]>
Commit | Line | Data |
---|---|---|
28d81abb RK |
1 | /* Expands front end tree to back end RTL for GNU C-Compiler |
2 | Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GNU CC. | |
5 | ||
6 | GNU CC is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GNU CC is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GNU CC; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | ||
21 | /* This file handles the generation of rtl code from tree structure | |
22 | above the level of expressions, using subroutines in exp*.c and emit-rtl.c. | |
23 | It also creates the rtl expressions for parameters and auto variables | |
24 | and has full responsibility for allocating stack slots. | |
25 | ||
26 | The functions whose names start with `expand_' are called by the | |
27 | parser to generate RTL instructions for various kinds of constructs. | |
28 | ||
29 | Some control and binding constructs require calling several such | |
30 | functions at different times. For example, a simple if-then | |
31 | is expanded by calling `expand_start_cond' (with the condition-expression | |
32 | as argument) before parsing the then-clause and calling `expand_end_cond' | |
33 | after parsing the then-clause. */ | |
34 | ||
35 | #include "config.h" | |
36 | ||
37 | #include <stdio.h> | |
38 | #include <ctype.h> | |
39 | ||
40 | #include "rtl.h" | |
41 | #include "tree.h" | |
42 | #include "flags.h" | |
43 | #include "function.h" | |
44 | #include "insn-flags.h" | |
45 | #include "insn-config.h" | |
46 | #include "insn-codes.h" | |
47 | #include "expr.h" | |
48 | #include "hard-reg-set.h" | |
49 | #include "obstack.h" | |
50 | #include "loop.h" | |
51 | #include "recog.h" | |
52 | ||
53 | #define obstack_chunk_alloc xmalloc | |
54 | #define obstack_chunk_free free | |
55 | struct obstack stmt_obstack; | |
56 | ||
57 | extern int xmalloc (); | |
58 | extern void free (); | |
59 | ||
60 | /* Filename and line number of last line-number note, | |
61 | whether we actually emitted it or not. */ | |
62 | char *emit_filename; | |
63 | int emit_lineno; | |
64 | ||
65 | /* Nonzero if within a ({...}) grouping, in which case we must | |
66 | always compute a value for each expr-stmt in case it is the last one. */ | |
67 | ||
68 | int expr_stmts_for_value; | |
69 | ||
70 | /* Each time we expand an expression-statement, | |
71 | record the expr's type and its RTL value here. */ | |
72 | ||
73 | static tree last_expr_type; | |
74 | static rtx last_expr_value; | |
75 | ||
76 | /* Number of binding contours started so far in this function. */ | |
77 | ||
78 | int block_start_count; | |
79 | ||
80 | /* Nonzero if function being compiled needs to | |
81 | return the address of where it has put a structure value. */ | |
82 | ||
83 | extern int current_function_returns_pcc_struct; | |
84 | ||
85 | /* Label that will go on parm cleanup code, if any. | |
86 | Jumping to this label runs cleanup code for parameters, if | |
87 | such code must be run. Following this code is the logical return label. */ | |
88 | ||
89 | extern rtx cleanup_label; | |
90 | ||
91 | /* Label that will go on function epilogue. | |
92 | Jumping to this label serves as a "return" instruction | |
93 | on machines which require execution of the epilogue on all returns. */ | |
94 | ||
95 | extern rtx return_label; | |
96 | ||
97 | /* List (chain of EXPR_LISTs) of pseudo-regs of SAVE_EXPRs. | |
98 | So we can mark them all live at the end of the function, if nonopt. */ | |
99 | extern rtx save_expr_regs; | |
100 | ||
101 | /* Offset to end of allocated area of stack frame. | |
102 | If stack grows down, this is the address of the last stack slot allocated. | |
103 | If stack grows up, this is the address for the next slot. */ | |
104 | extern int frame_offset; | |
105 | ||
106 | /* Label to jump back to for tail recursion, or 0 if we have | |
107 | not yet needed one for this function. */ | |
108 | extern rtx tail_recursion_label; | |
109 | ||
110 | /* Place after which to insert the tail_recursion_label if we need one. */ | |
111 | extern rtx tail_recursion_reentry; | |
112 | ||
113 | /* Location at which to save the argument pointer if it will need to be | |
114 | referenced. There are two cases where this is done: if nonlocal gotos | |
115 | exist, or if vars whose is an offset from the argument pointer will be | |
116 | needed by inner routines. */ | |
117 | ||
118 | extern rtx arg_pointer_save_area; | |
119 | ||
120 | /* Chain of all RTL_EXPRs that have insns in them. */ | |
121 | extern tree rtl_expr_chain; | |
122 | ||
123 | #if 0 /* Turned off because 0 seems to work just as well. */ | |
124 | /* Cleanup lists are required for binding levels regardless of whether | |
125 | that binding level has cleanups or not. This node serves as the | |
126 | cleanup list whenever an empty list is required. */ | |
127 | static tree empty_cleanup_list; | |
128 | #endif | |
129 | \f | |
130 | /* Functions and data structures for expanding case statements. */ | |
131 | ||
132 | /* Case label structure, used to hold info on labels within case | |
133 | statements. We handle "range" labels; for a single-value label | |
134 | as in C, the high and low limits are the same. | |
135 | ||
136 | A chain of case nodes is initially maintained via the RIGHT fields | |
137 | in the nodes. Nodes with higher case values are later in the list. | |
138 | ||
139 | Switch statements can be output in one of two forms. A branch table | |
140 | is used if there are more than a few labels and the labels are dense | |
141 | within the range between the smallest and largest case value. If a | |
142 | branch table is used, no further manipulations are done with the case | |
143 | node chain. | |
144 | ||
145 | The alternative to the use of a branch table is to generate a series | |
146 | of compare and jump insns. When that is done, we use the LEFT, RIGHT, | |
147 | and PARENT fields to hold a binary tree. Initially the tree is | |
de14fd73 RK |
148 | totally unbalanced, with everything on the right. We balance the tree |
149 | with nodes on the left having lower case values than the parent | |
28d81abb RK |
150 | and nodes on the right having higher values. We then output the tree |
151 | in order. */ | |
152 | ||
153 | struct case_node | |
154 | { | |
155 | struct case_node *left; /* Left son in binary tree */ | |
156 | struct case_node *right; /* Right son in binary tree; also node chain */ | |
157 | struct case_node *parent; /* Parent of node in binary tree */ | |
158 | tree low; /* Lowest index value for this label */ | |
159 | tree high; /* Highest index value for this label */ | |
160 | tree code_label; /* Label to jump to when node matches */ | |
161 | }; | |
162 | ||
163 | typedef struct case_node case_node; | |
164 | typedef struct case_node *case_node_ptr; | |
165 | ||
166 | /* These are used by estimate_case_costs and balance_case_nodes. */ | |
167 | ||
168 | /* This must be a signed type, and non-ANSI compilers lack signed char. */ | |
169 | static short *cost_table; | |
170 | static int use_cost_table; | |
171 | ||
172 | static int estimate_case_costs (); | |
173 | static void balance_case_nodes (); | |
174 | static void emit_case_nodes (); | |
175 | static void group_case_nodes (); | |
176 | static void emit_jump_if_reachable (); | |
177 | ||
178 | static int warn_if_unused_value (); | |
179 | static void expand_goto_internal (); | |
180 | static int expand_fixup (); | |
181 | void fixup_gotos (); | |
182 | void free_temp_slots (); | |
183 | static void expand_cleanups (); | |
184 | static void fixup_cleanups (); | |
185 | static void expand_null_return_1 (); | |
186 | static int tail_recursion_args (); | |
187 | static void do_jump_if_equal (); | |
188 | \f | |
189 | /* Stack of control and binding constructs we are currently inside. | |
190 | ||
191 | These constructs begin when you call `expand_start_WHATEVER' | |
192 | and end when you call `expand_end_WHATEVER'. This stack records | |
193 | info about how the construct began that tells the end-function | |
194 | what to do. It also may provide information about the construct | |
195 | to alter the behavior of other constructs within the body. | |
196 | For example, they may affect the behavior of C `break' and `continue'. | |
197 | ||
198 | Each construct gets one `struct nesting' object. | |
199 | All of these objects are chained through the `all' field. | |
200 | `nesting_stack' points to the first object (innermost construct). | |
201 | The position of an entry on `nesting_stack' is in its `depth' field. | |
202 | ||
203 | Each type of construct has its own individual stack. | |
204 | For example, loops have `loop_stack'. Each object points to the | |
205 | next object of the same type through the `next' field. | |
206 | ||
207 | Some constructs are visible to `break' exit-statements and others | |
208 | are not. Which constructs are visible depends on the language. | |
209 | Therefore, the data structure allows each construct to be visible | |
210 | or not, according to the args given when the construct is started. | |
211 | The construct is visible if the `exit_label' field is non-null. | |
212 | In that case, the value should be a CODE_LABEL rtx. */ | |
213 | ||
214 | struct nesting | |
215 | { | |
216 | struct nesting *all; | |
217 | struct nesting *next; | |
218 | int depth; | |
219 | rtx exit_label; | |
220 | union | |
221 | { | |
222 | /* For conds (if-then and if-then-else statements). */ | |
223 | struct | |
224 | { | |
225 | /* Label for the end of the if construct. | |
226 | There is none if EXITFLAG was not set | |
227 | and no `else' has been seen yet. */ | |
228 | rtx endif_label; | |
229 | /* Label for the end of this alternative. | |
230 | This may be the end of the if or the next else/elseif. */ | |
231 | rtx next_label; | |
232 | } cond; | |
233 | /* For loops. */ | |
234 | struct | |
235 | { | |
236 | /* Label at the top of the loop; place to loop back to. */ | |
237 | rtx start_label; | |
238 | /* Label at the end of the whole construct. */ | |
239 | rtx end_label; | |
240 | /* Label for `continue' statement to jump to; | |
241 | this is in front of the stepper of the loop. */ | |
242 | rtx continue_label; | |
243 | } loop; | |
244 | /* For variable binding contours. */ | |
245 | struct | |
246 | { | |
247 | /* Sequence number of this binding contour within the function, | |
248 | in order of entry. */ | |
249 | int block_start_count; | |
250 | /* Nonzero => value to restore stack to on exit. */ | |
251 | rtx stack_level; | |
252 | /* The NOTE that starts this contour. | |
253 | Used by expand_goto to check whether the destination | |
254 | is within each contour or not. */ | |
255 | rtx first_insn; | |
256 | /* Innermost containing binding contour that has a stack level. */ | |
257 | struct nesting *innermost_stack_block; | |
258 | /* List of cleanups to be run on exit from this contour. | |
259 | This is a list of expressions to be evaluated. | |
260 | The TREE_PURPOSE of each link is the ..._DECL node | |
261 | which the cleanup pertains to. */ | |
262 | tree cleanups; | |
263 | /* List of cleanup-lists of blocks containing this block, | |
264 | as they were at the locus where this block appears. | |
265 | There is an element for each containing block, | |
266 | ordered innermost containing block first. | |
267 | The tail of this list can be 0 (was empty_cleanup_list), | |
268 | if all remaining elements would be empty lists. | |
269 | The element's TREE_VALUE is the cleanup-list of that block, | |
270 | which may be null. */ | |
271 | tree outer_cleanups; | |
272 | /* Chain of labels defined inside this binding contour. | |
273 | For contours that have stack levels or cleanups. */ | |
274 | struct label_chain *label_chain; | |
275 | /* Number of function calls seen, as of start of this block. */ | |
276 | int function_call_count; | |
277 | } block; | |
278 | /* For switch (C) or case (Pascal) statements, | |
279 | and also for dummies (see `expand_start_case_dummy'). */ | |
280 | struct | |
281 | { | |
282 | /* The insn after which the case dispatch should finally | |
283 | be emitted. Zero for a dummy. */ | |
284 | rtx start; | |
285 | /* A list of case labels, kept in ascending order by value | |
286 | as the list is built. | |
287 | During expand_end_case, this list may be rearranged into a | |
288 | nearly balanced binary tree. */ | |
289 | struct case_node *case_list; | |
290 | /* Label to jump to if no case matches. */ | |
291 | tree default_label; | |
292 | /* The expression to be dispatched on. */ | |
293 | tree index_expr; | |
294 | /* Type that INDEX_EXPR should be converted to. */ | |
295 | tree nominal_type; | |
296 | /* Number of range exprs in case statement. */ | |
297 | int num_ranges; | |
298 | /* Name of this kind of statement, for warnings. */ | |
299 | char *printname; | |
300 | /* Nonzero if a case label has been seen in this case stmt. */ | |
301 | char seenlabel; | |
302 | } case_stmt; | |
303 | /* For exception contours. */ | |
304 | struct | |
305 | { | |
306 | /* List of exceptions raised. This is a TREE_LIST | |
307 | of whatever you want. */ | |
308 | tree raised; | |
309 | /* List of exceptions caught. This is also a TREE_LIST | |
310 | of whatever you want. As a special case, it has the | |
311 | value `void_type_node' if it handles default exceptions. */ | |
312 | tree handled; | |
313 | ||
314 | /* First insn of TRY block, in case resumptive model is needed. */ | |
315 | rtx first_insn; | |
316 | /* Label for the catch clauses. */ | |
317 | rtx except_label; | |
318 | /* Label for unhandled exceptions. */ | |
319 | rtx unhandled_label; | |
320 | /* Label at the end of whole construct. */ | |
321 | rtx after_label; | |
322 | /* Label which "escapes" the exception construct. | |
323 | Like EXIT_LABEL for BREAK construct, but for exceptions. */ | |
324 | rtx escape_label; | |
325 | } except_stmt; | |
326 | } data; | |
327 | }; | |
328 | ||
329 | /* Chain of all pending binding contours. */ | |
330 | struct nesting *block_stack; | |
331 | ||
332 | /* Chain of all pending binding contours that restore stack levels | |
333 | or have cleanups. */ | |
334 | struct nesting *stack_block_stack; | |
335 | ||
336 | /* Chain of all pending conditional statements. */ | |
337 | struct nesting *cond_stack; | |
338 | ||
339 | /* Chain of all pending loops. */ | |
340 | struct nesting *loop_stack; | |
341 | ||
342 | /* Chain of all pending case or switch statements. */ | |
343 | struct nesting *case_stack; | |
344 | ||
345 | /* Chain of all pending exception contours. */ | |
346 | struct nesting *except_stack; | |
347 | ||
348 | /* Separate chain including all of the above, | |
349 | chained through the `all' field. */ | |
350 | struct nesting *nesting_stack; | |
351 | ||
352 | /* Number of entries on nesting_stack now. */ | |
353 | int nesting_depth; | |
354 | ||
355 | /* Allocate and return a new `struct nesting'. */ | |
356 | ||
357 | #define ALLOC_NESTING() \ | |
358 | (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting)) | |
359 | ||
360 | /* Pop one of the sub-stacks, such as `loop_stack' or `cond_stack'; | |
361 | and pop off `nesting_stack' down to the same level. */ | |
362 | ||
363 | #define POPSTACK(STACK) \ | |
364 | do { int initial_depth = nesting_stack->depth; \ | |
365 | do { struct nesting *this = STACK; \ | |
366 | STACK = this->next; \ | |
367 | nesting_stack = this->all; \ | |
368 | nesting_depth = this->depth; \ | |
369 | obstack_free (&stmt_obstack, this); } \ | |
370 | while (nesting_depth > initial_depth); } while (0) | |
371 | \f | |
372 | /* In some cases it is impossible to generate code for a forward goto | |
373 | until the label definition is seen. This happens when it may be necessary | |
374 | for the goto to reset the stack pointer: we don't yet know how to do that. | |
375 | So expand_goto puts an entry on this fixup list. | |
376 | Each time a binding contour that resets the stack is exited, | |
377 | we check each fixup. | |
378 | If the target label has now been defined, we can insert the proper code. */ | |
379 | ||
380 | struct goto_fixup | |
381 | { | |
382 | /* Points to following fixup. */ | |
383 | struct goto_fixup *next; | |
384 | /* Points to the insn before the jump insn. | |
385 | If more code must be inserted, it goes after this insn. */ | |
386 | rtx before_jump; | |
387 | /* The LABEL_DECL that this jump is jumping to, or 0 | |
388 | for break, continue or return. */ | |
389 | tree target; | |
390 | /* The CODE_LABEL rtx that this is jumping to. */ | |
391 | rtx target_rtl; | |
392 | /* Number of binding contours started in current function | |
393 | before the label reference. */ | |
394 | int block_start_count; | |
395 | /* The outermost stack level that should be restored for this jump. | |
396 | Each time a binding contour that resets the stack is exited, | |
397 | if the target label is *not* yet defined, this slot is updated. */ | |
398 | rtx stack_level; | |
399 | /* List of lists of cleanup expressions to be run by this goto. | |
400 | There is one element for each block that this goto is within. | |
401 | The tail of this list can be 0 (was empty_cleanup_list), | |
402 | if all remaining elements would be empty. | |
403 | The TREE_VALUE contains the cleanup list of that block as of the | |
404 | time this goto was seen. | |
405 | The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */ | |
406 | tree cleanup_list_list; | |
407 | }; | |
408 | ||
409 | static struct goto_fixup *goto_fixup_chain; | |
410 | ||
411 | /* Within any binding contour that must restore a stack level, | |
412 | all labels are recorded with a chain of these structures. */ | |
413 | ||
414 | struct label_chain | |
415 | { | |
416 | /* Points to following fixup. */ | |
417 | struct label_chain *next; | |
418 | tree label; | |
419 | }; | |
420 | \f | |
421 | void | |
422 | init_stmt () | |
423 | { | |
424 | gcc_obstack_init (&stmt_obstack); | |
425 | #if 0 | |
426 | empty_cleanup_list = build_tree_list (NULL_TREE, NULL_TREE); | |
427 | #endif | |
428 | } | |
429 | ||
430 | void | |
431 | init_stmt_for_function () | |
432 | { | |
433 | /* We are not currently within any block, conditional, loop or case. */ | |
434 | block_stack = 0; | |
435 | loop_stack = 0; | |
436 | case_stack = 0; | |
437 | cond_stack = 0; | |
438 | nesting_stack = 0; | |
439 | nesting_depth = 0; | |
440 | ||
441 | block_start_count = 0; | |
442 | ||
443 | /* No gotos have been expanded yet. */ | |
444 | goto_fixup_chain = 0; | |
445 | ||
446 | /* We are not processing a ({...}) grouping. */ | |
447 | expr_stmts_for_value = 0; | |
448 | last_expr_type = 0; | |
449 | } | |
450 | ||
451 | void | |
452 | save_stmt_status (p) | |
453 | struct function *p; | |
454 | { | |
455 | p->block_stack = block_stack; | |
456 | p->stack_block_stack = stack_block_stack; | |
457 | p->cond_stack = cond_stack; | |
458 | p->loop_stack = loop_stack; | |
459 | p->case_stack = case_stack; | |
460 | p->nesting_stack = nesting_stack; | |
461 | p->nesting_depth = nesting_depth; | |
462 | p->block_start_count = block_start_count; | |
463 | p->last_expr_type = last_expr_type; | |
464 | p->last_expr_value = last_expr_value; | |
465 | p->expr_stmts_for_value = expr_stmts_for_value; | |
466 | p->emit_filename = emit_filename; | |
467 | p->emit_lineno = emit_lineno; | |
468 | p->goto_fixup_chain = goto_fixup_chain; | |
469 | } | |
470 | ||
471 | void | |
472 | restore_stmt_status (p) | |
473 | struct function *p; | |
474 | { | |
475 | block_stack = p->block_stack; | |
476 | stack_block_stack = p->stack_block_stack; | |
477 | cond_stack = p->cond_stack; | |
478 | loop_stack = p->loop_stack; | |
479 | case_stack = p->case_stack; | |
480 | nesting_stack = p->nesting_stack; | |
481 | nesting_depth = p->nesting_depth; | |
482 | block_start_count = p->block_start_count; | |
483 | last_expr_type = p->last_expr_type; | |
484 | last_expr_value = p->last_expr_value; | |
485 | expr_stmts_for_value = p->expr_stmts_for_value; | |
486 | emit_filename = p->emit_filename; | |
487 | emit_lineno = p->emit_lineno; | |
488 | goto_fixup_chain = p->goto_fixup_chain; | |
489 | } | |
490 | \f | |
491 | /* Emit a no-op instruction. */ | |
492 | ||
493 | void | |
494 | emit_nop () | |
495 | { | |
496 | rtx last_insn = get_last_insn (); | |
497 | if (!optimize | |
498 | && (GET_CODE (last_insn) == CODE_LABEL | |
499 | || prev_real_insn (last_insn) == 0)) | |
500 | emit_insn (gen_nop ()); | |
501 | } | |
502 | \f | |
503 | /* Return the rtx-label that corresponds to a LABEL_DECL, | |
504 | creating it if necessary. */ | |
505 | ||
506 | rtx | |
507 | label_rtx (label) | |
508 | tree label; | |
509 | { | |
510 | if (TREE_CODE (label) != LABEL_DECL) | |
511 | abort (); | |
512 | ||
513 | if (DECL_RTL (label)) | |
514 | return DECL_RTL (label); | |
515 | ||
516 | return DECL_RTL (label) = gen_label_rtx (); | |
517 | } | |
518 | ||
519 | /* Add an unconditional jump to LABEL as the next sequential instruction. */ | |
520 | ||
521 | void | |
522 | emit_jump (label) | |
523 | rtx label; | |
524 | { | |
525 | do_pending_stack_adjust (); | |
526 | emit_jump_insn (gen_jump (label)); | |
527 | emit_barrier (); | |
528 | } | |
529 | ||
530 | /* Emit code to jump to the address | |
531 | specified by the pointer expression EXP. */ | |
532 | ||
533 | void | |
534 | expand_computed_goto (exp) | |
535 | tree exp; | |
536 | { | |
537 | rtx x = expand_expr (exp, 0, VOIDmode, 0); | |
de14fd73 | 538 | emit_queue (); |
28d81abb RK |
539 | emit_indirect_jump (x); |
540 | emit_barrier (); | |
541 | } | |
542 | \f | |
543 | /* Handle goto statements and the labels that they can go to. */ | |
544 | ||
545 | /* Specify the location in the RTL code of a label LABEL, | |
546 | which is a LABEL_DECL tree node. | |
547 | ||
548 | This is used for the kind of label that the user can jump to with a | |
549 | goto statement, and for alternatives of a switch or case statement. | |
550 | RTL labels generated for loops and conditionals don't go through here; | |
551 | they are generated directly at the RTL level, by other functions below. | |
552 | ||
553 | Note that this has nothing to do with defining label *names*. | |
554 | Languages vary in how they do that and what that even means. */ | |
555 | ||
556 | void | |
557 | expand_label (label) | |
558 | tree label; | |
559 | { | |
560 | struct label_chain *p; | |
561 | ||
562 | do_pending_stack_adjust (); | |
563 | emit_label (label_rtx (label)); | |
564 | if (DECL_NAME (label)) | |
565 | LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label)); | |
566 | ||
567 | if (stack_block_stack != 0) | |
568 | { | |
569 | p = (struct label_chain *) oballoc (sizeof (struct label_chain)); | |
570 | p->next = stack_block_stack->data.block.label_chain; | |
571 | stack_block_stack->data.block.label_chain = p; | |
572 | p->label = label; | |
573 | } | |
574 | } | |
575 | ||
576 | /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos | |
577 | from nested functions. */ | |
578 | ||
579 | void | |
580 | declare_nonlocal_label (label) | |
581 | tree label; | |
582 | { | |
583 | nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels); | |
584 | LABEL_PRESERVE_P (label_rtx (label)) = 1; | |
585 | if (nonlocal_goto_handler_slot == 0) | |
586 | { | |
587 | nonlocal_goto_handler_slot | |
588 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
589 | nonlocal_goto_stack_level | |
590 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
591 | emit_insn_before (gen_move_insn (nonlocal_goto_stack_level, | |
592 | stack_pointer_rtx), | |
593 | tail_recursion_reentry); | |
594 | } | |
595 | } | |
596 | ||
597 | /* Generate RTL code for a `goto' statement with target label LABEL. | |
598 | LABEL should be a LABEL_DECL tree node that was or will later be | |
599 | defined with `expand_label'. */ | |
600 | ||
601 | void | |
602 | expand_goto (label) | |
603 | tree label; | |
604 | { | |
605 | /* Check for a nonlocal goto to a containing function. */ | |
606 | tree context = decl_function_context (label); | |
607 | if (context != 0 && context != current_function_decl) | |
608 | { | |
609 | struct function *p = find_function_data (context); | |
610 | rtx temp; | |
611 | p->has_nonlocal_label = 1; | |
612 | #if HAVE_nonlocal_goto | |
613 | if (HAVE_nonlocal_goto) | |
614 | emit_insn (gen_nonlocal_goto (lookup_static_chain (label), | |
615 | p->nonlocal_goto_handler_slot, | |
616 | p->nonlocal_goto_stack_level, | |
617 | gen_rtx (LABEL_REF, Pmode, | |
618 | label_rtx (label)))); | |
619 | else | |
620 | #endif | |
621 | { | |
622 | /* Restore frame pointer for containing function. | |
623 | This sets the actual hard register used for the frame pointer | |
624 | to the location of the function's incoming static chain info. | |
625 | The non-local goto handler will then adjust it to contain the | |
626 | proper value and reload the argument pointer, if needed. */ | |
627 | emit_move_insn (frame_pointer_rtx, lookup_static_chain (label)); | |
628 | /* Get addr of containing function's current nonlocal goto handler, | |
629 | which will do any cleanups and then jump to the label. */ | |
630 | temp = copy_to_reg (p->nonlocal_goto_handler_slot); | |
631 | /* Restore the stack pointer. Note this uses fp just restored. */ | |
632 | emit_move_insn (stack_pointer_rtx, p->nonlocal_goto_stack_level); | |
633 | /* Put in the static chain register the nonlocal label address. */ | |
634 | emit_move_insn (static_chain_rtx, | |
635 | gen_rtx (LABEL_REF, Pmode, label_rtx (label))); | |
636 | /* USE of frame_pointer_rtx added for consistency; not clear if | |
637 | really needed. */ | |
638 | emit_insn (gen_rtx (USE, VOIDmode, frame_pointer_rtx)); | |
639 | emit_insn (gen_rtx (USE, VOIDmode, stack_pointer_rtx)); | |
640 | emit_insn (gen_rtx (USE, VOIDmode, static_chain_rtx)); | |
641 | emit_indirect_jump (temp); | |
642 | } | |
643 | } | |
644 | else | |
645 | expand_goto_internal (label, label_rtx (label), 0); | |
646 | } | |
647 | ||
648 | /* Generate RTL code for a `goto' statement with target label BODY. | |
649 | LABEL should be a LABEL_REF. | |
650 | LAST_INSN, if non-0, is the rtx we should consider as the last | |
651 | insn emitted (for the purposes of cleaning up a return). */ | |
652 | ||
653 | static void | |
654 | expand_goto_internal (body, label, last_insn) | |
655 | tree body; | |
656 | rtx label; | |
657 | rtx last_insn; | |
658 | { | |
659 | struct nesting *block; | |
660 | rtx stack_level = 0; | |
661 | ||
662 | if (GET_CODE (label) != CODE_LABEL) | |
663 | abort (); | |
664 | ||
665 | /* If label has already been defined, we can tell now | |
666 | whether and how we must alter the stack level. */ | |
667 | ||
668 | if (PREV_INSN (label) != 0) | |
669 | { | |
670 | /* Find the innermost pending block that contains the label. | |
671 | (Check containment by comparing insn-uids.) | |
672 | Then restore the outermost stack level within that block, | |
673 | and do cleanups of all blocks contained in it. */ | |
674 | for (block = block_stack; block; block = block->next) | |
675 | { | |
676 | if (INSN_UID (block->data.block.first_insn) < INSN_UID (label)) | |
677 | break; | |
678 | if (block->data.block.stack_level != 0) | |
679 | stack_level = block->data.block.stack_level; | |
680 | /* Execute the cleanups for blocks we are exiting. */ | |
681 | if (block->data.block.cleanups != 0) | |
682 | { | |
683 | expand_cleanups (block->data.block.cleanups, 0); | |
684 | do_pending_stack_adjust (); | |
685 | } | |
686 | } | |
687 | ||
688 | if (stack_level) | |
689 | { | |
690 | /* Ensure stack adjust isn't done by emit_jump, as this would clobber | |
691 | the stack pointer. This one should be deleted as dead by flow. */ | |
692 | clear_pending_stack_adjust (); | |
693 | do_pending_stack_adjust (); | |
694 | emit_move_insn (stack_pointer_rtx, stack_level); | |
695 | } | |
696 | ||
697 | if (body != 0 && DECL_TOO_LATE (body)) | |
698 | error ("jump to `%s' invalidly jumps into binding contour", | |
699 | IDENTIFIER_POINTER (DECL_NAME (body))); | |
700 | } | |
701 | /* Label not yet defined: may need to put this goto | |
702 | on the fixup list. */ | |
703 | else if (! expand_fixup (body, label, last_insn)) | |
704 | { | |
705 | /* No fixup needed. Record that the label is the target | |
706 | of at least one goto that has no fixup. */ | |
707 | if (body != 0) | |
708 | TREE_ADDRESSABLE (body) = 1; | |
709 | } | |
710 | ||
711 | emit_jump (label); | |
712 | } | |
713 | \f | |
714 | /* Generate if necessary a fixup for a goto | |
715 | whose target label in tree structure (if any) is TREE_LABEL | |
716 | and whose target in rtl is RTL_LABEL. | |
717 | ||
718 | If LAST_INSN is nonzero, we pretend that the jump appears | |
719 | after insn LAST_INSN instead of at the current point in the insn stream. | |
720 | ||
721 | The fixup will be used later to insert insns at this point | |
722 | to restore the stack level as appropriate for the target label. | |
723 | ||
724 | Value is nonzero if a fixup is made. */ | |
725 | ||
726 | static int | |
727 | expand_fixup (tree_label, rtl_label, last_insn) | |
728 | tree tree_label; | |
729 | rtx rtl_label; | |
730 | rtx last_insn; | |
731 | { | |
732 | struct nesting *block, *end_block; | |
733 | ||
734 | /* See if we can recognize which block the label will be output in. | |
735 | This is possible in some very common cases. | |
736 | If we succeed, set END_BLOCK to that block. | |
737 | Otherwise, set it to 0. */ | |
738 | ||
739 | if (cond_stack | |
740 | && (rtl_label == cond_stack->data.cond.endif_label | |
741 | || rtl_label == cond_stack->data.cond.next_label)) | |
742 | end_block = cond_stack; | |
743 | /* If we are in a loop, recognize certain labels which | |
744 | are likely targets. This reduces the number of fixups | |
745 | we need to create. */ | |
746 | else if (loop_stack | |
747 | && (rtl_label == loop_stack->data.loop.start_label | |
748 | || rtl_label == loop_stack->data.loop.end_label | |
749 | || rtl_label == loop_stack->data.loop.continue_label)) | |
750 | end_block = loop_stack; | |
751 | else | |
752 | end_block = 0; | |
753 | ||
754 | /* Now set END_BLOCK to the binding level to which we will return. */ | |
755 | ||
756 | if (end_block) | |
757 | { | |
758 | struct nesting *next_block = end_block->all; | |
759 | block = block_stack; | |
760 | ||
761 | /* First see if the END_BLOCK is inside the innermost binding level. | |
762 | If so, then no cleanups or stack levels are relevant. */ | |
763 | while (next_block && next_block != block) | |
764 | next_block = next_block->all; | |
765 | ||
766 | if (next_block) | |
767 | return 0; | |
768 | ||
769 | /* Otherwise, set END_BLOCK to the innermost binding level | |
770 | which is outside the relevant control-structure nesting. */ | |
771 | next_block = block_stack->next; | |
772 | for (block = block_stack; block != end_block; block = block->all) | |
773 | if (block == next_block) | |
774 | next_block = next_block->next; | |
775 | end_block = next_block; | |
776 | } | |
777 | ||
778 | /* Does any containing block have a stack level or cleanups? | |
779 | If not, no fixup is needed, and that is the normal case | |
780 | (the only case, for standard C). */ | |
781 | for (block = block_stack; block != end_block; block = block->next) | |
782 | if (block->data.block.stack_level != 0 | |
783 | || block->data.block.cleanups != 0) | |
784 | break; | |
785 | ||
786 | if (block != end_block) | |
787 | { | |
788 | /* Ok, a fixup is needed. Add a fixup to the list of such. */ | |
789 | struct goto_fixup *fixup | |
790 | = (struct goto_fixup *) oballoc (sizeof (struct goto_fixup)); | |
791 | /* In case an old stack level is restored, make sure that comes | |
792 | after any pending stack adjust. */ | |
793 | /* ?? If the fixup isn't to come at the present position, | |
794 | doing the stack adjust here isn't useful. Doing it with our | |
795 | settings at that location isn't useful either. Let's hope | |
796 | someone does it! */ | |
797 | if (last_insn == 0) | |
798 | do_pending_stack_adjust (); | |
799 | fixup->before_jump = last_insn ? last_insn : get_last_insn (); | |
800 | fixup->target = tree_label; | |
801 | fixup->target_rtl = rtl_label; | |
802 | fixup->block_start_count = block_start_count; | |
803 | fixup->stack_level = 0; | |
804 | fixup->cleanup_list_list | |
805 | = (((block->data.block.outer_cleanups | |
806 | #if 0 | |
807 | && block->data.block.outer_cleanups != empty_cleanup_list | |
808 | #endif | |
809 | ) | |
810 | || block->data.block.cleanups) | |
811 | ? tree_cons (0, block->data.block.cleanups, | |
812 | block->data.block.outer_cleanups) | |
813 | : 0); | |
814 | fixup->next = goto_fixup_chain; | |
815 | goto_fixup_chain = fixup; | |
816 | } | |
817 | ||
818 | return block != 0; | |
819 | } | |
820 | ||
821 | /* When exiting a binding contour, process all pending gotos requiring fixups. | |
822 | THISBLOCK is the structure that describes the block being exited. | |
823 | STACK_LEVEL is the rtx for the stack level to restore exiting this contour. | |
824 | CLEANUP_LIST is a list of expressions to evaluate on exiting this contour. | |
825 | FIRST_INSN is the insn that began this contour. | |
826 | ||
827 | Gotos that jump out of this contour must restore the | |
828 | stack level and do the cleanups before actually jumping. | |
829 | ||
830 | DONT_JUMP_IN nonzero means report error there is a jump into this | |
831 | contour from before the beginning of the contour. | |
832 | This is also done if STACK_LEVEL is nonzero. */ | |
833 | ||
834 | void | |
835 | fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in) | |
836 | struct nesting *thisblock; | |
837 | rtx stack_level; | |
838 | tree cleanup_list; | |
839 | rtx first_insn; | |
840 | int dont_jump_in; | |
841 | { | |
842 | register struct goto_fixup *f, *prev; | |
843 | ||
844 | /* F is the fixup we are considering; PREV is the previous one. */ | |
845 | /* We run this loop in two passes so that cleanups of exited blocks | |
846 | are run first, and blocks that are exited are marked so | |
847 | afterwards. */ | |
848 | ||
849 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) | |
850 | { | |
851 | /* Test for a fixup that is inactive because it is already handled. */ | |
852 | if (f->before_jump == 0) | |
853 | { | |
854 | /* Delete inactive fixup from the chain, if that is easy to do. */ | |
855 | if (prev != 0) | |
856 | prev->next = f->next; | |
857 | } | |
858 | /* Has this fixup's target label been defined? | |
859 | If so, we can finalize it. */ | |
860 | else if (PREV_INSN (f->target_rtl) != 0) | |
861 | { | |
862 | /* Get the first non-label after the label | |
863 | this goto jumps to. If that's before this scope begins, | |
864 | we don't have a jump into the scope. */ | |
865 | rtx after_label = f->target_rtl; | |
866 | while (after_label != 0 && GET_CODE (after_label) == CODE_LABEL) | |
867 | after_label = NEXT_INSN (after_label); | |
868 | ||
869 | /* If this fixup jumped into this contour from before the beginning | |
870 | of this contour, report an error. */ | |
871 | /* ??? Bug: this does not detect jumping in through intermediate | |
872 | blocks that have stack levels or cleanups. | |
873 | It detects only a problem with the innermost block | |
874 | around the label. */ | |
875 | if (f->target != 0 | |
876 | && (dont_jump_in || stack_level || cleanup_list) | |
877 | /* If AFTER_LABEL is 0, it means the jump goes to the end | |
878 | of the rtl, which means it jumps into this scope. */ | |
879 | && (after_label == 0 | |
880 | || INSN_UID (first_insn) < INSN_UID (after_label)) | |
881 | && INSN_UID (first_insn) > INSN_UID (f->before_jump) | |
882 | && ! TREE_REGDECL (f->target)) | |
883 | { | |
884 | error_with_decl (f->target, | |
885 | "label `%s' used before containing binding contour"); | |
886 | /* Prevent multiple errors for one label. */ | |
887 | TREE_REGDECL (f->target) = 1; | |
888 | } | |
889 | ||
890 | /* Execute cleanups for blocks this jump exits. */ | |
891 | if (f->cleanup_list_list) | |
892 | { | |
893 | tree lists; | |
894 | for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists)) | |
895 | /* Marked elements correspond to blocks that have been closed. | |
896 | Do their cleanups. */ | |
897 | if (TREE_ADDRESSABLE (lists) | |
898 | && TREE_VALUE (lists) != 0) | |
899 | fixup_cleanups (TREE_VALUE (lists), &f->before_jump); | |
900 | } | |
901 | ||
902 | /* Restore stack level for the biggest contour that this | |
903 | jump jumps out of. */ | |
904 | if (f->stack_level) | |
905 | emit_insn_after (gen_move_insn (stack_pointer_rtx, f->stack_level), | |
906 | f->before_jump); | |
907 | f->before_jump = 0; | |
908 | } | |
909 | } | |
910 | ||
911 | /* Mark the cleanups of exited blocks so that they are executed | |
912 | by the code above. */ | |
913 | for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next) | |
914 | if (f->before_jump != 0 | |
915 | && PREV_INSN (f->target_rtl) == 0 | |
916 | /* Label has still not appeared. If we are exiting a block with | |
917 | a stack level to restore, that started before the fixup, | |
918 | mark this stack level as needing restoration | |
919 | when the fixup is later finalized. | |
920 | Also mark the cleanup_list_list element for F | |
921 | that corresponds to this block, so that ultimately | |
922 | this block's cleanups will be executed by the code above. */ | |
923 | && thisblock != 0 | |
924 | /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, | |
925 | it means the label is undefined. That's erroneous, but possible. */ | |
926 | && (thisblock->data.block.block_start_count | |
927 | <= f->block_start_count)) | |
928 | { | |
929 | tree lists = f->cleanup_list_list; | |
930 | for (; lists; lists = TREE_CHAIN (lists)) | |
931 | /* If the following elt. corresponds to our containing block | |
932 | then the elt. must be for this block. */ | |
933 | if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups) | |
934 | TREE_ADDRESSABLE (lists) = 1; | |
935 | ||
936 | if (stack_level) | |
937 | f->stack_level = stack_level; | |
938 | } | |
939 | } | |
940 | \f | |
941 | /* Generate RTL for an asm statement (explicit assembler code). | |
942 | BODY is a STRING_CST node containing the assembler code text, | |
943 | or an ADDR_EXPR containing a STRING_CST. */ | |
944 | ||
945 | void | |
946 | expand_asm (body) | |
947 | tree body; | |
948 | { | |
949 | if (TREE_CODE (body) == ADDR_EXPR) | |
950 | body = TREE_OPERAND (body, 0); | |
951 | ||
952 | emit_insn (gen_rtx (ASM_INPUT, VOIDmode, | |
953 | TREE_STRING_POINTER (body))); | |
954 | last_expr_type = 0; | |
955 | } | |
956 | ||
957 | /* Generate RTL for an asm statement with arguments. | |
958 | STRING is the instruction template. | |
959 | OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs. | |
960 | Each output or input has an expression in the TREE_VALUE and | |
961 | a constraint-string in the TREE_PURPOSE. | |
962 | CLOBBERS is a list of STRING_CST nodes each naming a hard register | |
963 | that is clobbered by this insn. | |
964 | ||
965 | Not all kinds of lvalue that may appear in OUTPUTS can be stored directly. | |
966 | Some elements of OUTPUTS may be replaced with trees representing temporary | |
967 | values. The caller should copy those temporary values to the originally | |
968 | specified lvalues. | |
969 | ||
970 | VOL nonzero means the insn is volatile; don't optimize it. */ | |
971 | ||
972 | void | |
973 | expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line) | |
974 | tree string, outputs, inputs, clobbers; | |
975 | int vol; | |
976 | char *filename; | |
977 | int line; | |
978 | { | |
979 | rtvec argvec, constraints; | |
980 | rtx body; | |
981 | int ninputs = list_length (inputs); | |
982 | int noutputs = list_length (outputs); | |
983 | int nclobbers = list_length (clobbers); | |
984 | tree tail; | |
985 | register int i; | |
986 | /* Vector of RTX's of evaluated output operands. */ | |
987 | rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx)); | |
988 | /* The insn we have emitted. */ | |
989 | rtx insn; | |
990 | ||
991 | last_expr_type = 0; | |
992 | ||
993 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) | |
994 | { | |
995 | tree val = TREE_VALUE (tail); | |
996 | tree val1; | |
997 | int j; | |
998 | int found_equal; | |
999 | ||
1000 | /* If there's an erroneous arg, emit no insn. */ | |
1001 | if (TREE_TYPE (val) == error_mark_node) | |
1002 | return; | |
1003 | ||
1004 | /* Make sure constraint has `=' and does not have `+'. */ | |
1005 | ||
1006 | found_equal = 0; | |
1007 | for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++) | |
1008 | { | |
1009 | if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+') | |
1010 | { | |
1011 | error ("output operand constraint contains `+'"); | |
1012 | return; | |
1013 | } | |
1014 | if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '=') | |
1015 | found_equal = 1; | |
1016 | } | |
1017 | if (! found_equal) | |
1018 | { | |
1019 | error ("output operand constraint lacks `='"); | |
1020 | return; | |
1021 | } | |
1022 | ||
1023 | /* If an output operand is not a variable or indirect ref, | |
1024 | or a part of one, | |
1025 | create a SAVE_EXPR which is a pseudo-reg | |
1026 | to act as an intermediate temporary. | |
1027 | Make the asm insn write into that, then copy it to | |
1028 | the real output operand. */ | |
1029 | ||
1030 | while (TREE_CODE (val) == COMPONENT_REF | |
1031 | || TREE_CODE (val) == ARRAY_REF) | |
1032 | val = TREE_OPERAND (val, 0); | |
1033 | ||
1034 | if (TREE_CODE (val) != VAR_DECL | |
1035 | && TREE_CODE (val) != PARM_DECL | |
1036 | && TREE_CODE (val) != INDIRECT_REF) | |
1037 | TREE_VALUE (tail) = save_expr (TREE_VALUE (tail)); | |
1038 | ||
1039 | output_rtx[i] = expand_expr (TREE_VALUE (tail), 0, VOIDmode, 0); | |
1040 | } | |
1041 | ||
1042 | if (ninputs + noutputs > MAX_RECOG_OPERANDS) | |
1043 | { | |
1044 | error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS); | |
1045 | return; | |
1046 | } | |
1047 | ||
1048 | /* Make vectors for the expression-rtx and constraint strings. */ | |
1049 | ||
1050 | argvec = rtvec_alloc (ninputs); | |
1051 | constraints = rtvec_alloc (ninputs); | |
1052 | ||
1053 | body = gen_rtx (ASM_OPERANDS, VOIDmode, | |
1054 | TREE_STRING_POINTER (string), "", 0, argvec, constraints, | |
1055 | filename, line); | |
1056 | MEM_VOLATILE_P (body) = vol; | |
1057 | ||
1058 | /* Eval the inputs and put them into ARGVEC. | |
1059 | Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */ | |
1060 | ||
1061 | i = 0; | |
1062 | for (tail = inputs; tail; tail = TREE_CHAIN (tail)) | |
1063 | { | |
1064 | int j; | |
1065 | ||
1066 | /* If there's an erroneous arg, emit no insn, | |
1067 | because the ASM_INPUT would get VOIDmode | |
1068 | and that could cause a crash in reload. */ | |
1069 | if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node) | |
1070 | return; | |
1071 | if (TREE_PURPOSE (tail) == NULL_TREE) | |
1072 | { | |
1073 | error ("hard register `%s' listed as input operand to `asm'", | |
1074 | TREE_STRING_POINTER (TREE_VALUE (tail)) ); | |
1075 | return; | |
1076 | } | |
1077 | ||
1078 | /* Make sure constraint has neither `=' nor `+'. */ | |
1079 | ||
1080 | for (j = 0; j < TREE_STRING_LENGTH (TREE_PURPOSE (tail)); j++) | |
1081 | if (TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '=' | |
1082 | || TREE_STRING_POINTER (TREE_PURPOSE (tail))[j] == '+') | |
1083 | { | |
1084 | error ("input operand constraint contains `%c'", | |
1085 | TREE_STRING_POINTER (TREE_PURPOSE (tail))[j]); | |
1086 | return; | |
1087 | } | |
1088 | ||
1089 | XVECEXP (body, 3, i) /* argvec */ | |
1090 | = expand_expr (TREE_VALUE (tail), 0, VOIDmode, 0); | |
1091 | XVECEXP (body, 4, i) /* constraints */ | |
1092 | = gen_rtx (ASM_INPUT, TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), | |
1093 | TREE_STRING_POINTER (TREE_PURPOSE (tail))); | |
1094 | i++; | |
1095 | } | |
1096 | ||
1097 | /* Protect all the operands from the queue, | |
1098 | now that they have all been evaluated. */ | |
1099 | ||
1100 | for (i = 0; i < ninputs; i++) | |
1101 | XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0); | |
1102 | ||
1103 | for (i = 0; i < noutputs; i++) | |
1104 | output_rtx[i] = protect_from_queue (output_rtx[i], 1); | |
1105 | ||
1106 | /* Now, for each output, construct an rtx | |
1107 | (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT | |
1108 | ARGVEC CONSTRAINTS)) | |
1109 | If there is more than one, put them inside a PARALLEL. */ | |
1110 | ||
1111 | if (noutputs == 1 && nclobbers == 0) | |
1112 | { | |
1113 | XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs)); | |
1114 | insn = emit_insn (gen_rtx (SET, VOIDmode, output_rtx[0], body)); | |
1115 | } | |
1116 | else if (noutputs == 0 && nclobbers == 0) | |
1117 | { | |
1118 | /* No output operands: put in a raw ASM_OPERANDS rtx. */ | |
1119 | insn = emit_insn (body); | |
1120 | } | |
1121 | else | |
1122 | { | |
1123 | rtx obody = body; | |
1124 | int num = noutputs; | |
1125 | if (num == 0) num = 1; | |
1126 | body = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (num + nclobbers)); | |
1127 | ||
1128 | /* For each output operand, store a SET. */ | |
1129 | ||
1130 | for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++) | |
1131 | { | |
1132 | XVECEXP (body, 0, i) | |
1133 | = gen_rtx (SET, VOIDmode, | |
1134 | output_rtx[i], | |
1135 | gen_rtx (ASM_OPERANDS, VOIDmode, | |
1136 | TREE_STRING_POINTER (string), | |
1137 | TREE_STRING_POINTER (TREE_PURPOSE (tail)), | |
1138 | i, argvec, constraints, | |
1139 | filename, line)); | |
1140 | MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol; | |
1141 | } | |
1142 | ||
1143 | /* If there are no outputs (but there are some clobbers) | |
1144 | store the bare ASM_OPERANDS into the PARALLEL. */ | |
1145 | ||
1146 | if (i == 0) | |
1147 | XVECEXP (body, 0, i++) = obody; | |
1148 | ||
1149 | /* Store (clobber REG) for each clobbered register specified. */ | |
1150 | ||
1151 | for (tail = clobbers; tail; tail = TREE_CHAIN (tail), i++) | |
1152 | { | |
28d81abb | 1153 | char *regname = TREE_STRING_POINTER (TREE_VALUE (tail)); |
b4ac57ab | 1154 | int j = decode_reg_name (regname); |
28d81abb | 1155 | |
b4ac57ab | 1156 | if (j < 0) |
28d81abb RK |
1157 | { |
1158 | error ("unknown register name `%s' in `asm'", regname); | |
1159 | return; | |
1160 | } | |
1161 | ||
1162 | /* Use QImode since that's guaranteed to clobber just one reg. */ | |
1163 | XVECEXP (body, 0, i) | |
1164 | = gen_rtx (CLOBBER, VOIDmode, gen_rtx (REG, QImode, j)); | |
1165 | } | |
1166 | ||
1167 | insn = emit_insn (body); | |
1168 | } | |
1169 | ||
1170 | free_temp_slots (); | |
1171 | } | |
1172 | \f | |
1173 | /* Generate RTL to evaluate the expression EXP | |
1174 | and remember it in case this is the VALUE in a ({... VALUE; }) constr. */ | |
1175 | ||
1176 | void | |
1177 | expand_expr_stmt (exp) | |
1178 | tree exp; | |
1179 | { | |
1180 | /* If -W, warn about statements with no side effects, | |
1181 | except for an explicit cast to void (e.g. for assert()), and | |
1182 | except inside a ({...}) where they may be useful. */ | |
1183 | if (expr_stmts_for_value == 0 && exp != error_mark_node) | |
1184 | { | |
1185 | if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused) | |
1186 | && !(TREE_CODE (exp) == CONVERT_EXPR | |
1187 | && TREE_TYPE (exp) == void_type_node)) | |
1188 | warning_with_file_and_line (emit_filename, emit_lineno, | |
1189 | "statement with no effect"); | |
1190 | else if (warn_unused) | |
1191 | warn_if_unused_value (exp); | |
1192 | } | |
1193 | last_expr_type = TREE_TYPE (exp); | |
1194 | if (! flag_syntax_only) | |
1195 | last_expr_value = expand_expr (exp, expr_stmts_for_value ? 0 : const0_rtx, | |
1196 | VOIDmode, 0); | |
1197 | ||
1198 | /* If all we do is reference a volatile value in memory, | |
1199 | copy it to a register to be sure it is actually touched. */ | |
1200 | if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM | |
1201 | && TREE_THIS_VOLATILE (exp)) | |
1202 | { | |
1203 | if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode) | |
1204 | copy_to_reg (last_expr_value); | |
1205 | else | |
1206 | /* This case needs to be written. */ | |
1207 | abort (); | |
1208 | } | |
1209 | ||
1210 | /* If this expression is part of a ({...}) and is in memory, we may have | |
1211 | to preserve temporaries. */ | |
1212 | preserve_temp_slots (last_expr_value); | |
1213 | ||
1214 | /* Free any temporaries used to evaluate this expression. Any temporary | |
1215 | used as a result of this expression will already have been preserved | |
1216 | above. */ | |
1217 | free_temp_slots (); | |
1218 | ||
1219 | emit_queue (); | |
1220 | } | |
1221 | ||
1222 | /* Warn if EXP contains any computations whose results are not used. | |
1223 | Return 1 if a warning is printed; 0 otherwise. */ | |
1224 | ||
1225 | static int | |
1226 | warn_if_unused_value (exp) | |
1227 | tree exp; | |
1228 | { | |
1229 | if (TREE_USED (exp)) | |
1230 | return 0; | |
1231 | ||
1232 | switch (TREE_CODE (exp)) | |
1233 | { | |
1234 | case PREINCREMENT_EXPR: | |
1235 | case POSTINCREMENT_EXPR: | |
1236 | case PREDECREMENT_EXPR: | |
1237 | case POSTDECREMENT_EXPR: | |
1238 | case MODIFY_EXPR: | |
1239 | case INIT_EXPR: | |
1240 | case TARGET_EXPR: | |
1241 | case CALL_EXPR: | |
1242 | case METHOD_CALL_EXPR: | |
1243 | case RTL_EXPR: | |
1244 | case WRAPPER_EXPR: | |
1245 | case ANTI_WRAPPER_EXPR: | |
1246 | case WITH_CLEANUP_EXPR: | |
1247 | case EXIT_EXPR: | |
1248 | /* We don't warn about COND_EXPR because it may be a useful | |
1249 | construct if either arm contains a side effect. */ | |
1250 | case COND_EXPR: | |
1251 | return 0; | |
1252 | ||
1253 | case BIND_EXPR: | |
1254 | /* For a binding, warn if no side effect within it. */ | |
1255 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1256 | ||
1257 | case TRUTH_ORIF_EXPR: | |
1258 | case TRUTH_ANDIF_EXPR: | |
1259 | /* In && or ||, warn if 2nd operand has no side effect. */ | |
1260 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1261 | ||
1262 | case COMPOUND_EXPR: | |
1263 | if (warn_if_unused_value (TREE_OPERAND (exp, 0))) | |
1264 | return 1; | |
1265 | return warn_if_unused_value (TREE_OPERAND (exp, 1)); | |
1266 | ||
1267 | case NOP_EXPR: | |
1268 | case CONVERT_EXPR: | |
b4ac57ab | 1269 | case NON_LVALUE_EXPR: |
28d81abb RK |
1270 | /* Don't warn about values cast to void. */ |
1271 | if (TREE_TYPE (exp) == void_type_node) | |
1272 | return 0; | |
1273 | /* Don't warn about conversions not explicit in the user's program. */ | |
1274 | if (TREE_NO_UNUSED_WARNING (exp)) | |
1275 | return 0; | |
1276 | /* Assignment to a cast usually results in a cast of a modify. | |
1277 | Don't complain about that. */ | |
1278 | if (TREE_CODE (TREE_OPERAND (exp, 0)) == MODIFY_EXPR) | |
1279 | return 0; | |
1280 | /* Sometimes it results in a cast of a cast of a modify. | |
1281 | Don't complain about that. */ | |
1282 | if ((TREE_CODE (TREE_OPERAND (exp, 0)) == CONVERT_EXPR | |
1283 | || TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR) | |
1284 | && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == MODIFY_EXPR) | |
1285 | return 0; | |
1286 | ||
1287 | default: | |
1288 | warning_with_file_and_line (emit_filename, emit_lineno, | |
1289 | "value computed is not used"); | |
1290 | return 1; | |
1291 | } | |
1292 | } | |
1293 | ||
1294 | /* Clear out the memory of the last expression evaluated. */ | |
1295 | ||
1296 | void | |
1297 | clear_last_expr () | |
1298 | { | |
1299 | last_expr_type = 0; | |
1300 | } | |
1301 | ||
1302 | /* Begin a statement which will return a value. | |
1303 | Return the RTL_EXPR for this statement expr. | |
1304 | The caller must save that value and pass it to expand_end_stmt_expr. */ | |
1305 | ||
1306 | tree | |
1307 | expand_start_stmt_expr () | |
1308 | { | |
1309 | /* Make the RTL_EXPR node temporary, not momentary, | |
1310 | so that rtl_expr_chain doesn't become garbage. */ | |
1311 | int momentary = suspend_momentary (); | |
1312 | tree t = make_node (RTL_EXPR); | |
1313 | resume_momentary (momentary); | |
1314 | start_sequence (); | |
1315 | NO_DEFER_POP; | |
1316 | expr_stmts_for_value++; | |
1317 | return t; | |
1318 | } | |
1319 | ||
1320 | /* Restore the previous state at the end of a statement that returns a value. | |
1321 | Returns a tree node representing the statement's value and the | |
1322 | insns to compute the value. | |
1323 | ||
1324 | The nodes of that expression have been freed by now, so we cannot use them. | |
1325 | But we don't want to do that anyway; the expression has already been | |
1326 | evaluated and now we just want to use the value. So generate a RTL_EXPR | |
1327 | with the proper type and RTL value. | |
1328 | ||
1329 | If the last substatement was not an expression, | |
1330 | return something with type `void'. */ | |
1331 | ||
1332 | tree | |
1333 | expand_end_stmt_expr (t) | |
1334 | tree t; | |
1335 | { | |
1336 | OK_DEFER_POP; | |
1337 | ||
1338 | if (last_expr_type == 0) | |
1339 | { | |
1340 | last_expr_type = void_type_node; | |
1341 | last_expr_value = const0_rtx; | |
1342 | } | |
1343 | else if (last_expr_value == 0) | |
1344 | /* There are some cases where this can happen, such as when the | |
1345 | statement is void type. */ | |
1346 | last_expr_value = const0_rtx; | |
1347 | else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value)) | |
1348 | /* Remove any possible QUEUED. */ | |
1349 | last_expr_value = protect_from_queue (last_expr_value, 0); | |
1350 | ||
1351 | emit_queue (); | |
1352 | ||
1353 | TREE_TYPE (t) = last_expr_type; | |
1354 | RTL_EXPR_RTL (t) = last_expr_value; | |
1355 | RTL_EXPR_SEQUENCE (t) = get_insns (); | |
1356 | ||
1357 | rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain); | |
1358 | ||
1359 | end_sequence (); | |
1360 | ||
1361 | /* Don't consider deleting this expr or containing exprs at tree level. */ | |
1362 | TREE_SIDE_EFFECTS (t) = 1; | |
1363 | /* Propagate volatility of the actual RTL expr. */ | |
1364 | TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value); | |
1365 | ||
1366 | last_expr_type = 0; | |
1367 | expr_stmts_for_value--; | |
1368 | ||
1369 | return t; | |
1370 | } | |
1371 | \f | |
1372 | /* The exception handling nesting looks like this: | |
1373 | ||
1374 | <-- Level N-1 | |
1375 | { <-- exception handler block | |
1376 | <-- Level N | |
1377 | <-- in an exception handler | |
1378 | { <-- try block | |
1379 | : <-- in a TRY block | |
1380 | : <-- in an exception handler | |
1381 | : | |
1382 | } | |
1383 | ||
1384 | { <-- except block | |
1385 | : <-- in an except block | |
1386 | : <-- in an exception handler | |
1387 | : | |
1388 | } | |
1389 | ||
1390 | } | |
1391 | ||
1392 | /* Return nonzero iff in a try block at level LEVEL. */ | |
1393 | ||
1394 | int | |
1395 | in_try_block (level) | |
1396 | int level; | |
1397 | { | |
1398 | struct nesting *n = except_stack; | |
1399 | while (1) | |
1400 | { | |
1401 | while (n && n->data.except_stmt.after_label != 0) | |
1402 | n = n->next; | |
1403 | if (n == 0) | |
1404 | return 0; | |
1405 | if (level == 0) | |
1406 | return n != 0; | |
1407 | level--; | |
1408 | n = n->next; | |
1409 | } | |
1410 | } | |
1411 | ||
1412 | /* Return nonzero iff in an except block at level LEVEL. */ | |
1413 | ||
1414 | int | |
1415 | in_except_block (level) | |
1416 | int level; | |
1417 | { | |
1418 | struct nesting *n = except_stack; | |
1419 | while (1) | |
1420 | { | |
1421 | while (n && n->data.except_stmt.after_label == 0) | |
1422 | n = n->next; | |
1423 | if (n == 0) | |
1424 | return 0; | |
1425 | if (level == 0) | |
1426 | return n != 0; | |
1427 | level--; | |
1428 | n = n->next; | |
1429 | } | |
1430 | } | |
1431 | ||
1432 | /* Return nonzero iff in an exception handler at level LEVEL. */ | |
1433 | ||
1434 | int | |
1435 | in_exception_handler (level) | |
1436 | int level; | |
1437 | { | |
1438 | struct nesting *n = except_stack; | |
1439 | while (n && level--) | |
1440 | n = n->next; | |
1441 | return n != 0; | |
1442 | } | |
1443 | ||
1444 | /* Record the fact that the current exception nesting raises | |
1445 | exception EX. If not in an exception handler, return 0. */ | |
1446 | int | |
1447 | expand_raise (ex) | |
1448 | tree ex; | |
1449 | { | |
1450 | tree *raises_ptr; | |
1451 | ||
1452 | if (except_stack == 0) | |
1453 | return 0; | |
1454 | raises_ptr = &except_stack->data.except_stmt.raised; | |
1455 | if (! value_member (ex, *raises_ptr)) | |
1456 | *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr); | |
1457 | return 1; | |
1458 | } | |
1459 | ||
1460 | /* Generate RTL for the start of a try block. | |
1461 | ||
1462 | TRY_CLAUSE is the condition to test to enter the try block. */ | |
1463 | ||
1464 | void | |
1465 | expand_start_try (try_clause, exitflag, escapeflag) | |
1466 | tree try_clause; | |
1467 | int exitflag; | |
1468 | int escapeflag; | |
1469 | { | |
1470 | struct nesting *thishandler = ALLOC_NESTING (); | |
1471 | ||
1472 | /* Make an entry on cond_stack for the cond we are entering. */ | |
1473 | ||
1474 | thishandler->next = except_stack; | |
1475 | thishandler->all = nesting_stack; | |
1476 | thishandler->depth = ++nesting_depth; | |
1477 | thishandler->data.except_stmt.raised = 0; | |
1478 | thishandler->data.except_stmt.handled = 0; | |
1479 | thishandler->data.except_stmt.first_insn = get_insns (); | |
1480 | thishandler->data.except_stmt.except_label = gen_label_rtx (); | |
1481 | thishandler->data.except_stmt.unhandled_label = 0; | |
1482 | thishandler->data.except_stmt.after_label = 0; | |
1483 | thishandler->data.except_stmt.escape_label | |
1484 | = escapeflag ? thishandler->data.except_stmt.except_label : 0; | |
1485 | thishandler->exit_label = exitflag ? gen_label_rtx () : 0; | |
1486 | except_stack = thishandler; | |
1487 | nesting_stack = thishandler; | |
1488 | ||
1489 | do_jump (try_clause, thishandler->data.except_stmt.except_label, NULL); | |
1490 | } | |
1491 | ||
1492 | /* End of a TRY block. Nothing to do for now. */ | |
1493 | ||
1494 | void | |
1495 | expand_end_try () | |
1496 | { | |
1497 | except_stack->data.except_stmt.after_label = gen_label_rtx (); | |
1498 | expand_goto_internal (NULL, except_stack->data.except_stmt.after_label, 0); | |
1499 | } | |
1500 | ||
1501 | /* Start an `except' nesting contour. | |
1502 | EXITFLAG says whether this contour should be able to `exit' something. | |
1503 | ESCAPEFLAG says whether this contour should be escapable. */ | |
1504 | ||
1505 | void | |
1506 | expand_start_except (exitflag, escapeflag) | |
1507 | int exitflag; | |
1508 | int escapeflag; | |
1509 | { | |
1510 | if (exitflag) | |
1511 | { | |
1512 | struct nesting *n; | |
1513 | /* An `exit' from catch clauses goes out to next exit level, | |
1514 | if there is one. Otherwise, it just goes to the end | |
1515 | of the construct. */ | |
1516 | for (n = except_stack->next; n; n = n->next) | |
1517 | if (n->exit_label != 0) | |
1518 | { | |
1519 | except_stack->exit_label = n->exit_label; | |
1520 | break; | |
1521 | } | |
1522 | if (n == 0) | |
1523 | except_stack->exit_label = except_stack->data.except_stmt.after_label; | |
1524 | } | |
1525 | if (escapeflag) | |
1526 | { | |
1527 | struct nesting *n; | |
1528 | /* An `escape' from catch clauses goes out to next escape level, | |
1529 | if there is one. Otherwise, it just goes to the end | |
1530 | of the construct. */ | |
1531 | for (n = except_stack->next; n; n = n->next) | |
1532 | if (n->data.except_stmt.escape_label != 0) | |
1533 | { | |
1534 | except_stack->data.except_stmt.escape_label | |
1535 | = n->data.except_stmt.escape_label; | |
1536 | break; | |
1537 | } | |
1538 | if (n == 0) | |
1539 | except_stack->data.except_stmt.escape_label | |
1540 | = except_stack->data.except_stmt.after_label; | |
1541 | } | |
1542 | do_pending_stack_adjust (); | |
1543 | emit_label (except_stack->data.except_stmt.except_label); | |
1544 | } | |
1545 | ||
1546 | /* Generate code to `escape' from an exception contour. This | |
1547 | is like `exiting', but does not conflict with constructs which | |
1548 | use `exit_label'. | |
1549 | ||
1550 | Return nonzero if this contour is escapable, otherwise | |
1551 | return zero, and language-specific code will emit the | |
1552 | appropriate error message. */ | |
1553 | int | |
1554 | expand_escape_except () | |
1555 | { | |
1556 | struct nesting *n; | |
1557 | last_expr_type = 0; | |
1558 | for (n = except_stack; n; n = n->next) | |
1559 | if (n->data.except_stmt.escape_label != 0) | |
1560 | { | |
1561 | expand_goto_internal (0, n->data.except_stmt.escape_label, 0); | |
1562 | return 1; | |
1563 | } | |
1564 | ||
1565 | return 0; | |
1566 | } | |
1567 | ||
1568 | /* Finish processing and `except' contour. | |
1569 | Culls out all exceptions which might be raise but not | |
1570 | handled, and returns the list to the caller. | |
1571 | Language-specific code is responsible for dealing with these | |
1572 | exceptions. */ | |
1573 | ||
1574 | tree | |
1575 | expand_end_except () | |
1576 | { | |
1577 | struct nesting *n; | |
1578 | tree raised = NULL_TREE; | |
1579 | ||
1580 | do_pending_stack_adjust (); | |
1581 | emit_label (except_stack->data.except_stmt.after_label); | |
1582 | ||
1583 | n = except_stack->next; | |
1584 | if (n) | |
1585 | { | |
1586 | /* Propagate exceptions raised but not handled to next | |
1587 | highest level. */ | |
1588 | tree handled = except_stack->data.except_stmt.raised; | |
1589 | if (handled != void_type_node) | |
1590 | { | |
1591 | tree prev = NULL_TREE; | |
1592 | raised = except_stack->data.except_stmt.raised; | |
1593 | while (handled) | |
1594 | { | |
1595 | tree this_raise; | |
1596 | for (this_raise = raised, prev = 0; this_raise; | |
1597 | this_raise = TREE_CHAIN (this_raise)) | |
1598 | { | |
1599 | if (value_member (TREE_VALUE (this_raise), handled)) | |
1600 | { | |
1601 | if (prev) | |
1602 | TREE_CHAIN (prev) = TREE_CHAIN (this_raise); | |
1603 | else | |
1604 | { | |
1605 | raised = TREE_CHAIN (raised); | |
1606 | if (raised == NULL_TREE) | |
1607 | goto nada; | |
1608 | } | |
1609 | } | |
1610 | else | |
1611 | prev = this_raise; | |
1612 | } | |
1613 | handled = TREE_CHAIN (handled); | |
1614 | } | |
1615 | if (prev == NULL_TREE) | |
1616 | prev = raised; | |
1617 | if (prev) | |
1618 | TREE_CHAIN (prev) = n->data.except_stmt.raised; | |
1619 | nada: | |
1620 | n->data.except_stmt.raised = raised; | |
1621 | } | |
1622 | } | |
1623 | ||
1624 | POPSTACK (except_stack); | |
1625 | last_expr_type = 0; | |
1626 | return raised; | |
1627 | } | |
1628 | ||
1629 | /* Record that exception EX is caught by this exception handler. | |
1630 | Return nonzero if in exception handling construct, otherwise return 0. */ | |
1631 | int | |
1632 | expand_catch (ex) | |
1633 | tree ex; | |
1634 | { | |
1635 | tree *raises_ptr; | |
1636 | ||
1637 | if (except_stack == 0) | |
1638 | return 0; | |
1639 | raises_ptr = &except_stack->data.except_stmt.handled; | |
1640 | if (*raises_ptr != void_type_node | |
1641 | && ex != NULL_TREE | |
1642 | && ! value_member (ex, *raises_ptr)) | |
1643 | *raises_ptr = tree_cons (NULL_TREE, ex, *raises_ptr); | |
1644 | return 1; | |
1645 | } | |
1646 | ||
1647 | /* Record that this exception handler catches all exceptions. | |
1648 | Return nonzero if in exception handling construct, otherwise return 0. */ | |
1649 | ||
1650 | int | |
1651 | expand_catch_default () | |
1652 | { | |
1653 | if (except_stack == 0) | |
1654 | return 0; | |
1655 | except_stack->data.except_stmt.handled = void_type_node; | |
1656 | return 1; | |
1657 | } | |
1658 | ||
1659 | int | |
1660 | expand_end_catch () | |
1661 | { | |
1662 | if (except_stack == 0 || except_stack->data.except_stmt.after_label == 0) | |
1663 | return 0; | |
1664 | expand_goto_internal (0, except_stack->data.except_stmt.after_label, 0); | |
1665 | return 1; | |
1666 | } | |
1667 | \f | |
1668 | /* Generate RTL for the start of an if-then. COND is the expression | |
1669 | whose truth should be tested. | |
1670 | ||
1671 | If EXITFLAG is nonzero, this conditional is visible to | |
1672 | `exit_something'. */ | |
1673 | ||
1674 | void | |
1675 | expand_start_cond (cond, exitflag) | |
1676 | tree cond; | |
1677 | int exitflag; | |
1678 | { | |
1679 | struct nesting *thiscond = ALLOC_NESTING (); | |
1680 | ||
1681 | /* Make an entry on cond_stack for the cond we are entering. */ | |
1682 | ||
1683 | thiscond->next = cond_stack; | |
1684 | thiscond->all = nesting_stack; | |
1685 | thiscond->depth = ++nesting_depth; | |
1686 | thiscond->data.cond.next_label = gen_label_rtx (); | |
1687 | /* Before we encounter an `else', we don't need a separate exit label | |
1688 | unless there are supposed to be exit statements | |
1689 | to exit this conditional. */ | |
1690 | thiscond->exit_label = exitflag ? gen_label_rtx () : 0; | |
1691 | thiscond->data.cond.endif_label = thiscond->exit_label; | |
1692 | cond_stack = thiscond; | |
1693 | nesting_stack = thiscond; | |
1694 | ||
1695 | do_jump (cond, thiscond->data.cond.next_label, NULL); | |
1696 | } | |
1697 | ||
1698 | /* Generate RTL between then-clause and the elseif-clause | |
1699 | of an if-then-elseif-.... */ | |
1700 | ||
1701 | void | |
1702 | expand_start_elseif (cond) | |
1703 | tree cond; | |
1704 | { | |
1705 | if (cond_stack->data.cond.endif_label == 0) | |
1706 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
1707 | emit_jump (cond_stack->data.cond.endif_label); | |
1708 | emit_label (cond_stack->data.cond.next_label); | |
1709 | cond_stack->data.cond.next_label = gen_label_rtx (); | |
1710 | do_jump (cond, cond_stack->data.cond.next_label, NULL); | |
1711 | } | |
1712 | ||
1713 | /* Generate RTL between the then-clause and the else-clause | |
1714 | of an if-then-else. */ | |
1715 | ||
1716 | void | |
1717 | expand_start_else () | |
1718 | { | |
1719 | if (cond_stack->data.cond.endif_label == 0) | |
1720 | cond_stack->data.cond.endif_label = gen_label_rtx (); | |
1721 | emit_jump (cond_stack->data.cond.endif_label); | |
1722 | emit_label (cond_stack->data.cond.next_label); | |
1723 | cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */ | |
1724 | } | |
1725 | ||
1726 | /* Generate RTL for the end of an if-then. | |
1727 | Pop the record for it off of cond_stack. */ | |
1728 | ||
1729 | void | |
1730 | expand_end_cond () | |
1731 | { | |
1732 | struct nesting *thiscond = cond_stack; | |
1733 | ||
1734 | do_pending_stack_adjust (); | |
1735 | if (thiscond->data.cond.next_label) | |
1736 | emit_label (thiscond->data.cond.next_label); | |
1737 | if (thiscond->data.cond.endif_label) | |
1738 | emit_label (thiscond->data.cond.endif_label); | |
1739 | ||
1740 | POPSTACK (cond_stack); | |
1741 | last_expr_type = 0; | |
1742 | } | |
1743 | \f | |
1744 | /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this | |
1745 | loop should be exited by `exit_something'. This is a loop for which | |
1746 | `expand_continue' will jump to the top of the loop. | |
1747 | ||
1748 | Make an entry on loop_stack to record the labels associated with | |
1749 | this loop. */ | |
1750 | ||
1751 | struct nesting * | |
1752 | expand_start_loop (exit_flag) | |
1753 | int exit_flag; | |
1754 | { | |
1755 | register struct nesting *thisloop = ALLOC_NESTING (); | |
1756 | ||
1757 | /* Make an entry on loop_stack for the loop we are entering. */ | |
1758 | ||
1759 | thisloop->next = loop_stack; | |
1760 | thisloop->all = nesting_stack; | |
1761 | thisloop->depth = ++nesting_depth; | |
1762 | thisloop->data.loop.start_label = gen_label_rtx (); | |
1763 | thisloop->data.loop.end_label = gen_label_rtx (); | |
1764 | thisloop->data.loop.continue_label = thisloop->data.loop.start_label; | |
1765 | thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0; | |
1766 | loop_stack = thisloop; | |
1767 | nesting_stack = thisloop; | |
1768 | ||
1769 | do_pending_stack_adjust (); | |
1770 | emit_queue (); | |
1771 | emit_note (0, NOTE_INSN_LOOP_BEG); | |
1772 | emit_label (thisloop->data.loop.start_label); | |
1773 | ||
1774 | return thisloop; | |
1775 | } | |
1776 | ||
1777 | /* Like expand_start_loop but for a loop where the continuation point | |
1778 | (for expand_continue_loop) will be specified explicitly. */ | |
1779 | ||
1780 | struct nesting * | |
1781 | expand_start_loop_continue_elsewhere (exit_flag) | |
1782 | int exit_flag; | |
1783 | { | |
1784 | struct nesting *thisloop = expand_start_loop (exit_flag); | |
1785 | loop_stack->data.loop.continue_label = gen_label_rtx (); | |
1786 | return thisloop; | |
1787 | } | |
1788 | ||
1789 | /* Specify the continuation point for a loop started with | |
1790 | expand_start_loop_continue_elsewhere. | |
1791 | Use this at the point in the code to which a continue statement | |
1792 | should jump. */ | |
1793 | ||
1794 | void | |
1795 | expand_loop_continue_here () | |
1796 | { | |
1797 | do_pending_stack_adjust (); | |
1798 | emit_note (0, NOTE_INSN_LOOP_CONT); | |
1799 | emit_label (loop_stack->data.loop.continue_label); | |
1800 | } | |
1801 | ||
1802 | /* Finish a loop. Generate a jump back to the top and the loop-exit label. | |
1803 | Pop the block off of loop_stack. */ | |
1804 | ||
1805 | void | |
1806 | expand_end_loop () | |
1807 | { | |
1808 | register rtx insn = get_last_insn (); | |
1809 | register rtx start_label = loop_stack->data.loop.start_label; | |
1810 | rtx last_test_insn = 0; | |
1811 | int num_insns = 0; | |
1812 | ||
1813 | /* Mark the continue-point at the top of the loop if none elsewhere. */ | |
1814 | if (start_label == loop_stack->data.loop.continue_label) | |
1815 | emit_note_before (NOTE_INSN_LOOP_CONT, start_label); | |
1816 | ||
1817 | do_pending_stack_adjust (); | |
1818 | ||
1819 | /* If optimizing, perhaps reorder the loop. If the loop | |
1820 | starts with a conditional exit, roll that to the end | |
1821 | where it will optimize together with the jump back. | |
1822 | ||
1823 | We look for the last conditional branch to the exit that we encounter | |
1824 | before hitting 30 insns or a CALL_INSN. If we see an unconditional | |
1825 | branch to the exit first, use it. | |
1826 | ||
1827 | We must also stop at NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes | |
1828 | because moving them is not valid. */ | |
1829 | ||
1830 | if (optimize | |
1831 | && | |
1832 | ! (GET_CODE (insn) == JUMP_INSN | |
1833 | && GET_CODE (PATTERN (insn)) == SET | |
1834 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
1835 | && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)) | |
1836 | { | |
1837 | /* Scan insns from the top of the loop looking for a qualified | |
1838 | conditional exit. */ | |
1839 | for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn; | |
1840 | insn = NEXT_INSN (insn)) | |
1841 | { | |
1842 | if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == CODE_LABEL) | |
1843 | break; | |
1844 | ||
1845 | if (GET_CODE (insn) == NOTE | |
1846 | && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG | |
1847 | || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)) | |
1848 | break; | |
1849 | ||
1850 | if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN) | |
1851 | num_insns++; | |
1852 | ||
1853 | if (last_test_insn && num_insns > 30) | |
1854 | break; | |
1855 | ||
1856 | if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == SET | |
1857 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
1858 | && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE | |
1859 | && ((GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == LABEL_REF | |
1860 | && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0) | |
1861 | == loop_stack->data.loop.end_label)) | |
1862 | || (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 2)) == LABEL_REF | |
1863 | && (XEXP (XEXP (SET_SRC (PATTERN (insn)), 2), 0) | |
1864 | == loop_stack->data.loop.end_label)))) | |
1865 | last_test_insn = insn; | |
1866 | ||
1867 | if (last_test_insn == 0 && GET_CODE (insn) == JUMP_INSN | |
1868 | && GET_CODE (PATTERN (insn)) == SET | |
1869 | && SET_DEST (PATTERN (insn)) == pc_rtx | |
1870 | && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF | |
1871 | && (XEXP (SET_SRC (PATTERN (insn)), 0) | |
1872 | == loop_stack->data.loop.end_label)) | |
1873 | /* Include BARRIER. */ | |
1874 | last_test_insn = NEXT_INSN (insn); | |
1875 | } | |
1876 | ||
1877 | if (last_test_insn != 0 && last_test_insn != get_last_insn ()) | |
1878 | { | |
1879 | /* We found one. Move everything from there up | |
1880 | to the end of the loop, and add a jump into the loop | |
1881 | to jump to there. */ | |
1882 | register rtx newstart_label = gen_label_rtx (); | |
1883 | register rtx start_move = start_label; | |
1884 | ||
b4ac57ab | 1885 | /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note, |
28d81abb RK |
1886 | then we want to move this note also. */ |
1887 | if (GET_CODE (PREV_INSN (start_move)) == NOTE | |
1888 | && (NOTE_LINE_NUMBER (PREV_INSN (start_move)) | |
1889 | == NOTE_INSN_LOOP_CONT)) | |
1890 | start_move = PREV_INSN (start_move); | |
1891 | ||
1892 | emit_label_after (newstart_label, PREV_INSN (start_move)); | |
1893 | reorder_insns (start_move, last_test_insn, get_last_insn ()); | |
1894 | emit_jump_insn_after (gen_jump (start_label), | |
1895 | PREV_INSN (newstart_label)); | |
1896 | emit_barrier_after (PREV_INSN (newstart_label)); | |
1897 | start_label = newstart_label; | |
1898 | } | |
1899 | } | |
1900 | ||
1901 | emit_jump (start_label); | |
1902 | emit_note (0, NOTE_INSN_LOOP_END); | |
1903 | emit_label (loop_stack->data.loop.end_label); | |
1904 | ||
1905 | POPSTACK (loop_stack); | |
1906 | ||
1907 | last_expr_type = 0; | |
1908 | } | |
1909 | ||
1910 | /* Generate a jump to the current loop's continue-point. | |
1911 | This is usually the top of the loop, but may be specified | |
1912 | explicitly elsewhere. If not currently inside a loop, | |
1913 | return 0 and do nothing; caller will print an error message. */ | |
1914 | ||
1915 | int | |
1916 | expand_continue_loop (whichloop) | |
1917 | struct nesting *whichloop; | |
1918 | { | |
1919 | last_expr_type = 0; | |
1920 | if (whichloop == 0) | |
1921 | whichloop = loop_stack; | |
1922 | if (whichloop == 0) | |
1923 | return 0; | |
1924 | expand_goto_internal (0, whichloop->data.loop.continue_label, 0); | |
1925 | return 1; | |
1926 | } | |
1927 | ||
1928 | /* Generate a jump to exit the current loop. If not currently inside a loop, | |
1929 | return 0 and do nothing; caller will print an error message. */ | |
1930 | ||
1931 | int | |
1932 | expand_exit_loop (whichloop) | |
1933 | struct nesting *whichloop; | |
1934 | { | |
1935 | last_expr_type = 0; | |
1936 | if (whichloop == 0) | |
1937 | whichloop = loop_stack; | |
1938 | if (whichloop == 0) | |
1939 | return 0; | |
1940 | expand_goto_internal (0, whichloop->data.loop.end_label, 0); | |
1941 | return 1; | |
1942 | } | |
1943 | ||
1944 | /* Generate a conditional jump to exit the current loop if COND | |
1945 | evaluates to zero. If not currently inside a loop, | |
1946 | return 0 and do nothing; caller will print an error message. */ | |
1947 | ||
1948 | int | |
1949 | expand_exit_loop_if_false (whichloop, cond) | |
1950 | struct nesting *whichloop; | |
1951 | tree cond; | |
1952 | { | |
1953 | last_expr_type = 0; | |
1954 | if (whichloop == 0) | |
1955 | whichloop = loop_stack; | |
1956 | if (whichloop == 0) | |
1957 | return 0; | |
1958 | do_jump (cond, whichloop->data.loop.end_label, NULL); | |
1959 | return 1; | |
1960 | } | |
1961 | ||
1962 | /* Return non-zero if we should preserve sub-expressions as separate | |
1963 | pseudos. We never do so if we aren't optimizing. We always do so | |
1964 | if -fexpensive-optimizations. | |
1965 | ||
1966 | Otherwise, we only do so if we are in the "early" part of a loop. I.e., | |
1967 | the loop may still be a small one. */ | |
1968 | ||
1969 | int | |
1970 | preserve_subexpressions_p () | |
1971 | { | |
1972 | rtx insn; | |
1973 | ||
1974 | if (flag_expensive_optimizations) | |
1975 | return 1; | |
1976 | ||
1977 | if (optimize == 0 || loop_stack == 0) | |
1978 | return 0; | |
1979 | ||
1980 | insn = get_last_insn_anywhere (); | |
1981 | ||
1982 | return (insn | |
1983 | && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label) | |
1984 | < n_non_fixed_regs * 3)); | |
1985 | ||
1986 | } | |
1987 | ||
1988 | /* Generate a jump to exit the current loop, conditional, binding contour | |
1989 | or case statement. Not all such constructs are visible to this function, | |
1990 | only those started with EXIT_FLAG nonzero. Individual languages use | |
1991 | the EXIT_FLAG parameter to control which kinds of constructs you can | |
1992 | exit this way. | |
1993 | ||
1994 | If not currently inside anything that can be exited, | |
1995 | return 0 and do nothing; caller will print an error message. */ | |
1996 | ||
1997 | int | |
1998 | expand_exit_something () | |
1999 | { | |
2000 | struct nesting *n; | |
2001 | last_expr_type = 0; | |
2002 | for (n = nesting_stack; n; n = n->all) | |
2003 | if (n->exit_label != 0) | |
2004 | { | |
2005 | expand_goto_internal (0, n->exit_label, 0); | |
2006 | return 1; | |
2007 | } | |
2008 | ||
2009 | return 0; | |
2010 | } | |
2011 | \f | |
2012 | /* Generate RTL to return from the current function, with no value. | |
2013 | (That is, we do not do anything about returning any value.) */ | |
2014 | ||
2015 | void | |
2016 | expand_null_return () | |
2017 | { | |
2018 | struct nesting *block = block_stack; | |
2019 | rtx last_insn = 0; | |
2020 | ||
2021 | /* Does any pending block have cleanups? */ | |
2022 | ||
2023 | while (block && block->data.block.cleanups == 0) | |
2024 | block = block->next; | |
2025 | ||
2026 | /* If yes, use a goto to return, since that runs cleanups. */ | |
2027 | ||
2028 | expand_null_return_1 (last_insn, block != 0); | |
2029 | } | |
2030 | ||
2031 | /* Generate RTL to return from the current function, with value VAL. */ | |
2032 | ||
2033 | void | |
2034 | expand_value_return (val) | |
2035 | rtx val; | |
2036 | { | |
2037 | struct nesting *block = block_stack; | |
2038 | rtx last_insn = get_last_insn (); | |
2039 | rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl)); | |
2040 | ||
2041 | /* Copy the value to the return location | |
2042 | unless it's already there. */ | |
2043 | ||
2044 | if (return_reg != val) | |
2045 | emit_move_insn (return_reg, val); | |
2046 | if (GET_CODE (return_reg) == REG | |
2047 | && REGNO (return_reg) < FIRST_PSEUDO_REGISTER) | |
2048 | emit_insn (gen_rtx (USE, VOIDmode, return_reg)); | |
2049 | ||
2050 | /* Does any pending block have cleanups? */ | |
2051 | ||
2052 | while (block && block->data.block.cleanups == 0) | |
2053 | block = block->next; | |
2054 | ||
2055 | /* If yes, use a goto to return, since that runs cleanups. | |
2056 | Use LAST_INSN to put cleanups *before* the move insn emitted above. */ | |
2057 | ||
2058 | expand_null_return_1 (last_insn, block != 0); | |
2059 | } | |
2060 | ||
2061 | /* Output a return with no value. If LAST_INSN is nonzero, | |
2062 | pretend that the return takes place after LAST_INSN. | |
2063 | If USE_GOTO is nonzero then don't use a return instruction; | |
2064 | go to the return label instead. This causes any cleanups | |
2065 | of pending blocks to be executed normally. */ | |
2066 | ||
2067 | static void | |
2068 | expand_null_return_1 (last_insn, use_goto) | |
2069 | rtx last_insn; | |
2070 | int use_goto; | |
2071 | { | |
2072 | rtx end_label = cleanup_label ? cleanup_label : return_label; | |
2073 | ||
2074 | clear_pending_stack_adjust (); | |
2075 | do_pending_stack_adjust (); | |
2076 | last_expr_type = 0; | |
2077 | ||
2078 | /* PCC-struct return always uses an epilogue. */ | |
2079 | if (current_function_returns_pcc_struct || use_goto) | |
2080 | { | |
2081 | if (end_label == 0) | |
2082 | end_label = return_label = gen_label_rtx (); | |
2083 | expand_goto_internal (0, end_label, last_insn); | |
2084 | return; | |
2085 | } | |
2086 | ||
2087 | /* Otherwise output a simple return-insn if one is available, | |
2088 | unless it won't do the job. */ | |
2089 | #ifdef HAVE_return | |
2090 | if (HAVE_return && use_goto == 0 && cleanup_label == 0) | |
2091 | { | |
2092 | emit_jump_insn (gen_return ()); | |
2093 | emit_barrier (); | |
2094 | return; | |
2095 | } | |
2096 | #endif | |
2097 | ||
2098 | /* Otherwise jump to the epilogue. */ | |
2099 | expand_goto_internal (0, end_label, last_insn); | |
2100 | } | |
2101 | \f | |
2102 | /* Generate RTL to evaluate the expression RETVAL and return it | |
2103 | from the current function. */ | |
2104 | ||
2105 | void | |
2106 | expand_return (retval) | |
2107 | tree retval; | |
2108 | { | |
2109 | /* If there are any cleanups to be performed, then they will | |
2110 | be inserted following LAST_INSN. It is desirable | |
2111 | that the last_insn, for such purposes, should be the | |
2112 | last insn before computing the return value. Otherwise, cleanups | |
2113 | which call functions can clobber the return value. */ | |
2114 | /* ??? rms: I think that is erroneous, because in C++ it would | |
2115 | run destructors on variables that might be used in the subsequent | |
2116 | computation of the return value. */ | |
2117 | rtx last_insn = 0; | |
2118 | register rtx val = 0; | |
2119 | register rtx op0; | |
2120 | tree retval_rhs; | |
2121 | int cleanups; | |
2122 | struct nesting *block; | |
2123 | ||
2124 | /* If function wants no value, give it none. */ | |
2125 | if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE) | |
2126 | { | |
2127 | expand_expr (retval, 0, VOIDmode, 0); | |
2128 | expand_null_return (); | |
2129 | return; | |
2130 | } | |
2131 | ||
2132 | /* Are any cleanups needed? E.g. C++ destructors to be run? */ | |
2133 | cleanups = any_pending_cleanups (1); | |
2134 | ||
2135 | if (TREE_CODE (retval) == RESULT_DECL) | |
2136 | retval_rhs = retval; | |
2137 | else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR) | |
2138 | && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL) | |
2139 | retval_rhs = TREE_OPERAND (retval, 1); | |
2140 | else if (TREE_TYPE (retval) == void_type_node) | |
2141 | /* Recognize tail-recursive call to void function. */ | |
2142 | retval_rhs = retval; | |
2143 | else | |
2144 | retval_rhs = NULL_TREE; | |
2145 | ||
2146 | /* Only use `last_insn' if there are cleanups which must be run. */ | |
2147 | if (cleanups || cleanup_label != 0) | |
2148 | last_insn = get_last_insn (); | |
2149 | ||
2150 | /* Distribute return down conditional expr if either of the sides | |
2151 | may involve tail recursion (see test below). This enhances the number | |
2152 | of tail recursions we see. Don't do this always since it can produce | |
2153 | sub-optimal code in some cases and we distribute assignments into | |
2154 | conditional expressions when it would help. */ | |
2155 | ||
2156 | if (optimize && retval_rhs != 0 | |
2157 | && frame_offset == 0 | |
2158 | && TREE_CODE (retval_rhs) == COND_EXPR | |
2159 | && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR | |
2160 | || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR)) | |
2161 | { | |
2162 | rtx label = gen_label_rtx (); | |
2163 | do_jump (TREE_OPERAND (retval_rhs, 0), label, 0); | |
2164 | expand_return (build (MODIFY_EXPR, TREE_TYPE (current_function_decl), | |
2165 | DECL_RESULT (current_function_decl), | |
2166 | TREE_OPERAND (retval_rhs, 1))); | |
2167 | emit_label (label); | |
2168 | expand_return (build (MODIFY_EXPR, TREE_TYPE (current_function_decl), | |
2169 | DECL_RESULT (current_function_decl), | |
2170 | TREE_OPERAND (retval_rhs, 2))); | |
2171 | return; | |
2172 | } | |
2173 | ||
2174 | /* For tail-recursive call to current function, | |
2175 | just jump back to the beginning. | |
2176 | It's unsafe if any auto variable in this function | |
2177 | has its address taken; for simplicity, | |
2178 | require stack frame to be empty. */ | |
2179 | if (optimize && retval_rhs != 0 | |
2180 | && frame_offset == 0 | |
2181 | && TREE_CODE (retval_rhs) == CALL_EXPR | |
2182 | && TREE_CODE (TREE_OPERAND (retval_rhs, 0)) == ADDR_EXPR | |
2183 | && TREE_OPERAND (TREE_OPERAND (retval_rhs, 0), 0) == current_function_decl | |
2184 | /* Finish checking validity, and if valid emit code | |
2185 | to set the argument variables for the new call. */ | |
2186 | && tail_recursion_args (TREE_OPERAND (retval_rhs, 1), | |
2187 | DECL_ARGUMENTS (current_function_decl))) | |
2188 | { | |
2189 | if (tail_recursion_label == 0) | |
2190 | { | |
2191 | tail_recursion_label = gen_label_rtx (); | |
2192 | emit_label_after (tail_recursion_label, | |
2193 | tail_recursion_reentry); | |
2194 | } | |
2195 | expand_goto_internal (0, tail_recursion_label, last_insn); | |
2196 | emit_barrier (); | |
2197 | return; | |
2198 | } | |
2199 | #ifdef HAVE_return | |
2200 | /* This optimization is safe if there are local cleanups | |
2201 | because expand_null_return takes care of them. | |
2202 | ??? I think it should also be safe when there is a cleanup label, | |
2203 | because expand_null_return takes care of them, too. | |
2204 | Any reason why not? */ | |
2205 | if (HAVE_return && cleanup_label == 0 | |
2206 | && ! current_function_returns_pcc_struct) | |
2207 | { | |
2208 | /* If this is return x == y; then generate | |
2209 | if (x == y) return 1; else return 0; | |
2210 | if we can do it with explicit return insns. */ | |
2211 | if (retval_rhs) | |
2212 | switch (TREE_CODE (retval_rhs)) | |
2213 | { | |
2214 | case EQ_EXPR: | |
2215 | case NE_EXPR: | |
2216 | case GT_EXPR: | |
2217 | case GE_EXPR: | |
2218 | case LT_EXPR: | |
2219 | case LE_EXPR: | |
2220 | case TRUTH_ANDIF_EXPR: | |
2221 | case TRUTH_ORIF_EXPR: | |
2222 | case TRUTH_AND_EXPR: | |
2223 | case TRUTH_OR_EXPR: | |
2224 | case TRUTH_NOT_EXPR: | |
2225 | op0 = gen_label_rtx (); | |
2226 | jumpifnot (retval_rhs, op0); | |
2227 | expand_value_return (const1_rtx); | |
2228 | emit_label (op0); | |
2229 | expand_value_return (const0_rtx); | |
2230 | return; | |
2231 | } | |
2232 | } | |
2233 | #endif /* HAVE_return */ | |
2234 | ||
2235 | if (cleanups | |
2236 | && retval_rhs != 0 | |
2237 | && TREE_TYPE (retval_rhs) != void_type_node | |
2238 | && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG) | |
2239 | { | |
2240 | /* Calculate the return value into a pseudo reg. */ | |
2241 | val = expand_expr (retval_rhs, 0, VOIDmode, 0); | |
2242 | emit_queue (); | |
2243 | /* All temporaries have now been used. */ | |
2244 | free_temp_slots (); | |
2245 | /* Return the calculated value, doing cleanups first. */ | |
2246 | expand_value_return (val); | |
2247 | } | |
2248 | else | |
2249 | { | |
2250 | /* No cleanups or no hard reg used; | |
2251 | calculate value into hard return reg. */ | |
2252 | expand_expr (retval, 0, VOIDmode, 0); | |
2253 | emit_queue (); | |
2254 | free_temp_slots (); | |
2255 | expand_value_return (DECL_RTL (DECL_RESULT (current_function_decl))); | |
2256 | } | |
2257 | } | |
2258 | ||
2259 | /* Return 1 if the end of the generated RTX is not a barrier. | |
2260 | This means code already compiled can drop through. */ | |
2261 | ||
2262 | int | |
2263 | drop_through_at_end_p () | |
2264 | { | |
2265 | rtx insn = get_last_insn (); | |
2266 | while (insn && GET_CODE (insn) == NOTE) | |
2267 | insn = PREV_INSN (insn); | |
2268 | return insn && GET_CODE (insn) != BARRIER; | |
2269 | } | |
2270 | \f | |
2271 | /* Emit code to alter this function's formal parms for a tail-recursive call. | |
2272 | ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs). | |
2273 | FORMALS is the chain of decls of formals. | |
2274 | Return 1 if this can be done; | |
2275 | otherwise return 0 and do not emit any code. */ | |
2276 | ||
2277 | static int | |
2278 | tail_recursion_args (actuals, formals) | |
2279 | tree actuals, formals; | |
2280 | { | |
2281 | register tree a = actuals, f = formals; | |
2282 | register int i; | |
2283 | register rtx *argvec; | |
2284 | ||
2285 | /* Check that number and types of actuals are compatible | |
2286 | with the formals. This is not always true in valid C code. | |
2287 | Also check that no formal needs to be addressable | |
2288 | and that all formals are scalars. */ | |
2289 | ||
2290 | /* Also count the args. */ | |
2291 | ||
2292 | for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++) | |
2293 | { | |
2294 | if (TREE_TYPE (TREE_VALUE (a)) != TREE_TYPE (f)) | |
2295 | return 0; | |
2296 | if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode) | |
2297 | return 0; | |
2298 | } | |
2299 | if (a != 0 || f != 0) | |
2300 | return 0; | |
2301 | ||
2302 | /* Compute all the actuals. */ | |
2303 | ||
2304 | argvec = (rtx *) alloca (i * sizeof (rtx)); | |
2305 | ||
2306 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
2307 | argvec[i] = expand_expr (TREE_VALUE (a), 0, VOIDmode, 0); | |
2308 | ||
2309 | /* Find which actual values refer to current values of previous formals. | |
2310 | Copy each of them now, before any formal is changed. */ | |
2311 | ||
2312 | for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++) | |
2313 | { | |
2314 | int copy = 0; | |
2315 | register int j; | |
2316 | for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++) | |
2317 | if (reg_mentioned_p (DECL_RTL (f), argvec[i])) | |
2318 | { copy = 1; break; } | |
2319 | if (copy) | |
2320 | argvec[i] = copy_to_reg (argvec[i]); | |
2321 | } | |
2322 | ||
2323 | /* Store the values of the actuals into the formals. */ | |
2324 | ||
2325 | for (f = formals, a = actuals, i = 0; f; | |
2326 | f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++) | |
2327 | { | |
2328 | if (DECL_MODE (f) == GET_MODE (argvec[i])) | |
2329 | emit_move_insn (DECL_RTL (f), argvec[i]); | |
2330 | else | |
2331 | convert_move (DECL_RTL (f), argvec[i], | |
2332 | TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a)))); | |
2333 | } | |
2334 | ||
2335 | free_temp_slots (); | |
2336 | return 1; | |
2337 | } | |
2338 | \f | |
2339 | /* Generate the RTL code for entering a binding contour. | |
2340 | The variables are declared one by one, by calls to `expand_decl'. | |
2341 | ||
2342 | EXIT_FLAG is nonzero if this construct should be visible to | |
2343 | `exit_something'. */ | |
2344 | ||
2345 | void | |
2346 | expand_start_bindings (exit_flag) | |
2347 | int exit_flag; | |
2348 | { | |
2349 | struct nesting *thisblock = ALLOC_NESTING (); | |
2350 | ||
2351 | rtx note = emit_note (0, NOTE_INSN_BLOCK_BEG); | |
2352 | ||
2353 | /* Make an entry on block_stack for the block we are entering. */ | |
2354 | ||
2355 | thisblock->next = block_stack; | |
2356 | thisblock->all = nesting_stack; | |
2357 | thisblock->depth = ++nesting_depth; | |
2358 | thisblock->data.block.stack_level = 0; | |
2359 | thisblock->data.block.cleanups = 0; | |
2360 | thisblock->data.block.function_call_count = 0; | |
2361 | #if 0 | |
2362 | if (block_stack) | |
2363 | { | |
2364 | if (block_stack->data.block.cleanups == NULL_TREE | |
2365 | && (block_stack->data.block.outer_cleanups == NULL_TREE | |
2366 | || block_stack->data.block.outer_cleanups == empty_cleanup_list)) | |
2367 | thisblock->data.block.outer_cleanups = empty_cleanup_list; | |
2368 | else | |
2369 | thisblock->data.block.outer_cleanups | |
2370 | = tree_cons (NULL_TREE, block_stack->data.block.cleanups, | |
2371 | block_stack->data.block.outer_cleanups); | |
2372 | } | |
2373 | else | |
2374 | thisblock->data.block.outer_cleanups = 0; | |
2375 | #endif | |
2376 | #if 1 | |
2377 | if (block_stack | |
2378 | && !(block_stack->data.block.cleanups == NULL_TREE | |
2379 | && block_stack->data.block.outer_cleanups == NULL_TREE)) | |
2380 | thisblock->data.block.outer_cleanups | |
2381 | = tree_cons (NULL_TREE, block_stack->data.block.cleanups, | |
2382 | block_stack->data.block.outer_cleanups); | |
2383 | else | |
2384 | thisblock->data.block.outer_cleanups = 0; | |
2385 | #endif | |
2386 | thisblock->data.block.label_chain = 0; | |
2387 | thisblock->data.block.innermost_stack_block = stack_block_stack; | |
2388 | thisblock->data.block.first_insn = note; | |
2389 | thisblock->data.block.block_start_count = ++block_start_count; | |
2390 | thisblock->exit_label = exit_flag ? gen_label_rtx () : 0; | |
2391 | block_stack = thisblock; | |
2392 | nesting_stack = thisblock; | |
2393 | ||
2394 | /* Make a new level for allocating stack slots. */ | |
2395 | push_temp_slots (); | |
2396 | } | |
2397 | ||
2398 | /* Generate RTL code to terminate a binding contour. | |
2399 | VARS is the chain of VAR_DECL nodes | |
2400 | for the variables bound in this contour. | |
2401 | MARK_ENDS is nonzero if we should put a note at the beginning | |
2402 | and end of this binding contour. | |
2403 | ||
2404 | DONT_JUMP_IN is nonzero if it is not valid to jump into this contour. | |
2405 | (That is true automatically if the contour has a saved stack level.) */ | |
2406 | ||
2407 | void | |
2408 | expand_end_bindings (vars, mark_ends, dont_jump_in) | |
2409 | tree vars; | |
2410 | int mark_ends; | |
2411 | int dont_jump_in; | |
2412 | { | |
2413 | register struct nesting *thisblock = block_stack; | |
2414 | register tree decl; | |
2415 | ||
2416 | if (warn_unused) | |
2417 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
2418 | if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL) | |
2419 | warning_with_decl (decl, "unused variable `%s'"); | |
2420 | ||
2421 | /* Mark the beginning and end of the scope if requested. */ | |
2422 | ||
2423 | if (mark_ends) | |
2424 | emit_note (0, NOTE_INSN_BLOCK_END); | |
2425 | else | |
2426 | /* Get rid of the beginning-mark if we don't make an end-mark. */ | |
2427 | NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED; | |
2428 | ||
2429 | if (thisblock->exit_label) | |
2430 | { | |
2431 | do_pending_stack_adjust (); | |
2432 | emit_label (thisblock->exit_label); | |
2433 | } | |
2434 | ||
2435 | /* If necessary, make a handler for nonlocal gotos taking | |
2436 | place in the function calls in this block. */ | |
2437 | if (function_call_count != thisblock->data.block.function_call_count | |
2438 | && nonlocal_labels | |
2439 | /* Make handler for outermost block | |
2440 | if there were any nonlocal gotos to this function. */ | |
2441 | && (thisblock->next == 0 ? current_function_has_nonlocal_label | |
2442 | /* Make handler for inner block if it has something | |
2443 | special to do when you jump out of it. */ | |
2444 | : (thisblock->data.block.cleanups != 0 | |
2445 | || thisblock->data.block.stack_level != 0))) | |
2446 | { | |
2447 | tree link; | |
2448 | rtx afterward = gen_label_rtx (); | |
2449 | rtx handler_label = gen_label_rtx (); | |
2450 | rtx save_receiver = gen_reg_rtx (Pmode); | |
2451 | ||
2452 | /* Don't let jump_optimize delete the handler. */ | |
2453 | LABEL_PRESERVE_P (handler_label) = 1; | |
2454 | ||
2455 | /* Record the handler address in the stack slot for that purpose, | |
2456 | during this block, saving and restoring the outer value. */ | |
2457 | if (thisblock->next != 0) | |
2458 | { | |
2459 | emit_move_insn (nonlocal_goto_handler_slot, save_receiver); | |
2460 | emit_insn_before (gen_move_insn (save_receiver, | |
2461 | nonlocal_goto_handler_slot), | |
2462 | thisblock->data.block.first_insn); | |
2463 | } | |
2464 | emit_insn_before (gen_move_insn (nonlocal_goto_handler_slot, | |
2465 | gen_rtx (LABEL_REF, Pmode, | |
2466 | handler_label)), | |
2467 | thisblock->data.block.first_insn); | |
2468 | ||
2469 | /* Jump around the handler; it runs only when specially invoked. */ | |
2470 | emit_jump (afterward); | |
2471 | emit_label (handler_label); | |
2472 | ||
2473 | #ifdef HAVE_nonlocal_goto | |
2474 | if (! HAVE_nonlocal_goto) | |
2475 | #endif | |
2476 | /* First adjust our frame pointer to its actual value. It was | |
2477 | previously set to the start of the virtual area corresponding to | |
2478 | the stacked variables when we branched here and now needs to be | |
2479 | adjusted to the actual hardware fp value. | |
2480 | ||
2481 | Assignments are to virtual registers are converted by | |
2482 | instantiate_virtual_regs into the corresponding assignment | |
2483 | to the underlying register (fp in this case) that makes | |
2484 | the original assignment true. | |
2485 | So the following insn will actually be | |
2486 | decrementing fp by STARTING_FRAME_OFFSET. */ | |
2487 | emit_move_insn (virtual_stack_vars_rtx, frame_pointer_rtx); | |
2488 | ||
2489 | #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM | |
2490 | if (fixed_regs[ARG_POINTER_REGNUM]) | |
2491 | { | |
2492 | /* Now restore our arg pointer from the address at which it was saved | |
2493 | in our stack frame. | |
2494 | If there hasn't be space allocated for it yet, make some now. */ | |
2495 | if (arg_pointer_save_area == 0) | |
2496 | arg_pointer_save_area | |
2497 | = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); | |
b4ac57ab RS |
2498 | emit_move_insn (virtual_incoming_args_rtx, |
2499 | /* We need a pseudo here, | |
2500 | or else instantiate_virtual_regs_1 complains. */ | |
2501 | copy_to_reg (arg_pointer_save_area)); | |
28d81abb RK |
2502 | } |
2503 | #endif | |
2504 | ||
2505 | /* The handler expects the desired label address in the static chain | |
2506 | register. It tests the address and does an appropriate jump | |
2507 | to whatever label is desired. */ | |
2508 | for (link = nonlocal_labels; link; link = TREE_CHAIN (link)) | |
2509 | /* Skip any labels we shouldn't be able to jump to from here. */ | |
2510 | if (! DECL_TOO_LATE (TREE_VALUE (link))) | |
2511 | { | |
2512 | rtx not_this = gen_label_rtx (); | |
2513 | rtx this = gen_label_rtx (); | |
2514 | do_jump_if_equal (static_chain_rtx, | |
2515 | gen_rtx (LABEL_REF, Pmode, DECL_RTL (TREE_VALUE (link))), | |
2516 | this, 0); | |
2517 | emit_jump (not_this); | |
2518 | emit_label (this); | |
2519 | expand_goto (TREE_VALUE (link)); | |
2520 | emit_label (not_this); | |
2521 | } | |
2522 | /* If label is not recognized, abort. */ | |
2523 | emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "abort"), 0, | |
2524 | VOIDmode, 0); | |
2525 | emit_label (afterward); | |
2526 | } | |
2527 | ||
2528 | /* Don't allow jumping into a block that has cleanups or a stack level. */ | |
2529 | if (dont_jump_in | |
2530 | || thisblock->data.block.stack_level != 0 | |
2531 | || thisblock->data.block.cleanups != 0) | |
2532 | { | |
2533 | struct label_chain *chain; | |
2534 | ||
2535 | /* Any labels in this block are no longer valid to go to. | |
2536 | Mark them to cause an error message. */ | |
2537 | for (chain = thisblock->data.block.label_chain; chain; chain = chain->next) | |
2538 | { | |
2539 | DECL_TOO_LATE (chain->label) = 1; | |
2540 | /* If any goto without a fixup came to this label, | |
2541 | that must be an error, because gotos without fixups | |
2542 | come from outside all saved stack-levels and all cleanups. */ | |
2543 | if (TREE_ADDRESSABLE (chain->label)) | |
2544 | error_with_decl (chain->label, | |
2545 | "label `%s' used before containing binding contour"); | |
2546 | } | |
2547 | } | |
2548 | ||
2549 | /* Restore stack level in effect before the block | |
2550 | (only if variable-size objects allocated). */ | |
2551 | /* Perform any cleanups associated with the block. */ | |
2552 | ||
2553 | if (thisblock->data.block.stack_level != 0 | |
2554 | || thisblock->data.block.cleanups != 0) | |
2555 | { | |
2556 | /* Don't let cleanups affect ({...}) constructs. */ | |
2557 | int old_expr_stmts_for_value = expr_stmts_for_value; | |
2558 | rtx old_last_expr_value = last_expr_value; | |
2559 | tree old_last_expr_type = last_expr_type; | |
2560 | expr_stmts_for_value = 0; | |
2561 | ||
2562 | /* Do the cleanups. */ | |
2563 | expand_cleanups (thisblock->data.block.cleanups, 0); | |
2564 | do_pending_stack_adjust (); | |
2565 | ||
2566 | expr_stmts_for_value = old_expr_stmts_for_value; | |
2567 | last_expr_value = old_last_expr_value; | |
2568 | last_expr_type = old_last_expr_type; | |
2569 | ||
2570 | /* Restore the stack level. */ | |
2571 | ||
2572 | if (thisblock->data.block.stack_level != 0) | |
2573 | { | |
2574 | emit_move_insn (stack_pointer_rtx, | |
2575 | thisblock->data.block.stack_level); | |
2576 | if (nonlocal_goto_stack_level != 0) | |
2577 | emit_move_insn (nonlocal_goto_stack_level, stack_pointer_rtx); | |
2578 | } | |
2579 | ||
2580 | /* Any gotos out of this block must also do these things. | |
2581 | Also report any gotos with fixups that came to labels in this level. */ | |
2582 | fixup_gotos (thisblock, | |
2583 | thisblock->data.block.stack_level, | |
2584 | thisblock->data.block.cleanups, | |
2585 | thisblock->data.block.first_insn, | |
2586 | dont_jump_in); | |
2587 | } | |
2588 | ||
2589 | /* If doing stupid register allocation, make sure lives of all | |
2590 | register variables declared here extend thru end of scope. */ | |
2591 | ||
2592 | if (obey_regdecls) | |
2593 | for (decl = vars; decl; decl = TREE_CHAIN (decl)) | |
2594 | { | |
2595 | rtx rtl = DECL_RTL (decl); | |
2596 | if (TREE_CODE (decl) == VAR_DECL && rtl != 0) | |
2597 | use_variable (rtl); | |
2598 | } | |
2599 | ||
2600 | /* Restore block_stack level for containing block. */ | |
2601 | ||
2602 | stack_block_stack = thisblock->data.block.innermost_stack_block; | |
2603 | POPSTACK (block_stack); | |
2604 | ||
2605 | /* Pop the stack slot nesting and free any slots at this level. */ | |
2606 | pop_temp_slots (); | |
2607 | } | |
2608 | \f | |
2609 | /* Generate RTL for the automatic variable declaration DECL. | |
2610 | (Other kinds of declarations are simply ignored if seen here.) | |
2611 | CLEANUP is an expression to be executed at exit from this binding contour; | |
2612 | for example, in C++, it might call the destructor for this variable. | |
2613 | ||
2614 | If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them | |
2615 | either before or after calling `expand_decl' but before compiling | |
2616 | any subsequent expressions. This is because CLEANUP may be expanded | |
2617 | more than once, on different branches of execution. | |
2618 | For the same reason, CLEANUP may not contain a CALL_EXPR | |
2619 | except as its topmost node--else `preexpand_calls' would get confused. | |
2620 | ||
2621 | If CLEANUP is nonzero and DECL is zero, we record a cleanup | |
2622 | that is not associated with any particular variable. | |
2623 | ||
2624 | There is no special support here for C++ constructors. | |
2625 | They should be handled by the proper code in DECL_INITIAL. */ | |
2626 | ||
2627 | void | |
2628 | expand_decl (decl) | |
2629 | register tree decl; | |
2630 | { | |
2631 | struct nesting *thisblock = block_stack; | |
2632 | tree type = TREE_TYPE (decl); | |
2633 | ||
2634 | /* Only automatic variables need any expansion done. | |
2635 | Static and external variables, and external functions, | |
2636 | will be handled by `assemble_variable' (called from finish_decl). | |
2637 | TYPE_DECL and CONST_DECL require nothing. | |
2638 | PARM_DECLs are handled in `assign_parms'. */ | |
2639 | ||
2640 | if (TREE_CODE (decl) != VAR_DECL) | |
2641 | return; | |
2642 | if (TREE_STATIC (decl) || TREE_EXTERNAL (decl)) | |
2643 | return; | |
2644 | ||
2645 | /* Create the RTL representation for the variable. */ | |
2646 | ||
2647 | if (type == error_mark_node) | |
2648 | DECL_RTL (decl) = gen_rtx (MEM, BLKmode, const0_rtx); | |
2649 | else if (DECL_SIZE (decl) == 0) | |
2650 | /* Variable with incomplete type. */ | |
2651 | { | |
2652 | if (DECL_INITIAL (decl) == 0) | |
2653 | /* Error message was already done; now avoid a crash. */ | |
2654 | DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1); | |
2655 | else | |
2656 | /* An initializer is going to decide the size of this array. | |
2657 | Until we know the size, represent its address with a reg. */ | |
2658 | DECL_RTL (decl) = gen_rtx (MEM, BLKmode, gen_reg_rtx (Pmode)); | |
2659 | } | |
2660 | else if (DECL_MODE (decl) != BLKmode | |
2661 | /* If -ffloat-store, don't put explicit float vars | |
2662 | into regs. */ | |
2663 | && !(flag_float_store | |
2664 | && TREE_CODE (type) == REAL_TYPE) | |
2665 | && ! TREE_THIS_VOLATILE (decl) | |
2666 | && ! TREE_ADDRESSABLE (decl) | |
2667 | && (TREE_REGDECL (decl) || ! obey_regdecls)) | |
2668 | { | |
2669 | /* Automatic variable that can go in a register. */ | |
2670 | DECL_RTL (decl) = gen_reg_rtx (DECL_MODE (decl)); | |
2671 | if (TREE_CODE (type) == POINTER_TYPE) | |
2672 | mark_reg_pointer (DECL_RTL (decl)); | |
2673 | REG_USERVAR_P (DECL_RTL (decl)) = 1; | |
2674 | } | |
2675 | else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST) | |
2676 | { | |
2677 | /* Variable of fixed size that goes on the stack. */ | |
2678 | rtx oldaddr = 0; | |
2679 | rtx addr; | |
2680 | ||
2681 | /* If we previously made RTL for this decl, it must be an array | |
2682 | whose size was determined by the initializer. | |
2683 | The old address was a register; set that register now | |
2684 | to the proper address. */ | |
2685 | if (DECL_RTL (decl) != 0) | |
2686 | { | |
2687 | if (GET_CODE (DECL_RTL (decl)) != MEM | |
2688 | || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG) | |
2689 | abort (); | |
2690 | oldaddr = XEXP (DECL_RTL (decl), 0); | |
2691 | } | |
2692 | ||
2693 | DECL_RTL (decl) | |
2694 | = assign_stack_temp (DECL_MODE (decl), | |
2695 | ((TREE_INT_CST_LOW (DECL_SIZE (decl)) | |
2696 | + BITS_PER_UNIT - 1) | |
2697 | / BITS_PER_UNIT), | |
2698 | 1); | |
2699 | ||
2700 | /* Set alignment we actually gave this decl. */ | |
2701 | DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT | |
2702 | : GET_MODE_BITSIZE (DECL_MODE (decl))); | |
2703 | ||
2704 | if (oldaddr) | |
2705 | { | |
2706 | addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr); | |
2707 | if (addr != oldaddr) | |
2708 | emit_move_insn (oldaddr, addr); | |
2709 | } | |
2710 | ||
2711 | /* If this is a memory ref that contains aggregate components, | |
2712 | mark it as such for cse and loop optimize. */ | |
2713 | MEM_IN_STRUCT_P (DECL_RTL (decl)) | |
2714 | = (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE | |
2715 | || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE | |
2716 | || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE); | |
2717 | #if 0 | |
2718 | /* If this is in memory because of -ffloat-store, | |
2719 | set the volatile bit, to prevent optimizations from | |
2720 | undoing the effects. */ | |
2721 | if (flag_float_store && TREE_CODE (type) == REAL_TYPE) | |
2722 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
2723 | #endif | |
2724 | } | |
2725 | else | |
2726 | /* Dynamic-size object: must push space on the stack. */ | |
2727 | { | |
2728 | rtx address, size; | |
2729 | ||
2730 | /* Record the stack pointer on entry to block, if have | |
2731 | not already done so. */ | |
2732 | if (thisblock->data.block.stack_level == 0) | |
2733 | { | |
2734 | do_pending_stack_adjust (); | |
2735 | thisblock->data.block.stack_level | |
2736 | = copy_to_reg (stack_pointer_rtx); | |
2737 | stack_block_stack = thisblock; | |
2738 | } | |
2739 | ||
2740 | /* Compute the variable's size, in bytes. */ | |
2741 | size = expand_expr (size_binop (CEIL_DIV_EXPR, | |
2742 | DECL_SIZE (decl), | |
2743 | size_int (BITS_PER_UNIT)), | |
2744 | 0, VOIDmode, 0); | |
2745 | free_temp_slots (); | |
2746 | ||
2747 | /* Allocate space on the stack for the variable. */ | |
2748 | address = allocate_dynamic_stack_space (size, 0); | |
2749 | ||
2750 | if (nonlocal_goto_stack_level != 0) | |
2751 | emit_move_insn (nonlocal_goto_stack_level, stack_pointer_rtx); | |
2752 | ||
2753 | /* Reference the variable indirect through that rtx. */ | |
2754 | DECL_RTL (decl) = gen_rtx (MEM, DECL_MODE (decl), address); | |
2755 | ||
2756 | /* Indicate the alignment we actually gave this variable. */ | |
2757 | #ifdef STACK_BOUNDARY | |
2758 | DECL_ALIGN (decl) = STACK_BOUNDARY; | |
2759 | #else | |
2760 | DECL_ALIGN (decl) = BIGGEST_ALIGNMENT; | |
2761 | #endif | |
2762 | } | |
2763 | ||
2764 | if (TREE_THIS_VOLATILE (decl)) | |
2765 | MEM_VOLATILE_P (DECL_RTL (decl)) = 1; | |
2766 | if (TREE_READONLY (decl)) | |
2767 | RTX_UNCHANGING_P (DECL_RTL (decl)) = 1; | |
2768 | ||
2769 | /* If doing stupid register allocation, make sure life of any | |
2770 | register variable starts here, at the start of its scope. */ | |
2771 | ||
2772 | if (obey_regdecls) | |
2773 | use_variable (DECL_RTL (decl)); | |
2774 | } | |
2775 | \f | |
2776 | /* Emit code to perform the initialization of a declaration DECL. */ | |
2777 | ||
2778 | void | |
2779 | expand_decl_init (decl) | |
2780 | tree decl; | |
2781 | { | |
b4ac57ab RS |
2782 | int was_used = TREE_USED (decl); |
2783 | ||
28d81abb RK |
2784 | if (TREE_STATIC (decl)) |
2785 | return; | |
2786 | ||
2787 | /* Compute and store the initial value now. */ | |
2788 | ||
2789 | if (DECL_INITIAL (decl) == error_mark_node) | |
2790 | { | |
2791 | enum tree_code code = TREE_CODE (TREE_TYPE (decl)); | |
2792 | if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE | |
2793 | || code == POINTER_TYPE) | |
2794 | expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node), | |
2795 | 0, 0); | |
2796 | emit_queue (); | |
2797 | } | |
2798 | else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST) | |
2799 | { | |
2800 | emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl)); | |
2801 | expand_assignment (decl, DECL_INITIAL (decl), 0, 0); | |
2802 | emit_queue (); | |
2803 | } | |
2804 | ||
b4ac57ab RS |
2805 | /* Don't let the initialization count as "using" the variable. */ |
2806 | TREE_USED (decl) = was_used; | |
2807 | ||
28d81abb RK |
2808 | /* Free any temporaries we made while initializing the decl. */ |
2809 | free_temp_slots (); | |
2810 | } | |
2811 | ||
2812 | /* CLEANUP is an expression to be executed at exit from this binding contour; | |
2813 | for example, in C++, it might call the destructor for this variable. | |
2814 | ||
2815 | If CLEANUP contains any SAVE_EXPRs, then you must preevaluate them | |
2816 | either before or after calling `expand_decl' but before compiling | |
2817 | any subsequent expressions. This is because CLEANUP may be expanded | |
2818 | more than once, on different branches of execution. | |
2819 | For the same reason, CLEANUP may not contain a CALL_EXPR | |
2820 | except as its topmost node--else `preexpand_calls' would get confused. | |
2821 | ||
2822 | If CLEANUP is nonzero and DECL is zero, we record a cleanup | |
2823 | that is not associated with any particular variable. */ | |
2824 | ||
2825 | int | |
2826 | expand_decl_cleanup (decl, cleanup) | |
2827 | tree decl, cleanup; | |
2828 | { | |
2829 | struct nesting *thisblock = block_stack; | |
2830 | ||
2831 | /* Error if we are not in any block. */ | |
2832 | if (thisblock == 0) | |
2833 | return 0; | |
2834 | ||
2835 | /* Record the cleanup if there is one. */ | |
2836 | ||
2837 | if (cleanup != 0) | |
2838 | { | |
2839 | thisblock->data.block.cleanups | |
2840 | = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups); | |
2841 | /* If this block has a cleanup, it belongs in stack_block_stack. */ | |
2842 | stack_block_stack = thisblock; | |
2843 | } | |
2844 | return 1; | |
2845 | } | |
2846 | \f | |
2847 | /* DECL is an anonymous union. CLEANUP is a cleanup for DECL. | |
2848 | DECL_ELTS is the list of elements that belong to DECL's type. | |
2849 | In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */ | |
2850 | ||
2851 | void | |
2852 | expand_anon_union_decl (decl, cleanup, decl_elts) | |
2853 | tree decl, cleanup, decl_elts; | |
2854 | { | |
2855 | struct nesting *thisblock = block_stack; | |
2856 | rtx x; | |
2857 | ||
2858 | expand_decl (decl, cleanup); | |
2859 | x = DECL_RTL (decl); | |
2860 | ||
2861 | while (decl_elts) | |
2862 | { | |
2863 | tree decl_elt = TREE_VALUE (decl_elts); | |
2864 | tree cleanup_elt = TREE_PURPOSE (decl_elts); | |
2865 | enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt)); | |
2866 | ||
2867 | /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we | |
2868 | instead create a new MEM rtx with the proper mode. */ | |
2869 | if (GET_CODE (x) == MEM) | |
2870 | { | |
2871 | if (mode == GET_MODE (x)) | |
2872 | DECL_RTL (decl_elt) = x; | |
2873 | else | |
2874 | { | |
2875 | DECL_RTL (decl_elt) = gen_rtx (MEM, mode, copy_rtx (XEXP (x, 0))); | |
2876 | MEM_IN_STRUCT_P (DECL_RTL (decl_elt)) = MEM_IN_STRUCT_P (x); | |
2877 | RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x); | |
2878 | } | |
2879 | } | |
2880 | else if (GET_CODE (x) == REG) | |
2881 | { | |
2882 | if (mode == GET_MODE (x)) | |
2883 | DECL_RTL (decl_elt) = x; | |
2884 | else | |
2885 | DECL_RTL (decl_elt) = gen_rtx (SUBREG, mode, x, 0); | |
2886 | } | |
2887 | else | |
2888 | abort (); | |
2889 | ||
2890 | /* Record the cleanup if there is one. */ | |
2891 | ||
2892 | if (cleanup != 0) | |
2893 | thisblock->data.block.cleanups | |
2894 | = temp_tree_cons (decl_elt, cleanup_elt, | |
2895 | thisblock->data.block.cleanups); | |
2896 | ||
2897 | decl_elts = TREE_CHAIN (decl_elts); | |
2898 | } | |
2899 | } | |
2900 | \f | |
2901 | /* Expand a list of cleanups LIST. | |
2902 | Elements may be expressions or may be nested lists. | |
2903 | ||
2904 | If DONT_DO is nonnull, then any list-element | |
2905 | whose TREE_PURPOSE matches DONT_DO is omitted. | |
2906 | This is sometimes used to avoid a cleanup associated with | |
2907 | a value that is being returned out of the scope. */ | |
2908 | ||
2909 | static void | |
2910 | expand_cleanups (list, dont_do) | |
2911 | tree list; | |
2912 | tree dont_do; | |
2913 | { | |
2914 | tree tail; | |
2915 | for (tail = list; tail; tail = TREE_CHAIN (tail)) | |
2916 | if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do) | |
2917 | { | |
2918 | if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST) | |
2919 | expand_cleanups (TREE_VALUE (tail), dont_do); | |
2920 | else | |
2921 | { | |
2922 | /* Cleanups may be run multiple times. For example, | |
2923 | when exiting a binding contour, we expand the | |
2924 | cleanups associated with that contour. When a goto | |
2925 | within that binding contour has a target outside that | |
2926 | contour, it will expand all cleanups from its scope to | |
2927 | the target. Though the cleanups are expanded multiple | |
2928 | times, the control paths are non-overlapping so the | |
2929 | cleanups will not be executed twice. */ | |
2930 | expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0); | |
2931 | free_temp_slots (); | |
2932 | } | |
2933 | } | |
2934 | } | |
2935 | ||
2936 | /* Expand a list of cleanups for a goto fixup. | |
2937 | The expansion is put into the insn chain after the insn *BEFORE_JUMP | |
2938 | and *BEFORE_JUMP is set to the insn that now comes before the jump. */ | |
2939 | ||
2940 | static void | |
2941 | fixup_cleanups (list, before_jump) | |
2942 | tree list; | |
2943 | rtx *before_jump; | |
2944 | { | |
2945 | rtx beyond_jump = get_last_insn (); | |
2946 | rtx new_before_jump; | |
2947 | ||
2948 | expand_cleanups (list, 0); | |
2949 | /* Pop any pushes done in the cleanups, | |
2950 | in case function is about to return. */ | |
2951 | do_pending_stack_adjust (); | |
2952 | ||
2953 | new_before_jump = get_last_insn (); | |
2954 | ||
2955 | if (beyond_jump != new_before_jump) | |
2956 | { | |
2957 | /* If cleanups expand to nothing, don't reorder. */ | |
2958 | reorder_insns (NEXT_INSN (beyond_jump), new_before_jump, *before_jump); | |
2959 | *before_jump = new_before_jump; | |
2960 | } | |
2961 | } | |
2962 | ||
2963 | /* Move all cleanups from the current block_stack | |
2964 | to the containing block_stack, where they are assumed to | |
2965 | have been created. If anything can cause a temporary to | |
2966 | be created, but not expanded for more than one level of | |
2967 | block_stacks, then this code will have to change. */ | |
2968 | ||
2969 | void | |
2970 | move_cleanups_up () | |
2971 | { | |
2972 | struct nesting *block = block_stack; | |
2973 | struct nesting *outer = block->next; | |
2974 | ||
2975 | outer->data.block.cleanups | |
2976 | = chainon (block->data.block.cleanups, | |
2977 | outer->data.block.cleanups); | |
2978 | block->data.block.cleanups = 0; | |
2979 | } | |
2980 | ||
2981 | tree | |
2982 | last_cleanup_this_contour () | |
2983 | { | |
2984 | if (block_stack == 0) | |
2985 | return 0; | |
2986 | ||
2987 | return block_stack->data.block.cleanups; | |
2988 | } | |
2989 | ||
2990 | /* Return 1 if there are any pending cleanups at this point. | |
2991 | If THIS_CONTOUR is nonzero, check the current contour as well. | |
2992 | Otherwise, look only at the contours that enclose this one. */ | |
2993 | ||
2994 | int | |
2995 | any_pending_cleanups (this_contour) | |
2996 | int this_contour; | |
2997 | { | |
2998 | struct nesting *block; | |
2999 | ||
3000 | if (block_stack == 0) | |
3001 | return 0; | |
3002 | ||
3003 | if (this_contour && block_stack->data.block.cleanups != NULL) | |
3004 | return 1; | |
3005 | if (block_stack->data.block.cleanups == 0 | |
3006 | && (block_stack->data.block.outer_cleanups == 0 | |
3007 | #if 0 | |
3008 | || block_stack->data.block.outer_cleanups == empty_cleanup_list | |
3009 | #endif | |
3010 | )) | |
3011 | return 0; | |
3012 | ||
3013 | for (block = block_stack->next; block; block = block->next) | |
3014 | if (block->data.block.cleanups != 0) | |
3015 | return 1; | |
3016 | ||
3017 | return 0; | |
3018 | } | |
3019 | \f | |
3020 | /* Enter a case (Pascal) or switch (C) statement. | |
3021 | Push a block onto case_stack and nesting_stack | |
3022 | to accumulate the case-labels that are seen | |
3023 | and to record the labels generated for the statement. | |
3024 | ||
3025 | EXIT_FLAG is nonzero if `exit_something' should exit this case stmt. | |
3026 | Otherwise, this construct is transparent for `exit_something'. | |
3027 | ||
3028 | EXPR is the index-expression to be dispatched on. | |
3029 | TYPE is its nominal type. We could simply convert EXPR to this type, | |
3030 | but instead we take short cuts. */ | |
3031 | ||
3032 | void | |
3033 | expand_start_case (exit_flag, expr, type, printname) | |
3034 | int exit_flag; | |
3035 | tree expr; | |
3036 | tree type; | |
3037 | char *printname; | |
3038 | { | |
3039 | register struct nesting *thiscase = ALLOC_NESTING (); | |
3040 | ||
3041 | /* Make an entry on case_stack for the case we are entering. */ | |
3042 | ||
3043 | thiscase->next = case_stack; | |
3044 | thiscase->all = nesting_stack; | |
3045 | thiscase->depth = ++nesting_depth; | |
3046 | thiscase->exit_label = exit_flag ? gen_label_rtx () : 0; | |
3047 | thiscase->data.case_stmt.case_list = 0; | |
3048 | thiscase->data.case_stmt.index_expr = expr; | |
3049 | thiscase->data.case_stmt.nominal_type = type; | |
3050 | thiscase->data.case_stmt.default_label = 0; | |
3051 | thiscase->data.case_stmt.num_ranges = 0; | |
3052 | thiscase->data.case_stmt.printname = printname; | |
3053 | thiscase->data.case_stmt.seenlabel = 0; | |
3054 | case_stack = thiscase; | |
3055 | nesting_stack = thiscase; | |
3056 | ||
3057 | do_pending_stack_adjust (); | |
3058 | ||
3059 | /* Make sure case_stmt.start points to something that won't | |
3060 | need any transformation before expand_end_case. */ | |
3061 | if (GET_CODE (get_last_insn ()) != NOTE) | |
3062 | emit_note (0, NOTE_INSN_DELETED); | |
3063 | ||
3064 | thiscase->data.case_stmt.start = get_last_insn (); | |
3065 | } | |
3066 | ||
3067 | /* Start a "dummy case statement" within which case labels are invalid | |
3068 | and are not connected to any larger real case statement. | |
3069 | This can be used if you don't want to let a case statement jump | |
3070 | into the middle of certain kinds of constructs. */ | |
3071 | ||
3072 | void | |
3073 | expand_start_case_dummy () | |
3074 | { | |
3075 | register struct nesting *thiscase = ALLOC_NESTING (); | |
3076 | ||
3077 | /* Make an entry on case_stack for the dummy. */ | |
3078 | ||
3079 | thiscase->next = case_stack; | |
3080 | thiscase->all = nesting_stack; | |
3081 | thiscase->depth = ++nesting_depth; | |
3082 | thiscase->exit_label = 0; | |
3083 | thiscase->data.case_stmt.case_list = 0; | |
3084 | thiscase->data.case_stmt.start = 0; | |
3085 | thiscase->data.case_stmt.nominal_type = 0; | |
3086 | thiscase->data.case_stmt.default_label = 0; | |
3087 | thiscase->data.case_stmt.num_ranges = 0; | |
3088 | case_stack = thiscase; | |
3089 | nesting_stack = thiscase; | |
3090 | } | |
3091 | ||
3092 | /* End a dummy case statement. */ | |
3093 | ||
3094 | void | |
3095 | expand_end_case_dummy () | |
3096 | { | |
3097 | POPSTACK (case_stack); | |
3098 | } | |
3099 | ||
3100 | /* Return the data type of the index-expression | |
3101 | of the innermost case statement, or null if none. */ | |
3102 | ||
3103 | tree | |
3104 | case_index_expr_type () | |
3105 | { | |
3106 | if (case_stack) | |
3107 | return TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
3108 | return 0; | |
3109 | } | |
3110 | \f | |
3111 | /* Accumulate one case or default label inside a case or switch statement. | |
3112 | VALUE is the value of the case (a null pointer, for a default label). | |
3113 | ||
3114 | If not currently inside a case or switch statement, return 1 and do | |
3115 | nothing. The caller will print a language-specific error message. | |
3116 | If VALUE is a duplicate or overlaps, return 2 and do nothing | |
3117 | except store the (first) duplicate node in *DUPLICATE. | |
3118 | If VALUE is out of range, return 3 and do nothing. | |
3119 | If we are jumping into the scope of a cleaup or var-sized array, return 5. | |
3120 | Return 0 on success. | |
3121 | ||
3122 | Extended to handle range statements. */ | |
3123 | ||
3124 | int | |
3125 | pushcase (value, label, duplicate) | |
3126 | register tree value; | |
3127 | register tree label; | |
3128 | tree *duplicate; | |
3129 | { | |
3130 | register struct case_node **l; | |
3131 | register struct case_node *n; | |
3132 | tree index_type; | |
3133 | tree nominal_type; | |
3134 | ||
3135 | /* Fail if not inside a real case statement. */ | |
3136 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
3137 | return 1; | |
3138 | ||
3139 | if (stack_block_stack | |
3140 | && stack_block_stack->depth > case_stack->depth) | |
3141 | return 5; | |
3142 | ||
3143 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
3144 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
3145 | ||
3146 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
3147 | if (index_type == error_mark_node) | |
3148 | return 0; | |
3149 | ||
3150 | /* Convert VALUE to the type in which the comparisons are nominally done. */ | |
3151 | if (value != 0) | |
3152 | value = convert (nominal_type, value); | |
3153 | ||
3154 | /* If this is the first label, warn if any insns have been emitted. */ | |
3155 | if (case_stack->data.case_stmt.seenlabel == 0) | |
3156 | { | |
3157 | rtx insn; | |
3158 | for (insn = case_stack->data.case_stmt.start; | |
3159 | insn; | |
3160 | insn = NEXT_INSN (insn)) | |
3161 | { | |
3162 | if (GET_CODE (insn) == CODE_LABEL) | |
3163 | break; | |
3164 | if (GET_CODE (insn) != NOTE | |
3165 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE)) | |
3166 | { | |
3167 | warning ("unreachable code at beginning of %s", | |
3168 | case_stack->data.case_stmt.printname); | |
3169 | break; | |
3170 | } | |
3171 | } | |
3172 | } | |
3173 | case_stack->data.case_stmt.seenlabel = 1; | |
3174 | ||
3175 | /* Fail if this value is out of range for the actual type of the index | |
3176 | (which may be narrower than NOMINAL_TYPE). */ | |
3177 | if (value != 0 && ! int_fits_type_p (value, index_type)) | |
3178 | return 3; | |
3179 | ||
3180 | /* Fail if this is a duplicate or overlaps another entry. */ | |
3181 | if (value == 0) | |
3182 | { | |
3183 | if (case_stack->data.case_stmt.default_label != 0) | |
3184 | { | |
3185 | *duplicate = case_stack->data.case_stmt.default_label; | |
3186 | return 2; | |
3187 | } | |
3188 | case_stack->data.case_stmt.default_label = label; | |
3189 | } | |
3190 | else | |
3191 | { | |
3192 | /* Find the elt in the chain before which to insert the new value, | |
3193 | to keep the chain sorted in increasing order. | |
3194 | But report an error if this element is a duplicate. */ | |
3195 | for (l = &case_stack->data.case_stmt.case_list; | |
3196 | /* Keep going past elements distinctly less than VALUE. */ | |
3197 | *l != 0 && tree_int_cst_lt ((*l)->high, value); | |
3198 | l = &(*l)->right) | |
3199 | ; | |
3200 | if (*l) | |
3201 | { | |
3202 | /* Element we will insert before must be distinctly greater; | |
3203 | overlap means error. */ | |
3204 | if (! tree_int_cst_lt (value, (*l)->low)) | |
3205 | { | |
3206 | *duplicate = (*l)->code_label; | |
3207 | return 2; | |
3208 | } | |
3209 | } | |
3210 | ||
3211 | /* Add this label to the chain, and succeed. | |
3212 | Copy VALUE so it is on temporary rather than momentary | |
3213 | obstack and will thus survive till the end of the case statement. */ | |
3214 | n = (struct case_node *) oballoc (sizeof (struct case_node)); | |
3215 | n->left = 0; | |
3216 | n->right = *l; | |
3217 | n->high = n->low = copy_node (value); | |
3218 | n->code_label = label; | |
3219 | *l = n; | |
3220 | } | |
3221 | ||
3222 | expand_label (label); | |
3223 | return 0; | |
3224 | } | |
3225 | ||
3226 | /* Like pushcase but this case applies to all values | |
3227 | between VALUE1 and VALUE2 (inclusive). | |
3228 | The return value is the same as that of pushcase | |
3229 | but there is one additional error code: | |
3230 | 4 means the specified range was empty. */ | |
3231 | ||
3232 | int | |
3233 | pushcase_range (value1, value2, label, duplicate) | |
3234 | register tree value1, value2; | |
3235 | register tree label; | |
3236 | tree *duplicate; | |
3237 | { | |
3238 | register struct case_node **l; | |
3239 | register struct case_node *n; | |
3240 | tree index_type; | |
3241 | tree nominal_type; | |
3242 | ||
3243 | /* Fail if not inside a real case statement. */ | |
3244 | if (! (case_stack && case_stack->data.case_stmt.start)) | |
3245 | return 1; | |
3246 | ||
3247 | if (stack_block_stack | |
3248 | && stack_block_stack->depth > case_stack->depth) | |
3249 | return 5; | |
3250 | ||
3251 | index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr); | |
3252 | nominal_type = case_stack->data.case_stmt.nominal_type; | |
3253 | ||
3254 | /* If the index is erroneous, avoid more problems: pretend to succeed. */ | |
3255 | if (index_type == error_mark_node) | |
3256 | return 0; | |
3257 | ||
3258 | /* If this is the first label, warn if any insns have been emitted. */ | |
3259 | if (case_stack->data.case_stmt.seenlabel == 0) | |
3260 | { | |
3261 | rtx insn; | |
3262 | for (insn = case_stack->data.case_stmt.start; | |
3263 | insn; | |
3264 | insn = NEXT_INSN (insn)) | |
3265 | { | |
3266 | if (GET_CODE (insn) == CODE_LABEL) | |
3267 | break; | |
3268 | if (GET_CODE (insn) != NOTE | |
3269 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE)) | |
3270 | { | |
3271 | warning ("unreachable code at beginning of %s", | |
3272 | case_stack->data.case_stmt.printname); | |
3273 | break; | |
3274 | } | |
3275 | } | |
3276 | } | |
3277 | case_stack->data.case_stmt.seenlabel = 1; | |
3278 | ||
3279 | /* Convert VALUEs to type in which the comparisons are nominally done. */ | |
3280 | if (value1 == 0) /* Negative infinity. */ | |
3281 | value1 = TYPE_MIN_VALUE(index_type); | |
3282 | value1 = convert (nominal_type, value1); | |
3283 | ||
3284 | if (value2 == 0) /* Positive infinity. */ | |
3285 | value2 = TYPE_MAX_VALUE(index_type); | |
3286 | value2 = convert (nominal_type, value2); | |
3287 | ||
3288 | /* Fail if these values are out of range. */ | |
3289 | if (! int_fits_type_p (value1, index_type)) | |
3290 | return 3; | |
3291 | ||
3292 | if (! int_fits_type_p (value2, index_type)) | |
3293 | return 3; | |
3294 | ||
3295 | /* Fail if the range is empty. */ | |
3296 | if (tree_int_cst_lt (value2, value1)) | |
3297 | return 4; | |
3298 | ||
3299 | /* If the bounds are equal, turn this into the one-value case. */ | |
3300 | if (tree_int_cst_equal (value1, value2)) | |
3301 | return pushcase (value1, label, duplicate); | |
3302 | ||
3303 | /* Find the elt in the chain before which to insert the new value, | |
3304 | to keep the chain sorted in increasing order. | |
3305 | But report an error if this element is a duplicate. */ | |
3306 | for (l = &case_stack->data.case_stmt.case_list; | |
3307 | /* Keep going past elements distinctly less than this range. */ | |
3308 | *l != 0 && tree_int_cst_lt ((*l)->high, value1); | |
3309 | l = &(*l)->right) | |
3310 | ; | |
3311 | if (*l) | |
3312 | { | |
3313 | /* Element we will insert before must be distinctly greater; | |
3314 | overlap means error. */ | |
3315 | if (! tree_int_cst_lt (value2, (*l)->low)) | |
3316 | { | |
3317 | *duplicate = (*l)->code_label; | |
3318 | return 2; | |
3319 | } | |
3320 | } | |
3321 | ||
3322 | /* Add this label to the chain, and succeed. | |
3323 | Copy VALUE1, VALUE2 so they are on temporary rather than momentary | |
3324 | obstack and will thus survive till the end of the case statement. */ | |
3325 | ||
3326 | n = (struct case_node *) oballoc (sizeof (struct case_node)); | |
3327 | n->left = 0; | |
3328 | n->right = *l; | |
3329 | n->low = copy_node (value1); | |
3330 | n->high = copy_node (value2); | |
3331 | n->code_label = label; | |
3332 | *l = n; | |
3333 | ||
3334 | expand_label (label); | |
3335 | ||
3336 | case_stack->data.case_stmt.num_ranges++; | |
3337 | ||
3338 | return 0; | |
3339 | } | |
3340 | \f | |
3341 | /* Called when the index of a switch statement is an enumerated type | |
3342 | and there is no default label. | |
3343 | ||
3344 | Checks that all enumeration literals are covered by the case | |
3345 | expressions of a switch. Also, warn if there are any extra | |
3346 | switch cases that are *not* elements of the enumerated type. | |
3347 | ||
3348 | If all enumeration literals were covered by the case expressions, | |
3349 | turn one of the expressions into the default expression since it should | |
3350 | not be possible to fall through such a switch. */ | |
3351 | ||
3352 | void | |
3353 | check_for_full_enumeration_handling (type) | |
3354 | tree type; | |
3355 | { | |
3356 | register struct case_node *n; | |
3357 | register struct case_node **l; | |
3358 | register tree chain; | |
3359 | int all_values = 1; | |
3360 | ||
3361 | /* The time complexity of this loop is currently O(N * M), with | |
3362 | N being the number of enumerals in the enumerated type, and | |
3363 | M being the number of case expressions in the switch. */ | |
3364 | ||
3365 | for (chain = TYPE_VALUES (type); | |
3366 | chain; | |
3367 | chain = TREE_CHAIN (chain)) | |
3368 | { | |
3369 | /* Find a match between enumeral and case expression, if possible. | |
3370 | Quit looking when we've gone too far (since case expressions | |
3371 | are kept sorted in ascending order). Warn about enumerals not | |
3372 | handled in the switch statement case expression list. */ | |
3373 | ||
3374 | for (n = case_stack->data.case_stmt.case_list; | |
3375 | n && tree_int_cst_lt (n->high, TREE_VALUE (chain)); | |
3376 | n = n->right) | |
3377 | ; | |
3378 | ||
3379 | if (!(n && tree_int_cst_equal (n->low, TREE_VALUE (chain)))) | |
3380 | { | |
3381 | if (warn_switch) | |
3382 | warning ("enumerated value `%s' not handled in switch", | |
3383 | IDENTIFIER_POINTER (TREE_PURPOSE (chain))); | |
3384 | all_values = 0; | |
3385 | } | |
3386 | } | |
3387 | ||
3388 | /* Now we go the other way around; we warn if there are case | |
3389 | expressions that don't correspond to enumerals. This can | |
3390 | occur since C and C++ don't enforce type-checking of | |
3391 | assignments to enumeration variables. */ | |
3392 | ||
3393 | if (warn_switch) | |
3394 | for (n = case_stack->data.case_stmt.case_list; n; n = n->right) | |
3395 | { | |
3396 | for (chain = TYPE_VALUES (type); | |
3397 | chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain)); | |
3398 | chain = TREE_CHAIN (chain)) | |
3399 | ; | |
3400 | ||
3401 | if (!chain) | |
3402 | warning ("case value `%d' not in enumerated type `%s'", | |
3403 | TREE_INT_CST_LOW (n->low), | |
3404 | IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type)) | |
3405 | == IDENTIFIER_NODE) | |
3406 | ? TYPE_NAME (type) | |
3407 | : DECL_NAME (TYPE_NAME (type)))); | |
3408 | } | |
3409 | ||
3410 | /* If all values were found as case labels, make one of them the default | |
3411 | label. Thus, this switch will never fall through. We arbitrarily pick | |
3412 | the last one to make the default since this is likely the most | |
3413 | efficient choice. */ | |
3414 | ||
3415 | if (all_values) | |
3416 | { | |
3417 | for (l = &case_stack->data.case_stmt.case_list; | |
3418 | (*l)->right != 0; | |
3419 | l = &(*l)->right) | |
3420 | ; | |
3421 | ||
3422 | case_stack->data.case_stmt.default_label = (*l)->code_label; | |
3423 | *l = 0; | |
3424 | } | |
3425 | } | |
3426 | \f | |
3427 | /* Terminate a case (Pascal) or switch (C) statement | |
3428 | in which CASE_INDEX is the expression to be tested. | |
3429 | Generate the code to test it and jump to the right place. */ | |
3430 | ||
3431 | void | |
3432 | expand_end_case (orig_index) | |
3433 | tree orig_index; | |
3434 | { | |
3435 | tree minval, maxval, range; | |
3436 | rtx default_label = 0; | |
3437 | register struct case_node *n; | |
3438 | int count; | |
3439 | rtx index; | |
3440 | rtx table_label = gen_label_rtx (); | |
3441 | int ncases; | |
3442 | rtx *labelvec; | |
3443 | register int i; | |
3444 | rtx before_case; | |
3445 | register struct nesting *thiscase = case_stack; | |
3446 | tree index_expr = thiscase->data.case_stmt.index_expr; | |
3447 | int unsignedp = TREE_UNSIGNED (TREE_TYPE (index_expr)); | |
3448 | ||
3449 | do_pending_stack_adjust (); | |
3450 | ||
3451 | /* An ERROR_MARK occurs for various reasons including invalid data type. */ | |
3452 | if (TREE_TYPE (index_expr) != error_mark_node) | |
3453 | { | |
3454 | /* If switch expression was an enumerated type, check that all | |
3455 | enumeration literals are covered by the cases. | |
3456 | No sense trying this if there's a default case, however. */ | |
3457 | ||
3458 | if (!thiscase->data.case_stmt.default_label | |
3459 | && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE | |
3460 | && TREE_CODE (index_expr) != INTEGER_CST) | |
3461 | check_for_full_enumeration_handling (TREE_TYPE (orig_index)); | |
3462 | ||
3463 | /* If this is the first label, warn if any insns have been emitted. */ | |
3464 | if (thiscase->data.case_stmt.seenlabel == 0) | |
3465 | { | |
3466 | rtx insn; | |
3467 | for (insn = get_last_insn (); | |
3468 | insn != case_stack->data.case_stmt.start; | |
3469 | insn = PREV_INSN (insn)) | |
3470 | if (GET_CODE (insn) != NOTE | |
3471 | && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn))!= USE)) | |
3472 | { | |
3473 | warning ("unreachable code at beginning of %s", | |
3474 | case_stack->data.case_stmt.printname); | |
3475 | break; | |
3476 | } | |
3477 | } | |
3478 | ||
3479 | /* If we don't have a default-label, create one here, | |
3480 | after the body of the switch. */ | |
3481 | if (thiscase->data.case_stmt.default_label == 0) | |
3482 | { | |
3483 | thiscase->data.case_stmt.default_label | |
3484 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
3485 | expand_label (thiscase->data.case_stmt.default_label); | |
3486 | } | |
3487 | default_label = label_rtx (thiscase->data.case_stmt.default_label); | |
3488 | ||
3489 | before_case = get_last_insn (); | |
3490 | ||
3491 | /* Simplify the case-list before we count it. */ | |
3492 | group_case_nodes (thiscase->data.case_stmt.case_list); | |
3493 | ||
3494 | /* Get upper and lower bounds of case values. | |
3495 | Also convert all the case values to the index expr's data type. */ | |
3496 | ||
3497 | count = 0; | |
3498 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
3499 | { | |
3500 | /* Check low and high label values are integers. */ | |
3501 | if (TREE_CODE (n->low) != INTEGER_CST) | |
3502 | abort (); | |
3503 | if (TREE_CODE (n->high) != INTEGER_CST) | |
3504 | abort (); | |
3505 | ||
3506 | n->low = convert (TREE_TYPE (index_expr), n->low); | |
3507 | n->high = convert (TREE_TYPE (index_expr), n->high); | |
3508 | ||
3509 | /* Count the elements and track the largest and smallest | |
3510 | of them (treating them as signed even if they are not). */ | |
3511 | if (count++ == 0) | |
3512 | { | |
3513 | minval = n->low; | |
3514 | maxval = n->high; | |
3515 | } | |
3516 | else | |
3517 | { | |
3518 | if (INT_CST_LT (n->low, minval)) | |
3519 | minval = n->low; | |
3520 | if (INT_CST_LT (maxval, n->high)) | |
3521 | maxval = n->high; | |
3522 | } | |
3523 | /* A range counts double, since it requires two compares. */ | |
3524 | if (! tree_int_cst_equal (n->low, n->high)) | |
3525 | count++; | |
3526 | } | |
3527 | ||
3528 | /* Compute span of values. */ | |
3529 | if (count != 0) | |
3530 | range = fold (build (MINUS_EXPR, TREE_TYPE (index_expr), | |
3531 | maxval, minval)); | |
3532 | ||
3533 | if (count == 0 || TREE_CODE (TREE_TYPE (index_expr)) == ERROR_MARK) | |
3534 | { | |
3535 | expand_expr (index_expr, const0_rtx, VOIDmode, 0); | |
3536 | emit_queue (); | |
3537 | emit_jump (default_label); | |
3538 | } | |
3539 | /* If range of values is much bigger than number of values, | |
3540 | make a sequence of conditional branches instead of a dispatch. | |
3541 | If the switch-index is a constant, do it this way | |
3542 | because we can optimize it. */ | |
3543 | else if (TREE_INT_CST_HIGH (range) != 0 | |
3544 | #ifdef HAVE_casesi | |
3545 | || (HAVE_casesi ? count < 4 : count < 5) | |
3546 | #else | |
3547 | /* If machine does not have a case insn that compares the | |
3548 | bounds, this means extra overhead for dispatch tables | |
3549 | which raises the threshold for using them. */ | |
3550 | || count < 5 | |
3551 | #endif | |
3552 | || (unsigned) (TREE_INT_CST_LOW (range)) > 10 * count | |
3553 | || TREE_CODE (index_expr) == INTEGER_CST | |
b4ac57ab | 3554 | /* These will reduce to a constant. */ |
28d81abb | 3555 | || (TREE_CODE (index_expr) == CALL_EXPR |
de14fd73 | 3556 | && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR |
28d81abb | 3557 | && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL |
b4ac57ab RS |
3558 | && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE) |
3559 | || (TREE_CODE (index_expr) == COMPOUND_EXPR | |
3560 | && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST)) | |
28d81abb RK |
3561 | { |
3562 | index = expand_expr (index_expr, 0, VOIDmode, 0); | |
3563 | ||
3564 | /* If the index is a short or char that we do not have | |
3565 | an insn to handle comparisons directly, convert it to | |
3566 | a full integer now, rather than letting each comparison | |
3567 | generate the conversion. */ | |
3568 | ||
3569 | if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT | |
3570 | && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code | |
3571 | == CODE_FOR_nothing)) | |
3572 | { | |
3573 | enum machine_mode wider_mode; | |
3574 | for (wider_mode = GET_MODE (index); wider_mode != VOIDmode; | |
3575 | wider_mode = GET_MODE_WIDER_MODE (wider_mode)) | |
3576 | if (cmp_optab->handlers[(int) wider_mode].insn_code | |
3577 | != CODE_FOR_nothing) | |
3578 | { | |
3579 | index = convert_to_mode (wider_mode, index, unsignedp); | |
3580 | break; | |
3581 | } | |
3582 | } | |
3583 | ||
3584 | emit_queue (); | |
3585 | do_pending_stack_adjust (); | |
3586 | ||
3587 | index = protect_from_queue (index, 0); | |
3588 | if (GET_CODE (index) == MEM) | |
3589 | index = copy_to_reg (index); | |
3590 | if (GET_CODE (index) == CONST_INT | |
3591 | || TREE_CODE (index_expr) == INTEGER_CST) | |
3592 | { | |
3593 | /* Make a tree node with the proper constant value | |
3594 | if we don't already have one. */ | |
3595 | if (TREE_CODE (index_expr) != INTEGER_CST) | |
3596 | { | |
3597 | index_expr | |
3598 | = build_int_2 (INTVAL (index), | |
3599 | !unsignedp && INTVAL (index) >= 0 ? 0 : -1); | |
3600 | index_expr = convert (TREE_TYPE (index_expr), index_expr); | |
3601 | } | |
3602 | ||
3603 | /* For constant index expressions we need only | |
3604 | issue a unconditional branch to the appropriate | |
3605 | target code. The job of removing any unreachable | |
3606 | code is left to the optimisation phase if the | |
3607 | "-O" option is specified. */ | |
3608 | for (n = thiscase->data.case_stmt.case_list; | |
3609 | n; | |
3610 | n = n->right) | |
3611 | { | |
3612 | if (! tree_int_cst_lt (index_expr, n->low) | |
3613 | && ! tree_int_cst_lt (n->high, index_expr)) | |
3614 | break; | |
3615 | } | |
3616 | if (n) | |
3617 | emit_jump (label_rtx (n->code_label)); | |
3618 | else | |
3619 | emit_jump (default_label); | |
3620 | } | |
3621 | else | |
3622 | { | |
3623 | /* If the index expression is not constant we generate | |
3624 | a binary decision tree to select the appropriate | |
3625 | target code. This is done as follows: | |
3626 | ||
3627 | The list of cases is rearranged into a binary tree, | |
3628 | nearly optimal assuming equal probability for each case. | |
3629 | ||
3630 | The tree is transformed into RTL, eliminating | |
3631 | redundant test conditions at the same time. | |
3632 | ||
3633 | If program flow could reach the end of the | |
3634 | decision tree an unconditional jump to the | |
3635 | default code is emitted. */ | |
3636 | ||
3637 | use_cost_table | |
3638 | = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE | |
3639 | && default_label != 0 | |
3640 | && estimate_case_costs (thiscase->data.case_stmt.case_list)); | |
3641 | balance_case_nodes (&thiscase->data.case_stmt.case_list, 0); | |
3642 | emit_case_nodes (index, thiscase->data.case_stmt.case_list, | |
3643 | default_label, TREE_TYPE (index_expr)); | |
3644 | emit_jump_if_reachable (default_label); | |
3645 | } | |
3646 | } | |
3647 | else | |
3648 | { | |
3649 | int win = 0; | |
3650 | #ifdef HAVE_casesi | |
3651 | if (HAVE_casesi) | |
3652 | { | |
3653 | /* Convert the index to SImode. */ | |
3654 | if (TYPE_MODE (TREE_TYPE (index_expr)) == DImode) | |
3655 | { | |
3656 | index_expr = build (MINUS_EXPR, TREE_TYPE (index_expr), | |
3657 | index_expr, minval); | |
3658 | minval = integer_zero_node; | |
3659 | } | |
3660 | if (TYPE_MODE (TREE_TYPE (index_expr)) != SImode) | |
3661 | index_expr = convert (type_for_size (GET_MODE_BITSIZE (SImode), 0), | |
3662 | index_expr); | |
3663 | index = expand_expr (index_expr, 0, VOIDmode, 0); | |
3664 | emit_queue (); | |
3665 | index = protect_from_queue (index, 0); | |
3666 | do_pending_stack_adjust (); | |
3667 | ||
3668 | emit_jump_insn (gen_casesi (index, expand_expr (minval, 0, VOIDmode, 0), | |
3669 | expand_expr (range, 0, VOIDmode, 0), | |
3670 | table_label, default_label)); | |
3671 | win = 1; | |
3672 | } | |
3673 | #endif | |
3674 | #ifdef HAVE_tablejump | |
3675 | if (! win && HAVE_tablejump) | |
3676 | { | |
3677 | index_expr = convert (thiscase->data.case_stmt.nominal_type, | |
b4ac57ab RS |
3678 | fold (build (MINUS_EXPR, |
3679 | TREE_TYPE (index_expr), | |
3680 | index_expr, minval))); | |
28d81abb RK |
3681 | index = expand_expr (index_expr, 0, VOIDmode, 0); |
3682 | emit_queue (); | |
3683 | index = protect_from_queue (index, 0); | |
3684 | do_pending_stack_adjust (); | |
3685 | ||
3686 | do_tablejump (index, | |
b4ac57ab | 3687 | TYPE_MODE (thiscase->data.case_stmt.nominal_type), |
28d81abb RK |
3688 | gen_rtx (CONST_INT, VOIDmode, |
3689 | TREE_INT_CST_LOW (range)), | |
3690 | table_label, default_label); | |
3691 | win = 1; | |
3692 | } | |
3693 | #endif | |
3694 | if (! win) | |
3695 | abort (); | |
3696 | ||
3697 | /* Get table of labels to jump to, in order of case index. */ | |
3698 | ||
3699 | ncases = TREE_INT_CST_LOW (range) + 1; | |
3700 | labelvec = (rtx *) alloca (ncases * sizeof (rtx)); | |
3701 | bzero (labelvec, ncases * sizeof (rtx)); | |
3702 | ||
3703 | for (n = thiscase->data.case_stmt.case_list; n; n = n->right) | |
3704 | { | |
3705 | register int i | |
3706 | = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (minval); | |
3707 | ||
3708 | while (1) | |
3709 | { | |
3710 | labelvec[i] | |
3711 | = gen_rtx (LABEL_REF, Pmode, label_rtx (n->code_label)); | |
3712 | if (i + TREE_INT_CST_LOW (minval) | |
3713 | == TREE_INT_CST_LOW (n->high)) | |
3714 | break; | |
3715 | i++; | |
3716 | } | |
3717 | } | |
3718 | ||
3719 | /* Fill in the gaps with the default. */ | |
3720 | for (i = 0; i < ncases; i++) | |
3721 | if (labelvec[i] == 0) | |
3722 | labelvec[i] = gen_rtx (LABEL_REF, Pmode, default_label); | |
3723 | ||
3724 | /* Output the table */ | |
3725 | emit_label (table_label); | |
3726 | ||
3727 | /* This would be a lot nicer if CASE_VECTOR_PC_RELATIVE | |
3728 | were an expression, instead of a an #ifdef/#ifndef. */ | |
3729 | if ( | |
3730 | #ifdef CASE_VECTOR_PC_RELATIVE | |
3731 | 1 || | |
3732 | #endif | |
3733 | flag_pic) | |
3734 | emit_jump_insn (gen_rtx (ADDR_DIFF_VEC, CASE_VECTOR_MODE, | |
3735 | gen_rtx (LABEL_REF, Pmode, table_label), | |
3736 | gen_rtvec_v (ncases, labelvec))); | |
3737 | else | |
3738 | emit_jump_insn (gen_rtx (ADDR_VEC, CASE_VECTOR_MODE, | |
3739 | gen_rtvec_v (ncases, labelvec))); | |
3740 | ||
3741 | /* If the case insn drops through the table, | |
3742 | after the table we must jump to the default-label. | |
3743 | Otherwise record no drop-through after the table. */ | |
3744 | #ifdef CASE_DROPS_THROUGH | |
3745 | emit_jump (default_label); | |
3746 | #else | |
3747 | emit_barrier (); | |
3748 | #endif | |
3749 | } | |
3750 | ||
3751 | reorder_insns (NEXT_INSN (before_case), get_last_insn (), | |
3752 | thiscase->data.case_stmt.start); | |
3753 | } | |
3754 | if (thiscase->exit_label) | |
3755 | emit_label (thiscase->exit_label); | |
3756 | ||
3757 | POPSTACK (case_stack); | |
3758 | ||
3759 | free_temp_slots (); | |
3760 | } | |
3761 | ||
3762 | /* Generate code to jump to LABEL if OP1 and OP2 are equal. */ | |
3763 | ||
3764 | static void | |
3765 | do_jump_if_equal (op1, op2, label, unsignedp) | |
3766 | rtx op1, op2, label; | |
3767 | int unsignedp; | |
3768 | { | |
3769 | if (GET_CODE (op1) == CONST_INT | |
3770 | && GET_CODE (op2) == CONST_INT) | |
3771 | { | |
3772 | if (INTVAL (op1) == INTVAL (op2)) | |
3773 | emit_jump (label); | |
3774 | } | |
3775 | else | |
3776 | { | |
3777 | enum machine_mode mode = GET_MODE (op1); | |
3778 | if (mode == VOIDmode) | |
3779 | mode = GET_MODE (op2); | |
3780 | emit_cmp_insn (op1, op2, EQ, 0, mode, unsignedp, 0); | |
3781 | emit_jump_insn (gen_beq (label)); | |
3782 | } | |
3783 | } | |
3784 | \f | |
3785 | /* Not all case values are encountered equally. This function | |
3786 | uses a heuristic to weight case labels, in cases where that | |
3787 | looks like a reasonable thing to do. | |
3788 | ||
3789 | Right now, all we try to guess is text, and we establish the | |
3790 | following weights: | |
3791 | ||
3792 | chars above space: 16 | |
3793 | digits: 16 | |
3794 | default: 12 | |
3795 | space, punct: 8 | |
3796 | tab: 4 | |
3797 | newline: 2 | |
3798 | other "\" chars: 1 | |
3799 | remaining chars: 0 | |
3800 | ||
3801 | If we find any cases in the switch that are not either -1 or in the range | |
3802 | of valid ASCII characters, or are control characters other than those | |
3803 | commonly used with "\", don't treat this switch scanning text. | |
3804 | ||
3805 | Return 1 if these nodes are suitable for cost estimation, otherwise | |
3806 | return 0. */ | |
3807 | ||
3808 | static int | |
3809 | estimate_case_costs (node) | |
3810 | case_node_ptr node; | |
3811 | { | |
3812 | tree min_ascii = build_int_2 (-1, -1); | |
3813 | tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0)); | |
3814 | case_node_ptr n; | |
3815 | int i; | |
3816 | ||
3817 | /* If we haven't already made the cost table, make it now. Note that the | |
3818 | lower bound of the table is -1, not zero. */ | |
3819 | ||
3820 | if (cost_table == NULL) | |
3821 | { | |
3822 | cost_table = ((short *) xmalloc (129 * sizeof (short))) + 1; | |
3823 | bzero (cost_table - 1, 129 * sizeof (short)); | |
3824 | ||
3825 | for (i = 0; i < 128; i++) | |
3826 | { | |
3827 | if (isalnum (i)) | |
3828 | cost_table[i] = 16; | |
3829 | else if (ispunct (i)) | |
3830 | cost_table[i] = 8; | |
3831 | else if (iscntrl (i)) | |
3832 | cost_table[i] = -1; | |
3833 | } | |
3834 | ||
3835 | cost_table[' '] = 8; | |
3836 | cost_table['\t'] = 4; | |
3837 | cost_table['\0'] = 4; | |
3838 | cost_table['\n'] = 2; | |
3839 | cost_table['\f'] = 1; | |
3840 | cost_table['\v'] = 1; | |
3841 | cost_table['\b'] = 1; | |
3842 | } | |
3843 | ||
3844 | /* See if all the case expressions look like text. It is text if the | |
3845 | constant is >= -1 and the highest constant is <= 127. Do all comparisons | |
3846 | as signed arithmetic since we don't want to ever access cost_table with a | |
3847 | value less than -1. Also check that none of the constants in a range | |
3848 | are strange control characters. */ | |
3849 | ||
3850 | for (n = node; n; n = n->right) | |
3851 | { | |
3852 | if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high)) | |
3853 | return 0; | |
3854 | ||
3855 | for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++) | |
3856 | if (cost_table[i] < 0) | |
3857 | return 0; | |
3858 | } | |
3859 | ||
3860 | /* All interesting values are within the range of interesting | |
3861 | ASCII characters. */ | |
3862 | return 1; | |
3863 | } | |
3864 | ||
3865 | /* Scan an ordered list of case nodes | |
3866 | combining those with consecutive values or ranges. | |
3867 | ||
3868 | Eg. three separate entries 1: 2: 3: become one entry 1..3: */ | |
3869 | ||
3870 | static void | |
3871 | group_case_nodes (head) | |
3872 | case_node_ptr head; | |
3873 | { | |
3874 | case_node_ptr node = head; | |
3875 | ||
3876 | while (node) | |
3877 | { | |
3878 | rtx lb = next_real_insn (label_rtx (node->code_label)); | |
3879 | case_node_ptr np = node; | |
3880 | ||
3881 | /* Try to group the successors of NODE with NODE. */ | |
3882 | while (((np = np->right) != 0) | |
3883 | /* Do they jump to the same place? */ | |
3884 | && next_real_insn (label_rtx (np->code_label)) == lb | |
3885 | /* Are their ranges consecutive? */ | |
3886 | && tree_int_cst_equal (np->low, | |
3887 | fold (build (PLUS_EXPR, | |
3888 | TREE_TYPE (node->high), | |
3889 | node->high, | |
3890 | integer_one_node))) | |
3891 | /* An overflow is not consecutive. */ | |
3892 | && tree_int_cst_lt (node->high, | |
3893 | fold (build (PLUS_EXPR, | |
3894 | TREE_TYPE (node->high), | |
3895 | node->high, | |
3896 | integer_one_node)))) | |
3897 | { | |
3898 | node->high = np->high; | |
3899 | } | |
3900 | /* NP is the first node after NODE which can't be grouped with it. | |
3901 | Delete the nodes in between, and move on to that node. */ | |
3902 | node->right = np; | |
3903 | node = np; | |
3904 | } | |
3905 | } | |
3906 | ||
3907 | /* Take an ordered list of case nodes | |
3908 | and transform them into a near optimal binary tree, | |
3909 | on the assumtion that any target code selection value is as | |
3910 | likely as any other. | |
3911 | ||
3912 | The transformation is performed by splitting the ordered | |
3913 | list into two equal sections plus a pivot. The parts are | |
3914 | then attached to the pivot as left and right branches. Each | |
3915 | branch is is then transformed recursively. */ | |
3916 | ||
3917 | static void | |
3918 | balance_case_nodes (head, parent) | |
3919 | case_node_ptr *head; | |
3920 | case_node_ptr parent; | |
3921 | { | |
3922 | register case_node_ptr np; | |
3923 | ||
3924 | np = *head; | |
3925 | if (np) | |
3926 | { | |
3927 | int cost = 0; | |
3928 | int i = 0; | |
3929 | int ranges = 0; | |
3930 | register case_node_ptr *npp; | |
3931 | case_node_ptr left; | |
3932 | ||
3933 | /* Count the number of entries on branch. Also count the ranges. */ | |
3934 | ||
3935 | while (np) | |
3936 | { | |
3937 | if (!tree_int_cst_equal (np->low, np->high)) | |
3938 | { | |
3939 | ranges++; | |
3940 | if (use_cost_table) | |
3941 | cost += cost_table[TREE_INT_CST_LOW (np->high)]; | |
3942 | } | |
3943 | ||
3944 | if (use_cost_table) | |
3945 | cost += cost_table[TREE_INT_CST_LOW (np->low)]; | |
3946 | ||
3947 | i++; | |
3948 | np = np->right; | |
3949 | } | |
3950 | ||
3951 | if (i > 2) | |
3952 | { | |
3953 | /* Split this list if it is long enough for that to help. */ | |
3954 | npp = head; | |
3955 | left = *npp; | |
3956 | if (use_cost_table) | |
3957 | { | |
3958 | /* Find the place in the list that bisects the list's total cost, | |
3959 | Here I gets half the total cost. */ | |
3960 | int n_moved = 0; | |
3961 | i = (cost + 1) / 2; | |
3962 | while (1) | |
3963 | { | |
3964 | /* Skip nodes while their cost does not reach that amount. */ | |
3965 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
3966 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)]; | |
3967 | i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)]; | |
3968 | if (i <= 0) | |
3969 | break; | |
3970 | npp = &(*npp)->right; | |
3971 | n_moved += 1; | |
3972 | } | |
3973 | if (n_moved == 0) | |
3974 | { | |
3975 | /* Leave this branch lopsided, but optimize left-hand | |
3976 | side and fill in `parent' fields for right-hand side. */ | |
3977 | np = *head; | |
3978 | np->parent = parent; | |
3979 | balance_case_nodes (&np->left, np); | |
3980 | for (; np->right; np = np->right) | |
3981 | np->right->parent = np; | |
3982 | return; | |
3983 | } | |
3984 | } | |
3985 | /* If there are just three nodes, split at the middle one. */ | |
3986 | else if (i == 3) | |
3987 | npp = &(*npp)->right; | |
3988 | else | |
3989 | { | |
3990 | /* Find the place in the list that bisects the list's total cost, | |
3991 | where ranges count as 2. | |
3992 | Here I gets half the total cost. */ | |
3993 | i = (i + ranges + 1) / 2; | |
3994 | while (1) | |
3995 | { | |
3996 | /* Skip nodes while their cost does not reach that amount. */ | |
3997 | if (!tree_int_cst_equal ((*npp)->low, (*npp)->high)) | |
3998 | i--; | |
3999 | i--; | |
4000 | if (i <= 0) | |
4001 | break; | |
4002 | npp = &(*npp)->right; | |
4003 | } | |
4004 | } | |
4005 | *head = np = *npp; | |
4006 | *npp = 0; | |
4007 | np->parent = parent; | |
4008 | np->left = left; | |
4009 | ||
4010 | /* Optimize each of the two split parts. */ | |
4011 | balance_case_nodes (&np->left, np); | |
4012 | balance_case_nodes (&np->right, np); | |
4013 | } | |
4014 | else | |
4015 | { | |
4016 | /* Else leave this branch as one level, | |
4017 | but fill in `parent' fields. */ | |
4018 | np = *head; | |
4019 | np->parent = parent; | |
4020 | for (; np->right; np = np->right) | |
4021 | np->right->parent = np; | |
4022 | } | |
4023 | } | |
4024 | } | |
4025 | \f | |
4026 | /* Search the parent sections of the case node tree | |
4027 | to see if a test for the lower bound of NODE would be redundant. | |
4028 | INDEX_TYPE is the type of the index expression. | |
4029 | ||
4030 | The instructions to generate the case decision tree are | |
4031 | output in the same order as nodes are processed so it is | |
4032 | known that if a parent node checks the range of the current | |
4033 | node minus one that the current node is bounded at its lower | |
4034 | span. Thus the test would be redundant. */ | |
4035 | ||
4036 | static int | |
4037 | node_has_low_bound (node, index_type) | |
4038 | case_node_ptr node; | |
4039 | tree index_type; | |
4040 | { | |
4041 | tree low_minus_one; | |
4042 | case_node_ptr pnode; | |
4043 | ||
4044 | /* If the lower bound of this node is the lowest value in the index type, | |
4045 | we need not test it. */ | |
4046 | ||
4047 | if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type))) | |
4048 | return 1; | |
4049 | ||
4050 | /* If this node has a left branch, the value at the left must be less | |
4051 | than that at this node, so it cannot be bounded at the bottom and | |
4052 | we need not bother testing any further. */ | |
4053 | ||
4054 | if (node->left) | |
4055 | return 0; | |
4056 | ||
4057 | low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low), | |
4058 | node->low, integer_one_node)); | |
4059 | ||
4060 | /* If the subtraction above overflowed, we can't verify anything. | |
4061 | Otherwise, look for a parent that tests our value - 1. */ | |
4062 | ||
4063 | if (! tree_int_cst_lt (low_minus_one, node->low)) | |
4064 | return 0; | |
4065 | ||
4066 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
4067 | if (tree_int_cst_equal (low_minus_one, pnode->high)) | |
4068 | return 1; | |
4069 | ||
4070 | return 0; | |
4071 | } | |
4072 | ||
4073 | /* Search the parent sections of the case node tree | |
4074 | to see if a test for the upper bound of NODE would be redundant. | |
4075 | INDEX_TYPE is the type of the index expression. | |
4076 | ||
4077 | The instructions to generate the case decision tree are | |
4078 | output in the same order as nodes are processed so it is | |
4079 | known that if a parent node checks the range of the current | |
4080 | node plus one that the current node is bounded at its upper | |
4081 | span. Thus the test would be redundant. */ | |
4082 | ||
4083 | static int | |
4084 | node_has_high_bound (node, index_type) | |
4085 | case_node_ptr node; | |
4086 | tree index_type; | |
4087 | { | |
4088 | tree high_plus_one; | |
4089 | case_node_ptr pnode; | |
4090 | ||
4091 | /* If the upper bound of this node is the highest value in the type | |
4092 | of the index expression, we need not test against it. */ | |
4093 | ||
4094 | if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type))) | |
4095 | return 1; | |
4096 | ||
4097 | /* If this node has a right branch, the value at the right must be greater | |
4098 | than that at this node, so it cannot be bounded at the top and | |
4099 | we need not bother testing any further. */ | |
4100 | ||
4101 | if (node->right) | |
4102 | return 0; | |
4103 | ||
4104 | high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high), | |
4105 | node->high, integer_one_node)); | |
4106 | ||
4107 | /* If the addition above overflowed, we can't verify anything. | |
4108 | Otherwise, look for a parent that tests our value + 1. */ | |
4109 | ||
4110 | if (! tree_int_cst_lt (node->high, high_plus_one)) | |
4111 | return 0; | |
4112 | ||
4113 | for (pnode = node->parent; pnode; pnode = pnode->parent) | |
4114 | if (tree_int_cst_equal (high_plus_one, pnode->low)) | |
4115 | return 1; | |
4116 | ||
4117 | return 0; | |
4118 | } | |
4119 | ||
4120 | /* Search the parent sections of the | |
4121 | case node tree to see if both tests for the upper and lower | |
4122 | bounds of NODE would be redundant. */ | |
4123 | ||
4124 | static int | |
4125 | node_is_bounded (node, index_type) | |
4126 | case_node_ptr node; | |
4127 | tree index_type; | |
4128 | { | |
4129 | return (node_has_low_bound (node, index_type) | |
4130 | && node_has_high_bound (node, index_type)); | |
4131 | } | |
4132 | ||
4133 | /* Emit an unconditional jump to LABEL unless it would be dead code. */ | |
4134 | ||
4135 | static void | |
4136 | emit_jump_if_reachable (label) | |
4137 | rtx label; | |
4138 | { | |
4139 | if (GET_CODE (get_last_insn ()) != BARRIER) | |
4140 | emit_jump (label); | |
4141 | } | |
4142 | \f | |
4143 | /* Emit step-by-step code to select a case for the value of INDEX. | |
4144 | The thus generated decision tree follows the form of the | |
4145 | case-node binary tree NODE, whose nodes represent test conditions. | |
4146 | INDEX_TYPE is the type of the index of the switch. | |
4147 | ||
4148 | Care is taken to prune redundant tests from the decision tree | |
4149 | by detecting any boundary conditions already checked by | |
4150 | emitted rtx. (See node_has_high_bound, node_has_low_bound | |
4151 | and node_is_bounded, above.) | |
4152 | ||
4153 | Where the test conditions can be shown to be redundant we emit | |
4154 | an unconditional jump to the target code. As a further | |
4155 | optimization, the subordinates of a tree node are examined to | |
4156 | check for bounded nodes. In this case conditional and/or | |
4157 | unconditional jumps as a result of the boundary check for the | |
4158 | current node are arranged to target the subordinates associated | |
4159 | code for out of bound conditions on the current node node. | |
4160 | ||
4161 | We can asume that when control reaches the code generated here, | |
4162 | the index value has already been compared with the parents | |
4163 | of this node, and determined to be on the same side of each parent | |
4164 | as this node is. Thus, if this node tests for the value 51, | |
4165 | and a parent tested for 52, we don't need to consider | |
4166 | the possibility of a value greater than 51. If another parent | |
4167 | tests for the value 50, then this node need not test anything. */ | |
4168 | ||
4169 | static void | |
4170 | emit_case_nodes (index, node, default_label, index_type) | |
4171 | rtx index; | |
4172 | case_node_ptr node; | |
4173 | rtx default_label; | |
4174 | tree index_type; | |
4175 | { | |
4176 | /* If INDEX has an unsigned type, we must make unsigned branches. */ | |
4177 | int unsignedp = TREE_UNSIGNED (index_type); | |
4178 | typedef rtx rtx_function (); | |
4179 | rtx_function *gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt; | |
4180 | rtx_function *gen_bge_pat = unsignedp ? gen_bgeu : gen_bge; | |
4181 | rtx_function *gen_blt_pat = unsignedp ? gen_bltu : gen_blt; | |
4182 | rtx_function *gen_ble_pat = unsignedp ? gen_bleu : gen_ble; | |
4183 | enum machine_mode mode = GET_MODE (index); | |
4184 | ||
4185 | /* See if our parents have already tested everything for us. | |
4186 | If they have, emit an unconditional jump for this node. */ | |
4187 | if (node_is_bounded (node, index_type)) | |
4188 | emit_jump (label_rtx (node->code_label)); | |
4189 | ||
4190 | else if (tree_int_cst_equal (node->low, node->high)) | |
4191 | { | |
4192 | /* Node is single valued. First see if the index expression matches | |
4193 | this node and then check our children, if any. */ | |
4194 | ||
4195 | do_jump_if_equal (index, expand_expr (node->low, 0, VOIDmode, 0), | |
4196 | label_rtx (node->code_label), unsignedp); | |
4197 | ||
4198 | if (node->right != 0 && node->left != 0) | |
4199 | { | |
4200 | /* This node has children on both sides. | |
4201 | Dispatch to one side or the other | |
4202 | by comparing the index value with this node's value. | |
4203 | If one subtree is bounded, check that one first, | |
4204 | so we can avoid real branches in the tree. */ | |
4205 | ||
4206 | if (node_is_bounded (node->right, index_type)) | |
4207 | { | |
4208 | emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0), | |
4209 | GT, 0, mode, unsignedp, 0); | |
4210 | ||
4211 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label))); | |
4212 | emit_case_nodes (index, node->left, default_label, index_type); | |
4213 | } | |
4214 | ||
4215 | else if (node_is_bounded (node->left, index_type)) | |
4216 | { | |
4217 | emit_cmp_insn (index, expand_expr (node->high, 0, | |
4218 | VOIDmode, 0), | |
4219 | LT, 0, mode, unsignedp, 0); | |
4220 | emit_jump_insn ((*gen_blt_pat) (label_rtx (node->left->code_label))); | |
4221 | emit_case_nodes (index, node->right, default_label, index_type); | |
4222 | } | |
4223 | ||
4224 | else | |
4225 | { | |
4226 | /* Neither node is bounded. First distinguish the two sides; | |
4227 | then emit the code for one side at a time. */ | |
4228 | ||
4229 | tree test_label | |
4230 | = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
4231 | ||
4232 | /* See if the value is on the right. */ | |
4233 | emit_cmp_insn (index, expand_expr (node->high, 0, | |
4234 | VOIDmode, 0), | |
4235 | GT, 0, mode, unsignedp, 0); | |
4236 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label))); | |
4237 | ||
4238 | /* Value must be on the left. | |
4239 | Handle the left-hand subtree. */ | |
4240 | emit_case_nodes (index, node->left, default_label, index_type); | |
4241 | /* If left-hand subtree does nothing, | |
4242 | go to default. */ | |
4243 | emit_jump_if_reachable (default_label); | |
4244 | ||
4245 | /* Code branches here for the right-hand subtree. */ | |
4246 | expand_label (test_label); | |
4247 | emit_case_nodes (index, node->right, default_label, index_type); | |
4248 | } | |
4249 | } | |
4250 | ||
4251 | else if (node->right != 0 && node->left == 0) | |
4252 | { | |
4253 | /* Here we have a right child but no left so we issue conditional | |
4254 | branch to default and process the right child. | |
4255 | ||
4256 | Omit the conditional branch to default if we it avoid only one | |
4257 | right child; it costs too much space to save so little time. */ | |
4258 | ||
de14fd73 | 4259 | if (node->right->right || node->right->left |
28d81abb RK |
4260 | || !tree_int_cst_equal (node->right->low, node->right->high)) |
4261 | { | |
4262 | if (!node_has_low_bound (node, index_type)) | |
4263 | { | |
4264 | emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0), | |
4265 | LT, 0, mode, unsignedp, 0); | |
4266 | emit_jump_insn ((*gen_blt_pat) (default_label)); | |
4267 | } | |
4268 | ||
4269 | emit_case_nodes (index, node->right, default_label, index_type); | |
4270 | } | |
4271 | else | |
4272 | /* We cannot process node->right normally | |
4273 | since we haven't ruled out the numbers less than | |
4274 | this node's value. So handle node->right explicitly. */ | |
4275 | do_jump_if_equal (index, | |
4276 | expand_expr (node->right->low, 0, VOIDmode, 0), | |
4277 | label_rtx (node->right->code_label), unsignedp); | |
4278 | } | |
4279 | ||
4280 | else if (node->right == 0 && node->left != 0) | |
4281 | { | |
4282 | /* Just one subtree, on the left. */ | |
4283 | ||
de14fd73 RK |
4284 | #if 0 /* The following code and comment were formerly part |
4285 | of the condition here, but they didn't work | |
4286 | and I don't understand what the idea was. -- rms. */ | |
4287 | /* If our "most probable entry" is less probable | |
28d81abb RK |
4288 | than the default label, emit a jump to |
4289 | the default label using condition codes | |
4290 | already lying around. With no right branch, | |
4291 | a branch-greater-than will get us to the default | |
4292 | label correctly. */ | |
de14fd73 RK |
4293 | if (use_cost_table |
4294 | && cost_table[TREE_INT_CST_LOW (node->high)] < 12) | |
4295 | ; | |
4296 | #endif /* 0 */ | |
4297 | if (node->left->left || node->left->right | |
28d81abb RK |
4298 | || !tree_int_cst_equal (node->left->low, node->left->high)) |
4299 | { | |
4300 | if (!node_has_high_bound (node, index_type)) | |
4301 | { | |
4302 | emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0), | |
4303 | GT, 0, mode, unsignedp, 0); | |
4304 | emit_jump_insn ((*gen_bgt_pat) (default_label)); | |
4305 | } | |
4306 | ||
4307 | emit_case_nodes (index, node->left, default_label, index_type); | |
4308 | } | |
4309 | else | |
4310 | /* We cannot process node->left normally | |
4311 | since we haven't ruled out the numbers less than | |
4312 | this node's value. So handle node->left explicitly. */ | |
4313 | do_jump_if_equal (index, | |
4314 | expand_expr (node->left->low, 0, VOIDmode, 0), | |
4315 | label_rtx (node->left->code_label), unsignedp); | |
4316 | } | |
4317 | } | |
4318 | else | |
4319 | { | |
4320 | /* Node is a range. These cases are very similar to those for a single | |
4321 | value, except that we do not start by testing whether this node | |
4322 | is the one to branch to. */ | |
4323 | ||
4324 | if (node->right != 0 && node->left != 0) | |
4325 | { | |
4326 | /* Node has subtrees on both sides. | |
4327 | If the right-hand subtree is bounded, | |
4328 | test for it first, since we can go straight there. | |
4329 | Otherwise, we need to make a branch in the control structure, | |
4330 | then handle the two subtrees. */ | |
4331 | tree test_label = 0; | |
4332 | ||
4333 | emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0), | |
4334 | GT, 0, mode, unsignedp, 0); | |
4335 | ||
4336 | if (node_is_bounded (node->right, index_type)) | |
4337 | /* Right hand node is fully bounded so we can eliminate any | |
4338 | testing and branch directly to the target code. */ | |
4339 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (node->right->code_label))); | |
4340 | else | |
4341 | { | |
4342 | /* Right hand node requires testing. | |
4343 | Branch to a label where we will handle it later. */ | |
4344 | ||
4345 | test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE); | |
4346 | emit_jump_insn ((*gen_bgt_pat) (label_rtx (test_label))); | |
4347 | } | |
4348 | ||
4349 | /* Value belongs to this node or to the left-hand subtree. */ | |
4350 | ||
4351 | emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0), | |
4352 | GE, 0, mode, unsignedp, 0); | |
4353 | emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label))); | |
4354 | ||
4355 | /* Handle the left-hand subtree. */ | |
4356 | emit_case_nodes (index, node->left, default_label, index_type); | |
4357 | ||
4358 | /* If right node had to be handled later, do that now. */ | |
4359 | ||
4360 | if (test_label) | |
4361 | { | |
4362 | /* If the left-hand subtree fell through, | |
4363 | don't let it fall into the right-hand subtree. */ | |
4364 | emit_jump_if_reachable (default_label); | |
4365 | ||
4366 | expand_label (test_label); | |
4367 | emit_case_nodes (index, node->right, default_label, index_type); | |
4368 | } | |
4369 | } | |
4370 | ||
4371 | else if (node->right != 0 && node->left == 0) | |
4372 | { | |
4373 | /* Deal with values to the left of this node, | |
4374 | if they are possible. */ | |
4375 | if (!node_has_low_bound (node, index_type)) | |
4376 | { | |
4377 | emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0), | |
4378 | LT, 0, mode, unsignedp, 0); | |
4379 | emit_jump_insn ((*gen_blt_pat) (default_label)); | |
4380 | } | |
4381 | ||
4382 | /* Value belongs to this node or to the right-hand subtree. */ | |
4383 | ||
4384 | emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0), | |
4385 | LE, 0, mode, unsignedp, 0); | |
4386 | emit_jump_insn ((*gen_ble_pat) (label_rtx (node->code_label))); | |
4387 | ||
4388 | emit_case_nodes (index, node->right, default_label, index_type); | |
4389 | } | |
4390 | ||
4391 | else if (node->right == 0 && node->left != 0) | |
4392 | { | |
4393 | /* Deal with values to the right of this node, | |
4394 | if they are possible. */ | |
4395 | if (!node_has_high_bound (node, index_type)) | |
4396 | { | |
4397 | emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0), | |
4398 | GT, 0, mode, unsignedp, 0); | |
4399 | emit_jump_insn ((*gen_bgt_pat) (default_label)); | |
4400 | } | |
4401 | ||
4402 | /* Value belongs to this node or to the left-hand subtree. */ | |
4403 | ||
4404 | emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0), | |
4405 | GE, 0, mode, unsignedp, 0); | |
4406 | emit_jump_insn ((*gen_bge_pat) (label_rtx (node->code_label))); | |
4407 | ||
4408 | emit_case_nodes (index, node->left, default_label, index_type); | |
4409 | } | |
4410 | ||
4411 | else | |
4412 | { | |
4413 | /* Node has no children so we check low and high bounds to remove | |
4414 | redundant tests. Only one of the bounds can exist, | |
4415 | since otherwise this node is bounded--a case tested already. */ | |
4416 | ||
4417 | if (!node_has_high_bound (node, index_type)) | |
4418 | { | |
4419 | emit_cmp_insn (index, expand_expr (node->high, 0, VOIDmode, 0), | |
4420 | GT, 0, mode, unsignedp, 0); | |
4421 | emit_jump_insn ((*gen_bgt_pat) (default_label)); | |
4422 | } | |
4423 | ||
4424 | if (!node_has_low_bound (node, index_type)) | |
4425 | { | |
4426 | emit_cmp_insn (index, expand_expr (node->low, 0, VOIDmode, 0), | |
4427 | LT, 0, mode, unsignedp, 0); | |
4428 | emit_jump_insn ((*gen_blt_pat) (default_label)); | |
4429 | } | |
4430 | ||
4431 | emit_jump (label_rtx (node->code_label)); | |
4432 | } | |
4433 | } | |
4434 | } | |
4435 | \f | |
4436 | /* These routines are used by the loop unrolling code. They copy BLOCK trees | |
4437 | so that the debugging info will be correct for the unrolled loop. */ | |
4438 | ||
4439 | /* Indexed by loop number, contains pointer to the first block in the loop, | |
4440 | or zero if none. Only valid if doing loop unrolling and outputting debugger | |
4441 | info. */ | |
4442 | ||
4443 | tree *loop_number_first_block; | |
4444 | ||
4445 | /* Indexed by loop number, contains pointer to the last block in the loop, | |
4446 | only valid if loop_number_first_block is nonzero. */ | |
4447 | ||
4448 | tree *loop_number_last_block; | |
4449 | ||
4450 | /* Indexed by loop number, contains nesting level of first block in the | |
4451 | loop, if any. Only valid if doing loop unrolling and outputting debugger | |
4452 | info. */ | |
4453 | ||
4454 | int *loop_number_block_level; | |
4455 | ||
4456 | /* Scan the function looking for loops, and walk the BLOCK tree at the | |
4457 | same time. Record the first and last BLOCK tree corresponding to each | |
4458 | loop. This function is similar to find_and_verify_loops in loop.c. */ | |
4459 | ||
4460 | void | |
4461 | find_loop_tree_blocks (f) | |
4462 | rtx f; | |
4463 | { | |
4464 | rtx insn; | |
4465 | int current_loop = -1; | |
4466 | int next_loop = -1; | |
4467 | int loop; | |
4468 | int block_level, tree_level; | |
4469 | tree tree_block, parent_tree_block; | |
4470 | ||
4471 | tree_block = DECL_INITIAL (current_function_decl); | |
4472 | parent_tree_block = 0; | |
4473 | block_level = 0; | |
4474 | tree_level = -1; | |
4475 | ||
4476 | /* Find boundaries of loops, and save the first and last BLOCK tree | |
4477 | corresponding to each loop. */ | |
4478 | ||
4479 | for (insn = f; insn; insn = NEXT_INSN (insn)) | |
4480 | { | |
4481 | if (GET_CODE (insn) == NOTE) | |
4482 | switch (NOTE_LINE_NUMBER (insn)) | |
4483 | { | |
4484 | case NOTE_INSN_LOOP_BEG: | |
4485 | loop_number_block_level[++next_loop] = block_level; | |
4486 | loop_number_first_block[next_loop] = 0; | |
4487 | current_loop = next_loop; | |
4488 | break; | |
4489 | ||
4490 | case NOTE_INSN_LOOP_END: | |
4491 | if (current_loop == -1) | |
4492 | abort (); | |
4493 | ||
4494 | current_loop = loop_outer_loop[current_loop]; | |
4495 | break; | |
4496 | ||
4497 | case NOTE_INSN_BLOCK_BEG: | |
4498 | if (tree_level < block_level) | |
4499 | { | |
4500 | /* We have seen two NOTE_INSN_BLOCK_BEG notes in a row, so | |
4501 | we must now visit the subtree of the current block. */ | |
4502 | parent_tree_block = tree_block; | |
4503 | tree_block = BLOCK_SUBBLOCKS (tree_block); | |
4504 | tree_level++; | |
4505 | } | |
4506 | else if (tree_level > block_level) | |
4507 | abort (); | |
4508 | ||
4509 | /* Save this block tree here for all nested loops for which | |
4510 | this is the topmost block. */ | |
4511 | for (loop = current_loop; | |
4512 | loop != -1 && block_level == loop_number_block_level[loop]; | |
4513 | loop = loop_outer_loop[loop]) | |
4514 | { | |
4515 | if (loop_number_first_block[loop] == 0) | |
4516 | loop_number_first_block[loop] = tree_block; | |
4517 | loop_number_last_block[loop] = tree_block; | |
4518 | } | |
4519 | ||
4520 | block_level++; | |
4521 | break; | |
4522 | ||
4523 | case NOTE_INSN_BLOCK_END: | |
4524 | block_level--; | |
4525 | if (tree_level > block_level) | |
4526 | { | |
4527 | /* We have seen two NOTE_INSN_BLOCK_END notes in a row, so | |
4528 | we must now visit the parent of the current tree. */ | |
4529 | if (tree_block != 0 || parent_tree_block == 0) | |
4530 | abort (); | |
4531 | tree_block = parent_tree_block; | |
4532 | parent_tree_block = BLOCK_SUPERCONTEXT (parent_tree_block); | |
4533 | tree_level--; | |
4534 | } | |
4535 | tree_block = BLOCK_CHAIN (tree_block); | |
4536 | break; | |
4537 | } | |
4538 | } | |
4539 | } | |
4540 | ||
4541 | /* This routine will make COPIES-1 copies of all BLOCK trees that correspond | |
4542 | to BLOCK_BEG notes inside the loop LOOP_NUMBER. | |
4543 | ||
4544 | Note that we only copy the topmost level of tree nodes; they will share | |
4545 | pointers to the same subblocks. */ | |
4546 | ||
4547 | void | |
4548 | unroll_block_trees (loop_number, copies) | |
4549 | int loop_number; | |
4550 | int copies; | |
4551 | { | |
4552 | int i; | |
4553 | ||
4554 | /* First check whether there are any blocks that need to be copied. */ | |
4555 | if (loop_number_first_block[loop_number]) | |
4556 | { | |
4557 | tree first_block = loop_number_first_block[loop_number]; | |
4558 | tree last_block = loop_number_last_block[loop_number]; | |
4559 | tree last_block_created = 0; | |
4560 | ||
4561 | for (i = 0; i < copies - 1; i++) | |
4562 | { | |
4563 | tree block = first_block; | |
4564 | tree insert_after = last_block; | |
4565 | tree copied_block; | |
4566 | ||
4567 | /* Copy every block between first_block and last_block inclusive, | |
4568 | inserting the new blocks after last_block. */ | |
4569 | do | |
4570 | { | |
4571 | tree new_block = make_node (BLOCK); | |
4572 | BLOCK_VARS (new_block) = BLOCK_VARS (block); | |
4573 | BLOCK_TYPE_TAGS (new_block) = BLOCK_TYPE_TAGS (block); | |
4574 | BLOCK_SUBBLOCKS (new_block) = BLOCK_SUBBLOCKS (block); | |
4575 | BLOCK_SUPERCONTEXT (new_block) = BLOCK_SUPERCONTEXT (block); | |
4576 | TREE_USED (new_block) = TREE_USED (block); | |
4577 | ||
4578 | /* Insert the new block after the insertion point, and move | |
4579 | the insertion point to the new block. This ensures that | |
4580 | the copies are inserted in the right order. */ | |
4581 | BLOCK_CHAIN (new_block) = BLOCK_CHAIN (insert_after); | |
4582 | BLOCK_CHAIN (insert_after) = new_block; | |
4583 | insert_after = new_block; | |
4584 | ||
4585 | copied_block = block; | |
4586 | block = BLOCK_CHAIN (block); | |
4587 | } | |
4588 | while (copied_block != last_block); | |
4589 | ||
4590 | /* Remember the last block created, so that we can update the | |
4591 | info in the tables. */ | |
4592 | if (last_block_created == 0) | |
4593 | last_block_created = insert_after; | |
4594 | } | |
4595 | ||
4596 | /* For all nested loops for which LAST_BLOCK was originally the last | |
4597 | block, update the tables to indicate that LAST_BLOCK_CREATED is | |
4598 | now the last block in the loop. */ | |
4599 | for (i = loop_number; last_block == loop_number_last_block[i]; | |
4600 | i = loop_outer_loop[i]) | |
4601 | loop_number_last_block[i] = last_block_created; | |
4602 | } | |
4603 | } |