]>
Commit | Line | Data |
---|---|---|
28d81abb | 1 | /* Expands front end tree to back end RTL for GNU C-Compiler |
b87c6d55 | 2 | Copyright (C) 1987, 88, 89, 92-99, 2000 Free Software Foundation, Inc. |
28d81abb RK |
3 | |
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
e9fa0c7c RK |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, |
19 | Boston, MA 02111-1307, USA. */ | |
28d81abb RK |
20 | |
21 | ||
22 | /* This file handles the generation of rtl code from tree structure | |
23 | above the level of expressions, using subroutines in exp*.c and emit-rtl.c. | |
24 | It also creates the rtl expressions for parameters and auto variables | |
25 | and has full responsibility for allocating stack slots. | |
26 | ||
27 | The functions whose names start with `expand_' are called by the | |
28 | parser to generate RTL instructions for various kinds of constructs. | |
29 | ||
30 | Some control and binding constructs require calling several such | |
31 | functions at different times. For example, a simple if-then | |
32 | is expanded by calling `expand_start_cond' (with the condition-expression | |
33 | as argument) before parsing the then-clause and calling `expand_end_cond' | |
34 | after parsing the then-clause. */ | |
35 | ||
36 | #include "config.h" | |
670ee920 | 37 | #include "system.h" |
ccd043a9 | 38 | |
28d81abb RK |
39 | #include "rtl.h" |
40 | #include "tree.h" | |
6baf1cc8 | 41 | #include "tm_p.h" |
28d81abb | 42 | #include "flags.h" |
6adb4e3a | 43 | #include "except.h" |
28d81abb RK |
44 | #include "function.h" |
45 | #include "insn-flags.h" | |
46 | #include "insn-config.h" | |
47 | #include "insn-codes.h" | |
48 | #include "expr.h" | |
49 | #include "hard-reg-set.h" | |
50 | #include "obstack.h" | |
51 | #include "loop.h" | |
52 | #include "recog.h" | |
ca695ac9 | 53 | #include "machmode.h" |
10f0ad3d | 54 | #include "toplev.h" |
d6f4ec51 | 55 | #include "output.h" |
87ff9c8e | 56 | #include "ggc.h" |
ca695ac9 | 57 | |
28d81abb RK |
58 | #define obstack_chunk_alloc xmalloc |
59 | #define obstack_chunk_free free | |
60 | struct obstack stmt_obstack; | |
61 | ||
18543a22 ILT |
62 | /* Assume that case vectors are not pc-relative. */ |
63 | #ifndef CASE_VECTOR_PC_RELATIVE | |
64 | #define CASE_VECTOR_PC_RELATIVE 0 | |
65 | #endif | |
66 | ||
28d81abb RK |
67 | \f |
68 | /* Functions and data structures for expanding case statements. */ | |
69 | ||
70 | /* Case label structure, used to hold info on labels within case | |
71 | statements. We handle "range" labels; for a single-value label | |
72 | as in C, the high and low limits are the same. | |
73 | ||
5720c7e7 RK |
74 | An AVL tree of case nodes is initially created, and later transformed |
75 | to a list linked via the RIGHT fields in the nodes. Nodes with | |
76 | higher case values are later in the list. | |
28d81abb RK |
77 | |
78 | Switch statements can be output in one of two forms. A branch table | |
79 | is used if there are more than a few labels and the labels are dense | |
80 | within the range between the smallest and largest case value. If a | |
81 | branch table is used, no further manipulations are done with the case | |
82 | node chain. | |
83 | ||
84 | The alternative to the use of a branch table is to generate a series | |
85 | of compare and jump insns. When that is done, we use the LEFT, RIGHT, | |
86 | and PARENT fields to hold a binary tree. Initially the tree is | |
de14fd73 RK |
87 | totally unbalanced, with everything on the right. We balance the tree |
88 | with nodes on the left having lower case values than the parent | |
28d81abb RK |
89 | and nodes on the right having higher values. We then output the tree |
90 | in order. */ | |
91 | ||
92 | struct case_node | |
93 | { | |
94 | struct case_node *left; /* Left son in binary tree */ | |
95 | struct case_node *right; /* Right son in binary tree; also node chain */ | |
96 | struct case_node *parent; /* Parent of node in binary tree */ | |
97 | tree low; /* Lowest index value for this label */ | |
98 | tree high; /* Highest index value for this label */ | |
99 | tree code_label; /* Label to jump to when node matches */ | |
57641239 | 100 | int balance; |
28d81abb RK |
101 | }; |
102 | ||
103 | typedef struct case_node case_node; | |
104 | typedef struct case_node *case_node_ptr; | |
105 | ||
106 | /* These are used by estimate_case_costs and balance_case_nodes. */ | |
107 | ||
108 | /* This must be a signed type, and non-ANSI compilers lack signed char. */ | |
e7749837 | 109 | static short cost_table_[129]; |
28d81abb RK |
110 | static short *cost_table; |
111 | static int use_cost_table; | |
28d81abb RK |
112 | \f |
113 | /* Stack of control and binding constructs we are currently inside. | |
114 | ||
115 | These constructs begin when you call `expand_start_WHATEVER' | |
116 | and end when you call `expand_end_WHATEVER'. This stack records | |
117 | info about how the construct began that tells the end-function | |
118 | what to do. It also may provide information about the construct | |
119 | to alter the behavior of other constructs within the body. | |
120 | For example, they may affect the behavior of C `break' and `continue'. | |
121 | ||
122 | Each construct gets one `struct nesting' object. | |
123 | All of these objects are chained through the `all' field. | |
124 | `nesting_stack' points to the first object (innermost construct). | |
125 | The position of an entry on `nesting_stack' is in its `depth' field. | |
126 | ||
127 | Each type of construct has its own individual stack. | |
128 | For example, loops have `loop_stack'. Each object points to the | |
129 | next object of the same type through the `next' field. | |
130 | ||
131 | Some constructs are visible to `break' exit-statements and others | |
132 | are not. Which constructs are visible depends on the language. | |
133 | Therefore, the data structure allows each construct to be visible | |
134 | or not, according to the args given when the construct is started. | |
135 | The construct is visible if the `exit_label' field is non-null. | |
136 | In that case, the value should be a CODE_LABEL rtx. */ | |
137 | ||
138 | struct nesting | |
139 | { | |
140 | struct nesting *all; | |
141 | struct nesting *next; | |
142 | int depth; | |
143 | rtx exit_label; | |
144 | union | |
145 | { | |
146 | /* For conds (if-then and if-then-else statements). */ | |
147 | struct | |
148 | { | |
149 | /* Label for the end of the if construct. | |
150 | There is none if EXITFLAG was not set | |
151 | and no `else' has been seen yet. */ | |
152 | rtx endif_label; | |
153 | /* Label for the end of this alternative. | |
0f41302f | 154 | This may be the end of the if or the next else/elseif. */ |
28d81abb RK |
155 | rtx next_label; |
156 | } cond; | |
157 | /* For loops. */ | |
158 | struct | |
159 | { | |
160 | /* Label at the top of the loop; place to loop back to. */ | |
161 | rtx start_label; | |
162 | /* Label at the end of the whole construct. */ | |
163 | rtx end_label; | |
8afad312 JW |
164 | /* Label before a jump that branches to the end of the whole |
165 | construct. This is where destructors go if any. */ | |
166 | rtx alt_end_label; | |
28d81abb RK |
167 | /* Label for `continue' statement to jump to; |
168 | this is in front of the stepper of the loop. */ | |
169 | rtx continue_label; | |
170 | } loop; | |
171 | /* For variable binding contours. */ | |
172 | struct | |
173 | { | |
174 | /* Sequence number of this binding contour within the function, | |
175 | in order of entry. */ | |
176 | int block_start_count; | |
b93a436e | 177 | /* Nonzero => value to restore stack to on exit. */ |
28d81abb RK |
178 | rtx stack_level; |
179 | /* The NOTE that starts this contour. | |
180 | Used by expand_goto to check whether the destination | |
181 | is within each contour or not. */ | |
182 | rtx first_insn; | |
183 | /* Innermost containing binding contour that has a stack level. */ | |
184 | struct nesting *innermost_stack_block; | |
185 | /* List of cleanups to be run on exit from this contour. | |
186 | This is a list of expressions to be evaluated. | |
187 | The TREE_PURPOSE of each link is the ..._DECL node | |
188 | which the cleanup pertains to. */ | |
189 | tree cleanups; | |
190 | /* List of cleanup-lists of blocks containing this block, | |
191 | as they were at the locus where this block appears. | |
192 | There is an element for each containing block, | |
193 | ordered innermost containing block first. | |
e976b8b2 | 194 | The tail of this list can be 0, |
28d81abb RK |
195 | if all remaining elements would be empty lists. |
196 | The element's TREE_VALUE is the cleanup-list of that block, | |
197 | which may be null. */ | |
198 | tree outer_cleanups; | |
199 | /* Chain of labels defined inside this binding contour. | |
200 | For contours that have stack levels or cleanups. */ | |
201 | struct label_chain *label_chain; | |
202 | /* Number of function calls seen, as of start of this block. */ | |
3f1d071b | 203 | int n_function_calls; |
e976b8b2 MS |
204 | /* Nonzero if this is associated with a EH region. */ |
205 | int exception_region; | |
206 | /* The saved target_temp_slot_level from our outer block. | |
207 | We may reset target_temp_slot_level to be the level of | |
208 | this block, if that is done, target_temp_slot_level | |
209 | reverts to the saved target_temp_slot_level at the very | |
210 | end of the block. */ | |
3f1d071b | 211 | int block_target_temp_slot_level; |
e976b8b2 MS |
212 | /* True if we are currently emitting insns in an area of |
213 | output code that is controlled by a conditional | |
214 | expression. This is used by the cleanup handling code to | |
215 | generate conditional cleanup actions. */ | |
216 | int conditional_code; | |
217 | /* A place to move the start of the exception region for any | |
218 | of the conditional cleanups, must be at the end or after | |
219 | the start of the last unconditional cleanup, and before any | |
220 | conditional branch points. */ | |
221 | rtx last_unconditional_cleanup; | |
222 | /* When in a conditional context, this is the specific | |
223 | cleanup list associated with last_unconditional_cleanup, | |
224 | where we place the conditionalized cleanups. */ | |
225 | tree *cleanup_ptr; | |
28d81abb RK |
226 | } block; |
227 | /* For switch (C) or case (Pascal) statements, | |
228 | and also for dummies (see `expand_start_case_dummy'). */ | |
229 | struct | |
230 | { | |
231 | /* The insn after which the case dispatch should finally | |
232 | be emitted. Zero for a dummy. */ | |
233 | rtx start; | |
57641239 RK |
234 | /* A list of case labels; it is first built as an AVL tree. |
235 | During expand_end_case, this is converted to a list, and may be | |
236 | rearranged into a nearly balanced binary tree. */ | |
28d81abb RK |
237 | struct case_node *case_list; |
238 | /* Label to jump to if no case matches. */ | |
239 | tree default_label; | |
240 | /* The expression to be dispatched on. */ | |
241 | tree index_expr; | |
242 | /* Type that INDEX_EXPR should be converted to. */ | |
243 | tree nominal_type; | |
244 | /* Number of range exprs in case statement. */ | |
245 | int num_ranges; | |
246 | /* Name of this kind of statement, for warnings. */ | |
dff01034 | 247 | const char *printname; |
a11759a3 JR |
248 | /* Used to save no_line_numbers till we see the first case label. |
249 | We set this to -1 when we see the first case label in this | |
250 | case statement. */ | |
251 | int line_number_status; | |
28d81abb | 252 | } case_stmt; |
28d81abb RK |
253 | } data; |
254 | }; | |
255 | ||
28d81abb RK |
256 | /* Allocate and return a new `struct nesting'. */ |
257 | ||
258 | #define ALLOC_NESTING() \ | |
259 | (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting)) | |
260 | ||
6ed1d6c5 RS |
261 | /* Pop the nesting stack element by element until we pop off |
262 | the element which is at the top of STACK. | |
263 | Update all the other stacks, popping off elements from them | |
264 | as we pop them from nesting_stack. */ | |
28d81abb RK |
265 | |
266 | #define POPSTACK(STACK) \ | |
6ed1d6c5 RS |
267 | do { struct nesting *target = STACK; \ |
268 | struct nesting *this; \ | |
269 | do { this = nesting_stack; \ | |
270 | if (loop_stack == this) \ | |
271 | loop_stack = loop_stack->next; \ | |
272 | if (cond_stack == this) \ | |
273 | cond_stack = cond_stack->next; \ | |
274 | if (block_stack == this) \ | |
275 | block_stack = block_stack->next; \ | |
276 | if (stack_block_stack == this) \ | |
277 | stack_block_stack = stack_block_stack->next; \ | |
278 | if (case_stack == this) \ | |
279 | case_stack = case_stack->next; \ | |
6ed1d6c5 | 280 | nesting_depth = nesting_stack->depth - 1; \ |
28d81abb | 281 | nesting_stack = this->all; \ |
28d81abb | 282 | obstack_free (&stmt_obstack, this); } \ |
6ed1d6c5 | 283 | while (this != target); } while (0) |
28d81abb RK |
284 | \f |
285 | /* In some cases it is impossible to generate code for a forward goto | |
286 | until the label definition is seen. This happens when it may be necessary | |
287 | for the goto to reset the stack pointer: we don't yet know how to do that. | |
288 | So expand_goto puts an entry on this fixup list. | |
289 | Each time a binding contour that resets the stack is exited, | |
290 | we check each fixup. | |
291 | If the target label has now been defined, we can insert the proper code. */ | |
292 | ||
293 | struct goto_fixup | |
294 | { | |
295 | /* Points to following fixup. */ | |
296 | struct goto_fixup *next; | |
297 | /* Points to the insn before the jump insn. | |
298 | If more code must be inserted, it goes after this insn. */ | |
299 | rtx before_jump; | |
300 | /* The LABEL_DECL that this jump is jumping to, or 0 | |
301 | for break, continue or return. */ | |
302 | tree target; | |
7629c936 RS |
303 | /* The BLOCK for the place where this goto was found. */ |
304 | tree context; | |
28d81abb RK |
305 | /* The CODE_LABEL rtx that this is jumping to. */ |
306 | rtx target_rtl; | |
307 | /* Number of binding contours started in current function | |
308 | before the label reference. */ | |
309 | int block_start_count; | |
310 | /* The outermost stack level that should be restored for this jump. | |
311 | Each time a binding contour that resets the stack is exited, | |
312 | if the target label is *not* yet defined, this slot is updated. */ | |
313 | rtx stack_level; | |
314 | /* List of lists of cleanup expressions to be run by this goto. | |
315 | There is one element for each block that this goto is within. | |
e976b8b2 | 316 | The tail of this list can be 0, |
28d81abb RK |
317 | if all remaining elements would be empty. |
318 | The TREE_VALUE contains the cleanup list of that block as of the | |
319 | time this goto was seen. | |
320 | The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */ | |
321 | tree cleanup_list_list; | |
322 | }; | |
323 | ||
28d81abb RK |
324 | /* Within any binding contour that must restore a stack level, |
325 | all labels are recorded with a chain of these structures. */ | |
326 | ||
327 | struct label_chain | |
328 | { | |
329 | /* Points to following fixup. */ | |
330 | struct label_chain *next; | |
331 | tree label; | |
332 | }; | |
e9a25f70 | 333 | |
3f1d071b BS |
334 | struct stmt_status |
335 | { | |
336 | /* Chain of all pending binding contours. */ | |
337 | struct nesting *x_block_stack; | |
338 | ||
339 | /* If any new stacks are added here, add them to POPSTACKS too. */ | |
340 | ||
341 | /* Chain of all pending binding contours that restore stack levels | |
342 | or have cleanups. */ | |
343 | struct nesting *x_stack_block_stack; | |
344 | ||
345 | /* Chain of all pending conditional statements. */ | |
346 | struct nesting *x_cond_stack; | |
347 | ||
348 | /* Chain of all pending loops. */ | |
349 | struct nesting *x_loop_stack; | |
350 | ||
351 | /* Chain of all pending case or switch statements. */ | |
352 | struct nesting *x_case_stack; | |
353 | ||
354 | /* Separate chain including all of the above, | |
355 | chained through the `all' field. */ | |
356 | struct nesting *x_nesting_stack; | |
357 | ||
358 | /* Number of entries on nesting_stack now. */ | |
359 | int x_nesting_depth; | |
360 | ||
361 | /* Number of binding contours started so far in this function. */ | |
362 | int x_block_start_count; | |
363 | ||
364 | /* Each time we expand an expression-statement, | |
365 | record the expr's type and its RTL value here. */ | |
366 | tree x_last_expr_type; | |
367 | rtx x_last_expr_value; | |
368 | ||
369 | /* Nonzero if within a ({...}) grouping, in which case we must | |
370 | always compute a value for each expr-stmt in case it is the last one. */ | |
371 | int x_expr_stmts_for_value; | |
372 | ||
373 | /* Filename and line number of last line-number note, | |
374 | whether we actually emitted it or not. */ | |
375 | char *x_emit_filename; | |
376 | int x_emit_lineno; | |
377 | ||
378 | struct goto_fixup *x_goto_fixup_chain; | |
379 | }; | |
380 | ||
01d939e8 BS |
381 | #define block_stack (cfun->stmt->x_block_stack) |
382 | #define stack_block_stack (cfun->stmt->x_stack_block_stack) | |
383 | #define cond_stack (cfun->stmt->x_cond_stack) | |
384 | #define loop_stack (cfun->stmt->x_loop_stack) | |
385 | #define case_stack (cfun->stmt->x_case_stack) | |
386 | #define nesting_stack (cfun->stmt->x_nesting_stack) | |
387 | #define nesting_depth (cfun->stmt->x_nesting_depth) | |
388 | #define current_block_start_count (cfun->stmt->x_block_start_count) | |
389 | #define last_expr_type (cfun->stmt->x_last_expr_type) | |
390 | #define last_expr_value (cfun->stmt->x_last_expr_value) | |
391 | #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value) | |
392 | #define emit_filename (cfun->stmt->x_emit_filename) | |
393 | #define emit_lineno (cfun->stmt->x_emit_lineno) | |
394 | #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain) | |
e9a25f70 JL |
395 | |
396 | /* Non-zero if we are using EH to handle cleanus. */ | |
397 | static int using_eh_for_cleanups_p = 0; | |
398 | ||
21a427cc AS |
399 | /* Character strings, each containing a single decimal digit. */ |
400 | static char *digit_strings[10]; | |
401 | ||
e9a25f70 | 402 | |
cdadb1dd KG |
403 | static int n_occurrences PARAMS ((int, const char *)); |
404 | static void expand_goto_internal PARAMS ((tree, rtx, rtx)); | |
405 | static int expand_fixup PARAMS ((tree, rtx, rtx)); | |
406 | static rtx expand_nl_handler_label PARAMS ((rtx, rtx)); | |
407 | static void expand_nl_goto_receiver PARAMS ((void)); | |
408 | static void expand_nl_goto_receivers PARAMS ((struct nesting *)); | |
409 | static void fixup_gotos PARAMS ((struct nesting *, rtx, tree, | |
cfc3d13f | 410 | rtx, int)); |
cdadb1dd KG |
411 | static void expand_null_return_1 PARAMS ((rtx, int)); |
412 | static void expand_value_return PARAMS ((rtx)); | |
413 | static int tail_recursion_args PARAMS ((tree, tree)); | |
414 | static void expand_cleanups PARAMS ((tree, tree, int, int)); | |
415 | static void check_seenlabel PARAMS ((void)); | |
416 | static void do_jump_if_equal PARAMS ((rtx, rtx, rtx, int)); | |
417 | static int estimate_case_costs PARAMS ((case_node_ptr)); | |
418 | static void group_case_nodes PARAMS ((case_node_ptr)); | |
419 | static void balance_case_nodes PARAMS ((case_node_ptr *, | |
cfc3d13f | 420 | case_node_ptr)); |
cdadb1dd KG |
421 | static int node_has_low_bound PARAMS ((case_node_ptr, tree)); |
422 | static int node_has_high_bound PARAMS ((case_node_ptr, tree)); | |
423 | static int node_is_bounded PARAMS ((case_node_ptr, tree)); | |
424 | static void emit_jump_if_reachable PARAMS ((rtx)); | |
425 | static void emit_case_nodes PARAMS ((rtx, case_node_ptr, rtx, tree)); | |
426 | static int add_case_node PARAMS ((tree, tree, tree, tree *)); | |
427 | static struct case_node *case_tree2list PARAMS ((case_node *, case_node *)); | |
428 | static void mark_cond_nesting PARAMS ((struct nesting *)); | |
429 | static void mark_loop_nesting PARAMS ((struct nesting *)); | |
430 | static void mark_block_nesting PARAMS ((struct nesting *)); | |
431 | static void mark_case_nesting PARAMS ((struct nesting *)); | |
432 | static void mark_goto_fixup PARAMS ((struct goto_fixup *)); | |
87ff9c8e | 433 | |
28d81abb | 434 | \f |
e9a25f70 JL |
435 | void |
436 | using_eh_for_cleanups () | |
437 | { | |
438 | using_eh_for_cleanups_p = 1; | |
439 | } | |
440 | ||
87ff9c8e RH |
441 | /* Mark N (known to be a cond-nesting) for GC. */ |
442 | ||
443 | static void | |
444 | mark_cond_nesting (n) | |
445 | struct nesting *n; | |
446 | { | |
447 | while (n) | |
448 | { | |
449 | ggc_mark_rtx (n->exit_label); | |
450 | ggc_mark_rtx (n->data.cond.endif_label); | |
451 | ggc_mark_rtx (n->data.cond.next_label); | |
452 | ||
453 | n = n->next; | |
454 | } | |
455 | } | |
456 | ||
457 | /* Mark N (known to be a loop-nesting) for GC. */ | |
458 | ||
459 | static void | |
460 | mark_loop_nesting (n) | |
461 | struct nesting *n; | |
462 | { | |
463 | ||
464 | while (n) | |
465 | { | |
466 | ggc_mark_rtx (n->exit_label); | |
467 | ggc_mark_rtx (n->data.loop.start_label); | |
468 | ggc_mark_rtx (n->data.loop.end_label); | |
469 | ggc_mark_rtx (n->data.loop.alt_end_label); | |
470 | ggc_mark_rtx (n->data.loop.continue_label); | |
471 | ||
472 | n = n->next; | |
473 | } | |
474 | } | |
475 | ||
476 | /* Mark N (known to be a block-nesting) for GC. */ | |
477 | ||
478 | static void | |
479 | mark_block_nesting (n) | |
480 | struct nesting *n; | |
481 | { | |
482 | while (n) | |
483 | { | |
484 | struct label_chain *l; | |
485 | ||
486 | ggc_mark_rtx (n->exit_label); | |
487 | ggc_mark_rtx (n->data.block.stack_level); | |
488 | ggc_mark_rtx (n->data.block.first_insn); | |
489 | ggc_mark_tree (n->data.block.cleanups); | |
490 | ggc_mark_tree (n->data.block.outer_cleanups); | |
491 | ||
492 | for (l = n->data.block.label_chain; l != NULL; l = l->next) | |
493 | ggc_mark_tree (l->label); | |
494 | ||
495 | ggc_mark_rtx (n->data.block.last_unconditional_cleanup); | |
496 | ||
497 | /* ??? cleanup_ptr never points outside the stack, does it? */ | |
498 | ||
499 | n = n->next; | |
500 | } | |
501 | } | |
502 | ||
503 | /* Mark N (known to be a case-nesting) for GC. */ | |
504 | ||
505 | static void | |
506 | mark_case_nesting (n) | |
507 | struct nesting *n; | |
508 | { | |
509 | while (n) | |
510 | { | |
511 | struct case_node *node; | |
512 | ||
513 | ggc_mark_rtx (n->exit_label); | |
514 | ggc_mark_rtx (n->data.case_stmt.start); | |
515 | ||
516 | node = n->data.case_stmt.case_list; | |
517 | while (node) | |
518 | { | |
519 | ggc_mark_tree (node->low); | |
520 | ggc_mark_tree (node->high); | |
521 | ggc_mark_tree (node->code_label); | |
522 | node = node->right; | |
523 | } | |
524 | ||
525 | ggc_mark_tree (n->data.case_stmt.default_label); | |
526 | ggc_mark_tree (n->data.case_stmt.index_expr); | |
527 | ggc_mark_tree (n->data.case_stmt.nominal_type); | |
528 | ||
529 | n = n->next; | |
530 | } | |
531 | } | |
532 | ||
533 | /* Mark G for GC. */ | |
534 | ||
535 | static void | |
536 | mark_goto_fixup (g) | |
537 | struct goto_fixup *g; | |
538 | { | |
539 | while (g) | |
540 | { | |
541 | ggc_mark_rtx (g->before_jump); | |
542 | ggc_mark_tree (g->target); | |
543 | ggc_mark_tree (g->context); | |
544 | ggc_mark_rtx (g->target_rtl); | |
545 | ggc_mark_rtx (g->stack_level); | |
546 | ggc_mark_tree (g->cleanup_list_list); | |
547 | ||
548 | g = g->next; | |
549 | } | |
550 | } | |
551 | ||
21cd906e MM |
552 | /* Clear out all parts of the state in F that can safely be discarded |
553 | after the function has been compiled, to let garbage collection | |
0a8a198c | 554 | reclaim the memory. */ |
21cd906e MM |
555 | |
556 | void | |
0a8a198c | 557 | free_stmt_status (f) |
21cd906e | 558 | struct function *f; |
21cd906e MM |
559 | { |
560 | /* We're about to free the function obstack. If we hold pointers to | |
561 | things allocated there, then we'll try to mark them when we do | |
562 | GC. So, we clear them out here explicitly. */ | |
5faf03ae MM |
563 | if (f->stmt) |
564 | free (f->stmt); | |
fa51b01b | 565 | f->stmt = NULL; |
21cd906e MM |
566 | } |
567 | ||
87ff9c8e RH |
568 | /* Mark P for GC. */ |
569 | ||
570 | void | |
fa51b01b | 571 | mark_stmt_status (p) |
87ff9c8e RH |
572 | struct stmt_status *p; |
573 | { | |
574 | if (p == 0) | |
575 | return; | |
576 | ||
577 | mark_block_nesting (p->x_block_stack); | |
578 | mark_cond_nesting (p->x_cond_stack); | |
579 | mark_loop_nesting (p->x_loop_stack); | |
580 | mark_case_nesting (p->x_case_stack); | |
581 | ||
582 | ggc_mark_tree (p->x_last_expr_type); | |
583 | /* last_epxr_value is only valid if last_expr_type is nonzero. */ | |
584 | if (p->x_last_expr_type) | |
585 | ggc_mark_rtx (p->x_last_expr_value); | |
586 | ||
587 | mark_goto_fixup (p->x_goto_fixup_chain); | |
588 | } | |
589 | ||
28d81abb RK |
590 | void |
591 | init_stmt () | |
592 | { | |
21a427cc AS |
593 | int i; |
594 | ||
28d81abb | 595 | gcc_obstack_init (&stmt_obstack); |
21a427cc AS |
596 | |
597 | for (i = 0; i < 10; i++) | |
598 | { | |
599 | digit_strings[i] = ggc_alloc_string (NULL, 1); | |
600 | digit_strings[i][0] = '0' + i; | |
601 | } | |
602 | ggc_add_string_root (digit_strings, 10); | |
28d81abb RK |
603 | } |
604 | ||
605 | void | |
606 | init_stmt_for_function () | |
607 | { | |
01d939e8 | 608 | cfun->stmt = (struct stmt_status *) xmalloc (sizeof (struct stmt_status)); |
3f1d071b | 609 | |
28d81abb RK |
610 | /* We are not currently within any block, conditional, loop or case. */ |
611 | block_stack = 0; | |
0b931590 | 612 | stack_block_stack = 0; |
28d81abb RK |
613 | loop_stack = 0; |
614 | case_stack = 0; | |
615 | cond_stack = 0; | |
616 | nesting_stack = 0; | |
617 | nesting_depth = 0; | |
618 | ||
3f1d071b | 619 | current_block_start_count = 0; |
28d81abb RK |
620 | |
621 | /* No gotos have been expanded yet. */ | |
622 | goto_fixup_chain = 0; | |
623 | ||
624 | /* We are not processing a ({...}) grouping. */ | |
625 | expr_stmts_for_value = 0; | |
626 | last_expr_type = 0; | |
21cd906e | 627 | last_expr_value = NULL_RTX; |
28d81abb | 628 | } |
3f1d071b BS |
629 | \f |
630 | /* Return nonzero if anything is pushed on the loop, condition, or case | |
631 | stack. */ | |
632 | int | |
633 | in_control_zone_p () | |
634 | { | |
635 | return cond_stack || loop_stack || case_stack; | |
28d81abb RK |
636 | } |
637 | ||
3f1d071b | 638 | /* Record the current file and line. Called from emit_line_note. */ |
28d81abb | 639 | void |
3f1d071b BS |
640 | set_file_and_line_for_stmt (file, line) |
641 | char *file; | |
642 | int line; | |
643 | { | |
644 | emit_filename = file; | |
645 | emit_lineno = line; | |
28d81abb | 646 | } |
3f1d071b | 647 | |
28d81abb RK |
648 | /* Emit a no-op instruction. */ |
649 | ||
650 | void | |
651 | emit_nop () | |
652 | { | |
ca695ac9 JB |
653 | rtx last_insn; |
654 | ||
b93a436e JL |
655 | last_insn = get_last_insn (); |
656 | if (!optimize | |
657 | && (GET_CODE (last_insn) == CODE_LABEL | |
658 | || (GET_CODE (last_insn) == NOTE | |
659 | && prev_real_insn (last_insn) == 0))) | |
660 | emit_insn (gen_nop ()); | |
28d81abb RK |
661 | } |
662 | \f | |
663 | /* Return the rtx-label that corresponds to a LABEL_DECL, | |
664 | creating it if necessary. */ | |
665 | ||
666 | rtx | |
667 | label_rtx (label) | |
668 | tree label; | |
669 | { | |
670 | if (TREE_CODE (label) != LABEL_DECL) | |
671 | abort (); | |
672 | ||
673 | if (DECL_RTL (label)) | |
674 | return DECL_RTL (label); | |
675 | ||
676 | return DECL_RTL (label) = gen_label_rtx (); | |
677 | } | |
678 | ||
679 | /* Add an unconditional jump to LABEL as the next sequential instruction. */ | |
680 | ||
681 | void | |
682 | emit_jump (label) | |
683 | rtx label; | |
684 | { | |
685 | do_pending_stack_adjust (); | |
686 | emit_jump_insn (gen_jump (label)); | |
687 | emit_barrier (); | |
688 | } | |
689 | ||
690 | /* Emit code to jump to the address | |
691 | specified by the pointer expression EXP. */ | |
692 | ||
693 | void | |
694 | expand_computed_goto (exp) | |
695 | tree exp; | |
696 | { | |
b93a436e | 697 | rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0); |
ed9a9db1 RK |
698 | |
699 | #ifdef POINTERS_EXTEND_UNSIGNED | |
b93a436e | 700 | x = convert_memory_address (Pmode, x); |
ed9a9db1 | 701 | #endif |
ffa1a1ce | 702 | |
b93a436e JL |
703 | emit_queue (); |
704 | /* Be sure the function is executable. */ | |
7d384cc0 | 705 | if (current_function_check_memory_usage) |
b93a436e JL |
706 | emit_library_call (chkr_check_exec_libfunc, 1, |
707 | VOIDmode, 1, x, ptr_mode); | |
17f5f329 | 708 | |
b93a436e JL |
709 | do_pending_stack_adjust (); |
710 | emit_indirect_jump (x); | |
acd693d1 RH |
711 | |
712 | current_function_has_computed_jump = 1; | |
28d81abb RK |
713 | } |
714 | \f | |
715 | /* Handle goto statements and the labels that they can go to. */ | |
716 | ||
717 | /* Specify the location in the RTL code of a label LABEL, | |
718 | which is a LABEL_DECL tree node. | |
719 | ||
720 | This is used for the kind of label that the user can jump to with a | |
721 | goto statement, and for alternatives of a switch or case statement. | |
722 | RTL labels generated for loops and conditionals don't go through here; | |
723 | they are generated directly at the RTL level, by other functions below. | |
724 | ||
725 | Note that this has nothing to do with defining label *names*. | |
726 | Languages vary in how they do that and what that even means. */ | |
727 | ||
728 | void | |
729 | expand_label (label) | |
730 | tree label; | |
731 | { | |
732 | struct label_chain *p; | |
733 | ||
734 | do_pending_stack_adjust (); | |
735 | emit_label (label_rtx (label)); | |
736 | if (DECL_NAME (label)) | |
737 | LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label)); | |
738 | ||
739 | if (stack_block_stack != 0) | |
740 | { | |
741 | p = (struct label_chain *) oballoc (sizeof (struct label_chain)); | |
742 | p->next = stack_block_stack->data.block.label_chain; | |
743 | stack_block_stack->data.block.label_chain = p; | |
744 | p->label = label; | |
745 | } | |
746 | } | |
747 | ||
748 | /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos | |
749 | from nested functions. */ | |
750 | ||
751 | void | |
752 | declare_nonlocal_label (label) | |
753 | tree label; | |
754 | { | |
ba716ac9 BS |
755 | rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); |
756 | ||
28d81abb RK |
757 | nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels); |
758 | LABEL_PRESERVE_P (label_rtx (label)) = 1; | |
ba716ac9 | 759 | if (nonlocal_goto_handler_slots == 0) |
28d81abb | 760 | { |
59257ff7 RK |
761 | emit_stack_save (SAVE_NONLOCAL, |
762 | &nonlocal_goto_stack_level, | |
763 | PREV_INSN (tail_recursion_reentry)); | |
28d81abb | 764 | } |
ba716ac9 BS |
765 | nonlocal_goto_handler_slots |
766 | = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots); | |
28d81abb RK |
767 | } |
768 | ||
769 | /* Generate RTL code for a `goto' statement with target label LABEL. | |
770 | LABEL should be a LABEL_DECL tree node that was or will later be | |
771 | defined with `expand_label'. */ | |
772 | ||
773 | void | |
774 | expand_goto (label) | |
775 | tree label; | |
776 | { | |
ca695ac9 JB |
777 | tree context; |
778 | ||
28d81abb | 779 | /* Check for a nonlocal goto to a containing function. */ |
ca695ac9 | 780 | context = decl_function_context (label); |
28d81abb RK |
781 | if (context != 0 && context != current_function_decl) |
782 | { | |
783 | struct function *p = find_function_data (context); | |
38a448ca | 784 | rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label)); |
ba716ac9 BS |
785 | rtx temp, handler_slot; |
786 | tree link; | |
787 | ||
788 | /* Find the corresponding handler slot for this label. */ | |
49ad7cfa BS |
789 | handler_slot = p->x_nonlocal_goto_handler_slots; |
790 | for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label; | |
ba716ac9 BS |
791 | link = TREE_CHAIN (link)) |
792 | handler_slot = XEXP (handler_slot, 1); | |
793 | handler_slot = XEXP (handler_slot, 0); | |
dd132134 | 794 | |
28d81abb | 795 | p->has_nonlocal_label = 1; |
c1255328 | 796 | current_function_has_nonlocal_goto = 1; |
dd132134 | 797 | LABEL_REF_NONLOCAL_P (label_ref) = 1; |
59257ff7 RK |
798 | |
799 | /* Copy the rtl for the slots so that they won't be shared in | |
800 | case the virtual stack vars register gets instantiated differently | |
801 | in the parent than in the child. */ | |
802 | ||
28d81abb RK |
803 | #if HAVE_nonlocal_goto |
804 | if (HAVE_nonlocal_goto) | |
805 | emit_insn (gen_nonlocal_goto (lookup_static_chain (label), | |
ba716ac9 | 806 | copy_rtx (handler_slot), |
49ad7cfa | 807 | copy_rtx (p->x_nonlocal_goto_stack_level), |
dd132134 | 808 | label_ref)); |
28d81abb RK |
809 | else |
810 | #endif | |
811 | { | |
59257ff7 RK |
812 | rtx addr; |
813 | ||
28d81abb RK |
814 | /* Restore frame pointer for containing function. |
815 | This sets the actual hard register used for the frame pointer | |
816 | to the location of the function's incoming static chain info. | |
817 | The non-local goto handler will then adjust it to contain the | |
818 | proper value and reload the argument pointer, if needed. */ | |
a35ad168 | 819 | emit_move_insn (hard_frame_pointer_rtx, lookup_static_chain (label)); |
59257ff7 RK |
820 | |
821 | /* We have now loaded the frame pointer hardware register with | |
822 | the address of that corresponds to the start of the virtual | |
823 | stack vars. So replace virtual_stack_vars_rtx in all | |
824 | addresses we use with stack_pointer_rtx. */ | |
825 | ||
28d81abb RK |
826 | /* Get addr of containing function's current nonlocal goto handler, |
827 | which will do any cleanups and then jump to the label. */ | |
ba716ac9 | 828 | addr = copy_rtx (handler_slot); |
59257ff7 | 829 | temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx, |
a35ad168 | 830 | hard_frame_pointer_rtx)); |
59257ff7 | 831 | |
28d81abb | 832 | /* Restore the stack pointer. Note this uses fp just restored. */ |
49ad7cfa | 833 | addr = p->x_nonlocal_goto_stack_level; |
59257ff7 | 834 | if (addr) |
5e116627 | 835 | addr = replace_rtx (copy_rtx (addr), |
a35ad168 DE |
836 | virtual_stack_vars_rtx, |
837 | hard_frame_pointer_rtx); | |
59257ff7 | 838 | |
37366632 | 839 | emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX); |
59257ff7 | 840 | |
a35ad168 | 841 | /* USE of hard_frame_pointer_rtx added for consistency; not clear if |
28d81abb | 842 | really needed. */ |
38a448ca RH |
843 | emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx)); |
844 | emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx)); | |
28d81abb RK |
845 | emit_indirect_jump (temp); |
846 | } | |
847 | } | |
848 | else | |
37366632 | 849 | expand_goto_internal (label, label_rtx (label), NULL_RTX); |
28d81abb RK |
850 | } |
851 | ||
852 | /* Generate RTL code for a `goto' statement with target label BODY. | |
853 | LABEL should be a LABEL_REF. | |
854 | LAST_INSN, if non-0, is the rtx we should consider as the last | |
855 | insn emitted (for the purposes of cleaning up a return). */ | |
856 | ||
857 | static void | |
858 | expand_goto_internal (body, label, last_insn) | |
859 | tree body; | |
860 | rtx label; | |
861 | rtx last_insn; | |
862 | { | |
863 | struct nesting *block; | |
864 | rtx stack_level = 0; | |
865 | ||
866 | if (GET_CODE (label) != CODE_LABEL) | |
867 | abort (); | |
868 | ||
869 | /* If label has already been defined, we can tell now | |
870 | whether and how we must alter the stack level. */ | |
871 | ||
872 | if (PREV_INSN (label) != 0) | |
873 | { | |
874 | /* Find the innermost pending block that contains the label. | |
875 | (Check containment by comparing insn-uids.) | |
876 | Then restore the outermost stack level within that block, | |
877 | and do cleanups of all blocks contained in it. */ | |
878 | for (block = block_stack; block; block = block->next) | |
879 | { | |
880 | if (INSN_UID (block->data.block.first_insn) < INSN_UID (label)) | |
881 | break; | |
882 | if (block->data.block.stack_level != 0) | |
883 | stack_level = block->data.block.stack_level; | |
884 | /* Execute the cleanups for blocks we are exiting. */ | |
885 | if (block->data.block.cleanups != 0) | |
886 | { | |
50d1b7a1 | 887 | expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1); |
28d81abb RK |
888 | do_pending_stack_adjust (); |
889 | } | |
890 | } | |
891 | ||
892 | if (stack_level) | |
893 | { | |
0f41302f MS |
894 | /* Ensure stack adjust isn't done by emit_jump, as this |
895 | would clobber the stack pointer. This one should be | |
896 | deleted as dead by flow. */ | |
28d81abb RK |
897 | clear_pending_stack_adjust (); |
898 | do_pending_stack_adjust (); | |
37366632 | 899 | emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX); |
28d81abb RK |
900 | } |
901 | ||
902 | if (body != 0 && DECL_TOO_LATE (body)) | |
903 | error ("jump to `%s' invalidly jumps into binding contour", | |
904 | IDENTIFIER_POINTER (DECL_NAME (body))); | |
905 | } | |
906 | /* Label not yet defined: may need to put this goto | |
907 | on the fixup list. */ | |
908 | else if (! expand_fixup (body, label, last_insn)) | |
909 | { | |
910 | /* No fixup needed. Record that the label is the target | |
911 | of at least one goto that has no fixup. */ | |
912 | if (body != 0) | |
913 | TREE_ADDRESSABLE (body) = 1; | |
914 | } | |
915 | ||
916 | emit_jump (label); | |
917 | } | |
918 | \f | |
919 | /* Generate if necessary a fixup for a goto | |
920 | whose target label in tree structure (if any) is TREE_LABEL | |
921 | and whose target in rtl is RTL_LABEL. | |
922 | ||
923 | If LAST_INSN is nonzero, we pretend that the jump appears | |
924 | after insn LAST_INSN instead of at the current point in the insn stream. | |
925 | ||
023b57e6 RS |
926 | The fixup will be used later to insert insns just before the goto. |
927 | Those insns will restore the stack level as appropriate for the | |
928 | target label, and will (in the case of C++) also invoke any object | |
929 | destructors which have to be invoked when we exit the scopes which | |
930 | are exited by the goto. | |
28d81abb RK |
931 | |
932 | Value is nonzero if a fixup is made. */ | |
933 | ||
934 | static int | |
935 | expand_fixup (tree_label, rtl_label, last_insn) | |
936 | tree tree_label; | |
937 | rtx rtl_label; | |
938 | rtx last_insn; | |
939 | { | |
940 | struct nesting *block, *end_block; | |
941 | ||
942 | /* See if we can recognize which block the label will be output in. | |
943 | This is possible in some very common cases. | |
944 | If we succeed, set END_BLOCK to that block. | |
945 | Otherwise, set it to 0. */ | |
946 | ||
947 | if (cond_stack | |
948 | && (rtl_label == cond_stack->data.cond.endif_label | |
949 | || rtl_label == cond_stack->data.cond.next_label)) | |
950 | end_block = cond_stack; | |
951 | /* If we are in a loop, recognize certain labels which | |
952 | are likely targets. This reduces the number of fixups | |
953 | we need to create. */ | |
954 | else if (loop_stack | |
955 | && (rtl_label == loop_stack->data.loop.start_label | |
956 | || rtl_label == loop_stack->data.loop.end_label | |
957 | || rtl_label == loop_stack->data.loop.continue_label)) | |
958 | end_block = loop_stack; | |
959 | else | |
960 | end_block = 0; | |
961 | ||
962 | /* Now set END_BLOCK to the binding level to which we will return. */ | |
963 | ||
964 | if (end_block) | |
965 | { | |
966 | struct nesting *next_block = end_block->all; | |
967 | block = block_stack; | |
968 | ||
969 | /* First see if the END_BLOCK is inside the innermost binding level. | |
970 | If so, then no cleanups or stack levels are relevant. */ | |
971 | while (next_block && next_block != block) | |
972 | next_block = next_block->all; | |
973 | ||
974 | if (next_block) | |
975 | return 0; | |
976 | ||
977 | /* Otherwise, set END_BLOCK to the innermost binding level | |
978 | which is outside the relevant control-structure nesting. */ | |
979 | next_block = block_stack->next; | |
980 | for (block = block_stack; block != end_block; block = block->all) | |
981 | if (block == next_block) | |
982 | next_block = next_block->next; | |
983 | end_block = next_block; | |
984 | } | |
985 | ||
986 | /* Does any containing block have a stack level or cleanups? | |
987 | If not, no fixup is needed, and that is the normal case | |
988 | (the only case, for standard C). */ | |
989 | for (block = block_stack; block != end_block; block = block->next) | |
990 | if (block->data.block.stack_level != 0 | |
991 | || block->data.block.cleanups != 0) | |
992 | break; | |
993 | ||
994 | if (block != end_block) | |
995 | { | |
996 | /* Ok, a fixup is needed. Add a fixup to the list of such. */ | |
997 | struct goto_fixup *fixup | |
998 | = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup)); | |
999 | /* In case an old stack level is restored, make sure that comes | |
1000 | after any pending stack adjust. */ | |
1001 | /* ?? If the fixup isn't to come at the present position, | |
1002 | doing the stack adjust here isn't useful. Doing it with our | |
1003 | settings at that location isn't useful either. Let's hope | |
1004 | someone does it! */ | |
1005 | if (last_insn == 0) | |
1006 | do_pending_stack_adjust (); | |
28d81abb RK |
1007 | fixup->target = tree_label; |
1008 | fixup->target_rtl = rtl_label; | |
023b57e6 RS |
1009 | |
1010 | /* Create a BLOCK node and a corresponding matched set of | |
12f61228 | 1011 | NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at |
023b57e6 RS |
1012 | this point. The notes will encapsulate any and all fixup |
1013 | code which we might later insert at this point in the insn | |
1014 | stream. Also, the BLOCK node will be the parent (i.e. the | |
1015 | `SUPERBLOCK') of any other BLOCK nodes which we might create | |
0679e3fc JM |
1016 | later on when we are expanding the fixup code. |
1017 | ||
1018 | Note that optimization passes (including expand_end_loop) | |
1019 | might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED | |
1020 | as a placeholder. */ | |
023b57e6 RS |
1021 | |
1022 | { | |
1023 | register rtx original_before_jump | |
1024 | = last_insn ? last_insn : get_last_insn (); | |
0679e3fc | 1025 | rtx start; |
a97901e6 | 1026 | rtx end; |
e6fd097e MM |
1027 | tree block; |
1028 | ||
1029 | block = make_node (BLOCK); | |
1030 | TREE_USED (block) = 1; | |
1031 | ||
01d939e8 | 1032 | if (!cfun->x_whole_function_mode_p) |
a97901e6 MM |
1033 | insert_block (block); |
1034 | else | |
e6fd097e | 1035 | { |
a97901e6 MM |
1036 | BLOCK_CHAIN (block) |
1037 | = BLOCK_CHAIN (DECL_INITIAL (current_function_decl)); | |
1038 | BLOCK_CHAIN (DECL_INITIAL (current_function_decl)) | |
1039 | = block; | |
e6fd097e | 1040 | } |
023b57e6 RS |
1041 | |
1042 | start_sequence (); | |
0679e3fc | 1043 | start = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG); |
01d939e8 | 1044 | if (cfun->x_whole_function_mode_p) |
a97901e6 | 1045 | NOTE_BLOCK (start) = block; |
0679e3fc | 1046 | fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_DELETED); |
a97901e6 | 1047 | end = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END); |
01d939e8 | 1048 | if (cfun->x_whole_function_mode_p) |
a97901e6 | 1049 | NOTE_BLOCK (end) = block; |
e6fd097e | 1050 | fixup->context = block; |
023b57e6 | 1051 | end_sequence (); |
0679e3fc | 1052 | emit_insns_after (start, original_before_jump); |
023b57e6 RS |
1053 | } |
1054 | ||
3f1d071b | 1055 | fixup->block_start_count = current_block_start_count; |
28d81abb RK |
1056 | fixup->stack_level = 0; |
1057 | fixup->cleanup_list_list | |
e976b8b2 | 1058 | = ((block->data.block.outer_cleanups |
28d81abb | 1059 | || block->data.block.cleanups) |
37366632 | 1060 | ? tree_cons (NULL_TREE, block->data.block.cleanups, |
28d81abb RK |
1061 | block->data.block.outer_cleanups) |
1062 | : 0); | |
1063 | fixup->next = goto_fixup_chain; | |
1064 | goto_fixup_chain = fixup; | |
1065 | } | |
1066 | ||
1067 | return block != 0; | |
1068 | } | |
1069 | ||
ca695ac9 | 1070 | |
cfc3d13f RK |
1071 | \f |
1072 | /* Expand any needed fixups in the outputmost binding level of the | |
1073 | function. FIRST_INSN is the first insn in the function. */ | |
ca695ac9 | 1074 | |
cfc3d13f RK |
1075 | void |
1076 | expand_fixups (first_insn) | |
1077 | rtx first_insn; | |
1078 | { | |
1079 | fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, first_insn, 0); | |
1080 | } | |
ca695ac9 | 1081 | |
28d81abb RK |
1082 | /* When exiting a binding contour, process all pending gotos requiring fixups. |
1083 | THISBLOCK is the structure that describes the block being exited. | |
1084 | STACK_LEVEL is the rtx for the stack level to restore exiting this contour. | |
1085 | CLEANUP_LIST is a list of expressions to evaluate on exiting this contour. | |
1086 | FIRST_INSN is the insn that began this contour. | |
1087 | ||
1088 | Gotos that jump out of this contour must restore the | |
1089 | stack level and do the cleanups before actually jumping. | |
1090 | ||
1091 | DONT_JUMP_IN nonzero means report error there is a jump into this | |
1092 | contour from before the beginning of the contour. | |
1093 | This is also done if STACK_LEVEL is nonzero. */ | |
1094 | ||
704f4dca | 1095 | static void |
28d81abb RK |
1096 | fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in) |
1097 | struct nesting *thisblock; | |
1098 | rtx stack_level; | |
1099 | tree cleanup_list; | |
1100 | rtx first_insn; | |
1101 | int dont_jump_in; | |
1102 | { | |
1103 | register struct goto_fixup *f, *prev; | |
1104 | ||
1105 | /* F is the fixup we are considering; PREV is the previous one. */ | |
1106 | /* We run this loop in two passes so that cleanups of exited blocks | |
1107 | are run first, and blocks that are exited are marked so | |
1108 | afterwards. */ | |
1109 | ||
1110 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) | |
1111 | { | |
1112 | /* Test for a fixup that is inactive because it is already handled. */ | |
1113 | if (f->before_jump == 0) | |
1114 | { | |
1115 | /* Delete inactive fixup from the chain, if that is easy to do. */ | |
1116 | if (prev != 0) | |
1117 | prev->next = f->next; | |
1118 | } | |
1119 | /* Has this fixup's target label been defined? | |
1120 | If so, we can finalize it. */ | |
1121 | else if (PREV_INSN (f->target_rtl) != 0) | |
1122 | { | |
7629c936 | 1123 | register rtx cleanup_insns; |
7629c936 | 1124 | |
28d81abb | 1125 | /* If this fixup jumped into this contour from before the beginning |
14a774a9 RK |
1126 | of this contour, report an error. This code used to use |
1127 | the first non-label insn after f->target_rtl, but that's | |
1128 | wrong since such can be added, by things like put_var_into_stack | |
1129 | and have INSN_UIDs that are out of the range of the block. */ | |
28d81abb RK |
1130 | /* ??? Bug: this does not detect jumping in through intermediate |
1131 | blocks that have stack levels or cleanups. | |
1132 | It detects only a problem with the innermost block | |
1133 | around the label. */ | |
1134 | if (f->target != 0 | |
1135 | && (dont_jump_in || stack_level || cleanup_list) | |
14a774a9 | 1136 | && INSN_UID (first_insn) < INSN_UID (f->target_rtl) |
28d81abb | 1137 | && INSN_UID (first_insn) > INSN_UID (f->before_jump) |
33bc3ff5 | 1138 | && ! DECL_ERROR_ISSUED (f->target)) |
28d81abb RK |
1139 | { |
1140 | error_with_decl (f->target, | |
1141 | "label `%s' used before containing binding contour"); | |
1142 | /* Prevent multiple errors for one label. */ | |
33bc3ff5 | 1143 | DECL_ERROR_ISSUED (f->target) = 1; |
28d81abb RK |
1144 | } |
1145 | ||
7629c936 RS |
1146 | /* We will expand the cleanups into a sequence of their own and |
1147 | then later on we will attach this new sequence to the insn | |
1148 | stream just ahead of the actual jump insn. */ | |
1149 | ||
1150 | start_sequence (); | |
1151 | ||
023b57e6 RS |
1152 | /* Temporarily restore the lexical context where we will |
1153 | logically be inserting the fixup code. We do this for the | |
1154 | sake of getting the debugging information right. */ | |
1155 | ||
7629c936 | 1156 | pushlevel (0); |
023b57e6 | 1157 | set_block (f->context); |
7629c936 RS |
1158 | |
1159 | /* Expand the cleanups for blocks this jump exits. */ | |
28d81abb RK |
1160 | if (f->cleanup_list_list) |
1161 | { | |
1162 | tree lists; | |
1163 | for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists)) | |
1164 | /* Marked elements correspond to blocks that have been closed. | |
1165 | Do their cleanups. */ | |
1166 | if (TREE_ADDRESSABLE (lists) | |
1167 | && TREE_VALUE (lists) != 0) | |
7629c936 | 1168 | { |
50d1b7a1 | 1169 | expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1); |
7629c936 RS |
1170 | /* Pop any pushes done in the cleanups, |
1171 | in case function is about to return. */ | |
1172 | do_pending_stack_adjust (); | |
1173 | } | |
28d81abb RK |
1174 | } |
1175 | ||
1176 | /* Restore stack level for the biggest contour that this | |
1177 | jump jumps out of. */ | |
1178 | if (f->stack_level) | |
59257ff7 | 1179 | emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump); |
7629c936 RS |
1180 | |
1181 | /* Finish up the sequence containing the insns which implement the | |
1182 | necessary cleanups, and then attach that whole sequence to the | |
1183 | insn stream just ahead of the actual jump insn. Attaching it | |
1184 | at that point insures that any cleanups which are in fact | |
1185 | implicit C++ object destructions (which must be executed upon | |
1186 | leaving the block) appear (to the debugger) to be taking place | |
1187 | in an area of the generated code where the object(s) being | |
1188 | destructed are still "in scope". */ | |
1189 | ||
1190 | cleanup_insns = get_insns (); | |
023b57e6 | 1191 | poplevel (1, 0, 0); |
7629c936 RS |
1192 | |
1193 | end_sequence (); | |
1194 | emit_insns_after (cleanup_insns, f->before_jump); | |
1195 | ||
7629c936 | 1196 | |
28d81abb RK |
1197 | f->before_jump = 0; |
1198 | } | |
1199 | } | |
1200 | ||
6bc2f582 RK |
1201 | /* For any still-undefined labels, do the cleanups for this block now. |
1202 | We must do this now since items in the cleanup list may go out | |
0f41302f | 1203 | of scope when the block ends. */ |
28d81abb RK |
1204 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) |
1205 | if (f->before_jump != 0 | |
1206 | && PREV_INSN (f->target_rtl) == 0 | |
1207 | /* Label has still not appeared. If we are exiting a block with | |
1208 | a stack level to restore, that started before the fixup, | |
1209 | mark this stack level as needing restoration | |
6bc2f582 | 1210 | when the fixup is later finalized. */ |
28d81abb | 1211 | && thisblock != 0 |
6bc2f582 RK |
1212 | /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it |
1213 | means the label is undefined. That's erroneous, but possible. */ | |
28d81abb RK |
1214 | && (thisblock->data.block.block_start_count |
1215 | <= f->block_start_count)) | |
1216 | { | |
1217 | tree lists = f->cleanup_list_list; | |
6bc2f582 RK |
1218 | rtx cleanup_insns; |
1219 | ||
28d81abb RK |
1220 | for (; lists; lists = TREE_CHAIN (lists)) |
1221 | /* If the following elt. corresponds to our containing block | |
1222 | then the elt. must be for this block. */ | |
1223 | if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups) | |
6bc2f582 RK |
1224 | { |
1225 | start_sequence (); | |
1226 | pushlevel (0); | |
1227 | set_block (f->context); | |
1228 | expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1); | |
f0959e58 | 1229 | do_pending_stack_adjust (); |
6bc2f582 RK |
1230 | cleanup_insns = get_insns (); |
1231 | poplevel (1, 0, 0); | |
1232 | end_sequence (); | |
412c00dc RK |
1233 | if (cleanup_insns != 0) |
1234 | f->before_jump | |
1235 | = emit_insns_after (cleanup_insns, f->before_jump); | |
6bc2f582 | 1236 | |
e07ed33f | 1237 | f->cleanup_list_list = TREE_CHAIN (lists); |
6bc2f582 | 1238 | } |
28d81abb RK |
1239 | |
1240 | if (stack_level) | |
1241 | f->stack_level = stack_level; | |
1242 | } | |
1243 | } | |
2a230e9d BS |
1244 | \f |
1245 | /* Return the number of times character C occurs in string S. */ | |
1246 | static int | |
1247 | n_occurrences (c, s) | |
1248 | int c; | |
dff01034 | 1249 | const char *s; |
2a230e9d BS |
1250 | { |
1251 | int n = 0; | |
1252 | while (*s) | |
1253 | n += (*s++ == c); | |
1254 | return n; | |
1255 | } | |
28d81abb RK |
1256 | \f |
1257 | /* Generate RTL for an asm statement (explicit assembler code). | |
1258 | BODY is a STRING_CST node containing the assembler code text, | |
1259 | or an ADDR_EXPR containing a STRING_CST. */ | |
1260 | ||
1261 | void | |
1262 | expand_asm (body) | |
1263 | tree body; | |
1264 | { | |
7d384cc0 | 1265 | if (current_function_check_memory_usage) |
17f5f329 | 1266 | { |
c5c76735 | 1267 | error ("`asm' cannot be used in function where memory usage is checked"); |
17f5f329 RK |
1268 | return; |
1269 | } | |
1270 | ||
28d81abb RK |
1271 | if (TREE_CODE (body) == ADDR_EXPR) |
1272 | body = TREE_OPERAND (body, 0); | |
1273 | ||
38a448ca RH |
1274 | emit_insn (gen_rtx_ASM_INPUT (VOIDmode, |
1275 | TREE_STRING_POINTER (body))); | |
28d81abb RK |
1276 | last_expr_type = 0; |
1277 | } | |
1278 | ||
1279 | /* Generate RTL for an asm statement with arguments. | |
1280 | STRING is the instruction template. | |
1281 | OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs. | |
1282 | Each output or input has an expression in the TREE_VALUE and | |
1283 | a constraint-string in the TREE_PURPOSE. | |
1284 | CLOBBERS is a list of STRING_CST nodes each naming a hard register | |
1285 | that is clobbered by this insn. | |
1286 | ||
1287 | Not all kinds of lvalue that may appear in OUTPUTS can be stored directly. | |
1288 | Some elements of OUTPUTS may be replaced with trees representing temporary | |
1289 | values. The caller should copy those temporary values to the originally | |
1290 | specified lvalues. | |
1291 | ||
1292 | VOL nonzero means the insn is volatile; don't optimize it. */ | |
1293 | ||
1294 | void | |
1295 | expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line) | |
1296 | tree string, outputs, inputs, clobbers; | |
1297 | int vol; | |
1298 | char *filename; | |
1299 | int line; | |
1300 | { | |
1301 | rtvec argvec, constraints; | |
1302 | rtx body; | |
1303 | int ninputs = list_length (inputs); | |
1304 | int noutputs = list_length (outputs); | |
235c5021 | 1305 | int ninout = 0; |
b4ccaa16 | 1306 | int nclobbers; |
28d81abb RK |
1307 | tree tail; |
1308 | register int i; | |
1309 | /* Vector of RTX's of evaluated output operands. */ | |
1310 | rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx)); | |
235c5021 | 1311 | int *inout_opnum = (int *) alloca (noutputs * sizeof (int)); |
947255ed | 1312 | rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx)); |
235c5021 RK |
1313 | enum machine_mode *inout_mode |
1314 | = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode)); | |
28d81abb RK |
1315 | /* The insn we have emitted. */ |
1316 | rtx insn; | |
1317 | ||
e5e809f4 | 1318 | /* An ASM with no outputs needs to be treated as volatile, for now. */ |
296f8acc JL |
1319 | if (noutputs == 0) |
1320 | vol = 1; | |
1321 | ||
7d384cc0 | 1322 | if (current_function_check_memory_usage) |
17f5f329 RK |
1323 | { |
1324 | error ("`asm' cannot be used with `-fcheck-memory-usage'"); | |
1325 | return; | |
1326 | } | |
1327 | ||
57bcb97a RH |
1328 | #ifdef MD_ASM_CLOBBERS |
1329 | /* Sometimes we wish to automatically clobber registers across an asm. | |
1330 | Case in point is when the i386 backend moved from cc0 to a hard reg -- | |
1331 | maintaining source-level compatability means automatically clobbering | |
1332 | the flags register. */ | |
1333 | MD_ASM_CLOBBERS (clobbers); | |
1334 | #endif | |
1335 | ||
c5c76735 JL |
1336 | if (current_function_check_memory_usage) |
1337 | { | |
1338 | error ("`asm' cannot be used in function where memory usage is checked"); | |
1339 | return; | |
1340 | } | |
1341 | ||
b4ccaa16 RS |
1342 | /* Count the number of meaningful clobbered registers, ignoring what |
1343 | we would ignore later. */ | |
1344 | nclobbers = 0; | |
1345 | for (tail = clobbers; tail; tail = TREE_CHAIN (tail)) | |
1346 | { | |
1347 | char *regname = TREE_STRING_POINTER (TREE_VALUE (tail)); | |
14a774a9 | 1348 | |
c09e6498 RS |
1349 | i = decode_reg_name (regname); |
1350 | if (i >= 0 || i == -4) | |
b4ccaa16 | 1351 | ++nclobbers; |
7859e3ac DE |
1352 | else if (i == -2) |
1353 | error ("unknown register name `%s' in `asm'", regname); | |
b4ccaa16 RS |
1354 | } |
1355 | ||
28d81abb RK |
1356 | last_expr_type = 0; |
1357 | ||
2a230e9d BS |
1358 | /* Check that the number of alternatives is constant across all |
1359 | operands. */ | |
1360 | if (outputs || inputs) | |
1361 | { | |
1362 | tree tmp = TREE_PURPOSE (outputs ? outputs : inputs); | |
1363 | int nalternatives = n_occurrences (',', TREE_STRING_POINTER (tmp)); | |
1364 | tree next = inputs; | |
1365 | ||
f62a15e3 BS |
1366 | if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES) |
1367 | { | |
1368 | error ("too many alternatives in `asm'"); | |
1369 | return; | |
1370 | } | |
1371 | ||
2a230e9d BS |
1372 | tmp = outputs; |
1373 | while (tmp) | |
1374 | { | |
1375 | char *constraint = TREE_STRING_POINTER (TREE_PURPOSE (tmp)); | |
14a774a9 | 1376 | |
2a230e9d BS |
1377 | if (n_occurrences (',', constraint) != nalternatives) |
1378 | { | |
1379 | error ("operand constraints for `asm' differ in number of alternatives"); | |
1380 | return; | |
1381 | } | |
14a774a9 | 1382 | |
2a230e9d BS |
1383 | if (TREE_CHAIN (tmp)) |
1384 | tmp = TREE_CHAIN (tmp); | |
1385 | else | |
1386 | tmp = next, next = 0; | |
1387 | } | |
1388 | } | |
1389 | ||
28d81abb RK |
1390 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) |
1391 | { | |
1392 | tree val = TREE_VALUE (tail); | |
b50a024d | 1393 | tree type = TREE_TYPE (val); |
2a230e9d | 1394 | char *constraint; |
3fbd5c2c | 1395 | char *p; |
2a230e9d | 1396 | int c_len; |
28d81abb | 1397 | int j; |
2a230e9d | 1398 | int is_inout = 0; |
d09a75ae | 1399 | int allows_reg = 0; |
1afbe1c4 | 1400 | int allows_mem = 0; |
28d81abb RK |
1401 | |
1402 | /* If there's an erroneous arg, emit no insn. */ | |
1403 | if (TREE_TYPE (val) == error_mark_node) | |
1404 | return; | |
1405 | ||
d09a75ae RK |
1406 | /* Make sure constraint has `=' and does not have `+'. Also, see |
1407 | if it allows any register. Be liberal on the latter test, since | |
1408 | the worst that happens if we get it wrong is we issue an error | |
1409 | message. */ | |
28d81abb | 1410 | |
14a774a9 | 1411 | c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail))); |
2a230e9d BS |
1412 | constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail)); |
1413 | ||
3fbd5c2c RH |
1414 | /* Allow the `=' or `+' to not be at the beginning of the string, |
1415 | since it wasn't explicitly documented that way, and there is a | |
1416 | large body of code that puts it last. Swap the character to | |
1417 | the front, so as not to uglify any place else. */ | |
1418 | switch (c_len) | |
2a230e9d | 1419 | { |
3fbd5c2c RH |
1420 | default: |
1421 | if ((p = strchr (constraint, '=')) != NULL) | |
1422 | break; | |
1423 | if ((p = strchr (constraint, '+')) != NULL) | |
1424 | break; | |
1425 | case 0: | |
2a230e9d BS |
1426 | error ("output operand constraint lacks `='"); |
1427 | return; | |
1428 | } | |
1429 | ||
3fbd5c2c RH |
1430 | if (p != constraint) |
1431 | { | |
1432 | j = *p; | |
1433 | bcopy (constraint, constraint+1, p-constraint); | |
1434 | *constraint = j; | |
1435 | ||
1436 | warning ("output constraint `%c' for operand %d is not at the beginning", j, i); | |
1437 | } | |
1438 | ||
2a230e9d BS |
1439 | is_inout = constraint[0] == '+'; |
1440 | /* Replace '+' with '='. */ | |
1441 | constraint[0] = '='; | |
1442 | /* Make sure we can specify the matching operand. */ | |
1443 | if (is_inout && i > 9) | |
1444 | { | |
1445 | error ("output operand constraint %d contains `+'", i); | |
1446 | return; | |
1447 | } | |
1448 | ||
1449 | for (j = 1; j < c_len; j++) | |
1450 | switch (constraint[j]) | |
d09a75ae RK |
1451 | { |
1452 | case '+': | |
2a230e9d BS |
1453 | case '=': |
1454 | error ("operand constraint contains '+' or '=' at illegal position."); | |
1455 | return; | |
1456 | ||
1457 | case '%': | |
1458 | if (i + 1 == ninputs + noutputs) | |
235c5021 | 1459 | { |
2a230e9d | 1460 | error ("`%%' constraint used with last operand"); |
235c5021 RK |
1461 | return; |
1462 | } | |
235c5021 | 1463 | break; |
d09a75ae | 1464 | |
2a230e9d | 1465 | case '?': case '!': case '*': case '&': |
1afbe1c4 | 1466 | case 'E': case 'F': case 'G': case 'H': |
d09a75ae RK |
1467 | case 's': case 'i': case 'n': |
1468 | case 'I': case 'J': case 'K': case 'L': case 'M': | |
1469 | case 'N': case 'O': case 'P': case ',': | |
1470 | #ifdef EXTRA_CONSTRAINT | |
1471 | case 'Q': case 'R': case 'S': case 'T': case 'U': | |
1472 | #endif | |
1473 | break; | |
1474 | ||
7b7a33b3 | 1475 | case '0': case '1': case '2': case '3': case '4': |
cd76ea33 RK |
1476 | case '5': case '6': case '7': case '8': case '9': |
1477 | error ("matching constraint not valid in output operand"); | |
1478 | break; | |
1479 | ||
1afbe1c4 RH |
1480 | case 'V': case 'm': case 'o': |
1481 | allows_mem = 1; | |
1482 | break; | |
1483 | ||
1484 | case '<': case '>': | |
1485 | /* ??? Before flow, auto inc/dec insns are not supposed to exist, | |
1486 | excepting those that expand_call created. So match memory | |
1487 | and hope. */ | |
1488 | allows_mem = 1; | |
1489 | break; | |
1490 | ||
1491 | case 'g': case 'X': | |
1492 | allows_reg = 1; | |
1493 | allows_mem = 1; | |
1494 | break; | |
1495 | ||
1496 | case 'p': case 'r': | |
d09a75ae RK |
1497 | default: |
1498 | allows_reg = 1; | |
1499 | break; | |
1500 | } | |
1501 | ||
d09a75ae RK |
1502 | /* If an output operand is not a decl or indirect ref and our constraint |
1503 | allows a register, make a temporary to act as an intermediate. | |
1504 | Make the asm insn write into that, then our caller will copy it to | |
1505 | the real output operand. Likewise for promoted variables. */ | |
28d81abb | 1506 | |
947255ed | 1507 | real_output_rtx[i] = NULL_RTX; |
1afbe1c4 RH |
1508 | if ((TREE_CODE (val) == INDIRECT_REF |
1509 | && allows_mem) | |
b50a024d | 1510 | || (TREE_CODE_CLASS (TREE_CODE (val)) == 'd' |
1afbe1c4 | 1511 | && (allows_mem || GET_CODE (DECL_RTL (val)) == REG) |
b50a024d | 1512 | && ! (GET_CODE (DECL_RTL (val)) == REG |
d09a75ae | 1513 | && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))) |
235c5021 | 1514 | || ! allows_reg |
2a230e9d | 1515 | || is_inout) |
d09a75ae RK |
1516 | { |
1517 | if (! allows_reg) | |
1518 | mark_addressable (TREE_VALUE (tail)); | |
1519 | ||
1520 | output_rtx[i] | |
17f5f329 RK |
1521 | = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, |
1522 | EXPAND_MEMORY_USE_WO); | |
d09a75ae RK |
1523 | |
1524 | if (! allows_reg && GET_CODE (output_rtx[i]) != MEM) | |
1525 | error ("output number %d not directly addressable", i); | |
1afbe1c4 | 1526 | if (! allows_mem && GET_CODE (output_rtx[i]) == MEM) |
947255ed RH |
1527 | { |
1528 | real_output_rtx[i] = protect_from_queue (output_rtx[i], 1); | |
1529 | output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i])); | |
1530 | if (is_inout) | |
1531 | emit_move_insn (output_rtx[i], real_output_rtx[i]); | |
1532 | } | |
d09a75ae | 1533 | } |
b50a024d | 1534 | else |
e619bb8d | 1535 | { |
6e81958a | 1536 | output_rtx[i] = assign_temp (type, 0, 0, 0); |
b50a024d RK |
1537 | TREE_VALUE (tail) = make_tree (type, output_rtx[i]); |
1538 | } | |
235c5021 | 1539 | |
2a230e9d | 1540 | if (is_inout) |
235c5021 RK |
1541 | { |
1542 | inout_mode[ninout] = TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))); | |
1543 | inout_opnum[ninout++] = i; | |
1544 | } | |
28d81abb RK |
1545 | } |
1546 | ||
235c5021 | 1547 | ninputs += ninout; |
28d81abb RK |
1548 | if (ninputs + noutputs > MAX_RECOG_OPERANDS) |
1549 | { | |
1550 | error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS); | |
1551 | return; | |
1552 | } | |
1553 | ||
1554 | /* Make vectors for the expression-rtx and constraint strings. */ | |
1555 | ||
1556 | argvec = rtvec_alloc (ninputs); | |
1557 | constraints = rtvec_alloc (ninputs); | |
1558 | ||
21a427cc AS |
1559 | body = gen_rtx_ASM_OPERANDS (VOIDmode, TREE_STRING_POINTER (string), |
1560 | empty_string, 0, argvec, constraints, | |
1561 | filename, line); | |
c85f7c16 | 1562 | |
78418280 | 1563 | MEM_VOLATILE_P (body) = vol; |
28d81abb RK |
1564 | |
1565 | /* Eval the inputs and put them into ARGVEC. | |
1566 | Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */ | |
1567 | ||
1568 | i = 0; | |
1569 | for (tail = inputs; tail; tail = TREE_CHAIN (tail)) | |
1570 | { | |
1571 | int j; | |
1f06ee8d RH |
1572 | int allows_reg = 0, allows_mem = 0; |
1573 | char *constraint, *orig_constraint; | |
2a230e9d | 1574 | int c_len; |
1f06ee8d | 1575 | rtx op; |
28d81abb RK |
1576 | |
1577 | /* If there's an erroneous arg, emit no insn, | |
1578 | because the ASM_INPUT would get VOIDmode | |
1579 | and that could cause a crash in reload. */ | |
1580 | if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node) | |
1581 | return; | |
2a230e9d BS |
1582 | |
1583 | /* ??? Can this happen, and does the error message make any sense? */ | |
28d81abb RK |
1584 | if (TREE_PURPOSE (tail) == NULL_TREE) |
1585 | { | |
1586 | error ("hard register `%s' listed as input operand to `asm'", | |
1587 | TREE_STRING_POINTER (TREE_VALUE (tail)) ); | |
1588 | return; | |
1589 | } | |
1590 | ||
14a774a9 | 1591 | c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail))); |
2a230e9d | 1592 | constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail)); |
1f06ee8d | 1593 | orig_constraint = constraint; |
28d81abb | 1594 | |
2a230e9d BS |
1595 | /* Make sure constraint has neither `=', `+', nor '&'. */ |
1596 | ||
1597 | for (j = 0; j < c_len; j++) | |
1598 | switch (constraint[j]) | |
28d81abb | 1599 | { |
2a230e9d | 1600 | case '+': case '=': case '&': |
1f06ee8d RH |
1601 | if (constraint == orig_constraint) |
1602 | { | |
14a774a9 RK |
1603 | error ("input operand constraint contains `%c'", |
1604 | constraint[j]); | |
1f06ee8d RH |
1605 | return; |
1606 | } | |
1607 | break; | |
65fed0cb | 1608 | |
2a230e9d | 1609 | case '%': |
1f06ee8d RH |
1610 | if (constraint == orig_constraint |
1611 | && i + 1 == ninputs - ninout) | |
2a230e9d BS |
1612 | { |
1613 | error ("`%%' constraint used with last operand"); | |
1614 | return; | |
1615 | } | |
1616 | break; | |
1617 | ||
1f06ee8d RH |
1618 | case 'V': case 'm': case 'o': |
1619 | allows_mem = 1; | |
1620 | break; | |
1621 | ||
1622 | case '<': case '>': | |
2a230e9d | 1623 | case '?': case '!': case '*': |
65fed0cb RK |
1624 | case 'E': case 'F': case 'G': case 'H': case 'X': |
1625 | case 's': case 'i': case 'n': | |
1626 | case 'I': case 'J': case 'K': case 'L': case 'M': | |
1627 | case 'N': case 'O': case 'P': case ',': | |
1628 | #ifdef EXTRA_CONSTRAINT | |
1629 | case 'Q': case 'R': case 'S': case 'T': case 'U': | |
1630 | #endif | |
1631 | break; | |
1632 | ||
7b7a33b3 JW |
1633 | /* Whether or not a numeric constraint allows a register is |
1634 | decided by the matching constraint, and so there is no need | |
1635 | to do anything special with them. We must handle them in | |
1636 | the default case, so that we don't unnecessarily force | |
1637 | operands to memory. */ | |
1638 | case '0': case '1': case '2': case '3': case '4': | |
cd76ea33 | 1639 | case '5': case '6': case '7': case '8': case '9': |
2a230e9d | 1640 | if (constraint[j] >= '0' + noutputs) |
956d6950 JL |
1641 | { |
1642 | error | |
1643 | ("matching constraint references invalid operand number"); | |
1644 | return; | |
1645 | } | |
cd76ea33 | 1646 | |
1f06ee8d | 1647 | /* Try and find the real constraint for this dup. */ |
1afbe1c4 RH |
1648 | if ((j == 0 && c_len == 1) |
1649 | || (j == 1 && c_len == 2 && constraint[0] == '%')) | |
1f06ee8d RH |
1650 | { |
1651 | tree o = outputs; | |
14a774a9 | 1652 | |
1f06ee8d RH |
1653 | for (j = constraint[j] - '0'; j > 0; --j) |
1654 | o = TREE_CHAIN (o); | |
1655 | ||
14a774a9 | 1656 | c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (o))); |
1f06ee8d RH |
1657 | constraint = TREE_STRING_POINTER (TREE_PURPOSE (o)); |
1658 | j = 0; | |
1659 | break; | |
1660 | } | |
1661 | ||
cd76ea33 RK |
1662 | /* ... fall through ... */ |
1663 | ||
1f06ee8d | 1664 | case 'p': case 'r': |
65fed0cb RK |
1665 | default: |
1666 | allows_reg = 1; | |
1667 | break; | |
1f06ee8d RH |
1668 | |
1669 | case 'g': | |
1670 | allows_reg = 1; | |
1671 | allows_mem = 1; | |
1672 | break; | |
28d81abb RK |
1673 | } |
1674 | ||
1f06ee8d | 1675 | if (! allows_reg && allows_mem) |
65fed0cb RK |
1676 | mark_addressable (TREE_VALUE (tail)); |
1677 | ||
1f06ee8d | 1678 | op = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0); |
65fed0cb | 1679 | |
1afbe1c4 | 1680 | if (asm_operand_ok (op, constraint) <= 0) |
65fed0cb | 1681 | { |
1f06ee8d RH |
1682 | if (allows_reg) |
1683 | op = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), op); | |
1684 | else if (!allows_mem) | |
1685 | warning ("asm operand %d probably doesn't match constraints", i); | |
1686 | else if (CONSTANT_P (op)) | |
1687 | op = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), | |
1688 | op); | |
1689 | else if (GET_CODE (op) == REG | |
1690 | || GET_CODE (op) == SUBREG | |
1691 | || GET_CODE (op) == CONCAT) | |
1692 | { | |
1693 | tree type = TREE_TYPE (TREE_VALUE (tail)); | |
1694 | rtx memloc = assign_temp (type, 1, 1, 1); | |
65fed0cb | 1695 | |
1f06ee8d RH |
1696 | emit_move_insn (memloc, op); |
1697 | op = memloc; | |
1698 | } | |
14a774a9 | 1699 | |
1f06ee8d RH |
1700 | else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op)) |
1701 | /* We won't recognize volatile memory as available a | |
1702 | memory_operand at this point. Ignore it. */ | |
1703 | ; | |
1704 | else if (queued_subexp_p (op)) | |
1705 | ; | |
1706 | else | |
1707 | /* ??? Leave this only until we have experience with what | |
1708 | happens in combine and elsewhere when constraints are | |
1709 | not satisfied. */ | |
1710 | warning ("asm operand %d probably doesn't match constraints", i); | |
65fed0cb | 1711 | } |
1f06ee8d | 1712 | XVECEXP (body, 3, i) = op; |
2a230e9d | 1713 | |
28d81abb | 1714 | XVECEXP (body, 4, i) /* constraints */ |
38a448ca | 1715 | = gen_rtx_ASM_INPUT (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), |
1f06ee8d | 1716 | orig_constraint); |
28d81abb RK |
1717 | i++; |
1718 | } | |
1719 | ||
14a774a9 RK |
1720 | /* Protect all the operands from the queue now that they have all been |
1721 | evaluated. */ | |
28d81abb | 1722 | |
235c5021 | 1723 | for (i = 0; i < ninputs - ninout; i++) |
28d81abb RK |
1724 | XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0); |
1725 | ||
1726 | for (i = 0; i < noutputs; i++) | |
1727 | output_rtx[i] = protect_from_queue (output_rtx[i], 1); | |
1728 | ||
235c5021 RK |
1729 | /* For in-out operands, copy output rtx to input rtx. */ |
1730 | for (i = 0; i < ninout; i++) | |
1731 | { | |
235c5021 RK |
1732 | int j = inout_opnum[i]; |
1733 | ||
1734 | XVECEXP (body, 3, ninputs - ninout + i) /* argvec */ | |
1735 | = output_rtx[j]; | |
1736 | XVECEXP (body, 4, ninputs - ninout + i) /* constraints */ | |
21a427cc | 1737 | = gen_rtx_ASM_INPUT (inout_mode[i], digit_strings[j]); |
235c5021 RK |
1738 | } |
1739 | ||
28d81abb RK |
1740 | /* Now, for each output, construct an rtx |
1741 | (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT | |
1742 | ARGVEC CONSTRAINTS)) | |
1743 | If there is more than one, put them inside a PARALLEL. */ | |
1744 | ||
1745 | if (noutputs == 1 && nclobbers == 0) | |
1746 | { | |
1747 | XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs)); | |
38a448ca | 1748 | insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body)); |
28d81abb | 1749 | } |
14a774a9 | 1750 | |
28d81abb RK |
1751 | else if (noutputs == 0 && nclobbers == 0) |
1752 | { | |
1753 | /* No output operands: put in a raw ASM_OPERANDS rtx. */ | |
1754 | insn = emit_insn (body); | |
1755 | } | |
14a774a9 | 1756 | |
28d81abb RK |
1757 | else |
1758 | { | |
1759 | rtx obody = body; | |
1760 | int num = noutputs; | |
14a774a9 RK |
1761 | |
1762 | if (num == 0) | |
1763 | num = 1; | |
1764 | ||
38a448ca | 1765 | body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers)); |
28d81abb RK |
1766 | |
1767 | /* For each output operand, store a SET. */ | |
28d81abb RK |
1768 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) |
1769 | { | |
1770 | XVECEXP (body, 0, i) | |
38a448ca RH |
1771 | = gen_rtx_SET (VOIDmode, |
1772 | output_rtx[i], | |
c5c76735 JL |
1773 | gen_rtx_ASM_OPERANDS |
1774 | (VOIDmode, | |
1775 | TREE_STRING_POINTER (string), | |
1776 | TREE_STRING_POINTER (TREE_PURPOSE (tail)), | |
1777 | i, argvec, constraints, | |
1778 | filename, line)); | |
1779 | ||
28d81abb RK |
1780 | MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol; |
1781 | } | |
1782 | ||
1783 | /* If there are no outputs (but there are some clobbers) | |
1784 | store the bare ASM_OPERANDS into the PARALLEL. */ | |
1785 | ||
1786 | if (i == 0) | |
1787 | XVECEXP (body, 0, i++) = obody; | |
1788 | ||
1789 | /* Store (clobber REG) for each clobbered register specified. */ | |
1790 | ||
b4ccaa16 | 1791 | for (tail = clobbers; tail; tail = TREE_CHAIN (tail)) |
28d81abb | 1792 | { |
28d81abb | 1793 | char *regname = TREE_STRING_POINTER (TREE_VALUE (tail)); |
b4ac57ab | 1794 | int j = decode_reg_name (regname); |
28d81abb | 1795 | |
b4ac57ab | 1796 | if (j < 0) |
28d81abb | 1797 | { |
c09e6498 | 1798 | if (j == -3) /* `cc', which is not a register */ |
dcfedcd0 RK |
1799 | continue; |
1800 | ||
c09e6498 RS |
1801 | if (j == -4) /* `memory', don't cache memory across asm */ |
1802 | { | |
bffc6177 | 1803 | XVECEXP (body, 0, i++) |
38a448ca | 1804 | = gen_rtx_CLOBBER (VOIDmode, |
c5c76735 JL |
1805 | gen_rtx_MEM |
1806 | (BLKmode, | |
1807 | gen_rtx_SCRATCH (VOIDmode))); | |
c09e6498 RS |
1808 | continue; |
1809 | } | |
1810 | ||
956d6950 | 1811 | /* Ignore unknown register, error already signaled. */ |
cc1f5387 | 1812 | continue; |
28d81abb RK |
1813 | } |
1814 | ||
1815 | /* Use QImode since that's guaranteed to clobber just one reg. */ | |
b4ccaa16 | 1816 | XVECEXP (body, 0, i++) |
38a448ca | 1817 | = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j)); |
28d81abb RK |
1818 | } |
1819 | ||
1820 | insn = emit_insn (body); | |
1821 | } | |
1822 | ||
947255ed RH |
1823 | /* For any outputs that needed reloading into registers, spill them |
1824 | back to where they belong. */ | |
1825 | for (i = 0; i < noutputs; ++i) | |
1826 | if (real_output_rtx[i]) | |
1827 | emit_move_insn (real_output_rtx[i], output_rtx[i]); | |
1828 | ||
28d81abb RK |
1829 | free_temp_slots (); |
1830 | } | |
1831 | \f | |
1832 | /* Generate RTL to evaluate the expression EXP | |
1833 | and remember it in case this is the VALUE in a ({... VALUE; }) constr. */ | |
1834 | ||
1835 | void | |
1836 | expand_expr_stmt (exp) | |
1837 | tree exp; | |
1838 | { | |
1839 | /* If -W, warn about statements with no side effects, | |
1840 | except for an explicit cast to void (e.g. for assert()), and | |
1841 | except inside a ({...}) where they may be useful. */ | |
1842 | if (expr_stmts_for_value == 0 && exp != error_mark_node) | |
1843 | { | |
1844 | if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused) | |
1845 | && !(TREE_CODE (exp) == CONVERT_EXPR | |
1846 | && TREE_TYPE (exp) == void_type_node)) | |
1847 | warning_with_file_and_line (emit_filename, emit_lineno, | |
1848 | "statement with no effect"); | |
1849 | else if (warn_unused) | |
1850 | warn_if_unused_value (exp); | |
1851 | } | |
b6ec8c5f RK |
1852 | |
1853 | /* If EXP is of function type and we are expanding statements for | |
1854 | value, convert it to pointer-to-function. */ | |
1855 | if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE) | |
1856 | exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp); | |
1857 | ||
28d81abb | 1858 | last_expr_type = TREE_TYPE (exp); |
a2cf7deb CB |
1859 | last_expr_value = expand_expr (exp, |
1860 | (expr_stmts_for_value | |
1861 | ? NULL_RTX : const0_rtx), | |
1862 | VOIDmode, 0); | |
28d81abb RK |
1863 | |
1864 | /* If all we do is reference a volatile value in memory, | |
1865 | copy it to a register to be sure it is actually touched. */ | |
1866 | if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM | |
1867 | && TREE_THIS_VOLATILE (exp)) | |
1868 | { | |
6a5bbbe6 RS |
1869 | if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode) |
1870 | ; | |
1871 | else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode) | |
28d81abb RK |
1872 | copy_to_reg (last_expr_value); |
1873 | else | |
ddbe9812 RS |
1874 | { |
1875 | rtx lab = gen_label_rtx (); | |
1876 | ||
1877 | /* Compare the value with itself to reference it. */ | |
c5d5d461 JL |
1878 | emit_cmp_and_jump_insns (last_expr_value, last_expr_value, EQ, |
1879 | expand_expr (TYPE_SIZE (last_expr_type), | |
1880 | NULL_RTX, VOIDmode, 0), | |
1881 | BLKmode, 0, | |
1882 | TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT, | |
1883 | lab); | |
ddbe9812 RS |
1884 | emit_label (lab); |
1885 | } | |
28d81abb RK |
1886 | } |
1887 | ||
1888 | /* If this expression is part of a ({...}) and is in memory, we may have | |
1889 | to preserve temporaries. */ | |
1890 | preserve_temp_slots (last_expr_value); | |
1891 | ||
1892 | /* Free any temporaries used to evaluate this expression. Any temporary | |
1893 | used as a result of this expression will already have been preserved | |
1894 | above. */ | |
1895 | free_temp_slots (); | |
1896 | ||
1897 | emit_queue (); | |
1898 | } | |
1899 | ||
1900 | /* Warn if EXP contains any computations whose results are not used. | |
1901 | Return 1 if a warning is printed; 0 otherwise. */ | |
1902 | ||
150a992a | 1903 | int |
28d81abb RK |
1904 | warn_if_unused_value (exp) |
1905 | tree exp; | |
1906 | { | |
1907 | if (TREE_USED (exp)) | |
1908 | return 0; | |
1909 | ||
1910 | switch (TREE_CODE (exp)) | |
1911 | { | |
1912 | case PREINCREMENT_EXPR: | |
1913 | case POSTINCREMENT_EXPR: | |
1914 | case PREDECREMENT_EXPR: | |
1915 | case POSTDECREMENT_EXPR: | |
1916 | case MODIFY_EXPR: | |
1917 | case INIT_EXPR: | |
1918 | case TARGET_EXPR: | |
1919 | case CALL_EXPR: | |
1920 | case METHOD_CALL_EXPR: | |
1921 | case RTL_EXPR: | |
81797aba | 1922 | case TRY_CATCH_EXPR: |
28d81abb RK |
1923 | case WITH_CLEANUP_EXPR: |
1924 | case EXIT_EXPR: | |
1925 | /* We don't warn about COND_EXPR because it may be a useful | |
1926 | construct if either arm contains a side effect. */ | |
1927 | case COND_EXPR: | |
1928 | return 0; | |
1929 | ||
1930 | case BIND_EXPR: | |
1931 | /* For a binding, warn if no side effect within it. */ | |
1932 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1933 | ||
de73f171 RK |
1934 | case SAVE_EXPR: |
1935 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1936 | ||
28d81abb RK |
1937 | case TRUTH_ORIF_EXPR: |
1938 | case TRUTH_ANDIF_EXPR: | |
1939 | /* In && or ||, warn if 2nd operand has no side effect. */ | |
1940 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1941 | ||
1942 | case COMPOUND_EXPR: | |
a646a211 JM |
1943 | if (TREE_NO_UNUSED_WARNING (exp)) |
1944 | return 0; | |
28d81abb RK |
1945 | if (warn_if_unused_value (TREE_OPERAND (exp, 0))) |
1946 | return 1; | |
4d23e509 RS |
1947 | /* Let people do `(foo (), 0)' without a warning. */ |
1948 | if (TREE_CONSTANT (TREE_OPERAND (exp, 1))) | |
1949 | return 0; | |
28d81abb RK |
1950 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); |
1951 | ||
1952 | case NOP_EXPR: | |
1953 | case CONVERT_EXPR: | |
b4ac57ab | 1954 | case NON_LVALUE_EXPR: |
28d81abb RK |
1955 | /* Don't warn about values cast to void. */ |
1956 | if (TREE_TYPE (exp) == void_type_node) | |
1957 | return 0; | |
1958 | /* Don't warn about conversions not explicit in the user's program. */ | |
1959 | if (TREE_NO_UNUSED_WARNING (exp)) | |
1960 | return 0; | |
1961 | /* Assignment to a cast usually results in a cast of a modify. | |
55cd1c09 JW |
1962 | Don't complain about that. There can be an arbitrary number of |
1963 | casts before the modify, so we must loop until we find the first | |
1964 | non-cast expression and then test to see if that is a modify. */ | |
1965 | { | |
1966 | tree tem = TREE_OPERAND (exp, 0); | |
1967 | ||
1968 | while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR) | |
1969 | tem = TREE_OPERAND (tem, 0); | |
1970 | ||
de73f171 RK |
1971 | if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR |
1972 | || TREE_CODE (tem) == CALL_EXPR) | |
55cd1c09 JW |
1973 | return 0; |
1974 | } | |
d1e1adfb | 1975 | goto warn; |
28d81abb | 1976 | |
d1e1adfb JM |
1977 | case INDIRECT_REF: |
1978 | /* Don't warn about automatic dereferencing of references, since | |
1979 | the user cannot control it. */ | |
1980 | if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE) | |
1981 | return warn_if_unused_value (TREE_OPERAND (exp, 0)); | |
0f41302f | 1982 | /* ... fall through ... */ |
d1e1adfb | 1983 | |
28d81abb | 1984 | default: |
ddbe9812 RS |
1985 | /* Referencing a volatile value is a side effect, so don't warn. */ |
1986 | if ((TREE_CODE_CLASS (TREE_CODE (exp)) == 'd' | |
1987 | || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r') | |
1988 | && TREE_THIS_VOLATILE (exp)) | |
1989 | return 0; | |
d1e1adfb | 1990 | warn: |
28d81abb RK |
1991 | warning_with_file_and_line (emit_filename, emit_lineno, |
1992 | "value computed is not used"); | |
1993 | return 1; | |
1994 | } | |
1995 | } | |
1996 | ||
1997 | /* Clear out the memory of the last expression evaluated. */ | |
1998 | ||
1999 | void | |
2000 | clear_last_expr () | |
2001 | { | |
2002 | last_expr_type = 0; | |
2003 | } | |
2004 | ||
2005 | /* Begin a statement which will return a value. | |
2006 | Return the RTL_EXPR for this statement expr. | |
2007 | The caller must save that value and pass it to expand_end_stmt_expr. */ | |
2008 | ||
2009 | tree | |
2010 | expand_start_stmt_expr () | |
2011 | { | |
ca695ac9 JB |
2012 | int momentary; |
2013 | tree t; | |
2014 | ||
28d81abb RK |
2015 | /* Make the RTL_EXPR node temporary, not momentary, |
2016 | so that rtl_expr_chain doesn't become garbage. */ | |
ca695ac9 JB |
2017 | momentary = suspend_momentary (); |
2018 | t = make_node (RTL_EXPR); | |
28d81abb | 2019 | resume_momentary (momentary); |
33c6ab80 | 2020 | do_pending_stack_adjust (); |
e922dbad | 2021 | start_sequence_for_rtl_expr (t); |
28d81abb RK |
2022 | NO_DEFER_POP; |
2023 | expr_stmts_for_value++; | |
2024 | return t; | |
2025 | } | |
2026 | ||
2027 | /* Restore the previous state at the end of a statement that returns a value. | |
2028 | Returns a tree node representing the statement's value and the | |
2029 | insns to compute the value. | |
2030 | ||
2031 | The nodes of that expression have been freed by now, so we cannot use them. | |
2032 | But we don't want to do that anyway; the expression has already been | |
2033 | evaluated and now we just want to use the value. So generate a RTL_EXPR | |
2034 | with the proper type and RTL value. | |
2035 | ||
2036 | If the last substatement was not an expression, | |
2037 | return something with type `void'. */ | |
2038 | ||
2039 | tree | |
2040 | expand_end_stmt_expr (t) | |
2041 | tree t; | |
2042 | { | |
2043 | OK_DEFER_POP; | |
2044 | ||
2045 | if (last_expr_type == 0) | |
2046 | { | |
2047 | last_expr_type = void_type_node; | |
2048 | last_expr_value = const0_rtx; | |
2049 | } | |
2050 | else if (last_expr_value == 0) | |
2051 | /* There are some cases where this can happen, such as when the | |
2052 | statement is void type. */ | |
2053 | last_expr_value = const0_rtx; | |
2054 | else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value)) | |
2055 | /* Remove any possible QUEUED. */ | |
2056 | last_expr_value = protect_from_queue (last_expr_value, 0); | |
2057 | ||
2058 | emit_queue (); | |
2059 | ||
2060 | TREE_TYPE (t) = last_expr_type; | |
2061 | RTL_EXPR_RTL (t) = last_expr_value; | |
2062 | RTL_EXPR_SEQUENCE (t) = get_insns (); | |
2063 | ||
2064 | rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain); | |
2065 | ||
2066 | end_sequence (); | |
2067 | ||
2068 | /* Don't consider deleting this expr or containing exprs at tree level. */ | |
2069 | TREE_SIDE_EFFECTS (t) = 1; | |
2070 | /* Propagate volatility of the actual RTL expr. */ | |
2071 | TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value); | |
2072 | ||
2073 | last_expr_type = 0; | |
2074 | expr_stmts_for_value--; | |
2075 | ||
2076 | return t; | |
2077 | } | |
2078 | \f | |
28d81abb RK |
2079 | /* Generate RTL for the start of an if-then. COND is the expression |
2080 | whose truth should be tested. | |
2081 | ||
2082 | If EXITFLAG is nonzero, this conditional is visible to | |
2083 | `exit_something'. */ | |
2084 | ||
2085 | void | |
2086 | expand_start_cond (cond, exitflag) | |
2087 | tree cond; | |
2088 | int exitflag; | |
2089 | { | |
2090 | struct nesting *thiscond = ALLOC_NESTING (); | |
2091 | ||
2092 | /* Make an entry on cond_stack for the cond we are entering. */ | |
2093 | ||
2094 | thiscond->next = cond_stack; | |
2095 | thiscond->all = nesting_stack; | |
2096 | thiscond->depth = ++nesting_depth; | |
2097 | thiscond->data.cond.next_label = gen_label_rtx (); | |
2098 | /* Before we encounter an `else', we don't need a separate exit label | |
2099 | unless there are supposed to be exit statements | |
2100 | to exit this conditional. */ | |
2101 | thiscond->exit_label = exitflag ? gen_label_rtx () : 0; | |
2102 | thiscond->data.cond.endif_label = thiscond->exit_label; | |
2103 | cond_stack = thiscond; | |
2104 | nesting_stack = thiscond; | |
2105 | ||
b93a436e | 2106 | do_jump (cond, thiscond->data.cond.next_label, NULL_RTX); |
28d81abb RK |
2107 | } |
2108 | ||
2109 | /* Generate RTL between then-clause and the elseif-clause | |
2110 | of an if-then-elseif-.... */ | |
2111 | ||
2112 | void | |
2113 | expand_start_elseif (cond) | |
2114 | tree cond; | |
2115 | { | |
2116 | if (cond_stack->data.cond.endif_label == 0) | |
2117 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
2118 | emit_jump (cond_stack->data.cond.endif_label); | |
2119 | emit_label (cond_stack->data.cond.next_label); | |
2120 | cond_stack->data.cond.next_label = gen_label_rtx (); | |
37366632 | 2121 | do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX); |
28d81abb RK |
2122 | } |
2123 | ||
2124 | /* Generate RTL between the then-clause and the else-clause | |
2125 | of an if-then-else. */ | |
2126 | ||
2127 | void | |
2128 | expand_start_else () | |
2129 | { | |
2130 | if (cond_stack->data.cond.endif_label == 0) | |
2131 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
ca695ac9 | 2132 | |
28d81abb RK |
2133 | emit_jump (cond_stack->data.cond.endif_label); |
2134 | emit_label (cond_stack->data.cond.next_label); | |
0f41302f | 2135 | cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */ |
28d81abb RK |
2136 | } |
2137 | ||
d947ba59 RK |
2138 | /* After calling expand_start_else, turn this "else" into an "else if" |
2139 | by providing another condition. */ | |
2140 | ||
2141 | void | |
2142 | expand_elseif (cond) | |
2143 | tree cond; | |
2144 | { | |
2145 | cond_stack->data.cond.next_label = gen_label_rtx (); | |
2146 | do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX); | |
2147 | } | |
2148 | ||
28d81abb RK |
2149 | /* Generate RTL for the end of an if-then. |
2150 | Pop the record for it off of cond_stack. */ | |
2151 | ||
2152 | void | |
2153 | expand_end_cond () | |
2154 | { | |
2155 | struct nesting *thiscond = cond_stack; | |
2156 | ||
b93a436e JL |
2157 | do_pending_stack_adjust (); |
2158 | if (thiscond->data.cond.next_label) | |
2159 | emit_label (thiscond->data.cond.next_label); | |
2160 | if (thiscond->data.cond.endif_label) | |
2161 | emit_label (thiscond->data.cond.endif_label); | |
28d81abb RK |
2162 | |
2163 | POPSTACK (cond_stack); | |
2164 | last_expr_type = 0; | |
2165 | } | |
ca695ac9 JB |
2166 | |
2167 | ||
28d81abb RK |
2168 | \f |
2169 | /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this | |
2170 | loop should be exited by `exit_something'. This is a loop for which | |
2171 | `expand_continue' will jump to the top of the loop. | |
2172 | ||
2173 | Make an entry on loop_stack to record the labels associated with | |
2174 | this loop. */ | |
2175 | ||
2176 | struct nesting * | |
2177 | expand_start_loop (exit_flag) | |
2178 | int exit_flag; | |
2179 | { | |
2180 | register struct nesting *thisloop = ALLOC_NESTING (); | |
2181 | ||
2182 | /* Make an entry on loop_stack for the loop we are entering. */ | |
2183 | ||
2184 | thisloop->next = loop_stack; | |
2185 | thisloop->all = nesting_stack; | |
2186 | thisloop->depth = ++nesting_depth; | |
2187 | thisloop->data.loop.start_label = gen_label_rtx (); | |
2188 | thisloop->data.loop.end_label = gen_label_rtx (); | |
8afad312 | 2189 | thisloop->data.loop.alt_end_label = 0; |
28d81abb RK |
2190 | thisloop->data.loop.continue_label = thisloop->data.loop.start_label; |
2191 | thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0; | |
2192 | loop_stack = thisloop; | |
2193 | nesting_stack = thisloop; | |
2194 | ||
2195 | do_pending_stack_adjust (); | |
2196 | emit_queue (); | |
37366632 | 2197 | emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG); |
28d81abb RK |
2198 | emit_label (thisloop->data.loop.start_label); |
2199 | ||
2200 | return thisloop; | |
2201 | } | |
2202 | ||
2203 | /* Like expand_start_loop but for a loop where the continuation point | |
2204 | (for expand_continue_loop) will be specified explicitly. */ | |
2205 | ||
2206 | struct nesting * | |
2207 | expand_start_loop_continue_elsewhere (exit_flag) | |
2208 | int exit_flag; | |
2209 | { | |
2210 | struct nesting *thisloop = expand_start_loop (exit_flag); | |
2211 | loop_stack->data.loop.continue_label = gen_label_rtx (); | |
2212 | return thisloop; | |
2213 | } | |
2214 | ||
2215 | /* Specify the continuation point for a loop started with | |
2216 | expand_start_loop_continue_elsewhere. | |
2217 | Use this at the point in the code to which a continue statement | |
2218 | should jump. */ | |
2219 | ||
2220 | void | |
2221 | expand_loop_continue_here () | |
2222 | { | |
2223 | do_pending_stack_adjust (); | |
37366632 | 2224 | emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT); |
28d81abb RK |
2225 | emit_label (loop_stack->data.loop.continue_label); |
2226 | } | |
2227 | ||
2228 | /* Finish a loop. Generate a jump back to the top and the loop-exit label. | |
2229 | Pop the block off of loop_stack. */ | |
2230 | ||
2231 | void | |
2232 | expand_end_loop () | |
2233 | { | |
0720f6fb MM |
2234 | rtx start_label = loop_stack->data.loop.start_label; |
2235 | rtx insn = get_last_insn (); | |
a7d308f7 | 2236 | int needs_end_jump = 1; |
28d81abb RK |
2237 | |
2238 | /* Mark the continue-point at the top of the loop if none elsewhere. */ | |
2239 | if (start_label == loop_stack->data.loop.continue_label) | |
2240 | emit_note_before (NOTE_INSN_LOOP_CONT, start_label); | |
2241 | ||
2242 | do_pending_stack_adjust (); | |
2243 | ||
a7d308f7 R |
2244 | /* If optimizing, perhaps reorder the loop. |
2245 | First, try to use a condjump near the end. | |
2246 | expand_exit_loop_if_false ends loops with unconditional jumps, | |
2247 | like this: | |
2248 | ||
2249 | if (test) goto label; | |
2250 | optional: cleanup | |
2251 | goto loop_stack->data.loop.end_label | |
2252 | barrier | |
2253 | label: | |
2254 | ||
2255 | If we find such a pattern, we can end the loop earlier. */ | |
2256 | ||
2257 | if (optimize | |
2258 | && GET_CODE (insn) == CODE_LABEL | |
2259 | && LABEL_NAME (insn) == NULL | |
2260 | && GET_CODE (PREV_INSN (insn)) == BARRIER) | |
2261 | { | |
2262 | rtx label = insn; | |
2263 | rtx jump = PREV_INSN (PREV_INSN (label)); | |
2264 | ||
2265 | if (GET_CODE (jump) == JUMP_INSN | |
2266 | && GET_CODE (PATTERN (jump)) == SET | |
2267 | && SET_DEST (PATTERN (jump)) == pc_rtx | |
2268 | && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF | |
2269 | && (XEXP (SET_SRC (PATTERN (jump)), 0) | |
2270 | == loop_stack->data.loop.end_label)) | |
2271 | { | |
2272 | rtx prev; | |
2273 | ||
2274 | /* The test might be complex and reference LABEL multiple times, | |
2275 | like the loop in loop_iterations to set vtop. To handle this, | |
2276 | we move LABEL. */ | |
2277 | insn = PREV_INSN (label); | |
2278 | reorder_insns (label, label, start_label); | |
2279 | ||
2280 | for (prev = PREV_INSN (jump); ; prev = PREV_INSN (prev)) | |
2281 | { | |
2282 | /* We ignore line number notes, but if we see any other note, | |
2283 | in particular NOTE_INSN_BLOCK_*, NOTE_INSN_EH_REGION_*, | |
2284 | NOTE_INSN_LOOP_*, we disable this optimization. */ | |
2285 | if (GET_CODE (prev) == NOTE) | |
2286 | { | |
2287 | if (NOTE_LINE_NUMBER (prev) < 0) | |
2288 | break; | |
2289 | continue; | |
2290 | } | |
2291 | if (GET_CODE (prev) == CODE_LABEL) | |
2292 | break; | |
2293 | if (GET_CODE (prev) == JUMP_INSN) | |
2294 | { | |
2295 | if (GET_CODE (PATTERN (prev)) == SET | |
2296 | && SET_DEST (PATTERN (prev)) == pc_rtx | |
2297 | && GET_CODE (SET_SRC (PATTERN (prev))) == IF_THEN_ELSE | |
2298 | && (GET_CODE (XEXP (SET_SRC (PATTERN (prev)), 1)) | |
2299 | == LABEL_REF) | |
2300 | && XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) == label) | |
2301 | { | |
2302 | XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) | |
2303 | = start_label; | |
2304 | emit_note_after (NOTE_INSN_LOOP_END, prev); | |
2305 | needs_end_jump = 0; | |
2306 | } | |
2307 | break; | |
2308 | } | |
2309 | } | |
2310 | } | |
2311 | } | |
2312 | ||
2313 | /* If the loop starts with a loop exit, roll that to the end where | |
2314 | it will optimize together with the jump back. | |
93de5c31 MM |
2315 | |
2316 | We look for the conditional branch to the exit, except that once | |
2317 | we find such a branch, we don't look past 30 instructions. | |
2318 | ||
2319 | In more detail, if the loop presently looks like this (in pseudo-C): | |
2320 | ||
2321 | start_label: | |
2322 | if (test) goto end_label; | |
2323 | body; | |
2324 | goto start_label; | |
0720f6fb | 2325 | end_label: |
93de5c31 MM |
2326 | |
2327 | transform it to look like: | |
2328 | ||
2329 | goto start_label; | |
2330 | newstart_label: | |
2331 | body; | |
2332 | start_label: | |
2333 | if (test) goto end_label; | |
2334 | goto newstart_label; | |
0720f6fb | 2335 | end_label: |
93de5c31 MM |
2336 | |
2337 | Here, the `test' may actually consist of some reasonably complex | |
2338 | code, terminating in a test. */ | |
0720f6fb | 2339 | |
28d81abb | 2340 | if (optimize |
a7d308f7 | 2341 | && needs_end_jump |
28d81abb RK |
2342 | && |
2343 | ! (GET_CODE (insn) == JUMP_INSN | |
2344 | && GET_CODE (PATTERN (insn)) == SET | |
2345 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
2346 | && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)) | |
2347 | { | |
93de5c31 | 2348 | int eh_regions = 0; |
0720f6fb MM |
2349 | int num_insns = 0; |
2350 | rtx last_test_insn = NULL_RTX; | |
93de5c31 | 2351 | |
28d81abb RK |
2352 | /* Scan insns from the top of the loop looking for a qualified |
2353 | conditional exit. */ | |
2354 | for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn; | |
2355 | insn = NEXT_INSN (insn)) | |
2356 | { | |
93de5c31 MM |
2357 | if (GET_CODE (insn) == NOTE) |
2358 | { | |
2359 | if (optimize < 2 | |
2360 | && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG | |
2361 | || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)) | |
2362 | /* The code that actually moves the exit test will | |
2363 | carefully leave BLOCK notes in their original | |
2364 | location. That means, however, that we can't debug | |
2365 | the exit test itself. So, we refuse to move code | |
2366 | containing BLOCK notes at low optimization levels. */ | |
2367 | break; | |
2368 | ||
2369 | if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) | |
2370 | ++eh_regions; | |
2371 | else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END) | |
2372 | { | |
2373 | --eh_regions; | |
2374 | if (eh_regions < 0) | |
2375 | /* We've come to the end of an EH region, but | |
2376 | never saw the beginning of that region. That | |
2377 | means that an EH region begins before the top | |
2378 | of the loop, and ends in the middle of it. The | |
2379 | existence of such a situation violates a basic | |
2380 | assumption in this code, since that would imply | |
2381 | that even when EH_REGIONS is zero, we might | |
2382 | move code out of an exception region. */ | |
2383 | abort (); | |
2384 | } | |
28d81abb | 2385 | |
f114df20 JL |
2386 | /* We must not walk into a nested loop. */ |
2387 | if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG) | |
2388 | break; | |
2389 | ||
93de5c31 MM |
2390 | /* We already know this INSN is a NOTE, so there's no |
2391 | point in looking at it to see if it's a JUMP. */ | |
2392 | continue; | |
2393 | } | |
28d81abb RK |
2394 | |
2395 | if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN) | |
2396 | num_insns++; | |
2397 | ||
2398 | if (last_test_insn && num_insns > 30) | |
2399 | break; | |
2400 | ||
93de5c31 MM |
2401 | if (eh_regions > 0) |
2402 | /* We don't want to move a partial EH region. Consider: | |
2403 | ||
2404 | while ( ( { try { | |
2405 | if (cond ()) 0; | |
2406 | else { | |
2407 | bar(); | |
2408 | 1; | |
2409 | } | |
2410 | } catch (...) { | |
2411 | 1; | |
2412 | } )) { | |
2413 | body; | |
2414 | } | |
2415 | ||
2416 | This isn't legal C++, but here's what it's supposed to | |
2417 | mean: if cond() is true, stop looping. Otherwise, | |
2418 | call bar, and keep looping. In addition, if cond | |
2419 | throws an exception, catch it and keep looping. Such | |
2420 | constructs are certainy legal in LISP. | |
2421 | ||
2422 | We should not move the `if (cond()) 0' test since then | |
2423 | the EH-region for the try-block would be broken up. | |
2424 | (In this case we would the EH_BEG note for the `try' | |
2425 | and `if cond()' but not the call to bar() or the | |
2426 | EH_END note.) | |
2427 | ||
2428 | So we don't look for tests within an EH region. */ | |
2429 | continue; | |
2430 | ||
0720f6fb | 2431 | if (GET_CODE (insn) == JUMP_INSN |
28d81abb | 2432 | && GET_CODE (PATTERN (insn)) == SET |
0720f6fb MM |
2433 | && SET_DEST (PATTERN (insn)) == pc_rtx) |
2434 | { | |
2435 | /* This is indeed a jump. */ | |
2436 | rtx dest1 = NULL_RTX; | |
2437 | rtx dest2 = NULL_RTX; | |
2438 | rtx potential_last_test; | |
2439 | if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE) | |
2440 | { | |
2441 | /* A conditional jump. */ | |
2442 | dest1 = XEXP (SET_SRC (PATTERN (insn)), 1); | |
2443 | dest2 = XEXP (SET_SRC (PATTERN (insn)), 2); | |
2444 | potential_last_test = insn; | |
2445 | } | |
2446 | else | |
2447 | { | |
2448 | /* An unconditional jump. */ | |
2449 | dest1 = SET_SRC (PATTERN (insn)); | |
2450 | /* Include the BARRIER after the JUMP. */ | |
2451 | potential_last_test = NEXT_INSN (insn); | |
2452 | } | |
2453 | ||
2454 | do { | |
2455 | if (dest1 && GET_CODE (dest1) == LABEL_REF | |
2456 | && ((XEXP (dest1, 0) | |
2457 | == loop_stack->data.loop.alt_end_label) | |
2458 | || (XEXP (dest1, 0) | |
2459 | == loop_stack->data.loop.end_label))) | |
2460 | { | |
2461 | last_test_insn = potential_last_test; | |
2462 | break; | |
2463 | } | |
2464 | ||
2465 | /* If this was a conditional jump, there may be | |
2466 | another label at which we should look. */ | |
2467 | dest1 = dest2; | |
2468 | dest2 = NULL_RTX; | |
2469 | } while (dest1); | |
2470 | } | |
28d81abb RK |
2471 | } |
2472 | ||
2473 | if (last_test_insn != 0 && last_test_insn != get_last_insn ()) | |
2474 | { | |
2475 | /* We found one. Move everything from there up | |
2476 | to the end of the loop, and add a jump into the loop | |
2477 | to jump to there. */ | |
2478 | register rtx newstart_label = gen_label_rtx (); | |
2479 | register rtx start_move = start_label; | |
93de5c31 | 2480 | rtx next_insn; |
28d81abb | 2481 | |
b4ac57ab | 2482 | /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note, |
28d81abb RK |
2483 | then we want to move this note also. */ |
2484 | if (GET_CODE (PREV_INSN (start_move)) == NOTE | |
2485 | && (NOTE_LINE_NUMBER (PREV_INSN (start_move)) | |
2486 | == NOTE_INSN_LOOP_CONT)) | |
2487 | start_move = PREV_INSN (start_move); | |
2488 | ||
2489 | emit_label_after (newstart_label, PREV_INSN (start_move)); | |
93de5c31 MM |
2490 | |
2491 | /* Actually move the insns. Start at the beginning, and | |
2492 | keep copying insns until we've copied the | |
2493 | last_test_insn. */ | |
2494 | for (insn = start_move; insn; insn = next_insn) | |
2495 | { | |
2496 | /* Figure out which insn comes after this one. We have | |
2497 | to do this before we move INSN. */ | |
2498 | if (insn == last_test_insn) | |
2499 | /* We've moved all the insns. */ | |
2500 | next_insn = NULL_RTX; | |
2501 | else | |
2502 | next_insn = NEXT_INSN (insn); | |
2503 | ||
2504 | if (GET_CODE (insn) == NOTE | |
2505 | && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG | |
2506 | || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)) | |
2507 | /* We don't want to move NOTE_INSN_BLOCK_BEGs or | |
2508 | NOTE_INSN_BLOCK_ENDs because the correct generation | |
2509 | of debugging information depends on these appearing | |
2510 | in the same order in the RTL and in the tree | |
2511 | structure, where they are represented as BLOCKs. | |
2512 | So, we don't move block notes. Of course, moving | |
2513 | the code inside the block is likely to make it | |
2514 | impossible to debug the instructions in the exit | |
2515 | test, but such is the price of optimization. */ | |
2516 | continue; | |
2517 | ||
2518 | /* Move the INSN. */ | |
2519 | reorder_insns (insn, insn, get_last_insn ()); | |
2520 | } | |
2521 | ||
28d81abb RK |
2522 | emit_jump_insn_after (gen_jump (start_label), |
2523 | PREV_INSN (newstart_label)); | |
2524 | emit_barrier_after (PREV_INSN (newstart_label)); | |
2525 | start_label = newstart_label; | |
2526 | } | |
2527 | } | |
2528 | ||
a7d308f7 R |
2529 | if (needs_end_jump) |
2530 | { | |
2531 | emit_jump (start_label); | |
2532 | emit_note (NULL_PTR, NOTE_INSN_LOOP_END); | |
2533 | } | |
28d81abb RK |
2534 | emit_label (loop_stack->data.loop.end_label); |
2535 | ||
2536 | POPSTACK (loop_stack); | |
2537 | ||
2538 | last_expr_type = 0; | |
2539 | } | |
2540 | ||
2541 | /* Generate a jump to the current loop's continue-point. | |
2542 | This is usually the top of the loop, but may be specified | |
2543 | explicitly elsewhere. If not currently inside a loop, | |
2544 | return 0 and do nothing; caller will print an error message. */ | |
2545 | ||
2546 | int | |
2547 | expand_continue_loop (whichloop) | |
2548 | struct nesting *whichloop; | |
2549 | { | |
2550 | last_expr_type = 0; | |
2551 | if (whichloop == 0) | |
2552 | whichloop = loop_stack; | |
2553 | if (whichloop == 0) | |
2554 | return 0; | |
37366632 RK |
2555 | expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label, |
2556 | NULL_RTX); | |
28d81abb RK |
2557 | return 1; |
2558 | } | |
2559 | ||
2560 | /* Generate a jump to exit the current loop. If not currently inside a loop, | |
2561 | return 0 and do nothing; caller will print an error message. */ | |
2562 | ||
2563 | int | |
2564 | expand_exit_loop (whichloop) | |
2565 | struct nesting *whichloop; | |
2566 | { | |
2567 | last_expr_type = 0; | |
2568 | if (whichloop == 0) | |
2569 | whichloop = loop_stack; | |
2570 | if (whichloop == 0) | |
2571 | return 0; | |
37366632 | 2572 | expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX); |
28d81abb RK |
2573 | return 1; |
2574 | } | |
2575 | ||
2576 | /* Generate a conditional jump to exit the current loop if COND | |
2577 | evaluates to zero. If not currently inside a loop, | |
2578 | return 0 and do nothing; caller will print an error message. */ | |
2579 | ||
2580 | int | |
2581 | expand_exit_loop_if_false (whichloop, cond) | |
2582 | struct nesting *whichloop; | |
2583 | tree cond; | |
2584 | { | |
b93a436e JL |
2585 | rtx label = gen_label_rtx (); |
2586 | rtx last_insn; | |
28d81abb | 2587 | last_expr_type = 0; |
b93a436e | 2588 | |
28d81abb RK |
2589 | if (whichloop == 0) |
2590 | whichloop = loop_stack; | |
2591 | if (whichloop == 0) | |
2592 | return 0; | |
b93a436e JL |
2593 | /* In order to handle fixups, we actually create a conditional jump |
2594 | around a unconditional branch to exit the loop. If fixups are | |
2595 | necessary, they go before the unconditional branch. */ | |
d902c7ea | 2596 | |
b93a436e JL |
2597 | |
2598 | do_jump (cond, NULL_RTX, label); | |
2599 | last_insn = get_last_insn (); | |
2600 | if (GET_CODE (last_insn) == CODE_LABEL) | |
2601 | whichloop->data.loop.alt_end_label = last_insn; | |
2602 | expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, | |
2603 | NULL_RTX); | |
2604 | emit_label (label); | |
ca695ac9 | 2605 | |
28d81abb RK |
2606 | return 1; |
2607 | } | |
2608 | ||
4a050cc2 JL |
2609 | /* Return nonzero if the loop nest is empty. Else return zero. */ |
2610 | ||
2611 | int | |
2612 | stmt_loop_nest_empty () | |
2613 | { | |
2614 | return (loop_stack == NULL); | |
2615 | } | |
2616 | ||
28d81abb RK |
2617 | /* Return non-zero if we should preserve sub-expressions as separate |
2618 | pseudos. We never do so if we aren't optimizing. We always do so | |
2619 | if -fexpensive-optimizations. | |
2620 | ||
2621 | Otherwise, we only do so if we are in the "early" part of a loop. I.e., | |
2622 | the loop may still be a small one. */ | |
2623 | ||
2624 | int | |
2625 | preserve_subexpressions_p () | |
2626 | { | |
2627 | rtx insn; | |
2628 | ||
2629 | if (flag_expensive_optimizations) | |
2630 | return 1; | |
2631 | ||
01d939e8 | 2632 | if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0) |
28d81abb RK |
2633 | return 0; |
2634 | ||
2635 | insn = get_last_insn_anywhere (); | |
2636 | ||
2637 | return (insn | |
2638 | && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label) | |
2639 | < n_non_fixed_regs * 3)); | |
2640 | ||
2641 | } | |
2642 | ||
2643 | /* Generate a jump to exit the current loop, conditional, binding contour | |
2644 | or case statement. Not all such constructs are visible to this function, | |
2645 | only those started with EXIT_FLAG nonzero. Individual languages use | |
2646 | the EXIT_FLAG parameter to control which kinds of constructs you can | |
2647 | exit this way. | |
2648 | ||
2649 | If not currently inside anything that can be exited, | |
2650 | return 0 and do nothing; caller will print an error message. */ | |
2651 | ||
2652 | int | |
2653 | expand_exit_something () | |
2654 | { | |
2655 | struct nesting *n; | |
2656 | last_expr_type = 0; | |
2657 | for (n = nesting_stack; n; n = n->all) | |
2658 | if (n->exit_label != 0) | |
2659 | { | |
37366632 | 2660 | expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX); |
28d81abb RK |
2661 | return 1; |
2662 | } | |
2663 | ||
2664 | return 0; | |
2665 | } | |
2666 | \f | |
2667 | /* Generate RTL to return from the current function, with no value. | |
2668 | (That is, we do not do anything about returning any value.) */ | |
2669 | ||
2670 | void | |
2671 | expand_null_return () | |
2672 | { | |
2673 | struct nesting *block = block_stack; | |
bd695e1e RH |
2674 | rtx last_insn = get_last_insn (); |
2675 | ||
2676 | /* If this function was declared to return a value, but we | |
2677 | didn't, clobber the return registers so that they are not | |
2678 | propogated live to the rest of the function. */ | |
2679 | ||
2680 | diddle_return_value (CLOBBER); | |
28d81abb RK |
2681 | |
2682 | /* Does any pending block have cleanups? */ | |
2683 | ||
2684 | while (block && block->data.block.cleanups == 0) | |
2685 | block = block->next; | |
2686 | ||
2687 | /* If yes, use a goto to return, since that runs cleanups. */ | |
2688 | ||
2689 | expand_null_return_1 (last_insn, block != 0); | |
2690 | } | |
2691 | ||
2692 | /* Generate RTL to return from the current function, with value VAL. */ | |
2693 | ||
8d800403 | 2694 | static void |
28d81abb RK |
2695 | expand_value_return (val) |
2696 | rtx val; | |
2697 | { | |
2698 | struct nesting *block = block_stack; | |
2699 | rtx last_insn = get_last_insn (); | |
2700 | rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl)); | |
2701 | ||
2702 | /* Copy the value to the return location | |
2703 | unless it's already there. */ | |
2704 | ||
2705 | if (return_reg != val) | |
77636079 | 2706 | { |
77636079 | 2707 | tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); |
37877eb0 | 2708 | #ifdef PROMOTE_FUNCTION_RETURN |
77636079 | 2709 | int unsignedp = TREE_UNSIGNED (type); |
14a774a9 RK |
2710 | enum machine_mode old_mode |
2711 | = DECL_MODE (DECL_RESULT (current_function_decl)); | |
28612f9e | 2712 | enum machine_mode mode |
14a774a9 | 2713 | = promote_mode (type, old_mode, &unsignedp, 1); |
77636079 | 2714 | |
14a774a9 RK |
2715 | if (mode != old_mode) |
2716 | val = convert_modes (mode, old_mode, val, unsignedp); | |
77636079 | 2717 | #endif |
14a774a9 RK |
2718 | if (GET_CODE (return_reg) == PARALLEL) |
2719 | emit_group_load (return_reg, val, int_size_in_bytes (type), | |
2720 | TYPE_ALIGN (type) / BITS_PER_UNIT); | |
2721 | else | |
77636079 RS |
2722 | emit_move_insn (return_reg, val); |
2723 | } | |
14a774a9 | 2724 | |
bd695e1e | 2725 | diddle_return_value (USE); |
28d81abb RK |
2726 | |
2727 | /* Does any pending block have cleanups? */ | |
2728 | ||
2729 | while (block && block->data.block.cleanups == 0) | |
2730 | block = block->next; | |
2731 | ||
2732 | /* If yes, use a goto to return, since that runs cleanups. | |
2733 | Use LAST_INSN to put cleanups *before* the move insn emitted above. */ | |
2734 | ||
2735 | expand_null_return_1 (last_insn, block != 0); | |
2736 | } | |
2737 | ||
2738 | /* Output a return with no value. If LAST_INSN is nonzero, | |
2739 | pretend that the return takes place after LAST_INSN. | |
2740 | If USE_GOTO is nonzero then don't use a return instruction; | |
2741 | go to the return label instead. This causes any cleanups | |
2742 | of pending blocks to be executed normally. */ | |
2743 | ||
2744 | static void | |
2745 | expand_null_return_1 (last_insn, use_goto) | |
2746 | rtx last_insn; | |
2747 | int use_goto; | |
2748 | { | |
2749 | rtx end_label = cleanup_label ? cleanup_label : return_label; | |
2750 | ||
2751 | clear_pending_stack_adjust (); | |
2752 | do_pending_stack_adjust (); | |
2753 | last_expr_type = 0; | |
2754 | ||
2755 | /* PCC-struct return always uses an epilogue. */ | |
2756 | if (current_function_returns_pcc_struct || use_goto) | |
2757 | { | |
2758 | if (end_label == 0) | |
2759 | end_label = return_label = gen_label_rtx (); | |
37366632 | 2760 | expand_goto_internal (NULL_TREE, end_label, last_insn); |
28d81abb RK |
2761 | return; |
2762 | } | |
2763 | ||
2764 | /* Otherwise output a simple return-insn if one is available, | |
2765 | unless it won't do the job. */ | |
2766 | #ifdef HAVE_return | |
2767 | if (HAVE_return && use_goto == 0 && cleanup_label == 0) | |
2768 | { | |
2769 | emit_jump_insn (gen_return ()); | |
2770 | emit_barrier (); | |
2771 | return; | |
2772 | } | |
2773 | #endif | |
2774 | ||
2775 | /* Otherwise jump to the epilogue. */ | |
37366632 | 2776 | expand_goto_internal (NULL_TREE, end_label, last_insn); |
28d81abb RK |
2777 | } |
2778 | \f | |
2779 | /* Generate RTL to evaluate the expression RETVAL and return it | |
2780 | from the current function. */ | |
2781 | ||
2782 | void | |
2783 | expand_return (retval) | |
2784 | tree retval; | |
2785 | { | |
2786 | /* If there are any cleanups to be performed, then they will | |
2787 | be inserted following LAST_INSN. It is desirable | |
2788 | that the last_insn, for such purposes, should be the | |
2789 | last insn before computing the return value. Otherwise, cleanups | |
2790 | which call functions can clobber the return value. */ | |
2791 | /* ??? rms: I think that is erroneous, because in C++ it would | |
2792 | run destructors on variables that might be used in the subsequent | |
2793 | computation of the return value. */ | |
2794 | rtx last_insn = 0; | |
14a774a9 | 2795 | rtx result_rtl = DECL_RTL (DECL_RESULT (current_function_decl)); |
28d81abb | 2796 | register rtx val = 0; |
7bdb32b9 | 2797 | #ifdef HAVE_return |
28d81abb | 2798 | register rtx op0; |
7bdb32b9 | 2799 | #endif |
28d81abb RK |
2800 | tree retval_rhs; |
2801 | int cleanups; | |
28d81abb RK |
2802 | |
2803 | /* If function wants no value, give it none. */ | |
2804 | if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE) | |
2805 | { | |
37366632 | 2806 | expand_expr (retval, NULL_RTX, VOIDmode, 0); |
7e70e7c5 | 2807 | emit_queue (); |
28d81abb RK |
2808 | expand_null_return (); |
2809 | return; | |
2810 | } | |
2811 | ||
2812 | /* Are any cleanups needed? E.g. C++ destructors to be run? */ | |
7a9a00be MS |
2813 | /* This is not sufficient. We also need to watch for cleanups of the |
2814 | expression we are about to expand. Unfortunately, we cannot know | |
2815 | if it has cleanups until we expand it, and we want to change how we | |
2816 | expand it depending upon if we need cleanups. We can't win. */ | |
2817 | #if 0 | |
28d81abb | 2818 | cleanups = any_pending_cleanups (1); |
7a9a00be MS |
2819 | #else |
2820 | cleanups = 1; | |
2821 | #endif | |
28d81abb RK |
2822 | |
2823 | if (TREE_CODE (retval) == RESULT_DECL) | |
2824 | retval_rhs = retval; | |
2825 | else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR) | |
2826 | && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL) | |
2827 | retval_rhs = TREE_OPERAND (retval, 1); | |
2828 | else if (TREE_TYPE (retval) == void_type_node) | |
2829 | /* Recognize tail-recursive call to void function. */ | |
2830 | retval_rhs = retval; | |
2831 | else | |
2832 | retval_rhs = NULL_TREE; | |
2833 | ||
2834 | /* Only use `last_insn' if there are cleanups which must be run. */ | |
2835 | if (cleanups || cleanup_label != 0) | |
2836 | last_insn = get_last_insn (); | |
2837 | ||
2838 | /* Distribute return down conditional expr if either of the sides | |
2839 | may involve tail recursion (see test below). This enhances the number | |
2840 | of tail recursions we see. Don't do this always since it can produce | |
2841 | sub-optimal code in some cases and we distribute assignments into | |
2842 | conditional expressions when it would help. */ | |
2843 | ||
2844 | if (optimize && retval_rhs != 0 | |
2845 | && frame_offset == 0 | |
2846 | && TREE_CODE (retval_rhs) == COND_EXPR | |
2847 | && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR | |
2848 | || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR)) | |
2849 | { | |
2850 | rtx label = gen_label_rtx (); | |
a0a34f94 RK |
2851 | tree expr; |
2852 | ||
37366632 | 2853 | do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX); |
1483bddb | 2854 | start_cleanup_deferral (); |
dd98f85c | 2855 | expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)), |
a0a34f94 RK |
2856 | DECL_RESULT (current_function_decl), |
2857 | TREE_OPERAND (retval_rhs, 1)); | |
2858 | TREE_SIDE_EFFECTS (expr) = 1; | |
2859 | expand_return (expr); | |
28d81abb | 2860 | emit_label (label); |
a0a34f94 | 2861 | |
dd98f85c | 2862 | expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)), |
a0a34f94 RK |
2863 | DECL_RESULT (current_function_decl), |
2864 | TREE_OPERAND (retval_rhs, 2)); | |
2865 | TREE_SIDE_EFFECTS (expr) = 1; | |
2866 | expand_return (expr); | |
1483bddb | 2867 | end_cleanup_deferral (); |
28d81abb RK |
2868 | return; |
2869 | } | |
2870 | ||
642cac7b | 2871 | /* Attempt to optimize the call if it is tail recursive. */ |
564ea051 JW |
2872 | if (optimize_tail_recursion (retval_rhs, last_insn)) |
2873 | return; | |
642cac7b | 2874 | |
28d81abb RK |
2875 | #ifdef HAVE_return |
2876 | /* This optimization is safe if there are local cleanups | |
2877 | because expand_null_return takes care of them. | |
2878 | ??? I think it should also be safe when there is a cleanup label, | |
2879 | because expand_null_return takes care of them, too. | |
2880 | Any reason why not? */ | |
2881 | if (HAVE_return && cleanup_label == 0 | |
5eb94e4e RK |
2882 | && ! current_function_returns_pcc_struct |
2883 | && BRANCH_COST <= 1) | |
28d81abb RK |
2884 | { |
2885 | /* If this is return x == y; then generate | |
2886 | if (x == y) return 1; else return 0; | |
3f8b69de TG |
2887 | if we can do it with explicit return insns and branches are cheap, |
2888 | but not if we have the corresponding scc insn. */ | |
2889 | int has_scc = 0; | |
28d81abb RK |
2890 | if (retval_rhs) |
2891 | switch (TREE_CODE (retval_rhs)) | |
2892 | { | |
2893 | case EQ_EXPR: | |
3f8b69de TG |
2894 | #ifdef HAVE_seq |
2895 | has_scc = HAVE_seq; | |
2896 | #endif | |
28d81abb | 2897 | case NE_EXPR: |
3f8b69de TG |
2898 | #ifdef HAVE_sne |
2899 | has_scc = HAVE_sne; | |
2900 | #endif | |
28d81abb | 2901 | case GT_EXPR: |
3f8b69de TG |
2902 | #ifdef HAVE_sgt |
2903 | has_scc = HAVE_sgt; | |
2904 | #endif | |
28d81abb | 2905 | case GE_EXPR: |
3f8b69de TG |
2906 | #ifdef HAVE_sge |
2907 | has_scc = HAVE_sge; | |
2908 | #endif | |
28d81abb | 2909 | case LT_EXPR: |
3f8b69de TG |
2910 | #ifdef HAVE_slt |
2911 | has_scc = HAVE_slt; | |
2912 | #endif | |
28d81abb | 2913 | case LE_EXPR: |
3f8b69de TG |
2914 | #ifdef HAVE_sle |
2915 | has_scc = HAVE_sle; | |
2916 | #endif | |
28d81abb RK |
2917 | case TRUTH_ANDIF_EXPR: |
2918 | case TRUTH_ORIF_EXPR: | |
2919 | case TRUTH_AND_EXPR: | |
2920 | case TRUTH_OR_EXPR: | |
2921 | case TRUTH_NOT_EXPR: | |
94ed3915 | 2922 | case TRUTH_XOR_EXPR: |
3f8b69de TG |
2923 | if (! has_scc) |
2924 | { | |
2925 | op0 = gen_label_rtx (); | |
2926 | jumpifnot (retval_rhs, op0); | |
2927 | expand_value_return (const1_rtx); | |
2928 | emit_label (op0); | |
2929 | expand_value_return (const0_rtx); | |
2930 | return; | |
2931 | } | |
e9a25f70 JL |
2932 | break; |
2933 | ||
2934 | default: | |
2935 | break; | |
28d81abb RK |
2936 | } |
2937 | } | |
2938 | #endif /* HAVE_return */ | |
2939 | ||
4c485b63 JL |
2940 | /* If the result is an aggregate that is being returned in one (or more) |
2941 | registers, load the registers here. The compiler currently can't handle | |
2942 | copying a BLKmode value into registers. We could put this code in a | |
2943 | more general area (for use by everyone instead of just function | |
2944 | call/return), but until this feature is generally usable it is kept here | |
3ffeb8f1 JW |
2945 | (and in expand_call). The value must go into a pseudo in case there |
2946 | are cleanups that will clobber the real return register. */ | |
4c485b63 JL |
2947 | |
2948 | if (retval_rhs != 0 | |
2949 | && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode | |
14a774a9 | 2950 | && GET_CODE (result_rtl) == REG) |
4c485b63 | 2951 | { |
a7f875d7 | 2952 | int i, bitpos, xbitpos; |
4c485b63 JL |
2953 | int big_endian_correction = 0; |
2954 | int bytes = int_size_in_bytes (TREE_TYPE (retval_rhs)); | |
2955 | int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; | |
c84e2712 KG |
2956 | int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), |
2957 | (unsigned int)BITS_PER_WORD); | |
4c485b63 | 2958 | rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs); |
c16ddde3 | 2959 | rtx result_reg, src = NULL_RTX, dst = NULL_RTX; |
4c485b63 | 2960 | rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0); |
af55da56 | 2961 | enum machine_mode tmpmode, result_reg_mode; |
4c485b63 | 2962 | |
a7f875d7 RK |
2963 | /* Structures whose size is not a multiple of a word are aligned |
2964 | to the least significant byte (to the right). On a BYTES_BIG_ENDIAN | |
2965 | machine, this means we must skip the empty high order bytes when | |
2966 | calculating the bit offset. */ | |
2967 | if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD) | |
2968 | big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) | |
2969 | * BITS_PER_UNIT)); | |
2970 | ||
2971 | /* Copy the structure BITSIZE bits at a time. */ | |
2972 | for (bitpos = 0, xbitpos = big_endian_correction; | |
2973 | bitpos < bytes * BITS_PER_UNIT; | |
2974 | bitpos += bitsize, xbitpos += bitsize) | |
4c485b63 | 2975 | { |
a7f875d7 | 2976 | /* We need a new destination pseudo each time xbitpos is |
abc95ed3 | 2977 | on a word boundary and when xbitpos == big_endian_correction |
a7f875d7 RK |
2978 | (the first time through). */ |
2979 | if (xbitpos % BITS_PER_WORD == 0 | |
2980 | || xbitpos == big_endian_correction) | |
4c485b63 | 2981 | { |
a7f875d7 RK |
2982 | /* Generate an appropriate register. */ |
2983 | dst = gen_reg_rtx (word_mode); | |
2984 | result_pseudos[xbitpos / BITS_PER_WORD] = dst; | |
2985 | ||
2986 | /* Clobber the destination before we move anything into it. */ | |
38a448ca | 2987 | emit_insn (gen_rtx_CLOBBER (VOIDmode, dst)); |
4c485b63 | 2988 | } |
a7f875d7 RK |
2989 | |
2990 | /* We need a new source operand each time bitpos is on a word | |
2991 | boundary. */ | |
2992 | if (bitpos % BITS_PER_WORD == 0) | |
2993 | src = operand_subword_force (result_val, | |
2994 | bitpos / BITS_PER_WORD, | |
2995 | BLKmode); | |
2996 | ||
2997 | /* Use bitpos for the source extraction (left justified) and | |
2998 | xbitpos for the destination store (right justified). */ | |
2999 | store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode, | |
3000 | extract_bit_field (src, bitsize, | |
3001 | bitpos % BITS_PER_WORD, 1, | |
3002 | NULL_RTX, word_mode, | |
3003 | word_mode, | |
3004 | bitsize / BITS_PER_UNIT, | |
3005 | BITS_PER_WORD), | |
3006 | bitsize / BITS_PER_UNIT, BITS_PER_WORD); | |
4c485b63 JL |
3007 | } |
3008 | ||
4c485b63 JL |
3009 | /* Find the smallest integer mode large enough to hold the |
3010 | entire structure and use that mode instead of BLKmode | |
3011 | on the USE insn for the return register. */ | |
3012 | bytes = int_size_in_bytes (TREE_TYPE (retval_rhs)); | |
3013 | for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT); | |
0c61f541 | 3014 | tmpmode != VOIDmode; |
4c485b63 | 3015 | tmpmode = GET_MODE_WIDER_MODE (tmpmode)) |
3ffeb8f1 JW |
3016 | { |
3017 | /* Have we found a large enough mode? */ | |
3018 | if (GET_MODE_SIZE (tmpmode) >= bytes) | |
3019 | break; | |
3020 | } | |
4c485b63 JL |
3021 | |
3022 | /* No suitable mode found. */ | |
0c61f541 | 3023 | if (tmpmode == VOIDmode) |
3ffeb8f1 | 3024 | abort (); |
4c485b63 | 3025 | |
14a774a9 | 3026 | PUT_MODE (result_rtl, tmpmode); |
3ffeb8f1 | 3027 | |
af55da56 JW |
3028 | if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode)) |
3029 | result_reg_mode = word_mode; | |
3030 | else | |
3031 | result_reg_mode = tmpmode; | |
3032 | result_reg = gen_reg_rtx (result_reg_mode); | |
3033 | ||
3ffeb8f1 | 3034 | emit_queue (); |
3ffeb8f1 | 3035 | for (i = 0; i < n_regs; i++) |
af55da56 | 3036 | emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode), |
3ffeb8f1 | 3037 | result_pseudos[i]); |
4c485b63 | 3038 | |
af55da56 JW |
3039 | if (tmpmode != result_reg_mode) |
3040 | result_reg = gen_lowpart (tmpmode, result_reg); | |
3041 | ||
4c485b63 JL |
3042 | expand_value_return (result_reg); |
3043 | } | |
3044 | else if (cleanups | |
28d81abb RK |
3045 | && retval_rhs != 0 |
3046 | && TREE_TYPE (retval_rhs) != void_type_node | |
14a774a9 RK |
3047 | && (GET_CODE (result_rtl) == REG |
3048 | || (GET_CODE (result_rtl) == PARALLEL))) | |
28d81abb | 3049 | { |
14a774a9 RK |
3050 | /* Calculate the return value into a temporary (usually a pseudo |
3051 | reg). */ | |
3052 | val = assign_temp (TREE_TYPE (DECL_RESULT (current_function_decl)), | |
3053 | 0, 0, 1); | |
dd98f85c JM |
3054 | val = expand_expr (retval_rhs, val, GET_MODE (val), 0); |
3055 | val = force_not_mem (val); | |
28d81abb | 3056 | emit_queue (); |
28d81abb RK |
3057 | /* Return the calculated value, doing cleanups first. */ |
3058 | expand_value_return (val); | |
3059 | } | |
3060 | else | |
3061 | { | |
3062 | /* No cleanups or no hard reg used; | |
3063 | calculate value into hard return reg. */ | |
cba389cd | 3064 | expand_expr (retval, const0_rtx, VOIDmode, 0); |
28d81abb | 3065 | emit_queue (); |
14a774a9 | 3066 | expand_value_return (result_rtl); |
28d81abb RK |
3067 | } |
3068 | } | |
3069 | ||
3070 | /* Return 1 if the end of the generated RTX is not a barrier. | |
3071 | This means code already compiled can drop through. */ | |
3072 | ||
3073 | int | |
3074 | drop_through_at_end_p () | |
3075 | { | |
3076 | rtx insn = get_last_insn (); | |
3077 | while (insn && GET_CODE (insn) == NOTE) | |
3078 | insn = PREV_INSN (insn); | |
3079 | return insn && GET_CODE (insn) != BARRIER; | |
3080 | } | |
3081 | \f | |
642cac7b JL |
3082 | /* Test CALL_EXPR to determine if it is a potential tail recursion call |
3083 | and emit code to optimize the tail recursion. LAST_INSN indicates where | |
564ea051 JW |
3084 | to place the jump to the tail recursion label. Return TRUE if the |
3085 | call was optimized into a goto. | |
642cac7b JL |
3086 | |
3087 | This is only used by expand_return, but expand_call is expected to | |
3088 | use it soon. */ | |
3089 | ||
564ea051 | 3090 | int |
642cac7b JL |
3091 | optimize_tail_recursion (call_expr, last_insn) |
3092 | tree call_expr; | |
3093 | rtx last_insn; | |
3094 | { | |
3095 | /* For tail-recursive call to current function, | |
3096 | just jump back to the beginning. | |
3097 | It's unsafe if any auto variable in this function | |
3098 | has its address taken; for simplicity, | |
3099 | require stack frame to be empty. */ | |
3100 | if (optimize && call_expr != 0 | |
3101 | && frame_offset == 0 | |
3102 | && TREE_CODE (call_expr) == CALL_EXPR | |
3103 | && TREE_CODE (TREE_OPERAND (call_expr, 0)) == ADDR_EXPR | |
3104 | && TREE_OPERAND (TREE_OPERAND (call_expr, 0), 0) == current_function_decl | |
3105 | /* Finish checking validity, and if valid emit code | |
3106 | to set the argument variables for the new call. */ | |
3107 | && tail_recursion_args (TREE_OPERAND (call_expr, 1), | |
3108 | DECL_ARGUMENTS (current_function_decl))) | |
3109 | { | |
3110 | if (tail_recursion_label == 0) | |
3111 | { | |
3112 | tail_recursion_label = gen_label_rtx (); | |
3113 | emit_label_after (tail_recursion_label, | |
3114 | tail_recursion_reentry); | |
3115 | } | |
3116 | emit_queue (); | |
3117 | expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn); | |
3118 | emit_barrier (); | |
564ea051 | 3119 | return 1; |
642cac7b | 3120 | } |
564ea051 JW |
3121 | |
3122 | return 0; | |
642cac7b JL |
3123 | } |
3124 | ||
28d81abb RK |
3125 | /* Emit code to alter this function's formal parms for a tail-recursive call. |
3126 | ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs). | |
3127 | FORMALS is the chain of decls of formals. | |
3128 | Return 1 if this can be done; | |
3129 | otherwise return 0 and do not emit any code. */ | |
3130 | ||
3131 | static int | |
3132 | tail_recursion_args (actuals, formals) | |
3133 | tree actuals, formals; | |
3134 | { | |
3135 | register tree a = actuals, f = formals; | |
3136 | register int i; | |
3137 | register rtx *argvec; | |
3138 | ||
3139 | /* Check that number and types of actuals are compatible | |
3140 | with the formals. This is not always true in valid C code. | |
3141 | Also check that no formal needs to be addressable | |
3142 | and that all formals are scalars. */ | |
3143 | ||
3144 | /* Also count the args. */ | |
3145 | ||
3146 | for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++) | |
3147 | { | |
5c7fe359 RK |
3148 | if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a))) |
3149 | != TYPE_MAIN_VARIANT (TREE_TYPE (f))) | |
28d81abb RK |
3150 | return 0; |
3151 | if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode) | |
3152 | return 0; | |
3153 | } | |
3154 | if (a != 0 || f != 0) | |
3155 | return 0; | |
3156 | ||
3157 | /* Compute all the actuals. */ | |
3158 | ||
3159 | argvec = (rtx *) alloca (i * sizeof (rtx)); | |
3160 | ||
3161 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
37366632 | 3162 | argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0); |
28d81abb RK |
3163 | |
3164 | /* Find which actual values refer to current values of previous formals. | |
3165 | Copy each of them now, before any formal is changed. */ | |
3166 | ||
3167 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
3168 | { | |
3169 | int copy = 0; | |
3170 | register int j; | |
3171 | for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++) | |
3172 | if (reg_mentioned_p (DECL_RTL (f), argvec[i])) | |
3173 | { copy = 1; break; } | |
3174 | if (copy) | |
3175 | argvec[i] = copy_to_reg (argvec[i]); | |
3176 | } | |
3177 | ||
3178 | /* Store the values of the actuals into the formals. */ | |
3179 | ||
3180 | for (f = formals, a = actuals, i = 0; f; | |
3181 | f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++) | |
3182 | { | |
98f3b471 | 3183 | if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i])) |
28d81abb RK |
3184 | emit_move_insn (DECL_RTL (f), argvec[i]); |
3185 | else | |
3186 | convert_move (DECL_RTL (f), argvec[i], | |
3187 | TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a)))); | |
3188 | } | |
3189 | ||
3190 | free_temp_slots (); | |
3191 | return 1; | |
3192 | } | |
3193 | \f | |
3194 | /* Generate the RTL code for entering a binding contour. | |
3195 | The variables are declared one by one, by calls to `expand_decl'. | |
3196 | ||
8e91754e MM |
3197 | FLAGS is a bitwise or of the following flags: |
3198 | ||
3199 | 1 - Nonzero if this construct should be visible to | |
3200 | `exit_something'. | |
3201 | ||
3202 | 2 - Nonzero if this contour does not require a | |
3203 | NOTE_INSN_BLOCK_BEG note. Virtually all calls from | |
3204 | language-independent code should set this flag because they | |
3205 | will not create corresponding BLOCK nodes. (There should be | |
3206 | a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes | |
3207 | and BLOCKs.) If this flag is set, MARK_ENDS should be zero | |
a97901e6 MM |
3208 | when expand_end_bindings is called. |
3209 | ||
3210 | If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may | |
3211 | optionally be supplied. If so, it becomes the NOTE_BLOCK for the | |
3212 | note. */ | |
28d81abb RK |
3213 | |
3214 | void | |
a97901e6 | 3215 | expand_start_bindings_and_block (flags, block) |
8e91754e | 3216 | int flags; |
a97901e6 | 3217 | tree block; |
28d81abb RK |
3218 | { |
3219 | struct nesting *thisblock = ALLOC_NESTING (); | |
8e91754e MM |
3220 | rtx note; |
3221 | int exit_flag = ((flags & 1) != 0); | |
3222 | int block_flag = ((flags & 2) == 0); | |
a97901e6 MM |
3223 | |
3224 | /* If a BLOCK is supplied, then the caller should be requesting a | |
3225 | NOTE_INSN_BLOCK_BEG note. */ | |
3226 | if (!block_flag && block) | |
3227 | abort (); | |
8e91754e | 3228 | |
a97901e6 MM |
3229 | /* Create a note to mark the beginning of the block. */ |
3230 | if (block_flag) | |
3231 | { | |
3232 | note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG); | |
3233 | NOTE_BLOCK (note) = block; | |
3234 | } | |
3235 | else | |
3236 | note = emit_note (NULL_PTR, NOTE_INSN_DELETED); | |
3237 | ||
28d81abb RK |
3238 | /* Make an entry on block_stack for the block we are entering. */ |
3239 | ||
3240 | thisblock->next = block_stack; | |
3241 | thisblock->all = nesting_stack; | |
3242 | thisblock->depth = ++nesting_depth; | |
3243 | thisblock->data.block.stack_level = 0; | |
3244 | thisblock->data.block.cleanups = 0; | |
3f1d071b | 3245 | thisblock->data.block.n_function_calls = 0; |
e976b8b2 | 3246 | thisblock->data.block.exception_region = 0; |
3f1d071b | 3247 | thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level; |
e976b8b2 MS |
3248 | |
3249 | thisblock->data.block.conditional_code = 0; | |
3250 | thisblock->data.block.last_unconditional_cleanup = note; | |
a571f7a0 MM |
3251 | /* When we insert instructions after the last unconditional cleanup, |
3252 | we don't adjust last_insn. That means that a later add_insn will | |
3253 | clobber the instructions we've just added. The easiest way to | |
3254 | fix this is to just insert another instruction here, so that the | |
3255 | instructions inserted after the last unconditional cleanup are | |
3256 | never the last instruction. */ | |
3257 | emit_note (NULL_PTR, NOTE_INSN_DELETED); | |
e976b8b2 MS |
3258 | thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups; |
3259 | ||
28d81abb RK |
3260 | if (block_stack |
3261 | && !(block_stack->data.block.cleanups == NULL_TREE | |
3262 | && block_stack->data.block.outer_cleanups == NULL_TREE)) | |
3263 | thisblock->data.block.outer_cleanups | |
3264 | = tree_cons (NULL_TREE, block_stack->data.block.cleanups, | |
3265 | block_stack->data.block.outer_cleanups); | |
3266 | else | |
3267 | thisblock->data.block.outer_cleanups = 0; | |
28d81abb RK |
3268 | thisblock->data.block.label_chain = 0; |
3269 | thisblock->data.block.innermost_stack_block = stack_block_stack; | |
3270 | thisblock->data.block.first_insn = note; | |
3f1d071b | 3271 | thisblock->data.block.block_start_count = ++current_block_start_count; |
28d81abb RK |
3272 | thisblock->exit_label = exit_flag ? gen_label_rtx () : 0; |
3273 | block_stack = thisblock; | |
3274 | nesting_stack = thisblock; | |
3275 | ||
b93a436e JL |
3276 | /* Make a new level for allocating stack slots. */ |
3277 | push_temp_slots (); | |
28d81abb RK |
3278 | } |
3279 | ||
e976b8b2 MS |
3280 | /* Specify the scope of temporaries created by TARGET_EXPRs. Similar |
3281 | to CLEANUP_POINT_EXPR, but handles cases when a series of calls to | |
3282 | expand_expr are made. After we end the region, we know that all | |
3283 | space for all temporaries that were created by TARGET_EXPRs will be | |
3284 | destroyed and their space freed for reuse. */ | |
3285 | ||
3286 | void | |
3287 | expand_start_target_temps () | |
3288 | { | |
3289 | /* This is so that even if the result is preserved, the space | |
3290 | allocated will be freed, as we know that it is no longer in use. */ | |
3291 | push_temp_slots (); | |
3292 | ||
3293 | /* Start a new binding layer that will keep track of all cleanup | |
3294 | actions to be performed. */ | |
8e91754e | 3295 | expand_start_bindings (2); |
e976b8b2 MS |
3296 | |
3297 | target_temp_slot_level = temp_slot_level; | |
3298 | } | |
3299 | ||
3300 | void | |
3301 | expand_end_target_temps () | |
3302 | { | |
3303 | expand_end_bindings (NULL_TREE, 0, 0); | |
3304 | ||
3305 | /* This is so that even if the result is preserved, the space | |
3306 | allocated will be freed, as we know that it is no longer in use. */ | |
3307 | pop_temp_slots (); | |
3308 | } | |
3309 | ||
3310 | /* Mark top block of block_stack as an implicit binding for an | |
3311 | exception region. This is used to prevent infinite recursion when | |
3312 | ending a binding with expand_end_bindings. It is only ever called | |
3313 | by expand_eh_region_start, as that it the only way to create a | |
3314 | block stack for a exception region. */ | |
3315 | ||
3316 | void | |
3317 | mark_block_as_eh_region () | |
3318 | { | |
3319 | block_stack->data.block.exception_region = 1; | |
3320 | if (block_stack->next | |
3321 | && block_stack->next->data.block.conditional_code) | |
3322 | { | |
3323 | block_stack->data.block.conditional_code | |
3324 | = block_stack->next->data.block.conditional_code; | |
3325 | block_stack->data.block.last_unconditional_cleanup | |
3326 | = block_stack->next->data.block.last_unconditional_cleanup; | |
3327 | block_stack->data.block.cleanup_ptr | |
3328 | = block_stack->next->data.block.cleanup_ptr; | |
3329 | } | |
3330 | } | |
3331 | ||
3332 | /* True if we are currently emitting insns in an area of output code | |
3333 | that is controlled by a conditional expression. This is used by | |
3334 | the cleanup handling code to generate conditional cleanup actions. */ | |
3335 | ||
3336 | int | |
3337 | conditional_context () | |
3338 | { | |
3339 | return block_stack && block_stack->data.block.conditional_code; | |
3340 | } | |
3341 | ||
3342 | /* Mark top block of block_stack as not for an implicit binding for an | |
3343 | exception region. This is only ever done by expand_eh_region_end | |
3344 | to let expand_end_bindings know that it is being called explicitly | |
3345 | to end the binding layer for just the binding layer associated with | |
3346 | the exception region, otherwise expand_end_bindings would try and | |
3347 | end all implicit binding layers for exceptions regions, and then | |
3348 | one normal binding layer. */ | |
3349 | ||
3350 | void | |
3351 | mark_block_as_not_eh_region () | |
3352 | { | |
3353 | block_stack->data.block.exception_region = 0; | |
3354 | } | |
3355 | ||
3356 | /* True if the top block of block_stack was marked as for an exception | |
3357 | region by mark_block_as_eh_region. */ | |
3358 | ||
3359 | int | |
3360 | is_eh_region () | |
3361 | { | |
01d939e8 | 3362 | return cfun && block_stack && block_stack->data.block.exception_region; |
e976b8b2 MS |
3363 | } |
3364 | ||
ba716ac9 BS |
3365 | /* Emit a handler label for a nonlocal goto handler. |
3366 | Also emit code to store the handler label in SLOT before BEFORE_INSN. */ | |
3367 | ||
e881bb1b | 3368 | static rtx |
ba716ac9 BS |
3369 | expand_nl_handler_label (slot, before_insn) |
3370 | rtx slot, before_insn; | |
3371 | { | |
3372 | rtx insns; | |
3373 | rtx handler_label = gen_label_rtx (); | |
3374 | ||
3375 | /* Don't let jump_optimize delete the handler. */ | |
3376 | LABEL_PRESERVE_P (handler_label) = 1; | |
3377 | ||
3378 | start_sequence (); | |
3379 | emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label)); | |
3380 | insns = get_insns (); | |
3381 | end_sequence (); | |
3382 | emit_insns_before (insns, before_insn); | |
3383 | ||
3384 | emit_label (handler_label); | |
e881bb1b RH |
3385 | |
3386 | return handler_label; | |
ba716ac9 BS |
3387 | } |
3388 | ||
3389 | /* Emit code to restore vital registers at the beginning of a nonlocal goto | |
3390 | handler. */ | |
3391 | static void | |
3392 | expand_nl_goto_receiver () | |
3393 | { | |
3394 | #ifdef HAVE_nonlocal_goto | |
3395 | if (! HAVE_nonlocal_goto) | |
3396 | #endif | |
3397 | /* First adjust our frame pointer to its actual value. It was | |
3398 | previously set to the start of the virtual area corresponding to | |
3399 | the stacked variables when we branched here and now needs to be | |
3400 | adjusted to the actual hardware fp value. | |
3401 | ||
3402 | Assignments are to virtual registers are converted by | |
3403 | instantiate_virtual_regs into the corresponding assignment | |
3404 | to the underlying register (fp in this case) that makes | |
3405 | the original assignment true. | |
3406 | So the following insn will actually be | |
3407 | decrementing fp by STARTING_FRAME_OFFSET. */ | |
3408 | emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx); | |
3409 | ||
3410 | #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM | |
3411 | if (fixed_regs[ARG_POINTER_REGNUM]) | |
3412 | { | |
3413 | #ifdef ELIMINABLE_REGS | |
3414 | /* If the argument pointer can be eliminated in favor of the | |
3415 | frame pointer, we don't need to restore it. We assume here | |
3416 | that if such an elimination is present, it can always be used. | |
3417 | This is the case on all known machines; if we don't make this | |
3418 | assumption, we do unnecessary saving on many machines. */ | |
3419 | static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS; | |
3420 | size_t i; | |
3421 | ||
3422 | for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++) | |
3423 | if (elim_regs[i].from == ARG_POINTER_REGNUM | |
3424 | && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM) | |
3425 | break; | |
3426 | ||
3427 | if (i == sizeof elim_regs / sizeof elim_regs [0]) | |
3428 | #endif | |
3429 | { | |
3430 | /* Now restore our arg pointer from the address at which it | |
3431 | was saved in our stack frame. | |
3432 | If there hasn't be space allocated for it yet, make | |
3433 | some now. */ | |
3434 | if (arg_pointer_save_area == 0) | |
3435 | arg_pointer_save_area | |
3436 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
3437 | emit_move_insn (virtual_incoming_args_rtx, | |
3438 | /* We need a pseudo here, or else | |
3439 | instantiate_virtual_regs_1 complains. */ | |
3440 | copy_to_reg (arg_pointer_save_area)); | |
3441 | } | |
3442 | } | |
3443 | #endif | |
3444 | ||
3445 | #ifdef HAVE_nonlocal_goto_receiver | |
3446 | if (HAVE_nonlocal_goto_receiver) | |
3447 | emit_insn (gen_nonlocal_goto_receiver ()); | |
3448 | #endif | |
3449 | } | |
3450 | ||
3451 | /* Make handlers for nonlocal gotos taking place in the function calls in | |
3452 | block THISBLOCK. */ | |
3453 | ||
3454 | static void | |
3455 | expand_nl_goto_receivers (thisblock) | |
3456 | struct nesting *thisblock; | |
3457 | { | |
3458 | tree link; | |
3459 | rtx afterward = gen_label_rtx (); | |
3460 | rtx insns, slot; | |
e881bb1b | 3461 | rtx label_list; |
ba716ac9 BS |
3462 | int any_invalid; |
3463 | ||
3464 | /* Record the handler address in the stack slot for that purpose, | |
3465 | during this block, saving and restoring the outer value. */ | |
3466 | if (thisblock->next != 0) | |
3467 | for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1)) | |
3468 | { | |
3469 | rtx save_receiver = gen_reg_rtx (Pmode); | |
3470 | emit_move_insn (XEXP (slot, 0), save_receiver); | |
3471 | ||
3472 | start_sequence (); | |
3473 | emit_move_insn (save_receiver, XEXP (slot, 0)); | |
3474 | insns = get_insns (); | |
3475 | end_sequence (); | |
3476 | emit_insns_before (insns, thisblock->data.block.first_insn); | |
3477 | } | |
3478 | ||
3479 | /* Jump around the handlers; they run only when specially invoked. */ | |
3480 | emit_jump (afterward); | |
3481 | ||
3482 | /* Make a separate handler for each label. */ | |
3483 | link = nonlocal_labels; | |
3484 | slot = nonlocal_goto_handler_slots; | |
e881bb1b | 3485 | label_list = NULL_RTX; |
ba716ac9 BS |
3486 | for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1)) |
3487 | /* Skip any labels we shouldn't be able to jump to from here, | |
3488 | we generate one special handler for all of them below which just calls | |
3489 | abort. */ | |
3490 | if (! DECL_TOO_LATE (TREE_VALUE (link))) | |
3491 | { | |
e881bb1b RH |
3492 | rtx lab; |
3493 | lab = expand_nl_handler_label (XEXP (slot, 0), | |
3494 | thisblock->data.block.first_insn); | |
3495 | label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list); | |
3496 | ||
ba716ac9 BS |
3497 | expand_nl_goto_receiver (); |
3498 | ||
3499 | /* Jump to the "real" nonlocal label. */ | |
3500 | expand_goto (TREE_VALUE (link)); | |
3501 | } | |
3502 | ||
3503 | /* A second pass over all nonlocal labels; this time we handle those | |
3504 | we should not be able to jump to at this point. */ | |
3505 | link = nonlocal_labels; | |
3506 | slot = nonlocal_goto_handler_slots; | |
3507 | any_invalid = 0; | |
3508 | for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1)) | |
3509 | if (DECL_TOO_LATE (TREE_VALUE (link))) | |
3510 | { | |
e881bb1b RH |
3511 | rtx lab; |
3512 | lab = expand_nl_handler_label (XEXP (slot, 0), | |
3513 | thisblock->data.block.first_insn); | |
3514 | label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list); | |
ba716ac9 BS |
3515 | any_invalid = 1; |
3516 | } | |
3517 | ||
3518 | if (any_invalid) | |
3519 | { | |
3520 | expand_nl_goto_receiver (); | |
3521 | emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "abort"), 0, | |
3522 | VOIDmode, 0); | |
3523 | emit_barrier (); | |
3524 | } | |
3525 | ||
e881bb1b | 3526 | nonlocal_goto_handler_labels = label_list; |
ba716ac9 BS |
3527 | emit_label (afterward); |
3528 | } | |
3529 | ||
ba716677 MM |
3530 | /* Warn about any unused VARS (which may contain nodes other than |
3531 | VAR_DECLs, but such nodes are ignored). The nodes are connected | |
3532 | via the TREE_CHAIN field. */ | |
3533 | ||
3534 | void | |
3535 | warn_about_unused_variables (vars) | |
3536 | tree vars; | |
3537 | { | |
3538 | tree decl; | |
3539 | ||
3540 | if (warn_unused) | |
3541 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
3542 | if (TREE_CODE (decl) == VAR_DECL | |
3543 | && ! TREE_USED (decl) | |
3544 | && ! DECL_IN_SYSTEM_HEADER (decl) | |
3545 | && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl)) | |
3546 | warning_with_decl (decl, "unused variable `%s'"); | |
3547 | } | |
3548 | ||
28d81abb | 3549 | /* Generate RTL code to terminate a binding contour. |
e97b5c12 MM |
3550 | |
3551 | VARS is the chain of VAR_DECL nodes for the variables bound in this | |
3552 | contour. There may actually be other nodes in this chain, but any | |
3553 | nodes other than VAR_DECLS are ignored. | |
3554 | ||
28d81abb RK |
3555 | MARK_ENDS is nonzero if we should put a note at the beginning |
3556 | and end of this binding contour. | |
3557 | ||
3558 | DONT_JUMP_IN is nonzero if it is not valid to jump into this contour. | |
3559 | (That is true automatically if the contour has a saved stack level.) */ | |
3560 | ||
3561 | void | |
3562 | expand_end_bindings (vars, mark_ends, dont_jump_in) | |
3563 | tree vars; | |
3564 | int mark_ends; | |
3565 | int dont_jump_in; | |
3566 | { | |
e976b8b2 | 3567 | register struct nesting *thisblock; |
28d81abb RK |
3568 | register tree decl; |
3569 | ||
e976b8b2 MS |
3570 | while (block_stack->data.block.exception_region) |
3571 | { | |
3572 | /* Because we don't need or want a new temporary level and | |
3573 | because we didn't create one in expand_eh_region_start, | |
3574 | create a fake one now to avoid removing one in | |
3575 | expand_end_bindings. */ | |
3576 | push_temp_slots (); | |
3577 | ||
3578 | block_stack->data.block.exception_region = 0; | |
3579 | ||
3580 | expand_end_bindings (NULL_TREE, 0, 0); | |
3581 | } | |
3582 | ||
e976b8b2 MS |
3583 | /* Since expand_eh_region_start does an expand_start_bindings, we |
3584 | have to first end all the bindings that were created by | |
3585 | expand_eh_region_start. */ | |
3586 | ||
3587 | thisblock = block_stack; | |
3588 | ||
ba716677 MM |
3589 | /* If any of the variables in this scope were not used, warn the |
3590 | user. */ | |
3591 | warn_about_unused_variables (vars); | |
28d81abb | 3592 | |
28d81abb RK |
3593 | if (thisblock->exit_label) |
3594 | { | |
3595 | do_pending_stack_adjust (); | |
3596 | emit_label (thisblock->exit_label); | |
3597 | } | |
3598 | ||
ba716ac9 | 3599 | /* If necessary, make handlers for nonlocal gotos taking |
28d81abb | 3600 | place in the function calls in this block. */ |
3f1d071b | 3601 | if (function_call_count != thisblock->data.block.n_function_calls |
28d81abb RK |
3602 | && nonlocal_labels |
3603 | /* Make handler for outermost block | |
3604 | if there were any nonlocal gotos to this function. */ | |
3605 | && (thisblock->next == 0 ? current_function_has_nonlocal_label | |
3606 | /* Make handler for inner block if it has something | |
3607 | special to do when you jump out of it. */ | |
3608 | : (thisblock->data.block.cleanups != 0 | |
3609 | || thisblock->data.block.stack_level != 0))) | |
ba716ac9 | 3610 | expand_nl_goto_receivers (thisblock); |
28d81abb | 3611 | |
72eb1038 BH |
3612 | /* Don't allow jumping into a block that has a stack level. |
3613 | Cleanups are allowed, though. */ | |
28d81abb | 3614 | if (dont_jump_in |
72eb1038 | 3615 | || thisblock->data.block.stack_level != 0) |
28d81abb RK |
3616 | { |
3617 | struct label_chain *chain; | |
3618 | ||
3619 | /* Any labels in this block are no longer valid to go to. | |
3620 | Mark them to cause an error message. */ | |
3621 | for (chain = thisblock->data.block.label_chain; chain; chain = chain->next) | |
3622 | { | |
3623 | DECL_TOO_LATE (chain->label) = 1; | |
3624 | /* If any goto without a fixup came to this label, | |
3625 | that must be an error, because gotos without fixups | |
72eb1038 | 3626 | come from outside all saved stack-levels. */ |
28d81abb RK |
3627 | if (TREE_ADDRESSABLE (chain->label)) |
3628 | error_with_decl (chain->label, | |
3629 | "label `%s' used before containing binding contour"); | |
3630 | } | |
3631 | } | |
3632 | ||
3633 | /* Restore stack level in effect before the block | |
3634 | (only if variable-size objects allocated). */ | |
3635 | /* Perform any cleanups associated with the block. */ | |
3636 | ||
3637 | if (thisblock->data.block.stack_level != 0 | |
3638 | || thisblock->data.block.cleanups != 0) | |
3639 | { | |
413ec213 | 3640 | /* Only clean up here if this point can actually be reached. */ |
50d1b7a1 | 3641 | int reachable = GET_CODE (get_last_insn ()) != BARRIER; |
28d81abb | 3642 | |
50d1b7a1 MS |
3643 | /* Don't let cleanups affect ({...}) constructs. */ |
3644 | int old_expr_stmts_for_value = expr_stmts_for_value; | |
3645 | rtx old_last_expr_value = last_expr_value; | |
3646 | tree old_last_expr_type = last_expr_type; | |
3647 | expr_stmts_for_value = 0; | |
28d81abb | 3648 | |
50d1b7a1 MS |
3649 | /* Do the cleanups. */ |
3650 | expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable); | |
3651 | if (reachable) | |
3652 | do_pending_stack_adjust (); | |
28d81abb | 3653 | |
50d1b7a1 MS |
3654 | expr_stmts_for_value = old_expr_stmts_for_value; |
3655 | last_expr_value = old_last_expr_value; | |
3656 | last_expr_type = old_last_expr_type; | |
3657 | ||
3658 | /* Restore the stack level. */ | |
3659 | ||
3660 | if (reachable && thisblock->data.block.stack_level != 0) | |
3661 | { | |
3662 | emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION, | |
3663 | thisblock->data.block.stack_level, NULL_RTX); | |
ba716ac9 | 3664 | if (nonlocal_goto_handler_slots != 0) |
50d1b7a1 MS |
3665 | emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, |
3666 | NULL_RTX); | |
28d81abb RK |
3667 | } |
3668 | ||
3669 | /* Any gotos out of this block must also do these things. | |
59257ff7 RK |
3670 | Also report any gotos with fixups that came to labels in this |
3671 | level. */ | |
28d81abb RK |
3672 | fixup_gotos (thisblock, |
3673 | thisblock->data.block.stack_level, | |
3674 | thisblock->data.block.cleanups, | |
3675 | thisblock->data.block.first_insn, | |
3676 | dont_jump_in); | |
3677 | } | |
3678 | ||
c7d2d61d RS |
3679 | /* Mark the beginning and end of the scope if requested. |
3680 | We do this now, after running cleanups on the variables | |
3681 | just going out of scope, so they are in scope for their cleanups. */ | |
3682 | ||
3683 | if (mark_ends) | |
a97901e6 MM |
3684 | { |
3685 | rtx note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END); | |
3686 | NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn); | |
3687 | } | |
c7d2d61d RS |
3688 | else |
3689 | /* Get rid of the beginning-mark if we don't make an end-mark. */ | |
3690 | NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED; | |
3691 | ||
28d81abb RK |
3692 | /* If doing stupid register allocation, make sure lives of all |
3693 | register variables declared here extend thru end of scope. */ | |
3694 | ||
3695 | if (obey_regdecls) | |
3696 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
e97b5c12 MM |
3697 | if (TREE_CODE (decl) == VAR_DECL && DECL_RTL (decl)) |
3698 | use_variable (DECL_RTL (decl)); | |
28d81abb | 3699 | |
e976b8b2 | 3700 | /* Restore the temporary level of TARGET_EXPRs. */ |
3f1d071b | 3701 | target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level; |
e976b8b2 | 3702 | |
28d81abb RK |
3703 | /* Restore block_stack level for containing block. */ |
3704 | ||
3705 | stack_block_stack = thisblock->data.block.innermost_stack_block; | |
3706 | POPSTACK (block_stack); | |
3707 | ||
3708 | /* Pop the stack slot nesting and free any slots at this level. */ | |
3709 | pop_temp_slots (); | |
3710 | } | |
3711 | \f | |
3712 | /* Generate RTL for the automatic variable declaration DECL. | |
ec5cd386 | 3713 | (Other kinds of declarations are simply ignored if seen here.) */ |
28d81abb RK |
3714 | |
3715 | void | |
3716 | expand_decl (decl) | |
3717 | register tree decl; | |
3718 | { | |
3f1d071b | 3719 | struct nesting *thisblock; |
ca695ac9 JB |
3720 | tree type; |
3721 | ||
ca695ac9 | 3722 | type = TREE_TYPE (decl); |
28d81abb RK |
3723 | |
3724 | /* Only automatic variables need any expansion done. | |
3725 | Static and external variables, and external functions, | |
3726 | will be handled by `assemble_variable' (called from finish_decl). | |
3727 | TYPE_DECL and CONST_DECL require nothing. | |
3728 | PARM_DECLs are handled in `assign_parms'. */ | |
3729 | ||
3730 | if (TREE_CODE (decl) != VAR_DECL) | |
3731 | return; | |
44fe2e80 | 3732 | if (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) |
28d81abb RK |
3733 | return; |
3734 | ||
3f1d071b BS |
3735 | thisblock = block_stack; |
3736 | ||
28d81abb RK |
3737 | /* Create the RTL representation for the variable. */ |
3738 | ||
3739 | if (type == error_mark_node) | |
38a448ca | 3740 | DECL_RTL (decl) = gen_rtx_MEM (BLKmode, const0_rtx); |
28d81abb RK |
3741 | else if (DECL_SIZE (decl) == 0) |
3742 | /* Variable with incomplete type. */ | |
3743 | { | |
3744 | if (DECL_INITIAL (decl) == 0) | |
3745 | /* Error message was already done; now avoid a crash. */ | |
3746 | DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1); | |
3747 | else | |
3748 | /* An initializer is going to decide the size of this array. | |
3749 | Until we know the size, represent its address with a reg. */ | |
38a448ca | 3750 | DECL_RTL (decl) = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode)); |
c6df88cb | 3751 | MEM_SET_IN_STRUCT_P (DECL_RTL (decl), AGGREGATE_TYPE_P (type)); |
28d81abb RK |
3752 | } |
3753 | else if (DECL_MODE (decl) != BLKmode | |
3754 | /* If -ffloat-store, don't put explicit float vars | |
3755 | into regs. */ | |
3756 | && !(flag_float_store | |
3757 | && TREE_CODE (type) == REAL_TYPE) | |
3758 | && ! TREE_THIS_VOLATILE (decl) | |
3759 | && ! TREE_ADDRESSABLE (decl) | |
e5e809f4 JL |
3760 | && (DECL_REGISTER (decl) || ! obey_regdecls) |
3761 | /* if -fcheck-memory-usage, check all variables. */ | |
7d384cc0 | 3762 | && ! current_function_check_memory_usage) |
28d81abb RK |
3763 | { |
3764 | /* Automatic variable that can go in a register. */ | |
98f3b471 | 3765 | int unsignedp = TREE_UNSIGNED (type); |
28612f9e RK |
3766 | enum machine_mode reg_mode |
3767 | = promote_mode (type, DECL_MODE (decl), &unsignedp, 0); | |
98f3b471 | 3768 | |
7f070d5e RK |
3769 | DECL_RTL (decl) = gen_reg_rtx (reg_mode); |
3770 | mark_user_reg (DECL_RTL (decl)); | |
3771 | ||
e5e809f4 | 3772 | if (POINTER_TYPE_P (type)) |
7f070d5e RK |
3773 | mark_reg_pointer (DECL_RTL (decl), |
3774 | (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))) | |
3775 | / BITS_PER_UNIT)); | |
28d81abb | 3776 | } |
0df15c2c | 3777 | |
5e4ef18a RK |
3778 | else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST |
3779 | && ! (flag_stack_check && ! STACK_CHECK_BUILTIN | |
3780 | && (TREE_INT_CST_HIGH (DECL_SIZE (decl)) != 0 | |
3781 | || (TREE_INT_CST_LOW (DECL_SIZE (decl)) | |
3782 | > STACK_CHECK_MAX_VAR_SIZE * BITS_PER_UNIT)))) | |
28d81abb RK |
3783 | { |
3784 | /* Variable of fixed size that goes on the stack. */ | |
3785 | rtx oldaddr = 0; | |
3786 | rtx addr; | |
3787 | ||
3788 | /* If we previously made RTL for this decl, it must be an array | |
3789 | whose size was determined by the initializer. | |
3790 | The old address was a register; set that register now | |
3791 | to the proper address. */ | |
3792 | if (DECL_RTL (decl) != 0) | |
3793 | { | |
3794 | if (GET_CODE (DECL_RTL (decl)) != MEM | |
3795 | || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG) | |
3796 | abort (); | |
3797 | oldaddr = XEXP (DECL_RTL (decl), 0); | |
3798 | } | |
3799 | ||
d16790f2 | 3800 | DECL_RTL (decl) = assign_temp (TREE_TYPE (decl), 1, 1, 1); |
c6df88cb MM |
3801 | MEM_SET_IN_STRUCT_P (DECL_RTL (decl), |
3802 | AGGREGATE_TYPE_P (TREE_TYPE (decl))); | |
28d81abb RK |
3803 | |
3804 | /* Set alignment we actually gave this decl. */ | |
3805 | DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT | |
3806 | : GET_MODE_BITSIZE (DECL_MODE (decl))); | |
3807 | ||
3808 | if (oldaddr) | |
3809 | { | |
3810 | addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr); | |
3811 | if (addr != oldaddr) | |
3812 | emit_move_insn (oldaddr, addr); | |
3813 | } | |
3814 | ||
3815 | /* If this is a memory ref that contains aggregate components, | |
3816 | mark it as such for cse and loop optimize. */ | |
c6df88cb MM |
3817 | MEM_SET_IN_STRUCT_P (DECL_RTL (decl), |
3818 | AGGREGATE_TYPE_P (TREE_TYPE (decl))); | |
28d81abb RK |
3819 | #if 0 |
3820 | /* If this is in memory because of -ffloat-store, | |
3821 | set the volatile bit, to prevent optimizations from | |
3822 | undoing the effects. */ | |
3823 | if (flag_float_store && TREE_CODE (type) == REAL_TYPE) | |
3824 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
3825 | #endif | |
41472af8 MM |
3826 | |
3827 | MEM_ALIAS_SET (DECL_RTL (decl)) = get_alias_set (decl); | |
28d81abb RK |
3828 | } |
3829 | else | |
3830 | /* Dynamic-size object: must push space on the stack. */ | |
3831 | { | |
3832 | rtx address, size; | |
3833 | ||
3834 | /* Record the stack pointer on entry to block, if have | |
3835 | not already done so. */ | |
3836 | if (thisblock->data.block.stack_level == 0) | |
3837 | { | |
3838 | do_pending_stack_adjust (); | |
59257ff7 RK |
3839 | emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION, |
3840 | &thisblock->data.block.stack_level, | |
3841 | thisblock->data.block.first_insn); | |
28d81abb RK |
3842 | stack_block_stack = thisblock; |
3843 | } | |
3844 | ||
4d9af632 JM |
3845 | /* In function-at-a-time mode, variable_size doesn't expand this, |
3846 | so do it now. */ | |
3847 | if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type)) | |
3848 | expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), | |
3849 | const0_rtx, VOIDmode, 0); | |
3850 | ||
28d81abb RK |
3851 | /* Compute the variable's size, in bytes. */ |
3852 | size = expand_expr (size_binop (CEIL_DIV_EXPR, | |
3853 | DECL_SIZE (decl), | |
3854 | size_int (BITS_PER_UNIT)), | |
37366632 | 3855 | NULL_RTX, VOIDmode, 0); |
28d81abb RK |
3856 | free_temp_slots (); |
3857 | ||
ff91ad08 RK |
3858 | /* Allocate space on the stack for the variable. Note that |
3859 | DECL_ALIGN says how the variable is to be aligned and we | |
3860 | cannot use it to conclude anything about the alignment of | |
3861 | the size. */ | |
37366632 | 3862 | address = allocate_dynamic_stack_space (size, NULL_RTX, |
ff91ad08 | 3863 | TYPE_ALIGN (TREE_TYPE (decl))); |
28d81abb | 3864 | |
28d81abb | 3865 | /* Reference the variable indirect through that rtx. */ |
38a448ca | 3866 | DECL_RTL (decl) = gen_rtx_MEM (DECL_MODE (decl), address); |
28d81abb | 3867 | |
2207e295 RS |
3868 | /* If this is a memory ref that contains aggregate components, |
3869 | mark it as such for cse and loop optimize. */ | |
c6df88cb MM |
3870 | MEM_SET_IN_STRUCT_P (DECL_RTL (decl), |
3871 | AGGREGATE_TYPE_P (TREE_TYPE (decl))); | |
2207e295 | 3872 | |
28d81abb RK |
3873 | /* Indicate the alignment we actually gave this variable. */ |
3874 | #ifdef STACK_BOUNDARY | |
3875 | DECL_ALIGN (decl) = STACK_BOUNDARY; | |
3876 | #else | |
3877 | DECL_ALIGN (decl) = BIGGEST_ALIGNMENT; | |
3878 | #endif | |
3879 | } | |
3880 | ||
3881 | if (TREE_THIS_VOLATILE (decl)) | |
3882 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
b4bf13a8 RS |
3883 | #if 0 /* A variable is not necessarily unchanging |
3884 | just because it is const. RTX_UNCHANGING_P | |
3885 | means no change in the function, | |
3886 | not merely no change in the variable's scope. | |
3887 | It is correct to set RTX_UNCHANGING_P if the variable's scope | |
3888 | is the whole function. There's no convenient way to test that. */ | |
28d81abb RK |
3889 | if (TREE_READONLY (decl)) |
3890 | RTX_UNCHANGING_P (DECL_RTL (decl)) = 1; | |
b4bf13a8 | 3891 | #endif |
28d81abb RK |
3892 | |
3893 | /* If doing stupid register allocation, make sure life of any | |
3894 | register variable starts here, at the start of its scope. */ | |
3895 | ||
3896 | if (obey_regdecls) | |
3897 | use_variable (DECL_RTL (decl)); | |
3898 | } | |
ca695ac9 JB |
3899 | |
3900 | ||
28d81abb RK |
3901 | \f |
3902 | /* Emit code to perform the initialization of a declaration DECL. */ | |
3903 | ||
3904 | void | |
3905 | expand_decl_init (decl) | |
3906 | tree decl; | |
3907 | { | |
b4ac57ab RS |
3908 | int was_used = TREE_USED (decl); |
3909 | ||
3564e40e RK |
3910 | /* If this is a CONST_DECL, we don't have to generate any code, but |
3911 | if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL | |
3912 | to be set while in the obstack containing the constant. If we don't | |
3913 | do this, we can lose if we have functions nested three deep and the middle | |
3914 | function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while | |
3915 | the innermost function is the first to expand that STRING_CST. */ | |
3916 | if (TREE_CODE (decl) == CONST_DECL) | |
3917 | { | |
3918 | if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl))) | |
3919 | expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode, | |
3920 | EXPAND_INITIALIZER); | |
3921 | return; | |
3922 | } | |
3923 | ||
28d81abb RK |
3924 | if (TREE_STATIC (decl)) |
3925 | return; | |
3926 | ||
3927 | /* Compute and store the initial value now. */ | |
3928 | ||
3929 | if (DECL_INITIAL (decl) == error_mark_node) | |
3930 | { | |
3931 | enum tree_code code = TREE_CODE (TREE_TYPE (decl)); | |
e5e809f4 | 3932 | |
28d81abb | 3933 | if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE |
e5e809f4 | 3934 | || code == POINTER_TYPE || code == REFERENCE_TYPE) |
28d81abb RK |
3935 | expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node), |
3936 | 0, 0); | |
3937 | emit_queue (); | |
3938 | } | |
3939 | else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST) | |
3940 | { | |
3941 | emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); | |
3942 | expand_assignment (decl, DECL_INITIAL (decl), 0, 0); | |
3943 | emit_queue (); | |
3944 | } | |
3945 | ||
b4ac57ab RS |
3946 | /* Don't let the initialization count as "using" the variable. */ |
3947 | TREE_USED (decl) = was_used; | |
3948 | ||
28d81abb | 3949 | /* Free any temporaries we made while initializing the decl. */ |
ae8c59c0 | 3950 | preserve_temp_slots (NULL_RTX); |
28d81abb RK |
3951 | free_temp_slots (); |
3952 | } | |
3953 | ||
3954 | /* CLEANUP is an expression to be executed at exit from this binding contour; | |
3955 | for example, in C++, it might call the destructor for this variable. | |
3956 | ||
4847c938 MS |
3957 | We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the |
3958 | CLEANUP multiple times, and have the correct semantics. This | |
e976b8b2 MS |
3959 | happens in exception handling, for gotos, returns, breaks that |
3960 | leave the current scope. | |
28d81abb RK |
3961 | |
3962 | If CLEANUP is nonzero and DECL is zero, we record a cleanup | |
3963 | that is not associated with any particular variable. */ | |
3964 | ||
3965 | int | |
3966 | expand_decl_cleanup (decl, cleanup) | |
3967 | tree decl, cleanup; | |
3968 | { | |
3f1d071b | 3969 | struct nesting *thisblock; |
28d81abb RK |
3970 | |
3971 | /* Error if we are not in any block. */ | |
01d939e8 | 3972 | if (cfun == 0 || block_stack == 0) |
28d81abb RK |
3973 | return 0; |
3974 | ||
3f1d071b BS |
3975 | thisblock = block_stack; |
3976 | ||
28d81abb RK |
3977 | /* Record the cleanup if there is one. */ |
3978 | ||
3979 | if (cleanup != 0) | |
3980 | { | |
e976b8b2 MS |
3981 | tree t; |
3982 | rtx seq; | |
3983 | tree *cleanups = &thisblock->data.block.cleanups; | |
3984 | int cond_context = conditional_context (); | |
3985 | ||
3986 | if (cond_context) | |
3987 | { | |
3988 | rtx flag = gen_reg_rtx (word_mode); | |
3989 | rtx set_flag_0; | |
3990 | tree cond; | |
3991 | ||
3992 | start_sequence (); | |
3993 | emit_move_insn (flag, const0_rtx); | |
3994 | set_flag_0 = get_insns (); | |
3995 | end_sequence (); | |
3996 | ||
3997 | thisblock->data.block.last_unconditional_cleanup | |
3998 | = emit_insns_after (set_flag_0, | |
3999 | thisblock->data.block.last_unconditional_cleanup); | |
4000 | ||
4001 | emit_move_insn (flag, const1_rtx); | |
4002 | ||
4003 | /* All cleanups must be on the function_obstack. */ | |
4004 | push_obstacks_nochange (); | |
4005 | resume_temporary_allocation (); | |
4006 | ||
4007 | cond = build_decl (VAR_DECL, NULL_TREE, type_for_mode (word_mode, 1)); | |
4008 | DECL_RTL (cond) = flag; | |
4009 | ||
4010 | /* Conditionalize the cleanup. */ | |
4011 | cleanup = build (COND_EXPR, void_type_node, | |
4012 | truthvalue_conversion (cond), | |
4013 | cleanup, integer_zero_node); | |
4014 | cleanup = fold (cleanup); | |
4015 | ||
4016 | pop_obstacks (); | |
4017 | ||
4018 | cleanups = thisblock->data.block.cleanup_ptr; | |
4019 | } | |
4020 | ||
4021 | /* All cleanups must be on the function_obstack. */ | |
4022 | push_obstacks_nochange (); | |
4023 | resume_temporary_allocation (); | |
4847c938 | 4024 | cleanup = unsave_expr (cleanup); |
e976b8b2 MS |
4025 | pop_obstacks (); |
4026 | ||
4027 | t = *cleanups = temp_tree_cons (decl, cleanup, *cleanups); | |
4028 | ||
4029 | if (! cond_context) | |
4030 | /* If this block has a cleanup, it belongs in stack_block_stack. */ | |
4031 | stack_block_stack = thisblock; | |
4032 | ||
4033 | if (cond_context) | |
4034 | { | |
4035 | start_sequence (); | |
4036 | } | |
4847c938 | 4037 | |
e976b8b2 MS |
4038 | /* If this was optimized so that there is no exception region for the |
4039 | cleanup, then mark the TREE_LIST node, so that we can later tell | |
4040 | if we need to call expand_eh_region_end. */ | |
e9a25f70 JL |
4041 | if (! using_eh_for_cleanups_p |
4042 | || expand_eh_region_start_tree (decl, cleanup)) | |
e976b8b2 | 4043 | TREE_ADDRESSABLE (t) = 1; |
716cc7f7 JM |
4044 | /* If that started a new EH region, we're in a new block. */ |
4045 | thisblock = block_stack; | |
e976b8b2 MS |
4046 | |
4047 | if (cond_context) | |
4048 | { | |
4049 | seq = get_insns (); | |
4050 | end_sequence (); | |
7e82801f MS |
4051 | if (seq) |
4052 | thisblock->data.block.last_unconditional_cleanup | |
4053 | = emit_insns_after (seq, | |
4054 | thisblock->data.block.last_unconditional_cleanup); | |
e976b8b2 MS |
4055 | } |
4056 | else | |
4057 | { | |
4058 | thisblock->data.block.last_unconditional_cleanup | |
4059 | = get_last_insn (); | |
4060 | thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups; | |
4061 | } | |
28d81abb RK |
4062 | } |
4063 | return 1; | |
4064 | } | |
e976b8b2 | 4065 | |
c7ae64f2 JM |
4066 | /* Like expand_decl_cleanup, but suppress generating an exception handler |
4067 | to perform the cleanup. */ | |
4068 | ||
95d75019 | 4069 | #if 0 |
c7ae64f2 JM |
4070 | int |
4071 | expand_decl_cleanup_no_eh (decl, cleanup) | |
4072 | tree decl, cleanup; | |
4073 | { | |
4074 | int save_eh = using_eh_for_cleanups_p; | |
b472527b JL |
4075 | int result; |
4076 | ||
c7ae64f2 | 4077 | using_eh_for_cleanups_p = 0; |
b472527b | 4078 | result = expand_decl_cleanup (decl, cleanup); |
c7ae64f2 | 4079 | using_eh_for_cleanups_p = save_eh; |
b472527b JL |
4080 | |
4081 | return result; | |
c7ae64f2 | 4082 | } |
95d75019 | 4083 | #endif |
c7ae64f2 | 4084 | |
e976b8b2 | 4085 | /* Arrange for the top element of the dynamic cleanup chain to be |
4c581243 MS |
4086 | popped if we exit the current binding contour. DECL is the |
4087 | associated declaration, if any, otherwise NULL_TREE. If the | |
4088 | current contour is left via an exception, then __sjthrow will pop | |
4089 | the top element off the dynamic cleanup chain. The code that | |
4090 | avoids doing the action we push into the cleanup chain in the | |
4091 | exceptional case is contained in expand_cleanups. | |
e976b8b2 MS |
4092 | |
4093 | This routine is only used by expand_eh_region_start, and that is | |
4094 | the only way in which an exception region should be started. This | |
4095 | routine is only used when using the setjmp/longjmp codegen method | |
4096 | for exception handling. */ | |
4097 | ||
4098 | int | |
4c581243 MS |
4099 | expand_dcc_cleanup (decl) |
4100 | tree decl; | |
e976b8b2 | 4101 | { |
3f1d071b | 4102 | struct nesting *thisblock; |
e976b8b2 MS |
4103 | tree cleanup; |
4104 | ||
4105 | /* Error if we are not in any block. */ | |
01d939e8 | 4106 | if (cfun == 0 || block_stack == 0) |
e976b8b2 | 4107 | return 0; |
3f1d071b | 4108 | thisblock = block_stack; |
e976b8b2 MS |
4109 | |
4110 | /* Record the cleanup for the dynamic handler chain. */ | |
4111 | ||
4112 | /* All cleanups must be on the function_obstack. */ | |
4113 | push_obstacks_nochange (); | |
4114 | resume_temporary_allocation (); | |
4115 | cleanup = make_node (POPDCC_EXPR); | |
4116 | pop_obstacks (); | |
4117 | ||
4118 | /* Add the cleanup in a manner similar to expand_decl_cleanup. */ | |
4119 | thisblock->data.block.cleanups | |
4c581243 | 4120 | = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups); |
e976b8b2 MS |
4121 | |
4122 | /* If this block has a cleanup, it belongs in stack_block_stack. */ | |
4123 | stack_block_stack = thisblock; | |
4124 | return 1; | |
4125 | } | |
4126 | ||
4127 | /* Arrange for the top element of the dynamic handler chain to be | |
4c581243 | 4128 | popped if we exit the current binding contour. DECL is the |
956d6950 | 4129 | associated declaration, if any, otherwise NULL_TREE. If the current |
4c581243 MS |
4130 | contour is left via an exception, then __sjthrow will pop the top |
4131 | element off the dynamic handler chain. The code that avoids doing | |
4132 | the action we push into the handler chain in the exceptional case | |
4133 | is contained in expand_cleanups. | |
e976b8b2 MS |
4134 | |
4135 | This routine is only used by expand_eh_region_start, and that is | |
4136 | the only way in which an exception region should be started. This | |
4137 | routine is only used when using the setjmp/longjmp codegen method | |
4138 | for exception handling. */ | |
4139 | ||
4140 | int | |
4c581243 MS |
4141 | expand_dhc_cleanup (decl) |
4142 | tree decl; | |
e976b8b2 | 4143 | { |
3f1d071b | 4144 | struct nesting *thisblock; |
e976b8b2 MS |
4145 | tree cleanup; |
4146 | ||
4147 | /* Error if we are not in any block. */ | |
01d939e8 | 4148 | if (cfun == 0 || block_stack == 0) |
e976b8b2 | 4149 | return 0; |
3f1d071b | 4150 | thisblock = block_stack; |
e976b8b2 MS |
4151 | |
4152 | /* Record the cleanup for the dynamic handler chain. */ | |
4153 | ||
4154 | /* All cleanups must be on the function_obstack. */ | |
4155 | push_obstacks_nochange (); | |
4156 | resume_temporary_allocation (); | |
4157 | cleanup = make_node (POPDHC_EXPR); | |
4158 | pop_obstacks (); | |
4159 | ||
4160 | /* Add the cleanup in a manner similar to expand_decl_cleanup. */ | |
4161 | thisblock->data.block.cleanups | |
4c581243 | 4162 | = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups); |
e976b8b2 MS |
4163 | |
4164 | /* If this block has a cleanup, it belongs in stack_block_stack. */ | |
4165 | stack_block_stack = thisblock; | |
4166 | return 1; | |
4167 | } | |
28d81abb RK |
4168 | \f |
4169 | /* DECL is an anonymous union. CLEANUP is a cleanup for DECL. | |
4170 | DECL_ELTS is the list of elements that belong to DECL's type. | |
4171 | In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */ | |
4172 | ||
4173 | void | |
4174 | expand_anon_union_decl (decl, cleanup, decl_elts) | |
4175 | tree decl, cleanup, decl_elts; | |
4176 | { | |
01d939e8 | 4177 | struct nesting *thisblock = cfun == 0 ? 0 : block_stack; |
28d81abb | 4178 | rtx x; |
8a693bd0 | 4179 | tree t; |
28d81abb | 4180 | |
8a693bd0 MM |
4181 | /* If any of the elements are addressable, so is the entire union. */ |
4182 | for (t = decl_elts; t; t = TREE_CHAIN (t)) | |
4183 | if (TREE_ADDRESSABLE (TREE_VALUE (t))) | |
4184 | { | |
4185 | TREE_ADDRESSABLE (decl) = 1; | |
4186 | break; | |
4187 | } | |
4188 | ||
ec5cd386 RK |
4189 | expand_decl (decl); |
4190 | expand_decl_cleanup (decl, cleanup); | |
28d81abb RK |
4191 | x = DECL_RTL (decl); |
4192 | ||
8a693bd0 MM |
4193 | /* Go through the elements, assigning RTL to each. */ |
4194 | for (t = decl_elts; t; t = TREE_CHAIN (t)) | |
28d81abb | 4195 | { |
8a693bd0 MM |
4196 | tree decl_elt = TREE_VALUE (t); |
4197 | tree cleanup_elt = TREE_PURPOSE (t); | |
28d81abb RK |
4198 | enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt)); |
4199 | ||
7b9032dd JM |
4200 | /* Propagate the union's alignment to the elements. */ |
4201 | DECL_ALIGN (decl_elt) = DECL_ALIGN (decl); | |
4202 | ||
4203 | /* If the element has BLKmode and the union doesn't, the union is | |
4204 | aligned such that the element doesn't need to have BLKmode, so | |
4205 | change the element's mode to the appropriate one for its size. */ | |
4206 | if (mode == BLKmode && DECL_MODE (decl) != BLKmode) | |
4207 | DECL_MODE (decl_elt) = mode | |
4208 | = mode_for_size (TREE_INT_CST_LOW (DECL_SIZE (decl_elt)), | |
4209 | MODE_INT, 1); | |
4210 | ||
28d81abb RK |
4211 | /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we |
4212 | instead create a new MEM rtx with the proper mode. */ | |
4213 | if (GET_CODE (x) == MEM) | |
4214 | { | |
4215 | if (mode == GET_MODE (x)) | |
4216 | DECL_RTL (decl_elt) = x; | |
4217 | else | |
4218 | { | |
38a448ca | 4219 | DECL_RTL (decl_elt) = gen_rtx_MEM (mode, copy_rtx (XEXP (x, 0))); |
c6df88cb | 4220 | MEM_COPY_ATTRIBUTES (DECL_RTL (decl_elt), x); |
28d81abb RK |
4221 | RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x); |
4222 | } | |
4223 | } | |
4224 | else if (GET_CODE (x) == REG) | |
4225 | { | |
4226 | if (mode == GET_MODE (x)) | |
4227 | DECL_RTL (decl_elt) = x; | |
4228 | else | |
38a448ca | 4229 | DECL_RTL (decl_elt) = gen_rtx_SUBREG (mode, x, 0); |
28d81abb RK |
4230 | } |
4231 | else | |
4232 | abort (); | |
4233 | ||
4234 | /* Record the cleanup if there is one. */ | |
4235 | ||
4236 | if (cleanup != 0) | |
4237 | thisblock->data.block.cleanups | |
4238 | = temp_tree_cons (decl_elt, cleanup_elt, | |
4239 | thisblock->data.block.cleanups); | |
28d81abb RK |
4240 | } |
4241 | } | |
4242 | \f | |
4243 | /* Expand a list of cleanups LIST. | |
4244 | Elements may be expressions or may be nested lists. | |
4245 | ||
4246 | If DONT_DO is nonnull, then any list-element | |
4247 | whose TREE_PURPOSE matches DONT_DO is omitted. | |
4248 | This is sometimes used to avoid a cleanup associated with | |
4e44807b MS |
4249 | a value that is being returned out of the scope. |
4250 | ||
4251 | If IN_FIXUP is non-zero, we are generating this cleanup for a fixup | |
50d1b7a1 MS |
4252 | goto and handle protection regions specially in that case. |
4253 | ||
4254 | If REACHABLE, we emit code, otherwise just inform the exception handling | |
4255 | code about this finalization. */ | |
28d81abb RK |
4256 | |
4257 | static void | |
50d1b7a1 | 4258 | expand_cleanups (list, dont_do, in_fixup, reachable) |
28d81abb RK |
4259 | tree list; |
4260 | tree dont_do; | |
4e44807b | 4261 | int in_fixup; |
50d1b7a1 | 4262 | int reachable; |
28d81abb RK |
4263 | { |
4264 | tree tail; | |
4265 | for (tail = list; tail; tail = TREE_CHAIN (tail)) | |
4266 | if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do) | |
4267 | { | |
4268 | if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST) | |
50d1b7a1 | 4269 | expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable); |
28d81abb RK |
4270 | else |
4271 | { | |
4e44807b | 4272 | if (! in_fixup) |
e976b8b2 MS |
4273 | { |
4274 | tree cleanup = TREE_VALUE (tail); | |
4275 | ||
4276 | /* See expand_d{h,c}c_cleanup for why we avoid this. */ | |
4277 | if (TREE_CODE (cleanup) != POPDHC_EXPR | |
4278 | && TREE_CODE (cleanup) != POPDCC_EXPR | |
4279 | /* See expand_eh_region_start_tree for this case. */ | |
4280 | && ! TREE_ADDRESSABLE (tail)) | |
4281 | { | |
4282 | cleanup = protect_with_terminate (cleanup); | |
4283 | expand_eh_region_end (cleanup); | |
4284 | } | |
4285 | } | |
61d6b1cc | 4286 | |
50d1b7a1 MS |
4287 | if (reachable) |
4288 | { | |
4289 | /* Cleanups may be run multiple times. For example, | |
4290 | when exiting a binding contour, we expand the | |
4291 | cleanups associated with that contour. When a goto | |
4292 | within that binding contour has a target outside that | |
4293 | contour, it will expand all cleanups from its scope to | |
4294 | the target. Though the cleanups are expanded multiple | |
4295 | times, the control paths are non-overlapping so the | |
4296 | cleanups will not be executed twice. */ | |
9762d48d JM |
4297 | |
4298 | /* We may need to protect fixups with rethrow regions. */ | |
4299 | int protect = (in_fixup && ! TREE_ADDRESSABLE (tail)); | |
e5e809f4 | 4300 | |
9762d48d JM |
4301 | if (protect) |
4302 | expand_fixup_region_start (); | |
e5e809f4 | 4303 | |
f54a7f6f MM |
4304 | /* The cleanup might contain try-blocks, so we have to |
4305 | preserve our current queue. */ | |
4306 | push_ehqueue (); | |
50d1b7a1 | 4307 | expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0); |
f54a7f6f | 4308 | pop_ehqueue (); |
9762d48d JM |
4309 | if (protect) |
4310 | expand_fixup_region_end (TREE_VALUE (tail)); | |
50d1b7a1 MS |
4311 | free_temp_slots (); |
4312 | } | |
28d81abb RK |
4313 | } |
4314 | } | |
4315 | } | |
4316 | ||
e976b8b2 MS |
4317 | /* Mark when the context we are emitting RTL for as a conditional |
4318 | context, so that any cleanup actions we register with | |
4319 | expand_decl_init will be properly conditionalized when those | |
4320 | cleanup actions are later performed. Must be called before any | |
956d6950 | 4321 | expression (tree) is expanded that is within a conditional context. */ |
e976b8b2 MS |
4322 | |
4323 | void | |
956d6950 | 4324 | start_cleanup_deferral () |
e976b8b2 | 4325 | { |
e3eef942 JW |
4326 | /* block_stack can be NULL if we are inside the parameter list. It is |
4327 | OK to do nothing, because cleanups aren't possible here. */ | |
4328 | if (block_stack) | |
4329 | ++block_stack->data.block.conditional_code; | |
e976b8b2 MS |
4330 | } |
4331 | ||
4332 | /* Mark the end of a conditional region of code. Because cleanup | |
956d6950 | 4333 | deferrals may be nested, we may still be in a conditional region |
e976b8b2 MS |
4334 | after we end the currently deferred cleanups, only after we end all |
4335 | deferred cleanups, are we back in unconditional code. */ | |
4336 | ||
4337 | void | |
956d6950 | 4338 | end_cleanup_deferral () |
e976b8b2 | 4339 | { |
e3eef942 JW |
4340 | /* block_stack can be NULL if we are inside the parameter list. It is |
4341 | OK to do nothing, because cleanups aren't possible here. */ | |
4342 | if (block_stack) | |
4343 | --block_stack->data.block.conditional_code; | |
e976b8b2 MS |
4344 | } |
4345 | ||
28d81abb RK |
4346 | /* Move all cleanups from the current block_stack |
4347 | to the containing block_stack, where they are assumed to | |
4348 | have been created. If anything can cause a temporary to | |
4349 | be created, but not expanded for more than one level of | |
4350 | block_stacks, then this code will have to change. */ | |
4351 | ||
4352 | void | |
4353 | move_cleanups_up () | |
4354 | { | |
4355 | struct nesting *block = block_stack; | |
4356 | struct nesting *outer = block->next; | |
4357 | ||
4358 | outer->data.block.cleanups | |
4359 | = chainon (block->data.block.cleanups, | |
4360 | outer->data.block.cleanups); | |
4361 | block->data.block.cleanups = 0; | |
4362 | } | |
4363 | ||
4364 | tree | |
4365 | last_cleanup_this_contour () | |
4366 | { | |
4367 | if (block_stack == 0) | |
4368 | return 0; | |
4369 | ||
4370 | return block_stack->data.block.cleanups; | |
4371 | } | |
4372 | ||
4373 | /* Return 1 if there are any pending cleanups at this point. | |
4374 | If THIS_CONTOUR is nonzero, check the current contour as well. | |
4375 | Otherwise, look only at the contours that enclose this one. */ | |
4376 | ||
4377 | int | |
4378 | any_pending_cleanups (this_contour) | |
4379 | int this_contour; | |
4380 | { | |
4381 | struct nesting *block; | |
4382 | ||
01d939e8 | 4383 | if (cfun == NULL || cfun->stmt == NULL || block_stack == 0) |
28d81abb RK |
4384 | return 0; |
4385 | ||
4386 | if (this_contour && block_stack->data.block.cleanups != NULL) | |
4387 | return 1; | |
4388 | if (block_stack->data.block.cleanups == 0 | |
e976b8b2 | 4389 | && block_stack->data.block.outer_cleanups == 0) |
28d81abb RK |
4390 | return 0; |
4391 | ||
4392 | for (block = block_stack->next; block; block = block->next) | |
4393 | if (block->data.block.cleanups != 0) | |
4394 | return 1; | |
4395 | ||
4396 | return 0; | |
4397 | } | |
4398 | \f | |
4399 | /* Enter a case (Pascal) or switch (C) statement. | |
4400 | Push a block onto case_stack and nesting_stack | |
4401 | to accumulate the case-labels that are seen | |
4402 | and to record the labels generated for the statement. | |
4403 | ||
4404 | EXIT_FLAG is nonzero if `exit_something' should exit this case stmt. | |
4405 | Otherwise, this construct is transparent for `exit_something'. | |
4406 | ||
4407 | EXPR is the index-expression to be dispatched on. | |
4408 | TYPE is its nominal type. We could simply convert EXPR to this type, | |
4409 | but instead we take short cuts. */ | |
4410 | ||
4411 | void | |
4412 | expand_start_case (exit_flag, expr, type, printname) | |
4413 | int exit_flag; | |
4414 | tree expr; | |
4415 | tree type; | |
dff01034 | 4416 | const char *printname; |
28d81abb RK |
4417 | { |
4418 | register struct nesting *thiscase = ALLOC_NESTING (); | |
4419 | ||
4420 | /* Make an entry on case_stack for the case we are entering. */ | |
4421 | ||
4422 | thiscase->next = case_stack; | |
4423 | thiscase->all = nesting_stack; | |
4424 | thiscase->depth = ++nesting_depth; | |
4425 | thiscase->exit_label = exit_flag ? gen_label_rtx () : 0; | |
4426 | thiscase->data.case_stmt.case_list = 0; | |
4427 | thiscase->data.case_stmt.index_expr = expr; | |
4428 | thiscase->data.case_stmt.nominal_type = type; | |
4429 | thiscase->data.case_stmt.default_label = 0; | |
4430 | thiscase->data.case_stmt.num_ranges = 0; | |
4431 | thiscase->data.case_stmt.printname = printname; | |
a11759a3 | 4432 | thiscase->data.case_stmt.line_number_status = force_line_numbers (); |
28d81abb RK |
4433 | case_stack = thiscase; |
4434 | nesting_stack = thiscase; | |
4435 | ||
4436 | do_pending_stack_adjust (); | |
4437 | ||
4438 | /* Make sure case_stmt.start points to something that won't | |
4439 | need any transformation before expand_end_case. */ | |
4440 | if (GET_CODE (get_last_insn ()) != NOTE) | |
37366632 | 4441 | emit_note (NULL_PTR, NOTE_INSN_DELETED); |
28d81abb RK |
4442 | |
4443 | thiscase->data.case_stmt.start = get_last_insn (); | |
4c581243 | 4444 | |
956d6950 | 4445 | start_cleanup_deferral (); |
28d81abb RK |
4446 | } |
4447 | ||
ca695ac9 | 4448 | |
28d81abb RK |
4449 | /* Start a "dummy case statement" within which case labels are invalid |
4450 | and are not connected to any larger real case statement. | |
4451 | This can be used if you don't want to let a case statement jump | |
4452 | into the middle of certain kinds of constructs. */ | |
4453 | ||
4454 | void | |
4455 | expand_start_case_dummy () | |
4456 | { | |
4457 | register struct nesting *thiscase = ALLOC_NESTING (); | |
4458 | ||
4459 | /* Make an entry on case_stack for the dummy. */ | |
4460 | ||
4461 | thiscase->next = case_stack; | |
4462 | thiscase->all = nesting_stack; | |
4463 | thiscase->depth = ++nesting_depth; | |
4464 | thiscase->exit_label = 0; | |
4465 | thiscase->data.case_stmt.case_list = 0; | |
4466 | thiscase->data.case_stmt.start = 0; | |
4467 | thiscase->data.case_stmt.nominal_type = 0; | |
4468 | thiscase->data.case_stmt.default_label = 0; | |
4469 | thiscase->data.case_stmt.num_ranges = 0; | |
4470 | case_stack = thiscase; | |
4471 | nesting_stack = thiscase; | |
956d6950 | 4472 | start_cleanup_deferral (); |
28d81abb RK |
4473 | } |
4474 | ||
4475 | /* End a dummy case statement. */ | |
4476 | ||
4477 | void | |
4478 | expand_end_case_dummy () | |
4479 | { | |
956d6950 | 4480 | end_cleanup_deferral (); |
28d81abb RK |
4481 | POPSTACK (case_stack); |
4482 | } | |
4483 | ||
4484 | /* Return the data type of the index-expression | |
4485 | of the innermost case statement, or null if none. */ | |
4486 | ||
4487 | tree | |
4488 | case_index_expr_type () | |
4489 | { | |
4490 | if (case_stack) | |
4491 | return TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4492 | return 0; | |
4493 | } | |
4494 | \f | |
a11759a3 JR |
4495 | static void |
4496 | check_seenlabel () | |
4497 | { | |
4498 | /* If this is the first label, warn if any insns have been emitted. */ | |
4499 | if (case_stack->data.case_stmt.line_number_status >= 0) | |
4500 | { | |
4501 | rtx insn; | |
4502 | ||
4503 | restore_line_number_status | |
4504 | (case_stack->data.case_stmt.line_number_status); | |
4505 | case_stack->data.case_stmt.line_number_status = -1; | |
4506 | ||
4507 | for (insn = case_stack->data.case_stmt.start; | |
4508 | insn; | |
4509 | insn = NEXT_INSN (insn)) | |
4510 | { | |
4511 | if (GET_CODE (insn) == CODE_LABEL) | |
4512 | break; | |
4513 | if (GET_CODE (insn) != NOTE | |
4514 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE)) | |
4515 | { | |
4516 | do | |
4517 | insn = PREV_INSN (insn); | |
0dacbd0e JW |
4518 | while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0)); |
4519 | ||
4520 | /* If insn is zero, then there must have been a syntax error. */ | |
4521 | if (insn) | |
4522 | warning_with_file_and_line (NOTE_SOURCE_FILE(insn), | |
4523 | NOTE_LINE_NUMBER(insn), | |
4524 | "unreachable code at beginning of %s", | |
4525 | case_stack->data.case_stmt.printname); | |
a11759a3 JR |
4526 | break; |
4527 | } | |
4528 | } | |
4529 | } | |
4530 | } | |
4531 | ||
28d81abb RK |
4532 | /* Accumulate one case or default label inside a case or switch statement. |
4533 | VALUE is the value of the case (a null pointer, for a default label). | |
f52fba84 PE |
4534 | The function CONVERTER, when applied to arguments T and V, |
4535 | converts the value V to the type T. | |
28d81abb RK |
4536 | |
4537 | If not currently inside a case or switch statement, return 1 and do | |
4538 | nothing. The caller will print a language-specific error message. | |
4539 | If VALUE is a duplicate or overlaps, return 2 and do nothing | |
4540 | except store the (first) duplicate node in *DUPLICATE. | |
4541 | If VALUE is out of range, return 3 and do nothing. | |
e976b8b2 | 4542 | If we are jumping into the scope of a cleanup or var-sized array, return 5. |
28d81abb RK |
4543 | Return 0 on success. |
4544 | ||
4545 | Extended to handle range statements. */ | |
4546 | ||
4547 | int | |
f52fba84 | 4548 | pushcase (value, converter, label, duplicate) |
28d81abb | 4549 | register tree value; |
cdadb1dd | 4550 | tree (*converter) PARAMS ((tree, tree)); |
28d81abb RK |
4551 | register tree label; |
4552 | tree *duplicate; | |
4553 | { | |
28d81abb RK |
4554 | tree index_type; |
4555 | tree nominal_type; | |
4556 | ||
4557 | /* Fail if not inside a real case statement. */ | |
4558 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
4559 | return 1; | |
4560 | ||
4561 | if (stack_block_stack | |
4562 | && stack_block_stack->depth > case_stack->depth) | |
4563 | return 5; | |
4564 | ||
4565 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4566 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
4567 | ||
4568 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
4569 | if (index_type == error_mark_node) | |
4570 | return 0; | |
4571 | ||
2f985ca6 JW |
4572 | /* Convert VALUE to the type in which the comparisons are nominally done. */ |
4573 | if (value != 0) | |
4574 | value = (*converter) (nominal_type, value); | |
4575 | ||
feb60352 R |
4576 | check_seenlabel (); |
4577 | ||
28d81abb RK |
4578 | /* Fail if this value is out of range for the actual type of the index |
4579 | (which may be narrower than NOMINAL_TYPE). */ | |
14a774a9 RK |
4580 | if (value != 0 |
4581 | && (TREE_CONSTANT_OVERFLOW (value) | |
4582 | || ! int_fits_type_p (value, index_type))) | |
28d81abb RK |
4583 | return 3; |
4584 | ||
4585 | /* Fail if this is a duplicate or overlaps another entry. */ | |
4586 | if (value == 0) | |
4587 | { | |
4588 | if (case_stack->data.case_stmt.default_label != 0) | |
4589 | { | |
4590 | *duplicate = case_stack->data.case_stmt.default_label; | |
4591 | return 2; | |
4592 | } | |
4593 | case_stack->data.case_stmt.default_label = label; | |
4594 | } | |
4595 | else | |
57641239 | 4596 | return add_case_node (value, value, label, duplicate); |
28d81abb RK |
4597 | |
4598 | expand_label (label); | |
4599 | return 0; | |
4600 | } | |
4601 | ||
956d6950 JL |
4602 | /* Like pushcase but this case applies to all values between VALUE1 and |
4603 | VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest | |
4604 | value of the index type and ends at VALUE2. If VALUE2 is NULL, the range | |
4605 | starts at VALUE1 and ends at the highest value of the index type. | |
4606 | If both are NULL, this case applies to all values. | |
4607 | ||
4608 | The return value is the same as that of pushcase but there is one | |
4609 | additional error code: 4 means the specified range was empty. */ | |
28d81abb RK |
4610 | |
4611 | int | |
f52fba84 | 4612 | pushcase_range (value1, value2, converter, label, duplicate) |
28d81abb | 4613 | register tree value1, value2; |
cdadb1dd | 4614 | tree (*converter) PARAMS ((tree, tree)); |
28d81abb RK |
4615 | register tree label; |
4616 | tree *duplicate; | |
4617 | { | |
28d81abb RK |
4618 | tree index_type; |
4619 | tree nominal_type; | |
4620 | ||
4621 | /* Fail if not inside a real case statement. */ | |
4622 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
4623 | return 1; | |
4624 | ||
4625 | if (stack_block_stack | |
4626 | && stack_block_stack->depth > case_stack->depth) | |
4627 | return 5; | |
4628 | ||
4629 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
4630 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
4631 | ||
4632 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
4633 | if (index_type == error_mark_node) | |
4634 | return 0; | |
4635 | ||
a11759a3 | 4636 | check_seenlabel (); |
28d81abb | 4637 | |
956d6950 JL |
4638 | /* Convert VALUEs to type in which the comparisons are nominally done |
4639 | and replace any unspecified value with the corresponding bound. */ | |
4640 | if (value1 == 0) | |
1974bfb1 | 4641 | value1 = TYPE_MIN_VALUE (index_type); |
956d6950 | 4642 | if (value2 == 0) |
1974bfb1 | 4643 | value2 = TYPE_MAX_VALUE (index_type); |
956d6950 JL |
4644 | |
4645 | /* Fail if the range is empty. Do this before any conversion since | |
4646 | we want to allow out-of-range empty ranges. */ | |
14a774a9 | 4647 | if (value2 != 0 && tree_int_cst_lt (value2, value1)) |
956d6950 JL |
4648 | return 4; |
4649 | ||
e1ee5cdc RH |
4650 | /* If the max was unbounded, use the max of the nominal_type we are |
4651 | converting to. Do this after the < check above to suppress false | |
4652 | positives. */ | |
14a774a9 | 4653 | if (value2 == 0) |
e1ee5cdc | 4654 | value2 = TYPE_MAX_VALUE (nominal_type); |
28d81abb | 4655 | |
2f985ca6 JW |
4656 | value1 = (*converter) (nominal_type, value1); |
4657 | value2 = (*converter) (nominal_type, value2); | |
4658 | ||
28d81abb | 4659 | /* Fail if these values are out of range. */ |
956d6950 JL |
4660 | if (TREE_CONSTANT_OVERFLOW (value1) |
4661 | || ! int_fits_type_p (value1, index_type)) | |
28d81abb RK |
4662 | return 3; |
4663 | ||
956d6950 JL |
4664 | if (TREE_CONSTANT_OVERFLOW (value2) |
4665 | || ! int_fits_type_p (value2, index_type)) | |
28d81abb RK |
4666 | return 3; |
4667 | ||
57641239 RK |
4668 | return add_case_node (value1, value2, label, duplicate); |
4669 | } | |
4670 | ||
4671 | /* Do the actual insertion of a case label for pushcase and pushcase_range | |
4672 | into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid | |
4673 | slowdown for large switch statements. */ | |
4674 | ||
4675 | static int | |
4676 | add_case_node (low, high, label, duplicate) | |
4677 | tree low, high; | |
4678 | tree label; | |
4679 | tree *duplicate; | |
4680 | { | |
4681 | struct case_node *p, **q, *r; | |
4682 | ||
4683 | q = &case_stack->data.case_stmt.case_list; | |
4684 | p = *q; | |
4685 | ||
69d4ca36 | 4686 | while ((r = *q)) |
28d81abb | 4687 | { |
57641239 RK |
4688 | p = r; |
4689 | ||
4690 | /* Keep going past elements distinctly greater than HIGH. */ | |
4691 | if (tree_int_cst_lt (high, p->low)) | |
4692 | q = &p->left; | |
4693 | ||
4694 | /* or distinctly less than LOW. */ | |
4695 | else if (tree_int_cst_lt (p->high, low)) | |
4696 | q = &p->right; | |
4697 | ||
4698 | else | |
28d81abb | 4699 | { |
57641239 RK |
4700 | /* We have an overlap; this is an error. */ |
4701 | *duplicate = p->code_label; | |
28d81abb RK |
4702 | return 2; |
4703 | } | |
4704 | } | |
4705 | ||
4706 | /* Add this label to the chain, and succeed. | |
57641239 | 4707 | Copy LOW, HIGH so they are on temporary rather than momentary |
28d81abb RK |
4708 | obstack and will thus survive till the end of the case statement. */ |
4709 | ||
57641239 RK |
4710 | r = (struct case_node *) oballoc (sizeof (struct case_node)); |
4711 | r->low = copy_node (low); | |
28d81abb | 4712 | |
57641239 RK |
4713 | /* If the bounds are equal, turn this into the one-value case. */ |
4714 | ||
4715 | if (tree_int_cst_equal (low, high)) | |
4716 | r->high = r->low; | |
4717 | else | |
4718 | { | |
4719 | r->high = copy_node (high); | |
4720 | case_stack->data.case_stmt.num_ranges++; | |
4721 | } | |
4722 | ||
4723 | r->code_label = label; | |
28d81abb RK |
4724 | expand_label (label); |
4725 | ||
57641239 RK |
4726 | *q = r; |
4727 | r->parent = p; | |
4728 | r->left = 0; | |
4729 | r->right = 0; | |
4730 | r->balance = 0; | |
4731 | ||
4732 | while (p) | |
4733 | { | |
4734 | struct case_node *s; | |
4735 | ||
4736 | if (r == p->left) | |
4737 | { | |
4738 | int b; | |
4739 | ||
4740 | if (! (b = p->balance)) | |
4741 | /* Growth propagation from left side. */ | |
4742 | p->balance = -1; | |
4743 | else if (b < 0) | |
4744 | { | |
4745 | if (r->balance < 0) | |
4746 | { | |
4747 | /* R-Rotation */ | |
51723711 | 4748 | if ((p->left = s = r->right)) |
57641239 RK |
4749 | s->parent = p; |
4750 | ||
4751 | r->right = p; | |
4752 | p->balance = 0; | |
4753 | r->balance = 0; | |
4754 | s = p->parent; | |
4755 | p->parent = r; | |
4756 | ||
51723711 | 4757 | if ((r->parent = s)) |
57641239 RK |
4758 | { |
4759 | if (s->left == p) | |
4760 | s->left = r; | |
4761 | else | |
4762 | s->right = r; | |
4763 | } | |
4764 | else | |
4765 | case_stack->data.case_stmt.case_list = r; | |
4766 | } | |
4767 | else | |
4768 | /* r->balance == +1 */ | |
4769 | { | |
5720c7e7 RK |
4770 | /* LR-Rotation */ |
4771 | ||
57641239 RK |
4772 | int b2; |
4773 | struct case_node *t = r->right; | |
4774 | ||
51723711 | 4775 | if ((p->left = s = t->right)) |
57641239 RK |
4776 | s->parent = p; |
4777 | ||
4778 | t->right = p; | |
51723711 | 4779 | if ((r->right = s = t->left)) |
57641239 RK |
4780 | s->parent = r; |
4781 | ||
4782 | t->left = r; | |
4783 | b = t->balance; | |
4784 | b2 = b < 0; | |
4785 | p->balance = b2; | |
4786 | b2 = -b2 - b; | |
4787 | r->balance = b2; | |
4788 | t->balance = 0; | |
4789 | s = p->parent; | |
4790 | p->parent = t; | |
4791 | r->parent = t; | |
4792 | ||
51723711 | 4793 | if ((t->parent = s)) |
57641239 RK |
4794 | { |
4795 | if (s->left == p) | |
4796 | s->left = t; | |
4797 | else | |
4798 | s->right = t; | |
4799 | } | |
4800 | else | |
4801 | case_stack->data.case_stmt.case_list = t; | |
4802 | } | |
4803 | break; | |
4804 | } | |
4805 | ||
4806 | else | |
4807 | { | |
4808 | /* p->balance == +1; growth of left side balances the node. */ | |
4809 | p->balance = 0; | |
4810 | break; | |
4811 | } | |
4812 | } | |
4813 | else | |
4814 | /* r == p->right */ | |
4815 | { | |
4816 | int b; | |
4817 | ||
4818 | if (! (b = p->balance)) | |
4819 | /* Growth propagation from right side. */ | |
4820 | p->balance++; | |
4821 | else if (b > 0) | |
4822 | { | |
4823 | if (r->balance > 0) | |
4824 | { | |
4825 | /* L-Rotation */ | |
4826 | ||
51723711 | 4827 | if ((p->right = s = r->left)) |
57641239 RK |
4828 | s->parent = p; |
4829 | ||
4830 | r->left = p; | |
4831 | p->balance = 0; | |
4832 | r->balance = 0; | |
4833 | s = p->parent; | |
4834 | p->parent = r; | |
51723711 | 4835 | if ((r->parent = s)) |
57641239 RK |
4836 | { |
4837 | if (s->left == p) | |
4838 | s->left = r; | |
4839 | else | |
4840 | s->right = r; | |
4841 | } | |
4842 | ||
4843 | else | |
4844 | case_stack->data.case_stmt.case_list = r; | |
4845 | } | |
4846 | ||
4847 | else | |
4848 | /* r->balance == -1 */ | |
4849 | { | |
4850 | /* RL-Rotation */ | |
4851 | int b2; | |
4852 | struct case_node *t = r->left; | |
4853 | ||
51723711 | 4854 | if ((p->right = s = t->left)) |
57641239 RK |
4855 | s->parent = p; |
4856 | ||
4857 | t->left = p; | |
4858 | ||
51723711 | 4859 | if ((r->left = s = t->right)) |
57641239 RK |
4860 | s->parent = r; |
4861 | ||
4862 | t->right = r; | |
4863 | b = t->balance; | |
4864 | b2 = b < 0; | |
4865 | r->balance = b2; | |
4866 | b2 = -b2 - b; | |
4867 | p->balance = b2; | |
4868 | t->balance = 0; | |
4869 | s = p->parent; | |
4870 | p->parent = t; | |
4871 | r->parent = t; | |
4872 | ||
51723711 | 4873 | if ((t->parent = s)) |
57641239 RK |
4874 | { |
4875 | if (s->left == p) | |
4876 | s->left = t; | |
4877 | else | |
4878 | s->right = t; | |
4879 | } | |
4880 | ||
4881 | else | |
4882 | case_stack->data.case_stmt.case_list = t; | |
4883 | } | |
4884 | break; | |
4885 | } | |
4886 | else | |
4887 | { | |
4888 | /* p->balance == -1; growth of right side balances the node. */ | |
4889 | p->balance = 0; | |
4890 | break; | |
4891 | } | |
4892 | } | |
4893 | ||
4894 | r = p; | |
4895 | p = p->parent; | |
4896 | } | |
28d81abb RK |
4897 | |
4898 | return 0; | |
4899 | } | |
ca695ac9 | 4900 | |
28d81abb | 4901 | \f |
94d6511c PB |
4902 | /* Returns the number of possible values of TYPE. |
4903 | Returns -1 if the number is unknown or variable. | |
4904 | Returns -2 if the number does not fit in a HOST_WIDE_INT. | |
4905 | Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values | |
4906 | do not increase monotonically (there may be duplicates); | |
4907 | to 1 if the values increase monotonically, but not always by 1; | |
4908 | otherwise sets it to 0. */ | |
4909 | ||
4910 | HOST_WIDE_INT | |
4911 | all_cases_count (type, spareness) | |
4912 | tree type; | |
4913 | int *spareness; | |
4914 | { | |
69d4ca36 | 4915 | HOST_WIDE_INT count; |
94d6511c PB |
4916 | *spareness = 0; |
4917 | ||
4918 | switch (TREE_CODE (type)) | |
4919 | { | |
4920 | tree t; | |
4921 | case BOOLEAN_TYPE: | |
4922 | count = 2; | |
4923 | break; | |
4924 | case CHAR_TYPE: | |
4925 | count = 1 << BITS_PER_UNIT; | |
4926 | break; | |
4927 | default: | |
4928 | case INTEGER_TYPE: | |
4929 | if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST | |
e1ee5cdc | 4930 | || TYPE_MAX_VALUE (type) == NULL |
c02aebe2 | 4931 | || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST) |
94d6511c PB |
4932 | return -1; |
4933 | else | |
4934 | { | |
4935 | /* count | |
4936 | = TREE_INT_CST_LOW (TYPE_MAX_VALUE (type)) | |
4937 | - TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + 1 | |
0f41302f | 4938 | but with overflow checking. */ |
94d6511c PB |
4939 | tree mint = TYPE_MIN_VALUE (type); |
4940 | tree maxt = TYPE_MAX_VALUE (type); | |
4941 | HOST_WIDE_INT lo, hi; | |
4942 | neg_double(TREE_INT_CST_LOW (mint), TREE_INT_CST_HIGH (mint), | |
4943 | &lo, &hi); | |
4944 | add_double(TREE_INT_CST_LOW (maxt), TREE_INT_CST_HIGH (maxt), | |
4945 | lo, hi, &lo, &hi); | |
4946 | add_double (lo, hi, 1, 0, &lo, &hi); | |
4947 | if (hi != 0 || lo < 0) | |
4948 | return -2; | |
4949 | count = lo; | |
4950 | } | |
4951 | break; | |
4952 | case ENUMERAL_TYPE: | |
4953 | count = 0; | |
4954 | for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t)) | |
4955 | { | |
4956 | if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST | |
4957 | || TREE_CODE (TREE_VALUE (t)) != INTEGER_CST | |
4958 | || TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + count | |
4959 | != TREE_INT_CST_LOW (TREE_VALUE (t))) | |
4960 | *spareness = 1; | |
4961 | count++; | |
4962 | } | |
4963 | if (*spareness == 1) | |
4964 | { | |
4965 | tree prev = TREE_VALUE (TYPE_VALUES (type)); | |
4966 | for (t = TYPE_VALUES (type); t = TREE_CHAIN (t), t != NULL_TREE; ) | |
4967 | { | |
4968 | if (! tree_int_cst_lt (prev, TREE_VALUE (t))) | |
4969 | { | |
4970 | *spareness = 2; | |
4971 | break; | |
4972 | } | |
4973 | prev = TREE_VALUE (t); | |
4974 | } | |
4975 | ||
4976 | } | |
4977 | } | |
4978 | return count; | |
4979 | } | |
4980 | ||
4981 | ||
4982 | #define BITARRAY_TEST(ARRAY, INDEX) \ | |
0f41302f MS |
4983 | ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\ |
4984 | & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))) | |
94d6511c | 4985 | #define BITARRAY_SET(ARRAY, INDEX) \ |
0f41302f MS |
4986 | ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\ |
4987 | |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)) | |
94d6511c PB |
4988 | |
4989 | /* Set the elements of the bitstring CASES_SEEN (which has length COUNT), | |
4990 | with the case values we have seen, assuming the case expression | |
4991 | has the given TYPE. | |
4992 | SPARSENESS is as determined by all_cases_count. | |
4993 | ||
9faa82d8 | 4994 | The time needed is proportional to COUNT, unless |
94d6511c PB |
4995 | SPARSENESS is 2, in which case quadratic time is needed. */ |
4996 | ||
df03cab5 | 4997 | void |
94d6511c PB |
4998 | mark_seen_cases (type, cases_seen, count, sparseness) |
4999 | tree type; | |
5000 | unsigned char *cases_seen; | |
5001 | long count; | |
5002 | int sparseness; | |
5003 | { | |
94d6511c PB |
5004 | tree next_node_to_try = NULL_TREE; |
5005 | long next_node_offset = 0; | |
5006 | ||
5720c7e7 | 5007 | register struct case_node *n, *root = case_stack->data.case_stmt.case_list; |
94d6511c PB |
5008 | tree val = make_node (INTEGER_CST); |
5009 | TREE_TYPE (val) = type; | |
5720c7e7 RK |
5010 | if (! root) |
5011 | ; /* Do nothing */ | |
5012 | else if (sparseness == 2) | |
94d6511c | 5013 | { |
5720c7e7 RK |
5014 | tree t; |
5015 | HOST_WIDE_INT xlo; | |
5016 | ||
5017 | /* This less efficient loop is only needed to handle | |
5018 | duplicate case values (multiple enum constants | |
5019 | with the same value). */ | |
5020 | TREE_TYPE (val) = TREE_TYPE (root->low); | |
5021 | for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE; | |
5022 | t = TREE_CHAIN (t), xlo++) | |
94d6511c | 5023 | { |
5720c7e7 RK |
5024 | TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t)); |
5025 | TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t)); | |
5026 | n = root; | |
5027 | do | |
94d6511c | 5028 | { |
5720c7e7 RK |
5029 | /* Keep going past elements distinctly greater than VAL. */ |
5030 | if (tree_int_cst_lt (val, n->low)) | |
5031 | n = n->left; | |
5032 | ||
5033 | /* or distinctly less than VAL. */ | |
5034 | else if (tree_int_cst_lt (n->high, val)) | |
5035 | n = n->right; | |
5036 | ||
5037 | else | |
94d6511c | 5038 | { |
5720c7e7 RK |
5039 | /* We have found a matching range. */ |
5040 | BITARRAY_SET (cases_seen, xlo); | |
5041 | break; | |
94d6511c PB |
5042 | } |
5043 | } | |
5720c7e7 RK |
5044 | while (n); |
5045 | } | |
5046 | } | |
5047 | else | |
5048 | { | |
5049 | if (root->left) | |
5050 | case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0); | |
5051 | for (n = root; n; n = n->right) | |
5052 | { | |
5053 | TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low); | |
5054 | TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low); | |
5055 | while ( ! tree_int_cst_lt (n->high, val)) | |
94d6511c | 5056 | { |
5720c7e7 RK |
5057 | /* Calculate (into xlo) the "offset" of the integer (val). |
5058 | The element with lowest value has offset 0, the next smallest | |
5059 | element has offset 1, etc. */ | |
5060 | ||
5061 | HOST_WIDE_INT xlo, xhi; | |
5062 | tree t; | |
94d6511c PB |
5063 | if (sparseness && TYPE_VALUES (type) != NULL_TREE) |
5064 | { | |
5065 | /* The TYPE_VALUES will be in increasing order, so | |
5066 | starting searching where we last ended. */ | |
5067 | t = next_node_to_try; | |
5068 | xlo = next_node_offset; | |
5069 | xhi = 0; | |
5070 | for (;;) | |
5071 | { | |
5072 | if (t == NULL_TREE) | |
5073 | { | |
5074 | t = TYPE_VALUES (type); | |
5075 | xlo = 0; | |
5076 | } | |
5077 | if (tree_int_cst_equal (val, TREE_VALUE (t))) | |
5078 | { | |
5079 | next_node_to_try = TREE_CHAIN (t); | |
5080 | next_node_offset = xlo + 1; | |
5081 | break; | |
5082 | } | |
5083 | xlo++; | |
5084 | t = TREE_CHAIN (t); | |
5085 | if (t == next_node_to_try) | |
5720c7e7 RK |
5086 | { |
5087 | xlo = -1; | |
5088 | break; | |
5089 | } | |
94d6511c PB |
5090 | } |
5091 | } | |
5092 | else | |
5093 | { | |
5094 | t = TYPE_MIN_VALUE (type); | |
5095 | if (t) | |
5096 | neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), | |
5097 | &xlo, &xhi); | |
5098 | else | |
5099 | xlo = xhi = 0; | |
5100 | add_double (xlo, xhi, | |
5101 | TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val), | |
5102 | &xlo, &xhi); | |
5103 | } | |
5104 | ||
9dd53f1e | 5105 | if (xhi == 0 && xlo >= 0 && xlo < count) |
94d6511c | 5106 | BITARRAY_SET (cases_seen, xlo); |
5720c7e7 RK |
5107 | add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val), |
5108 | 1, 0, | |
5109 | &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val)); | |
94d6511c | 5110 | } |
94d6511c PB |
5111 | } |
5112 | } | |
5113 | } | |
5114 | ||
28d81abb RK |
5115 | /* Called when the index of a switch statement is an enumerated type |
5116 | and there is no default label. | |
5117 | ||
5118 | Checks that all enumeration literals are covered by the case | |
5119 | expressions of a switch. Also, warn if there are any extra | |
5120 | switch cases that are *not* elements of the enumerated type. | |
5121 | ||
5122 | If all enumeration literals were covered by the case expressions, | |
5123 | turn one of the expressions into the default expression since it should | |
5124 | not be possible to fall through such a switch. */ | |
5125 | ||
5126 | void | |
5127 | check_for_full_enumeration_handling (type) | |
5128 | tree type; | |
5129 | { | |
5130 | register struct case_node *n; | |
28d81abb | 5131 | register tree chain; |
69d4ca36 RL |
5132 | #if 0 /* variable used by 'if 0'ed code below. */ |
5133 | register struct case_node **l; | |
28d81abb | 5134 | int all_values = 1; |
69d4ca36 | 5135 | #endif |
28d81abb | 5136 | |
0f41302f | 5137 | /* True iff the selector type is a numbered set mode. */ |
94d6511c PB |
5138 | int sparseness = 0; |
5139 | ||
0f41302f | 5140 | /* The number of possible selector values. */ |
94d6511c PB |
5141 | HOST_WIDE_INT size; |
5142 | ||
5143 | /* For each possible selector value. a one iff it has been matched | |
0f41302f | 5144 | by a case value alternative. */ |
94d6511c PB |
5145 | unsigned char *cases_seen; |
5146 | ||
0f41302f | 5147 | /* The allocated size of cases_seen, in chars. */ |
94d6511c | 5148 | long bytes_needed; |
94d6511c | 5149 | |
94d6511c PB |
5150 | if (! warn_switch) |
5151 | return; | |
5152 | ||
5153 | size = all_cases_count (type, &sparseness); | |
5154 | bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR; | |
28d81abb | 5155 | |
94d6511c | 5156 | if (size > 0 && size < 600000 |
c5c76735 JL |
5157 | /* We deliberately use calloc here, not cmalloc, so that we can suppress |
5158 | this optimization if we don't have enough memory rather than | |
5159 | aborting, as xmalloc would do. */ | |
3de90026 | 5160 | && (cases_seen = (unsigned char *) calloc (bytes_needed, 1)) != NULL) |
28d81abb | 5161 | { |
94d6511c PB |
5162 | long i; |
5163 | tree v = TYPE_VALUES (type); | |
28d81abb | 5164 | |
94d6511c PB |
5165 | /* The time complexity of this code is normally O(N), where |
5166 | N being the number of members in the enumerated type. | |
5167 | However, if type is a ENUMERAL_TYPE whose values do not | |
0f41302f | 5168 | increase monotonically, O(N*log(N)) time may be needed. */ |
94d6511c PB |
5169 | |
5170 | mark_seen_cases (type, cases_seen, size, sparseness); | |
5171 | ||
5172 | for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v)) | |
28d81abb | 5173 | { |
94d6511c | 5174 | if (BITARRAY_TEST(cases_seen, i) == 0) |
1ddde1cd | 5175 | warning ("enumeration value `%s' not handled in switch", |
94d6511c | 5176 | IDENTIFIER_POINTER (TREE_PURPOSE (v))); |
28d81abb | 5177 | } |
94d6511c PB |
5178 | |
5179 | free (cases_seen); | |
28d81abb RK |
5180 | } |
5181 | ||
5182 | /* Now we go the other way around; we warn if there are case | |
ac2a9454 | 5183 | expressions that don't correspond to enumerators. This can |
28d81abb | 5184 | occur since C and C++ don't enforce type-checking of |
0f41302f | 5185 | assignments to enumeration variables. */ |
28d81abb | 5186 | |
5720c7e7 RK |
5187 | if (case_stack->data.case_stmt.case_list |
5188 | && case_stack->data.case_stmt.case_list->left) | |
5189 | case_stack->data.case_stmt.case_list | |
5190 | = case_tree2list (case_stack->data.case_stmt.case_list, 0); | |
28d81abb RK |
5191 | if (warn_switch) |
5192 | for (n = case_stack->data.case_stmt.case_list; n; n = n->right) | |
5193 | { | |
5194 | for (chain = TYPE_VALUES (type); | |
5195 | chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain)); | |
5196 | chain = TREE_CHAIN (chain)) | |
5197 | ; | |
5198 | ||
5199 | if (!chain) | |
3b24f55b RS |
5200 | { |
5201 | if (TYPE_NAME (type) == 0) | |
e016950d KG |
5202 | warning ("case value `%ld' not in enumerated type", |
5203 | (long) TREE_INT_CST_LOW (n->low)); | |
3b24f55b | 5204 | else |
e016950d KG |
5205 | warning ("case value `%ld' not in enumerated type `%s'", |
5206 | (long) TREE_INT_CST_LOW (n->low), | |
3b24f55b RS |
5207 | IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type)) |
5208 | == IDENTIFIER_NODE) | |
5209 | ? TYPE_NAME (type) | |
5210 | : DECL_NAME (TYPE_NAME (type)))); | |
5211 | } | |
1ddde1cd RS |
5212 | if (!tree_int_cst_equal (n->low, n->high)) |
5213 | { | |
5214 | for (chain = TYPE_VALUES (type); | |
5215 | chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain)); | |
5216 | chain = TREE_CHAIN (chain)) | |
5217 | ; | |
5218 | ||
5219 | if (!chain) | |
3b24f55b RS |
5220 | { |
5221 | if (TYPE_NAME (type) == 0) | |
e016950d KG |
5222 | warning ("case value `%ld' not in enumerated type", |
5223 | (long) TREE_INT_CST_LOW (n->high)); | |
3b24f55b | 5224 | else |
e016950d KG |
5225 | warning ("case value `%ld' not in enumerated type `%s'", |
5226 | (long) TREE_INT_CST_LOW (n->high), | |
3b24f55b RS |
5227 | IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type)) |
5228 | == IDENTIFIER_NODE) | |
5229 | ? TYPE_NAME (type) | |
5230 | : DECL_NAME (TYPE_NAME (type)))); | |
5231 | } | |
1ddde1cd | 5232 | } |
28d81abb RK |
5233 | } |
5234 | ||
ae8cb346 RS |
5235 | #if 0 |
5236 | /* ??? This optimization is disabled because it causes valid programs to | |
5237 | fail. ANSI C does not guarantee that an expression with enum type | |
9faa82d8 | 5238 | will have a value that is the same as one of the enumeration literals. */ |
ae8cb346 | 5239 | |
28d81abb RK |
5240 | /* If all values were found as case labels, make one of them the default |
5241 | label. Thus, this switch will never fall through. We arbitrarily pick | |
5242 | the last one to make the default since this is likely the most | |
5243 | efficient choice. */ | |
5244 | ||
5245 | if (all_values) | |
5246 | { | |
5247 | for (l = &case_stack->data.case_stmt.case_list; | |
5248 | (*l)->right != 0; | |
5249 | l = &(*l)->right) | |
5250 | ; | |
5251 | ||
5252 | case_stack->data.case_stmt.default_label = (*l)->code_label; | |
5253 | *l = 0; | |
5254 | } | |
ae8cb346 | 5255 | #endif /* 0 */ |
28d81abb | 5256 | } |
ca695ac9 | 5257 | |
28d81abb RK |
5258 | \f |
5259 | /* Terminate a case (Pascal) or switch (C) statement | |
9ab0ddd7 | 5260 | in which ORIG_INDEX is the expression to be tested. |
28d81abb RK |
5261 | Generate the code to test it and jump to the right place. */ |
5262 | ||
5263 | void | |
5264 | expand_end_case (orig_index) | |
5265 | tree orig_index; | |
5266 | { | |
95d75019 | 5267 | tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE, orig_minval; |
28d81abb RK |
5268 | rtx default_label = 0; |
5269 | register struct case_node *n; | |
85066503 | 5270 | unsigned int count; |
28d81abb | 5271 | rtx index; |
ca695ac9 | 5272 | rtx table_label; |
28d81abb RK |
5273 | int ncases; |
5274 | rtx *labelvec; | |
5275 | register int i; | |
5276 | rtx before_case; | |
5277 | register struct nesting *thiscase = case_stack; | |
1b0cb6fc | 5278 | tree index_expr, index_type; |
ca695ac9 JB |
5279 | int unsignedp; |
5280 | ||
03c03770 AS |
5281 | /* Don't crash due to previous errors. */ |
5282 | if (thiscase == NULL) | |
5283 | return; | |
5284 | ||
ca695ac9 JB |
5285 | table_label = gen_label_rtx (); |
5286 | index_expr = thiscase->data.case_stmt.index_expr; | |
1b0cb6fc RK |
5287 | index_type = TREE_TYPE (index_expr); |
5288 | unsignedp = TREE_UNSIGNED (index_type); | |
28d81abb RK |
5289 | |
5290 | do_pending_stack_adjust (); | |
5291 | ||
feb60352 R |
5292 | /* This might get an spurious warning in the presence of a syntax error; |
5293 | it could be fixed by moving the call to check_seenlabel after the | |
5294 | check for error_mark_node, and copying the code of check_seenlabel that | |
5295 | deals with case_stack->data.case_stmt.line_number_status / | |
5296 | restore_line_number_status in front of the call to end_cleanup_deferral; | |
5297 | However, this might miss some useful warnings in the presence of | |
5298 | non-syntax errors. */ | |
a11759a3 JR |
5299 | check_seenlabel (); |
5300 | ||
28d81abb | 5301 | /* An ERROR_MARK occurs for various reasons including invalid data type. */ |
1b0cb6fc | 5302 | if (index_type != error_mark_node) |
28d81abb RK |
5303 | { |
5304 | /* If switch expression was an enumerated type, check that all | |
5305 | enumeration literals are covered by the cases. | |
5306 | No sense trying this if there's a default case, however. */ | |
5307 | ||
5308 | if (!thiscase->data.case_stmt.default_label | |
5309 | && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE | |
5310 | && TREE_CODE (index_expr) != INTEGER_CST) | |
5311 | check_for_full_enumeration_handling (TREE_TYPE (orig_index)); | |
5312 | ||
28d81abb RK |
5313 | /* If we don't have a default-label, create one here, |
5314 | after the body of the switch. */ | |
5315 | if (thiscase->data.case_stmt.default_label == 0) | |
5316 | { | |
5317 | thiscase->data.case_stmt.default_label | |
5318 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
5319 | expand_label (thiscase->data.case_stmt.default_label); | |
5320 | } | |
5321 | default_label = label_rtx (thiscase->data.case_stmt.default_label); | |
5322 | ||
5323 | before_case = get_last_insn (); | |
5324 | ||
5720c7e7 RK |
5325 | if (thiscase->data.case_stmt.case_list |
5326 | && thiscase->data.case_stmt.case_list->left) | |
b059139c RK |
5327 | thiscase->data.case_stmt.case_list |
5328 | = case_tree2list(thiscase->data.case_stmt.case_list, 0); | |
5329 | ||
28d81abb RK |
5330 | /* Simplify the case-list before we count it. */ |
5331 | group_case_nodes (thiscase->data.case_stmt.case_list); | |
5332 | ||
5333 | /* Get upper and lower bounds of case values. | |
5334 | Also convert all the case values to the index expr's data type. */ | |
5335 | ||
5336 | count = 0; | |
5337 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
5338 | { | |
5339 | /* Check low and high label values are integers. */ | |
5340 | if (TREE_CODE (n->low) != INTEGER_CST) | |
5341 | abort (); | |
5342 | if (TREE_CODE (n->high) != INTEGER_CST) | |
5343 | abort (); | |
5344 | ||
1b0cb6fc RK |
5345 | n->low = convert (index_type, n->low); |
5346 | n->high = convert (index_type, n->high); | |
28d81abb RK |
5347 | |
5348 | /* Count the elements and track the largest and smallest | |
5349 | of them (treating them as signed even if they are not). */ | |
5350 | if (count++ == 0) | |
5351 | { | |
5352 | minval = n->low; | |
5353 | maxval = n->high; | |
5354 | } | |
5355 | else | |
5356 | { | |
5357 | if (INT_CST_LT (n->low, minval)) | |
5358 | minval = n->low; | |
5359 | if (INT_CST_LT (maxval, n->high)) | |
5360 | maxval = n->high; | |
5361 | } | |
5362 | /* A range counts double, since it requires two compares. */ | |
5363 | if (! tree_int_cst_equal (n->low, n->high)) | |
5364 | count++; | |
5365 | } | |
5366 | ||
3474db0e RS |
5367 | orig_minval = minval; |
5368 | ||
28d81abb RK |
5369 | /* Compute span of values. */ |
5370 | if (count != 0) | |
1b0cb6fc | 5371 | range = fold (build (MINUS_EXPR, index_type, maxval, minval)); |
28d81abb | 5372 | |
956d6950 | 5373 | end_cleanup_deferral (); |
4c581243 | 5374 | |
1b0cb6fc | 5375 | if (count == 0) |
28d81abb RK |
5376 | { |
5377 | expand_expr (index_expr, const0_rtx, VOIDmode, 0); | |
5378 | emit_queue (); | |
5379 | emit_jump (default_label); | |
5380 | } | |
3474db0e | 5381 | |
28d81abb RK |
5382 | /* If range of values is much bigger than number of values, |
5383 | make a sequence of conditional branches instead of a dispatch. | |
5384 | If the switch-index is a constant, do it this way | |
5385 | because we can optimize it. */ | |
4f73c5dd TW |
5386 | |
5387 | #ifndef CASE_VALUES_THRESHOLD | |
28d81abb | 5388 | #ifdef HAVE_casesi |
4f73c5dd | 5389 | #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5) |
28d81abb | 5390 | #else |
4f73c5dd TW |
5391 | /* If machine does not have a case insn that compares the |
5392 | bounds, this means extra overhead for dispatch tables | |
5393 | which raises the threshold for using them. */ | |
5394 | #define CASE_VALUES_THRESHOLD 5 | |
5395 | #endif /* HAVE_casesi */ | |
5396 | #endif /* CASE_VALUES_THRESHOLD */ | |
5397 | ||
5398 | else if (TREE_INT_CST_HIGH (range) != 0 | |
c84e2712 | 5399 | || count < (unsigned int) CASE_VALUES_THRESHOLD |
37366632 RK |
5400 | || ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range)) |
5401 | > 10 * count) | |
3f6fe18e RK |
5402 | #ifndef ASM_OUTPUT_ADDR_DIFF_ELT |
5403 | || flag_pic | |
5404 | #endif | |
28d81abb | 5405 | || TREE_CODE (index_expr) == INTEGER_CST |
b4ac57ab | 5406 | /* These will reduce to a constant. */ |
28d81abb | 5407 | || (TREE_CODE (index_expr) == CALL_EXPR |
de14fd73 | 5408 | && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR |
28d81abb | 5409 | && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL |
95815af9 | 5410 | && DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_NORMAL |
b4ac57ab RS |
5411 | && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE) |
5412 | || (TREE_CODE (index_expr) == COMPOUND_EXPR | |
5413 | && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST)) | |
28d81abb | 5414 | { |
37366632 | 5415 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb RK |
5416 | |
5417 | /* If the index is a short or char that we do not have | |
5418 | an insn to handle comparisons directly, convert it to | |
5419 | a full integer now, rather than letting each comparison | |
5420 | generate the conversion. */ | |
5421 | ||
5422 | if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT | |
5423 | && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code | |
5424 | == CODE_FOR_nothing)) | |
5425 | { | |
5426 | enum machine_mode wider_mode; | |
5427 | for (wider_mode = GET_MODE (index); wider_mode != VOIDmode; | |
5428 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
5429 | if (cmp_optab->handlers[(int) wider_mode].insn_code | |
5430 | != CODE_FOR_nothing) | |
5431 | { | |
5432 | index = convert_to_mode (wider_mode, index, unsignedp); | |
5433 | break; | |
5434 | } | |
5435 | } | |
5436 | ||
5437 | emit_queue (); | |
5438 | do_pending_stack_adjust (); | |
5439 | ||
5440 | index = protect_from_queue (index, 0); | |
5441 | if (GET_CODE (index) == MEM) | |
5442 | index = copy_to_reg (index); | |
5443 | if (GET_CODE (index) == CONST_INT | |
5444 | || TREE_CODE (index_expr) == INTEGER_CST) | |
5445 | { | |
5446 | /* Make a tree node with the proper constant value | |
5447 | if we don't already have one. */ | |
5448 | if (TREE_CODE (index_expr) != INTEGER_CST) | |
5449 | { | |
5450 | index_expr | |
5451 | = build_int_2 (INTVAL (index), | |
e9a042b6 | 5452 | unsignedp || INTVAL (index) >= 0 ? 0 : -1); |
1b0cb6fc | 5453 | index_expr = convert (index_type, index_expr); |
28d81abb RK |
5454 | } |
5455 | ||
5456 | /* For constant index expressions we need only | |
5457 | issue a unconditional branch to the appropriate | |
5458 | target code. The job of removing any unreachable | |
5459 | code is left to the optimisation phase if the | |
5460 | "-O" option is specified. */ | |
1b0cb6fc RK |
5461 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) |
5462 | if (! tree_int_cst_lt (index_expr, n->low) | |
5463 | && ! tree_int_cst_lt (n->high, index_expr)) | |
5464 | break; | |
5465 | ||
28d81abb RK |
5466 | if (n) |
5467 | emit_jump (label_rtx (n->code_label)); | |
5468 | else | |
5469 | emit_jump (default_label); | |
5470 | } | |
5471 | else | |
5472 | { | |
5473 | /* If the index expression is not constant we generate | |
5474 | a binary decision tree to select the appropriate | |
5475 | target code. This is done as follows: | |
5476 | ||
5477 | The list of cases is rearranged into a binary tree, | |
5478 | nearly optimal assuming equal probability for each case. | |
5479 | ||
5480 | The tree is transformed into RTL, eliminating | |
5481 | redundant test conditions at the same time. | |
5482 | ||
5483 | If program flow could reach the end of the | |
5484 | decision tree an unconditional jump to the | |
5485 | default code is emitted. */ | |
5486 | ||
5487 | use_cost_table | |
5488 | = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE | |
28d81abb | 5489 | && estimate_case_costs (thiscase->data.case_stmt.case_list)); |
37366632 RK |
5490 | balance_case_nodes (&thiscase->data.case_stmt.case_list, |
5491 | NULL_PTR); | |
28d81abb | 5492 | emit_case_nodes (index, thiscase->data.case_stmt.case_list, |
1b0cb6fc | 5493 | default_label, index_type); |
28d81abb RK |
5494 | emit_jump_if_reachable (default_label); |
5495 | } | |
5496 | } | |
5497 | else | |
5498 | { | |
5499 | int win = 0; | |
5500 | #ifdef HAVE_casesi | |
5501 | if (HAVE_casesi) | |
5502 | { | |
c4fcf531 | 5503 | enum machine_mode index_mode = SImode; |
5130a5cc | 5504 | int index_bits = GET_MODE_BITSIZE (index_mode); |
086f237d JW |
5505 | rtx op1, op2; |
5506 | enum machine_mode op_mode; | |
c4fcf531 | 5507 | |
28d81abb | 5508 | /* Convert the index to SImode. */ |
1b0cb6fc | 5509 | if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) |
c4fcf531 | 5510 | > GET_MODE_BITSIZE (index_mode)) |
28d81abb | 5511 | { |
1b0cb6fc | 5512 | enum machine_mode omode = TYPE_MODE (index_type); |
37366632 | 5513 | rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0); |
af2682ef RS |
5514 | |
5515 | /* We must handle the endpoints in the original mode. */ | |
1b0cb6fc | 5516 | index_expr = build (MINUS_EXPR, index_type, |
28d81abb RK |
5517 | index_expr, minval); |
5518 | minval = integer_zero_node; | |
37366632 | 5519 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
c5d5d461 JL |
5520 | emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX, |
5521 | omode, 1, 0, default_label); | |
af2682ef RS |
5522 | /* Now we can safely truncate. */ |
5523 | index = convert_to_mode (index_mode, index, 0); | |
5524 | } | |
5525 | else | |
5526 | { | |
1b0cb6fc | 5527 | if (TYPE_MODE (index_type) != index_mode) |
d3b35d75 RK |
5528 | { |
5529 | index_expr = convert (type_for_size (index_bits, 0), | |
5530 | index_expr); | |
5531 | index_type = TREE_TYPE (index_expr); | |
5532 | } | |
5533 | ||
37366632 | 5534 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb | 5535 | } |
28d81abb RK |
5536 | emit_queue (); |
5537 | index = protect_from_queue (index, 0); | |
5538 | do_pending_stack_adjust (); | |
5539 | ||
a995e389 RH |
5540 | op_mode = insn_data[(int)CODE_FOR_casesi].operand[0].mode; |
5541 | if (! (*insn_data[(int)CODE_FOR_casesi].operand[0].predicate) | |
086f237d JW |
5542 | (index, op_mode)) |
5543 | index = copy_to_mode_reg (op_mode, index); | |
5544 | ||
5545 | op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0); | |
5546 | ||
a995e389 RH |
5547 | op_mode = insn_data[(int)CODE_FOR_casesi].operand[1].mode; |
5548 | if (! (*insn_data[(int)CODE_FOR_casesi].operand[1].predicate) | |
086f237d JW |
5549 | (op1, op_mode)) |
5550 | op1 = copy_to_mode_reg (op_mode, op1); | |
5551 | ||
5552 | op2 = expand_expr (range, NULL_RTX, VOIDmode, 0); | |
5553 | ||
a995e389 RH |
5554 | op_mode = insn_data[(int)CODE_FOR_casesi].operand[2].mode; |
5555 | if (! (*insn_data[(int)CODE_FOR_casesi].operand[2].predicate) | |
086f237d JW |
5556 | (op2, op_mode)) |
5557 | op2 = copy_to_mode_reg (op_mode, op2); | |
5558 | ||
5559 | emit_jump_insn (gen_casesi (index, op1, op2, | |
28d81abb RK |
5560 | table_label, default_label)); |
5561 | win = 1; | |
5562 | } | |
5563 | #endif | |
5564 | #ifdef HAVE_tablejump | |
5565 | if (! win && HAVE_tablejump) | |
5566 | { | |
5567 | index_expr = convert (thiscase->data.case_stmt.nominal_type, | |
1b0cb6fc | 5568 | fold (build (MINUS_EXPR, index_type, |
b4ac57ab | 5569 | index_expr, minval))); |
d3b35d75 | 5570 | index_type = TREE_TYPE (index_expr); |
37366632 | 5571 | index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0); |
28d81abb | 5572 | emit_queue (); |
af2682ef | 5573 | index = protect_from_queue (index, 0); |
28d81abb RK |
5574 | do_pending_stack_adjust (); |
5575 | ||
1b0cb6fc | 5576 | do_tablejump (index, TYPE_MODE (index_type), |
37366632 | 5577 | expand_expr (range, NULL_RTX, VOIDmode, 0), |
28d81abb RK |
5578 | table_label, default_label); |
5579 | win = 1; | |
5580 | } | |
5581 | #endif | |
5582 | if (! win) | |
5583 | abort (); | |
5584 | ||
5585 | /* Get table of labels to jump to, in order of case index. */ | |
5586 | ||
5587 | ncases = TREE_INT_CST_LOW (range) + 1; | |
5588 | labelvec = (rtx *) alloca (ncases * sizeof (rtx)); | |
4c9a05bc | 5589 | bzero ((char *) labelvec, ncases * sizeof (rtx)); |
28d81abb RK |
5590 | |
5591 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
5592 | { | |
37366632 | 5593 | register HOST_WIDE_INT i |
3474db0e | 5594 | = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval); |
28d81abb RK |
5595 | |
5596 | while (1) | |
5597 | { | |
5598 | labelvec[i] | |
38a448ca | 5599 | = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label)); |
3474db0e | 5600 | if (i + TREE_INT_CST_LOW (orig_minval) |
28d81abb RK |
5601 | == TREE_INT_CST_LOW (n->high)) |
5602 | break; | |
5603 | i++; | |
5604 | } | |
5605 | } | |
5606 | ||
5607 | /* Fill in the gaps with the default. */ | |
5608 | for (i = 0; i < ncases; i++) | |
5609 | if (labelvec[i] == 0) | |
38a448ca | 5610 | labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label); |
28d81abb RK |
5611 | |
5612 | /* Output the table */ | |
5613 | emit_label (table_label); | |
5614 | ||
18543a22 | 5615 | if (CASE_VECTOR_PC_RELATIVE || flag_pic) |
38a448ca RH |
5616 | emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE, |
5617 | gen_rtx_LABEL_REF (Pmode, table_label), | |
33f7f353 | 5618 | gen_rtvec_v (ncases, labelvec), |
8f985ec4 | 5619 | const0_rtx, const0_rtx)); |
28d81abb | 5620 | else |
38a448ca RH |
5621 | emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE, |
5622 | gen_rtvec_v (ncases, labelvec))); | |
28d81abb RK |
5623 | |
5624 | /* If the case insn drops through the table, | |
5625 | after the table we must jump to the default-label. | |
5626 | Otherwise record no drop-through after the table. */ | |
5627 | #ifdef CASE_DROPS_THROUGH | |
5628 | emit_jump (default_label); | |
5629 | #else | |
5630 | emit_barrier (); | |
5631 | #endif | |
5632 | } | |
5633 | ||
915f619f JW |
5634 | before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ()); |
5635 | reorder_insns (before_case, get_last_insn (), | |
28d81abb RK |
5636 | thiscase->data.case_stmt.start); |
5637 | } | |
4c581243 | 5638 | else |
956d6950 | 5639 | end_cleanup_deferral (); |
1b0cb6fc | 5640 | |
28d81abb RK |
5641 | if (thiscase->exit_label) |
5642 | emit_label (thiscase->exit_label); | |
5643 | ||
5644 | POPSTACK (case_stack); | |
5645 | ||
5646 | free_temp_slots (); | |
5647 | } | |
5648 | ||
57641239 RK |
5649 | /* Convert the tree NODE into a list linked by the right field, with the left |
5650 | field zeroed. RIGHT is used for recursion; it is a list to be placed | |
5651 | rightmost in the resulting list. */ | |
5652 | ||
5653 | static struct case_node * | |
5654 | case_tree2list (node, right) | |
5655 | struct case_node *node, *right; | |
5656 | { | |
5657 | struct case_node *left; | |
5658 | ||
5659 | if (node->right) | |
5660 | right = case_tree2list (node->right, right); | |
5661 | ||
5662 | node->right = right; | |
51723711 | 5663 | if ((left = node->left)) |
57641239 RK |
5664 | { |
5665 | node->left = 0; | |
5666 | return case_tree2list (left, node); | |
5667 | } | |
5668 | ||
5669 | return node; | |
5670 | } | |
ca695ac9 | 5671 | |
28d81abb RK |
5672 | /* Generate code to jump to LABEL if OP1 and OP2 are equal. */ |
5673 | ||
5674 | static void | |
5675 | do_jump_if_equal (op1, op2, label, unsignedp) | |
5676 | rtx op1, op2, label; | |
5677 | int unsignedp; | |
5678 | { | |
5679 | if (GET_CODE (op1) == CONST_INT | |
5680 | && GET_CODE (op2) == CONST_INT) | |
5681 | { | |
5682 | if (INTVAL (op1) == INTVAL (op2)) | |
5683 | emit_jump (label); | |
5684 | } | |
5685 | else | |
5686 | { | |
5687 | enum machine_mode mode = GET_MODE (op1); | |
5688 | if (mode == VOIDmode) | |
5689 | mode = GET_MODE (op2); | |
c5d5d461 JL |
5690 | emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX, mode, unsignedp, |
5691 | 0, label); | |
28d81abb RK |
5692 | } |
5693 | } | |
5694 | \f | |
5695 | /* Not all case values are encountered equally. This function | |
5696 | uses a heuristic to weight case labels, in cases where that | |
5697 | looks like a reasonable thing to do. | |
5698 | ||
5699 | Right now, all we try to guess is text, and we establish the | |
5700 | following weights: | |
5701 | ||
5702 | chars above space: 16 | |
5703 | digits: 16 | |
5704 | default: 12 | |
5705 | space, punct: 8 | |
5706 | tab: 4 | |
5707 | newline: 2 | |
5708 | other "\" chars: 1 | |
5709 | remaining chars: 0 | |
5710 | ||
5711 | If we find any cases in the switch that are not either -1 or in the range | |
5712 | of valid ASCII characters, or are control characters other than those | |
5713 | commonly used with "\", don't treat this switch scanning text. | |
5714 | ||
5715 | Return 1 if these nodes are suitable for cost estimation, otherwise | |
5716 | return 0. */ | |
5717 | ||
5718 | static int | |
5719 | estimate_case_costs (node) | |
5720 | case_node_ptr node; | |
5721 | { | |
5722 | tree min_ascii = build_int_2 (-1, -1); | |
5723 | tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0)); | |
5724 | case_node_ptr n; | |
5725 | int i; | |
5726 | ||
5727 | /* If we haven't already made the cost table, make it now. Note that the | |
5728 | lower bound of the table is -1, not zero. */ | |
5729 | ||
5730 | if (cost_table == NULL) | |
5731 | { | |
e7749837 | 5732 | cost_table = cost_table_ + 1; |
28d81abb RK |
5733 | |
5734 | for (i = 0; i < 128; i++) | |
5735 | { | |
e9a780ec | 5736 | if (ISALNUM (i)) |
28d81abb | 5737 | cost_table[i] = 16; |
e9a780ec | 5738 | else if (ISPUNCT (i)) |
28d81abb | 5739 | cost_table[i] = 8; |
e9a780ec | 5740 | else if (ISCNTRL (i)) |
28d81abb RK |
5741 | cost_table[i] = -1; |
5742 | } | |
5743 | ||
5744 | cost_table[' '] = 8; | |
5745 | cost_table['\t'] = 4; | |
5746 | cost_table['\0'] = 4; | |
5747 | cost_table['\n'] = 2; | |
5748 | cost_table['\f'] = 1; | |
5749 | cost_table['\v'] = 1; | |
5750 | cost_table['\b'] = 1; | |
5751 | } | |
5752 | ||
5753 | /* See if all the case expressions look like text. It is text if the | |
5754 | constant is >= -1 and the highest constant is <= 127. Do all comparisons | |
5755 | as signed arithmetic since we don't want to ever access cost_table with a | |
5756 | value less than -1. Also check that none of the constants in a range | |
5757 | are strange control characters. */ | |
5758 | ||
5759 | for (n = node; n; n = n->right) | |
5760 | { | |
5761 | if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high)) | |
5762 | return 0; | |
5763 | ||
5764 | for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++) | |
5765 | if (cost_table[i] < 0) | |
5766 | return 0; | |
5767 | } | |
5768 | ||
5769 | /* All interesting values are within the range of interesting | |
5770 | ASCII characters. */ | |
5771 | return 1; | |
5772 | } | |
5773 | ||
5774 | /* Scan an ordered list of case nodes | |
5775 | combining those with consecutive values or ranges. | |
5776 | ||
5777 | Eg. three separate entries 1: 2: 3: become one entry 1..3: */ | |
5778 | ||
5779 | static void | |
5780 | group_case_nodes (head) | |
5781 | case_node_ptr head; | |
5782 | { | |
5783 | case_node_ptr node = head; | |
5784 | ||
5785 | while (node) | |
5786 | { | |
5787 | rtx lb = next_real_insn (label_rtx (node->code_label)); | |
ad7e369f | 5788 | rtx lb2; |
28d81abb RK |
5789 | case_node_ptr np = node; |
5790 | ||
5791 | /* Try to group the successors of NODE with NODE. */ | |
5792 | while (((np = np->right) != 0) | |
5793 | /* Do they jump to the same place? */ | |
ad7e369f JL |
5794 | && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb |
5795 | || (lb != 0 && lb2 != 0 | |
5796 | && simplejump_p (lb) | |
5797 | && simplejump_p (lb2) | |
5798 | && rtx_equal_p (SET_SRC (PATTERN (lb)), | |
5799 | SET_SRC (PATTERN (lb2))))) | |
28d81abb RK |
5800 | /* Are their ranges consecutive? */ |
5801 | && tree_int_cst_equal (np->low, | |
5802 | fold (build (PLUS_EXPR, | |
5803 | TREE_TYPE (node->high), | |
5804 | node->high, | |
5805 | integer_one_node))) | |
5806 | /* An overflow is not consecutive. */ | |
5807 | && tree_int_cst_lt (node->high, | |
5808 | fold (build (PLUS_EXPR, | |
5809 | TREE_TYPE (node->high), | |
5810 | node->high, | |
5811 | integer_one_node)))) | |
5812 | { | |
5813 | node->high = np->high; | |
5814 | } | |
5815 | /* NP is the first node after NODE which can't be grouped with it. | |
5816 | Delete the nodes in between, and move on to that node. */ | |
5817 | node->right = np; | |
5818 | node = np; | |
5819 | } | |
5820 | } | |
5821 | ||
5822 | /* Take an ordered list of case nodes | |
5823 | and transform them into a near optimal binary tree, | |
6dc42e49 | 5824 | on the assumption that any target code selection value is as |
28d81abb RK |
5825 | likely as any other. |
5826 | ||
5827 | The transformation is performed by splitting the ordered | |
5828 | list into two equal sections plus a pivot. The parts are | |
5829 | then attached to the pivot as left and right branches. Each | |
38e01259 | 5830 | branch is then transformed recursively. */ |
28d81abb RK |
5831 | |
5832 | static void | |
5833 | balance_case_nodes (head, parent) | |
5834 | case_node_ptr *head; | |
5835 | case_node_ptr parent; | |
5836 | { | |
5837 | register case_node_ptr np; | |
5838 | ||
5839 | np = *head; | |
5840 | if (np) | |
5841 | { | |
5842 | int cost = 0; | |
5843 | int i = 0; | |
5844 | int ranges = 0; | |
5845 | register case_node_ptr *npp; | |
5846 | case_node_ptr left; | |
5847 | ||
5848 | /* Count the number of entries on branch. Also count the ranges. */ | |
5849 | ||
5850 | while (np) | |
5851 | { | |
5852 | if (!tree_int_cst_equal (np->low, np->high)) | |
5853 | { | |
5854 | ranges++; | |
5855 | if (use_cost_table) | |
5856 | cost += cost_table[TREE_INT_CST_LOW (np->high)]; | |
5857 | } | |
5858 | ||
5859 | if (use_cost_table) | |
5860 | cost += cost_table[TREE_INT_CST_LOW (np->low)]; | |
5861 | ||
5862 | i++; | |
5863 | np = np->right; | |
5864 | } | |
5865 | ||
5866 | if (i > 2) | |
5867 | { | |
5868 | /* Split this list if it is long enough for that to help. */ | |
5869 | npp = head; | |
5870 | left = *npp; | |
5871 | if (use_cost_table) | |
5872 | { | |
5873 | /* Find the place in the list that bisects the list's total cost, | |
5874 | Here I gets half the total cost. */ | |
5875 | int n_moved = 0; | |
5876 | i = (cost + 1) / 2; | |
5877 | while (1) | |
5878 | { | |
5879 | /* Skip nodes while their cost does not reach that amount. */ | |
5880 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
5881 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)]; | |
5882 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)]; | |
5883 | if (i <= 0) | |
5884 | break; | |
5885 | npp = &(*npp)->right; | |
5886 | n_moved += 1; | |
5887 | } | |
5888 | if (n_moved == 0) | |
5889 | { | |
5890 | /* Leave this branch lopsided, but optimize left-hand | |
5891 | side and fill in `parent' fields for right-hand side. */ | |
5892 | np = *head; | |
5893 | np->parent = parent; | |
5894 | balance_case_nodes (&np->left, np); | |
5895 | for (; np->right; np = np->right) | |
5896 | np->right->parent = np; | |
5897 | return; | |
5898 | } | |
5899 | } | |
5900 | /* If there are just three nodes, split at the middle one. */ | |
5901 | else if (i == 3) | |
5902 | npp = &(*npp)->right; | |
5903 | else | |
5904 | { | |
5905 | /* Find the place in the list that bisects the list's total cost, | |
5906 | where ranges count as 2. | |
5907 | Here I gets half the total cost. */ | |
5908 | i = (i + ranges + 1) / 2; | |
5909 | while (1) | |
5910 | { | |
5911 | /* Skip nodes while their cost does not reach that amount. */ | |
5912 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
5913 | i--; | |
5914 | i--; | |
5915 | if (i <= 0) | |
5916 | break; | |
5917 | npp = &(*npp)->right; | |
5918 | } | |
5919 | } | |
5920 | *head = np = *npp; | |
5921 | *npp = 0; | |
5922 | np->parent = parent; | |
5923 | np->left = left; | |
5924 | ||
5925 | /* Optimize each of the two split parts. */ | |
5926 | balance_case_nodes (&np->left, np); | |
5927 | balance_case_nodes (&np->right, np); | |
5928 | } | |
5929 | else | |
5930 | { | |
5931 | /* Else leave this branch as one level, | |
5932 | but fill in `parent' fields. */ | |
5933 | np = *head; | |
5934 | np->parent = parent; | |
5935 | for (; np->right; np = np->right) | |
5936 | np->right->parent = np; | |
5937 | } | |
5938 | } | |
5939 | } | |
5940 | \f | |
5941 | /* Search the parent sections of the case node tree | |
5942 | to see if a test for the lower bound of NODE would be redundant. | |
5943 | INDEX_TYPE is the type of the index expression. | |
5944 | ||
5945 | The instructions to generate the case decision tree are | |
5946 | output in the same order as nodes are processed so it is | |
5947 | known that if a parent node checks the range of the current | |
5948 | node minus one that the current node is bounded at its lower | |
5949 | span. Thus the test would be redundant. */ | |
5950 | ||
5951 | static int | |
5952 | node_has_low_bound (node, index_type) | |
5953 | case_node_ptr node; | |
5954 | tree index_type; | |
5955 | { | |
5956 | tree low_minus_one; | |
5957 | case_node_ptr pnode; | |
5958 | ||
5959 | /* If the lower bound of this node is the lowest value in the index type, | |
5960 | we need not test it. */ | |
5961 | ||
5962 | if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type))) | |
5963 | return 1; | |
5964 | ||
5965 | /* If this node has a left branch, the value at the left must be less | |
5966 | than that at this node, so it cannot be bounded at the bottom and | |
5967 | we need not bother testing any further. */ | |
5968 | ||
5969 | if (node->left) | |
5970 | return 0; | |
5971 | ||
5972 | low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low), | |
5973 | node->low, integer_one_node)); | |
5974 | ||
5975 | /* If the subtraction above overflowed, we can't verify anything. | |
5976 | Otherwise, look for a parent that tests our value - 1. */ | |
5977 | ||
5978 | if (! tree_int_cst_lt (low_minus_one, node->low)) | |
5979 | return 0; | |
5980 | ||
5981 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
5982 | if (tree_int_cst_equal (low_minus_one, pnode->high)) | |
5983 | return 1; | |
5984 | ||
5985 | return 0; | |
5986 | } | |
5987 | ||
5988 | /* Search the parent sections of the case node tree | |
5989 | to see if a test for the upper bound of NODE would be redundant. | |
5990 | INDEX_TYPE is the type of the index expression. | |
5991 | ||
5992 | The instructions to generate the case decision tree are | |
5993 | output in the same order as nodes are processed so it is | |
5994 | known that if a parent node checks the range of the current | |
5995 | node plus one that the current node is bounded at its upper | |
5996 | span. Thus the test would be redundant. */ | |
5997 | ||
5998 | static int | |
5999 | node_has_high_bound (node, index_type) | |
6000 | case_node_ptr node; | |
6001 | tree index_type; | |
6002 | { | |
6003 | tree high_plus_one; | |
6004 | case_node_ptr pnode; | |
6005 | ||
e1ee5cdc RH |
6006 | /* If there is no upper bound, obviously no test is needed. */ |
6007 | ||
6008 | if (TYPE_MAX_VALUE (index_type) == NULL) | |
6009 | return 1; | |
6010 | ||
28d81abb RK |
6011 | /* If the upper bound of this node is the highest value in the type |
6012 | of the index expression, we need not test against it. */ | |
6013 | ||
6014 | if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type))) | |
6015 | return 1; | |
6016 | ||
6017 | /* If this node has a right branch, the value at the right must be greater | |
6018 | than that at this node, so it cannot be bounded at the top and | |
6019 | we need not bother testing any further. */ | |
6020 | ||
6021 | if (node->right) | |
6022 | return 0; | |
6023 | ||
6024 | high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high), | |
6025 | node->high, integer_one_node)); | |
6026 | ||
6027 | /* If the addition above overflowed, we can't verify anything. | |
6028 | Otherwise, look for a parent that tests our value + 1. */ | |
6029 | ||
6030 | if (! tree_int_cst_lt (node->high, high_plus_one)) | |
6031 | return 0; | |
6032 | ||
6033 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
6034 | if (tree_int_cst_equal (high_plus_one, pnode->low)) | |
6035 | return 1; | |
6036 | ||
6037 | return 0; | |
6038 | } | |
6039 | ||
6040 | /* Search the parent sections of the | |
6041 | case node tree to see if both tests for the upper and lower | |
6042 | bounds of NODE would be redundant. */ | |
6043 | ||
6044 | static int | |
6045 | node_is_bounded (node, index_type) | |
6046 | case_node_ptr node; | |
6047 | tree index_type; | |
6048 | { | |
6049 | return (node_has_low_bound (node, index_type) | |
6050 | && node_has_high_bound (node, index_type)); | |
6051 | } | |
6052 | ||
6053 | /* Emit an unconditional jump to LABEL unless it would be dead code. */ | |
6054 | ||
6055 | static void | |
6056 | emit_jump_if_reachable (label) | |
6057 | rtx label; | |
6058 | { | |
6059 | if (GET_CODE (get_last_insn ()) != BARRIER) | |
6060 | emit_jump (label); | |
6061 | } | |
6062 | \f | |
6063 | /* Emit step-by-step code to select a case for the value of INDEX. | |
6064 | The thus generated decision tree follows the form of the | |
6065 | case-node binary tree NODE, whose nodes represent test conditions. | |
6066 | INDEX_TYPE is the type of the index of the switch. | |
6067 | ||
6068 | Care is taken to prune redundant tests from the decision tree | |
6069 | by detecting any boundary conditions already checked by | |
6070 | emitted rtx. (See node_has_high_bound, node_has_low_bound | |
6071 | and node_is_bounded, above.) | |
6072 | ||
6073 | Where the test conditions can be shown to be redundant we emit | |
6074 | an unconditional jump to the target code. As a further | |
6075 | optimization, the subordinates of a tree node are examined to | |
6076 | check for bounded nodes. In this case conditional and/or | |
6077 | unconditional jumps as a result of the boundary check for the | |
6078 | current node are arranged to target the subordinates associated | |
38e01259 | 6079 | code for out of bound conditions on the current node. |
28d81abb | 6080 | |
f72aed24 | 6081 | We can assume that when control reaches the code generated here, |
28d81abb RK |
6082 | the index value has already been compared with the parents |
6083 | of this node, and determined to be on the same side of each parent | |
6084 | as this node is. Thus, if this node tests for the value 51, | |
6085 | and a parent tested for 52, we don't need to consider | |
6086 | the possibility of a value greater than 51. If another parent | |
6087 | tests for the value 50, then this node need not test anything. */ | |
6088 | ||
6089 | static void | |
6090 | emit_case_nodes (index, node, default_label, index_type) | |
6091 | rtx index; | |
6092 | case_node_ptr node; | |
6093 | rtx default_label; | |
6094 | tree index_type; | |
6095 | { | |
6096 | /* If INDEX has an unsigned type, we must make unsigned branches. */ | |
6097 | int unsignedp = TREE_UNSIGNED (index_type); | |
28d81abb RK |
6098 | enum machine_mode mode = GET_MODE (index); |
6099 | ||
6100 | /* See if our parents have already tested everything for us. | |
6101 | If they have, emit an unconditional jump for this node. */ | |
6102 | if (node_is_bounded (node, index_type)) | |
6103 | emit_jump (label_rtx (node->code_label)); | |
6104 | ||
6105 | else if (tree_int_cst_equal (node->low, node->high)) | |
6106 | { | |
6107 | /* Node is single valued. First see if the index expression matches | |
0f41302f | 6108 | this node and then check our children, if any. */ |
28d81abb | 6109 | |
37366632 | 6110 | do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0), |
28d81abb RK |
6111 | label_rtx (node->code_label), unsignedp); |
6112 | ||
6113 | if (node->right != 0 && node->left != 0) | |
6114 | { | |
6115 | /* This node has children on both sides. | |
6116 | Dispatch to one side or the other | |
6117 | by comparing the index value with this node's value. | |
6118 | If one subtree is bounded, check that one first, | |
6119 | so we can avoid real branches in the tree. */ | |
6120 | ||
6121 | if (node_is_bounded (node->right, index_type)) | |
6122 | { | |
c5d5d461 JL |
6123 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6124 | VOIDmode, 0), | |
6125 | GT, NULL_RTX, mode, unsignedp, 0, | |
6126 | label_rtx (node->right->code_label)); | |
28d81abb RK |
6127 | emit_case_nodes (index, node->left, default_label, index_type); |
6128 | } | |
6129 | ||
6130 | else if (node_is_bounded (node->left, index_type)) | |
6131 | { | |
c5d5d461 JL |
6132 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6133 | VOIDmode, 0), | |
6134 | LT, NULL_RTX, mode, unsignedp, 0, | |
6135 | label_rtx (node->left->code_label)); | |
28d81abb RK |
6136 | emit_case_nodes (index, node->right, default_label, index_type); |
6137 | } | |
6138 | ||
6139 | else | |
6140 | { | |
6141 | /* Neither node is bounded. First distinguish the two sides; | |
6142 | then emit the code for one side at a time. */ | |
6143 | ||
6144 | tree test_label | |
6145 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
6146 | ||
6147 | /* See if the value is on the right. */ | |
c5d5d461 JL |
6148 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6149 | VOIDmode, 0), | |
6150 | GT, NULL_RTX, mode, unsignedp, 0, | |
6151 | label_rtx (test_label)); | |
28d81abb RK |
6152 | |
6153 | /* Value must be on the left. | |
6154 | Handle the left-hand subtree. */ | |
6155 | emit_case_nodes (index, node->left, default_label, index_type); | |
6156 | /* If left-hand subtree does nothing, | |
6157 | go to default. */ | |
6158 | emit_jump_if_reachable (default_label); | |
6159 | ||
6160 | /* Code branches here for the right-hand subtree. */ | |
6161 | expand_label (test_label); | |
6162 | emit_case_nodes (index, node->right, default_label, index_type); | |
6163 | } | |
6164 | } | |
6165 | ||
6166 | else if (node->right != 0 && node->left == 0) | |
6167 | { | |
6168 | /* Here we have a right child but no left so we issue conditional | |
6169 | branch to default and process the right child. | |
6170 | ||
6171 | Omit the conditional branch to default if we it avoid only one | |
6172 | right child; it costs too much space to save so little time. */ | |
6173 | ||
de14fd73 | 6174 | if (node->right->right || node->right->left |
28d81abb RK |
6175 | || !tree_int_cst_equal (node->right->low, node->right->high)) |
6176 | { | |
6177 | if (!node_has_low_bound (node, index_type)) | |
6178 | { | |
c5d5d461 JL |
6179 | emit_cmp_and_jump_insns (index, expand_expr (node->high, |
6180 | NULL_RTX, | |
6181 | VOIDmode, 0), | |
6182 | LT, NULL_RTX, mode, unsignedp, 0, | |
6183 | default_label); | |
28d81abb RK |
6184 | } |
6185 | ||
6186 | emit_case_nodes (index, node->right, default_label, index_type); | |
6187 | } | |
6188 | else | |
6189 | /* We cannot process node->right normally | |
6190 | since we haven't ruled out the numbers less than | |
6191 | this node's value. So handle node->right explicitly. */ | |
6192 | do_jump_if_equal (index, | |
37366632 RK |
6193 | expand_expr (node->right->low, NULL_RTX, |
6194 | VOIDmode, 0), | |
28d81abb RK |
6195 | label_rtx (node->right->code_label), unsignedp); |
6196 | } | |
6197 | ||
6198 | else if (node->right == 0 && node->left != 0) | |
6199 | { | |
6200 | /* Just one subtree, on the left. */ | |
6201 | ||
de14fd73 RK |
6202 | #if 0 /* The following code and comment were formerly part |
6203 | of the condition here, but they didn't work | |
6204 | and I don't understand what the idea was. -- rms. */ | |
6205 | /* If our "most probable entry" is less probable | |
28d81abb RK |
6206 | than the default label, emit a jump to |
6207 | the default label using condition codes | |
6208 | already lying around. With no right branch, | |
6209 | a branch-greater-than will get us to the default | |
6210 | label correctly. */ | |
de14fd73 RK |
6211 | if (use_cost_table |
6212 | && cost_table[TREE_INT_CST_LOW (node->high)] < 12) | |
6213 | ; | |
6214 | #endif /* 0 */ | |
6215 | if (node->left->left || node->left->right | |
28d81abb RK |
6216 | || !tree_int_cst_equal (node->left->low, node->left->high)) |
6217 | { | |
6218 | if (!node_has_high_bound (node, index_type)) | |
6219 | { | |
c5d5d461 JL |
6220 | emit_cmp_and_jump_insns (index, expand_expr (node->high, |
6221 | NULL_RTX, | |
6222 | VOIDmode, 0), | |
6223 | GT, NULL_RTX, mode, unsignedp, 0, | |
6224 | default_label); | |
28d81abb RK |
6225 | } |
6226 | ||
6227 | emit_case_nodes (index, node->left, default_label, index_type); | |
6228 | } | |
6229 | else | |
6230 | /* We cannot process node->left normally | |
6231 | since we haven't ruled out the numbers less than | |
6232 | this node's value. So handle node->left explicitly. */ | |
6233 | do_jump_if_equal (index, | |
37366632 RK |
6234 | expand_expr (node->left->low, NULL_RTX, |
6235 | VOIDmode, 0), | |
28d81abb RK |
6236 | label_rtx (node->left->code_label), unsignedp); |
6237 | } | |
6238 | } | |
6239 | else | |
6240 | { | |
6241 | /* Node is a range. These cases are very similar to those for a single | |
6242 | value, except that we do not start by testing whether this node | |
6243 | is the one to branch to. */ | |
6244 | ||
6245 | if (node->right != 0 && node->left != 0) | |
6246 | { | |
6247 | /* Node has subtrees on both sides. | |
6248 | If the right-hand subtree is bounded, | |
6249 | test for it first, since we can go straight there. | |
6250 | Otherwise, we need to make a branch in the control structure, | |
6251 | then handle the two subtrees. */ | |
6252 | tree test_label = 0; | |
6253 | ||
28d81abb RK |
6254 | |
6255 | if (node_is_bounded (node->right, index_type)) | |
6256 | /* Right hand node is fully bounded so we can eliminate any | |
6257 | testing and branch directly to the target code. */ | |
c5d5d461 JL |
6258 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6259 | VOIDmode, 0), | |
6260 | GT, NULL_RTX, mode, unsignedp, 0, | |
6261 | label_rtx (node->right->code_label)); | |
28d81abb RK |
6262 | else |
6263 | { | |
6264 | /* Right hand node requires testing. | |
6265 | Branch to a label where we will handle it later. */ | |
6266 | ||
6267 | test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
c5d5d461 JL |
6268 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6269 | VOIDmode, 0), | |
6270 | GT, NULL_RTX, mode, unsignedp, 0, | |
6271 | label_rtx (test_label)); | |
28d81abb RK |
6272 | } |
6273 | ||
6274 | /* Value belongs to this node or to the left-hand subtree. */ | |
6275 | ||
c5d5d461 JL |
6276 | emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX, |
6277 | VOIDmode, 0), | |
6278 | GE, NULL_RTX, mode, unsignedp, 0, | |
6279 | label_rtx (node->code_label)); | |
28d81abb RK |
6280 | |
6281 | /* Handle the left-hand subtree. */ | |
6282 | emit_case_nodes (index, node->left, default_label, index_type); | |
6283 | ||
6284 | /* If right node had to be handled later, do that now. */ | |
6285 | ||
6286 | if (test_label) | |
6287 | { | |
6288 | /* If the left-hand subtree fell through, | |
6289 | don't let it fall into the right-hand subtree. */ | |
6290 | emit_jump_if_reachable (default_label); | |
6291 | ||
6292 | expand_label (test_label); | |
6293 | emit_case_nodes (index, node->right, default_label, index_type); | |
6294 | } | |
6295 | } | |
6296 | ||
6297 | else if (node->right != 0 && node->left == 0) | |
6298 | { | |
6299 | /* Deal with values to the left of this node, | |
6300 | if they are possible. */ | |
6301 | if (!node_has_low_bound (node, index_type)) | |
6302 | { | |
c5d5d461 JL |
6303 | emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX, |
6304 | VOIDmode, 0), | |
6305 | LT, NULL_RTX, mode, unsignedp, 0, | |
6306 | default_label); | |
28d81abb RK |
6307 | } |
6308 | ||
6309 | /* Value belongs to this node or to the right-hand subtree. */ | |
6310 | ||
c5d5d461 JL |
6311 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6312 | VOIDmode, 0), | |
6313 | LE, NULL_RTX, mode, unsignedp, 0, | |
6314 | label_rtx (node->code_label)); | |
28d81abb RK |
6315 | |
6316 | emit_case_nodes (index, node->right, default_label, index_type); | |
6317 | } | |
6318 | ||
6319 | else if (node->right == 0 && node->left != 0) | |
6320 | { | |
6321 | /* Deal with values to the right of this node, | |
6322 | if they are possible. */ | |
6323 | if (!node_has_high_bound (node, index_type)) | |
6324 | { | |
c5d5d461 JL |
6325 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6326 | VOIDmode, 0), | |
6327 | GT, NULL_RTX, mode, unsignedp, 0, | |
6328 | default_label); | |
28d81abb RK |
6329 | } |
6330 | ||
6331 | /* Value belongs to this node or to the left-hand subtree. */ | |
6332 | ||
c5d5d461 JL |
6333 | emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX, |
6334 | VOIDmode, 0), | |
6335 | GE, NULL_RTX, mode, unsignedp, 0, | |
6336 | label_rtx (node->code_label)); | |
28d81abb RK |
6337 | |
6338 | emit_case_nodes (index, node->left, default_label, index_type); | |
6339 | } | |
6340 | ||
6341 | else | |
6342 | { | |
6343 | /* Node has no children so we check low and high bounds to remove | |
6344 | redundant tests. Only one of the bounds can exist, | |
6345 | since otherwise this node is bounded--a case tested already. */ | |
6346 | ||
6347 | if (!node_has_high_bound (node, index_type)) | |
6348 | { | |
c5d5d461 JL |
6349 | emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX, |
6350 | VOIDmode, 0), | |
6351 | GT, NULL_RTX, mode, unsignedp, 0, | |
6352 | default_label); | |
28d81abb RK |
6353 | } |
6354 | ||
6355 | if (!node_has_low_bound (node, index_type)) | |
6356 | { | |
c5d5d461 JL |
6357 | emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX, |
6358 | VOIDmode, 0), | |
6359 | LT, NULL_RTX, mode, unsignedp, 0, | |
6360 | default_label); | |
28d81abb RK |
6361 | } |
6362 | ||
6363 | emit_jump (label_rtx (node->code_label)); | |
6364 | } | |
6365 | } | |
6366 | } | |
6367 | \f | |
6368 | /* These routines are used by the loop unrolling code. They copy BLOCK trees | |
6369 | so that the debugging info will be correct for the unrolled loop. */ | |
6370 | ||
28d81abb | 6371 | void |
94dc8b56 | 6372 | find_loop_tree_blocks () |
28d81abb | 6373 | { |
1a4450c7 | 6374 | identify_blocks (DECL_INITIAL (current_function_decl), get_insns ()); |
28d81abb RK |
6375 | } |
6376 | ||
28d81abb | 6377 | void |
94dc8b56 | 6378 | unroll_block_trees () |
28d81abb | 6379 | { |
94dc8b56 | 6380 | tree block = DECL_INITIAL (current_function_decl); |
28d81abb | 6381 | |
1a4450c7 | 6382 | reorder_blocks (block, get_insns ()); |
28d81abb | 6383 | } |