]> gcc.gnu.org Git - gcc.git/blame - gcc/tree-chrec.c
Daily bump.
[gcc.git] / gcc / tree-chrec.c
CommitLineData
c8a2ab6d 1/* Chains of recurrences.
455f14dd 2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
0ff4040e 3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
c8a2ab6d
SP
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
c8a2ab6d
SP
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
c8a2ab6d
SP
20
21/* This file implements operations on chains of recurrences. Chains
22 of recurrences are used for modeling evolution functions of scalar
23 variables.
24*/
25
26#include "config.h"
27#include "system.h"
28#include "coretypes.h"
29#include "tm.h"
c8a2ab6d
SP
30#include "ggc.h"
31#include "tree.h"
7e0923cd 32#include "real.h"
c8a2ab6d 33#include "diagnostic.h"
1e8552eb
SP
34#include "cfgloop.h"
35#include "tree-flow.h"
c8a2ab6d
SP
36#include "tree-chrec.h"
37#include "tree-pass.h"
2412d35c 38#include "params.h"
18aed06a 39#include "tree-scalar-evolution.h"
c8a2ab6d 40
c8a2ab6d
SP
41\f
42
43/* Extended folder for chrecs. */
44
45/* Determines whether CST is not a constant evolution. */
46
47static inline bool
ed7a4b4b 48is_not_constant_evolution (const_tree cst)
c8a2ab6d
SP
49{
50 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
51}
52
53/* Fold CODE for a polynomial function and a constant. */
54
55static inline tree
56chrec_fold_poly_cst (enum tree_code code,
57 tree type,
58 tree poly,
59 tree cst)
60{
1e128c5f
GB
61 gcc_assert (poly);
62 gcc_assert (cst);
63 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
64 gcc_assert (!is_not_constant_evolution (cst));
e2157b49
SP
65 gcc_assert (type == chrec_type (poly));
66
c8a2ab6d
SP
67 switch (code)
68 {
69 case PLUS_EXPR:
70 return build_polynomial_chrec
71 (CHREC_VARIABLE (poly),
72 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
73 CHREC_RIGHT (poly));
74
75 case MINUS_EXPR:
76 return build_polynomial_chrec
77 (CHREC_VARIABLE (poly),
78 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
79 CHREC_RIGHT (poly));
80
81 case MULT_EXPR:
82 return build_polynomial_chrec
83 (CHREC_VARIABLE (poly),
84 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
85 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
86
87 default:
88 return chrec_dont_know;
89 }
90}
91
92/* Fold the addition of two polynomial functions. */
93
94static inline tree
95chrec_fold_plus_poly_poly (enum tree_code code,
96 tree type,
97 tree poly0,
98 tree poly1)
99{
100 tree left, right;
677cc14d
ZD
101 struct loop *loop0 = get_chrec_loop (poly0);
102 struct loop *loop1 = get_chrec_loop (poly1);
5be014d5 103 tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
1e128c5f
GB
104
105 gcc_assert (poly0);
106 gcc_assert (poly1);
107 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
108 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
5be014d5
AP
109 if (POINTER_TYPE_P (chrec_type (poly0)))
110 gcc_assert (chrec_type (poly1) == sizetype);
111 else
112 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
e2157b49 113 gcc_assert (type == chrec_type (poly0));
c8a2ab6d
SP
114
115 /*
116 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
117 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
118 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
677cc14d 119 if (flow_loop_nested_p (loop0, loop1))
c8a2ab6d 120 {
5be014d5 121 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
c8a2ab6d
SP
122 return build_polynomial_chrec
123 (CHREC_VARIABLE (poly1),
124 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
125 CHREC_RIGHT (poly1));
126 else
127 return build_polynomial_chrec
128 (CHREC_VARIABLE (poly1),
129 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
130 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
7e0923cd
SP
131 SCALAR_FLOAT_TYPE_P (type)
132 ? build_real (type, dconstm1)
133 : build_int_cst_type (type, -1)));
c8a2ab6d
SP
134 }
135
677cc14d 136 if (flow_loop_nested_p (loop1, loop0))
c8a2ab6d 137 {
5be014d5 138 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
c8a2ab6d
SP
139 return build_polynomial_chrec
140 (CHREC_VARIABLE (poly0),
141 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
142 CHREC_RIGHT (poly0));
143 else
144 return build_polynomial_chrec
145 (CHREC_VARIABLE (poly0),
146 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
147 CHREC_RIGHT (poly0));
148 }
677cc14d
ZD
149
150 /* This function should never be called for chrecs of loops that
151 do not belong to the same loop nest. */
152 gcc_assert (loop0 == loop1);
153
5be014d5 154 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
c8a2ab6d
SP
155 {
156 left = chrec_fold_plus
157 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
158 right = chrec_fold_plus
5be014d5 159 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
c8a2ab6d
SP
160 }
161 else
162 {
163 left = chrec_fold_minus
164 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
165 right = chrec_fold_minus
166 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
167 }
168
169 if (chrec_zerop (right))
170 return left;
171 else
172 return build_polynomial_chrec
173 (CHREC_VARIABLE (poly0), left, right);
174}
175
176\f
177
178/* Fold the multiplication of two polynomial functions. */
179
180static inline tree
181chrec_fold_multiply_poly_poly (tree type,
182 tree poly0,
183 tree poly1)
184{
2c5f025d
ZD
185 tree t0, t1, t2;
186 int var;
677cc14d
ZD
187 struct loop *loop0 = get_chrec_loop (poly0);
188 struct loop *loop1 = get_chrec_loop (poly1);
2c5f025d 189
1e128c5f
GB
190 gcc_assert (poly0);
191 gcc_assert (poly1);
192 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
193 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
e2157b49
SP
194 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
195 gcc_assert (type == chrec_type (poly0));
c8a2ab6d
SP
196
197 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
198 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
199 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
677cc14d 200 if (flow_loop_nested_p (loop0, loop1))
c8a2ab6d
SP
201 /* poly0 is a constant wrt. poly1. */
202 return build_polynomial_chrec
203 (CHREC_VARIABLE (poly1),
204 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
205 CHREC_RIGHT (poly1));
206
677cc14d 207 if (flow_loop_nested_p (loop1, loop0))
c8a2ab6d
SP
208 /* poly1 is a constant wrt. poly0. */
209 return build_polynomial_chrec
210 (CHREC_VARIABLE (poly0),
211 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
212 CHREC_RIGHT (poly0));
677cc14d
ZD
213
214 gcc_assert (loop0 == loop1);
215
c8a2ab6d
SP
216 /* poly0 and poly1 are two polynomials in the same variable,
217 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
c8a2ab6d 218
2c5f025d
ZD
219 /* "a*c". */
220 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
221
222 /* "a*d + b*c + b*d". */
223 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
224 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
225 CHREC_RIGHT (poly0),
226 CHREC_LEFT (poly1)));
227 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
228 CHREC_RIGHT (poly0),
229 CHREC_RIGHT (poly1)));
230 /* "2*b*d". */
231 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
7e0923cd
SP
232 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
233 ? build_real (type, dconst2)
ff5e9a94 234 : build_int_cst (type, 2), t2);
2c5f025d
ZD
235
236 var = CHREC_VARIABLE (poly0);
237 return build_polynomial_chrec (var, t0,
238 build_polynomial_chrec (var, t1, t2));
c8a2ab6d
SP
239}
240
241/* When the operands are automatically_generated_chrec_p, the fold has
242 to respect the semantics of the operands. */
243
244static inline tree
245chrec_fold_automatically_generated_operands (tree op0,
246 tree op1)
247{
248 if (op0 == chrec_dont_know
249 || op1 == chrec_dont_know)
250 return chrec_dont_know;
251
252 if (op0 == chrec_known
253 || op1 == chrec_known)
254 return chrec_known;
255
256 if (op0 == chrec_not_analyzed_yet
257 || op1 == chrec_not_analyzed_yet)
258 return chrec_not_analyzed_yet;
259
8c27b7d4 260 /* The default case produces a safe result. */
c8a2ab6d
SP
261 return chrec_dont_know;
262}
263
264/* Fold the addition of two chrecs. */
265
266static tree
e2157b49
SP
267chrec_fold_plus_1 (enum tree_code code, tree type,
268 tree op0, tree op1)
c8a2ab6d 269{
5be014d5
AP
270 tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
271
c8a2ab6d
SP
272 if (automatically_generated_chrec_p (op0)
273 || automatically_generated_chrec_p (op1))
274 return chrec_fold_automatically_generated_operands (op0, op1);
275
276 switch (TREE_CODE (op0))
277 {
278 case POLYNOMIAL_CHREC:
279 switch (TREE_CODE (op1))
280 {
281 case POLYNOMIAL_CHREC:
282 return chrec_fold_plus_poly_poly (code, type, op0, op1);
283
284 default:
5be014d5 285 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
c8a2ab6d
SP
286 return build_polynomial_chrec
287 (CHREC_VARIABLE (op0),
288 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
289 CHREC_RIGHT (op0));
290 else
291 return build_polynomial_chrec
292 (CHREC_VARIABLE (op0),
293 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
294 CHREC_RIGHT (op0));
295 }
296
297 default:
298 switch (TREE_CODE (op1))
299 {
300 case POLYNOMIAL_CHREC:
5be014d5 301 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
c8a2ab6d
SP
302 return build_polynomial_chrec
303 (CHREC_VARIABLE (op1),
304 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
305 CHREC_RIGHT (op1));
306 else
307 return build_polynomial_chrec
308 (CHREC_VARIABLE (op1),
309 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
7e0923cd
SP
310 chrec_fold_multiply (type, CHREC_RIGHT (op1),
311 SCALAR_FLOAT_TYPE_P (type)
312 ? build_real (type, dconstm1)
313 : build_int_cst_type (type, -1)));
c8a2ab6d
SP
314
315 default:
2412d35c
SP
316 {
317 int size = 0;
318 if ((tree_contains_chrecs (op0, &size)
319 || tree_contains_chrecs (op1, &size))
320 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
321 return build2 (code, type, op0, op1);
322 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1c1205fb
RG
323 return fold_build2 (code, type,
324 fold_convert (type, op0),
5be014d5 325 fold_convert (op1_type, op1));
2412d35c
SP
326 else
327 return chrec_dont_know;
328 }
c8a2ab6d
SP
329 }
330 }
331}
332
333/* Fold the addition of two chrecs. */
334
335tree
336chrec_fold_plus (tree type,
337 tree op0,
338 tree op1)
339{
5be014d5 340 enum tree_code code;
e2157b49
SP
341 if (automatically_generated_chrec_p (op0)
342 || automatically_generated_chrec_p (op1))
343 return chrec_fold_automatically_generated_operands (op0, op1);
344
c8a2ab6d 345 if (integer_zerop (op0))
726a989a 346 return chrec_convert (type, op1, NULL);
c8a2ab6d 347 if (integer_zerop (op1))
726a989a 348 return chrec_convert (type, op0, NULL);
5be014d5
AP
349
350 if (POINTER_TYPE_P (type))
351 code = POINTER_PLUS_EXPR;
352 else
353 code = PLUS_EXPR;
c8a2ab6d 354
5be014d5 355 return chrec_fold_plus_1 (code, type, op0, op1);
c8a2ab6d
SP
356}
357
358/* Fold the subtraction of two chrecs. */
359
360tree
361chrec_fold_minus (tree type,
362 tree op0,
363 tree op1)
364{
e2157b49
SP
365 if (automatically_generated_chrec_p (op0)
366 || automatically_generated_chrec_p (op1))
367 return chrec_fold_automatically_generated_operands (op0, op1);
368
c8a2ab6d
SP
369 if (integer_zerop (op1))
370 return op0;
371
372 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
373}
374
375/* Fold the multiplication of two chrecs. */
376
377tree
378chrec_fold_multiply (tree type,
379 tree op0,
380 tree op1)
381{
382 if (automatically_generated_chrec_p (op0)
383 || automatically_generated_chrec_p (op1))
384 return chrec_fold_automatically_generated_operands (op0, op1);
385
386 switch (TREE_CODE (op0))
387 {
388 case POLYNOMIAL_CHREC:
389 switch (TREE_CODE (op1))
390 {
391 case POLYNOMIAL_CHREC:
392 return chrec_fold_multiply_poly_poly (type, op0, op1);
393
394 default:
395 if (integer_onep (op1))
396 return op0;
397 if (integer_zerop (op1))
ff5e9a94 398 return build_int_cst (type, 0);
c8a2ab6d
SP
399
400 return build_polynomial_chrec
401 (CHREC_VARIABLE (op0),
402 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
403 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
404 }
405
406 default:
407 if (integer_onep (op0))
408 return op1;
409
410 if (integer_zerop (op0))
ff5e9a94 411 return build_int_cst (type, 0);
c8a2ab6d
SP
412
413 switch (TREE_CODE (op1))
414 {
415 case POLYNOMIAL_CHREC:
416 return build_polynomial_chrec
417 (CHREC_VARIABLE (op1),
418 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
419 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
420
421 default:
422 if (integer_onep (op1))
423 return op0;
424 if (integer_zerop (op1))
ff5e9a94 425 return build_int_cst (type, 0);
2412d35c 426 return fold_build2 (MULT_EXPR, type, op0, op1);
c8a2ab6d
SP
427 }
428 }
429}
430
431\f
432
433/* Operations. */
434
1a9dddad
RS
435/* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
436 calculation overflows, otherwise return C(n,k) with type TYPE. */
437
c8a2ab6d 438static tree
1a9dddad 439tree_fold_binomial (tree type, tree n, unsigned int k)
c8a2ab6d 440{
1a9dddad
RS
441 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
442 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
443 unsigned int i;
444 tree res;
445
446 /* Handle the most frequent cases. */
447 if (k == 0)
448 return build_int_cst (type, 1);
449 if (k == 1)
450 return fold_convert (type, n);
451
452 /* Check that k <= n. */
453 if (TREE_INT_CST_HIGH (n) == 0
454 && TREE_INT_CST_LOW (n) < k)
455 return NULL_TREE;
456
457 /* Numerator = n. */
458 lnum = TREE_INT_CST_LOW (n);
459 hnum = TREE_INT_CST_HIGH (n);
460
461 /* Denominator = 2. */
462 ldenom = 2;
463 hdenom = 0;
464
465 /* Index = Numerator-1. */
466 if (lnum == 0)
467 {
468 hidx = hnum - 1;
469 lidx = ~ (unsigned HOST_WIDE_INT) 0;
470 }
c8a2ab6d 471 else
1a9dddad
RS
472 {
473 hidx = hnum;
474 lidx = lnum - 1;
475 }
c8a2ab6d 476
1a9dddad
RS
477 /* Numerator = Numerator*Index = n*(n-1). */
478 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
479 return NULL_TREE;
c8a2ab6d 480
1a9dddad
RS
481 for (i = 3; i <= k; i++)
482 {
483 /* Index--. */
484 if (lidx == 0)
485 {
486 hidx--;
487 lidx = ~ (unsigned HOST_WIDE_INT) 0;
488 }
489 else
490 lidx--;
491
492 /* Numerator *= Index. */
493 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
494 return NULL_TREE;
495
496 /* Denominator *= i. */
497 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
498 }
499
500 /* Result = Numerator / Denominator. */
501 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
502 &lres, &hres, &ldum, &hdum);
503
504 res = build_int_cst_wide (type, lres, hres);
505 return int_fits_type_p (res, type) ? res : NULL_TREE;
c8a2ab6d
SP
506}
507
508/* Helper function. Use the Newton's interpolating formula for
509 evaluating the value of the evolution function. */
510
511static tree
1a9dddad 512chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
c8a2ab6d 513{
1a9dddad
RS
514 tree arg0, arg1, binomial_n_k;
515 tree type = TREE_TYPE (chrec);
677cc14d 516 struct loop *var_loop = get_loop (var);
1a9dddad
RS
517
518 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
677cc14d 519 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
1a9dddad
RS
520 chrec = CHREC_LEFT (chrec);
521
522 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
523 && CHREC_VARIABLE (chrec) == var)
c8a2ab6d 524 {
f6ee9fae
JJ
525 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
526 if (arg1 == chrec_dont_know)
1a9dddad
RS
527 return chrec_dont_know;
528 binomial_n_k = tree_fold_binomial (type, n, k);
529 if (!binomial_n_k)
530 return chrec_dont_know;
f6ee9fae 531 arg0 = fold_build2 (MULT_EXPR, type,
2412d35c 532 CHREC_LEFT (chrec), binomial_n_k);
1a9dddad 533 return chrec_fold_plus (type, arg0, arg1);
c8a2ab6d 534 }
1a9dddad
RS
535
536 binomial_n_k = tree_fold_binomial (type, n, k);
537 if (!binomial_n_k)
538 return chrec_dont_know;
539
2412d35c 540 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
c8a2ab6d
SP
541}
542
543/* Evaluates "CHREC (X)" when the varying variable is VAR.
544 Example: Given the following parameters,
545
546 var = 1
547 chrec = {3, +, 4}_1
548 x = 10
549
550 The result is given by the Newton's interpolating formula:
551 3 * \binom{10}{0} + 4 * \binom{10}{1}.
552*/
553
554tree
555chrec_apply (unsigned var,
556 tree chrec,
557 tree x)
558{
559 tree type = chrec_type (chrec);
560 tree res = chrec_dont_know;
561
562 if (automatically_generated_chrec_p (chrec)
563 || automatically_generated_chrec_p (x)
564
565 /* When the symbols are defined in an outer loop, it is possible
566 to symbolically compute the apply, since the symbols are
567 constants with respect to the varying loop. */
a6f778b2 568 || chrec_contains_symbols_defined_in_loop (chrec, var))
c8a2ab6d 569 return chrec_dont_know;
a6f778b2 570
c8a2ab6d
SP
571 if (dump_file && (dump_flags & TDF_DETAILS))
572 fprintf (dump_file, "(chrec_apply \n");
573
3c0c8f9d
SP
574 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
575 x = build_real_from_int_cst (type, x);
576
c8a2ab6d
SP
577 if (evolution_function_is_affine_p (chrec))
578 {
579 /* "{a, +, b} (x)" -> "a + b*x". */
726a989a 580 x = chrec_convert_rhs (type, x, NULL);
5be014d5 581 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
729edaa1 582 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
c8a2ab6d
SP
583 }
584
585 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
586 res = chrec;
587
588 else if (TREE_CODE (x) == INTEGER_CST
589 && tree_int_cst_sgn (x) == 1)
590 /* testsuite/.../ssa-chrec-38.c. */
1a9dddad 591 res = chrec_evaluate (var, chrec, x, 0);
c8a2ab6d
SP
592 else
593 res = chrec_dont_know;
594
595 if (dump_file && (dump_flags & TDF_DETAILS))
596 {
597 fprintf (dump_file, " (varying_loop = %d\n", var);
598 fprintf (dump_file, ")\n (chrec = ");
599 print_generic_expr (dump_file, chrec, 0);
600 fprintf (dump_file, ")\n (x = ");
601 print_generic_expr (dump_file, x, 0);
602 fprintf (dump_file, ")\n (res = ");
603 print_generic_expr (dump_file, res, 0);
604 fprintf (dump_file, "))\n");
605 }
606
607 return res;
608}
609
610/* Replaces the initial condition in CHREC with INIT_COND. */
611
612tree
613chrec_replace_initial_condition (tree chrec,
614 tree init_cond)
615{
616 if (automatically_generated_chrec_p (chrec))
617 return chrec;
e2157b49
SP
618
619 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
620
c8a2ab6d
SP
621 switch (TREE_CODE (chrec))
622 {
623 case POLYNOMIAL_CHREC:
624 return build_polynomial_chrec
625 (CHREC_VARIABLE (chrec),
626 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
627 CHREC_RIGHT (chrec));
628
629 default:
630 return init_cond;
631 }
632}
633
634/* Returns the initial condition of a given CHREC. */
635
636tree
637initial_condition (tree chrec)
638{
639 if (automatically_generated_chrec_p (chrec))
640 return chrec;
641
642 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
643 return initial_condition (CHREC_LEFT (chrec));
644 else
645 return chrec;
646}
647
648/* Returns a univariate function that represents the evolution in
649 LOOP_NUM. Mask the evolution of any other loop. */
650
651tree
652hide_evolution_in_other_loops_than_loop (tree chrec,
653 unsigned loop_num)
654{
677cc14d 655 struct loop *loop = get_loop (loop_num), *chloop;
c8a2ab6d
SP
656 if (automatically_generated_chrec_p (chrec))
657 return chrec;
658
659 switch (TREE_CODE (chrec))
660 {
661 case POLYNOMIAL_CHREC:
677cc14d
ZD
662 chloop = get_chrec_loop (chrec);
663
664 if (chloop == loop)
c8a2ab6d
SP
665 return build_polynomial_chrec
666 (loop_num,
667 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
668 loop_num),
669 CHREC_RIGHT (chrec));
670
677cc14d 671 else if (flow_loop_nested_p (chloop, loop))
c8a2ab6d
SP
672 /* There is no evolution in this loop. */
673 return initial_condition (chrec);
674
675 else
677cc14d
ZD
676 {
677 gcc_assert (flow_loop_nested_p (loop, chloop));
678 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
679 loop_num);
680 }
c8a2ab6d
SP
681
682 default:
683 return chrec;
684 }
685}
686
6775f1f3
IR
687/* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
688 true, otherwise returns the initial condition in LOOP_NUM. */
c8a2ab6d 689
6775f1f3
IR
690static tree
691chrec_component_in_loop_num (tree chrec,
692 unsigned loop_num,
693 bool right)
c8a2ab6d 694{
6775f1f3 695 tree component;
677cc14d 696 struct loop *loop = get_loop (loop_num), *chloop;
6775f1f3 697
c8a2ab6d
SP
698 if (automatically_generated_chrec_p (chrec))
699 return chrec;
700
701 switch (TREE_CODE (chrec))
702 {
703 case POLYNOMIAL_CHREC:
677cc14d
ZD
704 chloop = get_chrec_loop (chrec);
705
706 if (chloop == loop)
c8a2ab6d 707 {
6775f1f3
IR
708 if (right)
709 component = CHREC_RIGHT (chrec);
710 else
711 component = CHREC_LEFT (chrec);
712
c8a2ab6d
SP
713 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
714 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
6775f1f3 715 return component;
c8a2ab6d
SP
716
717 else
718 return build_polynomial_chrec
719 (loop_num,
6775f1f3
IR
720 chrec_component_in_loop_num (CHREC_LEFT (chrec),
721 loop_num,
722 right),
723 component);
c8a2ab6d
SP
724 }
725
677cc14d 726 else if (flow_loop_nested_p (chloop, loop))
c8a2ab6d
SP
727 /* There is no evolution part in this loop. */
728 return NULL_TREE;
729
730 else
677cc14d
ZD
731 {
732 gcc_assert (flow_loop_nested_p (loop, chloop));
733 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
734 loop_num,
735 right);
736 }
c8a2ab6d 737
6775f1f3
IR
738 default:
739 if (right)
740 return NULL_TREE;
741 else
742 return chrec;
c8a2ab6d
SP
743 }
744}
745
6775f1f3 746/* Returns the evolution part in LOOP_NUM. Example: the call
86df10e3 747 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
6775f1f3
IR
748 {1, +, 2}_1 */
749
750tree
751evolution_part_in_loop_num (tree chrec,
752 unsigned loop_num)
753{
754 return chrec_component_in_loop_num (chrec, loop_num, true);
755}
756
757/* Returns the initial condition in LOOP_NUM. Example: the call
86df10e3 758 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
6775f1f3
IR
759 {0, +, 1}_1 */
760
761tree
762initial_condition_in_loop_num (tree chrec,
763 unsigned loop_num)
764{
765 return chrec_component_in_loop_num (chrec, loop_num, false);
766}
767
c8a2ab6d
SP
768/* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
769 This function is essentially used for setting the evolution to
770 chrec_dont_know, for example after having determined that it is
771 impossible to say how many times a loop will execute. */
772
773tree
774reset_evolution_in_loop (unsigned loop_num,
775 tree chrec,
776 tree new_evol)
777{
677cc14d
ZD
778 struct loop *loop = get_loop (loop_num);
779
5be014d5
AP
780 if (POINTER_TYPE_P (chrec_type (chrec)))
781 gcc_assert (sizetype == chrec_type (new_evol));
782 else
783 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
e2157b49 784
c8a2ab6d 785 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
677cc14d 786 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
6be74c4f
JJ
787 {
788 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
789 new_evol);
790 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
791 new_evol);
792 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
793 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
794 left, right);
795 }
796
c8a2ab6d
SP
797 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
798 && CHREC_VARIABLE (chrec) == loop_num)
799 chrec = CHREC_LEFT (chrec);
800
801 return build_polynomial_chrec (loop_num, chrec, new_evol);
802}
803
804/* Merges two evolution functions that were found by following two
805 alternate paths of a conditional expression. */
806
807tree
808chrec_merge (tree chrec1,
809 tree chrec2)
810{
811 if (chrec1 == chrec_dont_know
812 || chrec2 == chrec_dont_know)
813 return chrec_dont_know;
814
815 if (chrec1 == chrec_known
816 || chrec2 == chrec_known)
817 return chrec_known;
818
819 if (chrec1 == chrec_not_analyzed_yet)
820 return chrec2;
821 if (chrec2 == chrec_not_analyzed_yet)
822 return chrec1;
823
ace23abf 824 if (eq_evolutions_p (chrec1, chrec2))
c8a2ab6d
SP
825 return chrec1;
826
827 return chrec_dont_know;
828}
829
830\f
831
832/* Observers. */
833
834/* Helper function for is_multivariate_chrec. */
835
836static bool
ed7a4b4b 837is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
c8a2ab6d
SP
838{
839 if (chrec == NULL_TREE)
840 return false;
841
842 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
843 {
844 if (CHREC_VARIABLE (chrec) != rec_var)
845 return true;
846 else
847 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
848 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
849 }
850 else
851 return false;
852}
853
854/* Determine whether the given chrec is multivariate or not. */
855
856bool
ed7a4b4b 857is_multivariate_chrec (const_tree chrec)
c8a2ab6d
SP
858{
859 if (chrec == NULL_TREE)
860 return false;
861
862 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
863 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
864 CHREC_VARIABLE (chrec))
865 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
866 CHREC_VARIABLE (chrec)));
867 else
868 return false;
869}
870
871/* Determines whether the chrec contains symbolic names or not. */
872
873bool
ed7a4b4b 874chrec_contains_symbols (const_tree chrec)
c8a2ab6d 875{
5039610b
SL
876 int i, n;
877
c8a2ab6d
SP
878 if (chrec == NULL_TREE)
879 return false;
880
881 if (TREE_CODE (chrec) == SSA_NAME
882 || TREE_CODE (chrec) == VAR_DECL
883 || TREE_CODE (chrec) == PARM_DECL
884 || TREE_CODE (chrec) == FUNCTION_DECL
885 || TREE_CODE (chrec) == LABEL_DECL
886 || TREE_CODE (chrec) == RESULT_DECL
887 || TREE_CODE (chrec) == FIELD_DECL)
888 return true;
5039610b
SL
889
890 n = TREE_OPERAND_LENGTH (chrec);
891 for (i = 0; i < n; i++)
892 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
893 return true;
894 return false;
c8a2ab6d
SP
895}
896
897/* Determines whether the chrec contains undetermined coefficients. */
898
899bool
ed7a4b4b 900chrec_contains_undetermined (const_tree chrec)
c8a2ab6d 901{
5039610b
SL
902 int i, n;
903
e71d7f88 904 if (chrec == chrec_dont_know)
c8a2ab6d 905 return true;
5039610b 906
e71d7f88
ZD
907 if (chrec == NULL_TREE)
908 return false;
909
5039610b
SL
910 n = TREE_OPERAND_LENGTH (chrec);
911 for (i = 0; i < n; i++)
912 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
913 return true;
914 return false;
c8a2ab6d
SP
915}
916
2412d35c
SP
917/* Determines whether the tree EXPR contains chrecs, and increment
918 SIZE if it is not a NULL pointer by an estimation of the depth of
919 the tree. */
c8a2ab6d
SP
920
921bool
ed7a4b4b 922tree_contains_chrecs (const_tree expr, int *size)
c8a2ab6d 923{
5039610b
SL
924 int i, n;
925
c8a2ab6d
SP
926 if (expr == NULL_TREE)
927 return false;
2412d35c
SP
928
929 if (size)
930 (*size)++;
c8a2ab6d
SP
931
932 if (tree_is_chrec (expr))
933 return true;
2412d35c 934
5039610b
SL
935 n = TREE_OPERAND_LENGTH (expr);
936 for (i = 0; i < n; i++)
937 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
938 return true;
939 return false;
c8a2ab6d
SP
940}
941
1e8552eb
SP
942/* Recursive helper function. */
943
944static bool
945evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
946{
947 if (evolution_function_is_constant_p (chrec))
948 return true;
949
6a732743
SP
950 if (TREE_CODE (chrec) == SSA_NAME
951 && (loopnum == 0
952 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
1e8552eb
SP
953 return true;
954
7ce7896c
SP
955 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
956 {
957 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
958 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
959 loopnum)
960 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
961 loopnum))
962 return false;
963 return true;
964 }
1e8552eb 965
5039610b 966 switch (TREE_OPERAND_LENGTH (chrec))
1e8552eb
SP
967 {
968 case 2:
969 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
970 loopnum))
971 return false;
972
973 case 1:
974 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
975 loopnum))
976 return false;
977 return true;
978
979 default:
980 return false;
981 }
982
983 return false;
984}
985
986/* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
987
988bool
989evolution_function_is_invariant_p (tree chrec, int loopnum)
990{
d51157de 991 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1e8552eb
SP
992}
993
c8a2ab6d
SP
994/* Determine whether the given tree is an affine multivariate
995 evolution. */
996
997bool
ed7a4b4b 998evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
c8a2ab6d
SP
999{
1000 if (chrec == NULL_TREE)
1001 return false;
1002
1003 switch (TREE_CODE (chrec))
1004 {
1005 case POLYNOMIAL_CHREC:
a50411de 1006 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
c8a2ab6d 1007 {
a50411de 1008 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
c8a2ab6d
SP
1009 return true;
1010 else
1011 {
1012 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1013 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1014 != CHREC_VARIABLE (chrec)
1015 && evolution_function_is_affine_multivariate_p
a50411de 1016 (CHREC_RIGHT (chrec), loopnum))
c8a2ab6d
SP
1017 return true;
1018 else
1019 return false;
1020 }
1021 }
1022 else
1023 {
a50411de 1024 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
c8a2ab6d
SP
1025 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1026 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1027 && evolution_function_is_affine_multivariate_p
a50411de 1028 (CHREC_LEFT (chrec), loopnum))
c8a2ab6d
SP
1029 return true;
1030 else
1031 return false;
1032 }
1033
1034 default:
1035 return false;
1036 }
1037}
1038
1039/* Determine whether the given tree is a function in zero or one
1040 variables. */
1041
1042bool
ed7a4b4b 1043evolution_function_is_univariate_p (const_tree chrec)
c8a2ab6d
SP
1044{
1045 if (chrec == NULL_TREE)
1046 return true;
1047
1048 switch (TREE_CODE (chrec))
1049 {
1050 case POLYNOMIAL_CHREC:
1051 switch (TREE_CODE (CHREC_LEFT (chrec)))
1052 {
1053 case POLYNOMIAL_CHREC:
1054 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1055 return false;
1056 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1057 return false;
1058 break;
1059
1060 default:
1061 break;
1062 }
1063
1064 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1065 {
1066 case POLYNOMIAL_CHREC:
1067 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1068 return false;
1069 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1070 return false;
1071 break;
1072
1073 default:
1074 break;
1075 }
1076
1077 default:
1078 return true;
1079 }
1080}
1081
86df10e3
SP
1082/* Returns the number of variables of CHREC. Example: the call
1083 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1084
1085unsigned
1086nb_vars_in_chrec (tree chrec)
1087{
1088 if (chrec == NULL_TREE)
1089 return 0;
1090
1091 switch (TREE_CODE (chrec))
1092 {
1093 case POLYNOMIAL_CHREC:
1094 return 1 + nb_vars_in_chrec
1095 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1096
1097 default:
1098 return 0;
1099 }
1100}
1101
64a7ab5f
ZD
1102/* Returns true if TYPE is a type in that we cannot directly perform
1103 arithmetics, even though it is a scalar type. */
1104
1105static bool
ed7a4b4b 1106avoid_arithmetics_in_type_p (const_tree type)
64a7ab5f
ZD
1107{
1108 /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1109 in the subtype, but a base type must be used, and the result then can
1110 be casted to the subtype. */
1111 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1112 return true;
1113
1114 return false;
1115}
1116
726a989a 1117static tree chrec_convert_1 (tree, tree, gimple, bool);
d7f5de76
ZD
1118
1119/* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1120 the scev corresponds to. AT_STMT is the statement at that the scev is
1121 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1122 the rules for overflow of the given language apply (e.g., that signed
1123 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1124 tests, but also to enforce that the result follows them. Returns true if the
1125 conversion succeeded, false otherwise. */
1126
1127bool
1128convert_affine_scev (struct loop *loop, tree type,
726a989a 1129 tree *base, tree *step, gimple at_stmt,
d7f5de76
ZD
1130 bool use_overflow_semantics)
1131{
1132 tree ct = TREE_TYPE (*step);
1133 bool enforce_overflow_semantics;
1134 bool must_check_src_overflow, must_check_rslt_overflow;
1135 tree new_base, new_step;
5be014d5 1136 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
d7f5de76 1137
64a7ab5f
ZD
1138 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1139 if (avoid_arithmetics_in_type_p (type))
1140 return false;
1141
d7f5de76
ZD
1142 /* In general,
1143 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1144 but we must check some assumptions.
1145
1146 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1147 of CT is smaller than the precision of TYPE. For example, when we
1148 cast unsigned char [254, +, 1] to unsigned, the values on left side
1149 are 254, 255, 0, 1, ..., but those on the right side are
1150 254, 255, 256, 257, ...
1151 2) In case that we must also preserve the fact that signed ivs do not
1152 overflow, we must additionally check that the new iv does not wrap.
1153 For example, unsigned char [125, +, 1] casted to signed char could
1154 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1155 which would confuse optimizers that assume that this does not
1156 happen. */
1157 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1158
1159 enforce_overflow_semantics = (use_overflow_semantics
1160 && nowrap_type_p (type));
1161 if (enforce_overflow_semantics)
1162 {
1163 /* We can avoid checking whether the result overflows in the following
1164 cases:
1165
1166 -- must_check_src_overflow is true, and the range of TYPE is superset
1167 of the range of CT -- i.e., in all cases except if CT signed and
1168 TYPE unsigned.
20527215
ZD
1169 -- both CT and TYPE have the same precision and signedness, and we
1170 verify instead that the source does not overflow (this may be
1171 easier than verifying it for the result, as we may use the
1172 information about the semantics of overflow in CT). */
d7f5de76
ZD
1173 if (must_check_src_overflow)
1174 {
1175 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1176 must_check_rslt_overflow = true;
1177 else
1178 must_check_rslt_overflow = false;
1179 }
1180 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1181 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
20527215
ZD
1182 {
1183 must_check_rslt_overflow = false;
1184 must_check_src_overflow = true;
1185 }
d7f5de76
ZD
1186 else
1187 must_check_rslt_overflow = true;
1188 }
1189 else
1190 must_check_rslt_overflow = false;
1191
1192 if (must_check_src_overflow
1193 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1194 use_overflow_semantics))
1195 return false;
1196
1197 new_base = chrec_convert_1 (type, *base, at_stmt,
1198 use_overflow_semantics);
1199 /* The step must be sign extended, regardless of the signedness
1200 of CT and TYPE. This only needs to be handled specially when
1201 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1202 (with values 100, 99, 98, ...) from becoming signed or unsigned
1203 [100, +, 255] with values 100, 355, ...; the sign-extension is
1204 performed by default when CT is signed. */
1205 new_step = *step;
5be014d5 1206 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
d7f5de76
ZD
1207 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1208 use_overflow_semantics);
5be014d5 1209 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
d7f5de76
ZD
1210
1211 if (automatically_generated_chrec_p (new_base)
1212 || automatically_generated_chrec_p (new_step))
1213 return false;
1214
1215 if (must_check_rslt_overflow
1216 /* Note that in this case we cannot use the fact that signed variables
1217 do not overflow, as this is what we are verifying for the new iv. */
1218 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1219 return false;
1220
1221 *base = new_base;
1222 *step = new_step;
1223 return true;
1224}
c8a2ab6d
SP
1225\f
1226
5be014d5
AP
1227/* Convert CHREC for the right hand side of a CREC.
1228 The increment for a pointer type is always sizetype. */
1229tree
726a989a 1230chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
5be014d5
AP
1231{
1232 if (POINTER_TYPE_P (type))
1233 type = sizetype;
1234 return chrec_convert (type, chrec, at_stmt);
1235}
1236
1e8552eb
SP
1237/* Convert CHREC to TYPE. When the analyzer knows the context in
1238 which the CHREC is built, it sets AT_STMT to the statement that
1239 contains the definition of the analyzed variable, otherwise the
1240 conversion is less accurate: the information is used for
1241 determining a more accurate estimation of the number of iterations.
1242 By default AT_STMT could be safely set to NULL_TREE.
1243
1244 The following rule is always true: TREE_TYPE (chrec) ==
1245 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1246 An example of what could happen when adding two chrecs and the type
1247 of the CHREC_RIGHT is different than CHREC_LEFT is:
c4cdbeb4
EB
1248
1249 {(uint) 0, +, (uchar) 10} +
1250 {(uint) 0, +, (uchar) 250}
1251
1252 that would produce a wrong result if CHREC_RIGHT is not (uint):
1253
1254 {(uint) 0, +, (uchar) 4}
1255
1256 instead of
1257
1258 {(uint) 0, +, (uint) 260}
1259*/
c8a2ab6d
SP
1260
1261tree
726a989a 1262chrec_convert (tree type, tree chrec, gimple at_stmt)
d7f5de76
ZD
1263{
1264 return chrec_convert_1 (type, chrec, at_stmt, true);
1265}
1266
1267/* Convert CHREC to TYPE. When the analyzer knows the context in
1268 which the CHREC is built, it sets AT_STMT to the statement that
1269 contains the definition of the analyzed variable, otherwise the
1270 conversion is less accurate: the information is used for
1271 determining a more accurate estimation of the number of iterations.
1272 By default AT_STMT could be safely set to NULL_TREE.
1273
1274 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1275 the rules for overflow of the given language apply (e.g., that signed
1276 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1277 tests, but also to enforce that the result follows them. */
1278
1279static tree
726a989a 1280chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
d7f5de76 1281 bool use_overflow_semantics)
c8a2ab6d 1282{
1e8552eb 1283 tree ct, res;
d7f5de76
ZD
1284 tree base, step;
1285 struct loop *loop;
1e8552eb 1286
c8a2ab6d
SP
1287 if (automatically_generated_chrec_p (chrec))
1288 return chrec;
1289
1290 ct = chrec_type (chrec);
1291 if (ct == type)
1292 return chrec;
1293
d7f5de76
ZD
1294 if (!evolution_function_is_affine_p (chrec))
1295 goto keep_cast;
18aed06a 1296
42fd6772 1297 loop = get_chrec_loop (chrec);
d7f5de76
ZD
1298 base = CHREC_LEFT (chrec);
1299 step = CHREC_RIGHT (chrec);
1e8552eb 1300
d7f5de76
ZD
1301 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1302 use_overflow_semantics))
1303 return build_polynomial_chrec (loop->num, base, step);
c8a2ab6d 1304
d7f5de76
ZD
1305 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1306keep_cast:
1e8552eb 1307 res = fold_convert (type, chrec);
c4cdbeb4 1308
1e8552eb
SP
1309 /* Don't propagate overflows. */
1310 if (CONSTANT_CLASS_P (res))
455f14dd 1311 TREE_OVERFLOW (res) = 0;
1e8552eb
SP
1312
1313 /* But reject constants that don't fit in their type after conversion.
1314 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1315 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1316 and can cause problems later when computing niters of loops. Note
1317 that we don't do the check before converting because we don't want
1318 to reject conversions of negative chrecs to unsigned types. */
1319 if (TREE_CODE (res) == INTEGER_CST
1320 && TREE_CODE (type) == INTEGER_TYPE
1321 && !int_fits_type_p (res, type))
1322 res = chrec_dont_know;
1323
1324 return res;
c8a2ab6d
SP
1325}
1326
2282a0e6
ZD
1327/* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1328 chrec if something else than what chrec_convert would do happens, NULL_TREE
1329 otherwise. */
1330
1331tree
1332chrec_convert_aggressive (tree type, tree chrec)
1333{
5be014d5 1334 tree inner_type, left, right, lc, rc, rtype;
2282a0e6
ZD
1335
1336 if (automatically_generated_chrec_p (chrec)
1337 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1338 return NULL_TREE;
1339
1340 inner_type = TREE_TYPE (chrec);
1341 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1342 return NULL_TREE;
1343
64a7ab5f
ZD
1344 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1345 if (avoid_arithmetics_in_type_p (type))
cdc30c45 1346 return NULL_TREE;
64a7ab5f 1347
5be014d5
AP
1348 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1349
2282a0e6
ZD
1350 left = CHREC_LEFT (chrec);
1351 right = CHREC_RIGHT (chrec);
1352 lc = chrec_convert_aggressive (type, left);
1353 if (!lc)
726a989a 1354 lc = chrec_convert (type, left, NULL);
5be014d5 1355 rc = chrec_convert_aggressive (rtype, right);
2282a0e6 1356 if (!rc)
726a989a 1357 rc = chrec_convert (rtype, right, NULL);
64a7ab5f 1358
2282a0e6
ZD
1359 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1360}
1361
0ff4040e
SP
1362/* Returns true when CHREC0 == CHREC1. */
1363
1364bool
ed7a4b4b 1365eq_evolutions_p (const_tree chrec0, const_tree chrec1)
0ff4040e
SP
1366{
1367 if (chrec0 == NULL_TREE
1368 || chrec1 == NULL_TREE
1369 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1370 return false;
1371
1372 if (chrec0 == chrec1)
1373 return true;
1374
1375 switch (TREE_CODE (chrec0))
1376 {
1377 case INTEGER_CST:
e2157b49
SP
1378 return operand_equal_p (chrec0, chrec1, 0);
1379
0ff4040e
SP
1380 case POLYNOMIAL_CHREC:
1381 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1382 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1383 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1384 default:
1385 return false;
1386 }
1387}
1388
d7f5de76
ZD
1389/* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1390 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1391 which of these cases happens. */
1392
1393enum ev_direction
ed7a4b4b 1394scev_direction (const_tree chrec)
d7f5de76 1395{
ed7a4b4b 1396 const_tree step;
d7f5de76
ZD
1397
1398 if (!evolution_function_is_affine_p (chrec))
1399 return EV_DIR_UNKNOWN;
1400
1401 step = CHREC_RIGHT (chrec);
1402 if (TREE_CODE (step) != INTEGER_CST)
1403 return EV_DIR_UNKNOWN;
1404
1405 if (tree_int_cst_sign_bit (step))
1406 return EV_DIR_DECREASES;
1407 else
1408 return EV_DIR_GROWS;
1409}
f8bf9252
SP
1410
1411/* Iterates over all the components of SCEV, and calls CBCK. */
1412
1413void
1414for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1415{
1416 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1417 {
1418 case 3:
1419 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1420
1421 case 2:
1422 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1423
1424 case 1:
1425 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1426
1427 default:
1428 cbck (scev, data);
1429 break;
1430 }
1431}
1432
This page took 2.106547 seconds and 5 git commands to generate.