]> gcc.gnu.org Git - gcc.git/blame - gcc/tree-scalar-evolution.c
tree-scalar-evolution.c (instantiate_scev_name): New.
[gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
66647d44
JJ
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
e9eb809d
ZD
4 Contributed by Sebastian Pop <s.pop@laposte.net>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
e9eb809d
ZD
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
e9eb809d 21
9baba81b
SP
22/*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
726a989a 51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
9baba81b
SP
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
3f227a8c 105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
9baba81b
SP
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
3f227a8c 129 Example 2a: Illustration of the algorithm on nested loops.
9baba81b
SP
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
3f227a8c
JS
157
158 Example 2b: Multivariate chains of recurrences.
159
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
170
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
a213b219
SP
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
3f227a8c 180
9baba81b
SP
181 Example 3: Higher degree polynomials.
182
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
189
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
194
3f227a8c
JS
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
9baba81b
SP
197
198 Example 4: Lucas, Fibonacci, or mixers in general.
199
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
206
207 a -> (1, c)_1
208 c -> {3, +, a}_1
209
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
215
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
218
219 Example 5: Flip-flops, or exchangers.
220
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
227
228 a -> (1, c)_1
229 c -> (3, a)_1
230
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
233
234 a -> |1, 3|_1
235 c -> |3, 1|_1
236
237 This transformation is not yet implemented.
238
239 Further readings:
240
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
248
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
255*/
256
e9eb809d
ZD
257#include "config.h"
258#include "system.h"
259#include "coretypes.h"
260#include "tm.h"
e9eb809d
ZD
261#include "ggc.h"
262#include "tree.h"
9d2b0e12 263#include "real.h"
9baba81b
SP
264
265/* These RTL headers are needed for basic-block.h. */
e9eb809d
ZD
266#include "rtl.h"
267#include "basic-block.h"
268#include "diagnostic.h"
269#include "tree-flow.h"
270#include "tree-dump.h"
271#include "timevar.h"
272#include "cfgloop.h"
273#include "tree-chrec.h"
274#include "tree-scalar-evolution.h"
9baba81b
SP
275#include "tree-pass.h"
276#include "flags.h"
c59dabbe 277#include "params.h"
9baba81b
SP
278
279static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
9baba81b 280
a213b219
SP
281/* The cached information about an SSA name VAR, claiming that below
282 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
283 as CHREC. */
9baba81b 284
d1b38208 285struct GTY(()) scev_info_str {
a213b219 286 basic_block instantiated_below;
9baba81b
SP
287 tree var;
288 tree chrec;
289};
290
291/* Counters for the scev database. */
292static unsigned nb_set_scev = 0;
293static unsigned nb_get_scev = 0;
294
295/* The following trees are unique elements. Thus the comparison of
296 another element to these elements should be done on the pointer to
297 these trees, and not on their value. */
298
299/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
300tree chrec_not_analyzed_yet;
301
302/* Reserved to the cases where the analyzer has detected an
303 undecidable property at compile time. */
304tree chrec_dont_know;
305
306/* When the analyzer has detected that a property will never
307 happen, then it qualifies it with chrec_known. */
308tree chrec_known;
309
9e2f83a5 310static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
9baba81b
SP
311
312\f
a213b219 313/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
9baba81b
SP
314
315static inline struct scev_info_str *
a213b219 316new_scev_info_str (basic_block instantiated_below, tree var)
9baba81b
SP
317{
318 struct scev_info_str *res;
319
9e2f83a5 320 res = GGC_NEW (struct scev_info_str);
9baba81b
SP
321 res->var = var;
322 res->chrec = chrec_not_analyzed_yet;
a213b219
SP
323 res->instantiated_below = instantiated_below;
324
9baba81b
SP
325 return res;
326}
327
328/* Computes a hash function for database element ELT. */
329
330static hashval_t
331hash_scev_info (const void *elt)
332{
741ac903 333 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
9baba81b
SP
334}
335
336/* Compares database elements E1 and E2. */
337
338static int
339eq_scev_info (const void *e1, const void *e2)
340{
cceb1885
GDR
341 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
342 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
9baba81b 343
a213b219
SP
344 return (elt1->var == elt2->var
345 && elt1->instantiated_below == elt2->instantiated_below);
9baba81b
SP
346}
347
348/* Deletes database element E. */
349
350static void
351del_scev_info (void *e)
352{
9e2f83a5 353 ggc_free (e);
9baba81b
SP
354}
355
a213b219
SP
356/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
357 A first query on VAR returns chrec_not_analyzed_yet. */
9baba81b
SP
358
359static tree *
a213b219 360find_var_scev_info (basic_block instantiated_below, tree var)
9baba81b
SP
361{
362 struct scev_info_str *res;
363 struct scev_info_str tmp;
364 PTR *slot;
365
366 tmp.var = var;
a213b219 367 tmp.instantiated_below = instantiated_below;
9baba81b
SP
368 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
369
370 if (!*slot)
a213b219 371 *slot = new_scev_info_str (instantiated_below, var);
cceb1885 372 res = (struct scev_info_str *) *slot;
9baba81b
SP
373
374 return &res->chrec;
375}
376
9baba81b
SP
377/* Return true when CHREC contains symbolic names defined in
378 LOOP_NB. */
379
380bool
ed7a4b4b 381chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
9baba81b 382{
5039610b
SL
383 int i, n;
384
9baba81b
SP
385 if (chrec == NULL_TREE)
386 return false;
387
ad6003f2 388 if (is_gimple_min_invariant (chrec))
9baba81b
SP
389 return false;
390
391 if (TREE_CODE (chrec) == VAR_DECL
392 || TREE_CODE (chrec) == PARM_DECL
393 || TREE_CODE (chrec) == FUNCTION_DECL
394 || TREE_CODE (chrec) == LABEL_DECL
395 || TREE_CODE (chrec) == RESULT_DECL
396 || TREE_CODE (chrec) == FIELD_DECL)
397 return true;
398
399 if (TREE_CODE (chrec) == SSA_NAME)
400 {
726a989a 401 gimple def = SSA_NAME_DEF_STMT (chrec);
9baba81b 402 struct loop *def_loop = loop_containing_stmt (def);
42fd6772 403 struct loop *loop = get_loop (loop_nb);
9baba81b
SP
404
405 if (def_loop == NULL)
406 return false;
407
408 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
409 return true;
410
411 return false;
412 }
413
5039610b
SL
414 n = TREE_OPERAND_LENGTH (chrec);
415 for (i = 0; i < n; i++)
416 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
417 loop_nb))
418 return true;
419 return false;
9baba81b
SP
420}
421
422/* Return true when PHI is a loop-phi-node. */
423
424static bool
726a989a 425loop_phi_node_p (gimple phi)
9baba81b
SP
426{
427 /* The implementation of this function is based on the following
428 property: "all the loop-phi-nodes of a loop are contained in the
429 loop's header basic block". */
430
726a989a 431 return loop_containing_stmt (phi)->header == gimple_bb (phi);
9baba81b
SP
432}
433
434/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
435 In general, in the case of multivariate evolutions we want to get
436 the evolution in different loops. LOOP specifies the level for
437 which to get the evolution.
438
439 Example:
440
441 | for (j = 0; j < 100; j++)
442 | {
443 | for (k = 0; k < 100; k++)
444 | {
445 | i = k + j; - Here the value of i is a function of j, k.
446 | }
447 | ... = i - Here the value of i is a function of j.
448 | }
449 | ... = i - Here the value of i is a scalar.
450
451 Example:
452
453 | i_0 = ...
454 | loop_1 10 times
455 | i_1 = phi (i_0, i_2)
456 | i_2 = i_1 + 2
457 | endloop
458
459 This loop has the same effect as:
460 LOOP_1 has the same effect as:
461
462 | i_1 = i_0 + 20
463
464 The overall effect of the loop, "i_0 + 20" in the previous example,
465 is obtained by passing in the parameters: LOOP = 1,
466 EVOLUTION_FN = {i_0, +, 2}_1.
467*/
468
42e6eec5 469tree
9baba81b
SP
470compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
471{
472 bool val = false;
473
474 if (evolution_fn == chrec_dont_know)
475 return chrec_dont_know;
476
477 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
478 {
677cc14d
ZD
479 struct loop *inner_loop = get_chrec_loop (evolution_fn);
480
481 if (inner_loop == loop
482 || flow_loop_nested_p (loop, inner_loop))
9baba81b 483 {
a14865db 484 tree nb_iter = number_of_latch_executions (inner_loop);
9baba81b
SP
485
486 if (nb_iter == chrec_dont_know)
487 return chrec_dont_know;
488 else
489 {
490 tree res;
491
9baba81b
SP
492 /* evolution_fn is the evolution function in LOOP. Get
493 its value in the nb_iter-th iteration. */
494 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
42e6eec5
SP
495
496 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
497 res = instantiate_parameters (loop, res);
498
8c27b7d4 499 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
500 return compute_overall_effect_of_inner_loop (loop, res);
501 }
502 }
503 else
504 return evolution_fn;
505 }
506
507 /* If the evolution function is an invariant, there is nothing to do. */
508 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
509 return evolution_fn;
510
511 else
512 return chrec_dont_know;
513}
514
515/* Determine whether the CHREC is always positive/negative. If the expression
516 cannot be statically analyzed, return false, otherwise set the answer into
517 VALUE. */
518
519bool
520chrec_is_positive (tree chrec, bool *value)
521{
16a2acea 522 bool value0, value1, value2;
a14865db 523 tree end_value, nb_iter;
9baba81b
SP
524
525 switch (TREE_CODE (chrec))
526 {
527 case POLYNOMIAL_CHREC:
528 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
529 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
530 return false;
531
532 /* FIXME -- overflows. */
533 if (value0 == value1)
534 {
535 *value = value0;
536 return true;
537 }
538
539 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
540 and the proof consists in showing that the sign never
541 changes during the execution of the loop, from 0 to
542 loop->nb_iterations. */
543 if (!evolution_function_is_affine_p (chrec))
544 return false;
545
a14865db 546 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
9baba81b
SP
547 if (chrec_contains_undetermined (nb_iter))
548 return false;
549
9baba81b
SP
550#if 0
551 /* TODO -- If the test is after the exit, we may decrease the number of
552 iterations by one. */
553 if (after_exit)
16a2acea 554 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
9baba81b
SP
555#endif
556
557 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
558
559 if (!chrec_is_positive (end_value, &value2))
560 return false;
561
562 *value = value0;
563 return value0 == value1;
564
565 case INTEGER_CST:
566 *value = (tree_int_cst_sgn (chrec) == 1);
567 return true;
568
569 default:
570 return false;
571 }
572}
573
574/* Associate CHREC to SCALAR. */
575
576static void
a213b219 577set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
9baba81b
SP
578{
579 tree *scalar_info;
580
581 if (TREE_CODE (scalar) != SSA_NAME)
582 return;
583
a213b219 584 scalar_info = find_var_scev_info (instantiated_below, scalar);
9baba81b
SP
585
586 if (dump_file)
587 {
588 if (dump_flags & TDF_DETAILS)
589 {
590 fprintf (dump_file, "(set_scalar_evolution \n");
a213b219
SP
591 fprintf (dump_file, " instantiated_below = %d \n",
592 instantiated_below->index);
9baba81b
SP
593 fprintf (dump_file, " (scalar = ");
594 print_generic_expr (dump_file, scalar, 0);
595 fprintf (dump_file, ")\n (scalar_evolution = ");
596 print_generic_expr (dump_file, chrec, 0);
597 fprintf (dump_file, "))\n");
598 }
599 if (dump_flags & TDF_STATS)
600 nb_set_scev++;
601 }
602
603 *scalar_info = chrec;
604}
605
a213b219
SP
606/* Retrieve the chrec associated to SCALAR instantiated below
607 INSTANTIATED_BELOW block. */
9baba81b
SP
608
609static tree
a213b219 610get_scalar_evolution (basic_block instantiated_below, tree scalar)
9baba81b
SP
611{
612 tree res;
613
614 if (dump_file)
615 {
616 if (dump_flags & TDF_DETAILS)
617 {
618 fprintf (dump_file, "(get_scalar_evolution \n");
619 fprintf (dump_file, " (scalar = ");
620 print_generic_expr (dump_file, scalar, 0);
621 fprintf (dump_file, ")\n");
622 }
623 if (dump_flags & TDF_STATS)
624 nb_get_scev++;
625 }
626
627 switch (TREE_CODE (scalar))
628 {
629 case SSA_NAME:
a213b219 630 res = *find_var_scev_info (instantiated_below, scalar);
9baba81b
SP
631 break;
632
633 case REAL_CST:
325217ed 634 case FIXED_CST:
9baba81b
SP
635 case INTEGER_CST:
636 res = scalar;
637 break;
638
639 default:
640 res = chrec_not_analyzed_yet;
641 break;
642 }
643
644 if (dump_file && (dump_flags & TDF_DETAILS))
645 {
646 fprintf (dump_file, " (scalar_evolution = ");
647 print_generic_expr (dump_file, res, 0);
648 fprintf (dump_file, "))\n");
649 }
650
651 return res;
652}
653
654/* Helper function for add_to_evolution. Returns the evolution
655 function for an assignment of the form "a = b + c", where "a" and
656 "b" are on the strongly connected component. CHREC_BEFORE is the
657 information that we already have collected up to this point.
658 TO_ADD is the evolution of "c".
659
660 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
661 evolution the expression TO_ADD, otherwise construct an evolution
662 part for this loop. */
663
664static tree
e2157b49 665add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
726a989a 666 gimple at_stmt)
9baba81b 667{
e2157b49 668 tree type, left, right;
677cc14d 669 struct loop *loop = get_loop (loop_nb), *chloop;
e2157b49 670
9baba81b
SP
671 switch (TREE_CODE (chrec_before))
672 {
673 case POLYNOMIAL_CHREC:
677cc14d
ZD
674 chloop = get_chrec_loop (chrec_before);
675 if (chloop == loop
676 || flow_loop_nested_p (chloop, loop))
9baba81b
SP
677 {
678 unsigned var;
e2157b49
SP
679
680 type = chrec_type (chrec_before);
9baba81b
SP
681
682 /* When there is no evolution part in this loop, build it. */
677cc14d 683 if (chloop != loop)
9baba81b
SP
684 {
685 var = loop_nb;
686 left = chrec_before;
7e0923cd
SP
687 right = SCALAR_FLOAT_TYPE_P (type)
688 ? build_real (type, dconst0)
689 : build_int_cst (type, 0);
9baba81b
SP
690 }
691 else
692 {
693 var = CHREC_VARIABLE (chrec_before);
694 left = CHREC_LEFT (chrec_before);
695 right = CHREC_RIGHT (chrec_before);
696 }
697
e2157b49 698 to_add = chrec_convert (type, to_add, at_stmt);
5be014d5
AP
699 right = chrec_convert_rhs (type, right, at_stmt);
700 right = chrec_fold_plus (chrec_type (right), right, to_add);
e2157b49 701 return build_polynomial_chrec (var, left, right);
9baba81b
SP
702 }
703 else
e2157b49 704 {
677cc14d
ZD
705 gcc_assert (flow_loop_nested_p (loop, chloop));
706
e2157b49
SP
707 /* Search the evolution in LOOP_NB. */
708 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
709 to_add, at_stmt);
710 right = CHREC_RIGHT (chrec_before);
5be014d5 711 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
e2157b49
SP
712 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
713 left, right);
714 }
9baba81b
SP
715
716 default:
717 /* These nodes do not depend on a loop. */
718 if (chrec_before == chrec_dont_know)
719 return chrec_dont_know;
e2157b49
SP
720
721 left = chrec_before;
5be014d5 722 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
e2157b49 723 return build_polynomial_chrec (loop_nb, left, right);
9baba81b
SP
724 }
725}
726
727/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
728 of LOOP_NB.
729
730 Description (provided for completeness, for those who read code in
731 a plane, and for my poor 62 bytes brain that would have forgotten
732 all this in the next two or three months):
733
734 The algorithm of translation of programs from the SSA representation
735 into the chrecs syntax is based on a pattern matching. After having
736 reconstructed the overall tree expression for a loop, there are only
737 two cases that can arise:
738
739 1. a = loop-phi (init, a + expr)
740 2. a = loop-phi (init, expr)
741
742 where EXPR is either a scalar constant with respect to the analyzed
743 loop (this is a degree 0 polynomial), or an expression containing
744 other loop-phi definitions (these are higher degree polynomials).
745
746 Examples:
747
748 1.
749 | init = ...
750 | loop_1
751 | a = phi (init, a + 5)
752 | endloop
753
754 2.
755 | inita = ...
756 | initb = ...
757 | loop_1
758 | a = phi (inita, 2 * b + 3)
759 | b = phi (initb, b + 1)
760 | endloop
761
762 For the first case, the semantics of the SSA representation is:
763
764 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
765
766 that is, there is a loop index "x" that determines the scalar value
767 of the variable during the loop execution. During the first
768 iteration, the value is that of the initial condition INIT, while
769 during the subsequent iterations, it is the sum of the initial
770 condition with the sum of all the values of EXPR from the initial
771 iteration to the before last considered iteration.
772
773 For the second case, the semantics of the SSA program is:
774
775 | a (x) = init, if x = 0;
776 | expr (x - 1), otherwise.
777
778 The second case corresponds to the PEELED_CHREC, whose syntax is
779 close to the syntax of a loop-phi-node:
780
781 | phi (init, expr) vs. (init, expr)_x
782
783 The proof of the translation algorithm for the first case is a
784 proof by structural induction based on the degree of EXPR.
785
786 Degree 0:
787 When EXPR is a constant with respect to the analyzed loop, or in
788 other words when EXPR is a polynomial of degree 0, the evolution of
789 the variable A in the loop is an affine function with an initial
790 condition INIT, and a step EXPR. In order to show this, we start
791 from the semantics of the SSA representation:
792
793 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
794
795 and since "expr (j)" is a constant with respect to "j",
796
797 f (x) = init + x * expr
798
799 Finally, based on the semantics of the pure sum chrecs, by
800 identification we get the corresponding chrecs syntax:
801
802 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
803 f (x) -> {init, +, expr}_x
804
805 Higher degree:
806 Suppose that EXPR is a polynomial of degree N with respect to the
807 analyzed loop_x for which we have already determined that it is
808 written under the chrecs syntax:
809
810 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
811
812 We start from the semantics of the SSA program:
813
814 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
815 |
816 | f (x) = init + \sum_{j = 0}^{x - 1}
817 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
818 |
819 | f (x) = init + \sum_{j = 0}^{x - 1}
820 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
821 |
822 | f (x) = init + \sum_{k = 0}^{n - 1}
823 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
824 |
825 | f (x) = init + \sum_{k = 0}^{n - 1}
826 | (b_k * \binom{x}{k + 1})
827 |
828 | f (x) = init + b_0 * \binom{x}{1} + ...
829 | + b_{n-1} * \binom{x}{n}
830 |
831 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
832 | + b_{n-1} * \binom{x}{n}
833 |
834
835 And finally from the definition of the chrecs syntax, we identify:
836 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
837
838 This shows the mechanism that stands behind the add_to_evolution
839 function. An important point is that the use of symbolic
840 parameters avoids the need of an analysis schedule.
841
842 Example:
843
844 | inita = ...
845 | initb = ...
846 | loop_1
847 | a = phi (inita, a + 2 + b)
848 | b = phi (initb, b + 1)
849 | endloop
850
851 When analyzing "a", the algorithm keeps "b" symbolically:
852
853 | a -> {inita, +, 2 + b}_1
854
855 Then, after instantiation, the analyzer ends on the evolution:
856
857 | a -> {inita, +, 2 + initb, +, 1}_1
858
859*/
860
861static tree
e2157b49 862add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
726a989a 863 tree to_add, gimple at_stmt)
9baba81b
SP
864{
865 tree type = chrec_type (to_add);
866 tree res = NULL_TREE;
867
868 if (to_add == NULL_TREE)
869 return chrec_before;
870
871 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
872 instantiated at this point. */
873 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
874 /* This should not happen. */
875 return chrec_dont_know;
876
877 if (dump_file && (dump_flags & TDF_DETAILS))
878 {
879 fprintf (dump_file, "(add_to_evolution \n");
880 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
881 fprintf (dump_file, " (chrec_before = ");
882 print_generic_expr (dump_file, chrec_before, 0);
883 fprintf (dump_file, ")\n (to_add = ");
884 print_generic_expr (dump_file, to_add, 0);
885 fprintf (dump_file, ")\n");
886 }
887
888 if (code == MINUS_EXPR)
9d2b0e12
VR
889 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
890 ? build_real (type, dconstm1)
891 : build_int_cst_type (type, -1));
9baba81b 892
e2157b49 893 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
9baba81b
SP
894
895 if (dump_file && (dump_flags & TDF_DETAILS))
896 {
897 fprintf (dump_file, " (res = ");
898 print_generic_expr (dump_file, res, 0);
899 fprintf (dump_file, "))\n");
900 }
901
902 return res;
903}
904
905/* Helper function. */
906
907static inline tree
908set_nb_iterations_in_loop (struct loop *loop,
909 tree res)
910{
9baba81b
SP
911 if (dump_file && (dump_flags & TDF_DETAILS))
912 {
913 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
914 print_generic_expr (dump_file, res, 0);
915 fprintf (dump_file, "))\n");
916 }
917
918 loop->nb_iterations = res;
919 return res;
920}
921
922\f
923
924/* This section selects the loops that will be good candidates for the
925 scalar evolution analysis. For the moment, greedily select all the
926 loop nests we could analyze. */
927
9baba81b
SP
928/* For a loop with a single exit edge, return the COND_EXPR that
929 guards the exit edge. If the expression is too difficult to
930 analyze, then give up. */
931
726a989a 932gimple
22ea9ec0 933get_loop_exit_condition (const struct loop *loop)
9baba81b 934{
726a989a 935 gimple res = NULL;
ac8f6c69 936 edge exit_edge = single_exit (loop);
9baba81b
SP
937
938 if (dump_file && (dump_flags & TDF_DETAILS))
939 fprintf (dump_file, "(get_loop_exit_condition \n ");
940
82b85a85 941 if (exit_edge)
9baba81b 942 {
726a989a 943 gimple stmt;
9baba81b 944
726a989a
RB
945 stmt = last_stmt (exit_edge->src);
946 if (gimple_code (stmt) == GIMPLE_COND)
947 res = stmt;
9baba81b
SP
948 }
949
950 if (dump_file && (dump_flags & TDF_DETAILS))
951 {
726a989a 952 print_gimple_stmt (dump_file, res, 0, 0);
9baba81b
SP
953 fprintf (dump_file, ")\n");
954 }
955
956 return res;
957}
958
959/* Recursively determine and enqueue the exit conditions for a loop. */
960
961static void
962get_exit_conditions_rec (struct loop *loop,
726a989a 963 VEC(gimple,heap) **exit_conditions)
9baba81b
SP
964{
965 if (!loop)
966 return;
967
968 /* Recurse on the inner loops, then on the next (sibling) loops. */
969 get_exit_conditions_rec (loop->inner, exit_conditions);
970 get_exit_conditions_rec (loop->next, exit_conditions);
971
ac8f6c69 972 if (single_exit (loop))
9baba81b 973 {
726a989a 974 gimple loop_condition = get_loop_exit_condition (loop);
9baba81b
SP
975
976 if (loop_condition)
726a989a 977 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
9baba81b
SP
978 }
979}
980
981/* Select the candidate loop nests for the analysis. This function
471854f8 982 initializes the EXIT_CONDITIONS array. */
9baba81b
SP
983
984static void
726a989a 985select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
9baba81b 986{
d73be268 987 struct loop *function_body = current_loops->tree_root;
9baba81b
SP
988
989 get_exit_conditions_rec (function_body->inner, exit_conditions);
990}
991
992\f
993/* Depth first search algorithm. */
994
c59dabbe
SP
995typedef enum t_bool {
996 t_false,
997 t_true,
998 t_dont_know
999} t_bool;
1000
1001
726a989a 1002static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
9baba81b 1003
726a989a 1004/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
9baba81b
SP
1005 Return true if the strongly connected component has been found. */
1006
c59dabbe 1007static t_bool
726a989a
RB
1008follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
1009 tree type, tree rhs0, enum tree_code code, tree rhs1,
1010 gimple halting_phi, tree *evolution_of_loop, int limit)
9baba81b 1011{
c59dabbe 1012 t_bool res = t_false;
b2a93c0a 1013 tree evol;
726a989a 1014
5be014d5 1015 switch (code)
9baba81b 1016 {
5be014d5 1017 case POINTER_PLUS_EXPR:
9baba81b 1018 case PLUS_EXPR:
9baba81b
SP
1019 if (TREE_CODE (rhs0) == SSA_NAME)
1020 {
1021 if (TREE_CODE (rhs1) == SSA_NAME)
1022 {
1023 /* Match an assignment under the form:
1024 "a = b + c". */
9e824336
ZD
1025
1026 /* We want only assignments of form "name + name" contribute to
1027 LIMIT, as the other cases do not necessarily contribute to
1028 the complexity of the expression. */
1029 limit++;
1030
b2a93c0a 1031 evol = *evolution_of_loop;
9baba81b 1032 res = follow_ssa_edge
726a989a 1033 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
9baba81b 1034
c59dabbe 1035 if (res == t_true)
9baba81b
SP
1036 *evolution_of_loop = add_to_evolution
1037 (loop->num,
726a989a 1038 chrec_convert (type, evol, at_stmt),
5be014d5 1039 code, rhs1, at_stmt);
9baba81b 1040
c59dabbe 1041 else if (res == t_false)
9baba81b
SP
1042 {
1043 res = follow_ssa_edge
1044 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe 1045 evolution_of_loop, limit);
9baba81b 1046
c59dabbe 1047 if (res == t_true)
9baba81b
SP
1048 *evolution_of_loop = add_to_evolution
1049 (loop->num,
726a989a 1050 chrec_convert (type, *evolution_of_loop, at_stmt),
5be014d5 1051 code, rhs0, at_stmt);
c59dabbe
SP
1052
1053 else if (res == t_dont_know)
1054 *evolution_of_loop = chrec_dont_know;
9baba81b 1055 }
c59dabbe
SP
1056
1057 else if (res == t_dont_know)
1058 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1059 }
1060
1061 else
1062 {
1063 /* Match an assignment under the form:
1064 "a = b + ...". */
1065 res = follow_ssa_edge
1066 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1067 evolution_of_loop, limit);
1068 if (res == t_true)
9baba81b 1069 *evolution_of_loop = add_to_evolution
726a989a 1070 (loop->num, chrec_convert (type, *evolution_of_loop,
1e8552eb 1071 at_stmt),
5be014d5 1072 code, rhs1, at_stmt);
c59dabbe
SP
1073
1074 else if (res == t_dont_know)
1075 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1076 }
1077 }
1078
1079 else if (TREE_CODE (rhs1) == SSA_NAME)
1080 {
1081 /* Match an assignment under the form:
1082 "a = ... + c". */
1083 res = follow_ssa_edge
1084 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe
SP
1085 evolution_of_loop, limit);
1086 if (res == t_true)
9baba81b 1087 *evolution_of_loop = add_to_evolution
726a989a 1088 (loop->num, chrec_convert (type, *evolution_of_loop,
1e8552eb 1089 at_stmt),
5be014d5 1090 code, rhs0, at_stmt);
c59dabbe
SP
1091
1092 else if (res == t_dont_know)
1093 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1094 }
1095
1096 else
1097 /* Otherwise, match an assignment under the form:
1098 "a = ... + ...". */
1099 /* And there is nothing to do. */
c59dabbe 1100 res = t_false;
9baba81b
SP
1101 break;
1102
1103 case MINUS_EXPR:
1104 /* This case is under the form "opnd0 = rhs0 - rhs1". */
9baba81b 1105 if (TREE_CODE (rhs0) == SSA_NAME)
9baba81b
SP
1106 {
1107 /* Match an assignment under the form:
f8e9d512 1108 "a = b - ...". */
9e824336
ZD
1109
1110 /* We want only assignments of form "name - name" contribute to
1111 LIMIT, as the other cases do not necessarily contribute to
1112 the complexity of the expression. */
1113 if (TREE_CODE (rhs1) == SSA_NAME)
1114 limit++;
1115
f8e9d512 1116 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1117 evolution_of_loop, limit);
1118 if (res == t_true)
9baba81b 1119 *evolution_of_loop = add_to_evolution
726a989a 1120 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
e2157b49 1121 MINUS_EXPR, rhs1, at_stmt);
c59dabbe
SP
1122
1123 else if (res == t_dont_know)
1124 *evolution_of_loop = chrec_dont_know;
9baba81b 1125 }
9baba81b
SP
1126 else
1127 /* Otherwise, match an assignment under the form:
1128 "a = ... - ...". */
1129 /* And there is nothing to do. */
c59dabbe 1130 res = t_false;
9baba81b 1131 break;
726a989a
RB
1132
1133 default:
1134 res = t_false;
1135 }
1136
1137 return res;
1138}
9baba81b 1139
726a989a
RB
1140/* Follow the ssa edge into the expression EXPR.
1141 Return true if the strongly connected component has been found. */
1142
1143static t_bool
1144follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1145 gimple halting_phi, tree *evolution_of_loop, int limit)
1146{
5aefc6a0
EB
1147 enum tree_code code = TREE_CODE (expr);
1148 tree type = TREE_TYPE (expr), rhs0, rhs1;
1149 t_bool res;
1150
726a989a
RB
1151 /* The EXPR is one of the following cases:
1152 - an SSA_NAME,
1153 - an INTEGER_CST,
1154 - a PLUS_EXPR,
1155 - a POINTER_PLUS_EXPR,
1156 - a MINUS_EXPR,
1157 - an ASSERT_EXPR,
1158 - other cases are not yet handled. */
5aefc6a0 1159
726a989a
RB
1160 switch (code)
1161 {
5aefc6a0 1162 CASE_CONVERT:
726a989a
RB
1163 /* This assignment is under the form "a_1 = (cast) rhs. */
1164 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1165 halting_phi, evolution_of_loop, limit);
1166 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1167 break;
1168
1169 case INTEGER_CST:
1170 /* This assignment is under the form "a_1 = 7". */
1171 res = t_false;
1172 break;
5aefc6a0 1173
726a989a
RB
1174 case SSA_NAME:
1175 /* This assignment is under the form: "a_1 = b_2". */
1176 res = follow_ssa_edge
1177 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1178 break;
5aefc6a0 1179
726a989a
RB
1180 case POINTER_PLUS_EXPR:
1181 case PLUS_EXPR:
1182 case MINUS_EXPR:
1183 /* This case is under the form "rhs0 +- rhs1". */
1184 rhs0 = TREE_OPERAND (expr, 0);
1185 rhs1 = TREE_OPERAND (expr, 1);
5aefc6a0
EB
1186 type = TREE_TYPE (rhs0);
1187 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1188 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1189 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1190 halting_phi, evolution_of_loop, limit);
1191 break;
726a989a 1192
0bca51f0 1193 case ASSERT_EXPR:
5aefc6a0
EB
1194 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1195 It must be handled as a copy assignment of the form a_1 = a_2. */
1196 rhs0 = ASSERT_EXPR_VAR (expr);
1197 if (TREE_CODE (rhs0) == SSA_NAME)
1198 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1199 halting_phi, evolution_of_loop, limit);
1200 else
1201 res = t_false;
1202 break;
0bca51f0 1203
9baba81b 1204 default:
c59dabbe 1205 res = t_false;
9baba81b
SP
1206 break;
1207 }
5aefc6a0 1208
9baba81b
SP
1209 return res;
1210}
1211
726a989a
RB
1212/* Follow the ssa edge into the right hand side of an assignment STMT.
1213 Return true if the strongly connected component has been found. */
1214
1215static t_bool
1216follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1217 gimple halting_phi, tree *evolution_of_loop, int limit)
1218{
726a989a 1219 enum tree_code code = gimple_assign_rhs_code (stmt);
5aefc6a0
EB
1220 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1221 t_bool res;
726a989a 1222
5aefc6a0 1223 switch (code)
726a989a 1224 {
5aefc6a0
EB
1225 CASE_CONVERT:
1226 /* This assignment is under the form "a_1 = (cast) rhs. */
1227 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1228 halting_phi, evolution_of_loop, limit);
1229 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1230 break;
1231
1232 case POINTER_PLUS_EXPR:
1233 case PLUS_EXPR:
1234 case MINUS_EXPR:
1235 rhs1 = gimple_assign_rhs1 (stmt);
1236 rhs2 = gimple_assign_rhs2 (stmt);
1237 type = TREE_TYPE (rhs1);
1238 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
218d1c24 1239 halting_phi, evolution_of_loop, limit);
5aefc6a0 1240 break;
218d1c24 1241
726a989a 1242 default:
5aefc6a0
EB
1243 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1244 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1245 halting_phi, evolution_of_loop, limit);
1246 else
1247 res = t_false;
1248 break;
726a989a 1249 }
5aefc6a0
EB
1250
1251 return res;
726a989a
RB
1252}
1253
9baba81b
SP
1254/* Checks whether the I-th argument of a PHI comes from a backedge. */
1255
1256static bool
726a989a 1257backedge_phi_arg_p (gimple phi, int i)
9baba81b 1258{
726a989a 1259 const_edge e = gimple_phi_arg_edge (phi, i);
9baba81b
SP
1260
1261 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1262 about updating it anywhere, and this should work as well most of the
1263 time. */
1264 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1265 return true;
1266
1267 return false;
1268}
1269
1270/* Helper function for one branch of the condition-phi-node. Return
1271 true if the strongly connected component has been found following
1272 this path. */
1273
c59dabbe 1274static inline t_bool
9baba81b
SP
1275follow_ssa_edge_in_condition_phi_branch (int i,
1276 struct loop *loop,
726a989a
RB
1277 gimple condition_phi,
1278 gimple halting_phi,
9baba81b 1279 tree *evolution_of_branch,
c59dabbe 1280 tree init_cond, int limit)
9baba81b
SP
1281{
1282 tree branch = PHI_ARG_DEF (condition_phi, i);
1283 *evolution_of_branch = chrec_dont_know;
1284
1285 /* Do not follow back edges (they must belong to an irreducible loop, which
1286 we really do not want to worry about). */
1287 if (backedge_phi_arg_p (condition_phi, i))
c59dabbe 1288 return t_false;
9baba81b
SP
1289
1290 if (TREE_CODE (branch) == SSA_NAME)
1291 {
1292 *evolution_of_branch = init_cond;
1293 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
c59dabbe 1294 evolution_of_branch, limit);
9baba81b
SP
1295 }
1296
1297 /* This case occurs when one of the condition branches sets
89dbed81 1298 the variable to a constant: i.e. a phi-node like
9baba81b
SP
1299 "a_2 = PHI <a_7(5), 2(6)>;".
1300
1301 FIXME: This case have to be refined correctly:
1302 in some cases it is possible to say something better than
1303 chrec_dont_know, for example using a wrap-around notation. */
c59dabbe 1304 return t_false;
9baba81b
SP
1305}
1306
1307/* This function merges the branches of a condition-phi-node in a
1308 loop. */
1309
c59dabbe 1310static t_bool
9baba81b 1311follow_ssa_edge_in_condition_phi (struct loop *loop,
726a989a
RB
1312 gimple condition_phi,
1313 gimple halting_phi,
c59dabbe 1314 tree *evolution_of_loop, int limit)
9baba81b 1315{
726a989a 1316 int i, n;
9baba81b
SP
1317 tree init = *evolution_of_loop;
1318 tree evolution_of_branch;
c59dabbe
SP
1319 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1320 halting_phi,
1321 &evolution_of_branch,
1322 init, limit);
1323 if (res == t_false || res == t_dont_know)
1324 return res;
9baba81b 1325
9baba81b
SP
1326 *evolution_of_loop = evolution_of_branch;
1327
726a989a 1328 n = gimple_phi_num_args (condition_phi);
726a989a 1329 for (i = 1; i < n; i++)
9baba81b 1330 {
e0afb98a
SP
1331 /* Quickly give up when the evolution of one of the branches is
1332 not known. */
1333 if (*evolution_of_loop == chrec_dont_know)
c59dabbe 1334 return t_true;
e0afb98a 1335
788d3075
RG
1336 /* Increase the limit by the PHI argument number to avoid exponential
1337 time and memory complexity. */
c59dabbe
SP
1338 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1339 halting_phi,
1340 &evolution_of_branch,
788d3075 1341 init, limit + i);
c59dabbe
SP
1342 if (res == t_false || res == t_dont_know)
1343 return res;
9baba81b
SP
1344
1345 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1346 evolution_of_branch);
1347 }
1348
c59dabbe 1349 return t_true;
9baba81b
SP
1350}
1351
1352/* Follow an SSA edge in an inner loop. It computes the overall
1353 effect of the loop, and following the symbolic initial conditions,
1354 it follows the edges in the parent loop. The inner loop is
1355 considered as a single statement. */
1356
c59dabbe 1357static t_bool
9baba81b 1358follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
726a989a
RB
1359 gimple loop_phi_node,
1360 gimple halting_phi,
c59dabbe 1361 tree *evolution_of_loop, int limit)
9baba81b
SP
1362{
1363 struct loop *loop = loop_containing_stmt (loop_phi_node);
1364 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1365
1366 /* Sometimes, the inner loop is too difficult to analyze, and the
1367 result of the analysis is a symbolic parameter. */
1368 if (ev == PHI_RESULT (loop_phi_node))
1369 {
c59dabbe 1370 t_bool res = t_false;
726a989a 1371 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b 1372
726a989a 1373 for (i = 0; i < n; i++)
9baba81b
SP
1374 {
1375 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1376 basic_block bb;
1377
1378 /* Follow the edges that exit the inner loop. */
726a989a 1379 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b 1380 if (!flow_bb_inside_loop_p (loop, bb))
726a989a
RB
1381 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1382 arg, halting_phi,
1383 evolution_of_loop, limit);
c59dabbe
SP
1384 if (res == t_true)
1385 break;
9baba81b
SP
1386 }
1387
1388 /* If the path crosses this loop-phi, give up. */
c59dabbe 1389 if (res == t_true)
9baba81b
SP
1390 *evolution_of_loop = chrec_dont_know;
1391
1392 return res;
1393 }
1394
1395 /* Otherwise, compute the overall effect of the inner loop. */
1396 ev = compute_overall_effect_of_inner_loop (loop, ev);
726a989a
RB
1397 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1398 evolution_of_loop, limit);
9baba81b
SP
1399}
1400
1401/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1402 path that is analyzed on the return walk. */
1403
c59dabbe 1404static t_bool
726a989a 1405follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
c59dabbe 1406 tree *evolution_of_loop, int limit)
9baba81b
SP
1407{
1408 struct loop *def_loop;
1409
726a989a 1410 if (gimple_nop_p (def))
c59dabbe
SP
1411 return t_false;
1412
1413 /* Give up if the path is longer than the MAX that we allow. */
9e824336 1414 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
c59dabbe 1415 return t_dont_know;
9baba81b
SP
1416
1417 def_loop = loop_containing_stmt (def);
1418
726a989a 1419 switch (gimple_code (def))
9baba81b 1420 {
726a989a 1421 case GIMPLE_PHI:
9baba81b
SP
1422 if (!loop_phi_node_p (def))
1423 /* DEF is a condition-phi-node. Follow the branches, and
1424 record their evolutions. Finally, merge the collected
1425 information and set the approximation to the main
1426 variable. */
1427 return follow_ssa_edge_in_condition_phi
c59dabbe 1428 (loop, def, halting_phi, evolution_of_loop, limit);
9baba81b
SP
1429
1430 /* When the analyzed phi is the halting_phi, the
1431 depth-first search is over: we have found a path from
1432 the halting_phi to itself in the loop. */
1433 if (def == halting_phi)
c59dabbe 1434 return t_true;
9baba81b
SP
1435
1436 /* Otherwise, the evolution of the HALTING_PHI depends
89dbed81 1437 on the evolution of another loop-phi-node, i.e. the
9baba81b
SP
1438 evolution function is a higher degree polynomial. */
1439 if (def_loop == loop)
c59dabbe 1440 return t_false;
9baba81b
SP
1441
1442 /* Inner loop. */
1443 if (flow_loop_nested_p (loop, def_loop))
1444 return follow_ssa_edge_inner_loop_phi
9e824336 1445 (loop, def, halting_phi, evolution_of_loop, limit + 1);
9baba81b
SP
1446
1447 /* Outer loop. */
c59dabbe 1448 return t_false;
9baba81b 1449
726a989a
RB
1450 case GIMPLE_ASSIGN:
1451 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
c59dabbe 1452 evolution_of_loop, limit);
9baba81b
SP
1453
1454 default:
1455 /* At this level of abstraction, the program is just a set
726a989a 1456 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
9baba81b 1457 other node to be handled. */
c59dabbe 1458 return t_false;
9baba81b
SP
1459 }
1460}
1461
1462\f
1463
1464/* Given a LOOP_PHI_NODE, this function determines the evolution
1465 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1466
1467static tree
726a989a 1468analyze_evolution_in_loop (gimple loop_phi_node,
9baba81b
SP
1469 tree init_cond)
1470{
726a989a 1471 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b
SP
1472 tree evolution_function = chrec_not_analyzed_yet;
1473 struct loop *loop = loop_containing_stmt (loop_phi_node);
1474 basic_block bb;
1475
1476 if (dump_file && (dump_flags & TDF_DETAILS))
1477 {
1478 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1479 fprintf (dump_file, " (loop_phi_node = ");
726a989a 1480 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
9baba81b
SP
1481 fprintf (dump_file, ")\n");
1482 }
1483
726a989a 1484 for (i = 0; i < n; i++)
9baba81b
SP
1485 {
1486 tree arg = PHI_ARG_DEF (loop_phi_node, i);
726a989a
RB
1487 gimple ssa_chain;
1488 tree ev_fn;
874caa00 1489 t_bool res;
9baba81b
SP
1490
1491 /* Select the edges that enter the loop body. */
726a989a 1492 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b
SP
1493 if (!flow_bb_inside_loop_p (loop, bb))
1494 continue;
f29deac9 1495
9baba81b
SP
1496 if (TREE_CODE (arg) == SSA_NAME)
1497 {
f29deac9
SP
1498 bool val = false;
1499
9baba81b
SP
1500 ssa_chain = SSA_NAME_DEF_STMT (arg);
1501
1502 /* Pass in the initial condition to the follow edge function. */
1503 ev_fn = init_cond;
c59dabbe 1504 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
f29deac9
SP
1505
1506 /* If ev_fn has no evolution in the inner loop, and the
1507 init_cond is not equal to ev_fn, then we have an
1508 ambiguity between two possible values, as we cannot know
1509 the number of iterations at this point. */
1510 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1511 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1512 && !operand_equal_p (init_cond, ev_fn, 0))
1513 ev_fn = chrec_dont_know;
9baba81b
SP
1514 }
1515 else
874caa00 1516 res = t_false;
f29deac9 1517
9baba81b
SP
1518 /* When it is impossible to go back on the same
1519 loop_phi_node by following the ssa edges, the
89dbed81 1520 evolution is represented by a peeled chrec, i.e. the
9baba81b
SP
1521 first iteration, EV_FN has the value INIT_COND, then
1522 all the other iterations it has the value of ARG.
1523 For the moment, PEELED_CHREC nodes are not built. */
874caa00 1524 if (res != t_true)
9baba81b
SP
1525 ev_fn = chrec_dont_know;
1526
1527 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1528 happens currently, but nevertheless), merge their evolutions. */
9baba81b
SP
1529 evolution_function = chrec_merge (evolution_function, ev_fn);
1530 }
1531
1532 if (dump_file && (dump_flags & TDF_DETAILS))
1533 {
1534 fprintf (dump_file, " (evolution_function = ");
1535 print_generic_expr (dump_file, evolution_function, 0);
1536 fprintf (dump_file, "))\n");
1537 }
1538
1539 return evolution_function;
1540}
1541
1542/* Given a loop-phi-node, return the initial conditions of the
1543 variable on entry of the loop. When the CCP has propagated
1544 constants into the loop-phi-node, the initial condition is
1545 instantiated, otherwise the initial condition is kept symbolic.
1546 This analyzer does not analyze the evolution outside the current
1547 loop, and leaves this task to the on-demand tree reconstructor. */
1548
1549static tree
726a989a 1550analyze_initial_condition (gimple loop_phi_node)
9baba81b 1551{
726a989a 1552 int i, n;
9baba81b 1553 tree init_cond = chrec_not_analyzed_yet;
726a989a 1554 struct loop *loop = loop_containing_stmt (loop_phi_node);
9baba81b
SP
1555
1556 if (dump_file && (dump_flags & TDF_DETAILS))
1557 {
1558 fprintf (dump_file, "(analyze_initial_condition \n");
1559 fprintf (dump_file, " (loop_phi_node = \n");
726a989a 1560 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
9baba81b
SP
1561 fprintf (dump_file, ")\n");
1562 }
1563
726a989a
RB
1564 n = gimple_phi_num_args (loop_phi_node);
1565 for (i = 0; i < n; i++)
9baba81b
SP
1566 {
1567 tree branch = PHI_ARG_DEF (loop_phi_node, i);
726a989a 1568 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b
SP
1569
1570 /* When the branch is oriented to the loop's body, it does
1571 not contribute to the initial condition. */
1572 if (flow_bb_inside_loop_p (loop, bb))
1573 continue;
1574
1575 if (init_cond == chrec_not_analyzed_yet)
1576 {
1577 init_cond = branch;
1578 continue;
1579 }
1580
1581 if (TREE_CODE (branch) == SSA_NAME)
1582 {
1583 init_cond = chrec_dont_know;
1584 break;
1585 }
1586
1587 init_cond = chrec_merge (init_cond, branch);
1588 }
1589
1590 /* Ooops -- a loop without an entry??? */
1591 if (init_cond == chrec_not_analyzed_yet)
1592 init_cond = chrec_dont_know;
1593
bf1cbdc6
RG
1594 /* During early loop unrolling we do not have fully constant propagated IL.
1595 Handle degenerate PHIs here to not miss important unrollings. */
1596 if (TREE_CODE (init_cond) == SSA_NAME)
1597 {
1598 gimple def = SSA_NAME_DEF_STMT (init_cond);
1599 tree res;
1600 if (gimple_code (def) == GIMPLE_PHI
1601 && (res = degenerate_phi_result (def)) != NULL_TREE
1602 /* Only allow invariants here, otherwise we may break
1603 loop-closed SSA form. */
1604 && is_gimple_min_invariant (res))
1605 init_cond = res;
1606 }
1607
9baba81b
SP
1608 if (dump_file && (dump_flags & TDF_DETAILS))
1609 {
1610 fprintf (dump_file, " (init_cond = ");
1611 print_generic_expr (dump_file, init_cond, 0);
1612 fprintf (dump_file, "))\n");
1613 }
1614
1615 return init_cond;
1616}
1617
1618/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1619
1620static tree
726a989a 1621interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
9baba81b
SP
1622{
1623 tree res;
1624 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1625 tree init_cond;
1626
1627 if (phi_loop != loop)
1628 {
1629 struct loop *subloop;
1630 tree evolution_fn = analyze_scalar_evolution
1631 (phi_loop, PHI_RESULT (loop_phi_node));
1632
1633 /* Dive one level deeper. */
9ba025a2 1634 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
9baba81b
SP
1635
1636 /* Interpret the subloop. */
1637 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1638 return res;
1639 }
1640
1641 /* Otherwise really interpret the loop phi. */
1642 init_cond = analyze_initial_condition (loop_phi_node);
1643 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1644
1645 return res;
1646}
1647
1648/* This function merges the branches of a condition-phi-node,
1649 contained in the outermost loop, and whose arguments are already
1650 analyzed. */
1651
1652static tree
726a989a 1653interpret_condition_phi (struct loop *loop, gimple condition_phi)
9baba81b 1654{
726a989a 1655 int i, n = gimple_phi_num_args (condition_phi);
9baba81b
SP
1656 tree res = chrec_not_analyzed_yet;
1657
726a989a 1658 for (i = 0; i < n; i++)
9baba81b
SP
1659 {
1660 tree branch_chrec;
1661
1662 if (backedge_phi_arg_p (condition_phi, i))
1663 {
1664 res = chrec_dont_know;
1665 break;
1666 }
1667
1668 branch_chrec = analyze_scalar_evolution
1669 (loop, PHI_ARG_DEF (condition_phi, i));
1670
1671 res = chrec_merge (res, branch_chrec);
1672 }
1673
1674 return res;
1675}
1676
726a989a 1677/* Interpret the operation RHS1 OP RHS2. If we didn't
29836d07 1678 analyze this node before, follow the definitions until ending
726a989a 1679 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
9baba81b
SP
1680 return path, this function propagates evolutions (ala constant copy
1681 propagation). OPND1 is not a GIMPLE expression because we could
1682 analyze the effect of an inner loop: see interpret_loop_phi. */
1683
1684static tree
726a989a
RB
1685interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1686 tree type, tree rhs1, enum tree_code code, tree rhs2)
9baba81b 1687{
726a989a
RB
1688 tree res, chrec1, chrec2;
1689
1690 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1691 {
1692 if (is_gimple_min_invariant (rhs1))
1693 return chrec_convert (type, rhs1, at_stmt);
1694
1695 if (code == SSA_NAME)
1696 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1697 at_stmt);
1e8552eb 1698
726a989a
RB
1699 if (code == ASSERT_EXPR)
1700 {
1701 rhs1 = ASSERT_EXPR_VAR (rhs1);
1702 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1703 at_stmt);
1704 }
1705
1706 return chrec_dont_know;
1707 }
1e8552eb 1708
726a989a 1709 switch (code)
9baba81b 1710 {
5be014d5 1711 case POINTER_PLUS_EXPR:
726a989a
RB
1712 chrec1 = analyze_scalar_evolution (loop, rhs1);
1713 chrec2 = analyze_scalar_evolution (loop, rhs2);
1714 chrec1 = chrec_convert (type, chrec1, at_stmt);
1715 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1716 res = chrec_fold_plus (type, chrec1, chrec2);
5be014d5
AP
1717 break;
1718
9baba81b 1719 case PLUS_EXPR:
726a989a
RB
1720 chrec1 = analyze_scalar_evolution (loop, rhs1);
1721 chrec2 = analyze_scalar_evolution (loop, rhs2);
1722 chrec1 = chrec_convert (type, chrec1, at_stmt);
1723 chrec2 = chrec_convert (type, chrec2, at_stmt);
1724 res = chrec_fold_plus (type, chrec1, chrec2);
9baba81b
SP
1725 break;
1726
1727 case MINUS_EXPR:
726a989a
RB
1728 chrec1 = analyze_scalar_evolution (loop, rhs1);
1729 chrec2 = analyze_scalar_evolution (loop, rhs2);
1730 chrec1 = chrec_convert (type, chrec1, at_stmt);
1731 chrec2 = chrec_convert (type, chrec2, at_stmt);
1732 res = chrec_fold_minus (type, chrec1, chrec2);
9baba81b
SP
1733 break;
1734
1735 case NEGATE_EXPR:
726a989a
RB
1736 chrec1 = analyze_scalar_evolution (loop, rhs1);
1737 chrec1 = chrec_convert (type, chrec1, at_stmt);
9a75ede0 1738 /* TYPE may be integer, real or complex, so use fold_convert. */
726a989a 1739 res = chrec_fold_multiply (type, chrec1,
9a75ede0 1740 fold_convert (type, integer_minus_one_node));
9baba81b
SP
1741 break;
1742
418df9d7
JJ
1743 case BIT_NOT_EXPR:
1744 /* Handle ~X as -1 - X. */
1745 chrec1 = analyze_scalar_evolution (loop, rhs1);
1746 chrec1 = chrec_convert (type, chrec1, at_stmt);
1747 res = chrec_fold_minus (type,
1748 fold_convert (type, integer_minus_one_node),
1749 chrec1);
1750 break;
1751
9baba81b 1752 case MULT_EXPR:
726a989a
RB
1753 chrec1 = analyze_scalar_evolution (loop, rhs1);
1754 chrec2 = analyze_scalar_evolution (loop, rhs2);
1755 chrec1 = chrec_convert (type, chrec1, at_stmt);
1756 chrec2 = chrec_convert (type, chrec2, at_stmt);
1757 res = chrec_fold_multiply (type, chrec1, chrec2);
0bca51f0 1758 break;
9baba81b 1759
1043771b 1760 CASE_CONVERT:
726a989a
RB
1761 chrec1 = analyze_scalar_evolution (loop, rhs1);
1762 res = chrec_convert (type, chrec1, at_stmt);
9baba81b
SP
1763 break;
1764
1765 default:
1766 res = chrec_dont_know;
1767 break;
1768 }
1769
1770 return res;
1771}
1772
726a989a
RB
1773/* Interpret the expression EXPR. */
1774
1775static tree
1776interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1777{
1778 enum tree_code code;
1779 tree type = TREE_TYPE (expr), op0, op1;
1780
1781 if (automatically_generated_chrec_p (expr))
1782 return expr;
1783
1784 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1785 return chrec_dont_know;
1786
1787 extract_ops_from_tree (expr, &code, &op0, &op1);
1788
1789 return interpret_rhs_expr (loop, at_stmt, type,
1790 op0, code, op1);
1791}
1792
1793/* Interpret the rhs of the assignment STMT. */
1794
1795static tree
1796interpret_gimple_assign (struct loop *loop, gimple stmt)
1797{
1798 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1799 enum tree_code code = gimple_assign_rhs_code (stmt);
1800
1801 return interpret_rhs_expr (loop, stmt, type,
1802 gimple_assign_rhs1 (stmt), code,
1803 gimple_assign_rhs2 (stmt));
1804}
1805
9baba81b
SP
1806\f
1807
1808/* This section contains all the entry points:
1809 - number_of_iterations_in_loop,
1810 - analyze_scalar_evolution,
1811 - instantiate_parameters.
1812*/
1813
1814/* Compute and return the evolution function in WRTO_LOOP, the nearest
1815 common ancestor of DEF_LOOP and USE_LOOP. */
1816
1817static tree
1818compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1819 struct loop *def_loop,
1820 tree ev)
1821{
1822 tree res;
1823 if (def_loop == wrto_loop)
1824 return ev;
1825
9ba025a2 1826 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
9baba81b
SP
1827 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1828
1829 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1830}
1831
1832/* Helper recursive function. */
1833
1834static tree
1835analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1836{
726a989a
RB
1837 tree type = TREE_TYPE (var);
1838 gimple def;
9baba81b
SP
1839 basic_block bb;
1840 struct loop *def_loop;
1841
42d375ed 1842 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
9baba81b
SP
1843 return chrec_dont_know;
1844
1845 if (TREE_CODE (var) != SSA_NAME)
726a989a 1846 return interpret_expr (loop, NULL, var);
9baba81b
SP
1847
1848 def = SSA_NAME_DEF_STMT (var);
726a989a 1849 bb = gimple_bb (def);
9baba81b
SP
1850 def_loop = bb ? bb->loop_father : NULL;
1851
1852 if (bb == NULL
1853 || !flow_bb_inside_loop_p (loop, bb))
1854 {
1855 /* Keep the symbolic form. */
1856 res = var;
1857 goto set_and_end;
1858 }
1859
1860 if (res != chrec_not_analyzed_yet)
1861 {
1862 if (loop != bb->loop_father)
1863 res = compute_scalar_evolution_in_loop
1864 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1865
1866 goto set_and_end;
1867 }
1868
1869 if (loop != def_loop)
1870 {
1871 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1872 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1873
1874 goto set_and_end;
1875 }
1876
726a989a 1877 switch (gimple_code (def))
9baba81b 1878 {
726a989a
RB
1879 case GIMPLE_ASSIGN:
1880 res = interpret_gimple_assign (loop, def);
9baba81b
SP
1881 break;
1882
726a989a 1883 case GIMPLE_PHI:
9baba81b
SP
1884 if (loop_phi_node_p (def))
1885 res = interpret_loop_phi (loop, def);
1886 else
1887 res = interpret_condition_phi (loop, def);
1888 break;
1889
1890 default:
1891 res = chrec_dont_know;
1892 break;
1893 }
1894
1895 set_and_end:
1896
1897 /* Keep the symbolic form. */
1898 if (res == chrec_dont_know)
1899 res = var;
1900
1901 if (loop == def_loop)
a213b219 1902 set_scalar_evolution (block_before_loop (loop), var, res);
9baba81b
SP
1903
1904 return res;
1905}
1906
52bdd655
SP
1907/* Analyzes and returns the scalar evolution of the ssa_name VAR in
1908 LOOP. LOOP is the loop in which the variable is used.
9baba81b
SP
1909
1910 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1911 pointer to the statement that uses this variable, in order to
1912 determine the evolution function of the variable, use the following
1913 calls:
1914
52bdd655
SP
1915 loop_p loop = loop_containing_stmt (stmt);
1916 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
3f227a8c 1917 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
9baba81b
SP
1918*/
1919
1920tree
1921analyze_scalar_evolution (struct loop *loop, tree var)
1922{
1923 tree res;
1924
1925 if (dump_file && (dump_flags & TDF_DETAILS))
1926 {
1927 fprintf (dump_file, "(analyze_scalar_evolution \n");
1928 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1929 fprintf (dump_file, " (scalar = ");
1930 print_generic_expr (dump_file, var, 0);
1931 fprintf (dump_file, ")\n");
1932 }
1933
a213b219
SP
1934 res = get_scalar_evolution (block_before_loop (loop), var);
1935 res = analyze_scalar_evolution_1 (loop, var, res);
9baba81b 1936
9baba81b
SP
1937 if (dump_file && (dump_flags & TDF_DETAILS))
1938 fprintf (dump_file, ")\n");
1939
1940 return res;
1941}
1942
1943/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
f017bf5e 1944 WRTO_LOOP (which should be a superloop of USE_LOOP)
a6f778b2
ZD
1945
1946 FOLDED_CASTS is set to true if resolve_mixers used
1947 chrec_convert_aggressive (TODO -- not really, we are way too conservative
f017bf5e
ZD
1948 at the moment in order to keep things simple).
1949
1950 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
1951 example:
1952
1953 for (i = 0; i < 100; i++) -- loop 1
1954 {
1955 for (j = 0; j < 100; j++) -- loop 2
1956 {
1957 k1 = i;
1958 k2 = j;
1959
1960 use2 (k1, k2);
1961
1962 for (t = 0; t < 100; t++) -- loop 3
1963 use3 (k1, k2);
1964
1965 }
1966 use1 (k1, k2);
1967 }
1968
1969 Both k1 and k2 are invariants in loop3, thus
1970 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
1971 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
1972
1973 As they are invariant, it does not matter whether we consider their
1974 usage in loop 3 or loop 2, hence
1975 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
1976 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
1977 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
1978 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
1979
1980 Similarly for their evolutions with respect to loop 1. The values of K2
1981 in the use in loop 2 vary independently on loop 1, thus we cannot express
1982 the evolution with respect to loop 1:
1983 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
1984 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
1985 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
1986 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
1987
1988 The value of k2 in the use in loop 1 is known, though:
1989 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
1990 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
1991 */
9baba81b
SP
1992
1993static tree
1994analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
a6f778b2 1995 tree version, bool *folded_casts)
9baba81b
SP
1996{
1997 bool val = false;
a6f778b2 1998 tree ev = version, tmp;
9baba81b 1999
f017bf5e
ZD
2000 /* We cannot just do
2001
2002 tmp = analyze_scalar_evolution (use_loop, version);
2003 ev = resolve_mixers (wrto_loop, tmp);
2004
2005 as resolve_mixers would query the scalar evolution with respect to
2006 wrto_loop. For example, in the situation described in the function
2007 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2008 version = k2. Then
2009
2010 analyze_scalar_evolution (use_loop, version) = k2
2011
2012 and resolve_mixers (loop1, k2) finds that the value of k2 in loop 1
2013 is 100, which is a wrong result, since we are interested in the
2014 value in loop 3.
2015
2016 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2017 each time checking that there is no evolution in the inner loop. */
2018
a6f778b2
ZD
2019 if (folded_casts)
2020 *folded_casts = false;
9baba81b
SP
2021 while (1)
2022 {
a6f778b2
ZD
2023 tmp = analyze_scalar_evolution (use_loop, ev);
2024 ev = resolve_mixers (use_loop, tmp);
2025
2026 if (folded_casts && tmp != ev)
2027 *folded_casts = true;
9baba81b
SP
2028
2029 if (use_loop == wrto_loop)
2030 return ev;
2031
2032 /* If the value of the use changes in the inner loop, we cannot express
2033 its value in the outer loop (we might try to return interval chrec,
2034 but we do not have a user for it anyway) */
2035 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2036 || !val)
2037 return chrec_dont_know;
2038
9ba025a2 2039 use_loop = loop_outer (use_loop);
9baba81b
SP
2040 }
2041}
2042
a213b219
SP
2043/* Returns from CACHE the value for VERSION instantiated below
2044 INSTANTIATED_BELOW block. */
eb0bc7af
ZD
2045
2046static tree
a213b219
SP
2047get_instantiated_value (htab_t cache, basic_block instantiated_below,
2048 tree version)
eb0bc7af
ZD
2049{
2050 struct scev_info_str *info, pattern;
2051
2052 pattern.var = version;
a213b219 2053 pattern.instantiated_below = instantiated_below;
858904db 2054 info = (struct scev_info_str *) htab_find (cache, &pattern);
eb0bc7af
ZD
2055
2056 if (info)
2057 return info->chrec;
2058 else
2059 return NULL_TREE;
2060}
2061
a213b219
SP
2062/* Sets in CACHE the value of VERSION instantiated below basic block
2063 INSTANTIATED_BELOW to VAL. */
eb0bc7af
ZD
2064
2065static void
a213b219
SP
2066set_instantiated_value (htab_t cache, basic_block instantiated_below,
2067 tree version, tree val)
eb0bc7af
ZD
2068{
2069 struct scev_info_str *info, pattern;
2070 PTR *slot;
2071
2072 pattern.var = version;
0bfdfbf6 2073 pattern.instantiated_below = instantiated_below;
eb0bc7af
ZD
2074 slot = htab_find_slot (cache, &pattern, INSERT);
2075
cceb1885 2076 if (!*slot)
a213b219 2077 *slot = new_scev_info_str (instantiated_below, version);
cceb1885 2078 info = (struct scev_info_str *) *slot;
eb0bc7af
ZD
2079 info->chrec = val;
2080}
2081
18aed06a
SP
2082/* Return the closed_loop_phi node for VAR. If there is none, return
2083 NULL_TREE. */
2084
2085static tree
2086loop_closed_phi_def (tree var)
2087{
2088 struct loop *loop;
2089 edge exit;
726a989a
RB
2090 gimple phi;
2091 gimple_stmt_iterator psi;
18aed06a
SP
2092
2093 if (var == NULL_TREE
2094 || TREE_CODE (var) != SSA_NAME)
2095 return NULL_TREE;
2096
2097 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
ac8f6c69 2098 exit = single_exit (loop);
18aed06a
SP
2099 if (!exit)
2100 return NULL_TREE;
2101
726a989a
RB
2102 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2103 {
2104 phi = gsi_stmt (psi);
2105 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2106 return PHI_RESULT (phi);
2107 }
18aed06a
SP
2108
2109 return NULL_TREE;
2110}
2111
320f5a78
SP
2112static tree instantiate_scev_1 (basic_block, struct loop *, tree, bool,
2113 htab_t, int);
2114
2115/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2116 and EVOLUTION_LOOP, that were left under a symbolic form.
2117
2118 CHREC is an SSA_NAME to be instantiated.
2119
2120 CACHE is the cache of already instantiated values.
2121
2122 FOLD_CONVERSIONS should be set to true when the conversions that
2123 may wrap in signed/pointer type are folded, as long as the value of
2124 the chrec is preserved.
2125
2126 SIZE_EXPR is used for computing the size of the expression to be
2127 instantiated, and to stop if it exceeds some limit. */
2128
2129static tree
2130instantiate_scev_name (basic_block instantiate_below,
2131 struct loop *evolution_loop, tree chrec,
2132 bool fold_conversions, htab_t cache, int size_expr)
2133{
2134 tree res;
2135 struct loop *def_loop;
2136 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2137
2138 /* A parameter (or loop invariant and we do not want to include
2139 evolutions in outer loops), nothing to do. */
2140 if (!def_bb
2141 || loop_depth (def_bb->loop_father) == 0
2142 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2143 return chrec;
2144
2145 /* We cache the value of instantiated variable to avoid exponential
2146 time complexity due to reevaluations. We also store the convenient
2147 value in the cache in order to prevent infinite recursion -- we do
2148 not want to instantiate the SSA_NAME if it is in a mixer
2149 structure. This is used for avoiding the instantiation of
2150 recursively defined functions, such as:
2151
2152 | a_2 -> {0, +, 1, +, a_2}_1 */
2153
2154 res = get_instantiated_value (cache, instantiate_below, chrec);
2155 if (res)
2156 return res;
2157
2158 res = chrec_dont_know;
2159 set_instantiated_value (cache, instantiate_below, chrec, res);
2160
2161 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2162
2163 /* If the analysis yields a parametric chrec, instantiate the
2164 result again. */
2165 res = analyze_scalar_evolution (def_loop, chrec);
2166
2167 /* Don't instantiate loop-closed-ssa phi nodes. */
2168 if (TREE_CODE (res) == SSA_NAME
2169 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2170 || (loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2171 > loop_depth (def_loop))))
2172 {
2173 if (res == chrec)
2174 res = loop_closed_phi_def (chrec);
2175 else
2176 res = chrec;
2177
2178 if (res == NULL_TREE
2179 || !dominated_by_p (CDI_DOMINATORS, instantiate_below,
2180 gimple_bb (SSA_NAME_DEF_STMT (res))))
2181 res = chrec_dont_know;
2182 }
2183
2184 else if (res != chrec_dont_know)
2185 res = instantiate_scev_1 (instantiate_below, evolution_loop, res,
2186 fold_conversions, cache, size_expr);
2187
2188 /* Store the correct value to the cache. */
2189 set_instantiated_value (cache, instantiate_below, chrec, res);
2190 return res;
2191
2192}
2193
a213b219 2194/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
5b78fc3e
JS
2195 and EVOLUTION_LOOP, that were left under a symbolic form.
2196
2197 CHREC is the scalar evolution to instantiate.
2198
2199 CACHE is the cache of already instantiated values.
2200
2201 FOLD_CONVERSIONS should be set to true when the conversions that
2202 may wrap in signed/pointer type are folded, as long as the value of
2203 the chrec is preserved.
2204
3f227a8c
JS
2205 SIZE_EXPR is used for computing the size of the expression to be
2206 instantiated, and to stop if it exceeds some limit. */
2282a0e6 2207
9baba81b 2208static tree
a213b219 2209instantiate_scev_1 (basic_block instantiate_below,
3f227a8c 2210 struct loop *evolution_loop, tree chrec,
5b78fc3e 2211 bool fold_conversions, htab_t cache, int size_expr)
9baba81b 2212{
320f5a78 2213 tree op0, op1, op2;
16a2acea 2214 tree type = chrec_type (chrec);
2282a0e6 2215
47ae9e4c
SP
2216 /* Give up if the expression is larger than the MAX that we allow. */
2217 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2218 return chrec_dont_know;
2219
d7770457
SP
2220 if (automatically_generated_chrec_p (chrec)
2221 || is_gimple_min_invariant (chrec))
9baba81b
SP
2222 return chrec;
2223
2224 switch (TREE_CODE (chrec))
2225 {
2226 case SSA_NAME:
320f5a78
SP
2227 return instantiate_scev_name (instantiate_below, evolution_loop, chrec,
2228 fold_conversions, cache, size_expr);
9baba81b
SP
2229
2230 case POLYNOMIAL_CHREC:
a213b219 2231 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
5b78fc3e
JS
2232 CHREC_LEFT (chrec), fold_conversions, cache,
2233 size_expr);
fca81712
SP
2234 if (op0 == chrec_dont_know)
2235 return chrec_dont_know;
2236
a213b219 2237 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
5b78fc3e
JS
2238 CHREC_RIGHT (chrec), fold_conversions, cache,
2239 size_expr);
fca81712
SP
2240 if (op1 == chrec_dont_know)
2241 return chrec_dont_know;
2242
eac30183
ZD
2243 if (CHREC_LEFT (chrec) != op0
2244 || CHREC_RIGHT (chrec) != op1)
e2157b49 2245 {
726a989a 2246 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
e2157b49
SP
2247 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2248 }
eac30183 2249 return chrec;
9baba81b 2250
5be014d5 2251 case POINTER_PLUS_EXPR:
9baba81b 2252 case PLUS_EXPR:
a213b219 2253 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
5b78fc3e 2254 TREE_OPERAND (chrec, 0), fold_conversions, cache,
3f227a8c 2255 size_expr);
fca81712
SP
2256 if (op0 == chrec_dont_know)
2257 return chrec_dont_know;
2258
a213b219 2259 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
5b78fc3e 2260 TREE_OPERAND (chrec, 1), fold_conversions, cache,
3f227a8c 2261 size_expr);
fca81712
SP
2262 if (op1 == chrec_dont_know)
2263 return chrec_dont_know;
2264
eac30183
ZD
2265 if (TREE_OPERAND (chrec, 0) != op0
2266 || TREE_OPERAND (chrec, 1) != op1)
16a2acea 2267 {
726a989a
RB
2268 op0 = chrec_convert (type, op0, NULL);
2269 op1 = chrec_convert_rhs (type, op1, NULL);
16a2acea
SP
2270 chrec = chrec_fold_plus (type, op0, op1);
2271 }
eac30183 2272 return chrec;
9baba81b
SP
2273
2274 case MINUS_EXPR:
a213b219 2275 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
5b78fc3e 2276 TREE_OPERAND (chrec, 0), fold_conversions, cache,
3f227a8c 2277 size_expr);
fca81712
SP
2278 if (op0 == chrec_dont_know)
2279 return chrec_dont_know;
2280
a213b219 2281 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2282 TREE_OPERAND (chrec, 1),
5b78fc3e 2283 fold_conversions, cache, size_expr);
fca81712
SP
2284 if (op1 == chrec_dont_know)
2285 return chrec_dont_know;
2286
eac30183
ZD
2287 if (TREE_OPERAND (chrec, 0) != op0
2288 || TREE_OPERAND (chrec, 1) != op1)
16a2acea 2289 {
726a989a
RB
2290 op0 = chrec_convert (type, op0, NULL);
2291 op1 = chrec_convert (type, op1, NULL);
16a2acea
SP
2292 chrec = chrec_fold_minus (type, op0, op1);
2293 }
eac30183 2294 return chrec;
9baba81b
SP
2295
2296 case MULT_EXPR:
a213b219 2297 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2298 TREE_OPERAND (chrec, 0),
5b78fc3e 2299 fold_conversions, cache, size_expr);
fca81712
SP
2300 if (op0 == chrec_dont_know)
2301 return chrec_dont_know;
2302
a213b219 2303 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2304 TREE_OPERAND (chrec, 1),
5b78fc3e 2305 fold_conversions, cache, size_expr);
fca81712
SP
2306 if (op1 == chrec_dont_know)
2307 return chrec_dont_know;
2308
eac30183
ZD
2309 if (TREE_OPERAND (chrec, 0) != op0
2310 || TREE_OPERAND (chrec, 1) != op1)
16a2acea 2311 {
726a989a
RB
2312 op0 = chrec_convert (type, op0, NULL);
2313 op1 = chrec_convert (type, op1, NULL);
16a2acea
SP
2314 chrec = chrec_fold_multiply (type, op0, op1);
2315 }
eac30183 2316 return chrec;
9baba81b 2317
1043771b 2318 CASE_CONVERT:
a213b219 2319 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2320 TREE_OPERAND (chrec, 0),
5b78fc3e 2321 fold_conversions, cache, size_expr);
9baba81b
SP
2322 if (op0 == chrec_dont_know)
2323 return chrec_dont_know;
2324
5b78fc3e 2325 if (fold_conversions)
2282a0e6
ZD
2326 {
2327 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2328 if (tmp)
2329 return tmp;
2330 }
2331
eac30183
ZD
2332 if (op0 == TREE_OPERAND (chrec, 0))
2333 return chrec;
2334
d7f5de76
ZD
2335 /* If we used chrec_convert_aggressive, we can no longer assume that
2336 signed chrecs do not overflow, as chrec_convert does, so avoid
2337 calling it in that case. */
5b78fc3e 2338 if (fold_conversions)
d7f5de76
ZD
2339 return fold_convert (TREE_TYPE (chrec), op0);
2340
726a989a 2341 return chrec_convert (TREE_TYPE (chrec), op0, NULL);
9baba81b 2342
418df9d7
JJ
2343 case BIT_NOT_EXPR:
2344 /* Handle ~X as -1 - X. */
2345 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2346 TREE_OPERAND (chrec, 0),
2347 fold_conversions, cache, size_expr);
2348 if (op0 == chrec_dont_know)
2349 return chrec_dont_know;
2350
2351 if (TREE_OPERAND (chrec, 0) != op0)
2352 {
2353 op0 = chrec_convert (type, op0, NULL);
2354 chrec = chrec_fold_minus (type,
2355 fold_convert (type,
2356 integer_minus_one_node),
2357 op0);
2358 }
2359 return chrec;
2360
9baba81b
SP
2361 case SCEV_NOT_KNOWN:
2362 return chrec_dont_know;
2363
2364 case SCEV_KNOWN:
2365 return chrec_known;
2366
2367 default:
2368 break;
2369 }
2370
0dfb0dc6
SP
2371 if (VL_EXP_CLASS_P (chrec))
2372 return chrec_dont_know;
2373
9baba81b
SP
2374 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2375 {
2376 case 3:
a213b219 2377 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2378 TREE_OPERAND (chrec, 0),
5b78fc3e 2379 fold_conversions, cache, size_expr);
fca81712
SP
2380 if (op0 == chrec_dont_know)
2381 return chrec_dont_know;
2382
a213b219 2383 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2384 TREE_OPERAND (chrec, 1),
5b78fc3e 2385 fold_conversions, cache, size_expr);
fca81712
SP
2386 if (op1 == chrec_dont_know)
2387 return chrec_dont_know;
2388
a213b219 2389 op2 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2390 TREE_OPERAND (chrec, 2),
5b78fc3e 2391 fold_conversions, cache, size_expr);
fca81712 2392 if (op2 == chrec_dont_know)
9baba81b 2393 return chrec_dont_know;
eac30183
ZD
2394
2395 if (op0 == TREE_OPERAND (chrec, 0)
2396 && op1 == TREE_OPERAND (chrec, 1)
2397 && op2 == TREE_OPERAND (chrec, 2))
2398 return chrec;
2399
987b67bc
KH
2400 return fold_build3 (TREE_CODE (chrec),
2401 TREE_TYPE (chrec), op0, op1, op2);
9baba81b
SP
2402
2403 case 2:
a213b219 2404 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2405 TREE_OPERAND (chrec, 0),
5b78fc3e 2406 fold_conversions, cache, size_expr);
fca81712
SP
2407 if (op0 == chrec_dont_know)
2408 return chrec_dont_know;
2409
a213b219 2410 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2411 TREE_OPERAND (chrec, 1),
5b78fc3e 2412 fold_conversions, cache, size_expr);
fca81712 2413 if (op1 == chrec_dont_know)
9baba81b 2414 return chrec_dont_know;
eac30183
ZD
2415
2416 if (op0 == TREE_OPERAND (chrec, 0)
2417 && op1 == TREE_OPERAND (chrec, 1))
2418 return chrec;
987b67bc 2419 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
9baba81b
SP
2420
2421 case 1:
a213b219 2422 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
3f227a8c 2423 TREE_OPERAND (chrec, 0),
5b78fc3e 2424 fold_conversions, cache, size_expr);
9baba81b
SP
2425 if (op0 == chrec_dont_know)
2426 return chrec_dont_know;
eac30183
ZD
2427 if (op0 == TREE_OPERAND (chrec, 0))
2428 return chrec;
987b67bc 2429 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
9baba81b
SP
2430
2431 case 0:
2432 return chrec;
2433
2434 default:
2435 break;
2436 }
2437
2438 /* Too complicated to handle. */
2439 return chrec_dont_know;
2440}
e9eb809d
ZD
2441
2442/* Analyze all the parameters of the chrec that were left under a
a213b219
SP
2443 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2444 recursive instantiation of parameters: a parameter is a variable
2445 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2446 a function parameter. */
e9eb809d
ZD
2447
2448tree
a213b219 2449instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
3f227a8c 2450 tree chrec)
e9eb809d 2451{
9baba81b 2452 tree res;
eb0bc7af 2453 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
9baba81b
SP
2454
2455 if (dump_file && (dump_flags & TDF_DETAILS))
2456 {
3f227a8c 2457 fprintf (dump_file, "(instantiate_scev \n");
a213b219 2458 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
3f227a8c 2459 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
9baba81b
SP
2460 fprintf (dump_file, " (chrec = ");
2461 print_generic_expr (dump_file, chrec, 0);
2462 fprintf (dump_file, ")\n");
2463 }
2464
a213b219 2465 res = instantiate_scev_1 (instantiate_below, evolution_loop, chrec, false,
5b78fc3e 2466 cache, 0);
9baba81b
SP
2467
2468 if (dump_file && (dump_flags & TDF_DETAILS))
2469 {
2470 fprintf (dump_file, " (res = ");
2471 print_generic_expr (dump_file, res, 0);
2472 fprintf (dump_file, "))\n");
2473 }
eb0bc7af
ZD
2474
2475 htab_delete (cache);
9baba81b
SP
2476
2477 return res;
2478}
2479
2480/* Similar to instantiate_parameters, but does not introduce the
2282a0e6
ZD
2481 evolutions in outer loops for LOOP invariants in CHREC, and does not
2482 care about causing overflows, as long as they do not affect value
2483 of an expression. */
9baba81b 2484
3cb960c7 2485tree
9baba81b
SP
2486resolve_mixers (struct loop *loop, tree chrec)
2487{
eb0bc7af 2488 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
a213b219
SP
2489 tree ret = instantiate_scev_1 (block_before_loop (loop), loop, chrec, true,
2490 cache, 0);
eb0bc7af
ZD
2491 htab_delete (cache);
2492 return ret;
9baba81b
SP
2493}
2494
2495/* Entry point for the analysis of the number of iterations pass.
2496 This function tries to safely approximate the number of iterations
2497 the loop will run. When this property is not decidable at compile
2498 time, the result is chrec_dont_know. Otherwise the result is
2499 a scalar or a symbolic parameter.
2500
2501 Example of analysis: suppose that the loop has an exit condition:
2502
2503 "if (b > 49) goto end_loop;"
2504
2505 and that in a previous analysis we have determined that the
2506 variable 'b' has an evolution function:
2507
2508 "EF = {23, +, 5}_2".
2509
2510 When we evaluate the function at the point 5, i.e. the value of the
2511 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2512 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2513 the loop body has been executed 6 times. */
2514
2515tree
a14865db 2516number_of_latch_executions (struct loop *loop)
9baba81b
SP
2517{
2518 tree res, type;
2519 edge exit;
2520 struct tree_niter_desc niter_desc;
2521
2522 /* Determine whether the number_of_iterations_in_loop has already
2523 been computed. */
2524 res = loop->nb_iterations;
2525 if (res)
2526 return res;
2527 res = chrec_dont_know;
2528
2529 if (dump_file && (dump_flags & TDF_DETAILS))
2530 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2531
ac8f6c69 2532 exit = single_exit (loop);
82b85a85 2533 if (!exit)
9baba81b 2534 goto end;
9baba81b 2535
f9cc1a70 2536 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
9baba81b
SP
2537 goto end;
2538
2539 type = TREE_TYPE (niter_desc.niter);
2540 if (integer_nonzerop (niter_desc.may_be_zero))
5212068f 2541 res = build_int_cst (type, 0);
9baba81b
SP
2542 else if (integer_zerop (niter_desc.may_be_zero))
2543 res = niter_desc.niter;
2544 else
2545 res = chrec_dont_know;
2546
2547end:
2548 return set_nb_iterations_in_loop (loop, res);
2549}
2550
a14865db
ZD
2551/* Returns the number of executions of the exit condition of LOOP,
2552 i.e., the number by one higher than number_of_latch_executions.
fa10beec 2553 Note that unlike number_of_latch_executions, this number does
a14865db
ZD
2554 not necessarily fit in the unsigned variant of the type of
2555 the control variable -- if the number of iterations is a constant,
2556 we return chrec_dont_know if adding one to number_of_latch_executions
2557 overflows; however, in case the number of iterations is symbolic
2558 expression, the caller is responsible for dealing with this
2559 the possible overflow. */
2560
2561tree
2562number_of_exit_cond_executions (struct loop *loop)
2563{
2564 tree ret = number_of_latch_executions (loop);
2565 tree type = chrec_type (ret);
2566
2567 if (chrec_contains_undetermined (ret))
2568 return ret;
2569
2570 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2571 if (TREE_CODE (ret) == INTEGER_CST
2572 && TREE_OVERFLOW (ret))
2573 return chrec_dont_know;
2574
2575 return ret;
2576}
2577
9baba81b
SP
2578/* One of the drivers for testing the scalar evolutions analysis.
2579 This function computes the number of iterations for all the loops
2580 from the EXIT_CONDITIONS array. */
2581
2582static void
726a989a 2583number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
9baba81b
SP
2584{
2585 unsigned int i;
2586 unsigned nb_chrec_dont_know_loops = 0;
2587 unsigned nb_static_loops = 0;
726a989a 2588 gimple cond;
9baba81b 2589
726a989a 2590 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
9baba81b 2591 {
a14865db 2592 tree res = number_of_latch_executions (loop_containing_stmt (cond));
9baba81b
SP
2593 if (chrec_contains_undetermined (res))
2594 nb_chrec_dont_know_loops++;
2595 else
2596 nb_static_loops++;
2597 }
2598
2599 if (dump_file)
2600 {
2601 fprintf (dump_file, "\n(\n");
2602 fprintf (dump_file, "-----------------------------------------\n");
2603 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2604 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
42fd6772 2605 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
9baba81b
SP
2606 fprintf (dump_file, "-----------------------------------------\n");
2607 fprintf (dump_file, ")\n\n");
2608
0c8efed8 2609 print_loops (dump_file, 3);
9baba81b
SP
2610 }
2611}
2612
2613\f
2614
2615/* Counters for the stats. */
2616
2617struct chrec_stats
2618{
2619 unsigned nb_chrecs;
2620 unsigned nb_affine;
2621 unsigned nb_affine_multivar;
2622 unsigned nb_higher_poly;
2623 unsigned nb_chrec_dont_know;
2624 unsigned nb_undetermined;
2625};
2626
2627/* Reset the counters. */
2628
2629static inline void
2630reset_chrecs_counters (struct chrec_stats *stats)
2631{
2632 stats->nb_chrecs = 0;
2633 stats->nb_affine = 0;
2634 stats->nb_affine_multivar = 0;
2635 stats->nb_higher_poly = 0;
2636 stats->nb_chrec_dont_know = 0;
2637 stats->nb_undetermined = 0;
2638}
2639
2640/* Dump the contents of a CHREC_STATS structure. */
2641
2642static void
2643dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2644{
2645 fprintf (file, "\n(\n");
2646 fprintf (file, "-----------------------------------------\n");
2647 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2648 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2649 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2650 stats->nb_higher_poly);
2651 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2652 fprintf (file, "-----------------------------------------\n");
2653 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2654 fprintf (file, "%d\twith undetermined coefficients\n",
2655 stats->nb_undetermined);
2656 fprintf (file, "-----------------------------------------\n");
2657 fprintf (file, "%d\tchrecs in the scev database\n",
2658 (int) htab_elements (scalar_evolution_info));
2659 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2660 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2661 fprintf (file, "-----------------------------------------\n");
2662 fprintf (file, ")\n\n");
2663}
2664
2665/* Gather statistics about CHREC. */
2666
2667static void
2668gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2669{
2670 if (dump_file && (dump_flags & TDF_STATS))
2671 {
2672 fprintf (dump_file, "(classify_chrec ");
2673 print_generic_expr (dump_file, chrec, 0);
2674 fprintf (dump_file, "\n");
2675 }
2676
2677 stats->nb_chrecs++;
2678
2679 if (chrec == NULL_TREE)
2680 {
2681 stats->nb_undetermined++;
2682 return;
2683 }
2684
2685 switch (TREE_CODE (chrec))
2686 {
2687 case POLYNOMIAL_CHREC:
2688 if (evolution_function_is_affine_p (chrec))
2689 {
2690 if (dump_file && (dump_flags & TDF_STATS))
2691 fprintf (dump_file, " affine_univariate\n");
2692 stats->nb_affine++;
2693 }
a50411de 2694 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
9baba81b
SP
2695 {
2696 if (dump_file && (dump_flags & TDF_STATS))
2697 fprintf (dump_file, " affine_multivariate\n");
2698 stats->nb_affine_multivar++;
2699 }
2700 else
2701 {
2702 if (dump_file && (dump_flags & TDF_STATS))
2703 fprintf (dump_file, " higher_degree_polynomial\n");
2704 stats->nb_higher_poly++;
2705 }
2706
2707 break;
2708
2709 default:
2710 break;
2711 }
2712
2713 if (chrec_contains_undetermined (chrec))
2714 {
2715 if (dump_file && (dump_flags & TDF_STATS))
2716 fprintf (dump_file, " undetermined\n");
2717 stats->nb_undetermined++;
2718 }
2719
2720 if (dump_file && (dump_flags & TDF_STATS))
2721 fprintf (dump_file, ")\n");
2722}
2723
2724/* One of the drivers for testing the scalar evolutions analysis.
2725 This function analyzes the scalar evolution of all the scalars
2726 defined as loop phi nodes in one of the loops from the
2727 EXIT_CONDITIONS array.
2728
2729 TODO Optimization: A loop is in canonical form if it contains only
2730 a single scalar loop phi node. All the other scalars that have an
2731 evolution in the loop are rewritten in function of this single
2732 index. This allows the parallelization of the loop. */
2733
2734static void
726a989a 2735analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
9baba81b
SP
2736{
2737 unsigned int i;
2738 struct chrec_stats stats;
726a989a
RB
2739 gimple cond, phi;
2740 gimple_stmt_iterator psi;
9baba81b
SP
2741
2742 reset_chrecs_counters (&stats);
2743
726a989a 2744 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
9baba81b
SP
2745 {
2746 struct loop *loop;
2747 basic_block bb;
726a989a 2748 tree chrec;
9baba81b 2749
5310bac6 2750 loop = loop_containing_stmt (cond);
9baba81b
SP
2751 bb = loop->header;
2752
726a989a
RB
2753 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2754 {
2755 phi = gsi_stmt (psi);
2756 if (is_gimple_reg (PHI_RESULT (phi)))
2757 {
2758 chrec = instantiate_parameters
2759 (loop,
2760 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
9baba81b 2761
726a989a
RB
2762 if (dump_file && (dump_flags & TDF_STATS))
2763 gather_chrec_stats (chrec, &stats);
2764 }
2765 }
9baba81b
SP
2766 }
2767
2768 if (dump_file && (dump_flags & TDF_STATS))
2769 dump_chrecs_stats (dump_file, &stats);
2770}
2771
2772/* Callback for htab_traverse, gathers information on chrecs in the
2773 hashtable. */
2774
2775static int
2776gather_stats_on_scev_database_1 (void **slot, void *stats)
2777{
cceb1885 2778 struct scev_info_str *entry = (struct scev_info_str *) *slot;
9baba81b 2779
cceb1885 2780 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
9baba81b
SP
2781
2782 return 1;
2783}
2784
2785/* Classify the chrecs of the whole database. */
2786
2787void
2788gather_stats_on_scev_database (void)
2789{
2790 struct chrec_stats stats;
2791
2792 if (!dump_file)
2793 return;
2794
2795 reset_chrecs_counters (&stats);
2796
2797 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2798 &stats);
2799
2800 dump_chrecs_stats (dump_file, &stats);
2801}
2802
2803\f
2804
2805/* Initializer. */
2806
2807static void
2808initialize_scalar_evolutions_analyzer (void)
2809{
2810 /* The elements below are unique. */
2811 if (chrec_dont_know == NULL_TREE)
2812 {
2813 chrec_not_analyzed_yet = NULL_TREE;
2814 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2815 chrec_known = make_node (SCEV_KNOWN);
d5ab5675
ZD
2816 TREE_TYPE (chrec_dont_know) = void_type_node;
2817 TREE_TYPE (chrec_known) = void_type_node;
9baba81b
SP
2818 }
2819}
2820
2821/* Initialize the analysis of scalar evolutions for LOOPS. */
2822
2823void
d73be268 2824scev_initialize (void)
9baba81b 2825{
42fd6772
ZD
2826 loop_iterator li;
2827 struct loop *loop;
9baba81b 2828
9e2f83a5
ZD
2829 scalar_evolution_info = htab_create_alloc (100,
2830 hash_scev_info,
2831 eq_scev_info,
2832 del_scev_info,
2833 ggc_calloc,
2834 ggc_free);
9baba81b
SP
2835
2836 initialize_scalar_evolutions_analyzer ();
2837
42fd6772
ZD
2838 FOR_EACH_LOOP (li, loop, 0)
2839 {
2840 loop->nb_iterations = NULL_TREE;
2841 }
9baba81b
SP
2842}
2843
2844/* Cleans up the information cached by the scalar evolutions analysis. */
2845
2846void
2847scev_reset (void)
2848{
42fd6772 2849 loop_iterator li;
9baba81b
SP
2850 struct loop *loop;
2851
2852 if (!scalar_evolution_info || !current_loops)
2853 return;
2854
39f8a3b0 2855 htab_empty (scalar_evolution_info);
42fd6772 2856 FOR_EACH_LOOP (li, loop, 0)
9baba81b 2857 {
42fd6772 2858 loop->nb_iterations = NULL_TREE;
9baba81b 2859 }
e9eb809d
ZD
2860}
2861
f017bf5e
ZD
2862/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
2863 respect to WRTO_LOOP and returns its base and step in IV if possible
2864 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
2865 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
2866 invariant in LOOP. Otherwise we require it to be an integer constant.
2867
2868 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
2869 because it is computed in signed arithmetics). Consequently, adding an
2870 induction variable
2871
2872 for (i = IV->base; ; i += IV->step)
2873
2874 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
2875 false for the type of the induction variable, or you can prove that i does
2876 not wrap by some other argument. Otherwise, this might introduce undefined
2877 behavior, and
2878
2879 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
2880
2881 must be used instead. */
e9eb809d
ZD
2882
2883bool
f017bf5e
ZD
2884simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
2885 affine_iv *iv, bool allow_nonconstant_step)
e9eb809d 2886{
9baba81b 2887 tree type, ev;
a6f778b2 2888 bool folded_casts;
9baba81b 2889
a6f778b2
ZD
2890 iv->base = NULL_TREE;
2891 iv->step = NULL_TREE;
2892 iv->no_overflow = false;
9baba81b
SP
2893
2894 type = TREE_TYPE (op);
2895 if (TREE_CODE (type) != INTEGER_TYPE
2896 && TREE_CODE (type) != POINTER_TYPE)
2897 return false;
2898
f017bf5e 2899 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
a6f778b2 2900 &folded_casts);
f017bf5e
ZD
2901 if (chrec_contains_undetermined (ev)
2902 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
9baba81b
SP
2903 return false;
2904
f017bf5e 2905 if (tree_does_not_contain_chrecs (ev))
9baba81b 2906 {
a6f778b2 2907 iv->base = ev;
6e42ce54 2908 iv->step = build_int_cst (TREE_TYPE (ev), 0);
a6f778b2 2909 iv->no_overflow = true;
9baba81b
SP
2910 return true;
2911 }
2912
2913 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
f017bf5e 2914 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
9baba81b
SP
2915 return false;
2916
a6f778b2 2917 iv->step = CHREC_RIGHT (ev);
f017bf5e
ZD
2918 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
2919 || tree_contains_chrecs (iv->step, NULL))
9baba81b 2920 return false;
9be872b7 2921
a6f778b2 2922 iv->base = CHREC_LEFT (ev);
f017bf5e 2923 if (tree_contains_chrecs (iv->base, NULL))
9baba81b
SP
2924 return false;
2925
eeef0e45
ILT
2926 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2927
9baba81b
SP
2928 return true;
2929}
2930
2931/* Runs the analysis of scalar evolutions. */
2932
2933void
2934scev_analysis (void)
2935{
726a989a 2936 VEC(gimple,heap) *exit_conditions;
9baba81b 2937
726a989a 2938 exit_conditions = VEC_alloc (gimple, heap, 37);
d73be268 2939 select_loops_exit_conditions (&exit_conditions);
9baba81b
SP
2940
2941 if (dump_file && (dump_flags & TDF_STATS))
5310bac6 2942 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
9baba81b 2943
5310bac6 2944 number_of_iterations_for_all_loops (&exit_conditions);
726a989a 2945 VEC_free (gimple, heap, exit_conditions);
e9eb809d 2946}
9baba81b
SP
2947
2948/* Finalize the scalar evolution analysis. */
2949
2950void
2951scev_finalize (void)
2952{
d51157de
ZD
2953 if (!scalar_evolution_info)
2954 return;
9baba81b 2955 htab_delete (scalar_evolution_info);
c7b852c8 2956 scalar_evolution_info = NULL;
9baba81b
SP
2957}
2958
771f882e
ZD
2959/* Returns true if the expression EXPR is considered to be too expensive
2960 for scev_const_prop. */
2961
2962bool
2963expression_expensive_p (tree expr)
2964{
2965 enum tree_code code;
2966
2967 if (is_gimple_val (expr))
2968 return false;
2969
2970 code = TREE_CODE (expr);
2971 if (code == TRUNC_DIV_EXPR
2972 || code == CEIL_DIV_EXPR
2973 || code == FLOOR_DIV_EXPR
2974 || code == ROUND_DIV_EXPR
2975 || code == TRUNC_MOD_EXPR
2976 || code == CEIL_MOD_EXPR
2977 || code == FLOOR_MOD_EXPR
2978 || code == ROUND_MOD_EXPR
2979 || code == EXACT_DIV_EXPR)
2980 {
2981 /* Division by power of two is usually cheap, so we allow it.
2982 Forbid anything else. */
2983 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
2984 return true;
2985 }
2986
2987 switch (TREE_CODE_CLASS (code))
2988 {
2989 case tcc_binary:
2990 case tcc_comparison:
2991 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
2992 return true;
2993
2994 /* Fallthru. */
2995 case tcc_unary:
2996 return expression_expensive_p (TREE_OPERAND (expr, 0));
2997
2998 default:
2999 return true;
3000 }
3001}
3002
684aaf29 3003/* Replace ssa names for that scev can prove they are constant by the
3ac01fde
ZD
3004 appropriate constants. Also perform final value replacement in loops,
3005 in case the replacement expressions are cheap.
684aaf29
ZD
3006
3007 We only consider SSA names defined by phi nodes; rest is left to the
3008 ordinary constant propagation pass. */
3009
c2924966 3010unsigned int
684aaf29
ZD
3011scev_const_prop (void)
3012{
3013 basic_block bb;
726a989a
RB
3014 tree name, type, ev;
3015 gimple phi, ass;
3ac01fde 3016 struct loop *loop, *ex_loop;
684aaf29 3017 bitmap ssa_names_to_remove = NULL;
3ac01fde 3018 unsigned i;
42fd6772 3019 loop_iterator li;
726a989a 3020 gimple_stmt_iterator psi;
684aaf29 3021
d51157de 3022 if (number_of_loops () <= 1)
c2924966 3023 return 0;
684aaf29
ZD
3024
3025 FOR_EACH_BB (bb)
3026 {
3027 loop = bb->loop_father;
3028
726a989a 3029 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
684aaf29 3030 {
726a989a 3031 phi = gsi_stmt (psi);
684aaf29
ZD
3032 name = PHI_RESULT (phi);
3033
3034 if (!is_gimple_reg (name))
3035 continue;
3036
3037 type = TREE_TYPE (name);
3038
3039 if (!POINTER_TYPE_P (type)
3040 && !INTEGRAL_TYPE_P (type))
3041 continue;
3042
3043 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
3044 if (!is_gimple_min_invariant (ev)
3045 || !may_propagate_copy (name, ev))
3046 continue;
3047
3048 /* Replace the uses of the name. */
18aed06a
SP
3049 if (name != ev)
3050 replace_uses_by (name, ev);
684aaf29
ZD
3051
3052 if (!ssa_names_to_remove)
3053 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3054 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3055 }
3056 }
3057
9b3b55a1
DN
3058 /* Remove the ssa names that were replaced by constants. We do not
3059 remove them directly in the previous cycle, since this
3060 invalidates scev cache. */
684aaf29
ZD
3061 if (ssa_names_to_remove)
3062 {
3063 bitmap_iterator bi;
684aaf29
ZD
3064
3065 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3066 {
726a989a 3067 gimple_stmt_iterator psi;
684aaf29
ZD
3068 name = ssa_name (i);
3069 phi = SSA_NAME_DEF_STMT (name);
3070
726a989a
RB
3071 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3072 psi = gsi_for_stmt (phi);
3073 remove_phi_node (&psi, true);
684aaf29
ZD
3074 }
3075
3076 BITMAP_FREE (ssa_names_to_remove);
3077 scev_reset ();
3078 }
3ac01fde
ZD
3079
3080 /* Now the regular final value replacement. */
42fd6772 3081 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
3ac01fde
ZD
3082 {
3083 edge exit;
726a989a
RB
3084 tree def, rslt, niter;
3085 gimple_stmt_iterator bsi;
3ac01fde 3086
3ac01fde
ZD
3087 /* If we do not know exact number of iterations of the loop, we cannot
3088 replace the final value. */
ac8f6c69 3089 exit = single_exit (loop);
a6f778b2
ZD
3090 if (!exit)
3091 continue;
3092
a14865db 3093 niter = number_of_latch_executions (loop);
b3ce5b6e 3094 if (niter == chrec_dont_know)
3ac01fde 3095 continue;
925196ed
ZD
3096
3097 /* Ensure that it is possible to insert new statements somewhere. */
3098 if (!single_pred_p (exit->dest))
3099 split_loop_exit_edge (exit);
726a989a 3100 bsi = gsi_after_labels (exit->dest);
925196ed 3101
9ba025a2
ZD
3102 ex_loop = superloop_at_depth (loop,
3103 loop_depth (exit->dest->loop_father) + 1);
3ac01fde 3104
726a989a 3105 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3ac01fde 3106 {
726a989a 3107 phi = gsi_stmt (psi);
925196ed 3108 rslt = PHI_RESULT (phi);
3ac01fde 3109 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
925196ed 3110 if (!is_gimple_reg (def))
726a989a
RB
3111 {
3112 gsi_next (&psi);
3113 continue;
3114 }
3ac01fde
ZD
3115
3116 if (!POINTER_TYPE_P (TREE_TYPE (def))
3117 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
726a989a
RB
3118 {
3119 gsi_next (&psi);
3120 continue;
3121 }
3ac01fde 3122
a6f778b2 3123 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
925196ed 3124 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3ac01fde 3125 if (!tree_does_not_contain_chrecs (def)
e5db3515
ZD
3126 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3127 /* Moving the computation from the loop may prolong life range
3128 of some ssa names, which may cause problems if they appear
3129 on abnormal edges. */
771f882e
ZD
3130 || contains_abnormal_ssa_name_p (def)
3131 /* Do not emit expensive expressions. The rationale is that
3132 when someone writes a code like
3133
3134 while (n > 45) n -= 45;
3135
3136 he probably knows that n is not large, and does not want it
3137 to be turned into n %= 45. */
3138 || expression_expensive_p (def))
726a989a
RB
3139 {
3140 gsi_next (&psi);
3141 continue;
3142 }
3ac01fde 3143
9b3b55a1 3144 /* Eliminate the PHI node and replace it by a computation outside
925196ed
ZD
3145 the loop. */
3146 def = unshare_expr (def);
726a989a
RB
3147 remove_phi_node (&psi, false);
3148
3149 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
3150 true, GSI_SAME_STMT);
3151 ass = gimple_build_assign (rslt, def);
3152 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
3ac01fde
ZD
3153 }
3154 }
c2924966 3155 return 0;
684aaf29 3156}
9e2f83a5
ZD
3157
3158#include "gt-tree-scalar-evolution.h"
This page took 2.622506 seconds and 5 git commands to generate.