1902
1903 goto set_and_end;
1904 }
1905
1906 if (loop != def_loop)
1907 {
1908 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1909 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1910
1911 goto set_and_end;
1912 }
1913
1914 switch (TREE_CODE (def))
1915 {
07beea0d
AH
1916 case GIMPLE_MODIFY_STMT:
1917 res = interpret_rhs_modify_stmt (loop, def,
1918 GIMPLE_STMT_OPERAND (def, 1), type);
20527215
ZD
1919
1920 if (POINTER_TYPE_P (type)
1921 && !automatically_generated_chrec_p (res)
1922 && pointer_used_p (var))
8a613cae 1923 res = fold_used_pointer (res, def);
9baba81b
SP
1924 break;
1925
1926 case PHI_NODE:
1927 if (loop_phi_node_p (def))
1928 res = interpret_loop_phi (loop, def);
1929 else
1930 res = interpret_condition_phi (loop, def);
1931 break;
1932
1933 default:
1934 res = chrec_dont_know;
1935 break;
1936 }
1937
1938 set_and_end:
1939
1940 /* Keep the symbolic form. */
1941 if (res == chrec_dont_know)
1942 res = var;
1943
1944 if (loop == def_loop)
1945 set_scalar_evolution (var, res);
1946
1947 return res;
1948}
1949
1950/* Entry point for the scalar evolution analyzer.
1951 Analyzes and returns the scalar evolution of the ssa_name VAR.
1952 LOOP_NB is the identifier number of the loop in which the variable
1953 is used.
1954
1955 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1956 pointer to the statement that uses this variable, in order to
1957 determine the evolution function of the variable, use the following
1958 calls:
1959
1960 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1961 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1962 tree chrec_instantiated = instantiate_parameters
1963 (loop_nb, chrec_with_symbols);
1964*/
1965
1966tree
1967analyze_scalar_evolution (struct loop *loop, tree var)
1968{
1969 tree res;
1970
1971 if (dump_file && (dump_flags & TDF_DETAILS))
1972 {
1973 fprintf (dump_file, "(analyze_scalar_evolution \n");
1974 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1975 fprintf (dump_file, " (scalar = ");
1976 print_generic_expr (dump_file, var, 0);
1977 fprintf (dump_file, ")\n");
1978 }
1979
1980 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1981
1982 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1983 res = var;
1984
1985 if (dump_file && (dump_flags & TDF_DETAILS))
1986 fprintf (dump_file, ")\n");
1987
1988 return res;
1989}
1990
1991/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1992 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
a6f778b2
ZD
1993 of VERSION).
1994
1995 FOLDED_CASTS is set to true if resolve_mixers used
1996 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1997 at the moment in order to keep things simple). */
9baba81b
SP
1998
1999static tree
2000analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
a6f778b2 2001 tree version, bool *folded_casts)
9baba81b
SP
2002{
2003 bool val = false;
a6f778b2 2004 tree ev = version, tmp;
9baba81b 2005
a6f778b2
ZD
2006 if (folded_casts)
2007 *folded_casts = false;
9baba81b
SP
2008 while (1)
2009 {
a6f778b2
ZD
2010 tmp = analyze_scalar_evolution (use_loop, ev);
2011 ev = resolve_mixers (use_loop, tmp);
2012
2013 if (folded_casts && tmp != ev)
2014 *folded_casts = true;
9baba81b
SP
2015
2016 if (use_loop == wrto_loop)
2017 return ev;
2018
2019 /* If the value of the use changes in the inner loop, we cannot express
2020 its value in the outer loop (we might try to return interval chrec,
2021 but we do not have a user for it anyway) */
2022 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2023 || !val)
2024 return chrec_dont_know;
2025
2026 use_loop = use_loop->outer;
2027 }
2028}
2029
eb0bc7af
ZD
2030/* Returns instantiated value for VERSION in CACHE. */
2031
2032static tree
2033get_instantiated_value (htab_t cache, tree version)
2034{
2035 struct scev_info_str *info, pattern;
2036
2037 pattern.var = version;
858904db 2038 info = (struct scev_info_str *) htab_find (cache, &pattern);
eb0bc7af
ZD
2039
2040 if (info)
2041 return info->chrec;
2042 else
2043 return NULL_TREE;
2044}
2045
2046/* Sets instantiated value for VERSION to VAL in CACHE. */
2047
2048static void
2049set_instantiated_value (htab_t cache, tree version, tree val)
2050{
2051 struct scev_info_str *info, pattern;
2052 PTR *slot;
2053
2054 pattern.var = version;
2055 slot = htab_find_slot (cache, &pattern, INSERT);
2056
cceb1885
GDR
2057 if (!*slot)
2058 *slot = new_scev_info_str (version);
2059 info = (struct scev_info_str *) *slot;
eb0bc7af
ZD
2060 info->chrec = val;
2061}
2062
18aed06a
SP
2063/* Return the closed_loop_phi node for VAR. If there is none, return
2064 NULL_TREE. */
2065
2066static tree
2067loop_closed_phi_def (tree var)
2068{
2069 struct loop *loop;
2070 edge exit;
2071 tree phi;
2072
2073 if (var == NULL_TREE
2074 || TREE_CODE (var) != SSA_NAME)
2075 return NULL_TREE;
2076
2077 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
ac8f6c69 2078 exit = single_exit (loop);
18aed06a
SP
2079 if (!exit)
2080 return NULL_TREE;
2081
2082 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2083 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2084 return PHI_RESULT (phi);
2085
2086 return NULL_TREE;
2087}
2088
9baba81b 2089/* Analyze all the parameters of the chrec that were left under a symbolic form,
2282a0e6
ZD
2090 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
2091 of already instantiated values. FLAGS modify the way chrecs are
47ae9e4c
SP
2092 instantiated. SIZE_EXPR is used for computing the size of the expression to
2093 be instantiated, and to stop if it exceeds some limit. */
9baba81b 2094
2282a0e6
ZD
2095/* Values for FLAGS. */
2096enum
2097{
2098 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
2099 in outer loops. */
2100 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
2101 signed/pointer type are folded, as long as the
2102 value of the chrec is preserved. */
2103};
2104
9baba81b 2105static tree
47ae9e4c
SP
2106instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2107 int size_expr)
9baba81b
SP
2108{
2109 tree res, op0, op1, op2;
2110 basic_block def_bb;
2111 struct loop *def_loop;
16a2acea 2112 tree type = chrec_type (chrec);
2282a0e6 2113
47ae9e4c
SP
2114 /* Give up if the expression is larger than the MAX that we allow. */
2115 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2116 return chrec_dont_know;
2117
d7770457
SP
2118 if (automatically_generated_chrec_p (chrec)
2119 || is_gimple_min_invariant (chrec))
9baba81b
SP
2120 return chrec;
2121
2122 switch (TREE_CODE (chrec))
2123 {
2124 case SSA_NAME:
2125 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2126
2127 /* A parameter (or loop invariant and we do not want to include
2128 evolutions in outer loops), nothing to do. */
2129 if (!def_bb
2282a0e6 2130 || (!(flags & INSERT_SUPERLOOP_CHRECS)
9baba81b
SP
2131 && !flow_bb_inside_loop_p (loop, def_bb)))
2132 return chrec;
2133
eb0bc7af
ZD
2134 /* We cache the value of instantiated variable to avoid exponential
2135 time complexity due to reevaluations. We also store the convenient
2136 value in the cache in order to prevent infinite recursion -- we do
2137 not want to instantiate the SSA_NAME if it is in a mixer
9baba81b
SP
2138 structure. This is used for avoiding the instantiation of
2139 recursively defined functions, such as:
2140
2141 | a_2 -> {0, +, 1, +, a_2}_1 */
eb0bc7af
ZD
2142
2143 res = get_instantiated_value (cache, chrec);
2144 if (res)
2145 return res;
2146
2147 /* Store the convenient value for chrec in the structure. If it
2148 is defined outside of the loop, we may just leave it in symbolic
2149 form, otherwise we need to admit that we do not know its behavior
2150 inside the loop. */
2151 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2152 set_instantiated_value (cache, chrec, res);
2153
2154 /* To make things even more complicated, instantiate_parameters_1
2155 calls analyze_scalar_evolution that may call # of iterations
2156 analysis that may in turn call instantiate_parameters_1 again.
2157 To prevent the infinite recursion, keep also the bitmap of
2158 ssa names that are being instantiated globally. */
9baba81b 2159 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
eb0bc7af 2160 return res;
9baba81b
SP
2161
2162 def_loop = find_common_loop (loop, def_bb->loop_father);
2163
2164 /* If the analysis yields a parametric chrec, instantiate the
eb0bc7af 2165 result again. */
9baba81b
SP
2166 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2167 res = analyze_scalar_evolution (def_loop, chrec);
18aed06a
SP
2168
2169 /* Don't instantiate loop-closed-ssa phi nodes. */
2170 if (TREE_CODE (res) == SSA_NAME
2171 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2172 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2173 > def_loop->depth)))
2174 {
2175 if (res == chrec)
2176 res = loop_closed_phi_def (chrec);
2177 else
2178 res = chrec;
2179
2180 if (res == NULL_TREE)
2181 res = chrec_dont_know;
2182 }
2183
2184 else if (res != chrec_dont_know)
47ae9e4c 2185 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
18aed06a 2186
9baba81b 2187 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
eb0bc7af
ZD
2188
2189 /* Store the correct value to the cache. */
2190 set_instantiated_value (cache, chrec, res);
9baba81b
SP
2191 return res;
2192
2193 case POLYNOMIAL_CHREC:
2194 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
47ae9e4c 2195 flags, cache, size_expr);
fca81712
SP
2196 if (op0 == chrec_dont_know)
2197 return chrec_dont_know;
2198
9baba81b 2199 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
47ae9e4c 2200 flags, cache, size_expr);
fca81712
SP
2201 if (op1 == chrec_dont_know)
2202 return chrec_dont_know;
2203
eac30183
ZD
2204 if (CHREC_LEFT (chrec) != op0
2205 || CHREC_RIGHT (chrec) != op1)
e2157b49
SP
2206 {
2207 op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2208 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2209 }
eac30183 2210 return chrec;
9baba81b
SP
2211
2212 case PLUS_EXPR:
2213 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2214 flags, cache, size_expr);
fca81712
SP
2215 if (op0 == chrec_dont_know)
2216 return chrec_dont_know;
2217
9baba81b 2218 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2219 flags, cache, size_expr);
fca81712
SP
2220 if (op1 == chrec_dont_know)
2221 return chrec_dont_know;
2222
eac30183
ZD
2223 if (TREE_OPERAND (chrec, 0) != op0
2224 || TREE_OPERAND (chrec, 1) != op1)
16a2acea
SP
2225 {
2226 op0 = chrec_convert (type, op0, NULL_TREE);
2227 op1 = chrec_convert (type, op1, NULL_TREE);
2228 chrec = chrec_fold_plus (type, op0, op1);
2229 }
eac30183 2230 return chrec;
9baba81b
SP
2231
2232 case MINUS_EXPR:
2233 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2234 flags, cache, size_expr);
fca81712
SP
2235 if (op0 == chrec_dont_know)
2236 return chrec_dont_know;
2237
9baba81b 2238 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2239 flags, cache, size_expr);
fca81712
SP
2240 if (op1 == chrec_dont_know)
2241 return chrec_dont_know;
2242
eac30183
ZD
2243 if (TREE_OPERAND (chrec, 0) != op0
2244 || TREE_OPERAND (chrec, 1) != op1)
16a2acea
SP
2245 {
2246 op0 = chrec_convert (type, op0, NULL_TREE);
2247 op1 = chrec_convert (type, op1, NULL_TREE);
2248 chrec = chrec_fold_minus (type, op0, op1);
2249 }
eac30183 2250 return chrec;
9baba81b
SP
2251
2252 case MULT_EXPR:
2253 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2254 flags, cache, size_expr);
fca81712
SP
2255 if (op0 == chrec_dont_know)
2256 return chrec_dont_know;
2257
9baba81b 2258 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2259 flags, cache, size_expr);
fca81712
SP
2260 if (op1 == chrec_dont_know)
2261 return chrec_dont_know;
2262
eac30183
ZD
2263 if (TREE_OPERAND (chrec, 0) != op0
2264 || TREE_OPERAND (chrec, 1) != op1)
16a2acea
SP
2265 {
2266 op0 = chrec_convert (type, op0, NULL_TREE);
2267 op1 = chrec_convert (type, op1, NULL_TREE);
2268 chrec = chrec_fold_multiply (type, op0, op1);
2269 }
eac30183 2270 return chrec;
9baba81b
SP
2271
2272 case NOP_EXPR:
2273 case CONVERT_EXPR:
2274 case NON_LVALUE_EXPR:
2275 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2276 flags, cache, size_expr);
9baba81b
SP
2277 if (op0 == chrec_dont_know)
2278 return chrec_dont_know;
2279
2282a0e6
ZD
2280 if (flags & FOLD_CONVERSIONS)
2281 {
2282 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2283 if (tmp)
2284 return tmp;
2285 }
2286
eac30183
ZD
2287 if (op0 == TREE_OPERAND (chrec, 0))
2288 return chrec;
2289
d7f5de76
ZD
2290 /* If we used chrec_convert_aggressive, we can no longer assume that
2291 signed chrecs do not overflow, as chrec_convert does, so avoid
2292 calling it in that case. */
2293 if (flags & FOLD_CONVERSIONS)
2294 return fold_convert (TREE_TYPE (chrec), op0);
2295
1e8552eb 2296 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
9baba81b
SP
2297
2298 case SCEV_NOT_KNOWN:
2299 return chrec_dont_know;
2300
2301 case SCEV_KNOWN:
2302 return chrec_known;
2303
2304 default:
2305 break;
2306 }
2307
5039610b 2308 gcc_assert (!VL_EXP_CLASS_P (chrec));
9baba81b
SP
2309 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2310 {
2311 case 3:
2312 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2313 flags, cache, size_expr);
fca81712
SP
2314 if (op0 == chrec_dont_know)
2315 return chrec_dont_know;
2316
9baba81b 2317 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2318 flags, cache, size_expr);
fca81712
SP
2319 if (op1 == chrec_dont_know)
2320 return chrec_dont_know;
2321
9baba81b 2322 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
47ae9e4c 2323 flags, cache, size_expr);
fca81712 2324 if (op2 == chrec_dont_know)
9baba81b 2325 return chrec_dont_know;
eac30183
ZD
2326
2327 if (op0 == TREE_OPERAND (chrec, 0)
2328 && op1 == TREE_OPERAND (chrec, 1)
2329 && op2 == TREE_OPERAND (chrec, 2))
2330 return chrec;
2331
987b67bc
KH
2332 return fold_build3 (TREE_CODE (chrec),
2333 TREE_TYPE (chrec), op0, op1, op2);
9baba81b
SP
2334
2335 case 2:
2336 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2337 flags, cache, size_expr);
fca81712
SP
2338 if (op0 == chrec_dont_know)
2339 return chrec_dont_know;
2340
9baba81b 2341 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2342 flags, cache, size_expr);
fca81712 2343 if (op1 == chrec_dont_know)
9baba81b 2344 return chrec_dont_know;
eac30183
ZD
2345
2346 if (op0 == TREE_OPERAND (chrec, 0)
2347 && op1 == TREE_OPERAND (chrec, 1))
2348 return chrec;
987b67bc 2349 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
9baba81b
SP
2350
2351 case 1:
2352 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2353 flags, cache, size_expr);
9baba81b
SP
2354 if (op0 == chrec_dont_know)
2355 return chrec_dont_know;
eac30183
ZD
2356 if (op0 == TREE_OPERAND (chrec, 0))
2357 return chrec;
987b67bc 2358 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
9baba81b
SP
2359
2360 case 0:
2361 return chrec;
2362
2363 default:
2364 break;
2365 }
2366
2367 /* Too complicated to handle. */
2368 return chrec_dont_know;
2369}
e9eb809d
ZD
2370
2371/* Analyze all the parameters of the chrec that were left under a
2372 symbolic form. LOOP is the loop in which symbolic names have to
2373 be analyzed and instantiated. */
2374
2375tree
9baba81b 2376instantiate_parameters (struct loop *loop,
e9eb809d
ZD
2377 tree chrec)
2378{
9baba81b 2379 tree res;
eb0bc7af 2380 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
9baba81b
SP
2381
2382 if (dump_file && (dump_flags & TDF_DETAILS))
2383 {
2384 fprintf (dump_file, "(instantiate_parameters \n");
2385 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2386 fprintf (dump_file, " (chrec = ");
2387 print_generic_expr (dump_file, chrec, 0);
2388 fprintf (dump_file, ")\n");
2389 }
2390
47ae9e4c
SP
2391 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2392 0);
9baba81b
SP
2393
2394 if (dump_file && (dump_flags & TDF_DETAILS))
2395 {
2396 fprintf (dump_file, " (res = ");
2397 print_generic_expr (dump_file, res, 0);
2398 fprintf (dump_file, "))\n");
2399 }
eb0bc7af
ZD
2400
2401 htab_delete (cache);
9baba81b
SP
2402
2403 return res;
2404}
2405
2406/* Similar to instantiate_parameters, but does not introduce the
2282a0e6
ZD
2407 evolutions in outer loops for LOOP invariants in CHREC, and does not
2408 care about causing overflows, as long as they do not affect value
2409 of an expression. */
9baba81b
SP
2410
2411static tree
2412resolve_mixers (struct loop *loop, tree chrec)
2413{
eb0bc7af 2414 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
47ae9e4c 2415 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
eb0bc7af
ZD
2416 htab_delete (cache);
2417 return ret;
9baba81b
SP
2418}
2419
2420/* Entry point for the analysis of the number of iterations pass.
2421 This function tries to safely approximate the number of iterations
2422 the loop will run. When this property is not decidable at compile
2423 time, the result is chrec_dont_know. Otherwise the result is
2424 a scalar or a symbolic parameter.
2425
2426 Example of analysis: suppose that the loop has an exit condition:
2427
2428 "if (b > 49) goto end_loop;"
2429
2430 and that in a previous analysis we have determined that the
2431 variable 'b' has an evolution function:
2432
2433 "EF = {23, +, 5}_2".
2434
2435 When we evaluate the function at the point 5, i.e. the value of the
2436 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2437 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2438 the loop body has been executed 6 times. */
2439
2440tree
a14865db 2441number_of_latch_executions (struct loop *loop)
9baba81b
SP
2442{
2443 tree res, type;
2444 edge exit;
2445 struct tree_niter_desc niter_desc;
2446
2447 /* Determine whether the number_of_iterations_in_loop has already
2448 been computed. */
2449 res = loop->nb_iterations;
2450 if (res)
2451 return res;
2452 res = chrec_dont_know;
2453
2454 if (dump_file && (dump_flags & TDF_DETAILS))
2455 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2456
ac8f6c69 2457 exit = single_exit (loop);
82b85a85 2458 if (!exit)
9baba81b 2459 goto end;
9baba81b 2460
f9cc1a70 2461 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
9baba81b
SP
2462 goto end;
2463
2464 type = TREE_TYPE (niter_desc.niter);
2465 if (integer_nonzerop (niter_desc.may_be_zero))
5212068f 2466 res = build_int_cst (type, 0);
9baba81b
SP
2467 else if (integer_zerop (niter_desc.may_be_zero))
2468 res = niter_desc.niter;
2469 else
2470 res = chrec_dont_know;
2471
2472end:
2473 return set_nb_iterations_in_loop (loop, res);
2474}
2475
a14865db
ZD
2476/* Returns the number of executions of the exit condition of LOOP,
2477 i.e., the number by one higher than number_of_latch_executions.
2478 Note that unline number_of_latch_executions, this number does
2479 not necessarily fit in the unsigned variant of the type of
2480 the control variable -- if the number of iterations is a constant,
2481 we return chrec_dont_know if adding one to number_of_latch_executions
2482 overflows; however, in case the number of iterations is symbolic
2483 expression, the caller is responsible for dealing with this
2484 the possible overflow. */
2485
2486tree
2487number_of_exit_cond_executions (struct loop *loop)
2488{
2489 tree ret = number_of_latch_executions (loop);
2490 tree type = chrec_type (ret);
2491
2492 if (chrec_contains_undetermined (ret))
2493 return ret;
2494
2495 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2496 if (TREE_CODE (ret) == INTEGER_CST
2497 && TREE_OVERFLOW (ret))
2498 return chrec_dont_know;
2499
2500 return ret;
2501}
2502
9baba81b
SP
2503/* One of the drivers for testing the scalar evolutions analysis.
2504 This function computes the number of iterations for all the loops
2505 from the EXIT_CONDITIONS array. */
2506
2507static void
5310bac6 2508number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
9baba81b
SP
2509{
2510 unsigned int i;
2511 unsigned nb_chrec_dont_know_loops = 0;
2512 unsigned nb_static_loops = 0;
5310bac6 2513 tree cond;
9baba81b 2514
5310bac6 2515 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
9baba81b 2516 {
a14865db 2517 tree res = number_of_latch_executions (loop_containing_stmt (cond));
9baba81b
SP
2518 if (chrec_contains_undetermined (res))
2519 nb_chrec_dont_know_loops++;
2520 else
2521 nb_static_loops++;
2522 }
2523
2524 if (dump_file)
2525 {
2526 fprintf (dump_file, "\n(\n");
2527 fprintf (dump_file, "-----------------------------------------\n");
2528 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2529 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
42fd6772 2530 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
9baba81b
SP
2531 fprintf (dump_file, "-----------------------------------------\n");
2532 fprintf (dump_file, ")\n\n");
2533
2534 print_loop_ir (dump_file);
2535 }
2536}
2537
2538\f
2539
2540/* Counters for the stats. */
2541
2542struct chrec_stats
2543{
2544 unsigned nb_chrecs;
2545 unsigned nb_affine;
2546 unsigned nb_affine_multivar;
2547 unsigned nb_higher_poly;
2548 unsigned nb_chrec_dont_know;
2549 unsigned nb_undetermined;
2550};
2551
2552/* Reset the counters. */
2553
2554static inline void
2555reset_chrecs_counters (struct chrec_stats *stats)
2556{
2557 stats->nb_chrecs = 0;
2558 stats->nb_affine = 0;
2559 stats->nb_affine_multivar = 0;
2560 stats->nb_higher_poly = 0;
2561 stats->nb_chrec_dont_know = 0;
2562 stats->nb_undetermined = 0;
2563}
2564
2565/* Dump the contents of a CHREC_STATS structure. */
2566
2567static void
2568dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2569{
2570 fprintf (file, "\n(\n");
2571 fprintf (file, "-----------------------------------------\n");
2572 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2573 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2574 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2575 stats->nb_higher_poly);
2576 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2577 fprintf (file, "-----------------------------------------\n");
2578 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2579 fprintf (file, "%d\twith undetermined coefficients\n",
2580 stats->nb_undetermined);
2581 fprintf (file, "-----------------------------------------\n");
2582 fprintf (file, "%d\tchrecs in the scev database\n",
2583 (int) htab_elements (scalar_evolution_info));
2584 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2585 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2586 fprintf (file, "-----------------------------------------\n");
2587 fprintf (file, ")\n\n");
2588}
2589
2590/* Gather statistics about CHREC. */
2591
2592static void
2593gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2594{
2595 if (dump_file && (dump_flags & TDF_STATS))
2596 {
2597 fprintf (dump_file, "(classify_chrec ");
2598 print_generic_expr (dump_file, chrec, 0);
2599 fprintf (dump_file, "\n");
2600 }
2601
2602 stats->nb_chrecs++;
2603
2604 if (chrec == NULL_TREE)
2605 {
2606 stats->nb_undetermined++;
2607 return;
2608 }
2609
2610 switch (TREE_CODE (chrec))
2611 {
2612 case POLYNOMIAL_CHREC:
2613 if (evolution_function_is_affine_p (chrec))
2614 {
2615 if (dump_file && (dump_flags & TDF_STATS))
2616 fprintf (dump_file, " affine_univariate\n");
2617 stats->nb_affine++;
2618 }
2619 else if (evolution_function_is_affine_multivariate_p (chrec))
2620 {
2621 if (dump_file && (dump_flags & TDF_STATS))
2622 fprintf (dump_file, " affine_multivariate\n");
2623 stats->nb_affine_multivar++;
2624 }
2625 else
2626 {
2627 if (dump_file && (dump_flags & TDF_STATS))
2628 fprintf (dump_file, " higher_degree_polynomial\n");
2629 stats->nb_higher_poly++;
2630 }
2631
2632 break;
2633
2634 default:
2635 break;
2636 }
2637
2638 if (chrec_contains_undetermined (chrec))
2639 {
2640 if (dump_file && (dump_flags & TDF_STATS))
2641 fprintf (dump_file, " undetermined\n");
2642 stats->nb_undetermined++;
2643 }
2644
2645 if (dump_file && (dump_flags & TDF_STATS))
2646 fprintf (dump_file, ")\n");
2647}
2648
2649/* One of the drivers for testing the scalar evolutions analysis.
2650 This function analyzes the scalar evolution of all the scalars
2651 defined as loop phi nodes in one of the loops from the
2652 EXIT_CONDITIONS array.
2653
2654 TODO Optimization: A loop is in canonical form if it contains only
2655 a single scalar loop phi node. All the other scalars that have an
2656 evolution in the loop are rewritten in function of this single
2657 index. This allows the parallelization of the loop. */
2658
2659static void
5310bac6 2660analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
9baba81b
SP
2661{
2662 unsigned int i;
2663 struct chrec_stats stats;
5310bac6 2664 tree cond;
9baba81b
SP
2665
2666 reset_chrecs_counters (&stats);
2667
5310bac6 2668 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
9baba81b
SP
2669 {
2670 struct loop *loop;
2671 basic_block bb;
2672 tree phi, chrec;
2673
5310bac6 2674 loop = loop_containing_stmt (cond);
9baba81b
SP
2675 bb = loop->header;
2676
bb29d951 2677 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
9baba81b
SP
2678 if (is_gimple_reg (PHI_RESULT (phi)))
2679 {
2680 chrec = instantiate_parameters
2681 (loop,
2682 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2683
2684 if (dump_file && (dump_flags & TDF_STATS))
2685 gather_chrec_stats (chrec, &stats);
2686 }
2687 }
2688
2689 if (dump_file && (dump_flags & TDF_STATS))
2690 dump_chrecs_stats (dump_file, &stats);
2691}
2692
2693/* Callback for htab_traverse, gathers information on chrecs in the
2694 hashtable. */
2695
2696static int
2697gather_stats_on_scev_database_1 (void **slot, void *stats)
2698{
cceb1885 2699 struct scev_info_str *entry = (struct scev_info_str *) *slot;
9baba81b 2700
cceb1885 2701 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
9baba81b
SP
2702
2703 return 1;
2704}
2705
2706/* Classify the chrecs of the whole database. */
2707
2708void
2709gather_stats_on_scev_database (void)
2710{
2711 struct chrec_stats stats;
2712
2713 if (!dump_file)
2714 return;
2715
2716 reset_chrecs_counters (&stats);
2717
2718 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2719 &stats);
2720
2721 dump_chrecs_stats (dump_file, &stats);
2722}
2723
2724\f
2725
2726/* Initializer. */
2727
2728static void
2729initialize_scalar_evolutions_analyzer (void)
2730{
2731 /* The elements below are unique. */
2732 if (chrec_dont_know == NULL_TREE)
2733 {
2734 chrec_not_analyzed_yet = NULL_TREE;
2735 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2736 chrec_known = make_node (SCEV_KNOWN);
d5ab5675
ZD
2737 TREE_TYPE (chrec_dont_know) = void_type_node;
2738 TREE_TYPE (chrec_known) = void_type_node;
9baba81b
SP
2739 }
2740}
2741
2742/* Initialize the analysis of scalar evolutions for LOOPS. */
2743
2744void
d73be268 2745scev_initialize (void)
9baba81b 2746{
42fd6772
ZD
2747 loop_iterator li;
2748 struct loop *loop;
9baba81b
SP
2749
2750 scalar_evolution_info = htab_create (100, hash_scev_info,
2751 eq_scev_info, del_scev_info);
8bdbfff5 2752 already_instantiated = BITMAP_ALLOC (NULL);
9baba81b
SP
2753
2754 initialize_scalar_evolutions_analyzer ();
2755
42fd6772
ZD
2756 FOR_EACH_LOOP (li, loop, 0)
2757 {
2758 loop->nb_iterations = NULL_TREE;
2759 }
9baba81b
SP
2760}
2761
2762/* Cleans up the information cached by the scalar evolutions analysis. */
2763
2764void
2765scev_reset (void)
2766{
42fd6772 2767 loop_iterator li;
9baba81b
SP
2768 struct loop *loop;
2769
2770 if (!scalar_evolution_info || !current_loops)
2771 return;
2772
2773 htab_empty (scalar_evolution_info);
42fd6772 2774 FOR_EACH_LOOP (li, loop, 0)
9baba81b 2775 {
42fd6772 2776 loop->nb_iterations = NULL_TREE;
9baba81b 2777 }
e9eb809d
ZD
2778}
2779
2780/* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
a6f778b2
ZD
2781 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2782 want step to be invariant in LOOP. Otherwise we require it to be an
2783 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2784 overflow (e.g. because it is computed in signed arithmetics). */
e9eb809d
ZD
2785
2786bool
a6f778b2 2787simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
9be872b7 2788 bool allow_nonconstant_step)
e9eb809d 2789{
9baba81b
SP
2790 basic_block bb = bb_for_stmt (stmt);
2791 tree type, ev;
a6f778b2 2792 bool folded_casts;
9baba81b 2793
a6f778b2
ZD
2794 iv->base = NULL_TREE;
2795 iv->step = NULL_TREE;
2796 iv->no_overflow = false;
9baba81b
SP
2797
2798 type = TREE_TYPE (op);
2799 if (TREE_CODE (type) != INTEGER_TYPE
2800 && TREE_CODE (type) != POINTER_TYPE)
2801 return false;
2802
a6f778b2
ZD
2803 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2804 &folded_casts);
9baba81b
SP
2805 if (chrec_contains_undetermined (ev))
2806 return false;
2807
2808 if (tree_does_not_contain_chrecs (ev)
2809 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2810 {
a6f778b2 2811 iv->base = ev;
6e42ce54 2812 iv->step = build_int_cst (TREE_TYPE (ev), 0);
a6f778b2 2813 iv->no_overflow = true;
9baba81b
SP
2814 return true;
2815 }
2816
2817 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2818 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2819 return false;
2820
a6f778b2 2821 iv->step = CHREC_RIGHT (ev);
9be872b7
ZD
2822 if (allow_nonconstant_step)
2823 {
a6f778b2
ZD
2824 if (tree_contains_chrecs (iv->step, NULL)
2825 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
9be872b7
ZD
2826 return false;
2827 }
a6f778b2 2828 else if (TREE_CODE (iv->step) != INTEGER_CST)
9baba81b 2829 return false;
9be872b7 2830
a6f778b2
ZD
2831 iv->base = CHREC_LEFT (ev);
2832 if (tree_contains_chrecs (iv->base, NULL)
2833 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
9baba81b
SP
2834 return false;
2835
eeef0e45
ILT
2836 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2837
9baba81b
SP
2838 return true;
2839}
2840
2841/* Runs the analysis of scalar evolutions. */
2842
2843void
2844scev_analysis (void)
2845{
5310bac6 2846 VEC(tree,heap) *exit_conditions;
9baba81b 2847
5310bac6 2848 exit_conditions = VEC_alloc (tree, heap, 37);
d73be268 2849 select_loops_exit_conditions (&exit_conditions);
9baba81b
SP
2850
2851 if (dump_file && (dump_flags & TDF_STATS))
5310bac6 2852 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
9baba81b 2853
5310bac6
KH
2854 number_of_iterations_for_all_loops (&exit_conditions);
2855 VEC_free (tree, heap, exit_conditions);
e9eb809d 2856}
9baba81b
SP
2857
2858/* Finalize the scalar evolution analysis. */
2859
2860void
2861scev_finalize (void)
2862{
2863 htab_delete (scalar_evolution_info);
8bdbfff5 2864 BITMAP_FREE (already_instantiated);
c7b852c8 2865 scalar_evolution_info = NULL;
9baba81b
SP
2866}
2867
684aaf29 2868/* Replace ssa names for that scev can prove they are constant by the
3ac01fde
ZD
2869 appropriate constants. Also perform final value replacement in loops,
2870 in case the replacement expressions are cheap.
684aaf29
ZD
2871
2872 We only consider SSA names defined by phi nodes; rest is left to the
2873 ordinary constant propagation pass. */
2874
c2924966 2875unsigned int
684aaf29
ZD
2876scev_const_prop (void)
2877{
2878 basic_block bb;
3ac01fde
ZD
2879 tree name, phi, next_phi, type, ev;
2880 struct loop *loop, *ex_loop;
684aaf29 2881 bitmap ssa_names_to_remove = NULL;
3ac01fde 2882 unsigned i;
42fd6772 2883 loop_iterator li;
684aaf29
ZD
2884
2885 if (!current_loops)
c2924966 2886 return 0;
684aaf29
ZD
2887
2888 FOR_EACH_BB (bb)
2889 {
2890 loop = bb->loop_father;
2891
2892 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2893 {
2894 name = PHI_RESULT (phi);
2895
2896 if (!is_gimple_reg (name))
2897 continue;
2898
2899 type = TREE_TYPE (name);
2900
2901 if (!POINTER_TYPE_P (type)
2902 && !INTEGRAL_TYPE_P (type))
2903 continue;
2904
2905 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2906 if (!is_gimple_min_invariant (ev)
2907 || !may_propagate_copy (name, ev))
2908 continue;
2909
2910 /* Replace the uses of the name. */
18aed06a
SP
2911 if (name != ev)
2912 replace_uses_by (name, ev);
684aaf29
ZD
2913
2914 if (!ssa_names_to_remove)
2915 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2916 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2917 }
2918 }
2919
9b3b55a1
DN
2920 /* Remove the ssa names that were replaced by constants. We do not
2921 remove them directly in the previous cycle, since this
2922 invalidates scev cache. */
684aaf29
ZD
2923 if (ssa_names_to_remove)
2924 {
2925 bitmap_iterator bi;
684aaf29
ZD
2926
2927 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2928 {
2929 name = ssa_name (i);
2930 phi = SSA_NAME_DEF_STMT (name);
2931
2932 gcc_assert (TREE_CODE (phi) == PHI_NODE);
9b3b55a1 2933 remove_phi_node (phi, NULL, true);
684aaf29
ZD
2934 }
2935
2936 BITMAP_FREE (ssa_names_to_remove);
2937 scev_reset ();
2938 }
3ac01fde
ZD
2939
2940 /* Now the regular final value replacement. */
42fd6772 2941 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
3ac01fde
ZD
2942 {
2943 edge exit;
a6f778b2 2944 tree def, rslt, ass, niter;
925196ed 2945 block_stmt_iterator bsi;
3ac01fde 2946
3ac01fde
ZD
2947 /* If we do not know exact number of iterations of the loop, we cannot
2948 replace the final value. */
ac8f6c69 2949 exit = single_exit (loop);
a6f778b2
ZD
2950 if (!exit)
2951 continue;
2952
a14865db 2953 niter = number_of_latch_executions (loop);
b3ce5b6e
ZD
2954 /* We used to check here whether the computation of NITER is expensive,
2955 and avoided final value elimination if that is the case. The problem
2956 is that it is hard to evaluate whether the expression is too
2957 expensive, as we do not know what optimization opportunities the
2958 the elimination of the final value may reveal. Therefore, we now
2959 eliminate the final values of induction variables unconditionally. */
2960 if (niter == chrec_dont_know)
3ac01fde 2961 continue;
925196ed
ZD
2962
2963 /* Ensure that it is possible to insert new statements somewhere. */
2964 if (!single_pred_p (exit->dest))
2965 split_loop_exit_edge (exit);
2966 tree_block_label (exit->dest);
2967 bsi = bsi_after_labels (exit->dest);
2968
2969 ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
3ac01fde
ZD
2970
2971 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2972 {
2973 next_phi = PHI_CHAIN (phi);
925196ed 2974 rslt = PHI_RESULT (phi);
3ac01fde 2975 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
925196ed 2976 if (!is_gimple_reg (def))
3ac01fde
ZD
2977 continue;
2978
2979 if (!POINTER_TYPE_P (TREE_TYPE (def))
2980 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2981 continue;
2982
a6f778b2 2983 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
925196ed 2984 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3ac01fde 2985 if (!tree_does_not_contain_chrecs (def)
e5db3515
ZD
2986 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2987 /* Moving the computation from the loop may prolong life range
2988 of some ssa names, which may cause problems if they appear
2989 on abnormal edges. */
2990 || contains_abnormal_ssa_name_p (def))
3ac01fde
ZD
2991 continue;
2992
9b3b55a1 2993 /* Eliminate the PHI node and replace it by a computation outside
925196ed
ZD
2994 the loop. */
2995 def = unshare_expr (def);
9b3b55a1 2996 remove_phi_node (phi, NULL_TREE, false);
925196ed 2997
ebb07520 2998 ass = build_gimple_modify_stmt (rslt, NULL_TREE);
925196ed 2999 SSA_NAME_DEF_STMT (rslt) = ass;
35771d34
PB
3000 {
3001 block_stmt_iterator dest = bsi;
3002 bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3003 def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3004 }
07beea0d 3005 GIMPLE_STMT_OPERAND (ass, 1) = def;
925196ed 3006 update_stmt (ass);
3ac01fde
ZD
3007 }
3008 }
c2924966 3009 return 0;
684aaf29 3010}
This page took 1.523761 seconds and 5 git commands to generate.